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Abstract

The deployment of demanding computer vision algorithms on embedded devices is
a complicated challenge due to limited memory, computational capabilities and
energy constraints. In many low-latency robotic and autonomous applications, edge
deployment is indispensable, as real-time response cannot rely on remote servers.
This work focuses on the optimization of the Variational Bayes Gaussian Splatting
algorithm, a state-of-the-art probabilistic 3D scene modelling method originally
developed for server-grade GPUs with more than 20 GBs of RAM and not previously
implemented on edge platforms. We target the NVIDIA Jetson Orin Nano, an
embedded GPU platform with just 8 GBs of RAM.

Rather than modifying the mathematical model itself, this work aims at optimizing
the existing implementation to meet the edge devices limitations and improve the
overall latency.

The implementation is based on JAX, a high-performance numerical computing
library that enables GPU acceleration and just-in-time (JIT) compilation. JIT
compilation proved to be a pivotal optimization tool: by staging large portions of
the computation into fused, statically optimized kernels, we significantly reduced
Python-level overhead and improved data throughput on the Nano’s limited GPU.
The optimization process began with an in-depth memory and latency profiling
to identify the main computational bottlenecks. The first improvement targeted
a suboptimal memory allocation scheme: by avoiding unnecessary intermediate
allocations during matrix multiplications, we reduced peak memory usage by up to
75%.

The second major improvement was achieved through data quantization. Since
the original algorithm was designed using double-precision (fp64) arithmetic for
numerical stability, many operations used excessively high precision relative to
their actual requirements, leading to significant overhead in both memory and
computation. To address this, we developed an automatic mixed-precision search
algorithm. It systematically evaluates each operation and selectively lowers its
precision whenever this does not compromise output accuracy. This strategy yielded
substantial gains in both training speed and memory efficiency, while maintaining
output quality with minimal, and often negligible, loss. Mixed precision proved
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pivotal in the optimization process, boosting training speed by a factor of five while
preserving output quality.

Importantly, the mixed-precision search algorithm was developed in order to be
generic and not tied to VBGS specifically. It provides a systematic framework for
identifying precision-sensitive operations and can therefore be applied to a wide
range of numerical algorithms. This makes it a valuable tool for future works aiming
to deploy computationally demanding models on memory and power constrained
devices.
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Chapter 1

Introduction

The ability to model and reconstruct three-dimensional environments from visual
data is a fundamental challenge in computer vision and graphics. Accurate 3D
representations are essential for a wide range of applications, from immersive media
to autonomous systems. In recent years, a class of methods known as novel view
synthesis (NVS) has emerged as a central solution to this challenge. NVS focuses on
generating realistic views of a scene from previously unseen viewpoints, given only a
limited set of observations. By learning the underlying structure of the environment,
these algorithms enable consistent and photorealistic rendering without requiring
full geometric models.

The development of novel view synthesis has undergone rapid evolution. Early
approaches were based on geometry-driven methods, where explicit meshes or point
clouds were reconstructed and rendered. These techniques offered interpretability
but often struggled to reproduce complex lighting effects and fine-grained scene
appearance. With the rise of deep learning, the field shifted toward neural implicit
representations, the most influential being Neural Radiance Fields (NeRF) [1].
NeRF represents a scene as a continuous volumetric function parameterized by
a neural network, mapping spatial coordinates and viewing directions to emitted
radiance and density. This formulation enabled unprecedented levels of photorealism
and detail in novel view synthesis, setting a new benchmark for fidelity. However,
NeRF and its many extensions come at a high computational cost: training
requires millions of gradient descent steps, inference is slow, and the reliance on
full backpropagation makes continual learning infeasible.

A more recent line of work, Gaussian Splatting (GS) [2], represents the scene
as a collection of anisotropic Gaussian primitives positioned in 3D space. This
formulation provides a balance between efficiency and quality: rendering can
be performed by projecting the Gaussians to the image plane and combining
them through differentiable rasterization, while training remains tractable through
gradient-based optimization. GS significantly reduced both training time and
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rendering latency compared to NeRF, making real-time performance feasible on
high-end hardware. Nevertheless, gradient-based Gaussian Splatting still inherits
key drawbacks of neural optimization, such as catastrophic forgetting when data is
streamed sequentially.

To address these limitations, Variational Bayes Gaussian Splatting (VBGS) [3] was
introduced. Instead of treating Gaussian parameters as deterministic quantities
optimized through backpropagation, VBGS frames the problem in a Bayesian
setting: each Gaussian primitive is associated with a posterior distribution over its
parameters, updated through closed-form rules derived from variational inference.
This formulation not only provides uncertainty estimates but also supports continual
learning. New data can be integrated incrementally without retraining from scratch,
avoiding catastrophic forgetting and making VBGS particularly attractive for real-
time applications where data arrives sequentially.

The ability to perform continual, uncertainty-aware scene reconstruction opens
promising directions for robotics. In autonomous navigation, exploration, or
mapping tasks, robots often operate under strict memory, energy, and latency
constraints. They must build and update a 3D model of their environment while
interacting with it in real time. Traditional gradient-based methods are not suitable
for such settings, as they require extensive recomputation and lack robustness
when presented with non-stationary data streams. VBGS, by contrast, offers a
probabilistic mechanism to adapt continuous inputs, ensuring that representations
remain consistent as the environment evolves. When optimized for embedded GPUs,
VBGS has the potential to provide a practical backbone for onboard perception in
autonomous systems.

In summary, this work focuses on the optimization of the (VBGS) algorithm, with
the goal of enabling its deployment on constrained hardware platforms. Originally
designed for server-grade GPUs with abundant resources, VBGS has not been
adapted to operate within the limitations of embedded devices. This work addresses
shortens that gap by conducting an extensive characterization of the algorithm’s
computational profile, identifying the main bottlenecks. By systematically analyzing
these constraints, it becomes possible to pinpoint where optimization is both feasible
and impactful.

A key contribution of this thesis is the introduction of an automated mixed-
precision search procedure. Since VBGS was originally designed to operate in double
precision for stability, its default arithmetic requirements far exceed what embedded
GPUs can efficiently support. The mixed-precision search algorithm developed
here selectively reduces the numerical precision of individual operations while
rigorously controlling output fidelity. This not only reduces memory consumption
and execution time but also establishes a general framework that can be applied to
other ML algorithms facing similar deployment constraints.
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The optimization process is further complemented by profiling and memory manage-
ment strategies. By inspecting allocation patterns during training, the implemen-
tation was restructured to reduce intermediate buffer usage, lowering peak memory
consumption by up to 75%. Together with quantization, these optimizations bring
the algorithm within the limits of devices such as the NVIDIA Jetson Orin Nano,
which offers only a fraction of the memory and power budget of workstation GPUs.
Beyond advancing the SoA in view synthesis, this work highlights a broader direction
for real-world robotics. Autonomous systems must learn and adapt in dynamic,
uncertain environments while operating under strict latency, energy, and memory
constraints. Traditional neural methods, while powerful, are poorly suited for
such scenarios because they require replay buffers, frequent retraining, and large
GPU resources. In contrast, VBGS naturally supports continual Bayesian updates,
integrating new data without the issue of catastrophic forgetting and providing
uncertainty estimates that are crucial for safe decision-making.

The thesis is organized as follows:

Chapter 2 provides background on the context of needed Bayesian statistics concepts
that are a core component of the VBGS algorithm.

Chapter 3 explains briefly the original Gaussian Splatting work mechanisms, the
VBGS algorithm itself and how this two differ.

Chapter 4 describes the characterization process, the modifications brought to
VBGS and the functioning of the automated mixed-precision search algorithm.
Chapter 5 presents a comprehensive visualization and analysis of the key results
obtained throughout the project.

Chapter 6 offers concluding remarks and outlines potential directions for future
works.



Chapter 2

Background

2.1 Bayesian statistics

Bayesian statistics [4] is a probabilistic framework for modeling uncertainty. In this
framework, we define an a-priori belief on the parameters of a generative model,
and we update it after seeing the data. Opposed to classical methods(e.g. MLE
[5], LSE [6]) which usually return point estimates, Bayesian statistics outputs a
distribution over parameters, better describing the degree of belief we have on our
answer.

