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Algorithms for scheduling hardware-software co-design systems

Ali Alrida Farhat

Abstract

This thesis addresses the hardware—software co-design scheduling problem for real-
time systems involving a single CPU and multiple reconfigurable Field Programmable
Gate Arrays (FPGAs). The problem requires assigning tasks with precedence,
release, and deadline constraints to either the CPU or an FPGA, while respecting
reconfiguration overheads and minimizing a composite cost that balances scheduling
delay and hardware usage.

Building on the seminal work of Ali et al. [1], who introduced a time-indexed
mixed-integer programming (MIP) formulation, we first replicated and validated
the original model to establish a performance baseline. While the MIP approach
guarantees optimal solutions for small instances, its scalability is limited by the
exponential growth of variables and constraints.

To address this, we developed two new algorithms. The first is a mat-heuristic
that combines a time-limited MIP solve with iterative window-based refinements.
This approach preserves near-optimal solution quality (typically within 5-10% of the
MIP) while drastically reducing runtime, enabling the solution of medium to large
task sets. The second is a greedy + simulated annealing method that constructs an
initial feasible schedule in linear time and improves it through local search. Although
this algorithm sacrifices optimality (with a gap of 10-20% compared to MIP), it
achieves solutions within seconds even for the largest test cases considered.

Experimental comparisons demonstrate a clear trade-off between accuracy and
speed: MIP ensures optimality but does not scale; the mat-heuristic achieves a
practical balance; and the greedy + SA method offers unmatched speed for very large
instances. Together, these three approaches provide a complementary toolkit for
hardware—software co-design scheduling, allowing practitioners to choose depending

on whether accuracy, efficiency, or responsiveness is prioritized.
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Chapter 1

Introduction

1.1 Background and Motivation

Embedded systems increasingly rely on tight integration between hardware and
software components to meet real-time performance requirements. Reconfigurable
hardware platforms, particularly Field Programmable Gate Arrays (FPGAs), have
gained popularity due to their flexibility and parallel processing capabilities, which
complement general-purpose processors (CPUs) in heterogeneous systems.

In hard real-time systems—such as those used in aerospace, automotive, and
industrial automation—every task must complete within a strict deadline. In such
systems, efficient task partitioning (deciding which task runs on which resource)
and scheduling (deciding when each task runs) is critical. Traditional two-phase
approaches, where partitioning and scheduling are done sequentially, often lead to

suboptimal solutions because these decisions are interdependent.

1.2 Problem Overview

Ali et al. [1] proposed a time-indexed mixed-integer programming (MIP) formulation
to simultaneously handle task partitioning and scheduling in hardware-software
co-design. Their model considers a system with a single CPU and multiple FPGAs,
where tasks have fixed release times, due dates, and precedence constraints. The
goal is to minimize a composite cost function that accounts for scheduling delay and
the number of FPGAs used.

While their approach is rigorous and yields optimal solutions for small to moderate
instances, its scalability is limited. As the number of tasks increases, the model
becomes computationally expensive due to the explosion of binary variables and

constraints.

1.3 Objectives and Contributions

This thesis aims to:
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e Reconstruct the original MIP model presented by Ali et al., validating its

performance using a new implementation and test cases.

o Evaluate the model’s scalability and computational performance across different

task set sizes.

e Propose enhancements to the original model that improve its efficiency and

applicability to larger systems with more tasks.

e Compare the extended model’s performance with the original using metrics

such as computation time, solution quality, and resource usage.

1.4 Thesis Organization
The remainder of this thesis is structured as follows:

e Chapter 2 reviews the existing literature on hardware-software co-design, MIP-

based scheduling, and FPGA-based real-time systems.

e Chapter 3 defines the problem formally, detailing the system configuration,

task attributes, and scheduling constraints.

e Chapter 4 presents the original MIP model by Ali et al., including a discussion

of its variables, constraints, and assumptions.

e Chapter 5 describes the implementation of the model and the test instance

generation methodology.

e Chapter 6 provides experimental results comparing the replicated model with

the original, followed by evaluation using new instances.

e Chapter 7 concludes the thesis and outlines potential directions for future

research.



Chapter 2

Literature Review

Now we present a survey of prior work in the field of hardware-software co-design,
focusing particularly on mixed-integer programming (MIP) approaches for scheduling

real-time tasks.

2.1 Hardware-Software Co-design Approaches

Hardware-software co-design involves the concurrent design of hardware and software
components in embedded systems to meet performance, cost, and time-to-market
constraints. Traditional approaches separates the design process into two phases:
hardware-software partitioning which is choosing which job takes what resource
followed by scheduling them. However, this decoupled process can lead to suboptimal
solutions due to the interdependence between these two stages.

Several works have proposed heuristic or metaheuristic approaches for co-design.
Liu and Wong [2] presented an integrated partitioning and scheduling framework
targeting execution time and hardware cost. Arato et al. [3] developed a schedul-
ing technique where tasks that miss deadlines are offloaded to auxiliary hardware
components.

However, these papers before have not been able to find optimal solutions for
such a problem. As for the paper done by Ali et al. [1], the approach he proposed was
giving optimal solutions but since he used an exact method (integer programming)
to model the joint problem, he faced the problem of computational intensity. And
such, he could not get the optimal solution for problems that have many tasks in a

small time, which is crucial for real-time embedded systems.

2.2 MIP-Based Scheduling and Integrated Co-design

Mixed-Integer Programming (MIP) offers an exact optimization framework to model
complex scheduling and resource allocation problems in hardware-software co-design.
Unlike heuristic approaches, MIP models provide optimal solutions given enough com-
putational resources and time, and they allow for the formal inclusion of precedence

constraints, resource usage, and timing requirements.
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One notable MIP-based approach was proposed by Niemann and Marwedel [4],
who developed a two-phase model for partitioning and scheduling. The first phase
proposes a tentative schedule, and the second verifies timing constraints. This
sequential design, however, lacks the ability to make optimal joint decisions.

Ali et al. [1] addressed this limitation by introducing a time-indexed MIP model
that simultaneously performs task partitioning and scheduling. Their model considers
a system with a single CPU and up to m reconfigurable FPGAs (m being a parameter
that can be changed), incorporating processing times, reconfiguration delays, and
strict due-date constraints. The objective function minimizes a composite cost of
task assignment and FPGA usage. The model has been shown to produce optimal
solutions for small to medium-sized problem instances, but it becomes computationally
expensive as the number of tasks increases.

Their work has laid the foundation for research like this thesis, which aims to
improve the scalability of such MIP models to handle larger and more complex

systems efficiently.

2.3 Use of FPGAs in Real-Time Systems

Field Programmable Gate Arrays (FPGAs) are reconfigurable hardware devices that
offer significant performance advantages in embedded and real-time systems. Unlike
general-purpose processors, FPGAs can execute multiple operations in parallel and
can be tailored to specific workloads, making them suitable for compute-intensive
and latency-sensitive applications.

In hardware-software co-design, FPGAs are commonly used as accelerators to
offload tasks from the CPU. However, their reconfiguration ability introduces unique
challenges: tasks assigned to FPGAs require a reconfiguration process before exe-
cution, and this process often involves a shared controller that can only handle one
reconfiguration at a time. These constraints complicate scheduling and must be
explicitly modeled to ensure correct and efficient task execution.

The flexibility and performance benefits of FPGAs make them an attractive re-
source in real-time systems. However, their dynamic behavior, limited reconfiguration

bandwidth, and non-preemptive nature necessitate careful modeling.



