POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Adversary Virtual Platform in embedded
system environment for RED TEAM

Supervisors C and ldat e
Prof. SAVINO ALESSANDRO

Prof. STEFANO DI CARLO Ismail SANAN

Dott. FRANCO OBERTI

March 2024

Abstract

Nowadays The embedded systems in technological landscape has profound
implications for companies, as these systems form the backbone of various critical
operations. However, their widespread adoption also exposes companies to a myriad
of security risks, necessitating robust measures to safeguard against potential attacks.
This thesis explores the implementation of Adversary Virtual Platforms (AVPs)
within embedded systems, focusing on the Cortex-M3 architectures simulated on
the gemb5 ARM platform. The primary objective is to demonstrate the feasibility
of conducting adversarial attacks in such environments, with a specific emphasis
on the Spectre attack. Leveraging gemb ARM for virtual platform emulation,
coupled with Kotana for pipeline visualization, the research successfully simulates
and validates the Spectre attack. The findings underscore the significance of AVPs
for assessing security vulnerabilities in embedded systems and offer insights into
the efficacy of defense mechanisms against adversarial threats. By advancing the
understanding of adversarial techniques in embedded system environments, this
research enhances Red Team operations and fortifies cybersecurity strategies, thus
enabling companies to better mitigate the risks associated with the use of embedded
systems.

Acknowledgements

This thesis is the result of not only my own efforts, but also the support and
encouragement of the people who have been by my side throughout this journey. I
owe my deepest gratitude to my mom and dad, who have always believed in me and
supported every step I have taken. I am equally grateful to my brothers Mostafa
and Ahmad, and to my sister Maya, for the strong bond we share. Their love and
encouragement have lifted me through difficult times and made the joyful moments
even more meaningful. They have shaped not only this academic milestone but
also the person I continue to be.

I would also like to thank my friends Meriem,leonardo,vicenzo, Hadi and Nadim
who have stood by me through it all. Their encouragement and friendship have
been a constant source of strength, and the memories we share remind me that
this journey was never one which I walked alone.

Table of Contents

1

2

General Introduction

1.1 Introduction to Embedded Systems
1.1.1 Evolution and Proliferation of Embedded Systems
1.1.2 Importance and Applications of Embedded Systems
1.1.3 Security Challenges in Embedded Systems
1.1.4 The Cortex-M3 Processor Architecture
1.1.5 The Need for Adversary Virtual Platforms (AVPs)

The Virtual Platform

2.1 Gemb ..o
2.1.1 Gemb Architecture
2.1.2 Gemb Simulation Parameters
2.1.3 Configuration Script
2.1.4 Role of the Script in gem5 Full-System Simulation
2.1.5 CPU and Memory Configuration
2.1.6 System Creation and Boot Configuration
2.1.7 PCI Devices and Disk Images
2.1.8 Cache Hierarchy and Clustering of CPUs
2.1.9 Bootloader Setup and Kernel Command-Line Arguments . .
2.1.10 Simulation Execution and Checkpointing
2.1.11 Integration of PMU and Debugging with Tarmac Traces . .
2.1.12 Finalizing the Simulation

2.2 Using the Simulation Script in gemb
2.2.1 Explanation of the Command
2.2.2 Example Use Case in Simulation

Spectre Simulation

3.1 Imtroduction to spectreo
3.1.1 Our Technique

3.2 Spectre Exploit

3.3 Simulating Spectre Attacks with gemd

11

3.3.1 Compilation of Spectre Exploit 51

3.3.2 [Initiating the Simulation, 52
3.3.3 Booting the System and Running the Attack 53
3.3.4 Running the Simulation 54
3.3.5 Creating and Restoring Snapshots 55
3.3.6 Executing the Spectre Exploit 56
3.3.7 Limitations of SE Mode for Spectre Attacks 56
3.4 Optimizing Simulation Time and Visualizing Pipeline Behavior . . . 57
3.5 Visualizing Spectre with gem5 58
3.6 Simulating Spectre Attacks with QEMU User-Mode 63
3.6.1 Accuracy of Spectre Attack Simulation in gem5 Compared
to Real Hardware 66
3.7 Future Worko 68
3.7.1 Spectre Vulnerability Research 68
3.7.2 Improvements to gem) for Broader Adaptation 69
4 Return-to-Non-Secure (ret2ns) Attack 71
4.1 Introduction to Return2nonsecure Attack 71
4.1.1 Threat Model and System Assumptions 75
4.1.2 Attack Overview and Methodology 76
4.2 Challenges in Simulating ret2ns Attacks with gem5 and Buildroot . 80
4.2.1 Introduction to Buildroot 80
4.2.2 Setting Up Buildroot for TrustZone-M Simulations 81
4.2.3 Challenges with Buildroot in gem5 Simulations 82
4.3 Challenges in Simulating Trusted Firmware-M in gem5 83
4.3.1 Bootloader Customization and Secure Boot 83
4.3.2 Kernel Challenges in Simulating Transitions 84
4.4 Gemb and TrustedFirmware-M (TF-M) Integration Challenges . . . 86
4.4.1 Adapting TrustedFirmware-M for Simulation in gem5 86
4.4.2 Memory Partitioning and Peripheral Access 87
4.5 Future Directions for Improved Simulation of TrustZone-M in gem5 88
4.5.1 Extending gemb’s TrustZone-M Support 89
4.5.2 Integrating Hardware-in-the-Loop (HIL) Systems 90
4.5.3 Accuracy of simulating the ret2ns Attack in gem5 91
4.5.4 Future Directions for HIL Integration 94
Bibliography 97

II1

Chapter 1

General Introduction

1.1 Introduction to Embedded Systems

The evolution and role of embedded systems in technology can be traced to various
sources about the history of embedded systems [1]. From consumer electronics to
industrial automation, these systems play a pivotal role in driving innovation and
efficiency. Embedded systems are specialized computing devices designed to perform
specific functions within a larger system. Unlike general-purpose computers, which
are versatile and adaptable, embedded systems are optimized for dedicated tasks,
often operating in real-time environments with resource constraints.

1.1.1 Evolution and Proliferation of Embedded Systems

The evolution of embedded systems dates back to the early days of computing. Over
time, advances in semiconductor technology and miniaturization have led to the
development of smaller and more powerful embedded devices. The rise of embedded
systems has been boosted by several factors, including the growing demand for
smart devices, the rise of the Internet of Things (IoT), and the convergence of
hardware and software technologies.

Embedded systems have undergone a significant transformation since their
inception, which can be traced back to the initial advancements in computing and
automation. As early as the 20th century, the concept of automating tasks through
preprogrammed instructions began to take shape, laying the groundwork for the
development of more advanced embedded systems in the subsequent decades.

The widespread acceptance of embedded systems in daily items was greatly
influenced by the increase in consumer electronics during the second half of the
twentieth century [2]. Embedded systems, integrated into a variety of devices,
ranging from household appliances to personal gadgets, became essential elements,
improving their functionality, ease of use, and convenience for users. Technological

1

General Introduction

advances such as component miniaturization, progress in semiconductor technology,
and economies of scale played a role in making computing power widely available
to the general public.

Embedded systems played an important role in the transformation of the auto-
motive and transportation sectors [3], revolutionizing vehicle design, performance,
safety, and efficiency. Electronic Control Units (ECUs) and in-vehicle networks
enabled advanced features such as engine management, fuel injection, anti-lock
braking, airbag deployment, navigation, and infotainment. Embedded systems
facilitated the transition from mechanical control systems to electronic control
systems, paving the way for autonomous vehicles, electric vehicles, connected cars,
and smart transportation systems.

The integration of embedded systems into medical devices, diagnostic equipment,
and patient monitoring systems triggered a revolutionary shift in the healthcare
sector [4]. Implantable devices like pacemakers, defibrillators, and insulin pumps
relied heavily on embedded controllers to administer treatment, monitor vital signs,
and ensure patient safety. In addition, portable devices such as blood glucose
meters, pulse oximeters, and electrocardiographs enabled patients to actively engage
in managing their health, addressing chronic diseases, and improving their overall
quality of life. Beyond individual devices, the widespread adoption of embedded
systems facilitated significant advancements in healthcare delivery. By enabling
remote monitoring, telemedicine, and personalized medicine, embedded systems
have fundamentally transformed the way healthcare is accessed and provided.
Patients now have greater access to care regardless of geographical constraints, and
healthcare professionals can deliver tailored treatments and interventions based on
real-time data, ultimately improving patient outcomes and enhancing the overall
efficiency of healthcare delivery systems .

Advancement in aerospace and defence

Embedded systems play a critical role in advancing aerospace and defense tech-
nologies [5], serving as the backbone for avionics, navigation, surveillance, weapons,
and unmanned aerial vehicles (UAVs). They provide real-time control, monitoring,
and communication functions critical for ensuring mission success and safety in
aircraft, spacecraft, and military systems .

The aerospace and defense sectors demand highly reliable, durable, performant,
and secure embedded systems. This requirement drives continuous innovation
in embedded hardware and software, aimed at withstanding extreme conditions,
maintaining operational integrity, and protecting sensitive data .

Integration of embedded systems enables advanced functionalities like au-
tonomous flight control, precision navigation, target acquisition, and real-time
data analysis, significantly enhancing aerospace and defense capabilities. Overall,

2

General Introduction

embedded systems not only reshape aerospace and defense technologies but also
contribute significantly to national security and scientific exploration beyond Earth.

Emergence of the Internet of Things (IoT)

The emergence of the Internet of Things (IoT) introduced a new era of connec-
tivity [6], where embedded systems could communicate, collaborate, and share
data over networked environments . IoT ecosystems encompassed a vast array
of devices, sensors, actuators, and gateways, interconnected through wired and
wireless networks. Embedded systems powered IoT devices such as smart sensors,
connected appliances, industrial machines, environmental monitors, and smart
city infrastructure, enabling automation, optimization, and intelligence in diverse
domains.

The shift towards edge computing architectures redefined the role of embedded
systems in processing and analyzing data at the network edge, closer to the point
of data generation and consumption. Edge devices, equipped with embedded
processors, memory, and connectivity, performed data processing, analytics, and
decision-making in real-time, reducing latency, bandwidth consumption, and re-
liance on centralized cloud infrastructure. Edge computing enabled embedded
systems to deliver low-latency responses, autonomous operation, and adaptive
behavior in dynamic environments such as industrial automation, autonomous
vehicles, smart grids, and remote monitoring applications.

Future Trends in Embedded Systems and its cybersecurity concerns

The integration of Al and its capabilities into embedded systems will unlock new
possibilities for intelligent decision-making, predictive analytics, and adaptive behav-
ior. Embedded Al algorithms will enable features such as predictive maintenance,
anomaly detection, natural language processing, computer vision, and autonomous
control, enhancing the intelligence, efficiency, and autonomy of embedded systems
across various applications.

Advancements in wireless communication technologies, such as 5G, Wi-Fi 6,
and LPWANSs, will enable high-speed, low-latency connectivity for embedded
systems, facilitating real-time data exchange, immersive experiences, and mission-
critical applications. Enhanced connectivity will support applications such as
remote monitoring, augmented reality (AR), virtual reality (VR), autonomous
vehicles, and smart infrastructure, driving innovation and connectivity in the digital
ecosystem.

With the increasing connectivity and complexity of embedded systems, cyberse-
curity and trustworthiness will be paramount concerns for ensuring the integrity [7],
confidentiality, and availability of data and services. Embedded systems will incor-
porate hardware-based security features, secure boot mechanisms, cryptographic

3

General Introduction

algorithms, and intrusion detection/prevention systems to mitigate cyber threats
and ensure system resilience in the face of evolving attacks.

The demand for customized, domain-specific embedded solutions will continue
to grow as industries seek tailored solutions to address their unique requirements,
challenges, and opportunities. Embedded systems will be designed and optimized
for specific applications such as industrial automation, healthcare, automotive,
aerospace, defense, smart agriculture, environmental monitoring, and smart in-
frastructure, leveraging domain expertise, technology integration, and co-creation
partnerships.

1.1.2 Importance and Applications of Embedded Systems

The importance of embedded systems in modern society cannot be overstated.
These systems are integral to a wide range of applications across various industries,
including healthcare, automotive, aerospace, telecommunications, and manufactur-
ing. In healthcare, embedded systems power medical devices such as pacemakers,
insulin pumps, and diagnostic equipment, facilitating patient monitoring, diag-
nosis, and treatment. In the automotive industry, embedded systems control
critical functions such as engine management, navigation, and driver assistance
systems,enhancing vehicle safety and performance

Embedded systems play a vital role in modern technology, powering a wide
range of devices and applications across various industries. Their importance stems
from several key factors:

Ubiquity: Embedded systems are ubiquitous in everyday life, embedded within
numerous consumer electronics, industrial equipment, automotive systems, medical
devices, and smart appliances. From smartphones and smartwatches to industrial
robots and IoT devices, embedded systems are integral to the functioning of
countless products and services.

Functionality: Embedded systems provide essential functionality and control
capabilities in diverse application domains. They enable automation, monitoring,
communication, and control of physical processes, systems, and devices. Embedded
systems are essential for implementing critical functions such as sensing, actuation,
data processing, communication, and user interaction.

Efficiency: Embedded systems are designed for efficiency, optimizing resource
utilization, power consumption, and performance to meet the requirements of the
target application. They often operate in resource-constrained environments with
limited processing power, memory, energy, and space, requiring careful optimization
of hardware and software components.

Reliability: Embedded systems are engineered for reliability, robustness, and
resilience, particularly in safety-critical and mission-critical applications. They
undergo rigorous testing, validation, and certification to ensure compliance with

4

General Introduction

stringent reliability and safety standards. Reliability is paramount in applications
such as automotive systems, aerospace, medical devices, and industrial control.

Innovation: Embedded systems drive innovation by enabling the development of
new products, services, and business models. They support advances in technology
such as [oT, artificial intelligence (AI), machine learning (ML), edge computing,
and autonomous systems. Embedded systems facilitate the integration of advanced
features, connectivity, and intelligence into a wide range of devices and applications.

Embedded systems find applications across various industries and sectors, each
with unique requirements, challenges, and opportunities:

Consumer Electronics: In the consumer electronics industry, embedded systems
power devices such as smartphones, tablets, smart TVs, gaming consoles, digital
cameras, wearable devices, and smart home appliances. These systems provide user
interfaces, connectivity, multimedia capabilities, and advanced features such as
voice recognition, facial recognition, and augmented reality. Automotive and Trans-
portation: Embedded systems play a critical role in automotive and transportation
systems, controlling functions such as engine management, vehicle dynamics, info-
tainment, driver assistance, navigation, telematics, and vehicle-to-everything (V2X)
communication. Embedded systems enable safety features such as anti-lock braking
systems (ABS), electronic stability control (ESC), adaptive cruise control, and
collision avoidance systems.

Industrial Automation: In industrial automation and manufacturing, embedded
systems are used in programmable logic controllers (PLCs), distributed control sys-
tems (DCS), supervisory control and data acquisition (SCADA) systems, robotics,
motion control, and process automation. Embedded systems optimize production
processes, improve efficiency, monitor equipment health, and enable predictive
maintenance.

Healthcare and Medical Devices: Embedded systems are integral to healthcare
and medical devices, including patient monitors, infusion pumps, medical imag-
ing systems, diagnostic equipment, wearable health monitors, and implantable
devices. These systems enable remote patient monitoring, diagnosis, treatment,
and personalized healthcare delivery.

Aerospace and Defense: In aerospace and defense applications, embedded sys-
tems control avionics, navigation systems, flight control systems, communication
systems, radar systems, unmanned aerial vehicles (UAVs), and military equipment.
Embedded systems ensure the safety, reliability, and performance of aircraft, space-
craft, missiles, and defense systems. Energy and Utilities: Embedded systems are
used in energy and utility infrastructure for monitoring, control, and optimization
of power generation, transmission, distribution, and consumption. They enable
smart grid technologies, renewable energy integration, demand response, energy
management, and grid stability.

Smart Cities and Infrastructure: In smart cities and infrastructure projects,

5

General Introduction

embedded systems support applications such as intelligent transportation systems
(ITS), smart meters, traffic management, public safety, environmental monitoring,
waste management, and building automation. These systems enhance urban
efficiency, sustainability, and quality of life.

Looking ahead, several trends and emerging technologies are expected to shape
the future of embedded systems:

Internet of Things (IoT): The proliferation of IoT devices and connected systems
will drive demand for embedded systems with enhanced connectivity, intelligence,
and interoperability. IoT ecosystems will encompass a wide range of devices,
sensors, actuators, and gateways, generating massive amounts of data for analysis
and decision-making.

Artificial Intelligence (AI) and Machine Learning (ML): Integration of Al and
ML capabilities into embedded systems will enable intelligent decision-making,
predictive analytics, and autonomous operation.

Embedded AI/ML algorithms will support functions such as object recognition,
anomaly detection, predictive maintenance, natural language processing, and
adaptive control.

Edge Computing: The adoption of edge computing architectures will decentralize
computation and data processing, moving computing resources closer to the source
of data generation. Edge devices and gateways will host embedded systems capable
of real-time processing, local decision-making, and reduced latency for time-sensitive
applications.

5G and Wireless Technologies: The rollout of 5G networks and advancements in
wireless communication technologies will enable high-speed, low-latency connectivity
for embedded systems. 5G-enabled embedded systems will support applications
such as real-time video streaming, augmented reality (AR), virtual reality (VR),
remote monitoring, and mission-critical communications. Cybersecurity and Safety.

Biomedical and Wearable Devices: Embedded systems will continue to ad-
vance biomedical and wearable devices for healthcare monitoring, diagnostics, and
personalized medicine. Miniaturized, low-power embedded systems will support con-
tinuous health monitoring, disease management, drug delivery, and rehabilitation,
empowering individuals to take control of their health.

Sustainable and energy-efficient design principles will drive innovation in em-
bedded systems, promoting resource conservation, environmental responsibility,
and energy efficiency. Embedded systems will incorporate power-saving features,
low-power components, energy harvesting techniques, and intelligent power manage-
ment algorithms to optimize energy consumption, extend battery life, and minimize
environmental impact in battery-operated and energy-constrained applications

6

General Introduction

1.1.3 Security Challenges in Embedded Systems

Embedded systems are characterized by their heterogeneity, with a diverse ar-
ray of hardware architectures, operating systems, communication interfaces, and
application domains. This heterogeneity complicates security management and
interoperability, as each embedded device may have unique security requirements
and compatibility constraints. Interconnecting heterogeneous embedded systems in
[oT ecosystems further increases the attack surface and introduces new security
risks, such as protocol vulnerabilities, misconfigurations, and unauthorized access
points. Standardizing security protocols, communication interfaces, and interop-
erability frameworks can help mitigate these challenges but requires coordination
among industry stakeholders and regulatory bodies.

One of the primary challenges in securing embedded systems is their inherent
resource constraints. Embedded devices often operate with limited computational
power, memory, storage, and energy resources, making it challenging to implement
sophisticated security mechanisms. Cryptographic operations, secure communi-
cation protocols, and intrusion detection mechanisms can impose a significant
overhead on system resources, leading to performance degradation and increased
power consumption. Balancing security requirements with resource constraints is a
delicate trade-off that requires careful consideration and optimization.

Legacy System and software

Many embedded systems deployed in the field are based on legacy hardware
and software platforms that lack built-in security features and receive limited or
no firmware updates. These legacy systems may contain known vulnerabilities,
deprecated cryptographic algorithms, and obsolete protocols that are susceptible to
exploitation by attackers. Retrofitting security measures onto legacy systems can
be complex and costly, requiring modifications to hardware components, firmware
updates, and backward compatibility testing. Furthermore, the long lifecycle of
embedded devices, particularly in industrial, automotive, and aerospace applications,
exacerbates the challenge of maintaining security over extended periods.

Lack of secure boot and vulnerabilities

Many embedded systems lack secure boot mechanisms and firmware integrity
checks, making them vulnerable to bootloader exploits, rootkits, and firmware
tampering. Without secure boot, attackers can compromise the initial boot process,
inject malicious code into the firmware, and gain persistent control over the device.
Similarly, the absence of firmware integrity checks allows attackers to modify
firmware images, inject malware payloads, and bypass authentication mechanisms
without detection. Secure boot and firmware integrity verification are essential

7

General Introduction

security features that protect embedded systems against unauthorized modifications
and ensure the trustworthiness of the boot process.

They often rely on communication channels such as wired interfaces (e.g., Ether-
net, USB) and wireless protocols (e.g., Wi-Fi, Bluetooth, Zigbee) to exchange data
with external devices and networks. These communication channels are suscepti-
ble to eavesdropping, man-in-the-middle attacks, packet sniffing, replay attacks,
and unauthorized access. Insecure communication protocols, weak encryption
algorithms, and inadequate authentication mechanisms can compromise the confi-
dentiality and integrity of data transmitted by embedded systems. Implementing
secure communication protocols, encryption algorithms, and mutual authentica-
tion mechanisms can mitigate the risks associated with vulnerable communication
channels.

Physical security is often overlooked in embedded systems, despite being a
critical aspect of overall system security. Many embedded devices are deployed in
uncontrolled or hostile environments where they are exposed to physical tampering,
theft, vandalism, and environmental hazards. Attackers can gain unauthorized
access to embedded systems by bypassing physical barriers, extracting sensitive
information from memory chips, and tampering with hardware components. Phys-
ical security measures such as tamper-evident seals, enclosure locks, intrusion
detection sensors, and secure mounting can help deter and detect unauthorized
access attempts, safeguarding embedded systems against physical attacks.

The globalized nature of the supply chain introduces inherent risks to the security
of embedded systems. Manufacturers often source components, subsystems, and
software modules from third-party suppliers and subcontractors, increasing the
risk of counterfeit components, malicious implants, and supply chain attacks.
Counterfeit components may contain malicious firmware, backdoors, or hardware
trojans that compromise the security and reliability of embedded systems. Supply
chain security practices such as vendor vetting, component authentication, tamper-
evident packaging, and secure distribution channels can mitigate the risks associated
with counterfeit components and supply chain attacks.

Embedded systems deployed in safety-critical, mission-critical, or regulated
industries such as automotive, healthcare, aerospace, and defense must comply with
industry-specific security standards, regulations, and certification requirements.
Achieving regulatory compliance and certification entails rigorous testing, docu-
mentation, audit trails, and third-party assessments to demonstrate adherence to
security best practices and industry standards. Failure to meet regulatory require-
ments can result in legal liabilities, financial penalties, reputational damage, and
loss of market competitiveness. Furthermore, regulatory compliance may impose
additional overhead on embedded system development, leading to increased costs
and time-to-market pressures

General Introduction

Embedded systems undergo a lifecycle comprising design, development, manufac-
turing, deployment, operation, maintenance, and end-of-life phases, each presenting
unique security challenges. Secure lifecycle management involves implementing
security controls and best practices at each stage of the embedded system lifecy-
cle to mitigate risks and ensure continuous protection against evolving threats.
End-of-life issues such as software vulnerabilities, unsupported hardware, and lack
of security patches can leave embedded systems vulnerable to exploitation long
after they have been retired from service. Proper disposal, decommissioning, and
secure erasure of sensitive data are essential to prevent unauthorized access and
data breaches during the end-of-life phase

Human factors and social engineering pose significant security risks to embedded
systems, as attackers exploit human vulnerabilities such as ignorance, carelessness,
and trust to bypass technical security measures. Phishing attacks, social engineer-
ing scams, insider threats, and human error can compromise the confidentiality,
integrity, and availability of embedded systems by tricking users into disclosing
sensitive information, clicking on malicious links, or performing unauthorized ac-
tions. Security awareness training, user education, role-based access control, and
multi-factor authentication can help mitigate the risks associated with human
factors and social engineering attacks

Embedded systems face sophisticated and persistent threats from advanced ad-
versaries, including nation-state actors, cybercriminal organizations, and hacktivist
groups. Advanced Persistent Threats (APTs) targeting embedded systems involve
stealthy, long-term campaigns aimed at infiltrating, persisting, and exfiltrating
sensitive information from targeted organizations. Nation-state actors may conduct
cyber espionage, sabotage, or disinformation campaigns against critical infrastruc-
ture, government agencies, military organizations, and industrial facilities using
advanced techniques such as zero-day exploits, supply chain attacks, and targeted
malware. Detecting and mitigating APTs require advanced threat intelligence, net-
work monitoring, anomaly detection, and incident response capabilities to identify
and neutralize malicious activities before they cause significant harm.

1.1.4 The Cortex-M3 Processor Architecture

At the heart of many embedded systems lies the Cortex-M3 processor, a versatile
and energy-efficient architecture developed by ARM Holdings. The Cortex-M3 is
widely used in microcontroller applications due to its high performance, low power
consumption[8]. Featuring a 32-bit RISC architecture, the Cortex-M3 combines high
performance with low power consumption, making it ideal for battery-powered and
resource-constrained devices. With features such as a Harvard architecture, single-
cycle multiply-accumulate (MAC) instruction, and efficient interrupt handling,
the Cortex-M3 offers a balance of performance and power efficiency, making it

9

General Introduction

well-suited for a wide range of embedded applications.