2.1.1 Bayes theorem

Central to Bayesian statistics is the Bayes theorem, which relates prior knowledge
about parameters with new evidence from observed data:

p(D | 6) p(0)

p(D)
where 6 denotes model parameters and D the observed data.
In this formulation:

p(0 | D) = (2.1)

» p(0) is the prior, encoding assumptions or knowledge about parameters before
seeing data.

e p(D | 0) is the likelihood, describing how likely the observed data is under
given parameters.

» p(D) is the evidence, describing the total probability to observe the data.

e p(0] D) is the posterior, the updated belief about parameters after incorpo-
rating data.
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In practice, exact computation of the posterior is often intractable [7]; this means
the denominator p(D) cannot be computed exactly. Approximate methods such
as variational inference are used, which reframe the posterior computation as an
optimization problem to find the best approximating distribution, selected from a
given family, of the true posterior. This principle underlies the Variational Bayes
Gaussian Splatting (VBGS) approach described later in section 3.2.

2.1.2 Variational inference

The mathematical expression for the evidence is given by:

p(D) = [ p(D6)p(6) do. (2:2)

Unfortunately most of the times (and especially when working in a high dimensional
parameter space) this integral is not guaranteed to have a closed form solution.
Variational Inference [7] solves this issue by offering, in general, a non-exact,
iterative solution to the problem.

Given a set of latent variables z (random variables that cannot be measured, but
influence the data output of a generative model) and a set of data points x, the
main idea of Variational Inference is to approximate the posterior distribution
p(z | z) with an approximate distribution ¢(z). The latter is chosen from a family
of "proper" distributions in order to obtain some desired mathematical features.
In order to measure the difference between two distributions a metric called
Kullback-Liebler (KL) divergence is used:

De(a(2) | p(z | 2)) = B, log p(‘ﬁm (2.3)

From equation (2.3) it is possible to derive two important properties:
o The KL divergence is always non-negative.
o The KL divergence is zero if and only-if p = q.

Through some mathematical manipulation it is possible to bypass the use of the

posterior distribution p(zx | z) entirely and obtain an equivalent expression using
the Evidence Lower Bound (ELBO) [8]:

logp(z) = Dxi(q(2) | p(z | 2)) + Ey[log p(x, 2)] — Ey[log ()] (2.4)
£(q)=ELBO

In the form of (2.4) it’s easy to see that £(q) < logp(z) always holds true and
L(q) = logp(z) only when the KL divergence is zero. As p(z) is fixed, minimizing
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the KL divergence is the same as maximizing the ELBO. The original problem of
finding a closed form solution can be rewritten as the optimization problem:

q(z) = ming L(q) (2.5)

where every term in the ELBO can be computed.

2.1.3 Exponential Family Distributions

A large number of probability distributions commonly used in statistics and ML
belong to the exponential family of distributions [9]. A distribution is said to be in
the exponential family if its probability density function can be expressed in the
following canonical form:

p(z | 0) = h(z)exp(07T(x) — A(9)) , (2.6)

where:
o 0 are the natural parameters of the distribution,
o T(x) are the sufficient statistics of the data,
o A(0) is the log-partition function ensuring normalization,
o h(z) is the base measure.

This formulation yields several important theoretical properties. First, the sufficient
statistics T'(z) summarize all the information in the data that is relevant for
parameter estimation, a fact that underlies the efficiency of maximum likelihood
methods. Second, exponential family distributions admit conjugate priors: if the
likelihood is in the exponential family, one can select a conjugate prior such that
the posterior (calculated via Bayes formula) belongs to the same family (and, thus,
mantains the same form). This leads to closed-form Bayesian updates, avoiding
the need for costly integration.

2.1.4 Conjugate Priors in VBGS

VBGS exploits these properties in order to derive efficient update rules. In particu-
lar:

« the Gaussian likelihoods over spatial positions and colors admit Normal-
Inverse-Wishart (NIW) conjugate priors:

,LL,E ~ NIW(mo,RO,%,V()). (27)
6
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o The categorical assignments over mixture components admit a Dirichlet prior:

7 ~ Dir(ay). (2.8)

Because these pairs are conjugate members of the exponential family, the posterior
distributions retain the same functional form as the priors, and their natural
parameters can be updated in closed form. This allows VBGS to perform coordinate
ascent variational inference (CAVI) [10] with simple update equations that aggregate
sufficient statistics of the observed data over time, yielding, as will be discussed in
section 2.1.5, an efficient continual learning algorithm without the need for replay
buffers.

2.1.5 Uncertainty Propagation and Continual Learning

One of the main motivations for adopting a Bayesian framework in VBGS is
the ability to naturally propagate uncertainty. Instead of storing fixed Gaussian
parameters, VBGS maintains posterior distributions over them. This allows for:

» Sequential updates: new data refines the posterior without discarding prior
knowledge.

o Continual learning: catastrophic forgetting is mitigated, as updates are
accumulative by construction.

This probabilistic treatment forms the mathematical foundation for the methods
described in later chapters.

2.2 Novel View Synthesis

Novel view synthesis (NVS) refers to the task of generating images of a scene from
camera viewpoints that were not observed during training. Over the last few years,
this field has experienced rapid progress.

A major breakthrough came with Neural Radiance Fields (NeRF) [1], which achieved
unprecedented fidelity in reconstructing complex scenes from sparse input views.
NeRF models represent scenes as continuous volumetric fields parameterized by
neural networks, trained via differentiable volume rendering. Despite their quality,
NeRFs suffer from long training times and slow rendering speeds, making them
impractical for real-time applications.

To address these limitations, 3D Gaussian Splatting (GS) was introduced by Kerbl
et al. [2]. In contrast to NeRF, Gaussian Splatting represents a scene as a collection
of anisotropic 3D Gaussian primitives that can be efficiently rasterized. This

7
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formulation drastically reduces training and rendering time, enabling interactive
frame rates while preserving competitive visual quality.

Recently, several surveys have highlighted the importance of Gaussian Splatting in
the context of NVS and beyond. Chen and Wang [11] provide a comprehensive
overview of methods and applications, while Fei et al. [12] position Gaussian
Splatting as a paradigm shift for real-time 3D scene representation. These works
underline how Gaussian-based methods are quickly becoming a central tool in
computer vision and graphics research.



Chapter 3

Related Works

3.1

Gaussian Splatting

3D Gaussian Splatting (GS) [2] is a technique for novel-view synthesis and 3D
environment reconstruction. In contrast with its predecessors (such as NeRFs)
Gaussian Splatting represents the scene as a set of anisotropic 3D Gaussian primi-
tives (usually referred as splats) positioned in space and serve as the atomic unit of
the representation; this formulation makes the rasterization process very efficient,
while mantaining differentiability for gradient-based optimization.
Each Gaussian component is associated with a set of parameters:

e Mean and covariance: define the position, scale, and orientation of the
The covariance encodes anisotropy, allowing the
representation of ellipsoidal rather than spherical shapes.

Gaussian in 3D space.

e Spherical harmonic coefficients: represent view-dependent color. This
compact encoding allows Gaussians to capture appearance variations due to
lighting and viewing angle.

o Opacity coefficient: controls the transparency of the primitive and enables

differentiable alpha-blending during rendering.
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Figure 3.1: 3D Gaussian Splatting training flow, taken from [2]
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Figure 3.1 illustrates the training pipeline, where black arrows denote the forward
operation flow and blue arrows indicate the backward gradient flow used during
optimization. First the splats get initialized on a sparse cloud of Structure from
Motion (SfM) points. Then the GS algorithm alternates between an projection
phase and an adaptive-control phase.

3.1.1 Projection phase

During the projection, the 3D Gaussians get projected onto the image plane using
the camera parameters of the training image; then, using the fast rasterizer, a
simulated image gets created by the splats. The loss gets calculated using the
photometric error between the rendered image and the ground truth image. The
gradient of this loss is used to update Gaussian parameters through Stochastic
Gradient Descent SGD.