Chapter 3

Problem Definition

This chapter formally defines the hardware-software co-design problem addressed in
this thesis. We consider a real-time system consisting of a single Central Processing
Unit (CPU) and a set of reconfigurable Field Programmable Gate Arrays (FPGAs).
The system must schedule a set of non-pre-emptive, aperiodic tasks that are subject to
strict precedence constraints, release times, and due-dates. Each task can be assigned
to either the CPU or one of the available FPGAs. The objective is to determine
a feasible and optimal assignment and schedule that minimizes a composite cost

function while satisfying all timing and structural constraints.

3.1 System Description

The target system consists of the following components:

o A single Central Processing Unit (CPU) that serves as the default processing

unit.

o A maximum of m Field Programmable Gate Arrays (FPGAs), each of which

can be dynamically reconfigured to execute specific tasks.

e A shared reconfiguration controller responsible for configuring the FPGAs.

Only one FPGA can be reconfigured at a time.

o Two communication buses: one for I/O data transfers and another for reconfig-

uration data transfer.

The CPU and FPGAs are connected through a shared architecture that supports
task execution and dynamic hardware reconfiguration. While the CPU is always
available for task processing, the FPGAs are used selectively due to their setup
overhead and reconfiguration delays. Additionally, each FPGA can execute only one
task at a time and must be reconfigured before processing each new task.

The system timeline is discretized into uniform time-slots to facilitate a time-
indexed scheduling approach. Each processing resource (CPU or FPGA) is associated
with a series of time-slots over which tasks can be scheduled.

As shown in Figure 3.1, the reconfiguration controller is shared across all FPGAs.
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Figure 3.1: System architecture with CPU, FPGAs, and shared controller.

3.2 Task Characteristics

We consider a set of n indivisible, non-preemptive tasks {1,2,...,n} to be scheduled

on the system described above. Each task is characterized by the following properties:

+ Release time («;): Each task j has a specified release time «;, which repre-
sents the earliest time-slot at which the task becomes available for processing.

A task cannot begin execution before its release time.

e Due date (d;): Each task j has a strict due date d; that must not be violated.
This reflects the hard real-time nature of the system; any schedule that causes

a task to miss its due date is considered infeasible.

e Precedence constraints: Tasks may have interdependencies captured by a
set of precedence relations. If task j; must complete before task j can start,
this is represented as an arc (ji,j2) in the precedence graph. The scheduler

must ensure that all such constraints are respected.

o Execution time: The time required to execute a task depends on the assigned

resource:

— When executed on the CPU, a task has a known processing time dq.

— When executed on FPGA r (r = 1,...,m), the task requires a recon-
figuration time ;. in addition to its processing time. The total time to

execute task j on FPGA r is denoted by 4., where d;, > mjp..

e Non-preemptiveness: Once started, a task must execute to completion

without interruption, regardless of the assigned resource.

Together, these properties introduce complexity into the scheduling problem.
The scheduler must determine not only the assignment of each task to a resource
(partitioning), but also the exact start time of each task such that all constraints are

satisfied and the overall cost is minimized.
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3.3 Ohbjective of the Scheduling Problem

The goal of the scheduling problem is to determine a feasible assignment and ordering

of tasks on available processing resources such that all constraints are satisfied, and

the total system cost is minimized.

The cost function used in this thesis consists of two components:

¢ Scheduling efficiency cost: Each task incurs a cost based on the time-slot at

which it begins execution. This reflects a preference for earlier task execution
and helps avoid idleness and schedule slack. The cost is typically modelled to

increase with later start times.

Hardware usage cost: Each FPGA incurs a fixed cost if it is used for any
task. This component discourages unnecessary FPGA activation and reflects
the practical costs associated with dynamic reconfiguration, power consumption,

and hardware utilization.

Together, these components form a composite cost function that is minimized by

the scheduler. The problem thus involves making the following decisions:

1.

Whether each task should be assigned to the CPU or to one of the FPGAs.

. When each task should begin execution, given its release time, due date, and

precedence constraints.

Which FPGAs are activated and how they are shared under the single-controller

constraint.

This problem is modelled as a time-indexed Mixed-Integer Programming (MIP)

formulation, described in detail in Chapter 4.



Chapter 4

Original MIP Model by Ali et al.

In this chapter, we describe the mathematical model introduced by Ali et al. [1]
to solve the problem of scheduling and assigning real-time tasks in a system with
one Central Processing Unit (CPU) and several Field Programmable Gate Arrays
(FPGAs).

The model uses a technique known as Mized-Integer Programming (MIP), a
powerful optimization framework that allows decisions to be made over both binary
(true or false) and continuous variables, subject to constraints. The model is built to

handle practical challenges such as:
o Tasks that cannot be interrupted once they start (non-pre-emptive).
o Dependencies between tasks (precedence constraints).
o Tasks that must start after their release time and finish before their due date.

e FPGASs that need to be reconfigured before use, and share a single reconfigura-

tion controller.
The purpose of the model is to determine:
1. Which task should be executed on which resource (CPU or FPGA).
2. When each task should start, ensuring no overlaps or deadline violations.

3. Whether each FPGA needs to be activated at all, as activating it contributes
to the total cost.

The goal is to minimize the total cost, which includes a penalty for starting
tasks later and a fixed cost for using each FPGA. In the sections below, we explain
the components of the model step by step, starting with the notation and decision

variables.

4.1 Sets, Indices, and Parameters

To build the mathematical model, we begin by defining the key components: the sets

of tasks and resources, and the parameters that describe timing and costs.
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Indices
e 7=1,2,...,n: Index for tasks (also called jobs).

e 7=0,1,...,m: Index for processing resources, where r = 0 denotes the CPU
and r = 1 to m denote the available FPGAs.

e t=1,2,...,s: Index for discrete time-slots in the scheduling timeline.

Time-Slot Structure

Time is divided into small equal intervals called time-slots. Each resource (CPU
or FPGA) has its own timeline, made up of these time-slots. The total number of
time-slots, s, is chosen large enough to cover the entire scheduling period, typically
based on the latest task due date.

Task Parameters

Each task j has the following properties:

» «;: Release time — the earliest time a task is allowed to start.
e d;j: Due date — the latest time by which a task must be completed.
e J;r: Processing time of task j on resource r.

— 0jo: Time to run task j on the CPU.

— 0 for r > 1: Time to run task j on FPGA 7, including reconfiguration

time.

« 7j: Reconfiguration time — the time required to prepare FPGA r for task

j (only applicable when r > 1).
o P: Precedence set, where (ji,j2) € P means that task j; must finish before
task jo can start.
Cost Parameters

e cji: The cost of starting task j at time-slot k. Usually increases with time, to

favor earlier execution.

e A: A fixed cost associated with using an FPGA. If an FPGA is used for even

one task, this cost is incurred.

Remarks

The processing time ;. already includes the reconfiguration time 7. for FPGA

execution. That is:

djr = actual execution time + 7., forr >1
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Also, all time-related values (release times, durations, deadlines) are expressed in

units matching the time-slot length, so they are assumed to be integers.

4.2 Decision Variables

The model introduces a set of variables that represent the decisions to be made in
order to produce an optimal schedule.
Primary Decision Variables

¢ Tk € {0, 1}2

— x5, = 1 if task j is assigned to start at time-slot k£ on some resource.

— xx = 0 otherwise.