The Role of the Cortex-M3 Processor Architecture

The Cortex-M3 processor architecture, developed by ARM Holdings, represents a
significant advancement in the field of embedded systems design. Renowned for its
versatility, efficiency, and scalability, the Cortex-M3 architecture has become the
architecture of choice for a wide range of embedded applications. At its core, the
Cortex-M3 architecture embodies a set of design principles aimed at optimizing
performance, energy efficiency, and ease of development.

Performance Optimization

The Cortex-M3 architecture is characterized by its 32-bit Reduced Instruction Set
Computing (RISC) design philosophy, which prioritizes simplicity, efficiency, and
predictability in instruction execution. Unlike Complex Instruction Set Computing
(CISC) architectures, which feature a large and diverse instruction set, RISC
architectures such as Cortex-M3 streamline instruction execution by focusing on
a small set of fundamental operations. This approach enables faster instruction
decoding, execution, and pipelining, resulting in improved overall performance for
embedded applications.

Furthermore, the Cortex-M3 architecture incorporates advanced features such as
single-cycle multiply-accumulate (MAC) instructions, barrel shifters, and efficient
branch prediction mechanisms, which further enhance computational throughput
and reduce latency. These features make the Cortex-M3 architecture well-suited for
computationally intensive tasks commonly found in embedded applications, such
as digital signal processing, control algorithms, and data processing.

Energy Efficiency

In addition to performance considerations, the Cortex-M3 architecture prioritizes
energy efficiency, making it ideal for battery-powered and energy-constrained
embedded devices. By employing a combination of architectural optimizations,
low-power modes, and dynamic voltage and frequency scaling (DVFES) techniques,
the Cortex-M3 processor minimizes energy consumption without compromising
performance.

Key features contributing to energy efficiency include:

Power gating: The Cortex-M3 architecture incorporates power gating mecha-
nisms that selectively power down unused functional units and peripheral interfaces,
reducing static power consumption during idle periods. Clock gating: Dynamic
clock gating techniques are employed to disable clock signals to unused logic blocks
and peripherals, further reducing dynamic power consumption during low-utilization

10

General Introduction

scenarios. Sleep modes: The Cortex-M3 architecture supports multiple low-power
sleep modes, allowing the processor to enter a low-power state when not actively
processing instructions. Sleep modes enable significant energy savings by reducing
clock frequency and disabling non-essential peripherals while maintaining system
state integrity. By optimizing energy consumption at both the architectural and
microarchitectural levels, the Cortex-M3 architecture enables embedded system
designers to extend battery life, increase system uptime, and reduce operating costs
in power-constrained environments.

Scalability and Flexibility

One of the key strengths of the Cortex-M3 architecture is its scalability and
flexibility, allowing it to address a wide range of embedded applications spanning
various market segments and performance requirements. The Cortex-M3 processor
is available in a range of configurations, including single-core, multi-core, and
asymmetric multi-core variants, each tailored to specific application domains.

Furthermore, the Cortex-M3 architecture supports a rich ecosystem of devel-
opment tools, software libraries, and middleware components, facilitating rapid
prototyping, software development, and system integration. This ecosystem in-
cludes integrated development environments (IDEs), compiler toolchains, debuggers,
and simulation environments, empowering developers to efficiently design, debug,
and optimize embedded software for Cortex-M3-based systems.

Additionally, the Cortex-M3 architecture offers extensive support for industry-
standard interfaces and protocols, including inter-integrated circuit (12C), serial
peripheral interface (SPI), universal asynchronous receiver-transmitter (UART),
and controller area network (CAN), enabling seamless integration with external
sensors, actuators, and communication modules.

Security Features

In response to the growing threat landscape facing embedded systems, the Cortex-
M3 architecture incorporates a range of security features designed to safeguard
system integrity, confidentiality, and availability. These security features include:

Memory Protection Unit (MPU): The Cortex-M3 processor includes an op-
tional Memory Protection Unit (MPU) that enables fine-grained memory access
control, allowing developers to enforce memory regions and access permissions to
prevent unauthorized access and buffer overflow attacks. TrustZone for Cortex-
M3: Advanced security features such as TrustZone technology can be integrated
with Cortex-M3-based systems to provide hardware-based isolation of secure and
non-secure software components [9], protecting sensitive data and cryptographic
keys from unauthorized access. Secure Boot and Secure Firmware Update: The

11

General Introduction

Cortex-M3 architecture supports secure boot and secure firmware update mecha-
nisms, ensuring the integrity and authenticity of firmware images loaded during
system initialization and updating. By incorporating these security features into
the hardware architecture, the Cortex-M3 processor provides a robust founda-
tion for building secure and resilient embedded systems capable of withstanding
sophisticated cyber threats

Development and Optimization Tools

To facilitate software development and optimization for Cortex-M3-based systems,
ARM provides a comprehensive suite of development tools, including;:

ARM Development Studio: A fully integrated development environment (IDE)
for Cortex-M3 software development, offering advanced debugging, profiling, and
optimization capabilities. ARM Compiler: A high-performance optimizing com-
piler tailored for Cortex-M3 architectures, providing efficient code generation and
execution for embedded applications. ARM Performance Libraries: Pre-optimized
software libraries for common embedded algorithms and functions, enabling de-
velopers to accelerate application development and improve performance. These
development tools, combined with extensive documentation, tutorials, and commu-
nity support, empower developers to harness the full potential of the Cortex-M3
architecture and deliver high-quality, reliable embedded software solutions.

1.1.5 The Need for Adversary Virtual Platforms (AVPs)

Evolving Threat Landscape

The rapid proliferation of embedded systems across various industries has coincided
with an increase in cybersecurity threats targeting these devices. Embedded systems
are now interconnected through networks and interfaces, forming the backbone of
critical infrastructure and consumer devices alike. However, this interconnectedness
exposes them to a wide range of cyber threats, including malware infections, data
breaches, and remote exploits.

Furthermore, the complexity and diversity of embedded systems make them
challenging to secure effectively. These systems often incorporate proprietary
software, legacy components, and third-party libraries, each with its own set of
vulnerabilities and attack vectors. Traditional security assessment methods, such as
penetration testing and code review, may not be sufficient to identify and mitigate
all potential security risks in embedded systems.

12

General Introduction

Limitations of Traditional Testing Methods

Traditional security testing methods rely heavily on physical access to hardware
devices or access to source code, which may not always be feasible or practical.
Moreover, conducting real-world attacks against embedded systems can be costly,
time-consuming, and risky, especially when dealing with safety-critical or mission-
critical applications.

Additionally, traditional testing methods often lack the ability to simulate
complex attack scenarios or assess the impact of vulnerabilities in a controlled
environment. As a result, organizations may struggle to accurately assess their
security posture and prioritize mitigation efforts effectively.

Advantages of Adversary Virtual Platforms (AVPs)

Adversary Virtual Platforms (AVPs) offer a novel approach to security evaluation in
embedded systems by providing a controlled and realistic environment for simulating
adversarial attacks. Unlike physical testing methods, AVPs allow researchers to
conduct virtual experiments in a safe and reproducible manner, without the need
for expensive hardware or risking operational disruptions.

Key advantages of AVPs include:

Realistic Simulation: AVPs accurately emulate the behavior of real-world adver-
saries, allowing researchers to model a wide range of attack scenarios and assess
their impact on embedded systems. This realism enables organizations to identify
and prioritize security vulnerabilities based on their potential impact on system
integrity, confidentiality, and availability. Scalability: AVPs can simulate large-scale
networks of embedded devices, enabling researchers to evaluate the resilience of
complex, interconnected systems against coordinated attacks. This scalability is
essential for assessing the security posture of embedded systems deployed in IoT
ecosystems, industrial control systems, and smart infrastructure. Cost-Effectiveness:
By eliminating the need for physical hardware and infrastructure, AVPs offer a
cost-effective alternative to traditional testing methods. Organizations can conduct
virtual experiments using off-the-shelf hardware and open-source software, reducing
capital expenditures and operational costs associated with security evaluation.
Reproducibility: AVPs provide a reproducible environment for security testing,
allowing researchers to repeat experiments and validate results with confidence.
This reproducibility is critical for verifying the effectiveness of security controls,
assessing the impact of software updates, and evaluating the resilience of embedded
systems over time.

AVPs have diverse applications across various industries and domains, including:

Product Development: Organizations can use AVPs during the product develop-
ment lifecycle to identify and mitigate security vulnerabilities early in the design
phase. By integrating security testing into the development process, companies

13

General Introduction

can ensure that embedded systems are resilient to cyber threats before deployment.
Threat Intelligence: Security researchers and threat analysts can leverage AVPs
to study emerging cyber threats and develop countermeasures against new attack
techniques. By simulating realistic attack scenarios, researchers can gain insights
into adversary tactics, techniques, and procedures (TTPs), helping organizations
better defend against evolving threats. Training and Education: AVPs can serve as
valuable training tools for security professionals, allowing them to gain hands-on
experience with real-world attack scenarios in a controlled environment. By pro-
viding interactive simulations and practical exercises, AVPs help bridge the gap
between theoretical knowledge and practical skills in cybersecurity.

As embedded systems continue to evolve and become increasingly intercon-
nected, the need for effective security evaluation techniques will only grow. Future
advancements in AVPs may include:

Integration with Machine Learning: AVPs could leverage machine learning algo-
rithms to automatically generate and adapt attack scenarios based on real-world
threat intelligence. By continuously learning from new data and evolving adversary
tactics, AVPs can provide more accurate and dynamic security assessments for em-
bedded systems. Support for Hardware-in-the-Loop (HIL) Testing: AVPs could be
integrated with Hardware-in-the-Loop (HIL) testing platforms to simulate realistic
hardware interactions and environmental conditions. This integration would enable
researchers to assess the impact of hardware vulnerabilities and physical attacks
on embedded systems more comprehensively. Standardization and Interoperability:
Efforts to standardize AVP frameworks and protocols would promote interoper-
ability between different platforms and tools, allowing researchers to share attack
scenarios, benchmarks, and best practices more easily. Standardization would
also facilitate collaboration and knowledge sharing within the security community,
accelerating innovation and advancing the state-of-the-art in embedded system
security.

14

Chapter 2

The Virtual Platform

2.1 Gemb

In recent years, computer architecture has been passing through an exciting “golden
age”! as some experts have called it. This period is characterised by rapid innova-
tion, driven by the increasing computational demands of applications in artificial
intelligence, big data analytics, and high-performance computing. To keep up with
these demands, researchers are developing new hardware architectures that are
more efficient, adaptable, and powerful. One of the main ways they advance these
architectures is through software-based modelling and simulation. The “Golden Age
for Computer Architecture” is an exciting era marked by significant advancements
in artificial intelligence, machine learning, and specialized hardware like GPUs and
TPUs.?2 This period is transformative because it emphasizes the need for both
performance and energy efficiency, leading to innovative designs that move away
from traditional CPU-centric models. This shift has revitalized the field, enabling
new computing capabilities across a wide range of applications. It’s a time of great
potential and discovery, where tailored solutions are pushing the boundaries of
what computers can achieve.

A key tool in this process is the gem5 simulator, a widely used and community-
supported framework that has become essential in computer architecture research.
Since its debut in 2011, gem5 has become a cornerstone in the field, frequently
cited in top computer architecture publications . The gemb framework is designed

Keckler, S. W. (2022, January 1). A new golden age for computer architecture. Communica-
tions of the ACM. Retrieved from

2A new golden age for computer architecture by John L. Hennessy David A. Patterson
3Ben-Nun, T., Hoefler, T. (2020). Demystifying parallel and distributed deep learning: An

in-depth concurrency analysis. HAL-Inria. Retrieved from

15

https://cacm.acm.org/research/a-new-golden-age-for-computer-architecture/
https://inria.hal.science/hal-03100818/document

The Virtual Platform

to be flexible, supporting a wide range of simulated components, from processing
cores to complex memory systems and network interfaces. This versatility allows
researchers to conduct detailed system-level performance analyses, gaining a deep
understanding of how different hardware configurations impact computational
workloads. Additionally, gemb supports hardware-software co-design, enabling
researchers to test and optimize the interactions between hardware architectures
and software applications within a single simulation environment. The gemb
simulator has seen continuous development over the past nine years since its initial
release. During this period, more than 250 contributors have made over 7000
commits, enhancing the simulator with new features, bug fixes, and improved code
quality. This paper provides an overview of how gemb is used, its features, the
current state of the simulator, and the significant changes that have been made
since its debut*. As, we will also highlight the continued improvement of gemb
simulator for the future of computer architecture research. What makes the gemb
project truly special is its strong, collaborative community, which includes academic
researchers, industry professionals, and students. This community is committed
to maintaining a stable yet adaptable code base that evolves to meet the needs
of its users. Through continuous updates and contributions, the gem5 project
incorporates new features and optimizations that reflect the latest advancements in
computer architecture. This collective effort ensures that gemb remains a powerful
and relevant tool for exploring complex design spaces, providing researchers with a
robust platform to experiment with architectures that address the computational
challenges of today.

2.1.1 Gemb Architecture

At its core, the gemb simulator is built upon a modular and extensible architecture,
purposefully designed to meet a broad spectrum of computer architecture research
needs. The architecture of gem5 leverages both C++ and Python °, combining the
performance benefits of C++ with the flexibility and accessibility of Python. This
dual-language foundation enables a robust and adaptable simulation framework
that can accommodate complex research requirements. Each component within
gemb’s architecture is thoughtfully crafted to streamline the process of modeling
and experimenting with various hardware configurations, thereby supporting a
wide range of academic and industrial research goals. The primary structural
foundations of gemb’s architecture are outlined below.

4Ibid.

Binkert, N., Beckmann, B., Black, G., et al. (2011). The gem5 simulator. ACM SIGARCH
Computer Architecture News, 39(2), 1-7.s

16

The Virtual Platform

The gemb5 simulator is a modular platform for researching computer-system
architecture, covering both system-level and processor microarchitecture 6. It’s a
community-driven project with an open governance model. Initially created for
academic research in computer architecture, gem5 has expanded its reach . It’s now
widely used in both academia and industry for research purposes, as well as in edu-
cational settings. Additionally, Gemb serves as an abstraction layer that supports
the simulation of various system components, enabling researchers to model and
experiment with diverse architectural designs without the need to create physical
prototypes®. Through this platform, gem5 provides the foundational infrastructure
for accurately simulating the behavior of a computer system’s components, allowing
for detailed exploration of design choices and their performance implications. The
Platform is divided into several key components, each contributing to the overall
flexibility and functionality of the gem5 simulator:

o Simulator Core: At the heart of gemb lies the simulator core, which is respon-
sible for coordinating the entire simulation process and facilitating seamless
communication among the various system components. Implemented in C++,
the simulator core provides a high-performance infrastructure essential for
modeling the complex interactions and behaviors within computer systems .
This core ensures that each component operates within a cohesive simulation
environment!?, thereby allowing researchers to execute extensive simulation
experiments that capture the nuances of real-world system interactions . By
handling critical simulation tasks and managing time progression and event
scheduling, the simulator core supports the accurate emulation of diverse
system behaviors.The simulator core in gemb handles essential tasks like time
progression and event scheduling, ensuring that operations occur in the correct
sequence during simulations. By managing the execution of instructions, mem-
ory requests, and I/O operations, the core allows SimObjects to work together
seamlessly within the simulation environment. This event-driven architecture
provides precise timing and synchronization, enabling researchers to run de-
tailed simulation experiments. These experiments can capture the complexities
of real-world system interactions and help explore the performance impacts of

Sgem5. (n.d.). The gem5 Simulator. Retrieved from
Ibid
8gem5. (n.d.). gem5 Simulator. Retrieved from

9Gystem Architecture Model and Simulation Platform: Iteration 1. NEUROPULS Project.
(2024, March 29). Deliverable 5.9 Report.

0Ben-Nun, T., Hoefler, T. (2020). Demystifying parallel and distributed deep learning: An
in-depth concurrency analysis. HAL-Inria. Retrieved from

HTbid.
17

https://www.gem5.org/
https://www.gem5.org/
https://inria.hal.science/hal-03100818/document

The Virtual Platform

various architectural designs and configurations.

o SimObjects: One of the most distinctive elements of gemb’s architecture is its
use of SimObjects, which represent the primary building blocks of the simulated
system. SimObjects encapsulate individual components within the system,
such as processors, memory units, and peripheral devices, and they provide a
unified interface for configuration, initialization, and interaction. Designed to
be modular and highly configurable, SimObjects allow researchers to tailor
each component’s behavior to meet specific research needs. This modularity
is a critical feature, as it enables researchers to model only the components
they are interested in, thus reducing computational overhead and allowing
for focused experimentation. Furthermore, SimObjects’ design promotes
extensibility, making it straightforward to integrate additional components
or modify existing ones. In the gem5 simulator, SimObjects are essential
building blocks that represent different hardware components like CPUs '2,
caches, and memory controllers. Each SimObject has its own set of properties
and behaviors, which users can customize and configure using Python scripts.
This modular approach makes it easy for researchers to create and adjust
SimObjects, enabling them to explore various architectural setups and their
effects on performance. By ensuring that SimObjects can communicate through
well-defined interfaces, gemb5 accurately simulates the complex interactions
within computer architectures. This makes it a valuable tool for both academic
research and industry applications.

o Python Interface: The Python interface in the gem) simulator is a key compo-
nent that significantly enhances the usability and flexibility of the simulation
environment. It allows users to configure systems '3, run experiments, and
manage simulation setups with ease. Through Python scripts, users can
define simulation parameters and analyze results, making the process both
accessible and powerful. This interface enables researchers to create and
modify SimObjects, which represent various hardware components, by setting
parameters and defining system configurations in a straightforward manner'?.
Python simplifies the scripting process, facilitating rapid prototyping and
experimentation. Users can easily adjust parameters and rerun simulations
without needing extensive recompilation. Additionally, the Python interface
supports a wide range of functionalities, including managing the simulation

2Ibid.
13gem5 (n.d.) Simple config: Part 1 of learning gem5. Retrieved from
14Ben-Nun, T., Hoefler, T. (2020). Demystifying parallel and distributed deep learning: An

in-depth concurrency analysis. HAL-Inria. Retrieved from

18

 https://www.gem5.org/documentation/learning_gem5/part1/simple_config/
https://inria.hal.science/hal-03100818/document

The Virtual Platform

lifecycle—starting, stopping, and saving the state of simulations. This is
particularly beneficial for researchers conducting iterative experiments to an-
alyze the effects of different architectural choices on performance metrics'®.
By enhancing usability and accessibility, the Python interface empowers re-
searchers to interact with gemb more intuitively and flexibly. It also allows
for advanced features like statistical analysis and visualization, enriching the
research experience. Leveraging Python’s strengths, gem5 offers a robust and
user-friendly platform for both academic and industry researchers to explore

and innovate in computer architecture.

o Parameterized Models: At the core of the gemb framework are its parameter-
ized models, which provide researchers with extensive flexibility in configuring
simulations. These models encapsulate the behavior and characteristics of
various hardware components within a computer system, offering a rich set of
customizable options for each element '¢. This customization allows researchers
to conduct detailed experiments and tailor the simulation environment to
meet specific research needs, enhancing the relevance and applicability of their
findings. Parameterized models !” enable the simulation of systems with a
wide range of configurations and performance characteristics. Researchers
can modify parameters related to cache sizes, processor configurations, mem-
ory hierarchies, and interconnect structures. This capability allows them to
explore and analyze a broad spectrum of architectural designs, from simple
single-core processors to complex multi-core systems with intricate memory
management strategies. By adjusting these parameters, users can create
tailored simulation scenarios that reflect real-world conditions or hypotheti-
cal architectures, facilitating a deeper understanding of how different design
choices impact overall system performance. The flexibility of parameterized
models also supports thorough design-space exploration, allowing researchers
to systematically evaluate the performance trade-offs associated with vari-
ous architectural choices. This exploration is crucial for identifying optimal
configurations that balance factors such as speed, power consumption, and
resource utilization. By leveraging the parameterized models within gem?,
researchers can conduct comprehensive studies that highlight the strengths
and weaknesses of specific designs and contribute to the development of inno-
vative solutions in computer architecture. Ultimately, the ability to fine-tune
parameters and simulate diverse configurations empowers researchers to push

15Ben-Nun, T., Hoefler, T. (2020). Demystifying parallel and distributed deep learning: An
in-depth concurrency analysis. HAL-Inria. Retrieved from

16Tbid.
1Tbid.

19

https://inria.hal.science/hal-03100818/document

The Virtual Platform

the boundaries of architectural research and drive advancements in the field.he
gemb architecture is meticulously constructed to support a wide array of
research objectives in computer architecture. By integrating a C+-+-based
simulator core, modular SimObjects, a Python-based user interface, and ver-
satile parameterized models, gem5 provides a comprehensive, user-friendly
environment for the simulation and analysis of complex computer systems.
The framework’s extensible and customizable design empowers researchers
to push the boundaries of computer architecture innovation, supporting the
development of cutting-edge hardware solutions that meet the computational
demands of modern applications. Through its combination of performance
and flexibility, gemb5 has become an indispensable tool in the field, widely
recognized for its utility in both academic research and industry applications.

2.1.2 Gemb Simulation Parameters

Gemb simulates computer systems by carefully modeling the behavior of various
components and running a sequence of events to capture how these parts interact
over time. Through this detailed modeling, researchers can better understand
system performance and behavior under different configurations and workloads.
Key parameters for setting up simulations in gem5 include the following *® :

e« CPU Model: You can simulate two types of processor families. The first
type is based on the SimpleCpu implementation. This class models in-order,
non-pipelined processors and includes functions for handling interrupts, setting
up fetch requests, advancing the program counter (PC), and implementing
the ExecContext interface, which manages read/write operations on mem-
ory, the arithmetic logic unit (ALU), PC, and cache. Within this family,
there are two subclasses: AtomicSimpleCPU and TimingSimpleCPU. The
key difference between these subclasses is how they handle memory access.
AtomicSimpleCPU uses atomic memory access, meaning it processes memory
operations in a single, indivisible step. TimingSimpleCPU, on the other hand,
uses timing memory access, which is more detailed and involves two one-way
messages to simulate the realistic timing of memory operations. This makes
TimingSimpleCPU more accurate in reflecting how memory access timing
works in real systems. The second family of processors is more complex and in-
cludes the InOrder CPU and the O3 CPU. The InOrder CPU is a configurable,
in-order pipelined processor, meaning it processes instructions in the order
they are received but can handle multiple stages of instruction processing
simultaneously. The O3 CPU is the most complex, simulating an out-of-order

18Tbid.
20

The Virtual Platform

pipelined processor with a reorder buffer. This allows it to execute instructions
out of order for better performance and supports superscalar architectures and
hardware multi-threading, making it capable of handling multiple instructions
at once. Moreover, Gemb offers a wide range of CPU models, from in-order to
out-of-order processors, enabling researchers to select models that best suit
their studies. By adjusting parameters like pipeline depth, execution units,
and cache hierarchies, users can customize simulations to explore different ar-
chitectural designs. For example, modifying pipeline depth allows for analysis
of instruction-level parallelism, while tuning execution units provides insights
into how processing power affects performance.

Memory System: Memory system is implemented through MemObject im-
plementing a memory structure (CacheObject for example) and ports to
communicate with other SimObjects through a master/slave interface. Gem5’s
memory system is highly customizable, making it possible to explore memory
configurations in detail. Parameters such as cache size, associativity, and
replacement policies can be finely adjusted to simulate various memory ar-
chitectures. This flexibility enables researchers to analyze memory behavior
and performance closely, investigating how memory design choices influence
latency, bandwidth, and system efficiency. By experimenting with diverse
configurations, researchers can identify optimal designs tailored to specific
workloads.

Execution Mode: In gemb, there are two execution modes. The first mode
is Full Simulation, which simulates a bare-metal environment running a
Linux Kernel image. This mode provides the most complete and accurate
simulation experience. The second mode is System-call Emulation. In this
mode, whenever a system call occurs, it is trapped and passed to the host
system running gemb. Gemb) supports multiple execution modes, including full
system simulation and syscall emulation. Full system mode can boot an entire
OS, providing realistic application execution for comprehensive performance
analysis. In contrast, syscall emulation allows applications to run without the
full OS overhead, useful in experiments where system-level details are less
critical. This adaptability allows researchers to choose the mode that aligns
best with their study goals.

ISA (Instruction Set Architecture): With support for ISAs such as ARM, x86,
and MIPS, gemb facilitates comparisons across architectures. This capability
allows researchers to explore trade-offs and examine how different [SAs impact
system design and performance. Simulating different ISAs provides insights
into how architectural choices affect efficiency, power usage, and execution
speed, which is essential for studying the broader implications of ISA selection.

