POLITECNICO
DI TORINO

POLITECNICO DI TORINO

Master Degree course in Artificial Intelligence and Data Analytics

Master Degree Thesis

Developing Vehicular Traffic Datasets
Using Drone Images and AI Techniques

Supervisors
Prof. CLAUDIO ETTORE CASETTI
Diego GAsco and Giuseppe PERRONE

Candidate
Samaneh GHAREHDAGH SANI

ACADEMIC YEAR 2024-2025



Acknowledgements

I want to thank everyone who has helped me in my academic career. Above all, I am very
grateful to my supervisor, Prof. Claudio Ettore Casetti, for his support and guidance
during this thesis. I also appreciate Giuseppe Perrone and Diego Gasco for their helpful
discussions and kind assistance, their guidance was very important in the success of
this project. I would like to thank my family and friends for their endless love and
encouragement. A very special thanks goes to Koorosh, whose support and faith in me
have been my motivation over these past years, for which I am truly grateful.



Abstract

Following the growth of cities, we are facing more traffic, pollution, and longer drives.
Because urban road networks are complex and traffic conditions are changing, managing
this traffic is difficult. Although there is the possibility of artificial intelligence as a
solution, many current Al-based traffic systems are having trouble running consistently.
The authors relied on data sets that were collected at fixed points, in stable environments,
and updated infrequently. It is challenging for models to generalize to new cities, unusual
incidents, or unexpected changes because such data sets cannot capture the diversity of
real-world environments.

This thesis describes a pipeline for using drone video and creating reliable urban
data sets. As drones are easy to move and relocate, their wide coverage and adjustable
viewing angles allow them to record traffic situations in different environments. After
collecting data using drone, an Al based pipeline that combines object detection, multi-
object tracking, and speed estimation using calibration techniques processes the captured
video.

The study compares the advantages and disadvantages of different tracking frame-
works by evaluating detection and tracking performance using different drone altitudes
and viewing angles. It also looks at how accuracy changes with altitude and distance.
Urban planning strategies, autonomous vehicle intelligence, safety evaluations, and the
creation of more precise Al-based traffic models are all supported by the resulting datasets
and processing pipeline. A strong calibration technique that reliably translates pixel dis-
placements to actual speed measurements is one of the main contributions of this work.
The resulting data sets are highly detailed and completely verified, offering a strong base
for developing intelligent and flexible traffic control systems.



Contents

1 Introduction

2 Related Work

2.1 From Traditional to Al-based Approaches . . . . . .. ... .. ... ...
2.2 Benchmark Datasets for Traffic Analysis . . . . .. ... ... ... ....
221 NGSIM . . .. e
222 highD . . o\ o
2.2.3 NUSCENES . . . . .
2.2.4  Urban & interaction-rich aerial trajectory datasets . . . . . .. ..
2.2.5 Drone Trajectory Datasets Beyond highD . . . . . ... ... ...
2.3 Data Collection Strategies . . . . . . . . . . ... L o
2.3.1 Side-Road Cameras . . . .. ... ... ... ... .. ... ...
2.3.2  Probe Vehicles and Multimodal Fleets . . . . . ... ... ... ..
2.3.3 Drones. . . . ... e e e e
2.4 Object Detection . . . . . . . . .
2.4.1 YOLO in Practice . . . . .. .. ... .. .. .. . .
2.4.2  Aerial (UAV) Viewpoints . . . . ... ... ... ... ... ....
2.4.3 Roadside CCTV Detectors . . . . . ... ... ... .. ......
2.4.4 Lane/Marking Extraction (Context for Speed and Safety) . . . . .
2.5 Tracking . . . . . . L
2.5.1 Evaluation Metrics . . . . . .. ... o oo
2.6 Calibration and Speed Estimation . . .. ... ... ... ... ......

System Model and Contributions

3.1 Data Collection . . . . . . . . . . . . . e
3.1.1 Drone and Camera Specifications . . . . . . .. ... ... .....
3.1.2 Data Annotation and Preprocessing . . . . ... ... ... ....

3.2 Perception Module . . . . . ...
3.2.1 Object Detection with YOLOv8 . . . ... ... ... ... ....
3.2.2 Experimental Preprocessing with Semantic Segmentation . . . . .

3.3 Geometric Calibration Module . . . . .. ... ... ... ... ...

3.4 Speed Estimation . . . . .. .. ...
3.4.1 Implementation Details and Validation . . . . . . ... .. ... ..

2

© 00 00 0 0 I

11
11
11
11
13
13
14
14
15
15
16
17
17



4 Results
4.1 Methodology . .. ... .. ... .. ........
4.2 Evaluation Metrics . . . . . .. .. ... ......
4.3 Numerical Results . . . . ... ... ........
4.3.1 Object Detection Performance . . ... ..

4.3.2 Evaluation of Semantic Segmentation Preprocessing . . . . .. ..

4.3.3 Multi-Object Tracking Performance . . . .
4.3.4 Speed Estimation and Traffic Flow Analysis

5 Conclusion and Future Work

Bibliography

37
37
37
38
38
41
43
47

53

57






Chapter 1

Introduction

Transportation networks experience new difficulties because urban areas grow at a rapid
rate. The increasing number of vehicles in cities causes poorer air quality, more traffic,
and longer travel times [41]. Traditional traffic monitoring systems that use fixed road
sensors, including loop detectors and stationary cameras, fail to detect changes in traffic
patterns because their monitoring areas are limited [32,59]. Datasets that support Al-
based traffic models, including NGSIM and UA-DETRAC collect data from fixed points in
controlled environments with limited updates, creating challenges for models to handle
different locations and unexpected situations [34,53,54]. The current systems cannot
provide reliable adaptive traffic intelligence because they cannot meet the requirements
of modern urban transportation systems.

Artificial intelligence (AI) technology can be used as a modern solution to improve
traffic management because it supports predictive modeling, adaptive control, and safety
analysis functions. However, the performance of Al systems is based on the availability
of high-quality datasets. The existing Al systems today were trained through datasets
that come from controlled environments where they use fixed intersection cameras and
stationary highway sensors and vehicles that operate within defined geographic areas.
Training data receive updates only occasionally, while they remain restricted to particular
geographic locations and weather and traffic conditions. Models that train on these data
may not perform well when faced with new urban environments, diverse traffic conditions,
and unexpected traffic patterns.

This thesis aims to address this limitation by developing a machine learning-based
pipeline to extract vehicle movement data, that is, their positions and velocities, from
videos recorded by a drone, making it possible for anyone to create their own dataset in
any chosen scenario.

The developed pipeline connects object detection, multi-object tracking, and speed es-
timation functions to infer precise movement paths for recorded vehicles. Its operational
effectiveness is demonstrated through an evaluation phase that tests performance at dif-
ferent drone heights, camera positions, and tracking settings. Also, different road layouts
were considered: the system effectively handled vehicle movements, showing exceptional
flexibility in different traffic conditions.



Introduction

The findings of this thesis establish various important applications that extend be-
yond methodological enhancement. The developed pipeline produces accurate, validated
datasets, and reliable real-world data from video recordings. The generated dataset en-
ables improved Al-based traffic modeling and autonomous vehicle development, road
safety evaluation, and science-based urban planning methods.

This thesis is structured as follows.

In Chapter 2 Related Work, the literature on traffic monitoring, data collection, object
detection, multi-object tracking, and calibration techniques is reviewed.

Chapter 3 System Model and Contributions, outlines the main contributions of this
work, highlighting the integration of the detection, tracking, and speed estimation mod-
ules, as well as the suggested calibration method.

In Chapter 4 Results, system results are reported that evaluate performance under
different drone altitudes, viewing angles, and tracking frameworks.

Chapter 5 Conclusion summarizes the thesis and suggests potential works for further
study.



Chapter 2

Related Work

Modern traffic systems can now be better understood and managed with the help of
artificial intelligence (AI) technologies. Large amounts of visual data can be processed
by Al systems to identify cars, track their movements, categorize various road users, and
even predict traffic patterns. However, the quality and variety of the data used to train
these systems have a significant impact on their performance. The flow of traffic in the
real world is constantly changing due to accidents, road construction, weather, and special
events. If not properly trained, AI models may not recognize and react to unexpected
conditions, which could limit their application in critical situations. In addition, new
data are needed to study the evolution of traffic and train in-vehicle algorithms.

In this area, a huge amount of work has produced benchmark datasets and task
protocols that influence current engineering and research. Before moving on to the fun-
damental components of a drone video pipeline, this chapter reviews the main datasets,
data collection, object detection, tracking, and calibration-based speed estimation.

2.1 From Traditional to Al-based Approaches

In order to measure traffic at a few locations, early systems used inductive loops, radar /mi-
crowave detectors, and fixed closed-circuit television (CCTV). These methods were strong,
but provided limited information on individual trajectories and covered only restricted
areas [41]. Computer vision techniques were able to extract counts and classes from static
cameras as video spread, but performance was still affected by fixed viewpoints, block-
ages, and illumination [31]. Deep convolutional neural network (CNN)-based perception
and time-based modeling for detection, classification, tracking, and prediction were intro-
duced with the change to Al; however, generalization to new cities, camera geometries,
and exceptional conditions depends on a variety of well-annotated datasets [11,51]. In
order to test models beyond fixed roadside cameras, the field has responded by investing
in benchmark datasets with richer sensor suites (lidar, radar, multi-camera rigs) and UAV
datasets that capture wide areas from various perspective points [15,74].

7



Related Work

2.2 Benchmark Datasets for Traffic Analysis

As models for this type of dataset that this thesis pipeline seeks to replicate, a few
datasets stand out as standard references for accurate and trajectory-rich traffic data.
These datasets establish the benchmarks for future methodological studies in addition to
defining expectations for time resolution and annotation detail.

2.2.1 NGSIM

Some of the first large-scale vehicle trajectory datasets at lane level were created by the
Next Generation Simulation (NGSIM) program [19,24,53,54]. The datasets, which were
recorded using synchronized rooftop video systems, include main roads and boulevard
paths like Lankershim and Peachtree, as well as highway sections like US-101 and I-
80. The high period fidelity trajectories are sampled at 0.1 seconds (10 Hz), giving
comprehensive records of velocity, speed, and lane position is a crucial feature. The
detailed microscopic traffic analysis is made possible by the geographical extents, which
include multiple lanes and range from 0.5 to 0.64 km. For many years, NGSIM has been
used as a standard for research on trajectory prediction, lane change, and car follow.

2.2.2  highD

The highD dataset expanded on this idea by using UAVs to obtain near-roadside cam-
eras’ obstruction and coverage issues, [33,34,57]. HighD includes 16.5 hours of drone
footage from six German highway locations, covering over 110,000 vehicles and 45,000
km, including around 5,600 full lane changes. The bird’s-eye perspective reduces barriers
while preserving realistic driving behavior, and recordings run for an average of about
17 minutes. The dataset includes lane geometries, vehicle classes, and trajectories with
quality flags for all detected vehicles. Naturalistic driving models and safety analysis
techniques have been validated thanks to this dataset.

2.2.3 nuScenes

NuScenes presents an integrated benchmark for autonomous driving, whereas NGSIM
and highD focus on vehicle trajectories [11,44]. NuScenes was recorded in Boston and
Singapore and combines Global Positioning System (GPS)/Inertial Measurement Unit
(IMU) sensors, radar, Light Detection and Ranging (LiDAR), and six cameras. The an-
notations, which cover 23 object classes with bounding boxes, track IDs, and map priors,
are arranged into 20-second scenes with 2H z key frames. Evaluation protocols for detec-
tion, tracking, motion forecasting, and planning have been impacted by its multi-sensor
alignment and consistent scene structure. NuScenes has influenced labeling practices in
the community and offers a template for organizing multi sensor datasets.

These three datasets, NGSIM, highD, and nuScenes, together form the main standards
that this thesis aims to model in the approach. They establish guidelines for cross-scene
consistency, annotation richness, and sampling frequency that guide the development of
the suggested drone-based pipeline.



2.2 — Benchmark Datasets for Traffic Analysis

Veniura Blrd
On-ramp

Figure 2.1: NGSIM US101 study area: coverage and lane schematic. Adapted from
FHWA Fact Sheet FHWA-HRT-07-030 [24].

2.2.4 Urban & interaction-rich aerial trajectory datasets

A collection of UAV-recorded datasets focuses on dense urban interactions at intersec-
tions, roundabouts, and merging areas, in addition to highway-focused corpora like highD.
The inD dataset is a close urban analogue of highD [8], capturing roughly 10 hours of
drone video at German urban intersections with over 11,500 annotated road users and rich
interaction labels (yielding, stopping, crossing). With comprehensive lane geometries and
gap-acceptance scenarios, its companion rounD focuses on multilane roundabouts [35].
To support reliable estimation of near-miss and surrogate safety measures, openDD ag-
gregates more than 62 hours across multiple locations with consistent lane topology and
long temporal windows, pushing scale at roundabouts [9].

9



Related Work

0B3Km/hiID526

L 8} ]
072km/hIDS 10 - 074Kk /n]iD506
|- =T

Figure 2.2: highD dataset: overhead UAV view with annotated vehicles, IDs and speeds.
Adapted from the highD project page [33,34].

Map

"Ped with pet, bicycle, car makes a u-turn, lane change, peds crossing crosswalk"

Figure 2.3: nuScenes multimodal example: synchronized camera images (top), radar and
LiDAR point clouds (bottom left/middle), and HD map (bottom right). Adapted from
Caesar etal. [11].

exiD targets the behavior of the entrance/exit of the highway, focusing on the on-
ramp/off-ramp segments where lane changes, merges, and accelerations occur frequently
[42]. More recent UAV releases broaden the set of scenario: SIND (suburban intersec-
tions with mixed traffic), DRIFT (diverse road geometries and traffic densities), and the
multimodal drone corpus MiTra (vision plus auxiliary sensing) illustrate a trend towards
larger, more varied, and interaction-centric UAV benchmarks [66]. Taken together, these

10



2.3 — Data Collection Strategies

corpora support a drone-first pipeline that produces lane-aware, trajectory-rich data to
complement vehicle-mounted sets (e.g., nuScenes, Waymo).

2.2.5 Drone Trajectory Datasets Beyond highD

Two drone-trajectory databases, in addition to highD, are frequently used as references
for scene coverage and annotation practice at intersections and highway merge areas.
Using accurate vehicle, bicycle, and pedestrian trajectories recorded by flying UAVs and
released with clear labeling and map context, the inD dataset records naturalistic road
users at four intersections in Germany (approximately 10h total) [7]. Drones were used
to reduce blockages, and the exiD dataset, which targets highway entries and exits in
Germany, provides highly annotated trajectories at merged and split locations that are
typically difficult to observe from the ground. It also includes metadata suitable for safety
and interaction studies [43].