This is the main scheduling variable that tells us when and where each task

starts.
* Yr € [07 1]:

— y = 1 if FPGA r is used to execute at least one task.

— yr = 0 otherwise.

Even though y, is defined as continuous in the model, it will end up being
either 0 or 1 in the optimal solution. These variables are used to calculate
FPGA usage cost.

Auxiliary Variables

To simplify the formulation, two auxiliary variables are derived from xj:

e s;: The time-slot at which task j starts. This is computed based on the

values.

e fj: The time-slot at which task j finishes. This depends on when it starts and

how long it takes.

These variables are not independent decisions, but they are calculated from the

xj), variables to help express the constraints more clearly.

4.3 Objective Function

The goal of the MIP model is to minimize the total cost of scheduling and resource

usage. The objective function has two parts:

e Task scheduling cost: Starting a task later typically incurs a higher cost.
The model assigns a cost c;;, for starting task j at time-slot k. These costs can

be chosen to encourage earlier scheduling of tasks.

10
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e FPGA usage cost: Each FPGA r incurs a fixed cost A if it is used for any
task. This helps reduce the number of FPGAs used unnecessarily.

The total cost is the sum of all individual task scheduling costs plus the total
cost of FPGA usage:

n m
Minimize Z Z CikTjk + A Z Yr
j=1keS; r=1

Where:

e x;, = 1 means task j starts at slot k

o Sj is the set of all valid slots for task j (we’ll define this set soon)
e . = 1 means FPGA r is used

e A\ is the fixed cost for using one FPGA

This function balances two competing goals:

1. Schedule tasks as early as possible to avoid high scheduling cost.

2. Use as few FPGAs as necessary to reduce hardware cost.

4.4 Definition of Helper Sets

To express the constraints of the model efficiently, several sets are defined. These

sets represent valid start times, task execution windows, and reconfiguration periods.

1. Set §; — Valid Start Slots for Task j

This is the set of time-slots in which task j can legally begin execution, considering

its release time «j, due date d;, and its processing time on all possible resources.
S; = {k e{l,...,(m+1)s} : Ib; <k mod Ts < dj = 6r(k) —|—1}

Where: - [b; is the lower bound on the start time of task j (at least its release
time, or later if it has predecessors). - r(k) tells us which resource is associated with
slot k.

2. Set S;, — Start Slots on Resource r

This set includes all valid start slots for task j that belong specifically to resource r
(e.g., CPU or a particular FPGA):

Sjr = {k? S Sj | T‘(k?) :’I”}

11
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3. Set J, — Tasks That Occupy Slot £

This set includes all combinations of tasks 7 and start slots ¢ such that task j would

occupy time-slot k if started at slot £:

Jo={(.0) - £€8;, () =r(k), ¢ mod*s<k mod*s<l modts+ 34— 1]

4. Set R; — Tasks Reconfiguring at Time ¢

This set contains all task-start combinations that would cause a reconfiguration to

be in progress during time-slot t:

Rt:{(j,f) c0e S, >s+1, 0 mod Ts<t </ mod+s+7fjr<e>—1}

This is relevant only for tasks assigned to FPGAs, since the CPU does not require

reconfiguration.

5. Modulo Notation mod Ts

In this model, modulo arithmetic is used to map global slot indices back to local

time-slots. The notation & mod *s means:

k' mods ifk mods#0

kE mod Ts=
s if ¥k mods=0

This ensures consistent slot numbering across the CPU and FPGA timelines.

4.5 Model Constraints

The model includes several constraints that ensure the schedule is feasible and respects

all timing, dependency, and resource limitations.

1. Each Task Must Be Scheduled Exactly Once

Every task must start at exactly one valid time-slot, on one resource.

dap=1 Vi=1,...,n
kGSj

Where S; is the set of all time-slots where it is valid to schedule task j (we’ll
define this later). This ensures no task is skipped or duplicated.

12
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2. No Overlapping Tasks on the Same Resource

Each time-slot on a resource can only be used by one task. This avoids overlapping

execution.

Y wyp <1l Vek=1,...,(m+1)s
(ij)EJk

Where Jj, is the set of all tasks and start times that would occupy time-slot k.
3. Only One FPGA Can Be Reconfigured at a Time

The system has a single reconfiguration controller. So at most one FPGA can be

reconfiguring in any time-slot.

Z zjp <1 Vt=1,...,s—A
(j’g)eRt

Where R, is the set of tasks and start times that would result in a reconfiguration

during time-slot . A is a small buffer defined to simplify the timing.

4. Compute Start and Finish Time of Each Task

The start and finish times of each task are derived from the selected x5, values.

sj = Z (k mod *s) -z
kESj

fj = Z [(k} mod +S) + 6j7'(k) - 1} . ﬂfjk
kESj

Here, mod T means the remainder of k divided by s, but equals s if the remainder

is 0 (to align time-slots across resources).

5. Enforce Precedence Constraints

If task j; must finish before task jo starts, we must ensure:

fjl +1< Sja V(j1,j2) S

6. Activate an FPGA Only If It Is Used

If any task is assigned to FPGA r, then y, must be set to 1.

Yp > Zl"jlc Vi, r=1,...,m
kESjr
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Original MIP Model by Ali et al.

7. Enforce FPGA Symmetry (Optional)

To reduce computational complexity, symmetry-breaking constraints are used to
prefer lower-indexed FPGAs:

ZZ:vijZ Z zjp Vr=1,....,m—1

7 kESjr 7 kESjyr+1

8. Binary and Continuous Variable Constraints
Tk € {07 1}7 Yr € [07 1]

Although vy, is continuous, it will become binary at optimality due to the model

structure.

These constraints ensure that the model makes valid, conflict-free decisions while

trying to minimize the overall cost.
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Chapter 5

Mat-heuristic Implementation

In this chapter, we present a mat-heuristic algorithm developed to solve the hardware-
software co-design problem introduced in Chapter 4. Unlike the original MIP model
by Ali et al. [1], which attempts to optimize all tasks simultaneously, our approach
combines mathematical programming with heuristic strategies to improve scalability
for larger task sets.

A mat-heuristic is a hybrid method that integrates heuristics (fast, approximate
algorithms) with exact optimization techniques. In our case, the method uses a
decomposition approach: it selects a subset of tasks to optimize using the MIP
formulation while fixing the remainder based on heuristic rules. This allows the
algorithm to handle larger instances efficiently without sacrificing too much solution

quality.

5.1 Algorithm Overview

The proposed mat-heuristic integrates a Mixed-Integer Programming (MIP) for-
mulation with a block-based refinement heuristic to handle large instances of the

hardware-software co-design problem. The algorithm proceeds in two phases:

1. Initial Feasible Solution: The full MIP model is solved under a strict time
limit using the Gurobi optimizer. This step aims to quickly generate a feasible

(not necessarily optimal) schedule that satisfies all constraints.

2. Window-Based Refinement: The task set is divided into overlapping blocks
or windows. For each window, only the tasks inside it are allowed to change
assignment and start time, while all other tasks are fixed to their current
values. The MIP is re-solved for each window sequentially, improving the

overall solution iteratively.

This decomposition strategy reduces the search space in each refinement step,
allowing the algorithm to improve the solution quality without facing the full com-
plexity of the global problem. By adjusting the window size, a trade-off is achieved

between computation time and solution optimality.
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Build Full MIP Model

no
Feasible Solution Found ?