3.1.2 Adaptive-control phase

During the optimization phase, due to the natural ambiguity of 3D-to-2D projec-
tions, different 3D Gaussian can generate the same 2D projection on one plane.
For this reason an adaptive-control algorithm runs every 100 iterations. The
algorithm distinguishes spatial sections of the 3D environment in 2 categories,
under-reconstruction and over-reconstruction sections. This categorization, to-
gether with the pruning mechanism, helps GS keep the 3D space’s Gaussian density
under control.

o Pruning: Gaussians that are essentially transparent, i.e., with opacity below
a threshold o < ¢,, are removed. This prevents wasted computation on
primitives that do not contribute to the rendering.

e Cloning (under-reconstruction): In regions where geometric detail is
missing, the algorithm identifies Gaussians with high positional gradients.
Such Gaussians are duplicated, and the clone is mooved to the direction of
the gradient. This increases the number of Gaussians and expands coverage
of underrepresented areas.

« Splitting (over-reconstruction): In regions where one large Gaussian
covers too much area (corresponding to high positional gradients and high
variance), the Gaussian is split into two smaller Gaussians. Their scale is
reduced by a factor ¢ =~ 1.6, and their positions are initialized by sampling
from the parent Gaussian’s probability density function. This preserves total
scene volume while improving local detail.

10
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This heuristics ensure the number of Gaussians does not explode (note a high
number of Gaussians could significantly slow down the rasterization process and,
consequently, the overall training speed) and helps improve detail in low density
zones.

3.2 Variational Bayes (GGaussian Splatting

Variational Bayes Gaussian Splatting (VBGS) [3] is a probabilistic extension of 3D
Gaussian Splatting that frames the learning process as variational inference over the
parameters of the Gaussian mixture model. Instead of relying on backpropagation
through a differentiable renderer, VBGS makes use of the conjugacy properties
exponential family distributions and derives closed-form update rules, enabling
efficient parameter estimation from sequential or partial observations. This approach
naturally supports continual learning, avoiding the catastrophic forgetting [13]
problem that affects gradient-based optimization when data arrives as a stream.
Each Gaussian primitive in VBGS is not associated with a fixed set of parameters,
but with a posterior distribution over them. This probabilistic treatment allows
VBGS to integrate uncertainty directly into the scene representation and update
components incrementally as new data arrives.

3.2.1 The Generative Model

@

Figure 3.2: VBGS generative model; gray and white circles denote observed and
unobserved data respectively. Taken from [3]

VBGS models the scene as a mixture of K Gaussian components. Each data point
consists of a spatial coordinate s (2D pixels or 3D points) and a color vector ¢
(RGB). The generative process is:

A latent assignment z ~ Cat(m) selects a component.

11
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 The spatial observation is drawn as s|z = k ~ N (fsx, Zsk)-
o The color is drawn as ¢|z = k ~ N (lek, Zek)-

ts. and g, i, represent the spatial and color means of the k" distribution, while Yek
and >, ; their respective covariance matrices. The component parameters them-
selves are random variables: the parameters (u, 2) follow a Normal-Inverse-Wishart
prior (NIW), p, % ~ NIW(m, k, V,n) while the mixture weights follow a Dirichlet
prior, m ~ Dirichlet(a).

More in detail, the parameters of the NIW are:

e m: the prior mean of the Gaussian distribution.
e k: the scaling factor controlling the strength of the prior on the mean.

o V: the scale matrix of the inverse Wishart distribution, encoding the prior
covariance structure.

o n: the degrees of freedom of the inverse Wishart distribution.

This hierarchical model (Fig. 3.2) allows inference to change confidence along all
levels of the representation.

3.2.2 Coordinate Ascent Variational Inference

Posterior inference in VBGS is performed via Coordinate Ascent Variational Infer-
ence (CAVI) [10]. The ELBO is maximized with respect to a mean-field factorization
over latent assignments ¢(z) and parameters q(u, 3, 7).

The update cycle mirrors the Expectation—-Maximization (EM) [4] algorithm:

« E-step: Compute the responsibilities v, , i.e., the probability that component
k generated observation (s, ¢,).

o M-step: Update the natural parameters of the posterior distributions by
aggregating sufficient statistics of the data, weighted by responsibilities.

Because conjugate priors are used, these updates are closed-form and accumulate
over time.

3.2.3 Continual Updates

Unlike gradient descent, VBGS supports continual learning through sequential
Bayesian updates:

Nige = M—1,k + Z Vi1 (), Uik = Vi1 ke + Z Vi, x (3.1)
€Dy €Dy
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where T'(x) are sufficient statistics and (7, v) are natural parameters of the conjugate
prior. This ensures that new data refines the posterior without overwriting prior
knowledge, avoiding catastrophic forgetting.

3.2.4 Component Reassignments

In continual learning, uniform initialization may lead to unused components or
poor coverage of the data space. VBGS introduces a component reassignment
heuristic: unused Gaussians are reassigned to unexplained regions by sampling
from data points with a probability proportional to the negative ELBO; this way
poorly explained points have the highest probability of being reassigned. This
increases coverage while keeping the number of components (and consequantially
the model complexity) constant.

3.2.5 Rendering

For images, rendering reduces to computing the expected color given pixel coordi-
nates. For 3D data, VBGS employs the GS rasterizer [2], projecting Gaussians to
the image plane and combining them via alpha blending. Unlike GS, opacity is not
optimized; all Gaussians are treated as opaque, simplifying rendering while still
supporting novel view synthesis.

3.3 Advantages over Gradient-based GS

VBGS offers several improvements over gradient-based Gaussian Splatting:

o Continual learning: No need for replay buffers or retraining, as Bayesian
updates are inherently accumulative.

o Closed-form updates: Eliminates the need for backpropagation through
the renderer.

o Uncertainty representation: Each Gaussian has a posterior distribution,
enabling an accurate description of the confidence level.

« Efficiency in streaming data: Single-step updates make VBGS suitable
for robotics and online perception tasks.

13
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Figure 3.3: Continual learning performance. (a) Evolution of image reconstruction
performance measured as PSNR (dB) after feeding image patches of size 8x8
sequentially to the model. Confidence intervals are the Z95 interval computed
over the 10k validation images of the Tiny ImageNet dataset [14] of size 64x64.
(b) Evolution of the reconstruction performance, measured as PSNR (dB), after
feeding in consecutive images of an object. The shaded area indicates the 95%
confidence interval computed over the 100 frames from the validation set. Taken
from [3]

Figure 3.3 compares the performance of GS ad VBGS on the Tiny Imagenet
dataset [14]. The graphs confirm our expectations: When data is fed in block the
two algorithms have comparable performances, while when GS receives partial
information about the image (in (a) images are fed in sub-patches while in (b) the
3D object’s images are provided one-by-one) it clearly underperforms VBGS. In
contrast VBGS’s performance remains consistent in the continual learning setting.
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Chapter 4

Methods

Ther core og this thesis explores a set of optimization strategies for the VBGS
algorithm. The main objectives are (1) to reduce the memory footprint of the
algorithm, both in terms of peak allocation and average utilization and (2) to
accelerate training by lowering overall execution time.

Section 4.1 focuses on a detailed characterization of the baseline VBGS implemen-
tation. Through systematic profiling of memory usage and runtime behavior, this
section identifies critical memory and latency bottlenecks. Such analysis provides
the foundation for developing targeted optimization strategies aimed at adressing
this bottlenecks without compromising model accuracy.

Section 4.2 will describe initial algorithmic optimization targeted at removing
intermediate allocations and improve inefficient implementations.

Sections 4.4 and 4.5 investigate numerical precision related optimizations. First,
the rationale for quantization is presented, emphasizing its role in reducing compu-
tational overhead especially considering GPU acceleration and memory footprint.
Finally, an automatic mixed-precision search algorithm tailored for statically com-
piled functions will be described. This mechanism systematically explores precision
trade-offs, ensuring reduced precision does not impact the quality of the final output
and the training metrics.

Taken together, these contributions outline a comprehensive optimization framework
for VBGS, balancing memory efficiency and runtime performance while maintaining
the algorithm’s probabilistic robustness.

4.1 Profiling

Before applying targeted optimizations to the VBGS algorithm, it is essential to
first obtain a detailed understanding of its computational behavior. Profiling aims
at achieving this groundwork by measuring both memory utilization and execution
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latency. These measurements reveal where the algorithm stresses device resources
most heavily, and highlight which operations dominate runtime.

Such insights are particularly critical in the context of embedded devices. On
this hardware, peak memory allocations may exceed device capacity, leading to
execution failures, while inefficient implementations directly limit the feasibility of
real-time training or inference.