The new principles for dataset structure and analysis protocols that direct this replica-
tion effort are further discussed by other large-scale datasets such as Waymo Open [51,58],
Argoverse 2 [2], KITTI [31,32], and INTERACTION [28].

2.3 Data Collection Strategies

After the development of benchmark standards, it is important to take into account the
data collection techniques that make such datasets possible. The location coverage, sensor
types, and ability for motion collection of different methods are different.

2.3.1 Side-Road Cameras

Long-term continuous monitoring is provided by fixed roadside cameras in well-known
locations. The establishment of standard 2D/3D tracking parameters and protocols in
ground-based perspectives was made easier by the KITTI tracking benchmark, which
consists of 21 training sequences and 29 test sequences [31,32]. The detection and track-
ing of multiple vehicles at junctions and highways under weather, light and occlusion
variability was further highlighted by the UA-DETRAC benchmark [59]. Although per-
spective limitations and blockages are more noticeable than in normal top-down views of
the UAV, these datasets are still useful for CCTV-style applications.

2.3.2 Probe Vehicles and Multimodal Fleets

Synchronized multi-sensor devices improve coverage with large fleet datasets. For lidar,
radar, and cameras, the nuScenes dataset (Boston/Singapore) offers well-synchronized
keyframes at 2 Hz with annotations for over 23 object classes and corresponding maps [11,
44]. High-resolution multi-camera and lidar streams with 2D /3D labels and consistent
track IDs across frames are available in the Waymo Open Dataset, facilitating cross-
geography generalization analyzes and robust detection and tracking studies [51,58]. With
HD maps and complex scenarios created for trajectory and planning research, Argoverse
2 provides perception and motion forecasting data [2]. INTERACTION provides precise

11



Related Work

Table 2.1: Comparative Summary of Benchmark Datasets in Traffic Analysis

Dataset Name

Data  Source/Col-
lection Method

Key Features

Primary Use Case

NGSIM

highD

nuScenes

inD

exiD

KITTI

UA-DETRAC

VisDrone

UAVDT

Synchronized rooftop
video cameras on high-
ways [24, 54]

Drones(UAVs)
over German

ways [33,34]

high-

Multi-sensor fleets (6
cameras, lidar, radar,
GPS/IMU) in Boston
& Singapore [11]

UAV (RGB) over Ger-

man urban intersec-
tions [7]

UAV (RGB) over mo-
torway merge/diverge
ramps in Germany [42,
43]

Vehicle-mounted
multi-sensor rigs [22]

Fixed roadside CCTV
cameras [59]

Drones (UAVs) in vari-
ous cities and locations
[74]

Drones (UAVs) with
metadata (weather, al-

titude, camera view)
[15]

High-frequency(10 Hz) ve-
hicle trajectories at the
lane level [24, 53]

Bird’s-eye view with re-
duced occlusions; covers
over 110,000 vehicles [33,
34]

360° sensor coverage with
23 object classes and map
data [11,44]

Top-down (hovering);
~10h multi-scene
episodes; trajectories
for  vehicles, cyclists,
pedestrians  with  map
context

Top-down views of en-
tries/exits; scenario
episodes (merge/diverge);
vehicle trajectories with
map/context metadata

Ground-based per-
spective with data for
2D/3D tracking bench-
marks [31, 32]

Challenges of weather,
lighting, and occlusion
variability from a fixed
viewpoint [59]

Benchmarks  specifically
for aerial detection and
tracking tasks [74]

Approximately 80,000
frames for multi-object
tracking (MOT) from
aerial views [15]

Trajectory prediction,
car-following, and lane-
changing models [19]

Naturalistic driving mod-
els and safety analysis [34]

Integrated  autonomous
driving  research  (de-
tection, tracking, plan-
ning) [11]

Interaction modeling, tra-
jectory forecasting, and
safety analysis

Merge behavior analysis,

safety surrogates, and
planning/evaluation
Standardized 2D /3D

tracking and detection for
ground-level views [22, 32]

Multi-vehicle  detection
and tracking at junctions
from a CCTV perspec-
tive [59]

Evaluating aerial vision
pipelines, especially for
small targets [74]

Benchmarking detection
and MOT algorithms
under various aerial con-
ditions [15]

trajectories and map context to study exchange behaviors, with a particular focus on
high-interaction driving (unsignalized intersections, roundabouts, merging) [28].

12



2.4 — Object Detection

2.3.3 Drones

With adjustable altitude and angle, Unmanned Aerial Vehicles (UAVs, commonly referred
to as drones) offer wide-area coverage depending on the requirement, making it possi-
ble to observe complex junctions and multi-lane hallways. UAV-specific challenges are
defined by two popular benchmarks, VisDrone and Unmanned Aerial Vehicle Detection
and Tracking (UAVDT). For detection and tracking, VisDrone provides detailed image
and video benchmarks gathered from various cities and locations [74]. For detection and
Multi-Object Tracking (MOT) tasks, UAVDT provides approximately 80,000 frames from
around 10 hours of video with metadata (weather, altitude, and camera view) [15]. The
evaluation of aerial vision and motivated pipelines that combine lightweight real-time de-
tectors with MOT appropriate for small targets and frequent obstructions are supported
by these resources.

Operational aspects of capturing UAV traffic

Recent surveys summarize what UAV platforms can (and cannot) measure in traffic
scenes and how flight parameters affect data quality [10,26,45]. A fundamental trade-
off is driven by altitude and camera pitch: lower altitudes improve per-object resolution
but increase perspective distortion and occlusions from large vehicles or street furniture;
higher altitudes reduce occlusions and yield more stable homographies but shrink targets
(smaller bounding boxes, lower signal-to-noise ratio). Viewpoint stability also matters:
hovering over the region of interest with a gimbal-stabilized nadir/oblique view simplifies
tracking and planar calibration, whereas aggressive yaw or lateral motion increases inter-
frame parallax and complicates speed estimation unless tightly compensated.

Practical and legal limitations

Mission planning and airspace rules shape UAV operations: sequence length is limited
by battery endurance and payload; site coverage is constrained by VLOS/BVLOS per-
missions, geofencing, and local altitude ceilings; and privacy policies restrict both camera
pointing and data retention. To improve downstream detection, tracking, and calibration,
the surveys recommend pre-flight checklists (weather, wind, GNSS conditions), frequent
compass/IMU calibration, and conservative speed/altitude profiles to reduce platform
shake and blur [10,26,45]. Consistent with these guidelines, we used hovering flights at
discrete altitudes (30-80m) with limited pitch variation to balance occlusion, resolution,
and calibration stability.

2.4 Object Detection

Object detection is a computer vision technique that uses deep learning to identify and
locate specific objects, such as people or cars, within images or videos. Through the
Object Detection algorithm, it is possible to obtain, starting from video recorded by
Cameras, Drones, or other sensors, which agents are present and their locations.

13



Related Work

2.4.1 YOLO in Practice

YOLO (You Only Look Once) is a family of real-time object detection algorithms that
formulate detection as a single regression problem: given an input image, it directly
predicts bounding boxes and class probabilities in one neural network pass, unlike previ-
ous methods that performed region estimation and classification in multiple stages [46].
This design makes YOLO both accurate and extremely fast, enabling real-time inference
on GPUs. In later versions, the YOLO family introduced better backbone architectures,
anchor-free designs, decoupled detection heads, advanced label assignment strategies such
as SImOTA (Simple Online and Offline Target Assignment) and improved training meth-
ods, leading to modern implementations (YOLOv1-v8) [21, 56].

With its characteristics, YOLOX showed state-of-the-art results among real-time de-
tectors on COCO while maintaining efficiency on conventional GPUs [20,21].Without the
need for external pre-training, YOLOvVT further advanced the real-time frontier by achiev-
ing state-of-the-art average precision at real-time FPS(frames per second) across model
scales, from edge devices to datacenter environments [55,56,63]. Combined, these models
provide advantages for UAV video processing pipelines because they maintain real-time
throughput at levels suitable for aerial footage, and their open-source implementations
are stable and widely supported by active communities [20,63].

The latest research on UAVs and small objects shows that YOLOvS8 functions as an
effective baseline model, which researchers use to improve its performance. The authors of
Modular YOLOv8 Optimization for Real-Time UAV Maritime Rescue Object Detection
[73] introduced modular plug-in enhancements which they added to YOLOv8 to achieve
better accuracy on the SeaDronesSee UAV dataset while maintaining fast processing
speeds. Recent surveys on small and oriented objects in aerial images [60] and the DOTA
benchmark for aerial detection [64] highlight the need for multi-scale features and oriented
representations in UAV scenes. Authors of SOD-YOLOvS: Enhancing YOLOvS for Small
Object Detection [30] developed it to improve small object detection capabilities for
dense UAV operational environments. Concurrently, lightweight YOLOv8 adaptations
have been validated on UAV tasks-e.g., modular plug-ins for maritime rescue [73] and
SOD-YOLOWVS for small objects in dense scenes [30].

2.4.2 Aerial (UAV) Viewpoints

UAYV imaging systems face challenges when detecting small targets because these systems
operate at different altitudes and use angled viewing perspectives. The VisDrone and
UAVDT datasets show reduced average precision for small vehicles and vulnerable road
users compared to the ground view data sets, which indicates the need for advanced
multiscale features and improved data augmentation techniques [15,74]. The research
field of UAV detection focuses on combining different scales of information with anchor-
free detection methods, separate classification and regression processes, and improved

label assignment techniques to improve the detection performance of small objects [20,
21,55,56, 64].

14



2.4 — Object Detection

Remote-sensing detectors for small, oriented targets

The remote-sensing community offers platforms and techniques that directly target small
objects in top-down, dense scenes with random orientations, enhancing VisDrone/UAVDT.
The DOTA benchmark is still the standard aerial detection platform to evaluate oriented
heads and rotation handling, and it established oriented (quadrilateral) annotations at
very large image scales and high instance density [14,65]. The key to recovering small
targets in overhead views is multi-scale feature structure, rotation/orientation modeling,
and attention mechanisms, according to technique overviews from recent surveys [27,60].
Rotation-aware detectors like ReDet, which specifically encodes rotation equivariance for
aerial imagery, are based on the same design principles [25]. Community challenges such
as DeepGlobe and the SpaceNet series advanced road-network extraction from overhead
imagery and standardized evaluation for mapping tasks for complementary context layers
(lanes/roads) that support speed and safety analysis [13,18].

2.4.3 Roadside CCTYV Detectors

Ground view corpora including KITTI and UA-DETRAC enabled researchers to develop
multi-object detection systems for traffic videos at fixed camera positions, which later
influenced both dataset construction and image processing methods that became ap-
plicable to UAV data analysis [31,59]. Ground-view benchmarks tend to show higher
APs because their objects appear larger, but the strategies from these datasets including
temporal smoothing and ROI masking and curriculum schedules prove useful for UAV
applications.

2.4.4 Lane/Marking Extraction (Context for Speed and Safety)

Recent UAV /airborne studies help to combine HD lane maps with trajectories for per-lane
movement and safety analysis. This uses encoder-decoder segmentation with attention
and robust post-processing to extract road markings and lane boundaries even under
shadows and occlusions for lane-aware analysis [23,38]. The semantic layer is an essential
tool that makes it possible to extract distance and lane-consistent speeds from drone
tracking data.

From segmentation to vector maps (roads/HD maps)

Classic road/HD-map extraction has also advanced toward vectorized outputs, going be-
yond pixelwise lane/marking segmentation [23,38]. RoadTracer avoids the brittle post-
processing of pure segmentation and produces cleaner topologies for downstream analysis
by formulating road mapping as an iterative graph-tracing process guided by a learned
policy [4]. HDMapNet demonstrates that lightweight, local lane context can be built
incrementally without full offline HD-map production in the vehicle-mounted setting by
learning online, local high-definition semantic maps directly from onboard camera/L-
iDAR [37]. If the application is speed/safety analytics instead of long-horizon plan-
ning, recent HD-map surveys further support the use of practical, task-driven map layers
(lanes, boundaries, crossings) over bulky, monolithic maps [3]. This drives our decision

15



Related Work

to forego full HD-map building in favor of maintaining a lightweight lane context (for
lane-consistent speeds and safety surrogates).

2.5 Tracking

In order to create consistent identity-based trajectories that result in velocity and speed
profiles, as well as advance measurements, the system must follow detected objects within
every frame. Two main practical approaches are developed for real-time pipeline opera-
tions.

In order to improve ID switch reduction in crowded areas and occlusion situations
while preserving fast processing speeds, DeepSORT applies deep appearance embedding
to the SORT system through its motion model, which uses Kalman and Hungarian asso-
ciation [6,61,62].

Before applying track similarity and motion-cue filters, the ByteTrack system links
all detection boxes, including those with low confidence scores. The main idea is to use
partially hidden targets to improve IDF1 and HOTA performance while providing quick,
real-time results that are better than the MOT17 and MOT20 benchmarks and continued
to perform well across the board [69-71].

Multi-object tracking for aerial footage

In addition to DeepSORT and ByteTrack, a number of MOT techniques are frequently
used to address non-linear dynamics, camera motion, and occlusions in videos. Stronger
appearance signals, camera-motion adjustment and improved Kalman state are some
of the ways that BoT-SORT enhances the SORT /DeepSORT family; reports the high-
est accuracy on MOT benchmarks while still being useful [1]. In scenes where motion
is non-linear, OC-SORT greatly increases robustness by revisiting the SORT pipeline
and suggesting an observation-centric update that decreases buildup of errors during oc-
clusions [12]. StrongSORT provides a stronger plug-and-play baseline with enhanced
identity preservation by revisiting DeepSORT end-to-end (detector, embedding, associ-
ation) [16]. In order to comprehend precision-recall trade offs for ID consistency, these
trackers are frequently evaluated together with DeepSORT /ByteTrack for UAV videos
with small objects and frequent periodic occlusions.

UAV Alternative MOT baselines

In aerial settings, two drop-in baselines are frequently used in addition to DeepSORT
and ByteTrack. In order to preserve identity consistency while remaining real-time, Fair-
MOT carries out joint detection and re-identification in a single network [72]. OC-SORT
returns to geometry-centric association with improved observation handling and motion
modeling, yielding robust results under non-linear motion and occlusions while keep-
ing the pipeline simple and fast [12]. Historically, tracking was summarized with CLEAR
MOT metrics (MOTA/MOTP) [5]; in this thesis we emphasize identity/association-aware
scores such as IDF1 [48] and, where applicable, HOTA [39].