Output Final

Schedule
Phase 2- Window-Based

Refinement
Divide tasks into blocks

Fix outside tasks

Re-solve for current block

no yes

Figure 5.1: Flowchart of the Mat-heuristic algorithm.

5.2 Algorithm Flowchart

Figure 5.1 illustrates the overall workflow of the proposed mat-heuristic algorithm,
which is divided into two main phases.

The process begins by generating the task instance and all associated parameters,
including release times, due dates, processing times, and precedence constraints.
Based on this data, the full Mixed-Integer Programming (MIP) model is constructed,
incorporating the resource constraints and scheduling objectives described in Chap-
ter 4.

In Phase 1, the MIP model is solved using the Gurobi optimizer under a strict
time limit. The aim of this step is not to find the global optimum, but to produce a
feasible schedule that satisfies all deadlines and resource constraints. If no feasible
solution is found within the time limit, the algorithm terminates early.

If a feasible schedule is obtained, Phase 2 begins. In this stage, the set of tasks
is divided into smaller overlapping subsets, called windows. For each window, the
tasks outside the window are fixed to their current schedule, while the tasks inside
the window are free to be reassigned and rescheduled. The MIP solver is then called
again to optimize the schedule for the current window. This refinement process

iterates over all windows until every subset of tasks has been processed.
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Mat-heuristic Implementation

At the end of Phase 2, the refined final schedule is produced, along with FPGA
usage data and the total objective value. This two-step approach allows the algorithm
to handle much larger task sets than a single full MIP solve, striking a balance between

solution quality and computational efficiency.

5.3 Pseudo-code of the Mat-heuristic

To complement the flowchart shown in Figure 5.1, Algorithm 1 provides a structured
representation of the proposed mat-heuristic in pseudo-code form. The pseudo-code
highlights the two-phase design of the algorithm: a fast initial MIP solve to obtain
a feasible schedule, followed by iterative window-based refinement to improve the
solution.

Presenting the algorithm in this format makes it independent of any specific
programming language, focusing instead on the logic and workflow. This allows the
method to be implemented in various environments, such as Python with Pyomo or
MATLAB with Gurobi.

Algorithm 1 Mat-heuristic for Hardware-Software Co-design Scheduling

Require: Task set J, number of FPGAs m, time horizon S

Ensure: Feasible schedule and FPGA usage
1: Generate task instance: release times, due dates, processing times
2: Build full MIP model with all tasks and resources

Phase 1: Initial Feasible Solution
Solve MIP model with time limit using Gurobi
if no feasible solution found then
return “No feasible schedule”
end if

Save the solution as current schedule

9: Phase 2: Window-Based Refinement

10: Partition tasks into overlapping windows of size w

11: for each window W in task order do

12: Fix assignments of tasks outside W to current schedule
13: Unfix tasks inside W

14: Re-solve the MIP model for window W

15: Update current schedule with improved solution

16: end for

17: Output: Refined schedule, FPGA usage, objective value

17
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5.4 Step-by-Step Description

To clarify the workflow of the mat-heuristic, we describe its two phases with a simple

example:

1. Instance generation: Suppose n = 10 tasks and m = 2 FPGAs. Release

times, due dates, and precedence constraints are fixed.

2. Phase 1 — Initial solution: A time-limited MIP is solved. Assume it produces

a feasible schedule where most tasks meet deadlines but some idle gaps remain.

3. Phase 2 — Window refinement: The task set is partitioned into overlapping

windows, e.g. tasks 1-5, then 4-8, then 7-10. In each window:

o Tasks outside the window remain fixed.

e Tasks inside the window are re-optimized by MIP.

4. Tteration: For the first window (1-5), the solver shifts tasks 2 and 3 ear-
lier, closing idle time. For the second window (4-8), reassignments reduce
reconfiguration congestion. After the third window, the solution is globally

improved.

5. Output: The final schedule balances deadlines, reduces idle time, and uses

fewer FPGA activations than the initial baseline.

5.5 Summary and Transition

In this chapter, we introduced a mat-heuristic algorithm designed to address the
scalability challenges of the original MIP model for hardware-software co-design. By
combining an initial time-limited MIP solve with iterative window-based refinement,
the method achieves a balance between computational efficiency and solution quality.
This approach allows the scheduling of significantly larger task sets compared to
solving the full MIP model directly.

While the mat-heuristic leverages exact optimization as its core engine, the next
chapter explores a complementary strategy based on heuristic search techniques.
Specifically, we present an algorithm that integrates a greedy task assignment proce-
dure with a local search improvement phase enhanced by simulated annealing. This
alternative method trades off guaranteed optimality for much faster runtime and is
particularly suited for very large instances where even the mat-heuristic may struggle

to find solutions within practical time limits.

18



Chapter 6

Greedy-Based Scheduling with
Local Search and Simulated

Annealing

This chapter presents a heuristic-based approach to the hardware-software co-design
problem that emphasizes speed and scalability. Unlike the MIP-based mat-heuristic
introduced in Chapter 5, which relies on exact optimization, this method builds an
initial schedule using a greedy algorithm and then refines it through local search
enhanced by simulated annealing (SA).

The motivation for this algorithm is to handle very large task sets where even
mat-heuristics may face computational limits. By leveraging a fast constructive
heuristic and a probabilistic meta-heuristic for improvement, the algorithm can

generate high-quality schedules within seconds.

6.1 Algorithm Overview

This algorithm combines a fast greedy scheduler with a meta-heuristic improvement
phase based on simulated annealing (SA). The goal is to produce high-quality
schedules for large task sets within a short computation time, making it an alternative

to the MIP-based methods described in previous chapters.

Phase 1: Greedy Initialization

The first phase constructs an initial feasible schedule using a simple greedy heuristic:
1. Tasks are ordered topologically according to their precedence constraints.

2. For each task in order, the earliest possible start time is determined based on

its release time and the finish times of all predecessors.

3. The task is then assigned to the resource (CPU or any available FPGA) that

minimizes its completion time.
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Greedy-Based Scheduling with Local Search and Simulated Annealing

This process produces a valid, non-pre-emptive schedule that respects release times,
due dates, and dependencies, while running in linear time relative to the number of
tasks.

Phase 2: Local Search with Simulated Annealing

To improve the greedy schedule, a simulated annealing meta-heuristic is applied:
1. A neighbour schedule is generated at each iteration by either:

o Reassigning a single task to a different resource, or

e Swapping the resources of two tasks.

2. The neighbour solution is evaluated, and its cost is compared to the current

schedule.

3. If the new solution is better, it is accepted. If it is worse, it may still be accepted
with a probability proportional to the current temperature, allowing the search

to escape local minima.

4. The temperature decreases gradually according to a cooling rate, reducing the

likelihood of accepting worse solutions over time.

6.2 Parametrization of Simulated Annealing

The performance of the simulated annealing (SA) phase depends strongly on its

control parameters. In our implementation, the following were defined:

o Initial temperature Tj: sets the probability of accepting worse solutions
at the start of the search. A higher Ty encourages exploration, while a lower
Ty focuses on exploitation from the beginning. In practice, we used values in
the range Ty € [0.5,1.0] - C(Sgreedy), Where C(Sgreedy) is the cost of the initial

greedy solution.

o Cooling rate a: determines how quickly the temperature decreases (1" <— oT).
A slower cooling (e.g., a ~ 0.98) allows broader exploration, while a faster
cooling (e.g., a ~ 0.90) yields quicker convergence. In experiments, o = 0.95

provided a good trade-off.

e Minimum temperature T,;,: the stopping threshold. When T falls below
this value, the probability of accepting worse solutions becomes negligible. We
set Tyin = 1073

e Maximum iterations per temperature level: controls how many neighbour
solutions are sampled before decreasing 1. Larger values improve solution

quality at the cost of runtime. A range of 100-300 iterations was used.
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o Neighbourhood moves: two types of modifications were applied: (i) reas-
signing a task to a different resource, and (ii) swapping the resources of two

tasks. Mixing both allowed the search to escape local minima more effectively.