In the following subsections, two complementary profiling analyses are discussed:
memory profiling, which exposes allocation patterns and peak usage, and latency
profiling, which quantifies the runtime cost of individual operations and functions.
Together, these analyses establish the performance baseline against which all
subsequent optimizations are evaluated.

4.1.1 Memory profiling

The memory usage of the VBGS algorithm can be divided in two groups:

« Base memory: the static portion that is always in memory. This includes
the model parameters and the memory required to store the frame data. Base
memory constitutes the minimum footprint of the algorithm, independent of
the training process.

e Training memory: the dynamic portion that is allocated during a training
cycle and freed after finishing. It primarily consists of intermediate results
produced by JAX operations, intermediate arrays created during function
execution, and data structures used in batch processing. This part is typically
responsible for large memory fluctuations during execution.

The algorithm always keeps two models in memory, the prior model and the
approximate posterior model. The first represents our initial beliefs on the
parameters, while the second is the version updated by the observed data. The
distinction between the two is fundamental for enabling continual learning.

Tables 4.1 and 4.2 report the size of the parameters of the two models,
parametrized by the number of components n..
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Table 4.1: Parameter sizes of the prior model, parametrized by the number
of components n.. Parameters are in the canonical form of the corresponding
distribution.

Distribution Parameter name  Size
My 3N,
Ky 1-n,
p(:ux:Zx)? T € {S,C}
V:’c 9- Ne
Ny 1-n,
p(m) a 1-n.

Table 4.2: Parameters sizes of the approximate posterior model, parametrized
by the number of components n.. Parameters are in the canonical form of the
corresponding distribution.

Distribution Parameter name  Size

My 3N,

(e 22, @ € {5,c) o Lo
q Mw? ) aj S7C

V;c 9 *Ne

Ny 1-n,

q(m) a 1-n.

The function of this parameters is explained in 3.2.1. The constant values refer to
the dimension of the parameter of the £ distribution; the prior mean m has the
same dimension of the spatial and color means p (3). V' is the same dimension as
sigma (3x3); finally,k, nanda are all numbers (1).

With this information, the models’ base memory occupation can be calculated as:

precision bits

memory [GB] = (Y _ parameter sizes) - (4.1)

G B to bit conversion rate

Where the conversion rate from GB to bits is equal to 8 - 10243.

Since the original implementation of VBGS uses £p64 precision, for n, = 100000
the models’ base memory equals to ~ 0.02 GB. As we will see in this section, this
can be considered negligible with respect to the other memory components.
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Listing 4.1: Example of JAX’s profiler usage.

training_loop ()
jax.profiler.start_trace(logdir)

function_to_ profile_1()
function__to_profile_2 ()

jax.profiler .stop_trace()

In this work, memory profiling was done using JAX’s native profiling tool in
conjunction with XProf [15], a visualization software designed for analyzing
program traces. JAX provides an easy mechanism to record traces of execution
[16]; an example is shown below:

The trace obtained with 4.1 can then be analyzed in XProf. XProf offers a series
of visualization tools to help profiling. In particular, the memory viewer is the
most valuable among them, as it shows the memory usage and fragmentation
(occurs when free memory is split into small non-contiguous blocks, preventing
large allocations despite sufficient total space over execution time).

Algorithm 1 VBGS main training loop.

1: Initialize prior _model, model

2: Initialize training frames

3: Initialize stats at 0

4:

5. for each frame € training frames do

6: prior_model = reassign(prior_model, model, frame)
7: model, stats = fit_ gmm__step(model, stats, frame)
8: end for
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Algorithm 2 VBGS reassign() definition.

1: Divide the frame in batches

2: Initialize elbos array empty

3:

4: for each batch € batches do

5: elbo, = compute__elbo__delta(prior_model, batch)

6: Append elbo to elbos

7: end for

8:

9: Pelbo = —elbos

10: Normalize pepo SO that it sums to 1

11:

12: Myeassign = fraction of number of the components with no previous assignments
13: Dreassign = Sample Nyeagsign Points from data with probability peine

14: Creassign = Mreassign NUMber of components with no previous assignments
15:

16: Change the means of Creassign 1O Preassign

17: Update prior_model

18:

19: return prior model

Algorithm 3 VBGS fit_gmm_step() definition.

1: Divide the frame in batches

2:

3: for each batch € batches do

4 _, assignments = compute__elbo__delta(prior_ model, batch)
5:

6 stats;.,, = compute__statistics(batch)

7 statssum = sum__stats__over__samples(stats,,,, assignments)
8 Append statsg,, to stats

9: end for

10:

11: model = update__model(model, stats)

12:

13: return model

Algorithm 1 shows the main training loop of the VBGS algorithm; it can be
roughly divided into two main phases that alternate iteratively: the reassign step
(2) and the fit step (3). In both steps the image (or frame) is divided into smaller
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sub-patches during ELBO computation; the dimension of the sub-patches depends
from the user-defined size parameter (bs). This is done to avoid memory issues due
to having to process the whole image at the same time. The reassign step provides
a useful heuristic for component redistribution; all points in the frame get assigned
a score based on the negative ELBO, which gives a higher score to points that are
poorly explained by the model; random points are now sampled with probability
equal to their score and a small number of components that have not received any
assignments yet get their mean updated to those points’ mean. The fit step is the
true training phase. Each point in the images gets assigned to the component that
explains it best (line 4). Then, sufficient statistics of the data are computed (line
6-7) and the model gets updated based on the previous assignments. Identifying
which of the two phases is the most critical for memory usage is key to designing
effective optimizations.
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Figure 4.1: Memory profile over time of a single batch computation window
during the reassign() step (top) and the fit gmm() step (bottom)

Figure 4.1 illustrates the memory profiles of these two phases. It is evident that the
fit_gmm_step() function is the primary source of memory pressure. During its
execution, two distinct spikes in memory usage appear, each rising sharply above
the baseline for only a brief duration. Such behavior hints at a large intermediate
allocation that is created and freed within the scope of a single function call.
By comparing the timing of these spikes with other XProf tools that relate the
execution time with the python functions execution, it was possible to attribute
the issue to the function sum_stats_over_samples(). Even if just transient, this
big memory allocation can be detrimental for embedded devices, where the limited
memory could prevent the function execution in its entirety. A solution to this
point will be discussed and formulated in section 4.2.
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4.1.2 Latency profiling

While memory profiling exposes how the algorithm interacts with device capacity,
an equally important aspect is the time required to execute each part of the compu-
tation. Reducing latency is a critical factor when targeting real-time applications:
embedded devices do not own the computational power of GPU, so every small
improvement on GPU can become a huge time save on the device. Even when
memory usage remains within acceptable bounds, excessive latency could make the
algorithm impractical for target applications.

Latency profiling provides a detailed breakdown of execution time across the
different stages of training, making it possible to pinpoint where the majority of
computational effort is spent. By correlating timing information with the program’s
functional structure, bottlenecks can be identified and linked to specific functions or
operations. This knowledge is essential for introducing subsequent optimizations: it
highlights not only the regions where improvements may bring the greatest impact,
but also whether inefficiencies from algorithmic design, redundant computations,
or hardware underutilization could be present.

In the case of VBGS, profiling execution translates in understanding the impact
of the sub-processes of the reassign() and the fit_gmm_step() routines. Un-
derstanding their relative contribution to overall runtime establishes the baseline
against which optimization strategies can be developed and evaluated.

Measuring execution latency in JAX is not straightforward, since computations are
executed asynchronously on the device. When a function is called, JAX typically
only adds the operations to a queue, returning control to Python immediately while
the actual kernels are executed in the background. As a result, normal timing
measurements cannot capture true device runtime. Moreover, the first call to a JIT
compiled function includes compilation overhead, which must be separated from
steady-state execution. To obtain reliable latency values, explicit synchronization is
required, typically by calling block_until_ready() on the returned arrays. This
ensures that the host process waits until all queued operations have finished and
the result is returned, making the measured time representative of the actual device
computation. Once again, the XProf program is of great help in our goal.

22



Methods

|l,mml |L850l|l 1,700 ms

Figure 4.2: Python function-level profile of a single batch computation window
during the reassign() function execution.
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Figure 4.3: Python function-level profile of a single batch computation window
during the fit_gmm_step function execution.
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Figure 4.4: Visualization of the latency split during a batch of the reassign()
(left) and fit_gmm_ step() (right) functions.