21

The Virtual Platform

Additionally, With gemb, it’s possible to simulate different Instruction Set
Architectures (ISAs) without needing to specialize each object for each ISA.
This is achieved through an ISA Domain-Specific Language (DSL), which
unifies the decoding of binary instructions. The system uses a C++ base class
and derived classes for each ISA, which override methods like execute() to
implement specific opcodes (e.g., ADD, SUB).

o Devices Modelling: Gemb allows the integration of I/O devices, including
network interfaces and storage controllers, enabling researchers to assess the
impact of these devices on system behavior. Modeling these devices helps
analyze how different configurations influence data transfer rates, latency,
and overall throughput, essential for understanding the role of peripherals in
modern systems. Besides, it is possible to add any kind of I/O device(DMA,
NIC), but if it is used in FS mode it is needed to having working drivers.

o External API: Gemb supports external APIs, which allows integration with
additional tools and libraries. Researchers can use these APIs to expand
gemb’s functionality, incorporating analysis tools, visualization libraries, or
custom hardware models. This capability enhances the simulation environment
and enables a wider range of experimental possibilities.

e GPU Compute: Gemb also supports GPU compute simulations, making
it suitable for heterogeneous computing environments. This feature allows
researchers to study the interactions between CPUs and GPUs, examining
parallel processing and the effects of offloading tasks to GPUs. By simulating
GPU compute, researchers can gain insights into the performance of parallel
algorithms and the impact of GPU integration on overall system performance.

The rich set of configuration options in gemb enables researchers to conduct
in-depth experiments, exploring various architectural designs and performance
characteristics. This versatility is crucial for advancing computer architecture
research and developing new solutions to modern computing challenges.

22

The Virtual Platform

| KVM
| Simple
| In-order @
| Out-of-order
CPU Models
Decode Inte 5
madels Z - Tup - al
External APls

Memary

Y

GPU compute

‘_———' miadel GCN
1 1 ()
E I GPU [54
Ruby Cache Models ()
Protocols I

“Classic” caches

©

it

I

RAM Models

®

MNetwork
madel

Figure 2.1: An overview of gem5’s architecture. Its modular components allow
any of each model type to be used in system configuration via Python scripts. Users
can choose the fidelity of the memory system, CPU model, etc. while being able to
select any ISA, devices, etc. The port interface allows any memory component to
be connected to any other memory component as specified by the Python script.

Thus, The diagram shows the architecture of gemb5, emphasizing its modular
components and the flexibility they offer for system configuration. Each model
type in gemb5 can be used in various setups through Python scripts, which are the
main way users define their simulation environments. This modularity is a key
feature of gem5, allowing researchers to customize their simulations to meet specific
experimental needs and goals.

Modular Components

The architecture includes several modular components:

o CPU Models: Users can choose from a range of CPU models, like in-order

BFigure adapted from "The gem5 Simulator: Version 20.04+ — A new era for the open-source
computer architecture simulator", Jason Lowe-Power et al., arXiv:2007.03152.

23

The Virtual Platform

and out-of-order processors, designed to simulate different execution strategies.
This variety lets users tailor simulations based on specific research needs,
helping them explore how different CPU architectures affect overall system
performance and efficiency.

e Memory Systems: The memory subsystem is highly configurable, allowing
users to select different cache architectures and memory types, such as DRAM
and SRAM. This flexibility is crucial for studying how memory hierarchies
impact performance, as different setups can lead to significant variations
in latency and throughput, which are key factors in computer architecture
research.

« I/0O Devices: Gemb includes various I/O device models, enabling the simulation
of interactions between the CPU, memory, and peripheral devices. This feature
allows researchers to examine how different I/O configurations affect system
performance and to assess the implications of various device architectures on
overall system behavior.

Fidelity and Configuration

Users can choose the fidelity of the memory system, CPU model, and other
components in their simulation environment. This means researchers can opt for
high-fidelity models that provide detailed timing and performance characteristics,
essential for accurate analysis, or lower-fidelity models that run faster but offer
less detail. This flexibility is vital for balancing accuracy with simulation speed,
allowing efficient exploration of different architectural configurations without being
limited by a single model.

Instruction Set Architecture (ISA) Support

Gemb supports multiple ISAs, such as ARM, x86, MIPS, and RISC-V. This support
is crucial for researchers who want to investigate how different instruction sets
impact system performance. By enabling comparisons and evaluations of various
architectural designs, gemb allows users to study how different ISAs influence
workload execution and overall system efficiency.

Port Interface

The port interface is a significant feature of gem5’s architecture, allowing any
memory component to connect to any other memory component as specified in
the Python script. This modularity enhances the system’s flexibility, enabling
researchers to create custom memory topologies and interconnects. These capa-
bilities are particularly useful for testing new designs and configurations without

24

The Virtual Platform

extensive reconfiguration, streamlining the research process and facilitating rapid
prototyping of novel architectural ideas.

Simulation Modes

Gemb offers two distinet simulation models:

« System Emulation (SE): This mode meticulously emulates entire hardware
systems at the instruction level, providing a high degree of accuracy. It priori-
tizes accuracy, making it ideal for full-system workloads and operating system
simulations. SE mode is particularly useful for researchers who need to under-
stand detailed interactions within a complete system, allowing comprehensive
analysis of system behavior under realistic conditions.

 Functional Simulation (FS): In contrast, F'S mode focuses on the functional
behavior of the system. While it sacrifices some accuracy for faster simulations,
it is ideal for quick design explorations. This mode allows researchers to rapidly
iterate on design ideas and evaluate different architectural configurations
without the overhead of detailed timing simulations, making it a valuable tool
for early-stage design and experimentation.

The architecture of gemb5, as shown in the figure, highlights its modular
components and the flexibility they offer for system configuration through
Python scripts. The ability to choose fidelity, support multiple ISAs, and
use a port interface for component connections enhances gem5’s research
capabilities. Additionally, the two simulation modes—System Emulation and
Functional Simulation—cater to different research needs, allowing for both
detailed analysis and rapid design exploration. This versatility makes gemb
a powerful tool for researchers in computer architecture, enabling them to
conduct a wide range of experiments and analyses.

2.1.3 Configuration Script

In gemb, configuration scripts play a crucial role in setting up simulations. They
harness Python’s capabilities along with the SimObject abstraction to create
flexible and dynamic system configurations. This setup allows researchers to define
complex architectures and experiment with various hardware parameters. Using
Python in gemb provides a powerful scripting interface, making it easy for users to
configure and control their simulations. The SimObject abstraction is a key feature,
representing different components of the simulated system, such as CPUs, caches,
memory controllers, and I/O devices. Each SimObject can be instantiated and
configured through Python scripts, enabling a modular and extensible approach
to system design. Basically, the provided code snippet is a simplified version of

25

The Virtual Platform

the actual script used for ARM architecture simulations that are mentioned in the
next chapters. Setting up configuration scripts is quite straightforward thanks to
Python and the SimObject abstraction. Below is a simplified version of the actual
script. This version omits details specific to the x86 implementation and other
build options for clarity. In essence, this script creates a FS interface , which will
be used later to run the simulations. This script create a dynamic system FS "Full
System", It defines predefined CPU configurations using a dictionary named CPU
types. Each CPU configuration tuple consists of different CPU class and cache
classes options (L1 instruction cache, L1 data cache, L2 cache)

import os

import mb

from mb.util import addToPath
from mb.objects import =*

from mb.options import =
import argparse

m5.util.addToPath("../..")
from common import SysPaths
from common import ObjectList
from common import MemConfig

from common.cores.arm import 03_ARM_v7a, HPI

import devices

default_kernel = "vmlinux.arm64"
default_disk = "linaro-minimal-aarch64.img"
default_root_device = "/dev/vdal"

Pre-defined CPU configurations. Each tuple must be ordered as
(cpu_class,

11 _icache_class, 11 _dcache_class, 12_Cache_class). Any of

the cache class may be ’None’ if the particular cache is not

present.

cpu_types = {
"atomic": (AtomicSimpleCPU, None, None, None),
"minor": (MinorCPU, devices.L1I, devices.L1D, devices.L2),
"hpi": (HPI.HPI, HPI.HPI_ICache, HPI.HPI_DCache, HPI.HPI_L2),
”03“: (

03_ARM_v7a.03_ARM _v7a_3,
03_ARM_v7a.03_ARM_v7a_ICache,
03_ARM_v7a.03_ARM_v7a_DCache,
03_ARM_v7a.03_ARM_v7al2,

26

The Virtual Platform

def

7 def

create_cow_image (name) :

"""Helper function to create a Copy-on-Write disk image
image = CowDiskImage ()

image.child.image_file = SysPaths.disk(name)

return image

create (args):
"""Create and configure the system object."""

if args.script and not os.path.isfile(args.script):
print (f"Error: Bootscript {args.script} does not exist")
sys.exit (1)

cpu_class = cpu_types[args.cpul[0]

mem_mode = cpu_class.memory_mode ()

Only simulate caches when using a timing CPU (e.g., the HPI
model)

want_caches = True if mem_mode == "timing" else False

system = devices.SimpleSystem(

want_caches,

args.mem_size,

mem_mode=mem_mode ,

workload=ArmFsLinux (object_file=SysPaths.binary(args.
kernel)),

readfile=args.script,

MemConfig.config_mem(args, system)

Add the PCI devices we need for this system. The base system
doesn’t have any PCI devices by default since they are
assumed
to be added by the configuration scripts needing them.
system.pci_devices = [
Create a VirtIO block device for the system’s boot
disk. Attach the disk image using gemb’s Copy-on-Write
functionality to avoid writing changes to the stored
copy of
the disk image.
PciVirtIO(vio=VirtIOBlock (image=create_cow_image (args.
disk_image)))
]

27

80

81

90

96
97
98
99
100
101

102

103
104
105
106
107
108
109
110
111

The Virtual Platform

Attach the PCI devices to the system. The helper method in
the
system assigns a unique PCI bus ID to each of the devices
and
connects them to the IO bus.
for dev in system.pci_devices:

system.attach_pci(dev)

Wire up the system’s memory system
system.connect ()

Add CPU clusters to the system

system.cpu_cluster = [
devices.ArmCpuCluster (
system,

args.num_cores,
args.cpu_£freq,

"1.0vV",

*cpu_types [args.cpul,
tarmac_gen=args.tarmac_gen,
tarmac_dest=args.tarmac_dest,

Create a cache hierarchy for the cluster. We are assuming
that

clusters have core-private L1 caches and an L2 that’s shared
within the cluster.

system.addCaches (want_caches, last_cache_level=2)

Setup gemb’s minimal Linux boot loader.
system.realview.setupBootLoader (system, SysPaths.binary)

if args.dtb:
system.workload.dtb_filename = args.dtb

else:
No DTB specified: autogenerate DTB
system.workload.dtb_filename = os.path.join(

mb5.options.outdir, "system.dtb"

)
system.generateDtb(system.workload.dtb_filename)

if args.initrd:
system.workload.initrd_filename = args.initrd

Linux boot command flags

kernel_cmd = [
Tell Linux to use the simulated serial port as a console
"console=ttyAMAO",

28

The Virtual Platform

126 # Hard-code timi
127 "1lpj=19988480",
128 # Disable address space randomisation to get a consistent

129 # memory layout.
130 "norandmaps",

131 # Tell Linux where to find the root disk image.

132 f'"root={args.root_devicel}",

133 # Mount the root disk read-write by default.

134 "rw",

135 # Tell Linux about the amount of physical memory present.
136 f'"mem={args.mem_sizel}",

137]

138 system.workload.command_line = " ".join(kernel_cmd)

140 if args.with_pmu:
141 for cluster in system.cpu_cluster:

142 interrupt_numbers = [args.pmu_ppi_number] * len(
cluster)

143 cluster.addPMUs (interrupt_numbers)

144

145 return system

14s| def run(args):

149 cptdir = mb.options.outdir

150 if args.checkpoint:

151 print (f"Checkpoint directory: {cptdirl}")

153 while True:

154 event = mb5.simulate ()

155 exit_msg = event.getCause ()

156 if exit_msg == "checkpoint":

157 print ("Dropping checkpoint at tick %d" % mb.curTick())
158 cpt_dir = os.path.join(m5.options.outdir, "cpt.%d" %
m5.curTick ())

159 m5.checkpoint (os.path. join(cpt_dir))

160 print ("Checkpoint done.")

161 else:

162 print (f"{exit_msgl} ({event.getCode()}) @ {m5.curTick()
IR

163 break

164
165

66| def arm_ppi_arg(int_num: int) -> int:

167 """Argparse argument parser for valid Arm PPI numbers."""

168 # PPIs (1056 <= int_num <= 1119) are not yet supported by gemb
169 int_num = int (int_num)

170 if 16 <= int_num <= 31:

171 return int_num

29

190
191
192
193
194
195
196
197
198
199

200

The Virtual Platform

def

raise ValueError (f"{int _num} is not a valid Arm PPI number")

main () :
parser = argparse.ArgumentParser (epilog=__doc__)
parser.add_argument (

"--dtb", type=str, default=None, help="DTB file to load"
)
parser.add_argument (

"--kernel", type=str, default=default_kernel, help="Linux
kernel"
)
parser.add_argument (

"——dinitrd",

type=str,

default=None,

help="initrd/initramfs file to load",
)
parser.add_argument (

"--disk-image",

type=str,

default=default_disk,

help="Disk to instantiate",
)
parser.add_argument (

"--root-device",

type=str,

default=default_root_device,

help=f"0S device name for root partition (default: {
default_root_devicel})",

)
parser.add_argument (
"--script", type=str, default="", help="Linux bootscript"
)
parser.add_argument (
"--cpu",
type=str,
choices=1list (cpu_types.keys (),
default="atomic",
help="CPU model to use",
)

parser.add_argument ("--cpu-freq", type=str, default="4GHz")
parser.add_argument (

"--num-cores", type=int, default=1, help="Number of CPU
cores"
)
parser.add_argument (

"--mem-type",

30

The Virtual Platform

default="DDR3_1600_8x8",
choices=0bjectlList.mem_list.get_names(),
help="type of memory to use",

)
parser.add_argument (
"--mem-channels", type=int, default=1, help="number of
memory channels"
)

parser.add_argument (
"--mem-ranks",
type=int,
default=None,
help="number of memory ranks per channel",
)
parser.add_argument (
"--mem-size",
action="store",
type=str,
default="2GB",
help="Specify the physical memory size",
)
parser.add_argument (
"--tarmac-gen",
action="store_true",
help="Write a Tarmac trace.",
)
parser.add_argument (
"--tarmac-dest",
choices=TarmacDump.vals,
default="stdoutput",
help="Destination for the Tarmac trace output. [Default:

stdoutput]",

)

parser .add_argument (
"--with-pmu",

action="store_true",

help="Add a PMU to each core in the cluster.",
)
parser .add_argument (

"--pmu-ppi-number",

type=arm_ppi_arg,

default=23,

help="The number of the PPI to use to connect each PMU to
its core. "

"Must be an integer and a valid PPI number (16 <= int_num
<= 31).",

)
parser .add_argument ("--checkpoint", action="store_true")
parser.add_argument ("--restore", type=str, default=None)

31

The Virtual Platform

args parser .parse_args ()
root = Root(full_system=True)
root.system = create(args)

if args.restore is not None:
m5.instantiate (args.restore)
else:
m5.instantiate ()

run (args)

if __name__ == " "

main ()

__m5 _main__

This configuration script is a great example of how gemb leverages Python
and the SimObject abstraction to build dynamic and customizable simulation
environments. By defining CPU configurations and instantiating various system
components, researchers can delve into different architectural designs and assess
their performance impacts within a full system simulation. This flexibility is one of
the key strengths of gemb, making it an invaluable tool for computer architecture
research.

2.1.4 Role of the Script in gem5 Full-System Simulation

The provided script plays a critical role in the configuration and execution of
full-system simulations in gem5 [10]. It is designed to simulate ARM-based sys-
tems ' using the gem5 platform. This script defines essential parameters for the
CPU, memory system, and I/O devices, enabling detailed simulations that model
real- world system behavior. In better wording, The script used for setting up
full-system simulations in gem5 which is a key part of the simulation environment,
especially for ARM-based systems. Its importance comes from its ability to define
and manage the complex parameters that control how different parts of the system,
like the CPU, memory, and I/O devices, behave ?°. By using Python and the
SimObject abstraction, the script allows for a modular and flexible way to configure
the system, letting researchers customize simulations to fit their specific needs. In
gemb, this script acts like a blueprint for the simulated environment, detailing the

¥gemb, n.d
20Tbid.

32

The Virtual Platform

architecture’s setup and operational parameters 2'. For example, it specifies the
type of CPU to be simulated—whether it’s a simple, minor, or out-of-order (O3)
CPU-—along with the cache configurations ?2. This level of detail is crucial for
accurately modeling the system’s performance characteristics 2*.The choice of CPU
type affects the execution model, influencing factors like instruction throughput,
cache hit rates, and overall system latency 2¢. By offering a range of CPU models,
the script enables researchers to explore different architectural designs and their
performance implications ?°. Additionally, the script helps integrate I/O devices,
which are crucial for simulating full-system behavior 26.Configuring and instantiat-
ing various I/O components allows researchers to study the interactions between the
CPU, memory, and peripheral devices 2. This comprehensive approach is essential
for understanding how different system configurations affect overall performance,
especially in scenarios where 1/O operations are a significant bottleneck. The
gemb) scripting interface’s flexibility also allows for dynamic parameter adjustments
during simulation, enabling researchers to conduct sensitivity analyses and explore
how architectural changes affect performance metrics 2. This capability is partic-
ularly valuable in research, where the ability to quickly iterate and test various
configurations can lead to deeper insights into system behavior. The script is
crucial for configuring and running full-system simulations in gemb, particularly for
ARM architectures (ARM, n.d.). By defining key parameters for the CPU, memory
system, and I1/O devices, the script enables detailed and realistic simulations that
mimic real-world system behavior. Its modularity and flexibility allow researchers
to explore a wide range of architectural configurations, helping them understand
the performance implications of different design choices 2. Thus, the script is not
just a tool for simulation; it’s an integral part of the research process that drives

innovation in computer architecture .

21Binkert et al., 2011
22ZARM, n.d.
ZBinkert et al., 2011)
Zgemb, n.d.
ZARM, n.d.
26gem5, n.d.
2TARM, n.d.
Bgem5, n.d.
29Binkert et al., 2011
30ARM, n.d.

33

The Virtual Platform

2.1.5 CPU and Memory Configuration

In the gemb simulation framework, setting up CPU models and memory hierarchies
is crucial for ensuring accurate and relevant simulation results 3'. This setup
process allows researchers to customize the simulated environment to meet their
specific experimental needs, especially when studying complex issues like security
vulnerabilities. As it is explained in the following lines:

cpu_class = cpu_types[args.cpu] [0]

mem_mode = cpu_class.memory_mode ()

Only simulate caches when using a timing CPU (e.g., the HPI
model)

want_caches = True if mem_mode == "timing" else False

Choosing the right CPU model is a key part of the simulation setup. Researchers
can select from various CPU architectures, such as in-order, out-of-order (03)3?
or simple atomic models. Each model has unique characteristics that affect how
instructions are executed and how the CPU interacts with memory. For example,
out-of-order processors, like the O3 model, execute instructions as resources become
available rather than strictly following the original program order. This approach
maximizes performance but also introduces complexities that can be exploited
by certain attacks, such as the Spectre vulnerability. When studying the Spectre
attack, the O3 ARM CPU model is particularly important 33. Speculative execution,
a feature of modern out-of-order processors, allows the CPU to predict and execute
instructions ahead of time based on expected future paths. This behavior is central
to the Spectre vulnerability, as it can lead to unintended information leakage
through side channels. Using the O3 model, researchers can accurately replicate
speculative execution, providing valuable insights into how these vulnerabilities
occur and can be exploited. Another important aspect of the setup is configuring
the memory mode, which depends on the chosen CPU type. The interaction
between speculative execution and the memory hierarchy—comprising caches and
main memory—plays a crucial role in the performance and security implications
of attacks like Spectre and ret2ns. The memory mode determines how memory
accesses are handled during execution, affecting factors like cache coherence, latency,
and the timing of memory operations. Understanding these interactions is essential
for analyzing how speculative execution can be manipulated to leak sensitive
information. Additionally, the simulation environment can be adjusted based on

3lgem5, n.d
32gem5, n.d
33ARM, n.d.

34

The Virtual Platform

the chosen CPU model, especially regarding cache simulations. Caches are vital
components of modern computer architectures, designed to speed up memory access
by storing frequently accessed data closer to the CPU. The behavior of caches can
significantly impact the timing of memory operations, which is a key consideration
in timing attacks. By enabling or disabling cache simulations based on the CPU
model, researchers can create a more realistic representation of how memory
access patterns influence the effectiveness of security vulnerabilities. Configuring
CPU and memory in gemb) simulations is essential for enhancing the accuracy
of the simulated environment. By allowing the selection of various CPU models
and dynamically adjusting memory modes, researchers can create simulations
that accurately reflect the complexities of modern processor architectures. This
capability is particularly important when investigating vulnerabilities like Spectre,
as it enables a comprehensive understanding of the interactions between speculative
execution and memory access patterns. Careful configuration of these parameters
not only improves the validity of simulation results but also provides a robust
platform for exploring potential mitigations and defenses against such attacks.
Through this detailed approach, researchers can gain deeper insights into the
security implications of architectural features and contribute to developing more
secure computing systems.

2.1.6 System Creation and Boot Configuration

The boot configuration expands the current kernel command line to support
additional key-value data when booting the kernel in an efficient way**. The
script is all about setting up and starting the full system simulation, including
the operating system (OS). It outlines how to configure the virtual ARM-based
system, making sure all the necessary elements are in place to simulate a complete
OS environment. Here’s how it is created and booted:

system = devices.SimpleSystem(
want_caches,
args.mem_size,
mem_mode=mem_mode ,
workload=ArmFsLinux (object_file=SysPaths.binary(args.kernel)),
readfile=args.script,

In this section, the script configures the simulated ARM system by loading the OS
kernel—in this case, Linaro Minimal Linux for AArch64—and defining key system

34The Linux Kernel Documentation. (n.d.). Boot configuration.

35

The Virtual Platform

parameters. This setup is crucial for full-system simulation, enabling the testing
of entire OS-level workloads, such as booting the Linux kernel. By specifying
parameters like the kernel file and memory size, I could recreate realistic hardware
conditions needed to test how the system might respond under scenarios where
attacks are executed. This approach enables the simulation of complex interactions
within the OS and memory system, which is vital for accurate security assessments.
By configuring the system this way, the script allows for a full-system simulation.
This means the entire OS, including the Linux kernel, is booted within the simulated
environment. Such a setup is essential for testing workloads that operate at the
OS level, as it provides the necessary infrastructure to observe and analyze system
behavior under various simulated conditions. Setting the kernel and memory size
helps the simulation recreate conditions similar to real hardware. This is crucial
for realistically testing potential security attacks, such as those targeting memory
access patterns. This setup is particularly valuable for security research, as it allows
for examining complex interactions within the OS, CPU, and memory hierarchy.
Understanding these interactions is vital for figuring out how such attacks can be
launched and exploited in real systems.

2.1.7 PCI Devices and Disk Images

It’s important to define the Peripheral Component Interconnect (PCI) to understand
how this device works. The Peripheral Component Interconnect (PCI) interface,
introduced by Intel in 1992, was a standard connection interface for computer
motherboards. It was widely used throughout the late 1990s and early 2000s .
This interface enabled the attachment of hardware components such as sound cards,
video cards, and modems, playing a crucial role in enhancing system functionality
during its era. While PCI has been largely replaced by PCI Express (PCle)
slots in modern systems, its historical significance in computer architecture is
notable. A PCI device refers to any hardware component designed to connect to
the motherboard through a PCI slot. At its inception, PCI operated as a 32-bit,
33 MHz interface capable of data transfer speeds up to 133 MBps. An upgraded
version introduced 64-bit functionality and 66 MHz speeds, enabling transfers
up to 533 MBps. Further development yielded PCI Extended (PCI-X), which
supported up to 133 MHz and data transfer rates of 1064 MBps. However, the
introduction of PCI Express (PCle) in 2004 marked a significant advancement,
offering greater speed, efficiency, and scalability, effectively making PCI and PCI-
X obsolete 3. Despite its declining use, PCI remains relevant in older systems.

35Inspired eLearning. (n.d.). What is a PCI device?
36Tbid.

36

The Virtual Platform

The plug-and-play (PnP) architecture of the PCI bus and subsequent interfaces
allows compatibility with newer slots using adapters. However, enabling a PCI slot
may sometimes require BIOS configuration adjustments. PCI slots were versatile,
enabling connection to various devices such as network cards, sound cards, graphics
cards, controller cards, RAID cards, modems, and scanners. A typical motherboard
of that era featured multiple PCI expansion slots, often five or more, allowing
users to upgrade their systems by adding essential hardware components 37. This
modular design provided users with the flexibility to enhance features like audio
capabilities, graphics performance, wireless connectivity, and storage expansion. In
modern systems, PCI devices are largely unnecessary, as contemporary computers
predominantly utilize PCle or USB for peripheral connectivity. Nonetheless, PCI
devices still find use in legacy systems or specialized environments where older
hardware remains operational. Additionally, as it is provided in the bellowing
script, this part of the script is responsible for attaching PCI devices, specifically
including block storage devices, with the following code:

system.pci_devices = [
PciVirtIO(vio=VirtIOBlock(image=create_cow_image (args.
disk_image)))

In this part of the script, we create a VirtlO block device, which acts as the main
disk image for the simulated operating system. The VirtIO Block function attaches
the disk image, and the createcowimage function generates a copy-on-write (COW)
version of the disk image. This means any changes made during the simulation
won’t affect the original disk image. For my simulation, I used the Linaro Minimal
AArch64 disk image, which provides the OS and mounts the necessary file system.
The VirtIO block device is crucial for loading and running important files, like
the compiled binary of the Spectre exploit in my case. This setup ensures that
the simulated environment has the storage infrastructure needed to execute and
interact with the OS and filesystem just like it would on real hardware. By using the
VirtlIO block device, the script simplifies the configuration process by automatically
handling PCI and I/O device setup. This configuration is essential for experiments
like the Spectre attack, as it creates a realistic environment where the interactions
between the OS, storage, and attack binaries can be observed and analyzed.