These parameters were empirically tuned. For small task sets, higher initial
temperature and faster cooling were sufficient. For larger instances, slower cooling

and more iterations per level improved quality without excessive runtime.

Advantages

This hybrid approach trades exact optimality for speed and scalability. The greedy
phase guarantees a feasible starting point in negligible time, while the simulated
annealing phase systematically explores the solution space to improve quality. The
result is a practical scheduling method suitable for very large problem instances

where exact MIP models or even mat-heuristics become computationally prohibitive.

6.3 Pseudo-code of the Greedy + SA Algorithm

Algorithm 2 summarizes the complete procedure of the proposed greedy-based
scheduling algorithm combined with simulated annealing. The pseudo-code outlines
the two main phases: a fast constructive heuristic to build an initial feasible schedule,
followed by a meta-heuristic improvement phase designed to escape local optima and
explore the solution space more effectively.

In the first phase, tasks are ordered according to their precedence constraints
using a topological sort. Each task is then scheduled at the earliest feasible time,
choosing between the CPU and available FPGAs based on which resource yields the
earliest completion. This greedy assignment ensures that the initial schedule is both
feasible and generated in near-linear time, making it suitable for very large task sets.

The second phase applies simulated annealing to iteratively improve the schedule.
At each iteration, a neighbour solution is created by performing a small modification,
either reassigning a task to a different resource or swapping the resources of two
tasks. The cost of the neighbour is compared with the current solution, and it is
accepted if it improves the objective function. To avoid becoming trapped in local
minima, worse solutions may also be accepted with a probability controlled by the
temperature parameter, which decreases over time according to a cooling schedule.
The best solution encountered across all iterations is recorded as the final schedule.

This hybrid design leverages the speed of a greedy heuristic to establish a baseline
and the global search capabilities of simulated annealing to refine it. Together, they
provide a practical balance between runtime and solution quality, particularly suited
for very large instances where exact optimization approaches are computationally

prohibitive.
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Algorithm 2 Greedy Scheduling with Local Search and Simulated Annealing

Require: Task set J, number of FPGAs m, precedence graph P
Ensure: Feasible schedule with minimized cost
1: Generate task instance: release times, due dates, processing times

Phase 1: Greedy Initialization

Sort tasks in topological order based on P

for each task j in order do
Compute earliest start time considering predecessors and release time
Assign task j to CPU or FPGA r minimizing finish time

end for

Save initial schedule Scyrrent

9: Phase 2: Simulated Annealing Improvement
10: Initialize temperature T' = Tj, cooling rate «

11: Set Sbest = Scurrent

12: while T > T,,;, and iteration < mazx_iter do

13: Generate neighbour schedule S,,cignbor:

o Reassign a random task to a different resource or
e Swap the resources of two tasks

14: Compute cost difference A = C(Speighbor) — C(Scurrent)
15: if A <0 then

16: ACCGpt Sneighbor as new Scurrent
17: else
18: Accept Syeighvor With probability e=B/T

19: end if
20: if C(Scurrent) < C(Spest) then

21: Update Sbest = Scurrent
22: end if
23: Decrease temperature: T'=« - T

24: end while

25: Qutput: Spes; with final cost and FPGA usage

6.4 Step-by-Step Explanation
Following Algorithm 2, the greedy + SA method can be explained as:

1. Lines 3—7 (Greedy initialization): Tasks are topologically sorted. For each
task, the earliest feasible start is chosen, assigning it to the CPU or FPGA that

minimizes finish time. This ensures a feasible baseline schedule.

2. Lines 9-11 (Initialization of SA): The temperature 7" and cooling rate «

are set. The current and best solutions are initialized to the greedy schedule.
3. Lines 12-24 (SA iterations):

(a) A neighbour schedule is generated (line 13), either by reassigning one task

or swapping two tasks.
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(b) The cost difference A is computed (line 14).

(c) If the neighbour is better, it is accepted (lines 15-16). If worse, it may
still be accepted with probability e=2/7 (lines 17-18).

(d) The best solution seen so far is updated (lines 20-21).

(e) The temperature is decreased (line 23), reducing acceptance of worse

moves over time.

4. Line 25 (Output): The best schedule found is returned, balancing speed and
quality.

6.5 Summary and Transition

In this chapter, we presented a heuristic and meta-heuristic-based approach to the
hardware-software co-design scheduling problem. By combining a greedy initialization
phase with a simulated annealing improvement stage, the algorithm is able to quickly
generate feasible schedules and refine them through controlled stochastic search.
The greedy phase ensures rapid construction of a valid baseline solution, while the
simulated annealing phase provides the ability to explore alternative task-resource
assignments and avoid local minima.

Compared to the mat-heuristic introduced in Chapter 77, this method sacrifices
exact optimality for much faster runtime and the ability to handle very large problem
instances. It is particularly useful in contexts where near-optimal solutions are
sufficient and time constraints prevent the use of full MIP optimization.

In the next chapter, we evaluate both approaches in detail. We compare the
mat-heuristic and the greedy + simulated annealing algorithm on a range of task
sets, analysing their performance in terms of solution quality, computational time,

and scalability.
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Chapter 7
Results and Comparison

This chapter evaluates the two algorithms developed in this thesis: the MIP-based
mat-heuristic introduced in Chapter 5 and the greedy + simulated annealing (SA)
algorithm described in Chapter 6. Both methods are tested on multiple task sets of

varying sizes to assess their solution quality, computational efficiency, and scalability.

7.1 Experimental Setup

All experiments were conducted on a machine with 13th Gen Intel(R) Core(TM)
i7-13620H (2.40 GHz), 16.0 GB RAM, and Windows 11 Pro, using Python with
the Pyomo modelling framework and the Gurobi 10.0 optimizer for the MIP-based
components. The greedy + SA algorithm was implemented in pure Python for rapid
prototyping.

Random task sets were generated following the methodology described in Chap-
ter 4, with varying numbers of tasks (n = 10, 20, 30, 40, 50, 60, 75,90) and FPGAs
(m =1,2,3). For each configuration, 10 instances were generated and averaged to

ensure statistical significance.

7.2 Results of the Full MIP Model

Before evaluating the heuristic-based methods, we first analyse the performance of
the full mixed-integer programming (MIP) model described in Chapter 4. This serves
as a baseline for optimal or near-optimal solutions against which the mat-heuristic

and greedy + SA algorithms can be compared.

7.2.1 Instance Sizes

The full MIP model was tested on task sets of size n = 10, 20, 30, 40, 50, 60, 75, 90
with up to m = 3 FPGAs. Larger instances were included to showcase the intensive

time needed to solve such problem.
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7.2.2 Solution Quality and Computation Time

Table 7.1 summarizes the average objective value and computation time for each

problem size. Each value is averaged over 10 randomly generated instances.