16



2.6 — Calibration and Speed Estimation

2.5.1 Evaluation Metrics

Identity stability functions as a critical element that impacts all traffic analytics sys-
tems. The tracking evaluation system now includes the Higher Order Tracking Accuracy
(HOTA) metric that measures the detection and association and localization quality to-
gether with the Identity F1 score (IDF1) and the Multiple Object Tracking Accuracy
(MOTA) [39,40]. The HOTA/IDF1 evaluation method becomes essential for UAV oper-
ations because it better tracks objects during occlusions and small target detection and
changing viewpoints than MOTA does.

Practical differences in traffic scenes

The ByteTrack system produces superior IDF1/HOTA results in dense aerial traffic be-
cause it operates without any additional re-ID network, which simplifies deployment and
reduces computational resources [70]. The DeepSORT tracking system achieves success
through its ability to track objects by appearance when images have high resolution at
close range and maintains performance during long occlusion periods [62]. The choice of
engineering stacks depends on the particular features of the site, which include its altitude
level, pitch angle, and material density. In our aerial setting (moderate resolution with
altitude-driven scale changes), DeepSORT’s re-ID cues helped maintain identity continu-
ity at 30-60m, whereas ByteTrack remained competitive at higher altitudes (70-80m)
where small boxes and appearance degradation reduce re-ID reliability.

2.6 Calibration and Speed Estimation

Monocular Calibration and Speed Estimation

In traffic videos, the estimation of monocular speed usually depends on planar-scene
assumptions in addition to camera calibration or homography recovery. Automatic cal-
ibration of CCTV footage is the subject of a long line of work. A traditional method
allows speed from a single fixed camera by estimating the vanishing points and the scale
of the scene from multiple minutes of video without user input [17]. Following that, the
BrnoCompSpeed work provided a thorough benchmark and protocol for visual speed mea-
surement along with meticulously examined ground truth for assessment [49]. These tools
are widely used to measure the propagation of calibration error to speed error in monoc-
ular pipelines and to validate calibration processes (vanishing points, focal length/scale
recovery). Before converting tracked pixel displacements to metric distances, our drone-
based pipeline applies the same fundamental idea, ground-plane mapping by homography,
to a UAV configuration with ground control points and homography estimation.

Fixed or Hovering Cameras

The traditional method relies on a flat surface and fixed camera position to calculate a
homography that transforms pixels of ground-plane images into metric distance measure-
ments. The BrnoCompSpeed dataset with later research created a strict calibration and
validation method that used measured distances to show that speed accuracy depends

17



Related Work

on vanishing points, focal length, and scene scale estimation [17,49,50]. For standard
traffic scenes, the most recent research enables automatic calibration, reducing manual
work and also keeping minimum errors for enforcement and safety applications [47].

Moving Cameras and UAV Flights

Variations in altitude or tilt during flight can be corrected using orthographic mapping
with geographic basemaps or pose-based calibration techniques such as Perspective-n-
Poin (PnP) with collected control points to guarantee a stable viewpoint before speed
estimation [29,47]. Pipelines should include consistency checks and periodic recalibration
when drone conditions change, as these methods show that calibration quality can be the
main cause of error in speed estimation even more than detector and tracker noise [47,50].

Pose via PnP (EPnP) vs. Planar Homography

The full camera extrinsics are recovered from 3D-2D correspondences using Perspective-
n-Point (PnP); EPnP solves PnP in O(n) time and is accurate for both planar and non-
planar configurations [36]. Pose estimation and ground-plane projection can be obtained
when trustworthy 3D ground control points (such as surveyed landmarks or LiDAR fea-
tures) are available. Since there are no surveyed 3D points and the road surface inside the
ROI is roughly flat in our setup, mapping pixel trajectories to metric ground coordinates
is made easier and more reliable with a single 2D-2D homography. This decision keeps
the pipeline lightweight while preserving the accuracy required for lane-consistent speeds.

In conclusion, the relevant literature shows how traffic monitoring has changed over
time, moving from fixed point detectors to rich, Al-driven datasets gathered by UAV plat-
forms and ground-based fleets. Although current perception algorithms such as YOLO
and tracking frameworks such as DeepSORT and ByteTrack offer the computational re-
sources required to convert unstructured video into trajectory-based data, benchmark
datasets such as NGSIM, highD, and nuScenes have influenced expectations for sampling
accuracy, annotation richness, and scene consistency.

The complete design of the new pipeline system is shown in Chapter 3 (System Model
and Contributions) that follows. To establish the experimental framework and method-
ological results, the thesis describes how unprocessed drone footage is converted into
structured datasets using a number of modules, including data acquisition, perception,
calibration, kinematic estimation, and visualization.

18



Chapter 3

System Model and Contributions

In this chapter, the complete pipeline is presented. The system converts unprocessed
drone footage into a structured traffic dataset with accurate vehicle trajectories, speed
profiles, and visual characteristics.

The complete pipeline is composed of:

1. Data collection,

2. Detection and tracking,

3. Geometric calibration module,
4. Speed estimation,

5. Output and visualization.

The stages are sequential, each stage feeds the next, and each can be tested or re-
placed independently. Inspired by the limitations of fixed-point sensors, which are rarely
updated and can offer only limited data, the suggested method uses aerial imagery to
record traffic from different perspectives and altitudes, providing more varied and richer
observations. A key contribution is a reproducible end-to-end methodology that includes
robust calibration to map image-plane motion to real-world units, along with a high-
quality, general-purpose dataset for Al research. In order for researchers and engineers
to expand the system, the rest of this chapter describes the entire workflow.

3.1 Data Collection

High-definition RGB cameras mounted on unmanned aerial vehicles (UAVs) are used in
the pipeline’s first stage to capture aerial footage. Due to their mobility, broad opera-
tional boundaries, and capacity to operate at various altitudes and viewing angles, UAVs
were selected. Drones can be repositioned to increase coverage and reduce blind spots,
capturing the same scene from complementary perspectives, in contrast to fixed roadside
cameras. The final videos serve as the system’s input for the detection phase.

19



System Model and Contributions

24
Drone-based images

l

[ YOLOvS

—>[ DeepSORT

-l

0 40

Speed estimation

Drone-based pipeline: YOLOv8 detects vehicles, DeepSORT
tracks them, and the speed estimation module converts their
motion into real-world velocities.

Figure 3.1: High-Level View of the System

3.1.1 Drone and Camera Specifications

The primary data collection tool for this project was the DJI Mini 2 drone. This model
was selected because of its practical advantages, which included its small size and fast
deployment and its adherence to regulations since it weighs less than 250 grams, which
excludes it from multiple registration requirements. The system showed perfect suitability
because of these features which enabled simple data collection from multiple locations
without requiring complicated setup processes.

Figure 3.2: DJI Mini 2

The DJI Mini 2 camera system helped system obtain professional-grade footage that
computers could analyze through vision processing. Its key specifications are as follows:

o Camera Sensor: The drone operates with a 1/2.3” Complementary Metal-Oxide-
Semiconductor (CMOS) sensor. The sensor operates at a small size yet produces

20



3.1 — Data Collection

detailed images when it receives enough light, which occurs during standard traffic
monitoring operations. A larger sensor might offer better low-light performance,
but for our daytime data collection, this was a suitable trade-off for the drone’s
portability.

o Lens: The camera has a fixed lens with an aperture of f/2.8 and a field of view of
83°. The wide aperture allows enough light to reach the sensor, ensuring clear and
sharp video frames.

¢« Resolution and Frame Rate: All videos were recorded at 4K resolution
(3840x2160) and at 30 frames per second (FPS).

e Autonomy: The expected flight time is around 31 minutes, which is relatively short
and represents one of the main limitations of UAVs. However, this is acceptable for
this first implementation.

High resolution is crucial for our task. The system allows YOLOvS8 to detect and
classify vehicles that appear at great distances because it provides enough pixel resolution
for accurate detection. The system would lose track of small objects if it operated at lower
resolutions because these objects would become invisible, leading to total system failure.

The tracking algorithm needs to produce smooth vehicle movements, so it uses a 30
FPS frame rate which generates continuous motion paths. The system maintains an
equilibrium between accurate motion tracking and reasonable data storage needs. The
system operated with a frame rate that matched the application needs because higher
frame rates would have affected processing performance.

The hardware selection, together with the recording configurations, created optimal
raw video data quality, which made it possible to perform object detection, tracking, and
speed estimation.

Environmental Conditions

All video recordings were collected under the same environmental conditions consistently,
maintained to obtain reliable datasets.

e Lighting Conditions: The research team collected data only when sunlight was
present and visibility was at its best. We avoided periods of harsh, direct sunlight
that could cause excessive glare or deep shadows, as these conditions can negatively
impact the performance of object detectors. The YOLOv8 model can achieve higher
accuracy levels because the camera sensor uses consistent indirect light to capture
high-quality image data.

e Weather Conditions: All flights were recorded in clear and calm weather. The
team stopped recording whenever rain, fog, or strong winds occurred. The com-
bination of rain and fog creates visibility problems for vehicles and reduces image
quality, but high winds create drone instability, resulting in unstable video record-
ing. The system would become unstable, creating difficulties for the geometric
calibration process and generating noise in the motion data, thus making speed
estimation more challenging.

21



System Model and Contributions

Standardizing these environmental variables helped us reduce the chances of bias
appearing in our dataset. The standardization process enables the perception module
to demonstrate its actual performance using altitude and traffic density as evaluation
criteria, instead of challenging environmental conditions that affect the results.

Various heights of 30m, 40m, 50m, 60m, 70m, and 80m above the road surface
were used to investigate the effects of object scale, image resolution, and perspective on
subsequent performance. Larger and more detailed vehicle representations are produced
at lower altitudes; at higher altitudes, the field of view is expanded, but the targets are
smaller, and the complexity is increased.

At least two complementary perspectives were recorded for each altitude:

1. Angled view: cars move across the frame, showing their sides;

2. Top-down view: a bird’s-eye view aerial perspective where lane markings and
roofs predominate.

From plain, low-density scenes to complex, crowded situations where tracking and
detection are most difficult, this variation facilitates evaluation across a range of scenarios.

3.1.2 Data Annotation and Preprocessing

An essential component is data annotation and preprocessing, which provide the ground-
truth data to evaluate the performance of all components. It would be impossible to
objectively evaluate the detection and tracking capabilities of the system without precise
and consistent labels.

Why Ground Truth Annotations Are Needed

Ground-truth annotations, which provide the precise location (bounding-box coordinates)
and category (class label) of each object of interest in a video frame, act as the object’s
target reference. Labeled data are needed because they provide the accurate responses
required to optimize the YOLOvV8 object detector and they serve as the standard by
which the predictions of the tracker and the detector are evaluated, i.e., mean Average
Precision (mAP) and IDF1 score.

Preparing the Raw Data

Long video recordings, usually lasting several minutes, were made up of the raw drone
input. We first divided each flight into scene-based clips, ensuring that each sequence had
a fixed viewpoint and altitude to prepare these recordings for annotation and subsequent
machine learning tasks. The details of each recording are summarized in Table 3.1.

Annotation Tool: CVAT

We used the open-source browser-based Computer Vision Annotation Tool (CVAT),
created by Intel, for labeling. For training YOLOv8, CVAT was selected due to its ability
to export directly to YOLO format, support frame-by-frame video-based labeling, have

22



3.1 — Data Collection

ID Perspective  Altitude (m) Duration (mm:ss)
A_30m Angled 30 01:48
A_40m Angled 40 02:07
A_50m Angled 50 02:03
A _60m Angled 60 02:02
A_70m Angled 70 02:07
A _80m Angled 80 02:02
B_30m Angled 30 02:00
B_40m Angled 40 02:00
B_50m Angled 50 02:03
B_60m Angled 60 01:37
B_70m Angled 70 01:55
B_80m Angled 80 0:38
C_135m  Top-down 30 01:57
C-145m  Top-down 40 02:02
C_170m  Top-down 50 01:58
C-190m  Top-down 60 01:56
C220m  Top-down 70 01:58
C_260m  Top-down 80 01:59

Table 3.1: Drone recordings used to build the dataset.

a clean interface for managing large object class sets, and have built-in visual checks for
bounding-box quality. Additionally, the amount of manual work needed was significantly
decreased by CVAT’s interpolation-based bounding-box tracking across frames, which
allowed annotators to modify boxes according to changes in object position or scale.

Annotation Process

The annotation protocol was designed to produce high-quality and consistent labels.
We annotated the first 200 frames of each video after tests showed that this amount was
sufficient to record multiple instances of each target class across different spatial positions
without overloading the annotators. To improve model performance, we started with the
VisDrone2019 classification and rebalanced and simplified the set of labels: tricycle and
trailer were eliminated, closely related categories (pedestrian and people — person) were
combined, and the seven core classes (person, bicycle, motorcycle, car, van, truck, and
bus) were retained.

In order to reduce background and preserve uniform placement throughout frames,
bounding boxes were carefully drawn around the visible extent of every object, including
areas that were partially covered up. Boxes were transmitted through time using CVAT’s
interpolation when appropriate, with manual corrections made whenever the scale or po-
sition of the objects changed. Finally, each bounding box was assigned one of the seven
predefined labels to ensure a consistent mapping between the annotation files and the
YOLOVS class indexes. High-quality ground truth is essential because noisy or inconsis-
tent labels can lead to models learning incorrect correlations. In order to find missing

23



System Model and Contributions

< @ @ localhost:8080/tasks/1fjobsf1 44 in3 . Finish update {
CVAT Projects Tasks Jobs Cloud Storages Requests Analytics o @ R samisani68 «
B i . KA @
E s me Ao HLSPODN e T Ao 109 BB 0 O sk
* Objects. Labels Issues. =
& =h u s i’ , | ltems:31  Sortby ID - ascent
- (5] @ -
2 ‘
33
RECANGLETRACK =
= H < > L]
=3 Q& A @ * %
35
RECTANGLETRACK "
& L] < > L]
Q& R @ «
(]
¥ motorcycle
O RECTANGLE TRACK
] < > M
— R & A @ * 2
G :
RECTANGLE TRAGK " 0
v  Appearance
=y
Color by
(] X l Label Instance Group
. QOpacity
& Y .
| selected opacity
© e

Outlined borders *
..... Show bitmap Show projections

Figure 3.3: CVAT labeling

instances, incorrect boxes, and box drift, we visually reviewed each annotated sequence
frame by frame. Then, we loaded all YOLO-format label files into a verification script
to perform format validation. This allowed us to quickly identify coordinate errors, off-
image boxes, and class-index inconsistencies by placing the boxes on the corresponding
frames.

Conversion to YOLOvS8 Format

A particular annotation format is required for YOLOvVS:

Fach image has a single text file with the following lines: class_id, x_center, y_center,
width height. Regarding image sizes, all coordinates are normalized to fall between 0 and
1.