3TIbid.
37

The Virtual Platform

2.1.8 Cache Hierarchy and Clustering of CPUs

This section of the script is responsible for defining the CPU cluster configuration
and its cache hierarchy, specifically setting up clusters of CPU cores along with
their respective caches. The relevant code is as follows:

system.cpu_cluster = [
devices.ArmCpuCluster (
system,

args.num_cores,
args.cpu_£freq,

"1.0v",

xcpu_types [args.cpul,
tarmac_gen=args.tarmac_gen,
tarmac_dest=args.tarmac_dest,

This block configures the CPU cluster (the group of cores used in the simulation)
and their associated cache hierarchy (L1 instruction and data caches, L2 cache).
By setting up multiple CPU cores, I was able to simulate multi-core interactions,
which are essential for modeling speculative execution vulnerabilities like Spectre.
In this part of the script, we use the Arm CPU Cluster function to create and
configure a group of CPU cores, known as a CPU cluster. This configuration does
not sets up only the CPUs but also defines the cache hierarchy for each CPU core
cluster. The cache hierarchy is defined within each CPU cluster, encompassing the
L1 instruction and data caches, and the L2 cache. The L1 caches are designed for
rapid access to frequently used instructions and data, while the L2 cache acts as a
larger, intermediate storage to bridge the gap between the L1 caches and the main
memory. This hierarchical structure helps in reducing latency and improving overall
system performance. The cache hierarchy typically includes L1 instruction and data
caches, as well as an L2 cache shared among the cores in the cluster. Configuring
the cache hierarchy is crucial for simulations because it affects data access speeds
and models real-world cache interactions. By setting up multiple CPU cores in
clusters, this configuration allows for the simulation of multi-core interactions,
which are essential for accurately modeling behaviors like speculative execution.
When studying vulnerabilities such as the Spectre attack, having a multi-core
setup helps replicate the real-world conditions under which these attacks exploit
interactions between cores and caches. This setup enables researchers to explore
how speculative execution vulnerabilities arise in environments with multiple cores
and caches, providing a comprehensive view of these complex interactions.

38

~

The Virtual Platform

2.1.9 Bootloader Setup and Kernel Command-Line Argu-
ments

The following lines of code are responsible for setting up the bootloader and passing
boot-time parameters to the Linux kernel. The Linux kernel can be defined as the
core mechanism responsible for managing requests between software and hardware
efficiently, ensuring that the system resources, such as the processor and memory,
are utilized effectively. Every program requires at least a processor and memory
to run, and the kernel acts as the intermediary, handling the large number of
hardware-related requests generated during program execution. The Linux kernel
is designed as a monolithic kernel with a modular architecture. Being monolithic
means that the entire operating system operates at the kernel level, providing high
performance and direct control over hardware resources. Meanwhile, its modular
design allows functionalities to be extended dynamically at runtime, enabling the
addition of new features or drivers without the need to reboot or recompile the
kernel. This configuration is essential for making sure the kermel gets the right
instruction about where to send console output, and other key parameters.

system.realview.setupBootLoader (system, SysPaths.binary)
kernel_cmd = [

"console=ttyAMAO",

f"root={args

"lpj=19988480",

| "norandmaps ",

f'"mem={args.mem_sizel}l",
]
n

system.workload.command_line = ".join(kernel_cmd)

In this block, the script is designed to set up the Linux kernel bootloader and
provide the necessary command-line arguments for booting the simulated system.
This includes instructions for setting the console output to a simulated serial
port, specifying the root device for the disk image, and defining the memory size.
The final string combines all specified parameters into the exact format that the
Linux kernel expects on its command line during initialization. For the Spectre
attack simulations, this setup is critical. It ensures that the Linux kernel boots
correctly and mounts the disk image containing the Spectre exploit. Additionally,
by disabling ASLR with the norandmaps parameter, the setup creates a predictable
environment, which is essential for the success of speculative execution attacks.
This predictability allows researchers to study the behavior and impact of such
attacks in a controlled and repeatable manner

39

The Virtual Platform

2.1.10 Simulation Execution and Checkpointing

The script provided presents a loop used to manage a simulation using the Gem5
simulation framework. Thus, the script manages the simulation execution and
allows for the creation of checkpoints:

while True:
event = mb.simulate ()
exit_msg = event.getCause ()
if exit_msg == "checkpoint":
cpt_dir = os.path.join(mb.options.outdir, "cpt.%d" % m5.
curTick ())
m5.checkpoint (os.path. join(cpt_dir))

This loop runs the actual simulation, calling ‘m5.simulate()‘ in a continuous
loop until the simulation ends or a specific event (such as a checkpoint) occurs.
Highlighting that the command event = m5.simulate() triggers the simulation to
run. The simulate() function in the Gemb framework advances the simulation and
returns an event object. This object indicates the cause of the simulation pause
or termination, such as a timer interrupt, checkpoint request, or a simulation exit
condition. Checkpoints are useful because they save the state of the simulation
at specific points in time, which can be restored later without restarting the
entire process. This was particularly helpful during long simulations like the
Spectre attack, where I could pause and resume the simulation efficiently. In other
words, This script ensures that the simulation runs continuously, pausing and
saving checkpoints whenever specified. These checkpoints allow the simulation
to be resumed from specific points, which is particularly useful for long-running
simulations, debugging, or analyzing specific segments of the process without having
to restart the entire simulation from scratch. This functionality enhances efficiency
and flexibility, making it easier to manage and study complex simulation scenarios.

2.1.11 Integration of PMU and Debugging with Tarmac
Traces
This script presents an approach where the Performance Monitoring Unit (PMU)

and Tarmac trace generation functionalities into the simulated system, enhancing
its debugging and performance analysis capabilities.

if args.with_pmu:
for cluster in system.cpu_cluster:
interrupt_numbers = [args.pmu_ppi_number] * len(cluster)
cluster.addPMUs (interrupt_numbers)

40

N

The Virtual Platform

The PMU was used to monitor various hardware events (such as cache hits,
misses, and branch predictions) during the attack simulations. By enabling the
PMU in the script, I was able to collect performance data, which helped analyze how
the system responded to speculative execution and branch prediction misbehavior
[7]. This integration was achieved by iterating through each CPU cluster in the
simulation system and assigning interrupt numbers to the PMUs corresponding
to the cores within each cluster. The assigned interrupt numbers allowed the
PMU to monitor and track the performance events specific to each core, such as
cache behaviors and branch prediction outcomes. This configuration facilitated
precise event monitoring, enabling insights into the system’s performance at a
granular level. Additionally, Tarmac trace generation was enabled in the script
through the ‘tarmacgen‘optionprovidedadetailedlogof executedinstructions. This
feature provided a detailed execution log of instructions, which allowed for in-depth
debugging and profiling. The generated Tarmac traces offered a comprehensive
view of the execution paths taken by the processor, making it possible to analyze
the sequence of operations and identify potential performance bottlenecks or
vulnerabilities. By combining PMU data and Tarmac traces, I was able to gain a
detailed understanding of how the system behaved under conditions of speculative
execution and branch prediction misbehavior. The performance data collected by
the PMU highlighted the impact of hardware-level events, such as cache misses
and mispredicted branches, while the Tarmac traces provided a step-by-step log
of executed instructions. This combination proved invaluable for evaluating the
system’s vulnerabilities and overall performance during attack simulations, offering
critical insights into both expected and anomalous behaviors.

2.1.12 Finalizing the Simulation

The final lines of the script complete the setup and initiate the simulation process
by defining the root system, handling checkpoint restoration, and starting the
simulation.

root = Root(full_system=True)

root.system = create(args)

if args.restore is not None:
mb.instantiate (args.restore)

5| else:

m5.instantiate ()
run (args)

This part instantiates the full-system simulation, loading either from a checkpoint
or from the start of the simulation. The Root object is created to define the entry

41

The Virtual Platform

point of the system, and the system configuration is assigned based on the user-
provided arguments. If a checkpoint is specified, the simulation state is restored
using mb.instantiate(args.restore); otherwise, the simulation starts fresh with
mb.instantiate(). The mb.instantiate() call initializes the gemb system, after which
the run(args) function starts the simulation loop. For the Spectre attack, after
configuring the system and loading the disk image, the simulation is started, and
the exploit binary is executed inside the simulated environment. This modularity
and flexibility in setting up simulations through the script allowed me to easily
configure and test different attack scenarios in gemb. By enabling checkpoint
restoration, I could save simulation progress and resume it as needed, facilitating
efficient experimentation and analysis of various configurations and vulnerabilities.

2.2 Using the Simulation Script in gemb

The starterfs.py script is an essential tool for kicking off and running full-system
simulations within the gem5 framework, especially for ARM architectures. By using
this script, you can simulate intricate system setups, including multi-core CPUs,
custom kernels, and disk images. This capability enables a deep dive into system
behavior, performance profiling, and testing specific scenarios like debugging or
analyzing speculative execution vulnerabilities. The example below shows how
to set up and run a simulation with this script, showcasing gem5’s flexibility and
power for research and development. Thus, The starterfs.py script is used to run
a full-system simulation in gem5, with the command below providing a practical
example:

./build/ARM/gem5.opt \
./configs/example/arm/starter_fs.py \
--cpu=03 \
--num-cores=3 \
--kernel=./system/arm/binaries/vmlinux.arm64 \
--disk-image=./system/arm/linaro-minimal ~aarch64.img \
--debug-file=pipeview.txt \
--debug-start=13062347000

2.2.1 Explanation of the Command

e ./build/ARM/gem5.opt: This specifies the gem5 binary compiled for ARM
systems, using the optimized version (gemb.opt) for simulation performance.
It is located in the build/ARM/ directory and is used to run full-system
simulations of ARM-based architectures.

42

The Virtual Platform

./configs/example/arm/starter_fs.py: This is the Python configuration
script responsible for setting up the full-system simulation in gemb. It initializes
the simulation components, including CPU, memory, kernel, and disk image,
ensuring the system is ready for execution.

o —cpu=03:This flag specifies the CPU model. In this case, it is an Out-of-Order
(03) CPU, which is suitable for simulating complex workloads, including those
involving speculative execution, such as the simulations used for analysing the
Spectre attack.

o -num-cores=3: This flag sets the number of CPU cores to be simulated. In
this example, three CPU cores are simulated. This multi-core configuration
allows the simulation to capture interactions between cores, which is crucial
for testing scenarios like speculative execution vulnerabilities.

o -kernel=./system/arm/binaries/vmlinux.arm64: This specifies the ARM
Linux kernel image that gem) will use during the simulation. The kernel
boots into the operating system, and this last is essential for booting into the
operating system within the simulated environment.

o -disk-image=./system/arm/linaro-minimal-aarch64.img: This flag points
to the root filesystem image used during the simulation. It provides the neces-
sary software environment, including system libraries and tools, for running
programs in the simulation.

o —debug-file=pipeview.txt: This flag enables detailed debug output and
directs the output logs to a file named pipeview.txt. The debug logs are partic-
ularly valuable for tracing low-level CPU activities, such as cache hits/misses
and speculative execution behavior.

« —debug-start=13062347000: This specifies the simulation tick at which de-
bugging will begin. Delaying the debug output until a specific tick helps avoid
unnecessary logs from the early stages of the simulation. This makes the
debug information more focused and manageable, allowing for clearer insights
into the simulation’s behavior. This command sets up a full-system simulation
with the ARM architecture in gem5. By combining kernel and disk images, it
creates a bootable environment, and the multi-core configuration allows for
thorough analysis. The debug options provide detailed event tracing, helping
you better understand and profile the simulation’s behavior.

2.2.2 Example Use Case in Simulation

In my experiments, this script was employed to set up a full-system simulation using
the ARM AArch64 architecture. This simulation environment provided a robust

43

The Virtual Platform

framework for evaluating how speculative execution vulnerabilities manifest and
impact processor behavior. After compiling the exploit specifically for the ARM
architecture, the exploit was executed within the simulated environment, enabling
controlled testing and analysis of speculative execution phenomena. The parameters
of the script were carefully adjusted to simulate a three-core system using the O3
CPU model. The O3 model, with its capability to emulate out-of-order execution,
proved to be an essential choice for accurately representing the behavior of modern
processors during speculative execution scenarios. This configuration ensured
that the interactions between cores, speculative paths, and hardware-level events
were captured realistically, thereby aligning with the requirements of analyzing
vulnerabilities such as Spectre. The script’s modular design allowed significant
flexibility in customizing various simulation parameters. Adjustments such as
memory configuration, number of CPU cores, and kernel specifications could be
seamlessly incorporated to tailor the environment for specific experimental needs
[10]. Additionally, the integration of debugging tools further enriched the analytical
capabilities of the simulation. By enabling the debug-file and debug-start flags,
I was able to collect pipeline-level data that detailed how the processor handled
speculative execution paths, including critical events like branch predictions and
cache behavior. This granular level of data was instrumental in understanding the
impacts of speculative execution on system security and performance, shedding
light on the vulnerabilities exploited by Spectre. The example script shown below
illustrates the essential configuration for simulating such environments:

./build/ARM/gem5.opt \
./configs/example/arm/starter_fs.py \
--cpu=03 \
--num-cores=3 \
--kernel=./system/arm/binaries/vmlinux.arm64 \
--disk-image=./system/arm/linaro-minimal ~aarch64.img \
--debug-file=pipeview.txt \
--debug-start=13062347000

This setup created a thorough simulation environment, allowing for detailed
observation and analysis of all critical aspects of the system’s speculative execution
behavior.

44

Chapter 3

Spectre Simulation

3.1 Introduction to spectre

In today’s world, we rely heavily on a wide range of interconnected technological
systems, making it crucial to ensure they run efficiently and securely. As these
systems handle more and more sensitive data, protecting them from potential threats
has become incredibly important. Computer security is a constant battle to prevent
malicious actors from exploiting weaknesses in system design. Among the many
threats to modern computing, Spectre attacks are particularly dangerous. Over the
years, efforts to boost hardware performance have sometimes created unintended
vulnerabilities. One such vulnerability is in the hardware architecture itself, which
can be exploited to leak sensitive information through hidden side-channels. Side-
channel attacks take advantage of subtle, unintended behaviours in hardware to
extract data without the knowledge of running programs or operating systems. By
observing things like cache behaviour, timing differences, or power consumption
variations, attackers can gather valuable information from small, repeatable changes
in system performance. The Spectre vulnerability is a prime example of this, using
fundamental hardware optimizations like speculative execution to access and expose
data in unexpected ways. Understanding and defending against Spectre attacks is
not just a challenge for researchers and engineers; it’s essential for protecting the
technological systems that our modern lives depend on. Since the Spectre family of
attacks became widely known in January 2018, there has been a flurry of activity
among researchers, manufacturers, and enthusiasts to develop defenses against
them. However, there has also been significant effort to bypass these defenses and

45

Spectre Simulation

discover new side-channels and methods for executing Spectre-like attacks. This
thesis presents and demonstrates a proof of concept for the well-known Spectre v1
vulnerability through simulation. The work focuses on analyzing and implementing
the attack within two simulation environments: gem5 and QEMU. While prior
work has demonstrated Spectre on gem5 using ARM architecture 'and on x86
architectures 2, this thesis additionally contributes a Spectre simulation on QEMU,
which, to the best of our knowledge, has not been previously demonstrated in this
context.

The thesis first introduces the underlying principles of the Spectre vulnerability,
detailing how speculative execution and cache-based side channels can be exploited
to leak sensitive information. It then elaborates on the implementation and behavior
of the Spectre attack in both gem5 and QEMU, highlighting the key challenges,
differences, and opportunities in using each simulator. The experimental results
demonstrate that Spectre-style information leakage can indeed be observed in
both environments, reinforcing the effectiveness of simulation tools for studying
microarchitectural attacks.

The Spectre vulnerabilities represent a groundbreaking and transformative discovery
in the field of computer security, revealing a class of architectural flaws that stem
from the very optimizations designed to improve processor performance. First
disclosed by Google Project Zero alongside Meltdown, Spectre significantly shifted
the industry’s perspective on speculative execution and trust boundaries within
modern CPUs.

While Meltdown primarily affects Intel processors, Spectre has a much broader
reach, impacting CPUs from multiple vendors including Intel, AMD, and ARM.
At its core, Spectre exploits speculative execution, where processors predict and
execute instructions ahead of time to maintain high performance. Spectre cleverly
manipulates this behavior to transiently execute unauthorized instructions and
extract data via side-channel observations, such as cache timing differences.

The broader implications of Spectre go beyond its technical mechanisms, as it
compels the computing industry to re-examine decades of performance-driven
architectural decisions. Spectre reveals the tension between speed and security, and
raises important questions about how future processors should balance efficiency
with robust isolation guarantees

'Reproducing Spectre Attack with gem5, How To Do It Right?
2Spectre Attacks: Exploiting Speculative Execution

46

Spectre Simulation

3.1.1 Owur Technique

In this chapter, we show a new class of attacks which we call spectre attacks. In
a Spectre attack, the goal is to bypass the usual protections that keep different
processes from accessing each other’s memory. This is done by taking advantage of
how modern CPUs perform speculative execution, which is when the CPU guesses
what instructions to execute next to improve performance. At its core, a Spectre
attack breaches memory isolation by combining speculative execution with data
exfiltration using microarchitectural covert channels. The process begins with the
attacker identifying a specific sequence of instructions within the target process’s
address space. When executed, this sequence serves as a covert channel transmitter,
enabling the leakage of sensitive information such as the victim’s memory or
register contents. The attacker then manipulates the CPU into speculatively and
incorrectly executing this sequence. Even though the processor later detects the
error and reverts the speculative execution®, changes to certain microarchitectural
components, like cache states, remain intact. These lingering effects allow the
attacker to extract the leaked information by analysing the covert channel, effectively
bypassing the safeguards meant to enforce memory isolation. The covert channel
used in this implementation employs a Flush+Reload cache-based method, as
described by Yarom and Falkner [Yarom2014]. This technique relies on observing
cache state changes induced by speculative execution to infer secret data. Exploiting
Conditional Branches involves manipulating the branch predictor to mis-predict
the branch’s direction?. Optimizing the transient execution window, as suggested
by Ayoub and Maurice, improves reproducibility by increasing the duration of
speculative execution through slow operations like division °. let’s Consider the
following exploitable code snippet

if (x < arrayl_size)
y = array2[arrayl[x] * 256];

Here, the variable x is under the attacker’s control. The ‘if* statement leads to a
branch instruction, verifying that x’s value falls within the legal bounds, ensuring
the validity of the arrayl access.

3Yarom, Y., Falkner, K. (2014). Flush+Reload: A High Resolution, Low Noise, L3 Cache
Side-Channel Attack.

4P. Kocher et al. «Spectre Attacks: Exploiting Speculative Execution». In: Communications
of the ACM 62.7 (2019), pp. 93-101 (cit. on pp. 3, 31, 32, 36, 37).

SPier Ayoub and Clémentine Maurice. «Reproducing Spectre Attack with gem5: How To Do
It Right? » In: 14th European Workshop on Systems Security (EuroSec’21). 2021, pp. 1-16. doi:
10.1145/3447852.3458715. url: (cit. on pp. 31, 37, 38, 41)

47

https://inria.hal.science/hal-03215326

Spectre Simulation

A key component of this attack lies in exploiting the behavior of conditional
branches to induce branch misprediction. By manipulating the branch predictor,
an attacker can deceive the processor into executing instructions outside the
intended operational bounds.

In the described example, the attacker initially executes the relevant code using valid
inputs to train the branch predictor to consistently anticipate a specific condition,
such as x < arrayl_size. Subsequently, the attacker provides an out-of-bounds
value for x and ensures that the arrayl_size variable remains un-cached.

As aresult, the processor CPU speculatively executes the instruction array2[array1[x] * 256]
with the malicious x, leading to unintended memory access.

Although the speculative execution is eventually invalidated when the branch
condition is re-evaluated, the alterations to the processor’s cache state caused by
this speculative execution persist. By systematically varying the values of x and
monitoring the resulting cache behaviour through techniques like timing analysis,
the attacker can infer and reconstruct sensitive data from the victim’s memory.
This approach highlights the vulnerability of speculative execution mechanisms in
modern processors to subtle yet highly effective forms of attack. In addition to
conditional branches, Spectre attacks can target indirect branch instructions by
leveraging the Branch Target Buffer (BTB) ©. This component of the processor
predicts the target of indirect branches based on historical execution patterns.
An attacker selects a "gadget," a sequence of instructions within the victim’s
address space that can be executed speculatively to leak sensitive information.
The BTB is then mis-trained by the attacker through repeated indirect branches
from their own address space to the address of the gadget. While the content at
this address in the attacker’s space is inconsequential, the mis-training causes the
victim’s branch predictor to misdirect speculative execution to the attacker-chosen
gadget. Although the speculatively executed instructions are eventually discarded,
their impact on the cache remains, enabling data leakage through timing analysis.
Exploiting indirect branches, inspired by return-oriented programming (ROP),
involves using a victim’s address space to speculatively execute a gadget. Unlike
traditional ROP, which needs a vulnerability in the victim’s code, this method
bypasses such dependencies by manipulating the BTB. The attacker does this
by training the BTB to mispredict an indirect branch instruction, redirecting its
execution to the gadget’s address. Although the instructions executed during
this speculative phase are eventually discarded, their residual effects on the cache
remain. These residual cache effects act as a side channel, allowing the gadget to leak
sensitive information. By carefully choosing a suitable gadget, this approach can

SKocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Yarom, Y. (2018). Spectre
attacks: Exploiting speculative execution. Defiant. Retrieved from

48

https://www.defiant.com/wp-content/uploads/2018/01/spectre.pdf

Spectre Simulation

access arbitrary memory regions within the victim’s address space. To effectively
mistrain the BTB, the attacker identifies the virtual address of the target gadget
within the victim’s address space and initiates indirect branches to this address 7.
This training process is done entirely from the attacker’s address space and does
not require executable code at the corresponding gadget address in the attacker’s
own space. Crucially, only the destination virtual address of the branch matters,
regardless of whether actual code exists there. This means the attack can still
work even if no code is mapped at the specified virtual address, as long as the
attacker can manage exceptions effectively. Additionally, a precise match between
the source address of the attacker’s training branch and the address of the victim’s
targeted branch is not necessary. This flexibility gives attackers significant freedom
in crafting their training mechanism, enhancing the feasibility and stealth of the
method. To improve the efficiency and reliability of these attacks, the transient
execution window the duration in which speculative execution occurs can be
extended. Techniques such as introducing deliberately slow operations, such as
division, into the speculative execution path have been shown to enhance the ability
to observe and manipulate cache state changes. These methods amplify the success
of attacks by providing a longer time frame for speculative effects to take place
and persist. The described techniques underscore the inherent vulnerabilities in
speculative execution and branch prediction mechanisms. By exploiting covert
channels like cache timing and leveraging both conditional and indirect branches,
Spectre attacks represent a sophisticated method of breaching memory isolation
and accessing sensitive information, exposing the critical need for architectural and
software-based defenses in modern processors. It’s necessary to understand here that
Spectre attacks rely on exploiting the speculative execution capabilities of modern
CPUs to bypass memory isolation and gain access to sensitive information. The
attacker begins by locating specific instruction sequences within the victim’s process
that can serve as covert channels for leaking confidential data. By manipulating the
CPU into speculatively executing these instructions, the attacker gains temporary
access to data that would otherwise remain securely protected. Although the CPU
is designed to roll back incorrect speculative execution to preserve its normal state,
changes to underlying microarchitectural components, such as cache contents, often
persist. These residual effects enable the attacker to extract the leaked information
by analysing the altered microarchitectural state. This method underscores the
critical vulnerabilities posed by speculative execution and its implications for data
security in modern computing systems.