The timeline in Figures 4.2 and 4.3 highlight the functions compute_elbo_delta()
and sum_stats_over_samples() as the primary contributors to the overall training
time. Both functions are invoked repeatedly in the training loop and involve
computationally intensive operations, which makes their inefficiencies particularly
impactful on runtime. A complete analisys of the implementations of these functions
will be conducted in section 4.2 in order to improve the training speed.

Figure 4.4 provides a visualization of the computation time split in the reassign()
and fit_gmm_step() functions. The left chart shows that during reassign()
about 75% of the time is spent computing the ELBO. The right chart shows
close to the full computation step is taken by the compute_elbo_delta() and the
sum_stats_over_samples() functions.

At last, the correlation between training speed and batch size was investigated.
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Figure 4.5: Correlation between latency and batch size in fit_gmm_step() (top)
and reassign() (bottom).

Figure 4.5 reveals the batch size really affects training speed for values below 500.
For higher values, the curve becomes flat and increasing batch size only yields an
increase in memory occupation.

4.2 Initial code optimizations

The original VBGS algorithm produces an OOM error when ported to the Jetson
Orin Nano. For this reason, the first goal has been reducing the peak memory
utilization in order to comply with the devices constraints.

Section 4.1.1 revealed that the function sum_stats_over_samples() was the pri-
mary source of transient memory spikes, making it a key optimization target.
The function 4.2 performs an element-wise multiplication between two matrices and
a reduction. The issue is that the results of the multiplication are not immediatley
accumulated along the summing axis, but the multiplication result is first stored in
memory, and then accumulated. For large matrices, this temporary allocation can
be several times larger than the input tensors, leading to the short but extreme
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Listing 4.2: sum_stats_over_samples() original implementation.

def sum_ stats_over_samples(
self , stats, weights, sample_ dims):

def sum_samples_over_ leaves(tree):
return jtu.tree_map (
lambda leaf_ array: (leaf_array # weights).sum(sample_dims

)

tree )

return jtu.tree_map (
lambda stats_tree: sum_samples_over_leaves(stats_tree), stats
)

spikes observed in the memory in figure 4.1. While such spikes may be tolerable on
a high-end GPU, they can exceed the available memory on embedded devices. To
address this, the function was rewritten using jax.lax.dot_general () [16], JAX’s
low-level primitive for generalized tensor contractions. Unlike the previous approach,
dot_general fuses the multiplication and reduction into a single operation. The
key difference is that partial results are accumulated directly along the contracting
axis, eliminating the need to allocate the full intermediate product in memory.
This design not only reduces peak memory usage but also better aligns with how
XLA lowers contractions to efficient device kernels.
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Figure 4.6: Memory profile over time of a single batch computation window
during fit_gmm step(). The top panel represents the memory usage of the
baseline VBGS, the bottom panel shows the improvement brought by the new
implementation of sum_stats_over_samples()

The effect of this change is illustrated in Figure 4.6. The bottom panel shows
the improved implementation with jax.lax.dot_general (), where the spikes are
completely eliminated.

As seen in Figure 4.4 the sum_stats_over_samples() function is also responsible
for a significant fraction of the overall training time; Improving the efficiency of this
function therefore has the potential to bring substantial speedups. Two concrete
modifications were identified:

e In the current implementation, operations like squeeze () and transpose()
(see Listing 4.3) are used to reshape outputs so they remain consistent with
the original function shape. While functionally correct, these transformations
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Listing 4.3: sum_stats_over_samples() second implementation.

def sum_ stats_over_samples(self , stats, weights, sample_dims):

def sum_ stats_over_leaves(tree):
return jtu.tree_map (
lambda leaf_ array: jax.lax.dot_general(
((sample_dims,), (sample_dims,)), ((),())
) .squeeze (sample_dims ,4,5)
.transpose (2, sample dims, 1),
tree ,)

return jtu.tree_ map (
lambda stats_tree: sum_samples_over_ leaves(stats_tree), stats

introduce overhead. A more efficient solution uses the einsum function [17],
which directly encodes the intended contraction and transposition pattern and
avoids redundant reshaping operations.

e The function sum_stats_over_samples() is not JIT compiled, because the
sub-function sum_stats_over_leaves() receives as input sufficient statistics
of four different natural parameters, each with distinct shapes. However, since
the number of natural parameters is small and fixed (only four), the function
can be split into four specialized sub-functions, each dedicated to one natural
parameter. This strategy makes the function static and enables effective JI'T

compilation, providing a great runtime reduction as will be shown in chapter
5.
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Listing 4.4: sum_stats_over_samples() third implementation.

@jax. jit
def sum_ stats_over_samples(stats , weights):

def weighted sum_eta_1(eta_1, weights):
return jnp.einsum ("adf, ai — idf",
jnp.squeeze (eta_1, axis=1),
jup .squeeze (weights))

def weighted sum_eta_ 2(eta_ 2, weights):
return jnp.einsum ("adf, ai — idf",
jnp.squeeze (eta_2, axis=1),
jup .squeeze (weights))

def weighted _sum_nu_1(nu_1, weights):
return jnp.einsum ("adf, ai —> idf",
jnp.squeeze (nu_1, axis=1),
jup .squeeze (weights))

def weighted sum_nu_2(nu_2, weights):
return jnp.einsum ("adf, ai —> idf",
jnp.squeeze (nu_2, axis=1),
jnp.squeeze (weights))

# Flatten the pytree of stats
leaves , tree_def = tree_flatten(stats)

# Apply the weighted sums to each leaf
leaves [0] = weighted_sum_eta_1(leaves[0], weights)
1]

leaves [1] = weighted sum_eta_ 2(leaves[1l], weights)
leaves [2] = weighted _sum_nu_1(leaves[2], weights)
leaves [3] = weighted sum_ nu 2(leaves|[3], weights)

# Reconstruct the tree
new_stats = tree_unflatten (tree_def, leaves)
return new_stats
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4.3 Modified Training Loop

Another optimization attempt focused on reducing the overhead of the reassign()
procedure by restructuring the training loop. In the baseline algorithm, reassign-
ment requires computing the ELBO and posterior responsibilities twice (once for the
reassignment step, and once for the fit step), introducing redundant computations
and memory usage.

4.3.1 Motivation

The key idea was to merge the reassignment logic into the main EM cycle. Instead
of recalculating the ELBO and responsibilities separately for the reassigned com-
ponents, these values would be computed once and then selectively modified to
reflect reassignments. This was expected to reduce latency, while still preserving
the statistical meaning of the variational updates.

4.3.2 Implementation

The modified loop was structured as follows:
1. Compute ELBO and posterior responsibilities once for the full frame.

2. Compress the posterior matrix into an argmax representation of the size of
the frame, avoiding the need to explicitly store the full posterior matrix of
size (512 - 512) x n..) (considering a frame of dimension (512 - 512), which for
(n. = 100000) would result in an OOM error.

3. Identify components selected for reassignment and update the posterior repre-
sentation so that these components receive one-hot assignments to their target
points.

4. Re-batch the modified posterior matrix and recompute sufficient statistics,
followed by the M-step update.

4.3.3 Results and Limitations

This merged training loop produced a clear speed-up compared to the baseline
implementation. The modified training loop yielded a 25% to 50% latency decrease
(depensing on the batch size value).

Despite these gains, a fundamental limitation emerged: reassigned components in
this scheme received only a single hard assignment from their designated poorly
explained point. In contrast, in the baseline algorithm these components acquired
hundreds of assignments through full ELBO recomputation. This imbalance led
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to worse updates and degraded the overall quality of the representation. Since
recomputing the ELBO for reassigned components would negate the speed advan-
tages, the modified training loop was ultimately not adopted in the final optimized
framework.

4.4 Quantization

Some parameters of the model of the VBGS codebase makes use of very small
numberical values to describe fine-grained differences between Gaussians. To avoid
precision issues, led the original implementation was fully developed in float64
and the quantization possibility was never explored.

While utilizing such a high-precision options ensures robustness, it also translates
in an important use of computational resources and a high memory footprint, even
when a lower-precision would be acceptable. On modern accelerators, particularly
GPUs, lower-precision arithmetic such as float32 or float16 is not only more
memory-efficient but can also exploit specialized hardware units (e.g., Tensor Cores
[18]) for substantial speedups.