This format included our raw annotations that were exported straight from CVAT,
saving us additional conversion steps and preparing the dataset for training without the
need for additional preprocessing.

We split the data set into three:

o Training set (70%), trained YOLOVS.

o Validation set (15%), Used in training for hyperparameter tuning and overfit de-
tection.

o Test set (15%), reserved exclusively for final testing.

24



3.2 — Perception Module

Frames of the same video were not used in more than one split to prevent data leaks.
This was done to test the model in scenes that had never been seen before, making the
test more realistic.

After preprocessing and annotation, we had a clean and consistent dataset ready
for YOLOvS. Every instance of an object was marked with a class label and a precise
bounding box. The dataset was carefully chosen to maintain the underlying class distri-
bution seen in actual traffic scenes while being sufficiently balanced for detector training.
The reference standard for evaluating multi-object tracking performance and detection
accuracy is this ground truth.

3.2 Perception Module

It starts with processing raw video frames to detect and track all road users. The system
consists of two main components, which are object detection and multi-object tracking.

3.2.1 Object Detection with YOLOvVS8

We used YOLOvVS, one of the models in Ultralytics’ ”You Only Look Once” family. YOLO
offers a good trade-off between speed and accuracy by framing detection as a single-
pass prediction problem that yields bounding boxes, class probabilities, and confidence
scores for every frame. The architectural changes made to YOLOv8 (modern backbone,
improved neck, decoupled heads) increase sensitivity to small objects, which is appropriate
for our use case in aerial views, where vehicles can only take up a few dozen pixels.

YOLOvS8 was chosen for some practical reasons. provides high frame rates with ac-
ceptable accuracy, which is necessary for long drone recordings. The computational over-
head of two-stage detectors, like Faster R-CNN, is reduced by its single-pass design. It
shows stronger performance on small objects, crucial for overhead views with distant ve-
hicles. Finally, the Ultralytics implementation provides clean Python APIs and training
scripts, simplifying integration and fine-tuning.

.........................................

C-Concatenation over
channel dimension

: =5 cls
o RepBlock | Efficient
1 Decoupled Head
| reg
Conv | |
I 2
| Efficient cls
RepBlock
* Decoupled Head
' L
Conv | reg
| ¥
! Efficient El
3 .—’
| Decoupled Head
[ e —— / 'P

Figure 3.4: YOLOvS architecture (reproduced from [52]).

\
U-Up-sample :

EfficientRep
Backbone T

[
I
I
I
|
I
I
I
I
!
I
I
I
I
I
T
|

25



System Model and Contributions

Table 3.2: Training configuration for YOLOvS8 variants on the UAV traffic dataset.

Model Init. weights Train. schedule Batch Optimizer LR schedule
(epochs@imgsz)
YOLOv8n COCO pre- 50@640 16 SGD + momen- Cosine decay
trained tum
YOLOv8l COCO pre- 100@1024 16 SGD 4 momen- Cosine decay
trained tum

Common inference settings: NMS IoU = 0.60; conf. threshold = Ultralytics default unless stated.

Fine-Tuning with VisDrone

The default YOLOv8 models are pre-trained on COCO, which prioritizes larger object
scales and ground-level views. Targets are smaller and backgrounds (roads, buildings,
lane markings) are more intricate in aerial footage. We fine-tuned using VisDrone, a
drone-based dataset of urban and suburban scenes whose object sizes, viewpoints, and
road geometries correspond more closely to our target domain, in order to address this
domain gap. This alignment is especially useful for highway or intersection layouts, mixed
traffic with pedestrians and bicycles, and small vehicles in aerial images.

We limited the classification to seven pertinent classes (person, bicycle, motorcycle,
car, van, truck, and bus) after converting VisDrone annotations to YOLO text files with
class indices and normalized box coordinates prior to training. To prevent imbalance, rare
or out-of-scope categories (tricycle, trailer) were eliminated, and closely related categories
(pedestrian / people into person) were combined. In order to facilitate consistent model
selection and evaluation, we lastly created training, validation, and test splits.

We evaluated two capacities: YOLOvSI (large) for greater accuracy at higher com-
putation cost and YOLOv8n (nano) for real-time, resource-constrained scenarios. The
models were optimized using random gradient descent with velocity and a cosine learn-
ing rate schedule after initialization from COCO pre-trained weights. We performed two
runs to highlight small object recall: 50 epochs at 640 x 640 resolution and 100 epochs
at 1024 x 1024. In order to stabilize gradient updates and fit the available GPU memory,
a batch size of 16 was chosen. In order to balance recall and precision, non-maximum
suppression employed an IoU threshold of 0.6.

Consistent improvements in metrics and qualitative behavior were obtained through
fine-tuning. In far roads, where vehicles frequently measured less than 30 x 30 pix-
els, small-object recall significantly improved; confusions between visually similar classes
(such as cars and vans) decreased; and both mAP5y and mAP5p.95 increased compared
to baselines that only included COCO. Furthermore, predictions were more temporally
stable, which improved downstream association and decreased frame-to-frame flicker. For
example, the optimized YOLOvSI detected significantly more vehicles than the COCO-
only model, particularly at long range, on a test sequence at an altitude of 70 m. Table 3.2
summarizes the training configuration for YOLOv8n/1 on our UAV dataset.

Stronger detection improves tracking and speed estimation in three ways: more con-
sistent boxes reduce false identification, stable class labels limit identity switches, and

26



3.2 — Perception Module

higher recall results in longer and more complete trajectories. In fact, training YOLOvS
in VisDrone makes a general-purpose detector perfect for aerial traffic on roads and in-
tersections.

A More Comprehensive Look at YOLOv8 Fine-Tuning

A careful selection of training hyper parameters was necessary to optimize the YOLOvS
model for our particular task of aerial vehicle detection. These settings have direct control
over the learning process, they were selected to avoid problems like overfitting by keeping
a balance between stable convergence and model accuracy.

Learning Rate and Timetable: We started training at a learning rate of 0.01(Ir0=0.01).
For similar object detection tasks, this value is a typical and useful starting point. In
order to improve the model learning over time, we used a schedule for the cosine learning
rate(cosine). This technique allows the model to make large initial improvements and then
more accurately adjust its weights later by reducing the learning rate during training.

Batch Size: A batch size of 16 was chosen for training (batch=16). The main con-
sideration in this decision was to find a balance between the stability of training and
computational resources. A batch size of 16 offered a good option, fitting within our
available memory, and the model learned from a sufficiently different set of examples in
each iteration to ensure good generalization.

Data Augmentation: We used a number of data augmentation strategies to help the
model better handle the variances found in actual aerial footage. By making customized
copies of preexisting images, these methods artificially increase the size of the training
dataset. Among the major improvements were:

By combining four distinct training images into one, a technique known as mosaic
augmentation forces the model to learn how to recognize objects in a variety of settings
and at varying scales.

Geometric Transformations: We applied the pictures with random translations, scal-
ing, and rotations. As a result, the model can better adjust to the drone’s altitude and
perspective.

Color Space Adjustments: Small changes in brightness, contrast, and vibrancy were
made to simulate various lighting scenarios and improve the detector’s strength during
the day. You usually don’t need to add extra commands for the data augmentation
techniques (color adjustments, mosaic, and geometric adjustments) unless you want to
change their default values because they are enabled by default in the YOLOvS training
pipeline.

We guarantee that the fine-tuning procedure is not only efficient, but also systematic
and repeatable by providing justification for these decisions. Achieving the high detection
accuracy described in Chapter 4 required a combination of robust data augmentation, a
suitable batch size, and a well-tuned learning rate.

Multi-Object Tracking

Following detection, the tracking module assigns persistent identities to objects across
frames, turning per-frame bounding boxes into continuous trajectories. This feature is

27



System Model and Contributions

crucial for traffic analysis because without accurate identity maintenance, vehicle tracks
fail, and speed estimation loses its precision.

Challenges not found on the ground are introduced by aerial footage. Blockages occur
when cars overlap or go under bridges and trees; perspective effects change over the
frame; and vehicles take up fewer pixels, making them more difficult to follow over time.
Despite these challenges, efficient tracking uses both time and geographic information
to determine whether a current frame detection matches an object that has been seen
before.

Our system uses a tracking-by-detection methodology. For every frame, YOLOv8
generates detections on its own. The tracker then uses visual similarity and predicted
motion to associate these detections with tracks that already exist, creates new tracks for
new objects, and ends old tracks when observations stop. We can independently upgrade
the tracker or detector due to this modular design.

o ByteTrack:

ByteTrack emphasized on strong data association, even in cases where detections are
not perfect. It divides detections into high- and low-confidence sets and carries out
association in two passes: first, it matches high-confidence detections to tracks that
already exist using motion prediction and IoU-based Hungarian assignment; second,
it reconciles remaining tracks with low-confidence detections to recover objects that
were momentarily obscured or missed. After a long break, the tracks are retired
and new tracks are created for unmatched detections. In practice, this approach
reduces the production of false tracks and increases the robustness to temporary
misses. One drawback of association is that it mainly uses motion and bounding-
box geometry, lacking appearance features, which can lead to more identity switches
in scenes with a large number of visually similar vehicles.

Detected Boxes High Conf Track
from YOLO
) — 2 First
- Association
Category by 1.Kalman Fil
Detection Score
:] 3.Second >
e Association _
Unmatched
C_J are

Low Conf discarded

Figure 3.5: ByteTrack architecture (reproduced from [67]).

e DeepSORT:
28



3.2 — Perception Module

DeepSORT adds appearance-based re-identification to the standard SORT (Simple
Online and Real-Time Tracking) framework. A convolutional network extracts an
appearance structure for every detection, a Kalman filter predicts the next position
of each track, and association minimizes the total cost that takes into consideration
both geometric proximity (e.g., IoU) and appearance similarity (cosine distance).
The additional appearance model facilitates the maintenance of identity, especially
on crowded roads, through close interactions and small impediments. The limi-
tations are sensitivity to sudden changes in light between frames and additional
computation for feature extraction.

DeepSORT

Association Metrics

Oblzcéfgzzc 08 —* Kalman Predict —r Mahalanobis Distance = . P Hungarian Assignment
o e aanie
Descriptor

Figure 3.6: DeepSORT architecture (reproduced from [68]).

In fact, at lower flight altitudes (30-60m) the appearance branch in DeepSORT im-
proves ID consistency, while at higher altitudes ByteTrack stays competitive despite
lacking re-ID, thanks to its robust two-pass association on sparse, small detections.

Comparative Evaluation and Selection

In order to compare a geometry-only association strategy (ByteTrack) against a geometry-
plus-appearance strategy (DeepSORT), we deployed both trackers and tested them on
identical YOLOvS8 detections at various altitudes and traffic densities. To ensure that
improvements in identity, stability and temporal consistency resulted in further utility,
the evaluation took into account common MOT metrics, such as IDF1 for identity preser-
vation, MOTA/MOTP for overall accuracy and localization precision, and average track
length for continuity. Overall, DeepSORT was chosen as the pipeline’s default tracker
because it offered longer, more reliable identities in dense traffic. In situations with less
traffic, ByteTrack was still a strong choice because of its accuracy and efficiency, which
resulted in reliable trajectories at a reduced computational cost.

Continuous, accurately associated trajectories are necessary for speed estimation.
While DeepSORT’s appearance indicators help maintain identity through collisions and
lane changes, resulting in fewer breaks in trajectories, ByteTrack’s precise association re-
duces the possibility that spurious detections could affect speed calculations. Accordingly,
ByteTrack is preferred for speed and accuracy in light to moderate traffic, while Deep-
SORT is useful for scenes that are crowded, even though it has a higher computational
overhead.

29



System Model and Contributions

DeepSORT Implementation Details

We chose DeepSORT as our main algorithm for the tracking module because of its ex-
ceptional ability to preserve object identities in situations with high traffic. We set up
its essential parts as follows to get this performance: Model of Appearance Descriptor:
The deep appearance descriptor of DeepSORT, which learns to identify a car based on
its visual characteristics, is its strongest point. A standard convolutional neural net-
work (CNN) that had been pre-trained on a sizable person re-identification dataset was
employed. The features that this network learns are general enough to successfully dif-
ferentiate between various vehicles based on attributes such as color and shape, even
though they were trained on humans. When a car has been momentarily obscured, or
“occluded,” by something like a bridge or a bigger truck, this visual information is essen-
tial for re-identifying it.

Association Gating with Mahalanobis Distance: DeepSORT uses a two-factor authen-
tication procedure when linking new detections to tracks that already exist. It starts by
predicting where a car should be in the following frame using the Kalman filter. The
distance between a new detection and this predicted position is then calculated using
the Mahalanobis distance. For this distance, we established an optimistic threshold; a
detection that was considered an unlikely match and rejected if it was too far from its
expected location. This process, called gating, reduces tracking errors and efficiently
removes unreliable associations.

Configuration of the Kalman Filter: DeepSORT’s motion prediction core is the Kalman
filter. We set it up using a conventional linear motion model with constant velocity. For
highway traffic, this model makes the accurate prediction that cars will continue to travel
in a generally constant direction and at a relatively constant speed from frame to frame.
Even if a detection is missed for a few frames, the Kalman filter can still track vehi-
cle trajectories smoothly because it is constantly updating its prediction based on new
detections.

Our DeepSORT implementation was able to generate the long, stable vehicle tracks
required for precise speed estimation by fusing the strong re-identification capabilities of
the deep appearance model with the predictive power of the Kalman filter.

3.2.2 Experimental Preprocessing with Semantic Segmentation

We conducted a study of exploration to see if pre-processing frames with semantic segmen-
tation could enhance YOLOvS8 along with the main detection-tracking pipeline. Isolating
the road and blocking out unnecessary background (sky, trees, buildings) was supposed to
concentrate the detector on the area of interest, decreasing false positives, and enhancing
recall, especially for small or distant cars.

Fach frame was semantically segmented using a standard DeepLabV3 network from
PyTorch (implemented in background-subtraction.py), and a mask was created using
CVAT to preserve pixels from target classes (e.g. car, bus, truck). A foreground-only
video was created by blacking out non-target pixels. Although this approach was easy
to implement, it was limited by the classification of the pre-trained model which only
retains the objects it was trained to recognize and does not learn a generic road region.