Ibid
49

Spectre Simulation

3.2 Spectre Exploit

The Spectre exploit reveals a significant vulnerability in modern processors that rely
on speculative execution and branch prediction to enhance performance. Speculative
execution enables CPUs to predict the likely path of future instructions and
execute them pre-emptively, minimizing delays caused by waiting for data retrieval
from memory. While this optimization boosts efficiency, it can be exploited by
attackers to execute instructions that deviate from the intended behaviour of a
program. By inducing the CPU to perform these unintended speculative operations,
attackers can leak sensitive information from other processes’” memory, effectively
compromising the isolation mechanisms designed to protect confidential data. The
initial Spectre exploit code used in this chapter was sourced from ErikAugust’s
GitHub repository ®. However, as the original code was crafted for the x86
architecture, it required significant modifications to adapt it for ARM assembly.
These adaptations included rewriting components such as the spectre.h library
to align with ARM’s architectural specifications. The provided code illustrates a
typical Spectre exploit scenario. In this case, the attacker aims to leak sensitive
information by exploiting the processor’s speculative execution capabilities. The
exploit consists of two main components: the victim code and the analysis code.
The victim code includes a function called victim function, which accesses an array
(arrayl) based on an index provided by the attacker. Due to insufficient validation
of the index, the attacker can exploit this function to access out-of-bounds memory
locations, thereby exposing data that should remain protected. The analysis
code complements the attack by leveraging timing side-channel techniques to
infer the values of memory accessed by the victim function. By measuring the
time, it takes to access different memory locations, the attacker can reduce the
value stored in the victim’s array. This combination of speculative execution
manipulation and timing analysis demonstrates the critical security vulnerabilities
exposed by Spectre attacks and highlights the importance of addressing such
threats to safeguard sensitive information. Thus, the core mechanism of the Spectre
exploit revolves around transient instructions—operations executed speculatively
and subsequently discarded when the CPU identifies a prediction error. Attackers
craft scenarios to trigger branch mispredictions, causing the CPU to execute these
transient instructions. By carefully controlling the input to a victim program,
they manipulate the branch predictor to execute instructions that access sensitive
data within the victim’s memory space. This data is then exfiltrated through
side channels, such as cache timing variations, which reveal the values of leaked
information based on the time taken to access certain memory locations. The

8Erik August. Spectre PoC Exploit Code. (cit. on p. 37).
50

https://github.com/ErikAugust/spectre-exploit. 2018

Spectre Simulation

implications of the Spectre exploit are far-reaching, as it undermines fundamental
security assumptions underlying techniques like sandboxing, process isolation, and
memory safety. The exploit’s cross-platform and cross-architecture applicability
compounds the threat, exposing vulnerabilities in a wide range of systems that
employ speculative execution. Addressing these risks requires a comprehensive
approach, encompassing software updates and architectural changes to prevent
speculative execution from inadvertently leaking sensitive information. The Spectre
exploit underscores a critical tension between performance optimization and security
in modern computing systems. By exploiting the complexities of speculative
execution, attackers can bypass traditional security defenses, potentially leading to
severe data breaches. As cybersecurity challenges continue to evolve, effectively
mitigating such vulnerabilities will be paramount to ensuring the protection of
sensitive information in an increasingly interconnected digital landscape.

3.3 Simulating Spectre Attacks with gem5

In the simulation of Spectre attacks, we utilized the gemb simulator, specifically
version 20.0, to conduct a full-system simulation ?. The primary operating system
for this setup was Linaro Minimal Linux, tailored for the AArch64 architecture,
which is compatible with ARM processors. The Linux kernel version employed in
this simulation was vmlinux.arm64, providing a suitable environment for testing
the exploit. To effectively simulate the Spectre attack, we incorporated the source
files named spectre.c and spectre.h 1°, which contain the necessary code to execute
the attack scenarios. This setup allowed us to analyse the behaviour of the Spectre
exploit within a controlled environment, facilitating a deeper understanding of its
mechanics and potential impacts on system security.

3.3.1 Compilation of Spectre Exploit

To compile and run the Spectre exploit within the gemb simulation environment,
we followed the steps outlined by Ayoub. This process ensures is properly adapted
for ARM-based architectures. Compiling the code correctly is a crucial step in
preparing the exploit to function within the simulation framework and ensuring it
behaves as intended during execution.

9Binkert, G. N.and Beckmann B.and Black, Reinhardt, S. K., Saidi, A. A.and Basu, and M.
Shoaib. «The gemb simulator». In: ACM SIGARCH Computer Architecture News 39.2 (2011),
pp. 1-7 (cit. on pp. 29, 35, 38, 47, 56)

10Pjer Ayoub and Clémentine Maurice. «Reproducing Spectre Attack with gem5: How To Do
It Right?» In: 14th European Workshop on Systems Security (EuroSec’21). 2021, pp. 1-16. doi:
10.1145/3447852.3458715. url: (cit. on pp. 31, 37, 38, 41)

51

https://inria.hal.science/hal-03215326

Spectre Simulation

aarch64-linux-gnu-gcc -Wall -g3 -march=armv8-a -static -00 spectre
.C -0 spectre

Here, the aarch64-linux-gnu-gcc compiler is used, which is tailored for generating
binaries for the ARM architecture (AArch64). The -Wall flag enables all common
warnings to assist in debugging and code quality checks, while the -g3 option
includes maximum debugging information in the binary, aiding in the analysis of
the exploit’s behaviour during runtime. The -march=armv8-a parameter specifies
the target architecture as ARMvS8-A, ensuring the generated code is optimized
for this specific processor design. The -static flag produces a static binary, which
embeds all necessary libraries, making it self-contained and simplifying execution
in the gemb5 simulation environment. Lastly, the -O0 optimization level is chosen
to disable compiler optimizations, ensuring the exploit code remains as close to
the original source as possible for predictable and consistent behaviour. The
successful execution of this command generates a static binary named spectre,
which is specifically compiled for the ARM architecture. This binary serves as the
executable for simulating the Spectre attack within the gem5 framework. Adhering
to this compilation process is essential to ensure the exploit functions correctly,
providing the necessary foundation for studying its behaviour and implications in
a controlled environment.

3.3.2 Initiating the Simulation

To start the gemb simulation for the Spectre exploit, we used a structured approach
designed to configure the environment accurately and ensure compatibility with
the ARM architecture. The process involves navigating to the appropriate gemb
directory and executing a command to launch the simulation. This command spec-
ifies various parameters that enable the simulation of a system capable of exposing
the vulnerabilities exploited by Spectre. The steps to initiate the simulation are as
follows:

cd Gemb_directory

./build/ARM/gemb5.opt ./configs/example/arm/starter_fs.py --cpu=o03
--num-cores=3 --kernel=./system/arm/binaries/vmlinux.arm64 --
disk-image=./system/arm/linaro-minimal ~aarch64.img

This command sets up and runs the gem5 simulation with specific parameters
tailored to the ARM architecture. Below is a detailed breakdown of the command
and its components

52

Spectre Simulation

Breakdown of the Command

e ./build/ARM/gem5.opt: This specifies the optimized gem5 binary built for
the ARM architecture. The optimized build is essential for running simulations
efficiently and accurately

o ./configs/example/arm/starter_fs.py: This script initializes the full-
system simulation for ARM-based systems, providing a foundational setup for
running the Spectre exploit.

o —cpu=03: This flag selects the Out-of-Order (O3) CPU model, which is
critical for simulating speculative execution. Since Spectre exploits speculative
execution behaviour, using the O3 model ensures that the simulation accurately
represents the processor’s vulnerabilities.

e -num-cores=3: This parameter configures the simulation to use three CPU
cores, offering a multi-core environment that aligns with modern processor
designs.

o -kernel=./system/arm/binaries/vmlinux.arm64: This flag specifies the
Linux kernel binary for the simulation. The vmlinux.arm64 kernel is prebuilt
for the ARM architecture and provides the necessary operating system support
for the simulation.

o -disk-image=./system/arm/linaro-minimal-aarch64.img: This option
points to the disk image used in the simulation. The Linaro Minimal A Arch64
image provides a lightweight operating system environment suitable for testing
and analysing the Spectre exploit.

The default values in the command are enough to run the simulation effectively.
However, you can adjust additional parameters to change the simulation envi-
ronment, such as modifying memory configurations or system topology. These
adjustments provide more flexibility to study different aspects of the exploit or meet
specific research needs. By following these steps, you can successfully initiate the
gem) simulation environment. This setup creates a controlled setting to analyse the
Spectre exploit, which is crucial for observing how speculative execution behaves
in a simulated ARM system. It helps in gaining a deeper understanding of the
exploit’s mechanisms and its potential impact on processor security.

3.3.3 Booting the System and Running the Attack

Before running the Spectre attack in the simulated environment, you need to boot
the system within gemb5. This booting process can take a significant amount of
time, usually up to one hour. Once the system is fully booted, it will be ready to
execute the Spectre exploit.

53

Spectre Simulation

Mounting the Disk Image

The first step in preparing for the attack involves mounting the disk image to
transfer the compiled Spectre binary. This is accomplished using the gembimg
utility:

python3 gembimg.py mount ../system/arm/linaro-minimal-aarch64.img
/mnt/

After mounting the image, copy the compiled Spectre binary into the mounted
directory. This step ensures that the exploit is available to the simulated system
when it boots. Once the binary is successfully copied, unmount the disk image to
save the changes:

||python3 gembimg.py umount /mnt/

Compiling the Spectre Exploit

To ensure compatibility with the simulated ARM architecture, the Spectre exploit
must be compiled using the ARM-specific compiler:the Spectre exploit using the
following command:

i|laarch64-linux-gnu-gcc spectre.c spectre.h -o spectre_me

After compilation, the binary must be made executable to allow its execution
within the simulation:

1| sudo chmod +x spectre_me

This process creates an executable binary named spectre_me, which is transferred
to the simulated system during the disk mounting phase.

3.3.4 Running the Simulation

Once the disk image is prepared and the system is booted up, the next thing to do
is connect to the simulated environment and run the exploit. To do this, you’ll use
mbterm, a handy terminal tool for interacting with gem5 simulations. Open a new
terminal window, start mbterm, and set it to listen on port 3456:

o4

Spectre Simulation

./util/term/m5term 3456

As the system boots up, you’ll see initialization messages in the terminal. Once
the boot sequence is complete, the system will be fully operational and ready to
run the Spectre attack. At this point, you can execute the prepared spectre_me
binary to exploit the vulnerabilities simulated in the gem5 environment. These
steps ensure that the simulated system is set up correctly and can demonstrate the
Spectre attack’s behaviour in a controlled setting. This comprehensive setup allows
for an in-depth analysis of the exploit and its implications for processor security.

3.3.5 Creating and Restoring Snapshots

To make the simulation process smoother and skip the lengthy boot sequence for
future runs, it’s a good idea to create a snapshot of the system once it’s fully
booted. This snapshot captures the system’s current state, so you can restore it
later without going through the entire initialization again. The snapshot is saved
in the m5out/cpt.ticknumber directory, where ticknumber is the simulation tick
count at the time the snapshot was taken. After the system has booted and is
ready, you can terminate the simulation by pressing Ctrl+C. This will save the
current system state into the snapshot directory. The snapshot contains all the
necessary data to resume the simulation exactly where it left off. To restore the
system from the saved snapshot, use the following command:

./build/ARM/gemb5.opt ./configs/example/arm/starter_fs.py --cpu=o03
--num-cores=3 --kernel=./system/arm/binaries/vmlinux.arm64 --
disk-image=./system/arm/linaro-minimal -~aarch64.img --debug-file
=pipeview.txt --debug-start=13062347000 --restore=./mbout/cpt
.1958869111750/

Here, the command is similar to the one used for initializing the simulation, with
additional parameters is included to restore the snapshot Here, the command is
similar to the one used for initializing the simulation, with additional parameters
is included to restore the snapshot.

o -debug-file=pipeview.txt: This parameter specifies the file to store debug-
ging information, which can be useful for analysing system behaviour during
restoration.

o —debug-start=13062347000: This parameter indicates the simulation tick
count at which debugging begins, enabling targeted analysis from the moment
the snapshot is restored.

59

Spectre Simulation

e -restore=./mbout/cpt.1958869111750/: This parameter contains points
to the directory for the snapshot to be restored. The tick number in the folder
name must correspond to the tick count of the saved snapshot.

Thus, can be understood that you can only restore a snapshot if the system
configuration is the same as when you created it. If you change any critical
components, like the kernel binary, disk image, or CPU model, the snapshot won’t
work. In that case, you’ll need to reboot the system and create a new snapshot
after it finishes booting. Using snapshots makes the simulation process much more
efficient. It cuts down on downtime and allows for quick iterations during testing
and analysis. This is especially useful for long simulations, as it saves a lot of time
while keeping the system state consistent.

3.3.6 Executing the Spectre Exploit

Once the operating system within the simulated environment has successfully
booted and the prepared Spectre binary has been transferred to the system, the
exploit can be executed. This step demonstrates the core functionality of the
Spectre attack within the simulation. To initiate the exploit, run the compiled
binary using the following command within the simulated environment:

./spectre_me

This command launches the Spectre attack, leveraging the simulated CPU’s specula-
tive execution capabilities to breach memory isolation boundaries and demonstrate
the hack. The binary spectre_me is a program that contains the code necessary to
manipulate the processor’s speculative execution behaviour and eliminate sensitive
data using side-channel techniques.

3.3.7 Limitations of SE Mode for Spectre Attacks

In gem5’s system-emulation (SE) mode only user-level code is executed and system
calls are emulated by the simulator rather than handled by a real kernel, so there
is no true OS context or scheduling. Consequently, many OS-driven features are
highly simplified: for example, in SE mode page tables are kept in internal data
structures and “there is no such thing as a pagewalk” on a TLB miss diva-portal.org
. Gemb5’s own documentation explicitly notes that SE mode “ignores the timing of
many system-level effects including system calls, TLB misses, and device accesses”.!

Spectre attacks rely on precise speculative-execution and cache-timing interactions

"The gem5 Simulator

56

https://inria.hal.science/hal-03100818/file/main.pdf

Spectre Simulation

within a full OS-managed environment (including real page walks, context switches,
interrupt handling, etc.), so the stripped-down SE environment (incomplete page-
table/TLB modeling, simplified syscalls, no real kernel) can prevent the attack
from functioning. In contrast, the full system (FS) mode boots an actual OS kernel
and fully models address translation and interrupt behavior, providing the realistic
microarchitectural context that Specter exploits require.

3.4 Optimizing Simulation Time and Visualizing
Pipeline Behavior

In the exploration of Spectre attacks, understanding the intricate behaviours of
CPU pipelines during speculative execution is crucial. This section focuses on
optimizing simulation time and visualizing pipeline behaviour while using the
gemb simulator to analyse the Spectre exploit. Given the complexity of modern
processors, it is essential to efficiently manage system resources to ensure that
simulations yield meaningful insights without overwhelming the system. To achieve
this, we recommend running the Spectre binary for only a brief period. Extended
execution can lead to the generation of excessively large debug files, which can
hinder analysis and consume significant computational resources. After successfully
booting the operating system and executing the Spectre binary, observing the
attack’s output and pipeline behaviour becomes the next critical step. However,
optimizing the simulation time is essential to avoid excessive resource consumption
while capturing the necessary data for analysis. Executing the Spectre attack for
an extended period can produce an overwhelming amount of debug information,
potentially generating files as large as 5 GB within a few seconds. Such large files
can be challenging to process and analyse. Therefore, a more efficient approach is
to run the attack briefly, long enough to capture the desired pipeline activity, and
then terminate the simulation.

Steps to Optimize Simulation Time

o Execute the Spectre Binary Briefly: Run the binary spectre_me binary
within the simulated environment, allowing the attack to proceed for only a
few seconds.

o Terminate the Process: After observing sufficient activity, stop the execution
by pressing Ctr1l+C. This action halts the simulation and ensures the debug
file remains at a manageable size.

By limiting the execution time, you can capture essential information about the
attack’s impact on the processor pipeline without overwhelming system resources
or generating excessively large debug files. Benefits of this Approach

57

Spectre Simulation

» Efficient Data Management: Restricting the simulation time helps maintain
debug file sizes that are easier to analyse and process.

o Focused Insights: The shortened runtime ensures that only the most relevant
pipeline activities are recorded, facilitating targeted examination of speculative
execution and cache behaviour.

e Resource Optimization: Minimizing the simulation duration conserves com-
putational resources, allowing for faster iteration and analysis. This method
allows researchers to quickly identify and visualize key aspects of the Spectre
attack, such as speculative execution patterns and side-channel activities. By
efficiently capturing debug data, this approach enhances understanding of the
attack dynamics while preserving system usability.

In summary, by optimizing simulation time and focusing on pipeline visualization,
we can enhance our understanding of how Spectre attacks operate, ultimately
contributing to the development of more robust security measures against such
vulnerabilitie

3.5 Visualizing Spectre with gemb

To visualize the Spectre attack within the gemb simulation environment, a system-
atic approach involving trace generation, pipeline visualization, and code analysis
was employed. The process began with executing the following command to initiate
a trace of the simulation:

./build/ARM/gemb5.opt --debug-file=pipeview.txt -debug-start
=13062347000
./configs/example/arm/starter_fs.py --cpu=03 --num-cores=3

3| ——kernel=./system/arm/binaries/vmlinux.arm64

--disk-image=./system/arm/linaro-minimal -aarch64. img

To ensure a clear and precise trace, the —debug-file and —debug-start flags were
included. These parameters excluded unnecessary boot initialization steps, focusing
the trace on the Spectre attack execution. The specific value for the —debug-start
parameter was determined by terminating the gem5 simulation using Ctrl+C after
booting, which displayed the relevant tick number in the terminal. This tick value
was then used as the starting point for debugging. Allowing the simulation to
run for approximately one minute produced a trace file of about 3.1 GB. Despite
its size, this file provided critical insights into the pipeline’s behaviour during the
Spectre attack, enabling detailed examination of speculative execution patterns
and side-channel vulnerabilities. The resulting trace was visualized using Kotana,

58

Spectre Simulation

which offered a detailed view of the pipeline’s behaviour during the Spectre attack.
This visualization allowed for a meticulous examination of the attack patterns
and their impact on the processor’s microarchitecture. Subsequently, I conducted
an object dump of the Spectre binary to gain insight into the disassembled code.
This step was essential in verifying that the pipeline executed as expected. To
accomplish this, I executed the following command:

sudo aarch64-linux-gnu-objdump -d spectre > objectdump-spectre.txt

The command I executed, which generated the file objectdump-spectre.txt, was
instrumental in our analysis of the Spectre attack. The resulting objectdump-
spectre.txt file provided a human-readable representation of the binary’s assembly
instructions. This step was critical for verifying the sequence of executed instructions
and for identifying the interaction between the attack code and the speculative
execution mechanisms of the processor. By parsing through this file, I gained
valuable insights into the sequence of instructions executed by our gem5 machine
during the simulation of the Spectre attack. Analysing the disassembled code
allowed me to trace the precise path of execution within the Spectre binary. Each
assembly instruction provided a glimpse into how the attack was orchestrated
at the machine code level. By following the flow of instructions, I could discern
the specific operations performed by the attack code, including memory accesses,
branch predictions, and speculative execution paths.

tim_function+ex10>
c, x0
#0x8

c. x8
ushed at this point. */

adrp
o add

Figure 3.1: figure of my disassembled Spectre code

59

Spectre Simulation

To conduct a comprehensive analysis of the Spectre attack, the investigation fo-
cused on the main loop, which serves as the central component of the exploit. This
deliberate emphasis enabled an in-depth examination of the attack’s operational
mechanisms and its interaction with the underlying system architecture. By concen-
trating on this critical segment of the code, valuable insights were obtained into the
intricate execution patterns of the attack. The conditional branches within the main
loop emerged as particularly significant points of interest. These branches dictated
the flow of execution and offered vital information about the attack’s behavior. A
detailed examination of these branches revealed the nuanced conditions that trigger
speculative execution and the speculative paths that the processor follows during
this phase. Further analysis involved a deeper exploration of the disassembled
code to identify and evaluate specific attack patterns. This detailed investigation
illuminated the technical intricacies of Spectre’s operations, demonstrating how
the attack exploits speculative execution to breach memory isolation and access
privileged information. By analysing these patterns, a nuanced understanding
of the attack’s methodology was developed, particularly its reliance on branch
prediction and cache timing side-channel vulnerabilities. Through meticulous
scrutiny of the main loop and a granular dissection of specific attack patterns in the
disassembled code, the core mechanics of the Spectre attack were elucidated. This
thorough analysis not only enhanced understanding of the attack’s behaviour but
also highlighted the broader implications of speculative execution vulnerabilities
in modern processor architectures. The findings underscore the critical need to
address these vulnerabilities to ensure robust security in contemporary computing
environments.

[3482188, 192512]

Figure 3.2: Visualization of the main loop of the Spectre attack.

Additionally, the analysis extended to examining specific attack patterns within
the disassembled code, offering a more detailed understanding of the underlying
mechanics of the Spectre attack. This process involved a methodical review of

60

Spectre Simulation

the disassembled binary to identify key operational sequences and their roles in
facilitating the attack. By focusing on these patterns, the nuanced interplay
between speculative execution and microarchitectural vulnerabilities was further
clarified. For example, the disassembly revealed the function of the time stamp
counter (mr cntvet-el0), a critical component that provides fine-grained timing
information. The observation and analysis of this function within the context
of the disassembled code were pivotal in validating the execution of the attack
code within the gem5 simulation environment. By correlating the behaviour of
the time stamp counter with other attack elements, the analysis confirmed that
the simulation faithfully replicated the intended operations of the Spectre exploit,
ensuring that the results were both accurate and representative of real-world
scenarios. Moreover, the output generated from the binary Spectre execution
underwent a detailed examination. This output not only confirmed the successful
execution of the attack but also provided quantitative insights into its effectiveness.
The scoring of the attack, derived from its ability to retrieve sensitive information,
was carefully analysed to evaluate the precision and reliability of the exploit. Each
data point in the output offered a clearer picture of how the attack leveraged
speculative execution to bypass memory isolation and extract privileged data. By
integrating the insights gained from scrutinizing the disassembled code, observing
the time stamp counter’s function, and analysing the execution output, a holistic
understanding of the Spectre attack’s functionality was achieved. This extended
analysis highlighted the interplay of timing, speculative execution paths, and
microarchitectural vulnerabilities, offering a detailed perspective on the attack’s
technical foundation. These findings underscore the necessity of addressing such
vulnerabilities to safeguard the integrity and confidentiality of data in modern
computational environments.

For instance, by scrutinizing the disassembly, I could observe the function of the
time stamp counter (mr cntvct-el0). This examination allowed me to corroborate
the execution of our code within the gemb simulation environment.

Looking at the results from running the Spectre binary, this gave us important
information about how well the attack worked. The following example shows that
we successfully retrieved sensitive information:

Reading 40 bytes:

Reading at malicious_x = Oxfffffffffffffeb6... 999 999
Reading at malicious_x = Oxfffffffffffffeb7... 999 999
Reading at malicious_x = Oxfffffffffffffeb8... 999 999
Reading at malicious_x = Oxfffffffffffffeb9... 999 999
Reading at malicious_x = Oxfffffffffffffeba... 999 999
Reading at malicious_x = Oxfffffffffffffebb... 999 999

61

Spectre Simulation

[3268756, 138136]

Figure 3.3: Identification of attack patterns within the disassembled code.

16 11 12 13 14 15 16 17 18 19 20 21 2

Figure 3.4: Verification of code execution within the gem5 simulation environment.

This detailed analysis provided valuable information on the execution and success
of the Specter attack within the gem5 simulation environment. By analyzing
traces, visualizing the pipeline, and disassembling the binary, we gained a com-
plete understanding of the Specter attack. These insights revealed the details of
speculative execution vulnerabilities and highlighted the bigger security issues in
modern processors. This careful study of the Spectre attack shows how important
it is to fix these vulnerabilities to protect data confidentiality in today’s computing
environments.

62

Spectre Simulation

3.6 Simulating Spectre Attacks with QEMU User-
Mode

We adapted the original Spectre V1 proof-of-concept to run on AArch64 and
executed it under QEMU’s user-mode emulation. In user-mode, QEMU launches
a Linux process for one architecture on another via dynamic binary translation
gemu. We cross-compiled the C exploit for ARM, producing a statically linked
ARM executable. This ARM binary relies only on standard syscalls and cache-flush
instructions, which the QEMU user mode can translate and execute on the host

CPU.

In our setup, running:

gemu-aarch64 ./spectre

launches the exploit in QEMU without a full guest OS, relying on the real processor’s
pipeline to perform speculative execution.

Execution in QEMU. Under QEMU user-mode, the exploit consistently re-
covers the address of the targeted memory with the score based on timing attack.
Figure shows sample output: the program prints repeated lines such as

Reading at malicious_x = Oxffffffffffff4f64... 999 999

The score “999” indicates that the predicted byte matches the secret and receives
the maximum score (999 out of 999). In the PoC, a high score denotes a successful
cache hit on the secret value (following the Flush+Reload side channel) These
results confirm that the Spectre gadget executed as intended: after training the
branch predictor, the malicious out-of-bounds access speculatively loads the secret
into cache, and the subsequent timing measurements yield the highest score on the
secret index.

Comparison with gem5 SE Mode. By contrast, running the same ARM
binary in gemb’s syscall-emulation (SE) mode did not complete successfully. In our
gemb experiment, the simulation aborted with a segmentation fault, The backtrace
reveals a GDBSignal::SEGV libc abort indicating that gem5 terminated when
the exploit code attempted the speculative access or cache flush. This suggests
that under gem5 SE, the speculative load either did not occur or was not reflected
in architectural state.