For these reasons a significant part of this work focuses on a rigorous quantization
exploration in order to balance hardware resources and final quality.

1 5 10
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fp16 D m m D sign bit D exponent bit D precision bit
1
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Figure 4.7: Comparison of IEEE 754 [19] floating-point bit representation. The
sign bits are represented in green, the exponent bits in blue and the precision bits
in yellow

Table 4.3: Comparison of IEEE 754 [19] floating-point ranges and precisions.

Precision
Format Range (decimal digits)
fp16 6.1 x 107°-6.5 x 104 ~ 3.3
fp32 1.2 x 10738-3.4 x 103 ~ 7.2
fp64d 2.2 x 1073%-1.8 x 103 ~15.9
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Figure 4.7 and table 4.3 compare the bit representation of the three most popular
floating-point precisions. Altough fp64 offers the finest precision and the biggest
dynamic range, it also occupies the biggest space in memory (2 times the space
of an £p32 number and 4 times the space of an fp16 number). Moreover, the
more bits are used to represent a number, the slower data transfer and its use
for computation will be. The purpose of quantization is to reduce the numerical
precision in order to balance the size throughput and final quality of resource
intensive algorithms. Quantization is a well documented topic in ML, especially
for DNNs (]20]), but research is lacking in the specific case of probabilistic ML.

4.5 Automatic mixed-precision search algorithm

first - second . |latency-aware
quantization | quantization quantiazation
Output out of bounds
START i
operatlonl- < Uylpgl
error mapping validation

Qutput in bounds

static
compilation

Figure 4.8: Automatic mixed-precision search algorithm’s workflow diagram. the
green and red arrows indicate respectively a succesfull and unsuccesfull validation.

Achieving the best balance between precision and performance requires a systematic
strategy. For this purpose, an automatic mixed-precision search algorithm was
designed. Its goal is to assign to every operation in a certain function the optimal
precision given a certain tolerance; In essence, the algorithm seeks to minimize
computational and memory costs while ensuring that the deviation from a high-
precision reference output remains within acceptable bounds.

To start, a way to identify the atomic operation was needed. As the project already
used JAX, adopting the jaxpr was convenient. The jaxpr is a low-level intermediate
representation of a function, capturing the entire computation as a dataflow graph.
Each equation in the jaxpr corresponds to a single primitive operation (e.g., addition,
multiplication, or matrix multiplication); figure 4.9 provides the jaxpr representation
of an example function. By operating at this level of granularity, the algorithm
can reason about precision assignment in a fine-grained and systematic manner.
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def example_ fn(inl, in2, in3): 1| { lambda ;

intrl = jnp.log(inl) 2 a:f32[] b:f32[] c:f32]].

intr2 = in2 * in3 3 let

intr3 = in3 / jnp.abs(in2) | d:£32[] = log a

return intrl + intr2 * intr3 |s e:f32[] = mul b ¢

6 f:132[] = abs b

inl = 1.0 7 g:f32[] = div ¢ f
in2 = —-2.0 8 h:f32[] = mul e g
in3 = 3.0 9 i:f32[] = add d h
jaxpr = jax.make_jaxpr(example_fn |0 in (i,)

) (inl,in2 ,in3) 11

Figure 4.9: Python function and its corresponding jaxpr representation, shown
side by side.

Figure 4.8 shows a summary of the search algorithm’s main functional blocks.
These will be discussed one by one in the following sections.

4.5.1 Operation-error mapping

The first step of the algorithm is understanding how modifying an operation
precision changes the overall function’s output. The optimal approach would
involve exhaustively testing all possible combinations of precision assignments across
operations; such an approach is computationally intractable even for moderately
sized functions, as the number of combinations grows exponentially with the number
of operations. Algorithm 4 provides pseudocode for this implementation.

1. Reference Computation: First, the function of interest is executed with
all operations forced to the highest available precision, in our case fp64. The
resulting output serves as the reference output, representing the ground truth
against which all further approximations are compared (line 1).

2. Operation-wise Perturbation: For each operation in the jaxpr, the algo-
rithm constructs a modified version of the function (line 5) in which only
that specific operation is executed at a lower precision (e.g., £p32 or fp16),
while all remaining operations are kept at £p64. The function is then executed
again, producing an altered output (line 6).
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3. Error Measurement: The altered output is compared to the reference output

using maximum relative error (line 7). The result quantifies the sensitivity
of the overall function output to lowering the precision of that particular
operation.

Error—Operation Mapping: By repeating the perturbation process for every
operation, the algorithm constructs a mapping between each jaxpr equation
and its associated error impact (line 8). This highlights which operations
are robust to precision reduction and which ones are critical for maintaining
numerical stability.

Algorithm 4 Compute operation-error mapping

H
<

Yrer = f(z) with all operations in precision hp
Initialize empty map M

for each op € O do
fop = function f where op runs in precision lp
Yop = fop()
err = max (]yref - yop])/scale
Mlop] = err
end for
return M

4.5.2 First quantization pass

The operation-error mapping obtained in the previous section is now used to
construct a quantization map (). The goal is to downcast as many operations as
possible to a lower precision while ensuring that the final output remains within
a specified error tolerance compared to the high-precision reference. Algorithm 5
provides pseudocode for this implementation.

1. Initialization: We begin with a fully high-precision reference computation

f(x), executed with all operations at precision fp64. This establishes the
reference output v, (line 3). In parallel, we define a quantized candidate
function f¢ (line 4) where, by default, all operations are executed in a lower
precision (e.g., £p16).

. Error Ranking: From the operation—error mapping M, the operations are

ordered in descending order of their individual error contributions. This
ranking reflects the criticality of each operation: those with higher error scores
are more likely to destabilize the output if kept in low precision.
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3. Progressive Upcasting: Starting from the fully quantized function fq, the

algorithm progressively reverts operations back to the reference precision (line
8). The reversion (or “upcasting”) of operation precision follows the error
ranking order: the most critical operation is restored first, then the second
most critical, and so forth. After each reversion, the function is re-evaluated
on the input z, producing a candidate output yg (line 10).

Stopping Criterion: At each iteration, the relative error between y, and
Yres 1s measured:

maz(|Yresr — Yql) (4.2)

err =
scale

If the error drops below a user-defined tolerance, the process terminates. This
ensures the minimum number of required operations get reverted at this stage.

Quantization Map: The final outcome of this procedure is a quantization
map (), which associates each operation with the lowest possible precision.
This map can then be used to consistently evaluate the function in future runs
under mixed precision.

Algorithm 5 First quantization pass

= = e e
Wy 72

() = operation-precision mapping

M, = M mapping ordered by decreasing error
Yres = f(x) with all operations in precision hp
fo = f with all operations in precision Q[op]

while err < tolerance do
for each op in M, do

Qlop] = hp
fo = function f using () for ops precision
Yo = fo(z)
err = max (|ymf - yQ|)/scale
end for
: end while
: return Q)

It is important to note the mapping M does not account for error accumulation
caused by non-linear function error accumulation. This translates to the mapping
Q@ not truly describing the number of possible quantizations, but only a sub-optimal
set; for this reason, a further pass is required to increase the number of quantized
operations.
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4.5.3 Second quantization pass

As discussed in the previous section, the operation—error mapping M only captures
the local effect of lowering the precision of individual operations, without considering
how errors propagate and accumulate in the computational graph. Consequently,
the quantization map ) derived from the first pass represents a conservative,
sub-optimal assignment: many operations that could, in fact, be quantized remain
unnecessarily at high precision.

To address this, a second pass is performed in which the algorithm explores the
graph dependencies of the jaxpr representation. Each operation is represented
as a node, and edges denote input—output relationships between operations. The
search starts from operations that have already been successfully quantized to low
precision (treating the results of the first pass as "seeds") and then recursively

propagates along their graph neighbors. Algorithm 6 provides pseudocode for this
implementation.
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START

(a) (0) STOP

(c) (d) ()

Figure 4.10: Example of the second quantization pass downcasting logic. Nodes
in white represent unexplored nodes; nodes in yellow represent nodes currenlty
in exploration. Nodes in green and red represent respectively quantized and
unquantized explored nodes. Arrows show the input-output relationships between
nodes. Graph (a) represents the initial graph configuration from the previous pass.
In this configuration node 5 is the inital seed and node 4 is the first node that
attempts quantization. As the error output error with the quantized node 4 is under
tolerance, node 4 is now the current node. Graph b attempts quantization of node
1, but fails due to output exceeding tolerance. As the predecessors and successors
of 4 have already been searched, the last predecessor of 5, node 3, is next. In
graph (c) we can see node 3 quantization is succesfull, node 2 is next node. Graph
(d) attempts downcasting of node 2, but fails due to the error exceeding tolerance.
Graph (e) represents the final configuration after the second quantization pass. As
the search space of the graph is now empty, the algorithm stops.