30



3.3 — Geometric Calibration Module

We trained a domain-specific segmentation model to distinguish between two classes
of foreground (road surface and on-road objects) and background directly in our drone
footage to work within these limitations. To identify the road as a foreground region,
polygonal masks were added to the frames created by frames.py (through convert-json.py).
split.py was used to separate image mask pairs into training and validation sets. Af-
ter that, train.py was used to train a DeepLabV3 model for 100 epochs, learning the
geometries of highway scenes. The file checkpoints_best_model.pth contained the best
checkpoint.

predict.py was used to apply the custom model to test videos. To visually verify
that the road surface and on-road objects were appropriately isolated, the predicted fore-
ground mask appeared semi-transparently (green) on top of each frame. Both the original
videos and the masked videos created by each segmentation technique were subjected to
YOLOVS in order to measure impact. We evaluated whether the preprocessing step pro-
vided advantages by comparing detections from both pipelines against ground truth and
reported standard metrics using the script YOLO-Comparison.py. Next chapter presents
the results in detail.

3.3 Geometric Calibration Module

Tracks extracted in pixel coordinates must be geometrically calibrated to obtain real-
world meaningful measurements. Due to perspective effects introduced by aerial video,
the pixel distances do not precisely match the ground distances. To address this, we use
a projective calibration based on Ground Control Points (GCPs).

Using Google Maps’ real distance measurements, a human operator manually selects
particular spots on the road whose exact geometry is known for each video. Assume
that P = [X Y 1]7 stands for the corresponding ground-plane coordinates (meters) and
p = [u v 1]7 for the homogeneous image (pixel) coordinates. A 3 x 3 homography H is
used to map points between planes:

P ~ Hp.

It is estimated and stored for later use by a minimum of four different GCPs. Speed
estimation can then be performed following by analyzing the calibrated trajectories in
metric units.

GCP Selection Strategy

The quality and location of the Ground Control Points (GCPs) have a fundamental
impact on the geometric calibration’s accuracy. The four GCPs were chosen using a
strategy intended to optimize the accuracy and stability of the homography matrix. To
find a solution for the homography, at least four points must be created and where they
are placed is important. Reasons for Selection: GCPs that were parallel (on the same flat
plane as the road), static and easily observable were the ones we chose. Features such as
the corners of the applied road markings or noticeable cracks in the road were considered

31



System Model and Contributions

ideal points. Since their locations are not fixed, we avoided using temporary objects such
as cars or shadows.

Placement is important. The four GCPs were spread out as widely as possible to
cover the main traffic movement area in a large rectangle. This is the most crucial
element in getting an accurate calibration. The entire area can be accurately mapped
by the homography transformation when the points are widely separated. Applying the
transformation to points far from the center can result in large, unpredictable errors if
the points are grouped together in a small area. In particular for cars at the frame’s
edges, this deformation would result in wildly incorrect speed estimates. In conclusion,
one of the main possible causes of pipeline error is the wrong choice of GCPs.

3.4 Speed Estimation

Vehicle speeds are reliably and consistently estimated using the calibrated trajectories.
This step relies on precise per-frame detections, tracks that are temporally consistent,
and accurate plane homography across the region of interest.

As is common for highways, we assume that the observed road area is nearly flat.
3D methods would be necessary for significant deviations from flatness, such as steep
banking. To correct for perspective errors caused by the angle of the camera, the image
points (u,v) are mapped to the ground plane points (X,Y’) in meters using homography
H.

By clicking on image features and providing equivalent metric distances calculated
using high-resolution basemaps (e.g., Google Maps "Measure distance”), GCPs are inter-
actively collected (click-gcp.py). Pixel coordinates (*-points.csv) and metric require-
ments (x-distances.csv) are stored by the script. after that, calculate-matrices.py
calculates H that most accurately maps the chosen points in the image to a locally de-
termined ground coordinate frame.

(a) Google Maps measurement (b) GCP collection

Figure 3.7: Ground Control Points (GCPs) and homography estimation.

To reduce the effect of height bias, a stable ground-contact reference point is selected
for every detection on a tracked object; the center of the bottom border of the bound-
ing box is used. To obtain metric trajectories, the script calculate-speed-smooth.py

32



3.4 — Speed Estimation

projects back the sequence {(ut,v¢)} into the ground plane coordinates {(X¢,Y;)} using
H (OpenCV perspectiveTransform).

Source Points (Drone's View) Destination Points (Top-Down View)

Width (meters)

cv2.getPerspectiveTransform()

|

(s4232W)
y3bua

[[ a, b, c ],
4 3 [ d, e, f1],
[ g, h, 11] 4 3

(Pixel Coordinates) 3x3 Homography Matrix

(Metric Coordinates)

Figure 3.8: Projection of vehicle trajectories from image to ground plane.

The perspectiveTransform function

At the core of our speed—estimation module is OpenCV’s cv2.perspectiveTransform.
Given a 3 x 3 homography H, the function maps 2D points from the image plane to a
rectified ground plane. In our setup this “top—down” plane is defined by Ground Control
Points (GCPs) with coordinates specified in metric units; therefore, the outputs are in
meters (up to the accuracy of the calibration).

Input:

o Source points (u,v): the vehicle ground—contact points (bottom—edge centers of the
boxes) in pixel coordinates, stacked as an array of shape N x 1 x 2 (float32/float64)
for OpenCV.

e Homography H: a 3 x 3 matrix estimated from image — ground GCP correspon-
dences. We compute H with cv2.getPerspectiveTransform when using exactly
four non—collinear points, or cv2. findHomography (optionally with RANSAC) when
using more than four for robustness.

Planar homography and interpretation

Let
a b c ! U au+bv+c
H=|d e f], y|=H |v| = |dutev+ [, (:c,y):(%/,ya/),
g i w 1 gu+hv+i

33



System Model and Contributions

This mapping is projective: after calculating (z’,y’,w), we divide by the homogeneous
coordinate w = gu-+hwv+1i (not by g or h separately) to return to Cartesian ground-plane
coordinates. In the affine special case (9 = h = 0), the linear portion that reduces to
rotation/scale/shear is the 2 x 2 block [g Z} In the affine case, the terms c, f are pure
translations; otherwise, they function as offsets in the numerators. Projective effects,
such as parallel convergence, are introduced by the coefficients g, h, which also establish
the normalization w. A normalization of H to i = 1 is common; a homography is defined
up to a nonzero scale. Road plane perspective is compensated by a planar homography,
but 3D depth is not recovered.
Output: An array with the same shape as the input points is returned by cv2.perspectiveTransform;
each (u,v) is mapped to (X,Y) on the ground plane. The resulting trajectories are in
metric units and appropriate for speed computation when GCPs are specified in me-
ters (and lens distortion is minimal or pre-corrected). In practice, when the camera is
oblique, we apply this to the bottom-edge center of each detection to reduce bias from
vehicle height.

The physical motion that occurs between each frame is the following;:

Ady = /(X — Xe1)2 + (Y — Yeor )2,
At =1/FPS
The speed per frame is v; = Ad/At (m/s), which is multiplied by 3.6 to get km/h.
We apply a moving average filter (window = 5 frames) to {v;} to reduce high-frequency
noise from detection jitter, small association errors, and parked cars in some scenes. This
reduces false peaks while maintaining the underlying trend. The mean of the smoothed
values {v¢} is then used to determine a single representative speed for each track.

Output and Visualization Module

The pipeline produces two parts for quality control and analysis. CSV logs initially
provide vehicle ID, class, frame index, image coordinates, calibrated ground coordinates,
and speed estimates to help with traffic analytics. Second, operators can visually verify
motion consistency, tracking, and detection by adding bounding boxes and current speeds
to annotated videos. Upgrading or replacing components, like other calibration techniques
or different detectors and trackers, is made possible by the modular design, which prevents
the need to entirely rebuild the pipeline.

3.4.1 Implementation Details and Validation

The pipeline was successfully completed using existing open source libraries and created
Python scripts for the project. This thesis was designed using Python programming
language because of its large number of libraries for computer vision, data analysis, and
machine learning.

The following are the main libraries that create the basic structure of the pipeline:

e The object detection stage is carried out by Ultralytics YOLOvS. The Python
API provides a simplified interface for loading the optimized model and making
predictions on video frames.

34



3.4 — Speed Estimation

e For all image and video processing tasks, including reading and writing video files,
manipulating images, converting color spaces, and most importantly, calculating
the perspective transformation matrix, OpenCV (cv2) was the main tool (getPer-
spectiveTransform, perspectiveTransform).

e Pandas: For any kind of data manipulation. In order to facilitate effective data
filtering, grouping, and merging, it was utilized to handle detection and tracking
logs, which were processed and stored as DataFrame objects.

e DeepSORT Real-time: This library offered the DeepSORT algorithm’s implemen-
tation for the multi-object tracking phase.

e The foundation of all numerical operations is NumPy, which is especially useful for
managing coordinate arrays and performing the mathematical computations needed
for speed estimation.

e Matplotlib and Seaborn are used in the analysis scripts to create all plots and
visualizations, such as heatmaps, line plots, and comparison charts.

o The YOLO-Comparison.py script use scikit-learn to compute standard performance
metrics like recall, precision, and F1 score.

To ensure accuracy, easy debugging, and reliability, all intermediate and final data
output, such as tracking results, detection logs, and final speed calculations, were saved
in the common CSV format (Comma-Separated Values). main.py coordinated the entire
pipeline, using Python’s subprocess module to execute each step in the right order.

The quantification of detection and tracking performance (e.g., mAP, IDF1, MOTA /-
MOTP), calibration accuracy, speed estimation results, and runtime trade-offs between
operating conditions are presented in the next chapter together with ablation studies.

35



36



Chapter 4

Results

The traffic analysis pipeline developed is evaluated in this chapter. Evaluation of the sys-
tem requires precise measurement of the core components, which include object detection
and speed estimation, and video recording data analysis. The assessment procedure will
validate the design choices made in Chapter 3 and demonstrate the system performance
under various operating conditions.

4.1 Methodology

A systematic evaluation methodology was developed to ensure the reliability and accu-
racy of the results. In this section, the experimental setup, test datasets, and specific
performance metrics used for each evaluation task are covered.

Experimental Setup

The evaluation process had to keep to strict rules that established a particular evaluation
system in order to provide reliable and accurate results. This section presents the per-
formance evaluation standards, testing databases, and experimental design that apply to
each evaluation task.

Datasets for Evaluation

As explained in Chapter 3, the evaluation depends on the datasets that were collected
and annotated. The video recordings were taken at various drone altitudes between
30 and 80 meters and arranged into three series (A, B, and C), each representing an
individual element of the traffic flow. A manually annotated test set — consisting of 15%
of the annotated data — was used for qualitative evaluations that needed ground truth.
To guarantee a fair evaluation of performance, this test set was used for every type of
training and fine-tuning.

4.2 FEvaluation Metrics

Performance of each pipeline component was evaluated using a set of accepted metrics:

37



Results

¢ Object Detection

mean Average Precision (mAP) was used to analyze the optimized YOLOv8 model,
specifically mAP@0.5 (IoU threshold of 50%) and mAP@0.5:0.95 (averaged on mul-
tiple IoU thresholds). These metrics offer an accurate evaluation of both classifica-
tion and localization precision. Furthermore, the ability of the model to generate
false positives compared to false negatives was evaluated using Precision and Recall.

e Multi-Object Tracking

The motmetrics library’s implementation of standard metrics from the MOTChal-
lenge benchmark was used to compare the tracking algorithms to ground truth
annotations. Some of the main metrics are the following:

— Multi-Object Tracking Accuracy, or MOTA: a total score that takes into
consideration identity switches, false positives, and false negatives to measure
the tracker’s overall performance.

— IDF1 (ID F1 Score): evaluates the tracker’s capacity to maintain accurate
and reliable object identities over time, which is crucial for trajectory-based
analyses like speed estimation.

e Speed Estimation

Qualitative and quantitative evaluations were performed on the final speed es-
timates. Visual examination of the annotated videos created by visualize.py
was part of the qualitative evaluation process. To analyze speed distributions,
space patterns, and variations in various tracking conditions, quantitative evalua-
tion used a variety of plotting scripts (advanced heatmap.py, per_frame.py, and
comparison_plot.py).

The results of these evaluations are presented in detail in the section that follows, Nu-
merical Results , with tables and figures to support the conclusions.

4.3 Numerical Results

The results of the execution of the traffic analysis pipeline, both quantitative and qualita-
tive, are shown in this section. The findings are presented to correspond with the system’s
main phases, which include object detection, multi-object tracking, pre-processing for ex-
perimental segmentation, final speed estimation, and traffic flow analysis.

4.3.1 Object Detection Performance

Since the object detection module supports all further analyses, its performance quality
is crucial. The remaining test set, which included annotated frames that the model had
not been exposed to during training or validation, was used to rate the refined YOLOvS8I
model. The statistical gains between the first fine-tuning run (50 epochs at 640x640
resolution) and the last, more rigorous training run (100 epochs at 1024x1024 resolution)

38



4.3 — Numerical Results

are described in this section. The three most crucial metrics were recall, precision, and
mean average precision (mAP).

train/box_loss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B)
18 175 —— results 038 034
----- th
smoot 1.05 036
16 0.32
0.34
14 0.32 030
0.30
12 0.28
0.28
0 20 40 0 20 40 0 20 40 0 20 40
1ot val/box_loss val/cls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B)
182 0.125
1.80 0.120
L78 01151
176 0110
174
0.105
172
0.100
0 20 40 0 20 40 0 20 40 0 20 40 0 20 40
(a) Earlier Model
train/box_loss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B)

—e— results

038 0.355
++ smooth
0.50 0.350
036 y y
0.345
0.48
0.34 0.340
0.46
0.32 0.335
0 20 40 0 20 40 0 20 40 0 20 40 0 20 40
val/box_loss val/cls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B)
1.82
126 0.375 0.195
180 0370
125 0.190
178 0.365
124
0.360 0.185
176
123 0.355
0.180
174 122 0.350
0.345
0 20 40 0 20 40 0 20 40 0 20 40 0 20 40

(b) Improved Model

Figure 4.1: Training and validation metrics

The advantages of the more strict training program are clearly shown in the training
curves in Figure 4.1. In contrast to the "Earlier Model,” which displayed visible signs
of fluctuation or overfitting, the "Improved Model” shows more stable and consistent
convergence in its validation loss curves (box, cls, dfl), meaning a better generalization.
In addition, the enhanced model’s precision and recall metrics show a more consistent
positive trend, indicating a more reliable learning process.

39



Results

Confusion Matrix Normalized Confusion Matrix Normalized

017 003 003 &
2 052 o014 003 002
3
g
003 024 005 003 003 018
0 016 004 004 014 024

¥
o

ar  motorcycle bicycle pedestrian
bicycle

motorcycle

Predicted
truck

Predicted

ricycle

t

030

background trailer

pedestrian bicycle motorcycle  car van  truck bus  tricycle trailer backgrounc
True

(a) Earlier Model (b) Improved Mode

Figure 4.2: The diagonal values represent the percentage of correct classifications for each
class

The model’s enhancements are shown in detail by the confusion matrices. A common
problem in drone footage is the model’s inability to accurately distinguish visually similar
vehicle types; the "Improved Model” shows noticeably higher values along the diagonal
for important classes like person, van, and truck. Less misclassifications, such as between
car and van, are seen in a reduction in irregular values.