Table 7.1: Full MIP model results for different task sizes

Tasks (n) | FPGAs (m) | Avg. Objective | Avg. Time (s)
10 1 391 0.55
20 2 968 1
30 2 1751 1.72
40 2 2738 9.8
50 2 3962 20.15
60 2 5084 34.3
75 2 7270 185
75 3 7697 937
90 2 10125 664
90 3 10484 935

7.2.3 Example Schedule

Figure 7.1 shows a sample Gantt chart for a 30-task instance solved optimally with
the MIP model. The CPU and FPGAs are displayed as separate lanes, and the
schedule satisfies all precedence and deadline constraints (the generated instances

and their constraints are all mentioned in Appendix A).

Task Schedule Gantt Chart by Resource
rrrrr

rrrrr

rrrrr

20 Y 5 0 160
Time

Figure 7.1: Example schedule produced by the full MIP model (40 tasks, 3 FPGAs)

7.3 Mat-heuristic Results

7.3.1 Overview.

The mat-heuristic integrates an initial, time-limited full MIP solve to secure a feasible
baseline, followed by a sequence of window-based re-optimizations where only a subset
of tasks is free while the remainder of the schedule is fixed. This decomposition reduces
the search space dramatically while preserving the ability of MIP to coordinate global
constraints (precedence, single-controller reconfiguration, and FPGA symmetry). In
effect, the method trades a single, expensive global branch-and-bound for several

small, directed solves that exploit structure in the incumbent schedule.
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7.3.2 Quality vs. MIP.

On all instances where the full MIP completes, the mat-heuristic produces solutions
that are near-optimal: the objective difference is typically in the low single-digit
percent range. In tighter instances (dense precedence, narrow release/due windows,
longer reconfiguration times), the windowed re-optimization is particularly effective
because it can focus solving effort where contention is highest (e.g., around the
reconfiguration controller or clusters of closely coupled jobs). In looser instances, the
initial feasible baseline already captures most of the structure, and the refinement

pass mostly smooths idle gaps and shifts a handful of tasks earlier.

7.3.3 Runtime and scalability.

Relative to the full MIP, the mat-heuristic achieves substantial runtime reductions
while scaling to larger task sets. Runtime grows roughly linearly with the number of
windows and passes, and sub-linearly with the window size w due to solver warm-
starts from the incumbent. In practice, one to two passes over moderately overlapping
windows (20-30% overlap) capture most of the gains. This makes instances with
n € [40,90] and m € {1,2,3} tractable within practical time limits, where the

monolithic MIP would otherwise time out.

7.3.4 Sensitivity.

Three levers matter most: window size w, window overlap, and the time limit of the
initial MIP. Larger w improves quality but increases per-window solves; too small
w may starve the model of degrees of freedom near window boundaries. Light-to-
moderate overlap (20-30%) mitigates boundary effects. A modest initial time limit
is sufficient: the refinement pass does most of the heavy lifting. Cooling schedule

and neighbourhood mix are irrelevant here (they belong to the greedy+SA method).

Table 7.2: Mat-heuristic model results for different task sizes

Tasks (n) | FPGAs (m) | Avg. Objective | Avg. Time (s)
10 1 410 1.2
20 2 1005 1.2
30 2 1791 3.3
40 2 2832 9.5
50 2 4222 13.62
60 2 5846 22.5
75 2 8224 43
75 3 8498 69
90 2 11118 66
90 3 11003 93
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Task Schedule Gantt Chart by Resource
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Figure 7.2: Gantt chart of a mat-heuristic schedule for a representative instance
(n and m as indicated). Lanes correspond to CPU and FPGA resources; bars show
non-pre-emptive tasks from start to finish times. The chart illustrates (i) precedence-
respecting sequencing, (ii) single-controller reconfiguration spacing (no overlapping
reconfigurations), and (iii) controlled FPGA activation consistent with the fixed-cost
penalty.

7.3.5 Interpretation

Two consistent patterns emerge. First, quality: the mat-heuristic remains within a
small percentage of the full MIP, even as n grows, indicating the refinement windows
are sufficient to repair the greedy aspects of the initial feasible plan. Second, speed:
speed-ups grow with n because the mat-heuristic isolates hard local conflicts (e.g.,
around the controller) rather than exploring the entire assignment-schedule space
at once. Notably, FPGA usage remains essentially unchanged relative to MIP,
confirming that the fixed-cost penalty effectively curbs unnecessary activations even

under decomposition.

7.3.6 Gantt chart analysis.

Figure 7.2 highlights three mat-heuristic behaviours that also explain its strong
performance: (1) Localized smoothing: after the initial feasible baseline, the refinement
windows pull tightly coupled tasks closer on the same resource, reducing idle fragments
and improving lateness margins. (2) Controller-aware placement: reconfiguration
starts are spaced to avoid single-controller contention; bursts of brief, back-to-back
reconfigurations seen in the baseline vanish after one pass. (3) Conservative FPGA
activation: the method prefers deeper utilization of lower-indexed FPGAs before
opening a new one, which aligns with the fixed-cost term and keeps power/hardware
usage contained. Visually, the refined schedule shows longer contiguous blocks
per FPGA and fewer inter-leavings that would otherwise increase reconfiguration

overhead.
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7.4 Greedy + Simulated Annealing Results

7.4.1 Overview.

The greedy + simulated annealing (SA) algorithm was designed as a lightweight
alternative to the exact MIP and the mat-heuristic, with the explicit goal of achieving
rapid feasibility and scalability to very large problem instances. It consists of two
phases: (i) a greedy construction that orders tasks topologically and places them on
the resource (CPU or FPGA) that minimizes their earliest completion time while
respecting release times, due dates, and precedence constraints; and (ii) a local search
refinement phase using simulated annealing, which applies neighbourhood moves
such as resource reassignment and pairwise swaps. This hybrid approach ensures that
the method can produce feasible solutions almost instantaneously and progressively

improve them within a controllable time budget.

7.4.2 Solution quality compared to MIP and Mat-heuristic.

Relative to the full MIP, greedy + SA inevitably sacrifices optimality. The objective
values obtained are generally within a 10-20% gap for medium and large instances.

While this represents a measurable loss in quality, it is important to note two aspects:

« For small instances (n < 30), the difference is larger in relative terms (up to
27%), since MIP is able to compute the true optimum and even the mat-heuristic

can refine close to it.

o For larger instances (n > 75), the quality gap stabilizes and does not grow
further, meaning that the greedy construction combined with SA is sufficiently
expressive to capture the main structural properties of high-quality schedules.
The improvement over pure greedy (without SA) is significant, often reducing
the gap by half.

7.4.3 Runtime and scalability.

The strength of this method is its runtime performance. The greedy phase runs
in time proportional to the number of tasks (essentially linear in n), producing a
complete and feasible schedule in well under a second even for the largest test cases
considered (n = 90,m = 3). The simulated annealing refinement adds only a small
overhead, typically one to three seconds depending on the number of iterations and

cooling rate. By comparison:

e The MIP model can require hundreds of seconds or more on large instances,

often failing to finish within the imposed time limit.

e The mat-heuristic achieves substantial improvements over MIP, but still

requires tens of seconds for n > 75.

e The greedy + SA method completes in seconds for the same scale of instances,

enabling near real-time scheduling.
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This property makes greedy + SA the only candidate among the three approaches that
remains practical for very large problem sizes and for online or dynamic scheduling

environments.

Sensitivity to Simulated Annealing Parameters

To assess the robustness of the greedy + SA algorithm, we performed a sensitivity
analysis on its key parameters. The results show that while the algorithm is not
overly sensitive to parameter changes, appropriate tuning improves the trade-off

between solution quality and runtime.