1. Graph traversal: Each operation is treated as a node in a directed graph.
Starting from a node that is already assigned to low precision, we traverse
recursively through all connected nodes following their input—output edges.

2. Candidate downcasting: When a connected node is found that is not yet
in low precision, we attempt to downcast it (line 8).

37



Methods

3. Error evaluation: The modified function output is computed and compared
to the reference output. The relative error is computed in the same way as in
equation 4.2 (line 10).

4. Acceptance criterion: If the error remains below the tolerance threshold
(line 12), the candidate node is permanently added to the quantization map
() with assignment Q[op] = Ip. If not (line 14), the node is reverted to high
precision.

5. Termination: The process repeats until all low-precision nodes and their
neighbors have been visited, ensuring that quantization has been pushed as far
as possible through the computational graph while respecting the tolerance
constraint.

Figure 4.10 offers an example of the algorithm’s behaviour on an toy graph.

Algorithm 6 Second quantization pass

1: yref = f(x) with all operations in precision hp
2: () = quantization mapping from previous pass

. for each op with Q[op] = Ip do

Explore neighbors of op recursively

4

)

6:

7 for each neighbor n not in Ip do
8: Temporarily set Q[n] = Ip

9

: Yo = fo(x)
10: err = max (]yref — yQD/scale
11:
12: if err < tolerance then
13: Keep Q[n] = Ip
14: else
15: Revert Q[n| = hp
16: end if
17:
18: end for
19: end for

20: return @)

This recursive strategy complements the first pass by explicitly leveraging graph
dependencies. It promotes a more aggressive reduction of precision in regions of
the computation that are structurally robust, while avoiding error propagation
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across sensitive edges. The combination of local error-driven (first pass) and
recursive graph-based (second pass) downcasting provide a balanced and systematic
exploration of the precision landscape, without having to analyze every possible
quantization possibility.

4.5.4 Latency aware quantization pass

Operation quantization can, sometimes, be non-beneficial in the context of training
speed; when introducing casting operations at precision boundaries some effects
(e.g., higher memory traffic, conversion overhead) can decrease the computation
speed of graphs with isolated low-precision nodes with respect to high-precision
consistent operations. A simple cost function for a cluster can be written as:

C = Z tiomputation + Z tiasting (43)

To decrease training latency, only clusters of low-precision nodes that have an
associated cost lower than the high-precision counterpart should be kept. In
practice, it’s not possible to precompute a mapping between operation type and
computation time as after JIT compilation it’s not guaranteed to be constant. The
solution adopted directly measures the latency of the function with and without
the cluster quantization; this way it’s possible to say definitively if a cluster is
worth quantizing or not. The clusters are first identified using a recursive strategy:
for each low-precision node, we check recursively if its predecessors and successors
are in the same precision. If they are, tehy get added to that cluster. Then, for
each cluster, a function fi,,,, gets created using Q[cluster] = hp. This function and
the function fg get JIT compiled and compared and profiled. if f,,, is faster, we
update () as:

Q|[cluster] = hp (4.4)

As a result of this process, the fastest possible quantization mapping @) for the
avaiable low-precision nodes should be returned. Algorithm 7 provides pseudocode
for this implementation.
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Algorithm 7 Latency aware quantization pass

1: (Q = quantization mapping from previous pass
2: fo = f with all operations in precision Q)[op]
3: improved = True

4:

5: while improved == True do

6: cluster = define_ clusters()

T

8: for cluster € clusters do

9: fimp = fo with Q|cluster] = hp
10: timp = measure latency( fimp)
11: to = measure latency(fo)

12:

13: if ¢4,y < tg then

14: Q|[cluster| = hp

15: break

16: end if

17:

18: improved = Flalse

19: end for
20: end while
21: return @)

4.5.5 Offline static compiling

Although greatly reducing the search space with respect to checking every combina-
tion of the jaxpr operations quantization, the algorithm still takes a non-negligible
amount of time to run for large functions. Furthermore, memory usage can get
really high during some parts of the algorithm execution (e.g., when computing the
reference output we are basically computing the full function in fp64) and remove
the possibility of it running on embedded devices where memory constraints are
more strict. Both problems were solved by running the search algorithm in another
process, before starting the true VBGS algorithm run. This is implemented via a
function decorator and a setting option in a configuration file:

o Compilation mode: When enabled, the decorator triggers the automatic
mixed-precision search before the true VBGS execution begins. To ensure
robustness, the search is not performed on a small batch of five frames. This
multi-frame evaluation prevents overfitting the quantization map () to a specific
image and provides a check to the quantization capability to generalize across
data instances. If during algorithm execution a numerical issue is encountered
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(e.g., overflows or underflows) in any of the subsequent frames, the search
is automatically re-run. The resulting new quantization map replaces the
previous one. Finally, the final () map is serialized into a JSON file and stored
for future use.

e Running mode: In this setting, the search algorithm is completely bypassed.
The decorator looks for the precomputed JSON file containing the quantization
map; the map is directly applied to the function at load time, effectively
compiling a statically quantized version of the function without incurring the
overhead of rerunning the search.

This workflow offers a practical solution to our issues: it allows VBGS to run with
moderate memory usage, making the method suitable for embedded devices. The
algorithm search only needs to be performed once, avoiding the latency overhead
issue without compromises. Importantly, the use of multiple frames ensures that
the stored quantization map remains stable and does not degrade when exposed to
unseen inputs.

4.5.6 Decorator implementation

For practical integration into the VBGS codebase, the entire mixed-precision search
procedure was encapsulated in a Python decorator named mixed _precision. A
decorator in Python refers to a structure that changes the behaviour of a function
without modifying it’s code. For example, JIT compilation can also be applied to
a function definition as a decorator. This allows any statically compilable JAX
function to be automatically quantized without requiring changes to its interface.
The decorator implements the two modes of operation described in section 4.5.5
using a user defined flag.

Inside the decorator the quantization map ) gets applied inside a JAX JIT
compilation, so from the user perspective the decorated function behaves exactly
like the original one. Importantly, the decorator also accepts a static_argnums ()
parameter; these are used to treat some function arguments as compile-constants
(usually when they are used to manipulate array shapes) when they could technically
change but the user knows they will not.
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Listing 4.5: Example usage of the mixed precision decorator

@mixed_ precision ()

2| def example_fn(inl, in2, in3):
intrl = jnp.log(inl)

| intr2 in2 % in3

intr3 = in3 / jnp.abs(in2)

6 return intrl 4+ intr2 x intr3
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Chapter 5
Experimental Results

This chapter presents the experimental evaluation of the optimized Variational
Bayes Gaussian Splatting algorithm. The goal of this section is to demonstrate how
the proposed profiling, memory optimizations, and quantization strategies impact
the performance of VBGS across different environments and hardware platforms.
Section 5.1 describes the datasets used in the training experiments; section 5.2
focuses on the metrics utilized to determine the quality of the algorithm, followed
by section 5.3 containing details of the hardware used for training. Subsequently, we
report quantitative and qualitative results in section 5.4, comparing the optimized
implementation with the baseline version in terms of reconstruction quality, memory
usage, and training latency. Finally, in section 5.6 the results are discussed
with respect to scalability, efficiency, and applicability to real-world embedded
deployment scenarios.

5.1 Datasets

Although the proposed algorithm is capable of reconstructing both images and 3D
objects, in this work we focus on evaluating performance in indoor environments.
To this end, three scenes from the Habitat test suite [21] were selected: the Van
Gogh Room, Apartment 1, and Skokloster Castle. Environments have been preferred
to objects since they are representative of typical robotic use cases, where embedded
devices are deployed for tasks such as autonomous navigation, exploration, and
mapping, which enabling is the point of this work. Unlike synthetic object-centric
datasets, Habitat scenes provide complex room layouts with complicated geometry,
diverse lighting conditions, and diverse camera positions, making them a more
faithful benchmark for embedded deployment. The datasets were preprocessed
using the DUSt3R pipeline [22].