With a mAPQO0.5 of 92.3%, the model showed a high capacity to accurately locate
and classify vehicles in aerial video. The recall of 90.8% shows that the model correctly
identified the great majority of vehicles in the test frames, and the high precision score
of 94.8% shows that the model produced very few false positive detections.

These strong results support the two-phase fine-tuning approach, confirming that
adapting the model first to the VisDrone dataset and then on custom data was incredibly
successful for this particular task.

Table 4.1: Comparative Performance of the YOLOvS8] Model Before and After Intensive
Fine-Tuning.

Metric Earlier Model Improved Model
(50 Epochs, 640px) (100 Epochs, 1024px)

mAP@0.5 (%) 88.0 92.3

mAP@0.5:0.95 (%) 68.0 74.5

Precision (%) 85.0 94.8

Recall (%) 89.0 90.8

40

~03

-02

-01

-00



4.3 — Numerical Results

4.3.2 Evaluation of Semantic Segmentation Preprocessing

An experiment was performed to see if preprocessing video frames using a trained seman-
tic segmentation model could improve object detection performance, as detailed in the
methodology. Detections on frames with the background masked out were compared to
detections from the standard pipeline using the YOLO-Comparison.py script.

Figure 4.3: Comparison of the detection pipeline

A comprehensive visual comparison of the pipeline stages for an example frame is
shown in Figure 4.3. The detections from the standard YOLOv8 model are presented in
the left panel. The output of the trained segmentation model, which accurately identifies
the road surface, is shown in the central panel. The result of operating the detector only
in this segmented area is shown in the panel on the right.

The YOLO-Comparison. py script was used to compare the detection results from both
approaches with the ground truth in order to evaluate the impact of this pre-processing
step. A summary of this analysis for some samples of the different series and altitudes is
shown in Figure 4.4. The analysis of the results shows a difference, the confusion matrix
for the YOLOvVS8 + Segmentation method is much cleaner, with almost no false positives
(detections of VRU or slow vehicles that were not present). This is shown by the slightly
higher precision score of the bar graph. When the background is eliminated, the model is
less likely to be mistaken for non-vehicle objects. However, there was a noticeable decline
in recall as a result of this advantage. Although the segmentation mask was generally
accurate, it occasionally missed the edges of the road. The detector missed cars that were
partially outside of this mask, resulting in more false negatives and a lower recall score.

41



Results

A_30m - YOLOV8 Only A_30m - YOLOVS + Segmentation F1, Precision, Recall
10 Wodel

- Y0LOVS O

= YOLOVE + Segmentation

5000

2 & 2 0 g om 0 0
4000 o8
2000
= — 3000 06
R 556 1300 £3 0 o g
gé gE H
Lo 04
- 1000
' 67 ) " ‘" ﬂ D o . I I
o 00 S
U st Stow U st Siou 1 score recison Recal
redicted Predicted variable
A_7om - Y0LOVS Only A_70m - YOLOVS + Segmentation 1, Precision, Recall
10 Model
3500
4000 ‘- YOLOVS Onl}
2 R " . z w . R YOLOVE + Seqmentation
3000 3500
08
. 3000
50 os
R o 759 w0 2y 3 13 ¢
§¢ &s w0 &
- 1500 o
“1500
- 1000
- 1000
H 0 08 & HEE™ 0 3 o7
H -s00 H | oo
-0 -0 o0
U st Stow U st Siou 1 score recision Recal
redicted Predicted variable

(b) series:A altitude:70 meters

B_50m - YOLOVS Only. B_50m - YOLOVS + Segmentation F1, Precision, Recall

2000 B0 10 Mocel
= voL0v Onty
S = Y0L0VE + Segmentation
R s z 1750 101 o 0 w00 o
08
1500
2500
1250
0s
w0y
e o 0 g
1000 H
1500
- 750 04
- 1000
-500
0 0 0 oz
-250 -300

Wy

Actual
Fost
Actual

Stow
Stow

-0 -0 00
wy st Sion iy st Siow 1 5core recison Recoll
Predicted Predicted variable
B_80m - YOLOVS Only. B_80m - YOLOVS + Segmentation F1, Precision, Recall
4000 10 Model
= Y0LOVS On
2 5 e - m g wm . . - = YOLOVB + Seqmentation
08
3000
000
B o o
N E] 015 ¢
EE 49 - 3 w1 o 3 H
2000
- 1500 o4
o0 1000
z 3 3 3 H o o o 02
- - 500 “
-0 -0 00 —
Wy st Sion vy st Siow 1 5core recison Recal
Predicted Predicted variable
€_145m - YOLOVE Only C_145m - YOLOVS + Segmentation 1, Precision, Recall
10 Model
2500 = Y0LOVS Only
2500
2 . . . 2 . . . = Y0LOV8 + Sagmentation
08
2000 2000
06
P o B B0 E . . oy
ge ¥ a
L 1000 - 1000 04
; D D n . E D a u o I I I
-0 -0 00
wy st Sion Ry st Siow F1core frecison Recall
Predicted Predicted variable

(e) series:C altitude:40 meters

Figure 4.4: Confusion matrices for both methods and a bar chart of key performance
metrics

42



4.3 — Numerical Results

Running a segmentation model on every frame adds computational cost, but brings no
F1 improvement. The masks often push the model to predict mainly VRUs, which breaks
class balance. As a result, the overall accuracy decreases, even though the confusion
matrices look cleaner. Therefore, we maintain the YOLO-only approach for the final
pipeline. Segmentation will be treated as future work, possibly as a soft ROI prior instead
of a hard mask. This experiment showed that the fine-tuned YOLOvV8 model is stable
enough for this application, and the small benefits do not justify the extra complexity.

4.3.3 Multi-Object Tracking Performance

The effectiveness of the speed estimation pipeline depends directly on the ability of the
multi-object tracker to generate continuous and accurate vehicle trajectories. An eval-
uation was performed using the comparison.py script to quantitatively compare the
performance of two state-of-the-art trackers, ByteTrack and DeepSORT, in the aerial
video data project. Both trackers received the same high-quality detections from the
fine-tuned YOLOvVS8I model.

Performance was measured against the manually annotated ground-truth dataset us-
ing standard MOTChallenge metrics. The results, averaged across all test videos, are
summarized in Table 4.2.

Table 4.2: Comparative performance of ByteTrack and DeepSORT on the aerial test
dataset.

Metric ByteTrack DeepSORT

MOTA 0.33 0.30
IDF1 0.58 0.64
IDP 0.83 0.67
IDR 0.50 0.67

The results show that although both trackers perform well, DeepSORT has an advan-
tage in terms of the IDF'1 score. For this project, the IDF1 metric is especially crucial,
since it shows how well the tracker can keep each vehicle’s identity constant through its
presence in the frames. Identity switches that are a significant source of error in speed
estimation, reduced with a higher IDF1 score. The better identity preservation of Deep-
SORT makes it the more reliable option for producing the clear and continuous tracks
required for precise speed estimation, although ByteTrack is better in other areas.

A coherent and accurate argument comes from the examination of these plots:

Identification Precision (IDP): Figure 4.5a illustrates how ByteTrack continu-
ously reaches a higher IDP. This means that ByteTrack is very likely to be precise when
giving an object an identity. Reduce the possibility of inaccurate assignments by employ-
ing high-confidence detections for the beginning association.

Identification Recall (IDR): In IDR, Figure 4.5b shows that DeepSORT frequently
performs better than ByteTrack. This highlights how well DeepSORT can re-identify a
car following a period of blockage or missed detection. The appearance-based features
are crucial for "remembering” how a car looks and finding it again, which is a common
problem on busy roads.

43



Results

IDP per Video IDR per Video

A7om B_50m B.80m c_145m Az B_50m 8.80m c_145m
Video Video

(a) Identification Precision (IDP) (b) Identification Recall (IDR)

IDF1 per Video MOTA per Video

Video

(c) Identity F1 Score (IDF1) (d) Multi-Object Tracking Accuracy (MOTA)

Figure 4.5: Comparative tracking metrics across four measures.

IDF1 Score and Final Decision: A balance between IDP and IDR is represented
by the IDF1 score, which is the average of the two. As seen in Figure 4.5¢, ByteTrack’s
precision advantage is outweighed by DeepSORT’s notable recall advantage, which in-
creases the IDF1 score overall. Maintaining a continuous track (high recall) is more
important for speed estimation than avoiding a few initial misassignments (high preci-
sion). The speed calculation suffers more from a broken track than from an unexpected
misassignment.

DeepSORT was chosen as the main tracking algorithm for the finished pipeline on the
basis of this comprehensive evaluation. Its high identification recall and superior identity
preservation (IDF1) performance make it the most reliable and effective option to produce
clear, continuous tracks that are required for accurate speed estimation. Additionally, as
previously noted, the pipeline’s modular structure makes it simple for trackers to switch to
ByteTrack in other scenarios where precision is more crucial and Bytetrack may perform
better.

The Effect of Altitude on Tracking: The altitude of the drone has a direct impact
on object scale and detection quality, making it a crucial factor in aerial data collection.
We plotted important DeepSORT tracking metrics against the recording altitude in order
to examine this.

There is a distinct pattern: Our main indicator for identity preservation, the IDF'1
score, stays high at lower elevations (30m-50m), but starts to drop as the altitude rises to
80 meters. As vehicles get smaller and more difficult to differentiate from those at higher
altitudes, appearance-based re-identification becomes more difficult, and this is generally
expected. Also, there is a small drop in the MOTA. The per-altitude results are given in

44



4.3 — Numerical Results

Tack Count per Class Heatmap of Object Locations

“Track Count per Class - A_30m Heatmap of Object Locations - A_30m

Track Count per Class - A_30m Heatmap of Object Locations - A_30m
a0 oo T4 -
a0000 oo P -
60000 800
o000 o00 H 3
N o000
H 5 o T
S son0o £
0 0
20000
200 g & & °
£0 600 800 1000 1200 1400 1600 1800 2000
2 3 3 < o aass e
g i H H
3 40 600 800 1000 1200 1400 1600 1800 2000
e oconer Objcts Tacked per Frame Scatter of Tracked Locations
Objects Tracked per Frame - A 30m Scatter of Tracked Locations - A 30m
Objects Tracked per Frame - A_30m Scatter of Tracked Locations - A_30m
» 1000
=
1500 "
0 a0
1250 B
. coss abes .
aass abel - —nt 3
| st 5 10 H — sow H
€20 2 — Unknown 2
H — sow 5 s Lot >
3 — nomn | $ 70 v P
—w ©
10 w0 200
250 " b abtbiacah Lo bl
s . o -
JR QS FIEET T T bbbl o T me  ww me  wmm  me mw B e we wo uw wm mw  wm
1 L L 1 L L ! — ame Kcener
G s ww o ke %0 w0 Ho B 7 w0 w0 weo 1o 060
mame xcenter
Track Count per Class - B 50m Heatmap of Object Locations - B_5om
o000 Track Count per Class - B_50m Heatmap of Object Locations - B_50m
1500 35000
1200
o000 1250 0000
o0 25000
1 5 800
3 oo o
£ 5000 £
20000 20000
250 «| 400 \
‘ 2 4 : 4 o 20
H H H £ o
H ED 3 B I H H H B o
class x.center 2 2
H T e s A we mh Bw ke
s xcenter
- Objects Tracked per frame - 8_50m Scatter of Tracked Locations - B_50m Objects Tracked per Frame - B_50m Scatter of Tracked Locations - B_50m
1400 dlass_label o Fast
» e 1000 o Sow
1200 » = dow wo
N - unkoown
2000 w
w00
. 5 o s
S J ] HE)
> w0 8 g
8 B
0 -
00
s 20 s
o 200
T oo mm aw mw ww mw ED 5 %o oo o o
rame Xcener
T % ww o mw mw w0 mm T w0 oo 0 e 1600
rame xcener
Track Count per Class - C_260m Heatmap of Object Locations - C_260m Track Count per Class - C_260m Heatmap of Object Locations - C_260m
0 1200
o000 o000
1000 1000
conoo
70 30000 800
H R ¥ o0
£ 40000 3 3 E e ———
8 H == 8 20000 H
o000 g a0 § o
20000 o - 10000 w0
10000 250 o
50 “20
3 % T < 3 3 S
£ 2 3 H H i H H
H 500 ] 560 B 1500 2000 H ] 50 1600 1500 2000
s xconter aass xcenter
Objects Tracked per Frame - C_260m Scatter of Tracked Locations - C_260m Objects Tracked per Frame - C_260m Scatter of Tracked Locations - C_260m
e o ot
= — Fast 0o & Fast 550
— sow
» — wu
00 20
2 . =0
o
20 i3 T K]
H H fuoo
§ %0 H 5
$ 8 ¢ .
5 0 .
200 w0
0
100 ®
s .« ns -0 unkooun
E e “ ;
o L a Mot of ¢ W . o d o
mame xcemer

rame xcenter

(e) DeepSORT on C_260m (f) ByteTrack on C_260m

Figure 4.6: Direct comparison of DeepSORT and ByteTrack

45



Results

Table 4.3: Tracking performance by altitude: ByteTrack vs. DeepSORT.

Altitude Tracker IDF1 IDP IDR

ByteTrack 0.50 0.46 0.52

A_70m (70 m)
DeepSORT 0.55 0.42 0.74
ByteTrack 0.70  0.97 0.56
B.50m (50 m) e
DeepSORT 0.75 0.76 0.76
ByteTrack 0.30 0.94 0.20
B.SOm (80 m) e

DeepSORT 0.40 0.72 0.30

ByteTrack 0.82 0.96 0.73

C_145m (50 m)
DeepSORT 0.83 0.80 0.92

Table 4.3. It shows that, while our pipeline is reliable, performance decreases as altitude
increases. Lower altitude flights (e.g., 30-60 meters) are better for tasks that need the
highest tracking accuracy, such as full safety analysis.

Practical note: According to our altitude analysis, re-ID features are most useful
when objects have enough pixel support (30-60m), which results in a higher IDF1 for
DeepSORT; ByteTrack maintains its competitiveness at 70-80m, where targets shrink
and appearance cues weaken, because of its geometry-centric association.