63

Spectre Simulation

In practice, gemb can achieve cycle-accurate microarchitecture simulation (with
branch predictors and caches), but in its default SE setup our Spectre exploit
crashed before revealing any data.

Simulation Fidelity Discussion. These results highlight the trade-off between
simulator speed and accuracy. QEMU user-mode is extremely fast (it simply runs
the translated code on the host CPU), but it does not guarantee cycle-accurate
timing or model internal CPU state. It succeeded here only because it leveraged
the real processor’s speculative execution.

Gemb, conversely, is a cycle-accurate ARM simulator (with out-of-order cores,
branch predictors, and caches) and is often used for security research. In principle,
gemb can reproduce Spectre. Our gemb SE run (with a DerivO3CPU) failed, likely
due to unmodeled hazards or lack of forwarded cache state.

src/sim/simulate.cc:194: info: Entering event queue @ @. Starting simulation...
src/sim/syscall_emul.cc warn: ignoring syscall set_robust_list(...)
src/sim/syscall_emul.cc:85: warn: ignoring syscall rseq(...)
(further warnings will be suppressed)
src/sim/mem_state.cc:443: info: Increasing stack size by one page.
src/arch/arm/insts/pseudo.cc:172: warn: instruction 'bti' unimplemented
src/sim/syscall_emul.cc:74: warn: ignoring syscall mprotect(...)
src/sim/faults.cc:102: panic: panic condition !handled && !tc->getSystemPtr()->trapToGdb(GDBSignal::SECV, tc->contextId(]
Memory Usage: 668764 KBytes
Program aborted at tick 295186000
- BEGIN LIBC BACKTRACE ---
«./../gem5/build/ARM/gem5.0opt(+0x15a8d50)[@x5balcOcced50]
«./../gem5/build/ARM/gem5.opt(+0x15cd5ac)[@x5balcOcf35ac]
/1ib/x86_64-1inux-gnu/libc.s0.6(+0x42520)[0x7b2791c42520]
i gnu/libc.so.6(pthread_kill+8x12c)[0x7b2791c969fc]
gnu/libc.so.6(raise+0x16)[0x7b2791c42476]
_64-1inux-gnu/libc.so.6(abort+0xd3)[0x7b2791c287f3]
. ./gem5/build/ARM/gem5.0pt(+0x804085)[@x5balbff2ae85]
./../gem5/build/ARM/gem5.opt(+0x1635465) [0x5balced5b4a65]
./../gem5/build/ARM/gem5.opt(+0xce1d02)[0x5balc0407d02]
./../gem5/build/ARM/gem5.opt(+0xce2b98) [0x5balc0408b98]
. ./gem5/build/ARM/gem5.opt(+0xce42e0)[0x5balcO40azed]
. fgem5/build/ARM/gem5.opt(+0xce502f)[0x5balce40bo2f]
m5/build/ARM/gem5.opt(+0xcefd7a)[0x5balce41507a]
./../gem5/build/ARM/gem5.opt(+0x15bd5b2)[@x5balcece35b2]
. ./gem5/build/ARM/gem5.opt(+0x15e68d8)[0x5balcodac8ds]
/gem5/build/ARM/gem5.opt(+0x15e6ecb)[0x5balcodacech]
.opt(+0x1532270)[@x5balc@c58270]
.opt(+0x7c9264)[0x5balbfeef264]
x-gnu/libpython3.10.s0.1.0(+06x128023)[0x7b2792b28023]
x-gnu/libpython3.10.s0.1.08(_PyObject_call+@x5c)[@x7b2792aelfec]
x-gnu/libpython3.10.s0.1.08(_PyEval_EvalFrameDefault+0x4b16)[0x7b2792a76776]
x-gnu/libpython3.10.s0.
x-gnu/libpython3.10.s0.
x-gnu/libpython3.10.s0.
x-gnu/libpython3.10.s0.
x-gnu/libpython3.10.s0.
gnu/libpython3.10.s0.
-gnu/libpython3.10.s0.
x-gnu/libpython3.10.s0.
x-gnu/libpython3.10.s0.
x-gnu/libpython3.10.s0.
oo D

.0(+0x1c23af)[0x7b2792bc23af]
.0(_PyEval_EvalFrameDefault+8x9d68)[@x7b2792a7b9c8]
.0(+0x1c23af)[0x7b2792bc23af]
0(_PyEval_EvalFrameDefault+0x69de)[0x7b2792a7863e]

.0(+0x1c23af)[0x7b2792bc23af]
.0(_PyEval_EvalFrameDefault+8x9d68)[@x7b2792a7b9c8]
.0(+0x1c23af)[0x7b2792bc23af]
.0(PyEval_EvalCode+8xbe)[0x7b2792bbd3de]
.0(+06x1bd96d) [0x7b2792bbd96d]

i
i
i
i
i
1
i
i
i
i
1
1.0(+06x1287b3)[6x7b2792b287b3]

A - = ABENeER ~59de

Figure 3.5: Gem) SE-mode execution of the Spectre PoC on ARM, aborting
with a segmentation fault. The libc backtrace shows a GDBSignal: :SEGV trap at
an invalid address, indicating that the exploit did not complete under gem5’s SE
mode.

Compilation. We compiled the Spectre C code for ARM using a cross-compiler
aarch64-linux-gnu-gcc with appropriate flags. A command such as:

64

Spectre Simulation

S gemu-aarch64 ./spectre

bytes:

malicious_x Oxfffffffffffcafes... 999 999
malicious_> axfrfffffffffc4fes... 999 999
malicious xfffffffffffc4fea... 999 999
malicious xFFfffffffffcd4feb... 999 999
malicious_x xfffffffffffc4fec... 999 999
malicious_x xFFfffffffffcdfe o Rkl eki]
malicious, xfffffffffffcafe . 999 999
malicious xfFfffffffffc4fef... 999 999
malicious, oxfrfffffffffcaffo... 999 999
malicious OxfEfffffffffcaffi... 999 999
malicious xFFFfFffffffcd4ff2... 999 999
malicious xfFFfFffffffc4ff3... 999 999
malicious_x xFFfffffffffcaffd4... 999 999
malicious, xfEfffffffffcaffs... 999 999
malicious xfFfffffffffc4ffe... 999 999
malicious, xFEFfFffffffcaff7... 999 999
malicious OxfEfffffffffcaffe... 999 999
malicious OxfFFfffffffffcd4ffo... 999 999
malicious xfffffffffffc4ffa... 999 999
malicious xFFfffffffffcd4ffb... 999 999
malicious, xFEfffffffffcaffc... 999 999
malicious xfFfffffffffc4affd... 999 999
malicious, axfrfffffffffcaffe... 999 999
malicious OxfFEfffffffffcafff... 999 999
malicious, xfffffffffffcseen... 999 999
malicious_x xfffffffffffcseel...

malicic > > 00

Figure 3.6: Output of the Spectre PoC under QEMU user-mode (AArch64). Each
line shows the guessed byte and its score; the repeated “999 999” indicates that
the secret byte was correctly identified with maximum confidence in each trial
(demonstrating successful Flush-+Reload timing attacks).

aarch64-linux-gnu-gcc -02 -static spectre.c -o spectre

produces an AArch64 ELF binary. The code uses standard Linux syscalls and
ARM equivalents of mfence/dsb plus cache flush (dc civac) instructions, so it
runs unmodified on a Linux/AArch64 process under QEMU.

Execution. We launched the compiled binary directly via QEMU:

gemu-aarch64 ./spectre

The program outputs the number of bytes to read, then performs the Spectre
attack loop. In each iteration it flushes array2[] from cache, trains the branch
predictor, and invokes the victim access. It then probes all indices to find which
cached line has low access time. The result line reports the index with the highest
score. As shown in Figure 3.6, the guessed index matches the secret (printed after

65

Spectre Simulation

malicious_x) with a score of 999 each time, confirming the secret was leaked. This
matches the Spectre attack pattern: the secret data index repeatedly yields a cache
hit in Flush+Reload.

In summary, QEMU user-mode provided fast, functional execution (revealing the
secret), but it sidesteps microarchitectural fidelity; gem5 provides accuracy (in
principle) but in our simple SE setup it failed to reproduce the attack without
deeper configuration. These findings align with the broader conclusion that fast
functional emulators can execute Spectre code but may not faithfully model the
side-channel dynamics, which require cycle-accurate simulation to analyze fully.

3.6.1 Accuracy of Spectre Attack Simulation in gem5 Com-
pared to Real Hardware

Simulating Spectre attacks in gemb5 provides a valuable research tool for exploring
speculative execution vulnerabilities in modern CPUs. However, assessing the
accuracy of these simulations compared to real hardware is critical to understanding
the reliability and limitations of the results. Several factors influence the accuracy of
Spectre attack simulations, including how well gem5 models speculative execution,
cache behavior, and memory systems in comparison to actual processors.

Speculative Execution and Branch Prediction

Real Hardware: Modern CPUs use complex branch prediction mechanisms that
are essential for speculative execution, which is a key element of Spectre attacks!?.
These predictors adapt based on the history of past branch decisions, allowing
CPUs to speculatively execute instructions before branches are resolved. The
effectiveness of this speculation, however, depends on the processor’s ability to
make accurate predictions, which is not always perfect and can lead to speculative
execution vulnerabilities like Spectre.

Gemb: Gemb models speculative execution using the DerivO3CPU, which supports
out-of-order execution and basic branch prediction mechanisms. However, the
branch prediction model in gem5, typically a Tournament Branch Predictor, is
simpler than the highly sophisticated ones in modern processors!3. As a result,
while gem5 can simulate speculative execution, the attack’s effectiveness may vary
due to these simplified prediction models. This discrepancy can impact the accuracy

12Modern processors from Intel and AMD use dynamic branch prediction systems such as
the Tournament Branch Predictor, which is more advanced than the static approaches found in
simulators.

13Gem5’s simpler branch predictors may not fully replicate the dynamic nature of real hardware’s
prediction systems, leading to inaccuracies in the simulation of Spectre attacks.

66

Spectre Simulation

of Spectre attack simulations, as the success of such attacks depends on the CPU’s
ability to predict and speculatively execute instructions.

Cache Timing and Side-Channel Attacks

Real Hardware: Cache side-channel attacks, such as Flush+Reload and Prime+Probe|
rely on fine-grained differences in the timing of cache accesses to infer sensitive data
during speculative execution!®. Real hardware’s cache hierarchies, which include
L1, L2, and L3 caches, have non-uniform access times that are crucial for the
success of these attacks. In addition, real hardware’s precise timing measurements,
typically on the order of nanoseconds, enable high accuracy in detecting timing
differences that reveal secret data.

Gemb5: Gemb’s ability to model cache behavior is relatively accurate, but the timing
granularity in gemb is limited by the simulator’s clock cycles, which are typically
less precise than the nanosecond-level timing found in real hardware!®. Moreover,
gemb’s cache models are highly configurable, but they may not replicate all the
complexities of real hardware, such as cache bank conflicts or the specific effects
of hardware prefetching. As a result, the accuracy of Spectre attack simulations
that rely on cache timing might be lower in gemb than on real hardware, leading
to potential discrepancies in attack performance.

Microarchitectural State and Memory System Behavior

Real Hardware: Modern CPUs are equipped with sophisticated memory systems,
including multi-level caches, DRAM controllers, and prefetchers, all of which
affect how memory is accessed during speculative execution. These interactions
play a crucial role in the timing and success of Spectre attacks'®. Real hardware
optimizations, such as store-to-load forwarding and memory disambiguation, can
influence the timing of speculative execution, making it difficult to simulate all
behaviors with perfect accuracy.

Gemb5: While gemb can model memory systems, its representations are often
simplified compared to real hardware!”. For example, gem5’s memory model might

14Cache timing attacks, particularly in the context of Spectre, exploit the non-uniform access
times of various cache levels in modern CPUs.

5Gemb operates with a configurable clock cycle resolution, but it may not capture the fine-
grained, nanosecond-level precision of real hardware’s timing mechanisms.

6Complex interactions between CPU caches, DRAM, and memory controllers significantly
affect the success and timing of Spectre attacks in real hardware, making simulations more
challenging.

17Gemb provides configurable memory system models, but it may not fully capture low-level

67

Spectre Simulation

not fully replicate the impact of DRAM row buffer conflicts or the exact behavior
of memory controllers, which could affect the results of Spectre attack simulations.
These differences in memory system behavior contribute to the inaccuracies in
simulating Spectre attacks in gemb.

Impact of Simplified Hardware Models on Attack Accuracy

Real Hardware: Real hardware has a wealth of fine-grained optimizations and
system-level interactions that are often proprietary and not easily replicated in
simulation. This makes it difficult for simulators like gem5 to achieve perfect
accuracy in predicting Spectre attack outcomes'®. The real-world performance of
Spectre attacks is influenced by many such details, including hardware-specific
noise and low-level optimizations that may not be captured in gemb5.

Gem5: While gemb is a powerful research tool, its simplified models of CPU
behavior and memory systems do not capture all of the intricate details present in
real hardware. This discrepancy means that Spectre attack simulations in gemb
are not always representative of real-world performance. The lack of real-world
noise, for example, makes Spectre attacks appear more predictable and successful
in gem5 than they would be on actual hardware®.

In conclusion, while gemb5 is an excellent platform for simulating Spectre attacks
and providing valuable insights into the vulnerabilities of modern CPUs, there are
inherent limitations when comparing its results to real hardware. Differences in
branch prediction models, cache timing granularity, and microarchitectural detail
contribute to inaccuracies in Spectre attack simulations. Researchers should take
these limitations into account when interpreting results from gem5 and consider
validating their findings with real hardware experiments whenever possible.

3.7 Future Work

3.7.1 Spectre Vulnerability Research

As hardware security continues to evolve, future research on Spectre and related side
channel attacks must expand to encompass diverse CPU architectures and explore
innovative mitigation strategies. The study of speculative execution vulnerabilities

optimizations like DRAM row buffer management or intricate memory controller behaviors that
are present in real hardware.

18Gemb simulations lack the randomness and real-world interference (e.g., interrupts, multi-
tasking) that are present in real hardware, which can affect the outcome of Spectre attacks.

19Gem5 simulations lack the randomness and real-world interference (e.g., interrupts, multi-
tasking) that are present in real hardware, which can affect the outcome of Spectre attacks.

68

Spectre Simulation

like Spectre has shown major challenges in modern processor security. To move
forward, future research should focus and address the following directions:

» Exploration of Diverse Architectures Investigate Spectre-like vulnerabilities in
a variety of CPU architectures, including custom processors, low-power designs,
and specialized architectures. This will help uncover new vulnerabilities and
understand their impact in different contexts.

« Enhanced Speculative Execution Models Create detailed models of speculative
execution to capture more attack surfaces. These models should include the
complexity of real-world platforms like mobile devices, embedded systems,
and edge computing. This will provide deeper insights into potential security

gaps.

» Adaptive Mitigation Strategies Design hardware-agnostic, dynamic defenses to
make systems more resilient against speculative execution attacks. This could
include runtime adaptation techniques like anomaly detection using machine
learning or improved speculative execution controls in CPU designs.

o Focus on Emerging Architectures Research emerging architectures like RISC-V
to see how they handle Spectre-like attacks compared to traditional platforms.
This will help develop best practices for secure architecture design and identify
areas needing attention in new instruction sets.

3.7.2 Improvements to gem5 for Broader Adaptation

The gemb5 simulation platform has been incredibly useful in hardware security
research, especially for studying Spectre-like attacks. To make the most of its po-
tential and tackle future challenges, we should consider the following improvements:

o Support for Advanced CPU Models Expand gem5 to include more advanced
CPU models, like heterogeneous processors and systems with complex mem-
ory hierarchies. This would allow for more accurate simulations of modern
processors and help study speculative execution vulnerabilities.

o Integration with Standard Boards and SoCs Increase compatibility with popu-
lar boards and system-on-chip (SoC) platforms, such as Raspberry Pi, NVIDIA
Jetson, and IoT-specific hardware. This would broaden gemb’s use in embed-
ded systems and IoT research, enabling a deeper analysis of vulnerabilities in
real-world scenarios.

o System-Level Simulation Components Add advanced system-level components,
like high-fidelity networking models, realistic peripheral devices, and more

69

Spectre Simulation

comprehensive 1/O subsystems. This would extend gem5’s utility in complex
simulation environments, especially for large-scale distributed systems research.

o Compliance with Open Standards Align gem5 with current open standards,
such as the ARM Platform Security Architecture (PSA), Trusted Firmware-A
(TF-A), and emerging standards like RISC-V. This would enhance its relevance
in the evolving hardware security landscape and attract a broader research
community.

o Improved Modularity and Third-Party Integration Focus on making gemb more
modular to allow seamless integration with third-party tools and frameworks.
This flexibility would make gemb a more versatile platform for hardware design,
validation, and verification, fostering interdisciplinary collaboration in system
security research.

These future improvements will help make gemb a more powerful and adaptable
platform, allowing researchers and engineers to simulate a wider range of systems
with greater flexibility. In other words, the proposed advancements in Specter
vulnerability research and gemb simulation capabilities will create a strong founda-
tion to tackle speculative execution vulnerabilities in modern processors. These
improvements will help researchers uncover new vulnerabilities across different
platforms and architectures, develop and test innovative defense mechanisms, and
enhance the accuracy and efficiency of system-level simulations in security studies.
In addition, as speculative execution vulnerabilities remain a significant challenge,
addressing these areas is crucial to improve the security and reliability of current
and future computing systems. The insights gained from this work will not only
deepen our understanding of hardware security but also guide the design of more
resilient processor architectures and secure software solutions.

70

Chapter 4

Return-to-Non-Secure
(ret2ns) Attack

4.1 Introduction to Return2nonsecure Attack

ARM TrustZone technology, available as an optional Security Extension in ARMvS8-
M processors, provides a powerful foundation for improving system security in
a wide range of embedded applications. This extension builds on the TrustZone
technology that has been used in ARM Cortex-A processors for years, adapting its
concepts to better suit the specific needs of smaller, energy-efficient devices. At
its core, TrustZone technology for ARMv8-M works in a way that’s similar to its
Cortex-A counterpart. Both systems divide the processor’s operations into two
states: Secure and Non-secure. Non-secure software is limited to accessing Non-
secure resources, while Secure software can access both Secure and Non-secure areas.
What sets ARMv8-M apart is its optimization for embedded systems. Instead
of relying on a dedicated Secure Monitor handler, as Cortex-A processors do, it
uses a memory map-based approach to manage transitions between Secure and
Non-secure states, with these transitions happening automatically during exception
handling. There are also some key differences in how TrustZone is implemented in
ARMv8-M. For example, it supports multiple Secure entry points, offering more
flexibility in controlling Secure resources. In contrast, Cortex-A processors rely
on a single Secure Monitor handler for all Secure transitions. ARMv8-M also
allows Non-secure interrupts to be handled even while Secure functions are running,
which is particularly valuable for real-time applications that require responsiveness.
Thus, This technology is designed with microcontroller systems in mind, where low
power consumption and quick response times are critical. By allowing interrupts to
be handled efficiently during Secure operations, TrustZone ensures that real-time
tasks aren’t delayed. Shared register banks between Secure and Non-secure states

71

Return-to-Non-Secure (ret2ns) Attack

help reduce power usage, keeping energy efficiency on par with previous ARM
microcontroller architectures. The ability to switch seamlessly between Secure
and Non-secure states with minimal overhead also supports frequent interaction
between these two domains, which is common in embedded applications where
Secure firmware handles tasks like graphics or communication protocols. TrustZone
essentially splits a system into two worlds: Secure and Normal (Non-secure).
Secure software has full access to both worlds, but Non-secure software is restricted
to its own. These Secure and Non-secure states integrate smoothly with the
processor’s existing modes, allowing tasks in both states to operate independently.
By incorporating TrustZone into ARMv8-M processors, developers can create
systems that meet the high demands of modern embedded applications—balancing
performance, power efficiency, and security. For a depth understanding, ARM
Cortex-M microcontrollers, widely deployed in embedded and Internet of Things
(IoT) applications, have become integral to modern computing environments.
These microcontrollers are equipped with ARM TrustZone, a security extension
that partitions system resources into secure and non-secure states as it has been
mentioned bellow. This partitioning allows the execution ! of sensitive operations
within a protected environment, while non-secure tasks are handled separately.
However, despite the security enhancements offered by TrustZone-M, the rapid
state-switching mechanism between these domains introduces vulnerabilities that
adversaries can exploit [ret2ns|. One such vulnerability is the Return-to-Non-Secure
(ret2ns) attack, which takes advantage of the seamless and rapid transitions between
secure and non-secure states. Unlike its counterpart, ARM Cortex-A, which requires
a secure monitor call (SMC) to transition between states, ARM Cortex-M allows
transitions through simple function calls and returns. This simplicity increases the
risk of unauthorized code execution. In a ret2ns attack, an adversary compromises
a secure-state program and redirects execution to non-secure state code, potentially
gaining arbitrary control over the system 2. The ret2ns attack is a notable security
flaw in the ARM Cortex-M architecture, particularly in systems utilizing the
TrustZone extension. This attack exploits the fast state-switch mechanism in
Cortex-M, which permits direct control-flow transfers from secure state programs
to non-secure state userspace programs. By redirecting execution from a secure
context to a potentially malicious non-secure context, the attack enables arbitrary
code execution with elevated privileges in the non-secure state. The attack typically
begins with interactions between the attacker’s userspace program and the secure
state program, leveraging non-secure state system calls executed via the supervisor

!Binkert, G. N.and Beckmann B.and Black, Reinhardt, S. K., Saidi, A. A.and Basu, and M.
Shoaib. «The gem5 simulator». In: ACM SIGARCH Computer Architecture News 39.2 (2011),
pp. 1-7 (cit. on pp. 47, 56, 65).

2ARM Ltd. Trusted Firmware-A (TF-A) Documentation. . 2023 (cit. on p. 56).
72

https://trustedfirmware.org/projects/tf-a/documentation/

Return-to-Non-Secure (ret2ns) Attack

call (SVC) instruction. Vulnerabilities in either the userspace or kernel space of
the secure state can serve as entry points for the attacker. A primary objective
is to corrupt code pointers used by specific instructions, such as bxns or blxns,
within the secure state program. By manipulating these pointers, the attacker can
redirect the control flow to a userspace program under their control. Once the
control flow is redirected, the attacker can execute code with privileged access,
usually limited to secure state operations. This escalation of privileges poses a
severe threat as it enables actions that compromise the system’s integrity and
confidentiality. Ret2ns attacks can originate in two primary ways: handler-mode-
originated attacks, commonly found in real-time operating systems (RTOS), and
thread-mode-originated attacks, which are typical in security-enhanced bare-metal
systems supporting privilege separation ®. The broad state transition surface in
Cortex M processors makes these attacks easier to execute compared to analogous
attacks on architectures like x86 or Cortex-A %. The ret2ns attack underscores
critical security vulnerabilities in the ARM Cortex-M TrustZone architecture. It
emphasizes the need for robust defense mechanisms to mitigate these risks and
safeguard against potential exploitation.

Secure | Non-secure

Function call/IRQ/return
I

Handler mode Handler mode

IRQ/return IRQ/return

Thread mode Thread mode

|
|
[
[
K
<
T
[
[
[
|
[

T
Function call/IRQ/return

Figure 4.1: High-level view of TrustZone-M profile’s fast state-switching mecha-
c o B
nism.

The ret2ns attack underscores the vulnerabilities inherent in the design of TrustZone-
M, especially in systems that do not incorporate advanced security features like
a Memory Management Unit (MMU) or the Privileged Execute-Never (PXN)
attribute. These limitations create an environment where such attacks can be
executed more easily, posing significant risks to system integrity and security.

3National Science Foundation. (n.d.). Overview of ret2ns attack.
Ibid.

73

Return-to-Non-Secure (ret2ns) Attack

Consequently, it is imperative to implement effective defense strategies that can
counteract these exploits while maintaining optimal performance and functionality
of the system. Robust security measures are essential to safeguard against potential
threats without hindering the operational capabilities of the embedded systems
utilizing TrustZone-M.

N.B. Understanding State Transitions in TrustZone-M Processors

1. Secure Thread to Secure Handler or Non-secure Thread to Non-
secure Handler

In this case, there’s no shift in the processor’s security state. The process
for handling exceptions mirrors the familiar stacking mechanism found in
Cortex-M processors. The Interrupt Service Routine (ISR) simply runs in the
current security state, whether it’s Secure or Non-secure.

2. Non-secure Thread to Secure Handler or Non-secure Handler to
Secure Handler

Here, the processor transitions from a Non-secure state to a Secure one.
Despite this shift, the exception handling process remains largely similar to
the standard Cortex-M stacking mechanism. During this transition, the ISR
runs in the Secure state to maintain a secure processing environment.

3. Secure Thread to Non-secure Handler or Secure Handler to Non-
secure Handler

When moving from a Secure state to a Non-secure state, the processor takes
extra steps to prevent information leakage:

o It saves all general-purpose registers to the Secure stack and clears their
contents before running the Non-secure ISR.

e Once the ISR is complete, the processor restores the registers from the
Secure stack.