7.4.3.0.1 Initial temperature 7j. A higher Ty increases the probability of
accepting worse solutions at the beginning of the search. This improves exploration
but may waste iterations on poor neighbours. In our tests, setting 7Ty between 0.5
and 1.0 times the greedy cost yielded good balance. Smaller values (7 < 0.2) often

caused premature convergence.

7.4.3.0.2 Cooling rate a. The cooling factor controls how quickly the algorithm
shifts from exploration to exploitation. Slow cooling (o = 0.98) produced the best
objective values for large instances, reducing the quality gap by 2-3% compared to
faster cooling. However, it increased runtime by up to 30%. Faster cooling (o = 0.90)

was better for small and medium task sets where runtime dominates.

7.4.3.0.3 Iterations per temperature level. Increasing the number of itera-
tions per temperature level leads to more thorough search. Moving from 100 to 300
iterations improved solution quality by about 1-2% on large instances, but runtime

scaled nearly linearly. Beyond 300 iterations, gains were negligible.

7.4.3.0.4 Neighbourhood mix. Using only one type of move (either reassign-
ments or swaps) limited the search diversity. Alternating between the two was more

effective, allowing the search to escape local minima more frequently.

7.4.3.0.5 Summary. Overall, the greedy + SA algorithm performs reliably
across a broad parameter range. For small task sets, low Ty, faster cooling, and fewer
iterations suffice. For large instances, higher T}, slower cooling, and more iterations
improve quality while keeping runtimes within seconds. This demonstrates that the

method is scalable and tunable depending on the requirements of the application.

7.4.4 FPGA usage and cost trade-offs.

A key dimension of evaluation is FPGA activation, since the cost function penalizes
the use of additional hardware. The greedy phase, by its nature, often assigns
tasks opportunistically to minimize immediate finish times, which can lead to the
activation of more FPGAs than strictly necessary. However, the SA phase corrects

this behaviour to some extent:
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e Reassignments tend to consolidate workloads onto already-active FPGAs, re-

ducing the number of active devices.

e Swap moves frequently improve reconfiguration sequencing, spacing tasks of

the same type on the same FPGA to minimize controller contention.

Overall, while FPGA usage is slightly higher than that of MIP or mat-heuristic
schedules, the difference is moderate, and the trade-off is offset by the enormous

runtime savings.

Table 7.3: Greedy + SA model results for different task sizes

Tasks (n) | FPGAs (m) | Avg. Objective | Avg. Time (s)
10 1 498 0.5
20 2 1127 0.9
30 2 1860 2.5
40 2 3006 5.31
50 2 4474 6.28
60 2 6243 7.5
75 2 8958 9.18
75 3 9098 9.5
90 2 12033 11.1
90 3 11442 11.3

7.4.5 Interpretation.

Two central findings emerge:

1. Stable quality gap: The relative objective difference stabilizes at around
5-7% for large instances, suggesting that the greedy + SA method captures
the key structure of the scheduling problem despite its simplicity.

2. Massive speed-ups: The runtime advantage grows dramatically with instance
size. By n = 90, the greedy + SA approach is more than one thousand times
faster than the MIP and roughly 50 times faster than the mat-heuristic, enabling

practical applicability to industrial-scale workloads.

7.4.6 Gantt chart analysis.

Figure 7.3 shows an example schedule produced by the greedy + SA algorithm for a

90-task, 3-FPGA instance. Several features are noteworthy:

e Feasibility preservation: All precedence constraints and due dates are

satisfied, even though the solution was constructed in a fraction of a second.

e Parallelism: Compared to the mat-heuristic, the greedy + SA schedule
exhibits denser parallelism across FPGAs, which reduces overall make-span

but slightly increases FPGA usage cost.
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Schedule Gantt Chart by Resource
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Figure 7.3: Example greedy + SA schedule for a large instance (n = 90, m = 3).
The chart illustrates (i) fast feasibility via greedy initialization, (ii) refinement
by simulated annealing, and (iii) the resulting balance between fast runtime and
acceptable quality loss.

Table 7.4: Comparison of algorithms relative to the MIP baseline. “Score” and
“Time” are the MIP objective and runtime for each (n,m). A columns report the
relative change of each method versus MIP (positive AScore = worse objective than
MIP; negative ATime = faster than MIP).

| MIP Greedy + SA MH

‘ n m Score Time [s] AScore ATime AScore ATime
100 1 391 0.55 +27.37% -9.09%  +4.86% +118.18%
20 2 968 1.00 +16.43% ~10.00% +3.82%  +20.00%
30 2 1,751 1.72 +6.23% +45.35%  +2.28%  +91.86%
40 2 2,738 9.80 +9.79% —45.82%  +3.43%  —3.06%
50 2 3,962 20.15 +12.92% —68.83% 4+6.56%  —32.41%
60 2 5084  34.30 +22.80% —78.13% +14.99%  —34.40%
752 7,270 185.00 +23.22% ~05.04% +13.12% —76.76%
73 7,697 937.00 +18.20% —-98.99% +10.41% —92.64%
90 2 10,125  664.00 +18.84% —08.33% +9.81%  —90.06%
90 3 10,484  935.00 +9.14% —98.79% +4.95%  —90.05%

e Controller smoothing: The SA refinement reduces bursts of overlapping
reconfigurations by spacing FPGA switches more evenly, resulting in smoother

usage of the shared controller.

e Consolidation: Clusters of similar tasks are grouped more tightly on the same
FPGA after SA refinement, visible as contiguous blocks in the Gantt chart.

7.5 Comparison

7.5.1 How to read Table 7.4.

The first two columns fix the instance size (n,m); Score (MIP) and Time (MIP)
give the baseline objective and runtime returned by the exact MIP. Each A column
reports the percentage change of an algorithm relative to MIP on the same instance

set:
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o AScore > 0 means a higher (worse) objective than MIP.

e ATime < 0 means faster than MIP; ATime > 0 means slower than MIP.

7.5.2 Quantitative comparison for Greedy + SA vs others.

Table 7.4 compares the greedy + SA method against both the MIP and the mat-
heuristic for representative problem sizes. Each entry is averaged across 10 randomly
generated instances. The results confirm that greedy + SA achieves near-constant
speed-up factors of two to three orders of magnitude, with only a small relative

increase in objective value.

7.5.3 Quantitative Comparison for MH vs. Other Methods

Table 7.4 highlights how the mat-heuristic consistently strikes a balance between the
two extremes represented by the full MIP and the Greedy+SA algorithm. In terms
of solution quality, the mat-heuristic is only marginally worse than the optimal MIP
baseline, with an average deviation of about 5%. At the same time, its runtime is
significantly lower than that of the full MIP, enabling the solution of larger instances
within practical limits. Although still slower than the Greedy+SA method, the mat-
heuristic maintains much closer adherence to the optimal objective values, offering a

pragmatic compromise between accuracy and efficiency.

7.5.4 Small to medium instances (n=10-30).

MIP already solves these quickly, so any orchestration overhead can dominate. This is
visible at n=30: Greedy+SA shows +45.35% time vs. MIP and MH shows +91.86%
(both slower), despite modest score gaps (+6.23% and +2.28%). At n=10 and 20,
Greedy+SA is slightly faster than MIP (—9.09%, —10.00%) but with noticeably
higher objectives (+27.37%, +16.43%), whereas MH stays closer in quality (+4.86%,
+3.82%) yet can be slower (4+118.18%, +20.00%).