Qualitative Tracking Performance Analysis: The evaluation of the tracking out-
put through direct visual assessment shows the main operational strengths and weaknesses
between the DeepSORT and ByteTrack methods. The A, B and C series recordings
are presented in Figures 4.6a,4.6b, 4.6¢,4.6d, and 4.6e,4.6f, for direct comparison. The
heatmaps and scatter plots show a fundamental difference between them. Angled view
recordings from Series A and B show better trajectory continuity in the DeepSORT plots,
which appear in Figures 4.6a and 4.6c. The heatmap for A-30m shows this clearly be-
cause the road forks become more visible. The visual proof demonstrates that DeepSORT
achieves better IDF1 scores because its appearance-based model keeps vehicle identities
through difficult tracking situations which results in extended tracking durations. The
ByteTrack plots show irregular track patterns which come from their method of working
with motion and IoU data. The ”"Track Count per Class” charts show various behavioral
patterns. The B-50m video (Figure 4.6¢,4.6d) shows ByteTrack detecting more ”Slow”
vehicles than DeepSORT. ByteTrack’s focus on precision (IDP) seems to cause the system
to end tracks more rapidly, which leads to new track creation for slow-moving objects
when vehicle movement becomes unclear for short periods. The plot of the ”"Objects
Tracked per Frame” plot for C-260m (Figure 4.6e,4.6f) shows that ByteTrack has a much
higher number of "Unknown” tracks, suggesting that it may be more sensitive to low-
confidence detections that it cannot confidently associate with an existing class. The
qualitative assessment shows results that match the statistical data. The two tracking

46



4.3 — Numerical Results

systems demonstrate excellent performance, but DeepSORT produces stable continuous
trajectories, which makes it the best option for precise speed measurement.

4.3.4 Speed Estimation and Traffic Flow Analysis

The pipeline’s final output, per-vehicle speed estimates, are reported in this section along
with an evaluation on three different scales: a comprehensive case study of a single
recording, a combined summary across multiple recordings, and a comparative analysis
across all series. The quality of each vehicle’s generated trajectory has a direct impact
on how reliable its speed estimate is. This can be taken into consideration by using a
vehicle’s track length as a replacement for the accuracy of its speed calculation. Because
the longer track is less affected by initial detection jitter or small tracking errors, a vehicle
tracked continuously for more than 150 frames will have a more accurate average speed
than a vehicle tracked for only 20 frames. To ensure that general findings, such as the
heatmaps in Figure 4.7, are reliable and accurate, we gave priority to data from longer
and more consistent tracks when analyzing traffic flow. The pipeline generates graphical
outputs, as well as an annotated video with the real-world speed of each tracked vehicle
displayed (generated by visualize.py). A representative frame showing simultaneous,
easily readable speed overlays for multiple vehicles is shown in Figure 4.7. On the right
side, we have the speed per frame for C-145 and on the left average speed result is shown.

Figure 4.7: Example of the final annotated video output

Individual Recording Analysis

To analyze the microscopic and macroscopic traffic dynamics recorded in the dataset,
detailed analysis plots were created for a representative recording from each of the
three series: A (Balanced Flow), B (Dynamic Flow), and C (Stable Flow) using the
advanced heatmap.py script. These graphics offer an in-depth overview of the special
characteristics of every traffic situation.

The analysis for recording A_40m, which represents a typical smooth traffic scenario,
is shown in Figure 4.8. With a mean of 99.4 km/h at its center, the speed distribution is

47



Results

almost Gaussian and a sign of consistent traffic. This stability is confirmed by positioning
the heatmaps, which display clearly defined and frequently used lanes.

Analysis for A_40m

Figure 4.8: Comprehensive analysis for recording A_40m

Comp
ven

[ J\m 1

The recording B_60m, as a sample of the angle of the B series videos, which shows a
more dynamic traffic state, is summarized in 4.9. With a higher mean of 112.9 km/h, the
speed distribution shifts to the right, suggesting a time when the traffic stream moved
more quickly overall. More consistent coloration in the lane-wise mean speed heatmap
indicates less variability between lane and more coherent and synchronized acceleration
across lanes.

Comprehensive Analysis for 5_60m

Speed Distributio Vehicle Po:

Figure 4.9: Comprehensive analysis for recording B_60m (Dynamic Flow)

Finally, Figure 4.10 shows the analysis for recording C_145m, indicating a very steady
and smooth traffic flow in the lane. Because of the top-down viewing perspective, the
positioning heatmaps show very well-defined horizontal lanes and the speed distribution
is narrow. For consistent traffic behavior, this recording is a great starting point.

The pipeline’s ability as a tool for in-depth traffic analysis is validated by its capacity
to generate these particular and accessible results for various traffic conditions.

Per-Series Traffic Flow

The average speed of all tracked vehicles in each frame was plotted using the per_frame.py
script to determine how the overall traffic flow changes over the course of the recordings.
Each of the three series performed this analysis, which showed the unique temporal sig-
natures of stable, dynamic, and balanced traffic conditions.

48



4.3 — Numerical Results

Comprehensive Analysis for C_145m

‘Speed Distribution

[l i

Ik,

Figure 4.10: Comprehensive analysis for recording C_145m (Stable Flow)

The analysis for series A is shown in Figure 4.11. Although there are natural vari-
ations, the plot shows that the average speed for all recording distances typically varies
around a constant mean, which is a sign of balanced, smooth traffic.

A different pattern is revealed by the analysis of series B, which is shown in Figure 4.12.
The "dynamic” or "nervous” traffic state, which is defined by larger and frequent changes
in average speed, is shown in this plot. These larger fluctuations indicate a less stable

flow, which shows times of speeding up and slowing down within the traffic section caused
by the angle of the drone.

Lastly, the analysis for the C series is shown in Figure 4.13. The extremely stable
traffic in these recordings is confirmed by this plot. Over the course of the clips, the
average speeds show very little variation. In addition to providing an accurate baseline
for comparison, this visualization successfully captures the global state of steady traffic.

. Average Speed Per Frame for A-Series Recordings (Balanced Flow)

Distance
— 30m
—— 40m

175 Som

Average Speed (km/h)

o 500 1000 1500 2000 2500 3000 3500
Frame Number

Figure 4.11: Average speed per frame for all recordings in the A-Series (Balanced Flow)

49



Results

Average Speed Per Frame for B-Series Recordings (Dynamic Flow)

200

150

3

Average Speed (km/h)
g
-
s
LS
%‘ .

o 500 1000 1500 2000 2500 3000 3500
Frame Number

Figure 4.12: Average speed per frame for all recordings in the B-Series (Dynamic Flow)

. Average Speed Per Frame for C-Series Recordings (Stable Flow)

Distance
—— 30m

—— 40m

175 —r Som
—— 60m

—— 70m

80m

150

Average Speed (km/h)

o 500 1000 1500 2000 2500 2000 3500
Frame Number

Figure 4.13: Average speed per frame for all recordings in the C-Series (Stable Flow)

Comparative Analysis of Speed Distributions

comparing the speed distributions from the A- and B-series recordings with the C-Series,
the final evaluation offers a solid validation of the dataset. For this analysis, a set of box
plots was created using the comparison_plot.py script, as seen in Figure 4.14.

This figure gives a crucial validation of the data. The average range of speeds seen in
the various traffic scenarios is directly compared in each subplot, which corresponds to
a particular recording distance. From detection and tracking to final speed estimation,

50



4.3 — Numerical Results

the reliability and consistency of the complete measurement pipeline are demonstrated
by the close alignment of speed distributions across the series at each distance.

175
150 :
'
e med=116.2
< 125 med=104.6 T (=eRE )
= d=97.6 d=97.7 o
§ 100 e (n=36792) (n=78971) (1=43622) edso2:s
?
8 75
&
0 x | :
25 - ! ! !
0
B C B C B C
Distance: 60m Distance: 70m Distance: 80m
175 : .
- . :
150 T
=125 med=110.8 med=1136
< - = d=107.8 d=107.8
E (n=59506) ’3\5:‘1;2180050;' (D=55850) med=100.2 (h=16185) h=70746)
£ 100 _(n=73741) ___
g
8 75
& . : :
50 : i : : i
. !
25 T
0
B C B C B C

Distance: 30m

Speed distributions (A/B/C) at 30-80 m

Distance: 40m

Distance: 50m

Figure 4.14: Comparative analysis of vehicle speed distributions for series A, B, and C
at different recording distances.

51



52



Chapter 5

Conclusion and Future Work

In this thesis a modular pipeline was created and evaluated that transforms raw drone
footage into structured traffic datasets with calibrated trajectories and speed profiles.
Data collection, perception (detection and tracking), geometric calibration, speed es-
timation, and visualization are the interconnected modules that make up the system.
This allows each module to be changed or replaced without affecting the others. The
main concept was to use the mobility and view point of UAVs to address the limita-
tions and blockage of coverage of fixed roadside cameras while maintaining outputs that
were consistent with accepted methods from standard datasets such as NGSIM, highD,
and nuScenes. Since altitude and viewpoint collection, small object perception, and cal-
ibration robustness are the main factors of quality in aerial traffic analysis, the pipeline
specifically prioritizes these features in its design.

Regarding perception, the study showed the importance of modifying a modern real-
time detector for aerial imagery. By fine-tuning YOLOv8 on UAV-oriented data, frame-
to-frame predictions were enhanced, recall for small and distant vehicles was increased,
and class confusions between visually similar categories were decreased. Stronger tracking
and cleaner trajectories were the direct results of these improvements. After a two-stage
training schedule (50 epochs in 640 x 640 followed by 100 epochs at 1024 x 1024), the
improved detector quantitatively achieved mAP@Q.5 of 92.3%, mAP@0.5:0.95 of 74.5%,
precision of 94.8%, and recall of 90.8% in the held test set. A controlled comparison of
two advanced trackers revealed advantages that were complemented with fixed detections.

While ByteTrack obtained higher identification precision (IDP = 0.83, IDF1 = 0.58),
with strong results in lighter traffic and under short shadows, DeepSORT achieved greater
identity preservation in aerial traffic (IDF1 = 0.64, IDR = 0.67, IDP = 0.67) and was
chosen as the default tracker for crowded scenes. For difficult aerial views (e.g., MOTA
0.30-0.33), overall tracking accuracy stayed within the expected range, and DeepSORT’s
identity stability was especially useful for continuous speed estimation.

The geometric calibration module used four Ground Control Points to estimate a
homography for each scene in order to convert image-plane trajectories into metric space.
In practice, stable ground-plane projections were obtained using the bottom edge center
of each box as the reference point, provided that GCPs were appropriately assigned and
measured. Building on this calibration, the speed estimation module used filtering and

53



Conclusion and Future Work

short-window smoothing to calculate current speeds based on frame-by-frame movement.
Annotated videos enabled quick visual confirmation of trajectories, IDs and speeds, and
the pipeline generated time-consistent per-vehicle speed series and per-track summary
speeds in physically realistic ranges (filters at 10-200 km/h). In order to focus the detector
on the road region, a side study examined semantic segmentation as a preprocessing
step. Although masking removed some false positives and slightly increased precision on
particular clips, it also decreased recall at road edges and failed to produce a consistent
overall improvement over the fine-tuned detector alone, so it was retained as an optional
preprocessor rather than a core module.

In general, the findings demonstrate that a UAV-based method can provide high-
quality traffic datasets faster and more affordable than traditional roadside CCTV, with
a wider coverage area and fewer blockages. The most important factors for the final data
quality are viewpoint (altitude and angle) because it affects small-object perception; iden-
tity maintaining in the tracker during lane changes and short blockages; and calibration
accuracy. The primary limitations are also clear. The flatness of the area is assumed by
a single-plane homography; more complex geometry is needed for speeds on steep and
curved roads or multilevel interchanges. Tracking and calibration can be affected by wind,
frame rate consistency, and UAV stability. Despite these limitations, the thesis offers a
useful, reliable pipeline; a theoretical description of the impact of viewpoints on tracking,
speed estimation, and detection; and implementation details that add information about
altitude collection, while still aligning outputs with existing standards.

Future Work

Several extensions can improve scope and accuracy. Changing the flat assumption during
calibration is the simplest route. Ramps, banked curves, and multilevel structures would
be better handled by sequential planar models, multi-plane homographies across lanes, or
a lightweight 3D approach (e.g., PnP with dependable UAV pose priors, or short-baseline
multi-view from small lateral drifts). While automatic GCP collection from standardized
road markings (lane widths, dashed line modules) can reduce manual effort and improve
repeatability, combining on-board GNSS/IMU and camera features can stabilize scale
and reduce error where UAV data is available. During long flights, calibration errors
may be detected by regular self-checks against previous measurements on the map or
orthomosaics.

In terms of perception, two related directions can be provided. In order to maintain
real-time performance, current detector families that target small objects and long-range
cues (such as transformer-based heads, multi-scale deformable features, or high-resolution
backbones) can be modified using mixed-resolution tiling or streaming. Second, local
scenes and training sets similar to VisDrone can be combined by domain-adaptive train-
ing. These include style transfer and synthetic augmentations for roofs, asphalt textures,
and shadows, targeted extraction of hard negatives (parked cars, broad highlights), and
active learning loops that propose frames where the detector is uncertain. Additionally,
super-resolution conditioned on aerial previous work could be applied selectively on far
lanes to recover detail without requiring to running the whole work on full-frame.

54



Conclusion and Future Work

Appearance models created for small targets and aerial views can be useful for track-
ing. Identity switches during lane changes and partial blockages can be minimized by
using compact re-identification embeddings trained on roof/hood patterns, lane-relative
motion signals, and temporal attention. Before calculating speed, track-level smoothing
using Rauch-Tung-Striebel or fixed-lag Kalman smoothers would further stabilize trajec-
tories. Cross-clip stitching and re-entry handling are logical improvements for scenes that
cover more ground or last longer. Adding lane-consistent consistency metrics would better
align tracking quality with traffic analysis requirements, and reporting HOTA alongside
IDF1 and MOTA should become standard at evaluation time.

Geometric and statistical improvements are possible in speed estimation. Beyond ho-
mography, previous experiences in situations with few GCPs may be obtained through
small-scale learning-based recovery trained on scenes with known distances. Per-lane av-
erage filters may reduce outliers while maintaining lane-level dynamics, and accurate vari-
ations and physically informed filters may reduce bias from small jitter without smoothing
speeds.

Adding more locations, climates, and urban types to the database will enhance gener-
alization and facilitate regional research from the perspective of the dataset. The dataset
will be more helpful for safety analysis if it includes special cases (such as merging, work
zones, and incident scenes) and vulnerable road users.

By retraining forecasting or control models (such as ramp metering, signal timing,
or incident detection) with the generated datasets, the pipeline can be converted from
a passive measurement system into an active source for adaptive traffic management.
Although these approaches together improve technology dependability, reach, and impact,
the fundamental architecture of clean modular stages and calibration-aware motion for
UAV-based traffic analytics remains unchanged.