This added layer of security does introduce a slight delay in interrupt latency,
but it ensures that no sensitive data from the Secure state is exposed. The
ISR, in this case, operates within the Non-secure environment.

4. Switching Between Secure and Non-secure Threads (Privileged or
Unprivileged)
Transitions between Secure and Non-secure states are also possible while
staying at the same privilege level (Privileged or Unprivileged). These shifts
often occur during function calls and returns. Importantly, interrupts can
occur in either Secure or Non-secure code without restriction, as long as they
follow the defined priority levels.

74

Return-to-Non-Secure (ret2ns) Attack

Key Takeaways

TrustZone-M processors are designed to handle state transitions in a way that
keeps Secure and Non-secure domains isolated while maintaining performance.
Whether it’s managing interrupts or ensuring data integrity during transitions,
these mechanisms are critical for protecting embedded systems from vulnerabilities,
especially in scenarios where both security domains must interact.

4.1.1 Threat Model and System Assumptions

The threat model for ARM Cortex-M processors with TrustZone technology high-
lights significant vulnerabilities in the interaction between secure and non-secure
states. One critical attack, known as the Ret2User attack, targets the logical sepa-
ration that TrustZone-M is designed to enforce. This attack assumes the existence
of a memory corruption vulnerability in the secure state, which an attacker in
the non-secure environment can exploit. Such vulnerabilities may exist in either
the kernel or user space of the secure state, providing opportunities for malicious
exploitation. In a typical Ret2User attack, the attacker uses a userspace program
under their control to make system calls to the secure state. By exploiting the
memory corruption vulnerability, the attacker can manipulate critical code pointers
used by control flow instructions, such as bxns or blxns. This manipulation redirects
execution to a specific location in the non-secure user space, allowing the attacker
to execute code with elevated privileges that would normally be restricted. The pri-
mary aim of the Ret2User attack is not to execute arbitrary code within the secure
state itself but to use the secure state’s privileges to gain control over the system.
This is achieved by corrupting control flow mechanisms that facilitate transitions
between secure and non-secure states. Such redirection of execution undermines the
fundamental security goals of TrustZone. The effectiveness of this attack increases
in systems lacking advanced security features, such as a Memory Management
Unit (MMU) or the Privileged Execute-Never (PXN) attribute. These features
are essential for enforcing strict access controls and preventing unauthorized code
execution. Without them, the system becomes more vulnerable, making Ret2User
attacks easier to execute. To address these vulnerabilities, it is essential to develop
robust defense mechanisms. A detailed understanding of the threat model and the
architectural assumptions of TrustZone-based systems is necessary for designing
effective countermeasures. Such efforts are critical for reducing the risks of these
attacks while maintaining the performance and functionality of embedded systems
that rely on TrustZone technology.

75

Return-to-Non-Secure (ret2ns) Attack

4.1.2 Attack Overview and Methodology

The Ret2NS attack is a critical vulnerability targeting systems that use the
TrustZone-M architecture. Its goal is to compromise the system by exploiting a
memory corruption vulnerability in the secure state. By doing so, the attacker can
manipulate the system’s execution flow and redirect it to a non-secure memory
region they control. This relies on the assumption that the secure state contains
an exploitable issue, such as a buffer overflow or improper pointer management.
These vulnerabilities allow attackers to corrupt key control-flow structures, such as
return addresses or function pointers, which are essential for safely transitioning
between secure and non-secure states. In the TrustZone-M architecture, operations
are distinctly divided into secure and non-secure domains, with the secure domain
being inherently more trusted. The Ret2NS attack specifically targets the transition
mechanisms, particularly the BXNS and BLXNS instructions, which are designed
to facilitate the flow of execution between these domains while maintaining system
integrity. When an attacker successfully corrupts the relevant control-flow pointers,
they can manipulate these instructions to redirect execution to a non-secure address
of their choosing, rather than the intended safe location. This manipulation allows
the attacker to execute code within the non-secure domain while still retaining the
elevated privileges associated with the secure domain, effectively circumventing
the security assurances provided by TrustZone-M . When successful, this attack
redirects execution from the secure state to the non-secure state without losing
the elevated privileges of the secure domain. This enables the attacker to execute
arbitrary code in the non-secure domain while bypassing the security guarantees
that TrustZone-M is supposed to enforce.

Key Conditions for the Ret2NS Attack:

The success of the Ret2NS attack depends on several specific conditions:
Memory Corruption Vulnerability: The attack requires a memory corruption
flaw in the secure state. This could be caused by improper input validation, poor
memory management, or errors in pointer handling. Such a flaw enables the
attacker to modify or overwrite critical data, making it possible to redirect control
flow to malicious code.

Lack of Control-Flow Protections:To prevent attacks like Ret2NS, systems
need strong control-flow integrity (CFI) measures that monitor and restrict how
execution flow is redirected. Without these safeguards, attackers can manipulate
control flow and redirect execution to unsafe locations without being detected.
Reliance on TrustZone-M Transition Instructions:The Ret2NS attack
takes advantage of how TrustZone-M transitions between secure and non-secure
states using BXNS and BLXNS instructions. These instructions are designed

SARM Ltd. Trusted Firmware-M (TF-M) Documentation. 2023 (cit. on pp. 11, 58)..
76

https://trustedfirmware.org/projects/tf-m/documentation/.

w N

19

Return-to-Non-Secure (ret2ns) Attack

for seamless state transitions but become vulnerable when paired with corrupted
control-flow pointers. This makes them a primary target for exploitation in the
Ret2NS attack.

Privilege Escalation Opportunities: The attack is particularly effective in
systems where transitions from secure to non-secure states retain the elevated
privileges of the secure state. If the system does not strictly downgrade privileges
during these transitions, attackers can use this oversight to execute privileged
operations in the non-secure domain. The Ret2NS attack illustrates a fundamental
flaw in TrustZone-M’s mechanism for separating secure and non-secure states.
By exploiting memory corruption and taking advantage of the absence of robust
control-flow protections, attackers can redirect execution and bypass the intended
security of the system. This not only compromises sensitive operations in the
secure domain but also puts the overall system at risk. To address these challenges,
systems must implement stronger defenses, such as enforcing control-flow integrity,
improving memory safety, and implementing privilege management policies that
de-escalate permissions during transitions. Without these measures, TrustZone-M
systems remain exposed to significant threats like the Ret2NS attack, which can
undermine the very foundation of their security architecture.

Non-Secure Code:

Attacker-controlled function: should only execute in
unprivileged level
address: 0x00200620

print_LCD function: this function registers the user message and
performs an SVC call to enter the secure state and invoke a
secure function (print_LCD_nsc()).

——— */
void print_LCD(char *msg)
{
register char *r0 __asm("r0") = msg;
__asm volatile("svc #1"
"r"(r0));
}

7

20

21

Return-to-Non-Secure (ret2ns) Attack

SVC handler function: The SVC handler checks the SVC number and
dispatches the call to print_LCD_nsc() in the secure state with
the user-supplied message.

void SVC_Handler_Main(uint32_t exc_return_code, uint32_t msp_val)

case 1: // extracted number of the svc will be handled
uppon

print_LCD_nsc ((char *)svc_args[0]);

break;

Secure Code:

print LCD Non Secure callable function: This function checks if
the LCD is ready and then uses sprintf to concatenate the
message with a timestamp and system status. The buffer buf is
vulnerable to overflow if msg is too large..

int32_t print_LCD_nsc(char *msg) __attribute__ ((
cmse_nonsecure_entry)) ;
int32_t print_LCD_nsc(char *msg)

{
char buf [MAX_LEN] = {0};
int32_t val = -1;
if (_driver_LCD_ready ()){
sprintf (buf, "%s %s: Y%chchechec", _TIME_STAMP,

_SYSTEM_STATUS, msgl[0], msgli1], msgl[2], msg(3]); //buffer
Overflow

val = _driver_LCD_print(buf); //BXNS return
}

78

Return-to-Non-Secure (ret2ns) Attack

In a TrustZone-M architecture, secure and non-secure states interact to man-
age hardware resources securely. Consider a scenario where a secure function,
print_LCD_nsc, is responsible for handling display operations on an LCD. This
setup ensures that sensitive LCD peripheral registers, accessible only in the secure
state, remain protected. To enable non-secure code to use the LCD, the system
employs an intermediary library function, print_LCD(), which utilizes a Supervi-
sor Call (SVC) to transition into the secure state and invoke the print_LCD_nsc
function.

The process begins with the print_LCD() function in the non-secure state initiating
an SVC call. The call includes a specific identifier to signal the transition into the se-
cure state. During this transition, the Secure Vector Handler (SVC Handler), which
operates within the secure state, receives the address of a user-provided message
via register RO. The SVC Handler then calls the secure function print LCD_nsc,
passing along the pointer to the message.

The print_LCD_nscfunction, defined with the cmse_nonsecure_entry attribute,
processes the message. It first checks the LCD’s readiness using a driver function.
Once confirmed, it concatenates the user message with additional information,
such as a timestamp and system status, using sprintf. This formatted data is
stored in a buffer. However, the function lacks safeguards to ensure the message
fits within the buffer’s allocated size, making it vulnerable to a buffer overflow. If
the user-supplied message exceeds the buffer’s capacity, the overflow can overwrite
critical data on the stack, including the Link Register (LR). The LR holds the
return address of the function and determines the control flow after the function
completes. An attacker can exploit this vulnerability by crafting a malicious
message that corrupts the LR value. When print_ LCD_nsc returns to the non-
secure state via the BXNS instruction, the corrupted LR causes the system to
execute arbitrary non-secure code, such as a function chosen by the attacker. This
scenario demonstrates how a buffer overflow in a secure function can be weaponized
to manipulate the return path, granting control over non-secure code execution.
It highlights the critical importance of implementing robust input validation and
secure coding practices. Properly sanitizing user inputs, carefully managing buffer
sizes, and employing additional runtime protections are essential to mitigating
such vulnerabilities in TrustZone-M systems and ensuring the security of the
interaction between secure and non-secure states. The scenario provided reveals a
significant weakness in TrustZone-M systems, where inadequate input validation
within secure functions, such as print_LCD_nsc, opens the door to critical exploits
like buffer overflows. These vulnerabilities allow attackers to manipulate essential
control flow mechanisms, such as the BXNS instruction, enabling arbitrary code

79

Return-to-Non-Secure (ret2ns) Attack

execution in the non-secure domain. Such exploits not only blur the boundary
between secure and non-secure states but also fundamentally erode the security
that TrustZone-M is designed to provide. Addressing these challenges requires
a proactive approach to security, with an emphasis on rigorous input validation,
careful memory management, and adherence to secure coding standards. Techniques
such as bounds checking, stack canaries, and control-flow integrity enforcement
can provide critical layers of defense. Additionally, integrating tools for formal
verification and static analysis into the development process can help identify
vulnerabilities early, ensuring that TrustZone-M systems remain resilient against
sophisticated attacks. These measures are vital to safeguarding embedded systems,
particularly as their role in critical applications continues to expand.

4.2 Challenges in Simulating ret2ns Attacks with
gemb and Buildroot

4.2.1 Introduction to Buildroot

Simulating the ret2ns attack requires a carefully constructed and representative
embedded environment, and Buildroot serves as a crucial tool in this process. Buil-
droot is a powerful tool that automates the creation of complete embedded Linux
systems, including cross-compiling toolchains, kernel builds, and root filesystems.
Its flexibility and configurability make it invaluable for preparing environments
tailored to TrustZone-M simulations, particularly when using gemb, a highly flexible
architecture simulator. One of the notable features of Buildroot is its ability to
cross-compile essential components like TrustedFirmware-M (TF-M). TF-M is a
robust, open-source firmware designed to handle secure state transitions in ARM
TrustZone-M systems. When it comes to simulating TrustZone-M, Buildroot is set
up to create the necessary software stack for both secure and non-secure environ-
ments. This setup provides a realistic platform for assessing security vulnerabilities,
such as the ret2ns attack. By seamlessly integrating various software elements,
Buildroot helps build a highly customizable simulation environment, which is vital
for testing how secure and non-secure states interact in TrustZone-M systems.
The simulation of attacks targeting the secure/non-secure state transitions in
TrustZone-M requires a specialized environment to replicate the behaviour of ARM
Cortex-M processors. Buildroot facilitates this by cross-compiling key components
such as TrustedFirmware-M (TF-M), which is crucial for managing secure-state
operations’. Through Buildroot, researchers can generate a minimal root filesystem
that supports the coexistence of secure and non-secure components, simulating the

"Buildroot. (n.d.).
80

Return-to-Non-Secure (ret2ns) Attack

dual-world architecture of TrustZone-M. This is particularly important for simu-
lating ret2ns attacks, which exploit vulnerabilities in state transition mechanisms
between the secure and non-secure regions. Additionally, Buildroot automates the
configuration of the necessary bootloaders, such as U-Boot, and the Linux kernel for
ARM Cortex-M systems 8. These components are vital for accurately representing
state transitions, peripheral access, and simulating attack scenarios that rely on
memory vulnerabilities. Therefore, Buildroot not only simplifies the process of
building a secure and non-secure system but also ensures that the environment is
configured to reflect real-world embedded systems, which is crucial for the accurate
simulation of ret2ns attacks .

4.2.2 Setting Up Buildroot for TrustZone-M Simulations

Setting up Buildroot to simulate TrustZone-M environments involves a series of
carefully executed steps to configure components essential for accurately demon-
strating secure and non-secure state interactions. This setup enables a detailed
examination of security vulnerabilities, such as the ret2ns attack, in a controlled
environment. The key stages in preparing Buildroot for TrustZone-M simulations in-
clude cross-compiling TrustedFirmware-M (TF-M), configuring the root filesystem,
and setting up the kernel and bootloader.

» Cross-Compiling TrustedFirmware-M (TF-M):Buildroot simplifies the
process of cross-compiling TrustedFirmware-M (TF-M), an open-source frame-
work designed for managing secure-world operations on ARM Cortex-M pro-
cessors. TF-M plays a crucial role in these simulations as it provides runtime
services needed for secure state management, including secure boot processes,
secure storage, and cryptographic operations. By integrating TF-M into the
Buildroot-generated environment, researchers can create a functional simu-
lation of the secure state that accurately mimics real-world behaviour. This
is essential for studying how vulnerabilities like buffer overflows or pointer
corruption can affect secure-world processes and enable attacks like ret2ns.

* Root Filesystem Configuration: The root filesystem is another critical
component generated by Buildroot. It provides the minimal infrastructure
needed to simulate interactions between the secure and non-secure states. This
filesystem enables the coexistence of secure and non-secure components within
the simulation, allowing for realistic attack scenarios. For example, the root

8ARM. (2018). ARM TrustZone technology overview.
9Secure Hardware Extension (SHA). (2020). Simulating ARM Cortex-M TrustZone: Tools
and techniques for real-time embedded systems.

81

Return-to-Non-Secure (ret2ns) Attack

filesystem can include libraries and binaries that facilitate state transitions,
making it possible to replicate how a compromised non-secure application
could exploit vulnerabilities in the secure state. This realism is vital for
understanding how specific vulnerabilities manifest and how they might be
exploited in embedded systems.

o Kernel and Bootloader Setup:Buildroot supports the generation and
configuration of essential low-level software components, such as bootloaders
and kernels. Bootloaders, like U-Boot, ensure proper initialization of the
system and facilitate the handoff between secure and non-secure states. The
kernel, configured for ARM Cortex-M processors, governs how the system
manages hardware resources and state transitions. Together, these components
enable accurate simulation of TrustZone-M’s state transition mechanisms,
including instructions like BXNS and BLXNS, which are integral to the ret2ns
attack. The kernel and bootloader setup also ensures that peripherals can be
accessed as they would in a real-world scenario, further enhancing the fidelity
of the simulation environment.

By meticulously configuring these components, Buildroot provides a versatile and
robust framework for TrustZone-M simulations. This setup not only facilitates the
study of security vulnerabilities but also aids in evaluating potential mitigation
strategies, contributing to the development of more secure embedded systems.

4.2.3 Challenges with Buildroot in gem5 Simulations

While Buildroot is an excellent tool for setting up the software stack required for
TrustZone-M simulations, its integration with the gemb simulator poses several
practical challenges. These issues mainly stem from gemb’s limited support for
TrustZone-M features, such as secure/non-secure transitions, memory protection,
and interrupt handling. These limitations affect the accuracy of simulations for
security vulnerabilities like the ret2ns attack, making it harder to model real-world
scenarios effectively.

e Limited TrustZone-M Support in gem5: A major challenge lies in
gemb’s inability to fully support TrustZone-M-specific features, particularly
the transition instructions BXNS and BLXNS, which are critical for switching
between secure and non-secure states. These instructions are essential for
maintaining the separation of trust domains, and they play a pivotal role
in attacks like ret2ns, where control flow transitions are exploited. Without
native support for these instructions, gem5 struggles to replicate the conditions
necessary to observe and analyse the exploitation of these transitions. This
limitation makes it difficult to accurately simulate the dynamic interplay

82

Return-to-Non-Secure (ret2ns) Attack

between secure and non-secure states, hindering a comprehensive study of
TrustZone-M vulnerabilities.

e Memory Protection and MPU Limitations: The Memory Protection Unit
(MPU) is central to TrustZone-M’s architecture, enforcing strict boundaries
between secure and non-secure memory regions. Unfortunately, gem5 lacks full
support for MPUs, complicating efforts to simulate the isolation mechanisms
that prevent unauthorized access between states. This creates a gap in the
ability to model how attacks like ret2ns manipulate memory regions to bypass
security restrictions. The absence of accurate MPU functionality in gem5
limits its capability to simulate the memory corruption scenarios that are
integral to understanding how such vulnerabilities arise and can be exploited.

e Interrupt and Context Switching Issues: Interrupts and exceptions
are crucial in maintaining the secure/non-secure separation in TrustZone-
M systems. They ensure that critical secure operations are insulated from
interference, even during unexpected events. However, gemb encounters
challenges in faithfully simulating the handling of interrupts and context
switches between secure and non-secure states. This becomes particularly
problematic for attacks like ret2ns, where the precise timing and handling of
interrupts can determine the success of the exploit. The inaccuracies in gem5’s
simulation of these mechanisms may lead to an incomplete or misleading
understanding of how such attacks unfold in real-world systems.

In summary, while Buildroot provides a strong foundation for creating the soft-
ware environment for TrustZone-M simulations, the integration with gemb5 reveals
significant gaps in accurately emulating key features of the architecture. These chal-
lenges, if left unaddressed, limit the ability of researchers to explore and mitigate
vulnerabilities like ret2ns effectively. Improving gem5’s support for TrustZone-M
features such as state transitions, memory protection, and interrupt management
is essential for advancing the study of ARM-based security systems.

4.3 Challenges in Simulating Trusted Firmware-
M in gem5

4.3.1 Bootloader Customization and Secure Boot

The bootloader is a fundamental element in simulating the ret2ns attack, as it
orchestrates the transition of the system from non-secure to secure states during
initialization. Using Buildroot, researchers can customize and cross-compile boot-
loaders such as U-Boot, tailoring them for TrustZone-M systems. However, the
integration of these bootloaders into the gemb simulator presents distinct challenges,

83

Return-to-Non-Secure (ret2ns) Attack

particularly in configuring memory mappings and managing state transitions. Ad-
dressing these challenges is critical to ensure the simulation accurately mirrors
real-world TrustZone-M operations

e Memory Mapping: A core function of the bootloader is to establish clear
boundaries between secure and non-secure memory regions, which are essen-
tial for enforcing TrustZone-M’s separation of trust domains. This process
depends on the Memory Protection Unit (MPU) to define and maintain these
boundaries. However, gemb lacks full support for MPUs, making it challenging
to simulate the proper isolation of memory regions. To work around this
limitation, custom modifications to the bootloader are often required. These
modifications involve configuring memory mappings manually or through
software-level emulation to mimic the behaviour of the MPU. Such adapta-
tions ensure the bootloader aligns with TrustZone-M’s security model, even in
the absence of native support within the gem5 simulator.

o Transition Management: Another key responsibility of the bootloader is
handling secure and non-secure state transitions, ensuring a seamless initial-
ization of the TrustZone-M architecture. These transitions rely on specific
instructions, like BXNS and BLXNS, which govern the secure-to-non-secure
flow. However, gemb’s incomplete support for these mechanisms complicates
the accurate simulation of such transitions. Customizing the bootloader often
involves rewriting sections of code to approximate state-switching behaviour,
ensuring that the simulation environment captures the nuances of secure and
non-secure operations. These adjustments are particularly important for repre-
senting the conditions under which a ret2ns attack could exploit vulnerabilities
in state transitions.

In conclusion, customizing the bootloader for TrustZone-M simulations in gemb
involves navigating significant challenges related to memory mapping and transition
management. Although Buildroot simplifies the creation of tailored bootloaders
like U-Boot, the limitations of gem5 demand meticulous modifications to ensure
accurate representation of TrustZone-M’s initialization process. These efforts are
crucial for creating a reliable simulation environment capable of studying and
mitigating vulnerabilities like ret2ns.

4.3.2 Kernel Challenges in Simulating Transitions

Once the system boots, the kernel assumes responsibility for managing secure/non-
secure state transitions in TrustZone-M systems, overseeing essential tasks like
peripheral access and interrupt management. However, replicating these operations
accurately within the gemb simulator poses several challenges. These limitations

84

Return-to-Non-Secure (ret2ns) Attack

affect the simulation’s reliability and its ability to model real-world scenarios,
particularly in the context of security vulnerabilities like ret2ns.

o Interrupt Handling: A significant challenge lies in simulating TrustZone-M’s
interrupt model, which distinctly separates secure and non-secure interrupts to
ensure the isolation of trusted operations. In a real TrustZone-M system, this
separation is critical for maintaining security boundaries, as secure interrupts
must not leak information or allow unauthorized execution in the non-secure
domain. Unfortunately, gem5 does not fully support this interrupt separation.
This shortcoming introduces inaccuracies in simulations, as the simulator may
fail to replicate the precise conditions under which secure and non-secure
interrupts interact. Such inaccuracies hinder the ability to study how attacks
like ret2ns exploit vulnerabilities arising from interrupt mismanagement.

« Secure/Non-Secure Context Switches: Proper simulation of state transi-
tions requires gemb to handle context switches between secure and non-secure
states. However, gem5’s architecture lacks robust support for TrustZone-M

« Secure/Non-Secure Context Switches: Another critical aspect of TrustZonet
M kernel operations is the handling of secure/non-secure context switches,
which are pivotal for maintaining domain separation. These switches rely
on mechanisms that preserve the integrity of both secure and non-secure
execution contexts during transitions. However, gemb lacks robust support for
TrustZone-M’s unique context-switching mechanisms, making it challenging
to simulate the nuances of these transitions. This limitation is especially
problematic for replicating the ret2ns attack, as such exploits directly target
vulnerabilities in the secure/non-secure divide during context switches. With-
out accurate simulation of these mechanisms, researchers may miss crucial
insights into how these transitions can be exploited and mitigated.

o Exception Handling: Exception handling in TrustZone-M introduces addi-
tional complexity, as it requires the kernel to manage secure and non-secure
exceptions separately to uphold system integrity. Secure world exceptions
demand precise control over the execution state, ensuring that exceptions
do not compromise the trusted domain. Unfortunately, gemb5 struggles to
simulate the TrustZone-M-specific exception models accurately. The lack of
adequate support for these models affects the simulator’s ability to replicate
scenarios where exceptions play a pivotal role in maintaining or breaching
security boundaries. This gap in functionality undermines efforts to explore
how exceptions can be manipulated in attacks like ret2ns or to test potential
mitigations.

85

Return-to-Non-Secure (ret2ns) Attack

While the kernel is central to managing transitions and maintaining security in
TrustZone-M systems, gemb’s limitations in interrupt handling, context switching,
and exception management impede the accurate simulation of these operations.
Addressing these challenges is essential for enabling realistic studies of vulnerabilities
like ret2ns and for developing robust countermeasures to protect embedded systems.

4.4 Gemb and TrustedFirmware-M (TF-M) Inte-
gration Challenges

4.4.1 Adapting TrustedFirmware-M for Simulation in gem5

TrustedFirmware-M (TF-M) plays a crucial role in implementing ARM’s security
architecture within TrustZone-M systems. It is responsible for initializing the secure
world and managing critical operations, including secure boot, secure interrupts,
and memory partitioning. However, adapting TF-M for use in gemb simulations
presents several technical challenges, particularly when attempting to simulate
complex attacks like ret2ns.