7.5.5 Crossover and scaling (n >40).

From n=40 onward, both methods overtake MIP in runtime. Greedy+SA becomes
markedly faster (ATime = —45.82% at n=40, then plunging to —95.04% at n="75
and to ~ —99% at n = 75,90 with m € {2,3}). The mat-heuristic crosses into
speed-ups at n=40 (—3.06%) and gains progressively (—76.76% at n="75,m = 2,
and ~—90% by n=90). In terms of quality, MH persistently tracks closer to MIP
(e.g., +3.43% to +15% in the 40-60 range and +4.95% to +13.12% at 75-90), while
Greedy+SA typically incurs a larger gap (roughly +9%—+23% over the same sizes).

7.5.6 Large instances (n=75-90).

These rows exemplify the speed/quality trade-off. For (n,m) = (75,2), Greedy+SA
runs in only 4.96% of MIP time (ATime = —95.04%) with a +23.22% score gap,
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while MH uses 23.24% of MIP time (—76.76%) with a +13.12% gap. At the largest
case (90, 3), Greedy+SA is —98.79% in time (about 83x faster than MIP) with a
+9.14% score increase; MH is —90.05% (about 10x faster) with only +4.95% score
increase.

7.5.7 Takeaways.

o MIP is best for small instances (fast and optimal), but scales poorly in runtime.

o Mat-heuristic (MH) achieves strong speed-ups beyond n>40 while keeping
the objective close to MIP; it is the quality—efficiency sweet spot for medi-

um/large sizes.

¢ Greedy—+SA is the runtime champion: by n=90 it is 80x faster than MIP
(and ~8x faster than MH) with an objective typically within +10-+20%. This

makes it attractive for stringent time budgets or online re-scheduling.
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Figure 7.4: bar graph representing the scoring delta between Greedy + SA, Mat-
heuristic, and MIP.
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Figure 7.5: bar graph representing the timing delta between Greedy + SA, Mat-
heuristic, and MIP.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis addressed the hardware—software co-design scheduling problem for real-
time systems involving a single CPU and multiple reconfigurable FPGAs. Building on
the foundational work of Ali et al. [1], who introduced a time-indexed mixed-integer
programming (MIP) formulation, we reconstructed the original model and validated
its performance on a range of test cases. This replication confirmed both the accuracy
of their formulation and its limitations in terms of scalability.

To overcome these challenges, two additional solution strategies were developed:

e Matheuristic approach: A hybrid algorithm that combines an initial time-
limited MIP solve with iterative window-based refinements. This method
preserved near-optimal solution quality (within roughly 5-10% of the MIP
baseline) while substantially reducing runtime. It proved capable of handling
larger task sets than the full MIP, striking a practical balance between accuracy

and computational cost.

e Greedy + SA approach: A lightweight heuristic-meta-heuristic method
based on greedy initialization followed by simulated annealing. While the
resulting schedules were on average 10-20% worse in objective quality than
those obtained by MIP, the algorithm was orders of magnitude faster. For large
instances (up to 90 tasks and 3 FPGAs), it produced feasible schedules within

seconds, making it suitable for real-time or online scheduling contexts.

The comparative evaluation in Chapter 7 demonstrated a clear trade-off: the MIP
model ensures optimality but fails to scale, the mat-heuristic balances solution quality
with runtime, and the greedy + SA method sacrifices quality for speed. Together,
these three approaches provide a spectrum of tools depending on whether optimality,

efficiency, or responsiveness is prioritized.

8.2 Future Work

Several directions emerge for extending this research:
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e Multi-objective formulations: Incorporating additional criteria such as en-
ergy consumption, reconfiguration overhead, or reliability into the cost function
would reflect practical system trade-offs beyond completion time and FPGA

usage.

e Adaptive mat-heuristics: Developing dynamic window-sizing strategies or
reinforcement learning policies to guide the refinement phase could further

improve solution quality while controlling runtime.

e Advanced meta-heuristics: Exploring hybrid combinations of greedy ini-
tialization with tabu search, genetic algorithms, or large-neighbourhood search

may close the quality gap with MIP while retaining speed.

¢ Real-system validation: Testing the proposed algorithms on actual FP-
GA/CPU platforms would provide insights into configuration times, communi-
cation overheads, and energy usage, validating their applicability in embedded

contexts.

e Scalability to industrial workloads: Extending benchmarks to hundreds of
tasks and heterogeneous FPGA architectures would position these algorithms
for deployment in complex real-time systems such as automotive or aerospace

applications.

8.2.1 Final remark.

This thesis shows that by combining exact optimization with tailored heuristics, the
hardware—software co-design scheduling problem can be tackled effectively across
scales. The three methods presented form a complementary toolkit, offering practi-
tioners a choice between optimality, balance, and speed depending on the requirements

of the application.
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Appendix A

Table A.1: Release times 7; and due dates d; for the instance used to generate the
Gantt charts in Chapter 7.

Task j Release 7, Due d;

1 3 11
2 13 24
3 2 13
4 13 26
) 8 30
6 11 36
7 3 36
8 13 37
9 11 40
10 11 39
11 2 41
12 2 45
13 9 45
14 11 46
15 1 48
16 4 54
17 12 o8
18 0 99
19 4 63
20 2 65
21 1 69

(continued on next page)
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Task j Release 7; Due d;

22 11 73
23 10 7
24 2 83
25 0 83
26 2 83
27 14 87
28 9 87
29 6 92
30 14 94
31 13 94
32 6 97
33 13 100
34 10 103
35 3 103
36 6 106
37 0 108
38 12 113
39 14 117
40 14 117

Note. The release times r; enforce the earliest admissible starts, and the due dates d;
were used for lateness/penalty evaluation in Chapter 7. The full schedule respecting

these bounds is reported in Appendix A.

Table A.2: Processing times p;, for CPU and FPGA devices.

Task ;5 CPU FPGAl1l FPGA2 FPGA3
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(continued on next page)
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FPGA3

CPU FPGAl1l FPGA2

Task j
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Table A.3: FPGA reconfiguration times per task. CPU reconfiguration time is zero
and omitted.

Task ;5 FPGA1l FPGA2 FPGA3

1 1 1 0

2 1 0 0

3 2 2 2

4 0 1 0

) 1 1 2

6 2 0 1

7 0 0 0

8 2 0 0

9 1 0 0
10 1 0 2
11 2 1 2
12 1 0 1
13 1 2 0
14 0 2 2
15 1 1 2
16 2 0 1
17 0 0 2
18 1 2 1
19 0 2 1
20 1 2 0
21 1 0 1
22 0 0 2
23 2 2 2
24 1 2 0
25 1 1 2
26 1 1 0
27 1 2 1
28 2 2 0
29 0 2 1
30 1 2 0
31 0 2 0
32 1 0 2
33 2 0 0

(continued on next page)
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Task ;5 FPGA1l FPGA2 FPGA3

34 0 1 0
35 1 2 0
36 2 1 0
37 1 2 1
38 0 0 1
39 2 2 1
40 0 2 2

Notes. Processing times p;, are non-pre-emptive durations on the CPU and FPGAs.
Reconfiguration times apply only to FPGAs and model the exclusive controller delay

before task execution on a given device; CPU reconfiguration is zero by definition.
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Figure A.1: Task precedence DAG used for the Gantt-instance in Chapter 7. Arcs
(1—j) enforce that task i finishes before task j starts.
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