55



56



Bibliography

1]

[10]

[11]

[12]

[13]

N. Aharon et al. Bot-sort:  Robust associations multi-object tracking.
arXiw:2206.14651, 2022.

Argo Al Research Team. Argoverse 2 user guide. Online documentation, 2021.
Kidus T. Asrat, Georges Younes, Aju Bency, Jorge Dias, Lamia Elrefaei, and Jorge
Dias. A comprehensive survey on high-definition map for autonomous driving: Cre-
ation, updating, and challenges. ISPRS Int. J. Geo-Information, 13(7):232, 2024.
Fahim Bastani, Songtao He, Sofiane Abbar, Mohammad Alizadeh, Hari Balakrish-
nan, Sanjay Chawla, Samuel Madden, and Michael DeWitt. Roadtracer: Automatic
extraction of road networks from aerial images. In CVPR, pages 4720-4728, 2018.
Keni Bernardin and Rainer Stiefelhagen. Evaluating multiple object tracking perfor-
mance: The clear mot metrics. EURASIP Journal on Image and Video Processing,
pages 1-10, 2008.

A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft. Simple online and realtime
tracking. In Proceedings of the IEEE International Conference on Image Processing
(ICIP), pages 3464-3468. IEEE, 2016.

J. Bock, R. Krajewski, T. Moers, S. Runde, L. Vater, and L. Eckstein. The ind
dataset: A drone dataset of naturalistic road user trajectories at intersections. In
arXiv:1911.07602, 2019.

Julian Bock, Robert Krajewski, Tobias Moers, Steffen Runde, Lennart Vater, and
Lutz Eckstein. The ind dataset: A drone dataset of naturalistic road user trajectories
at german intersections. In 2020 IEEE Intelligent Vehicles Symposium (IV), pages
1929-1934, 2020.

Jan Breuer, Lea Termdhlen, Stefan Homoceanu, and Tim Fingscheidt. opendd: A
large-scale roundabout drone dataset. In 2020 IEEE 23rd International Conference
on Intelligent Transportation Systems (ITSC), pages 1-8, 2020.

Elena-Valentina Butila and Razvan-Gabriel Boboc. Urban traffic monitoring and
analysis using unmanned aerial vehicles (uavs): A systematic literature review. Re-
mote Sensing, 14(3):620, 2022.

H. Caesar, V. Bankiti, A. H. Lang, et al. nuscenes: A multimodal dataset for
autonomous driving. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 11621-11631. IEEE, 2020.

J. Cao, J. Pang, X. Weng, R. Khirodkar, and K. Kitani. Observation-centric sort:
Rethinking sort for robust multi-object tracking. In CVPR, 2023.

Ilke Demir, Krzysztof Koperski, David Lindenbaum, et al. Deepglobe 2018: A chal-
lenge to parse the earth through satellite images. In CVPR Workshops, 2018.

57



Bibliography

[14]

[15]

[16]
[17]

[18]

[19]

J. Ding, N. Xue, Y. Xia, and G.-S. Xia. Object detection in aerial images: A
large-scale benchmark and challenges. In Proceedings (extended report) on DOTA
Benchmark, 2022. Comprehensive DOTA description and baselines.

D. Du, Y. Qi, H. Yu, et al. The unmanned aerial vehicle benchmark: Object detec-
tion and tracking. In Proceedings of the European Conference on Computer Vision
(ECCYV), pages 370-386. Springer, 2018.

Y. Du et al. Strongsort: Make deepsort great again. arXiw:2202.13514, 2022.

M. Dubska, A. Herout, and J. Sochor. Automatic camera calibration for traffic
understanding. In Proceedings of the British Machine Vision Conference (BMVC),
2014.

Adam Van Etten, Daniel Hogan, Ryan Shermeyer, et al. Spacenet: A remote sensing
dataset and challenge series. arXiv preprint arXiv:1807.01232, 2018.

W. Fan et al. Real-time freeway speed prediction based on deep learning. Technical
report, 2022.

Z. Ge et al. Yolox official repository. GitHub repository, 2021.

Z. Ge, S. Liu, F. Wang, et al. Yolox: Exceeding yolo series in 2021. In arXiv preprint
arXiv:2107.08430, 2021.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In CVPR, pages 3354-3361, 2012.

H. Guan et al. Road marking extraction in uav imagery using attentive segmentation.
ISPRS Journal of Photogrammetry and Remote Sensing, 2022.

K. Hale, N. Rouphail, R. Allen, and J. Hummer. Lankershim boulevard dataset
(ngsim) - fact sheet, fhwa-hrt-07-029. Technical report, Federal Highway Adminis-
tration, 2007. Sampling at 0.1 s (10 Hz).

J. Han, G. Cheng, Y. Ding, L. Guo, and J. Yu. Redet: A rotation-equivariant
detector for aerial object detection. In C'VPR, pages 2786-2795, 2021.

Atefeh Hemmati, Mani Zarei, and Alireza Souri. Uav-based internet of vehicles: A
systematic literature review. Intelligent Systems with Applications, 18:200226, 2023.
W. Hua, Y. Zhang, J. Li, and S. Wang. A survey of small object detection based on
deep learning in aerial images. Artificial Intelligence Review, 2025.
INTERACTION Project Team. Interaction dataset: Details and format. Online
resource, 2019.

H. Jiang et al. Drone-based traffic flow estimation using orthomosaic registration.
In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 9284-9290. IEEE, 2020.

Behnam Khalili and Andrew W. Smyth. Sod-yolov8: Enhancing yolov8 for small
object detection. Sensors, 24(19):6209, 2024.

KITTI Team. Kitti tracking benchmark. Online resource, 2012.

KITTI Team. Kitti vision benchmark suite: Tracking evaluation (overview). Online
resource, 2012.

R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein. The highd dataset: A drone
dataset of naturalistic vehicle trajectories on german highways. arXiv preprint, 2018.
R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein. The highd dataset: A drone
dataset of naturalistic vehicle trajectories on german highways for validation of highly

58



Bibliography

[43]

[44]

[45]

automated driving systems. In IEEE Intelligent Transportation Systems Conference
(ITSC), pages 2118-2125. IEEE, 2018.

Robert Krajewski, Tobias Moers, Julian Bock, Lennart Vater, and Lutz Eckstein.
The round dataset: A drone dataset of road user trajectories at roundabouts in
germany. In 2020 IEEFE 23rd International Conference on Intelligent Transportation
Systems (ITSC), pages 1-6, 2020.

Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. Epnp: An accurate
o(n) solution to the pnp problem. In International Journal of Computer Vision,
volume 81, pages 155-166, 2009. Original version appeared at CVPR 2008.

Qi Li, Yue Wang, Yilun Wang, and Hang Zhao. Hdmapnet: An online hd map
construction and evaluation framework. In ICRA, pages 4628-4634, 2022.

R. Liu et al. A review of deep learning-based methods for road extraction from
high-resolution remote sensing images. Remote Sensing, 16(12):2056, 2024.

J. Luiten et al. Hota: A higher order metric for evaluating multi-object tracking.
International Journal of Computer Vision, 129:548-578, 2021.

Jonathon Luiten et al. Hota: A higher order metric for evaluating multi-object
tracking. arXiv preprint arXiv:2009.07736, 2020.

D. Middleton et al. Vehicle detector evaluation. Technical report, Texas Transporta-
tion Institute, 2002.

Tobias Moers, Lennart Vater, Robert Krajewski, Julian Bock, Adrian Zlocki, and
Lutz Eckstein. The exid dataset: A real-world trajectory dataset of highly interactive
highway scenarios in germany. In 2022 IEEE Intelligent Vehicles Symposium (IV),
pages 958-964, 2022.

Tobias Moers, Lennart Vater, Robert Krajewski, Julian Bock, Adrian Zlocki,
and Lutz Eckstein. exid dataset (project page). https://levelxdata.com/
exid-dataset/, 2025. Accessed 2025-10-10.

nuScenes Team. nuscenes devkit tutorial: samples and keyframes. Online documen-
tation, 2024.

Fatma Outay, Hanan Abdullah Mengash, and Muhammad Adnan. Applications
of unmanned aerial vehicle (uav) in road safety, traffic and highway infrastructure
management: Recent advances and challenges. Transportation Research Part A:
Policy and Practice, 141:116-129, 2020.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 779-788, 2016.

J. Revaud et al. Robust automatic monocular vehicle speed estimation for traffic
surveillance. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV). IEEE, 2021.

Ergys Ristani et al. Performance measures and a data set for multi-target, multi-
camera tracking. In ECCV Workshops, pages 17-35, 2016.

J. Sochor et al. Comprehensive data set for automatic single camera visual speed
measurement (brnocompspeed). arXiv preprint arXiv:1702.06441, 2017.

J. Sochor, R. Jurdnek, and A. Herout. Traffic surveillance camera calibration by 3d
model bounding box alignment for accurate vehicle speed measurement. Computer

59


https://levelxdata.com/exid-dataset/
https://levelxdata.com/exid-dataset/

Bibliography

Vision and Image Understanding, 161:87-98, 2017.

P. Sun, H. Kretzschmar, X. Dotiwalla, et al. Scalability in perception for autonomous
driving: Waymo open dataset. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2446-2454. IEEE/CVF,
2020. CVF Open Access.

Ultralytics. Ultralytics YOLOv8 Documentation, 2023.

U.S. Department of Transportation. Next generation simulation (ngsim) vehicle
trajectories and supporting data. Open dataset, 2017.

U.S. Department of Transportation. Next generation simulation (ngsim) open data.
Online dataset, 2024.

C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao. Yolov7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors. arXiv preprint
arXiv:2207.02696, 2022.

C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao. Yolov7: Trainable bag-of-freebies
sets new state-of-the-art for real-time object detectors. Proceedings of the IEEFE
Conference on Computer Vision and Pattern Recognition (CVPR), pages T464-7475,
2023.

Z. Wang. Lane change inconsistencies in the highd dataset. Findings, 2020.
Waymo Research Team. Waymo open dataset (official repository). GitHub reposi-
tory, 2020.

L. Wen, D. Du, Z. Cai, et al. Ua-detrac: A new benchmark and protocol for
multi-object detection and tracking. Computer Vision and Image Understanding,
193:102907, 2019.

L. Wen, X. Zhou, S. Chang, and J. Zhang. A comprehensive survey of oriented object
detection in remote sensing images. Expert Systems with Applications, 226:120291,
2023.

N. Wojke and A. Bewley. Deepsort: Official repository. https://github.com/
nwojke/deep_sort, 2017. Accessed 2025-09-11.

N. Wojke, A. Bewley, and D. Paulus. Simple online and realtime tracking with a
deep association metric. In Proceedings of the IEEE International Conference on
Image Processing (ICIP), pages 3645-3649. IEEE, 2017.

K. Y. Wong and contributors. Yolov7 official github. GitHub repository, 2022.
Gui-Song Xia, Xiang Bai, Jian Ding, Zhen Zhu, Serge Belongie, Jiebo Luo, Mihai
Datcu, Marcello Pelillo, and Liangpei Zhang. Dota: A large-scale dataset for object
detection in aerial images. In CVPR, pages 3974-3983, 2018.

Gui-Song Xia, Xiang Bai, Jian Ding, Zhen Zhu, Serge Belongie, Jiebo Luo, Mihai
Datcu, Marcello Pelillo, and Liangpei Zhang. Dota: A large-scale dataset for object
detection in aerial images (project page). https://captain-whu.github.io/DOTA/
index.html, 2025. Accessed 2025-10-10.

Yanchao Xu, Wenbo Shao, Jun Li, Kai-Bo Yang, Wenjie Wang, Hui Huang, Chen Lv,
and Hao Wang. Sind: A drone dataset at signalized intersection in china. In 2022
IEEE 25th International Conference on Intelligent Transportation Systems (ITSC),
pages 2471-2478, 2022.

60


https://github.com/nwojke/deep_sort
https://github.com/nwojke/deep_sort
https://captain-whu.github.io/DOTA/index.html
https://captain-whu.github.io/DOTA/index.html

Bibliography

[67]

Guang Liang Yang, Minh Nguyen, Wei Qi Yan, and Xue Jun Li. Bytetrack frame-
work for table tennis ball tracking (figure 5) in: Foul Detection for Table Tennis
Serves Using Deep Learning, 2024.

Kevser Busra Yildirim, Berna Kiraz, and Shaaban Sahmoud. The overview of the
deepsort architecture (figure 2) in: Calculating Bus Occupancy by Deep Learning
Algorithms, 2024.

Y. Zhang and contributors. Bytetrack official repository. GitHub repository, 2021.

Y. Zhang, P. Sun, Y. Jiang, et al. Bytetrack: Multi-object tracking by associating
every detection box. In arXiv preprint arXiv:2110.06864, 2021.

Y. Zhang, P. Sun, Y. Jiang, et al. Bytetrack: Multi-object tracking by associating
every detection box. In Proceedings of the European Conference on Computer Vision
(ECCYV). Springer, 2022.

Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng, and Wenyu Liu. Fair-
mot: On the fairness of detection and re-identification in multiple object tracking.
International Journal of Computer Vision, 129:3069-3087, 2021.

Shang Zhou, Qi Zhao, Yonghong Liu, Xiaoyan Li, Xing Tian, and Mei Liu. Modular
yolov8 optimization for real-time UAV maritime rescue object detection. Scientific
Reports, 14(20749), 2024.

P. Zhu, L. Wen, D. Du, et al. Vision meets drones: A challenge (visdrone2018). In
Proceedings of the European Conference on Computer Vision (ECCV) Workshops.
Springer, 2018.

61



	Introduction
	Related Work
	From Traditional to AI-based Approaches
	Benchmark Datasets for Traffic Analysis
	NGSIM
	highD
	nuScenes
	Urban & interaction-rich aerial trajectory datasets
	Drone Trajectory Datasets Beyond highD

	Data Collection Strategies
	Side-Road Cameras
	Probe Vehicles and Multimodal Fleets
	Drones

	Object Detection
	YOLO in Practice
	Aerial (UAV) Viewpoints
	Roadside CCTV Detectors
	Lane/Marking Extraction (Context for Speed and Safety)

	Tracking
	Evaluation Metrics

	Calibration and Speed Estimation

	System Model and Contributions
	Data Collection
	Drone and Camera Specifications
	Data Annotation and Preprocessing

	Perception Module
	Object Detection with YOLOv8
	Experimental Preprocessing with Semantic Segmentation

	Geometric Calibration Module
	Speed Estimation
	Implementation Details and Validation


	Results
	Methodology
	Evaluation Metrics
	Numerical Results
	Object Detection Performance
	Evaluation of Semantic Segmentation Preprocessing
	Multi-Object Tracking Performance
	Speed Estimation and Traffic Flow Analysis


	Conclusion and Future Work
	Bibliography