« Boot Sequence and Initialization: One significant challenge lies in repli-
cating TF-M’s secure boot process, which establishes the foundation for the
secure world. This process involves configuring secure memory regions, ini-
tializing secure services, and enforcing strict boundaries between secure and
non-secure domains. In gemb, simulating this initialization is problematic due
to discrepancies between the simulator’s hardware abstraction and the actual
hardware features of TrustZone-M microcontrollers. Specifically, gem5’s mem-
ory management models are not fully compatible with the Memory Protection
Unit (MPU) used by TF-M to implement memory segmentation. The MPU’s
dynamic enforcement of secure and non-secure memory access is central to
TrustZone-M security, and gem5’s inability to accurately model this feature
creates challenges in replicating TF-M’s secure world setup.

e Secure Function Call Mechanisms: TF-M incorporates mechanisms like
the Secure Function (SF) framework, which provides controlled interfaces for
non-secure applications to invoke secure functions. This framework ensures
that secure services remain isolated and accessible only through predefined
entry points. Simulating these secure function calls in gem5 is particularly
challenging because the simulator lacks native support for TrustZone-M’s
privilege-level transitions and access controls. These mechanisms are essential
for enforcing the isolation of secure functions and preventing unauthorized
access. This limitation directly impacts the simulation of ret2ns attacks,
where the exploitation of secure function return paths is central to the attack.

86

Return-to-Non-Secure (ret2ns) Attack

Without accurate simulation of these transitions, the simulation fails to capture
the full scope of vulnerabilities that can arise during secure function execution.

e Interrupt and Fault Handling: In real TrustZone-M systems, interrupt
and fault handling is critical for maintaining separation between the secure
and non-secure worlds. TF-M achieves this by configuring interrupt controllers
and exception handlers to route events appropriately. For example, secure
interrupts must be processed in the secure world, while non-secure interrupts
are directed to non-secure handlers. In gemb, however, the simulator’s limited
support for TrustZone-M’s interrupt handling mechanisms introduces incon-
sistencies in how these events are managed. This gap becomes particularly
problematic in scenarios where precise timing and control of interrupts are
essential, such as in the study of vulnerabilities like ret2ns. Interrupt timing
can significantly affect the feasibility and exploitation of such attacks, and
gemb’s shortcomings in this area limit its utility as a simulation platform.

Mainly, it’s important here to understand that while TrustedFirmware-M provides
the foundation for secure operations in TrustZone-M systems, adapting it for
simulation in gemb is fraught with challenges. The limitations in gem5’s memory
management models, secure function execution, and interrupt handling undermine
the accuracy of these simulations, particularly for complex attack scenarios. Ad-
dressing these gaps is essential for enabling researchers to fully explore and mitigate
vulnerabilities like ret2ns in TrustZone-M environments.

4.4.2 Memory Partitioning and Peripheral Access

TrustedFirmware-M (TF-M) relies heavily on the Memory Protection Unit (MPU)
to create a secure boundary between memory regions, ensuring that non-secure code
cannot access sensitive secure memory. This strict control of memory and state
transitions is a cornerstone of TrustZone-M security. However, gem5’s lack of de-
tailed MPU support introduces significant challenges in simulating the interactions
between secure and non-secure memory, particularly for studying vulnerabilities
such as ret2ns.

e Memory Segmentation: In TF-M, the MPU is configured to divide memory
into secure and non-secure regions, with access privileges tightly enforced to
prevent unauthorized interactions. This segmentation is critical to maintaining
system integrity, allowing secure domains to operate without interference from
the non-secure side. When using gemb for simulations, however, the absence of
a realistic MPU model means that these memory protections cannot be fully
enforced or accurately represented. This limitation is particularly problematic
when simulating attacks like ret2ns, where bypassing memory protections is a

87

Return-to-Non-Secure (ret2ns) Attack

fundamental part of the exploit. Without proper memory segmentation, the
simulation fails to reflect real-world scenarios, leading to gaps in understanding
the attack’s effectiveness and its implications for system security.

o Peripheral Access: Beyond memory segmentation, many TrustZone-M sys-
tems rely on secure peripherals, such as cryptographic modules and secure
storage, which are only accessible to secure code. These peripherals are vital
for performing sensitive operations like encryption or securely storing critical
data. TF-M enforces strict access controls to ensure that these resources
remain protected. However, gem5’s limited support for simulating periph-
eral access control poses another hurdle. Without accurate simulation, the
simulator cannot faithfully replicate how secure peripherals are isolated from
non-secure domains. This limitation affects the ability to explore how vulnera-
bilities in peripheral access might contribute to attacks like ret2ns, potentially
underestimating the impact of exploiting these security gaps.

Thus, memory partitioning and peripheral access controls are essential features
of TF-M that uphold the security of TrustZone-M systems. However, the lack of
robust support for these features in gemb hampers its ability to simulate real-world
security behaviours effectively. Addressing these limitations is critical for gaining a
comprehensive understanding of attacks like ret2ns and developing the defenses
needed to mitigate such vulnerabilities.

4.5 Future Directions for Improved Simulation
of TrustZone-M in gem5

Given the limitations encountered in simulating TrustZone-M and the ret2ns
attack using gem5 and Buildroot, there are several improvements that can be
made to enhance the fidelity of such simulations. First, expanding gem5 to better
support state transitions, like BXNS and BLXNS, would significantly improve the
simulation of ret2ns attacks. This would allow for more accurate simulation of
secure/non-secure context-switching. Additionally, implementing a more detailed
MPU model in gem5 would help simulate memory boundaries more effectively, which
is crucial for understanding how attacks exploit these vulnerabilities. Improving
interrupt handling and exception management in gem5 would also be essential for
more accurately simulating the separation of secure and non-secure interrupts in
TrustZone-M. Lastly, refining Buildroot configurations, especially with TF-M and
U-Boot, would ensure a more reliable simulation environment. These improvements
would not only help in analysing more accurate attack scenarios but also provide
a more robust framework for security research on ARM-based embedded systems
and better simulation of ret2ns attacks.

88

Return-to-Non-Secure (ret2ns) Attack

4.5.1 Extending gemb’s TrustZone-M Support

To address the current gaps in simulating TrustZone-M features, one promising
research direction involves extending gemb’s native support for TrustZone-M-specific
functionality. The TrustZone-M architecture introduces a range of features aimed
at enabling secure and efficient execution in embedded systems. However, its
full potential in terms of simulation has yet to be realized in gem5. By focusing
on specific extensions, researchers can enhance the accuracy and utility of gemb
as a simulation platform for security studies. Future directions for improving
TrustZone-M simulation in gem) could focus on three key areas:

« MPU Support:Implementing detailed Memory Protection Unit (MPU) sup-
port in gemb would significantly improve the simulator’s capability to model
memory protection mechanisms as employed in TrustZone-M systems. The
MPU serves as a cornerstone of TrustZone-M’s security, enabling the config-
uration of memory regions with attributes such as read, write, or execute
permissions and secure or non-secure access control. By extending gemb to
include this functionality, researchers could gain insights into the enforce-
ment of these memory protections under various scenarios. Moreover, this
enhancement would allow the simulation of sophisticated attacks like return-to-
non-secure (ret2ns), which exploit the transition between secure and non-secure
states to bypass memory protections. Accurate simulation of such attacks
would facilitate the development of countermeasures and help evaluate their
effectiveness.

« BXNS and BLXNS Instruction Simulation: Adding native support for
TrustZone-M-specific instructions, such as BXNS (Branch with Exchange to
Non-Secure) and BLXNS (Branch with Link and Exchange to Non-Secure),
would improve the simulator’s ability to model state transitions between the
secure and non-secure worlds. These instructions are critical for facilitating
transitions between execution contexts and maintaining the isolation guar-
antees provided by TrustZone-M. Simulating them accurately is particularly
important for studying control-flow exploits. For instance, attackers often
manipulate these transition instructions to alter the intended execution path,
gaining unauthorized access to secure resources. Enhanced support for these
instructions in gemb would provide a platform to analyse such vulnerabilities
in detail and test mitigations in a controlled environment.

e Interrupt and Exception Handling: Enhancing gemb’s interrupt and
exception handling models to account for the distinction between secure and
non-secure interrupts is another vital extension. TrustZone-M introduces a
dual-world model where interrupts can originate from either secure or non-
secure sources, and the way these are handled is critical for maintaining system

89

Return-to-Non-Secure (ret2ns) Attack

security. Current implementations in gemb may not fully capture the nuanced
behaviour of TrustZone-M in this regard. By refining interrupt and exception
handling mechanisms, researchers could simulate scenarios where secure in-
terrupts are improperly managed, potentially leading to privilege escalation
or information leakage. Such improvements would enable detailed studies
of vulnerabilities like those exploited by ret2ns attacks, where mishandled
interrupts or exceptions facilitate transitions into unintended states.

To conclude, extending gemb5’s TrustZone-M support to include MPU features,
instruction simulation for state transitions, and enhanced interrupt and exception
handling would address critical gaps in its current capabilities. These improve-
ments would make gem5 a more powerful tool for researchers investigating the
security implications of TrustZone-M, providing a robust platform for exploring
and mitigating vulnerabilities in embedded systems.

4.5.2 Integrating Hardware-in-the-Loop (HIL) Systems

A practical way to enhance TrustZone-M simulation in gemb is by integrating it with
Hardware-in-the-Loop (HIL) systems, as described in [Dempsey2012:HIL__simulation]!
HIL systems combine the use of real TrustZone-M hardware components with gem5’s
flexible simulation framework, creating a powerful hybrid model. This approach

offers unique advantages by bridging the gap between simulation and physical
hardware, making it possible to achieve greater accuracy and realism in security
research.

» Realistic Timing and Interrupt Behavior: One of the biggest challenges
in simulating TrustZone-M systems with gem5 is accurately capturing timing
and interrupt behaviour, especially in real-time applications where even small
discrepancies can lead to significant security vulnerabilities. HIL simulations
address this by incorporating real hardware, which naturally exhibits precise
timing and interrupt dynamics. This would make it possible to study how
timing vulnerabilities and interrupt handling play a role in attacks, particularly
in systems where real-time performance is critical. By offering this level
of accuracy, HIL systems could greatly enhance the reliability of security
simulations.

« Validation of Software Attacks: Combining real hardware with gem5’s
software simulation capabilities allow researchers to validate software-based
attacks like return-to-non-secure (ret2ns) under realistic conditions. This setup
ensures that simulated vulnerabilities mirror actual system behaviour, making
it easier to assess how attacks would function in the real world. Additionally,
researchers can use HIL systems to test proposed security mitigations, ensuring

90

Return-to-Non-Secure (ret2ns) Attack

they are effective not just in theory but in practical scenarios as well. This
ability to validate both vulnerabilities and defenses in a controlled yet realistic
environment is a significant benefit of HIL integration.

e Cross-Validation of Firmware and Software: TrustZone-M systems
rely on close coordination between firmware running in the secure world
and software in the non-secure world. HIL systems offer a way to study
these interactions in a more detailed and practical manner. By enabling the
use of real hardware alongside simulated components, researchers can better
understand how complex attacks like ret2ns exploit flaws in the interaction
between firmware and software. This cross-validation capability is crucial
for identifying subtle weaknesses and improving both firmware and software
security.

4.5.3 Accuracy of simulating the ret2ns Attack in gemb5

Simulating complex security vulnerabilities, such as the Return-to-Non-Secure
(ret2ns) attack, in an environment like gemb offers significant insights into potential
threats in ARM-based systems, particularly those employing TrustZone. However,
to gauge the effectiveness of such simulations, it is essential to understand the extent
to which gemb5 can accurately represent real hardware behavior. This subsection
delves into how the ret2ns attack is simulated on gemb and evaluates the fidelity
of these simulations with respect to the underlying hardware.

The Nature of the ret2ns Attack

The ret2ns attack exploits the ARM TrustZone architecture, targeting the seamless
transitions between Secure and Non-secure states that occur in ARMv8-M pro-
cessors. Under normal operation, these transitions are intended to enforce strict
separation between secure and non-secure code, which is critical for maintaining
system integrity in embedded applications. However, the ret2ns attack takes ad-
vantage of the rapid, low-overhead state transitions, which are achieved via simple
function calls and returns rather than complex secure monitor calls (SMCs), as
seen in the ARM Cortex-A series.

In essence, the attacker manipulates control flow by exploiting vulnerabilities in
the Secure state, redirecting execution to malicious code in the Non-secure state.
This seamless transition allows the attacker to gain unauthorized access to sensitive
resources, potentially leading to arbitrary code execution in the Non-secure state.
The ability of gem5 to simulate such intricate security vulnerabilities depends on
how accurately it models ARMv8-M TrustZone’s state-switching mechanism and
the associated control flow between Secure and Non-secure states.

91

Return-to-Non-Secure (ret2ns) Attack

Simulating State Transitions in gem5b

One of the core challenges in simulating the ret2ns attack is accurately modeling
the transition between the Secure and Non-secure states. In real hardware, these
transitions are controlled by mechanisms such as exception handling, interrupt
handling, and Supervisor Calls (SVCs), which are designed to occur with minimal
overhead. In gemb, the ARMv8-M architecture, including TrustZone features, is
modeled with an abstraction that simulates these transitions through a memory-
mapped approach.

However, while gem5 can replicate the high-level behavior of state transitions,
the simulator may not perfectly capture the underlying timing and interactions
between various hardware components involved in these transitions. The ARMv8-M
architecture relies on an optimized memory management unit (MMU) and interrupt
controller to facilitate state switching, but these components are abstracted in
gemb to some extent. This abstraction results in a loss of fine-grained details, such
as the exact timing of interrupt handling, memory access latency, and the precise
control flow involved in transitioning between the Secure and Non-secure states.
In the case of the ret2ns attack, the timing of the state transition is crucial. An
attacker may attempt to exploit vulnerabilities in the Secure state by corrupting
specific return addresses or function pointers, triggering a transition to the Non-
secure state at a precise moment. While gem5 accurately simulates the occurrence
of these transitions, it does not replicate the exact timing behavior that might
occur on real hardware, where interrupt delays, pipeline flushes, and memory access
times can influence the success of the attack.

Control Flow Redirection and Attack Execution

The ret2ns attack typically begins with the attacker gaining control over the Secure
state program, often by manipulating a vulnerable function pointer or return
address. The attacker’s goal is to redirect the control flow to a Non-secure state
program, thereby gaining unauthorized access to Non-secure resources. In real
hardware, the success of this attack depends not only on the ability to manipulate
the return address but also on the precise timing of the transition and the ability to
avoid detection by security mechanisms such as memory protection units (MPUs)
and execution permissions.

In gemb, the simulated execution of the attack follows a similar flow, where the
Secure state program’s control flow is hijacked, and execution is redirected to
the Non-secure state. While gem5 correctly models the logic of this attack, the
simulator cannot perfectly emulate certain hardware-level details, such as the
handling of misaligned memory accesses or the behavior of hardware-based memory
protection mechanisms, which could impact the attack’s success in real hardware.
Furthermore, gem5’s abstraction of the processor’s pipeline and the lack of detailed

92

Return-to-Non-Secure (ret2ns) Attack

memory access timings may result in minor discrepancies in how the attack is
executed in the simulation compared to actual hardware.

The lack of precise timing in gem5 may lead to differences in the attack’s outcome.
For instance, real hardware may exhibit race conditions or subtle timing discrepan-
cies that allow the attack to succeed, while these nuances are not fully replicated in
the simulation. Additionally, gem5’s memory model may not account for low-level
optimizations, such as speculative execution, which could affect how data is loaded
into the processor’s cache and how quickly it becomes available for execution in
the Non-secure state.

Comparison with Hardware Behavior

In terms of replicating the ret2ns attack on real hardware, gem5 offers a useful
approximation but falls short in some areas due to its abstraction of low-level
hardware components. The simulation is accurate in terms of the logical flow of
the attack, capturing the sequence of operations such as state transitions, function
call redirection, and control flow manipulation. However, the timing and hardware-
specific features that could influence the success of the attack, such as interrupt
handling, memory access delays, and the impact of various hardware defenses (e.g.,
data execution prevention, memory isolation), are not fully represented.

Real hardware provides a much richer set of details, including precise control over
interrupt latency, memory access speed, and the operation of security features,
which can all impact the ret2ns attack’s success. For example, on real hardware,
an attacker’s ability to trigger a state transition at the precise moment needed
to hijack control flow may be influenced by factors such as cache behavior and
instruction-level parallelism. These factors are typically abstracted in gem5, which
may lead to small discrepancies in the simulation’s results when compared to actual
hardware behavior.

Limitations of gem5 in Accurate Attack Simulation

While gemb is a powerful tool for simulating processor architectures and security
vulnerabilities, it is not without limitations. One of the primary constraints of
using gemb for the ret2ns attack simulation is its reliance on simplified hardware
models. The absence of detailed timing information, especially with regard to
instruction execution and memory access latency, reduces the accuracy of the attack
simulation. Furthermore, gem5’s memory management model, which abstracts the
complexity of modern memory hierarchies, may not account for low-level hardware
optimizations such as speculative execution or memory caching, which can have a
significant impact on the outcome of the attack.

Additionally, the security mechanisms in real ARMv8-M hardware, such as TrustZonet
specific features for memory protection and control flow integrity, may not be fully

93

Return-to-Non-Secure (ret2ns) Attack

represented in gemb. As a result, certain attack vectors may not be as easily
exploitable in the simulation as they would be on actual hardware.

4.5.4 Future Directions for HIL Integration

While integrating HIL systems with gem5 shows great promise, there are oppor-
tunities to expand this approach further. Developing standardized interfaces for
connecting gemb with various TrustZone-M hardware components could make HIL
systems more accessible to researchers. Additionally, extending HIL capabilities
to support other critical TrustZone-M features, such as secure boot and secure
storage, could make these systems even more versatile. Automating the testing of
attack scenarios within HIL setups could also improve efficiency and enable more
comprehensive evaluations of proposed security strategies. In conclusion, combining
gemb with Hardware-in-the-Loop systems provides a practical and effective way
to improve TrustZone-M simulations. By leveraging the strengths of both real
hardware and flexible simulation, HIL systems can deliver the precision and realism
needed to explore vulnerabilities, validate software attacks, and develop robust
security measures. This hybrid approach has the potential to significantly advance
the state of TrustZone-M research, making it an invaluable tool for the security
community.

94

Return-to-Non-Secure (ret2ns) Attack

96

Bibliography

[12]

Frank Vahid and Tony Givargis. Embedded System Design: A Unified Hard-
ware/Software Introduction. Wiley, 2001 (cit. on p. 1).

IEEE. «Advancements in Consumer Electronics with Embedded Systems».
In: IEEE Consumer Electronics Magazine. 2020, pp. 1-10 (cit. on p. 1).

Nicolas Navet and Francois Simonot-Lion. Automotive Embedded Systems
Handbook. CRC Press, 2009 (cit. on p. 2).

Abraham Silberschatz and Peter Galvin. Embedded Systems in Healthcare.
Healthcare Publications, 2015 (cit. on p. 2).

R.P.G. Collinson. Avionics: Development and Implementation. Wiley, 2003
(cit. on p. 2).

Dieter Uckelmann. Architecting the Internet of Things. Springer, 2011 (cit. on
p. 3).

P. Kocher et al. «Spectre Attacks: Exploiting Speculative Execution». In:
Communications of the ACM 62.7 (2019), pp. 93-101 (cit. on p. 3).

Joseph Yiu. The Definitive Guide to ARM Cortex-M3 and Cortex-M/ Proces-
sors. Newnes, 2014 (cit. on p. 9).

ARM Ltd. Trusted Firmware-M (TF-M) Documentation. https://trustedf
irmware.org/projects/tf-m/documentation/. 2023 (cit. on p. 11).

Binkert, G. N.and Beckmann B.and Black, Reinhardt, S. K., Saidi, A. A.and
Basu, and M. Shoaib. «The gem) simulator». In: ACM SIGARCH Computer
Architecture News 39.2 (2011), pp. 1-7.

Pier Ayoub and Clémentine Maurice. « Reproducing Spectre Attack with gemb:
How To Do It Right?» In: 14th European Workshop on Systems Security
(EuroSec’21). 2021, pp. 1-16. DOI: 10.1145/3447852.3458715. URL: https:
//inria.hal.science/hal-03215326.

Erik August. Spectre PoC Ezploit Code. https://github.com/ErikAugust/
spectre-exploit. 2018.

97

https://trustedfirmware.org/projects/tf-m/documentation/
https://trustedfirmware.org/projects/tf-m/documentation/
https://doi.org/10.1145/3447852.3458715
https://inria.hal.science/hal-03215326
https://inria.hal.science/hal-03215326
https://github.com/ErikAugust/spectre-exploit
https://github.com/ErikAugust/spectre-exploit

BIBLIOGRAPHY

G. Karsai, D. Balasubramanian, A. Ledeczi, and S. Neema. «Towards a self-
adaptive and fault-tolerant cyber-physical system». In: Proceedings of the
Workshop on Cyber-Physical Systems Security and Resilience. 2013, pp. 1-5.

ARM Ltd. Trusted Firmware-A (TF-A) Documentation. https://trustedf
irmware.org/projects/tf-a/documentation/. 2023.

ARM Ltd. ARM Architecture Reference Manual. https://developer.arm.
com/documentation. 2020.

Nathan Binkert et al. «The gem5 Simulator». In: ACM SIGARCH Computer
Architecture News 39.2 (2011), pp. 1-7.

ARM Ltd. ARM TrustZone Technology Overview. 2018.

Secure Hardware Extension (SHA). Simulating ARM Cortex-M TrustZone:
Tools and Techniques for Real-Time Embedded Systems. 2020.

Buildroot. Buildroot Documentation. Accessed 2023.
National Science Foundation. Quverview of ret2ns Attack. Accessed 2023.

Stephen W. Keckler. « A New Golden Age for Computer Architecturey. In:
Communications of the ACM (Jan. 2022). Retrieved from
urlhttps://cacm.acm.org/research/a-new-golden-age-for-computer-architecture/|

John L. Hennessy and David A. Patterson. « A New Golden Age for Computer
Architecturey. In: Communications of the ACM 62.2 (2019), pp. 48-60.

Tal Ben-Nun and Torsten Hoefler. « Demystifying Parallel and Distributed
Deep Learning: An In-Depth Concurrency Analysis». In: ACM Computing
Surveys 52.4 (2020), pp. 1-43.

Inspired eLearning. Cybersecurity Awareness Training. https://www.inspir
edelearning.com/. Accessed 2025.

The Linux Kernel Organization. The Linux Kernel Documentation. https:
//www.kernel.org/doc/html/latest/. Accessed 2025. 2024.

Yuval Yarom and Katrina Falkner. «Flush+Reload: a High Resolution, Low
Noise, L3 Cache Side-Channel Attacky. In: 23rd USENIX Security Symposium.
USENIX, 2014, pp. 719-732.

98

https://trustedfirmware.org/projects/tf-a/documentation/
https://trustedfirmware.org/projects/tf-a/documentation/
https://developer.arm.com/documentation
https://developer.arm.com/documentation
https://www.inspiredelearning.com/
https://www.inspiredelearning.com/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/

	General Introduction
	Introduction to Embedded Systems
	Evolution and Proliferation of Embedded Systems
	Importance and Applications of Embedded Systems
	Security Challenges in Embedded Systems
	The Cortex-M3 Processor Architecture
	The Need for Adversary Virtual Platforms (AVPs)

	The Virtual Platform
	Gem5
	Gem5 Architecture
	Gem5 Simulation Parameters
	Configuration Script
	Role of the Script in gem5 Full-System Simulation
	CPU and Memory Configuration
	System Creation and Boot Configuration
	PCI Devices and Disk Images
	Cache Hierarchy and Clustering of CPUs
	Bootloader Setup and Kernel Command-Line Arguments
	Simulation Execution and Checkpointing
	Integration of PMU and Debugging with Tarmac Traces
	Finalizing the Simulation

	Using the Simulation Script in gem5
	Explanation of the Command
	Example Use Case in Simulation

	Spectre Simulation
	Introduction to spectre
	Our Technique

	Spectre Exploit
	Simulating Spectre Attacks with gem5
	Compilation of Spectre Exploit
	Initiating the Simulation
	Booting the System and Running the Attack
	Running the Simulation
	Creating and Restoring Snapshots
	Executing the Spectre Exploit
	Limitations of SE Mode for Spectre Attacks

	Optimizing Simulation Time and Visualizing Pipeline Behavior
	Visualizing Spectre with gem5
	Simulating Spectre Attacks with QEMU User-Mode
	Accuracy of Spectre Attack Simulation in gem5 Compared to Real Hardware

	Future Work
	Spectre Vulnerability Research
	Improvements to gem5 for Broader Adaptation

	Return-to-Non-Secure (ret2ns) Attack
	Introduction to Return2nonsecure Attack
	Threat Model and System Assumptions
	Attack Overview and Methodology

	Challenges in Simulating ret2ns Attacks with gem5 and Buildroot
	Introduction to Buildroot
	Setting Up Buildroot for TrustZone-M Simulations
	Challenges with Buildroot in gem5 Simulations

	Challenges in Simulating Trusted Firmware-M in gem5
	Bootloader Customization and Secure Boot
	Kernel Challenges in Simulating Transitions

	Gem5 and TrustedFirmware-M (TF-M) Integration Challenges
	Adapting TrustedFirmware-M for Simulation in gem5
	Memory Partitioning and Peripheral Access

	Future Directions for Improved Simulation of TrustZone-M in gem5
	Extending gem5’s TrustZone-M Support
	Integrating Hardware-in-the-Loop (HIL) Systems
	Accuracy of simulating the ret2ns Attack in gem5
	Future Directions for HIL Integration

	Bibliography