The three rooms present different levels of difficulty, allowing us to determine the
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robustness of the algorithm in increasingly challenging scenarios. Skokloster Castle
represents the most complex setting, followed by the Van Gogh Room and, finally,
Apartment 1. This varied complexity provides a useful spectrum for analyzing how
quantization and optimization strategies scale with task difficulty.

For each environment, the dataset is divided into training and validation sets. A
total of 200 randomly sampled frames are used for training, while an additional 200
unseen frames are used for validation. The use of non-overlapping splits ensures
that the evaluation correctly measures generalization rather than overfitting of
training viewpoints. Each frame includes RGB data, depth information and camera
parameters.

5.2 FEvaluation metrics

The performance assessment of the training is divided in 3 categories, each with a
specific evaluation metric.

 Rendering quality: the most important criterion is the quality of the
rendered images, as the primary objective of VBGS is to reconstruct realistic
and accurate views of 3D environments. We utilize the Peak Signal-to-Noise
Ratio (PSNR) [23], a widely used metric in image reconstruction. PSNR
measures the logarithmic ratio between the maximum possible pixel intensity
and the error introduced by reconstruction. It is derived from the Mean
Squared Error (MSE) between a reference image = and its reconstruction Z:

Lo
MSE = — % 3" ||lx(i, ) — 2(i, /)" (5.1)

mn = j=o
where m and n denote the number of rows and columns in the image. Using
MSE, PSNR can be computed as:

MAX f)
MSE
where M AX; represents the maximum possible pixel value (255 for 8-bit

images). Higher PSNR values correspond to better similarity between original
and reconstructed images.

PSNR = 20log,,( (5.2)

« Training speed: the training speed is be evaluated as the average execution
time per frame. Specifically, we record the total time required to process all
training frames and divide this duration by the number of frames.

o« Memory usage: memory efficiency is quantified as the peak RAM usage
observed on the Jetson Orin Nano during algorithm execution.
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5.3 Hardware

The algorithm performance is, naturally, heavily reliant on the hardware used. The
results presented in 5.4 have been obtained on Jetson Orin Nano or Nvidia RTX
A5000 GPU.

The two platforms used for evaluation differ substantially in terms of raw com-
putational power and memory resources. The Jetson Orin Nano is designed for
embedded and power-constrained environments, offering only 8 GB of LPDDR5
memory and a peak performance of about 1.28 TFLOPS in single precision, with a
strict 15 W power budget. In contrast, the RTX A5000 is a workstation-class GPU
with 24 GB of high-bandwidth GDDR6 memory, thousands of CUDA cores, and
more than 20 times the floating-point computational power of the Jetson.

Table 5.1: Jetson Orin Nano technical specifications taken from [24].

Jetson Orin Nano

Architecture Nvidia Ampere
GPU memory 8 GB LPDDR5
Memory bandwidth 102 GB/s
NVIDIA Ampere architecture-based CUDA Cores 1024

NVIDIA third-generation Tensor Cores 32
Single-precision performance 1.28 TFLOPS
Tensor performance 40 TFLOPS
Power consumption 7-15 W
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Table 5.2: Nvidia RTX A5000 technical specifications, taken from [25].

RTX A5000

Architecture Nvidia Ampere
GPU memory 24 GB GDDR6
Memory bandwidth 768 GB/s
NVIDIA Ampere architecture-based CUDA Cores 8,192

NVIDIA third-generation Tensor Cores 256
Single-precision performance 27.8 TFLOPS
Tensor performance 222.2 TFLOPS
Power consumption 230 W

5.4 Results

Figures 5.1, 5.2 and 5.3 show the evolution of reconstruction quality during training.
For each environment, the optimized implementation closely tracks or surpasses
the baseline in terms of reconstruction fidelity. The shaded areas indicate the 95%
confidence interval, confirming that improvements are consistent across iterations
and not due to random fluctuations. In the Van Gogh Room and Skokloster Castle
the two algorithms start the same but, around frame 25, the original implementaion
reaches a plateau while the optimized version’s average PSNR continues growing.
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Figure 5.1: Comparison of the VBGS baseline implementation and the optimized
algorithm’s performances on the Apartment test environment; the continuous line
represent the average PSNR at iteration i, the shaded area the 95% confidence

interval.
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Figure 5.2: Comparison of the VBGS baseline implementation and the optimized
algorithm’s performances on the Van Gogh Room test environment; the continuous
line represent the average PSNR at iteration i, the shaded area the 95% confidence

interval.
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Figure 5.3: Comparison of the VBGS baseline implementation and the optimized
algorithm’s performances on the Skokloster Castle test environment; the continuous
line represent the average PSNR at iteration i, the shaded area the 95% confidence

Table 5.3: Peak PSNR comparison across environments.

Environment Original ~ Optimized

Apartment 1 24.31 dB 24.18 dB
Van Gogh Room  20.08 dB 22.70 dB
Skokloster Castle 18.21 dB  19.75 dB

Table 5.3 compares peak PSNR values across environments. The optimized im-
plementation preserves reconstruction quality overall, with negligible changes in
Apartment 1, and clear improvements in both the Van Gogh Room and Skokloster
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Ground truth Baseline Optimized

Baseline

Ground truth Baseline Optimized

Figure 5.4: Image reconstruction comparisons for models trained over 200 frames;
the left column images are the ground truth, the center column the VBGS baseline
while the right column our optimized implementation.

Figure 5.4 presents the reconstructed images. The optimized version produces
sharper details and fewer artifacts, particularly in scenes with complex lighting and
clutter. The difference in detail across the rooms is also a function of environment
scale: as the number of components is kept constant, bigger environments tend to
be more sparse as the same number of components needs to cover a more space.
This is clearly visible in the Sklokoster Castle renderings.
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Table 5.4: Latency and memory metrics comparison. The Original®* implementa-
tion refers to the baseline implementation after the optimization in listing 4.3. This
result is presented here in place of the baseline algorithm as the baseline produces
an OOM error on the Jetson.

Per-frame average Peak memory

Device Implementation latency [ usage [GB]
Original 70.12 9.44
RTX A5000
Optimized 18.33 1.11
) Original* ~900 4.95
Jetson Orin Nano
Optimized ~180 1.11

Table 5.4 reports latency and memory metrics on both the RTX A5000 workstation
GPU and the Jetson Orin Nano embedded device. On the A5000, the average
per-frame latency decreases from 70.12 s in the baseline implementation to 18.33 s
after optimization, corresponding to a speedup of nearly 4 times. On the Jetson
Orin Nano, the improvement is even more pronounced, with latency reduced from
approximately 900 s to 180 s per frame, a 5 times acceleration. Peak memory
usage, which previously prevented execution on the embedded platform, was also
substantially reduced, allowing the algorithm to run reliably within the 8 GB limit.
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Figure 5.5: Tolerance swipe of the optimized VBGS algorithm. The y-axis
indicates the PSNR in dB, while the x-axis the per-frame latency in seconds. The
value over the points correspond to the tolerance value used when running the
mixed-precision search. The experiment was conducted with the Van Gogh Room
environment

The best tolerance was selected after testing different values in the Van Gogh
Room. The results of the experiment can be seen in figure 5.5 and the best
result was obtained with a value of 1e-06. Outliers can be seen in the 1e-04 point
and the relative position of the 1e-05 and 1le-06 positions. 1le-05 seems to be
the biggest sensitivity that is precise enough to guarantee the correct algorithm
quality. Selecting a higher precision (like in the case of 1e-04) leads to an incorrect
reconstrucion and, consequently, a low PSNR. Altough point 1e-05 has higher
precision than point 1e-06 it is slower. This can be explained when considering
the last pass in the mixed search: the higher precision point could be forming
a bigger fp16 cluster, that the algorithm considers cumulatively slower than the
same cluster in fp32, but there could be sub-clusters of that cluster that are not.

5.5 Ablation Study on Floating-Point Precision

To understand the impact of numerical precision on the reconstruction quality of
the VBGS training process, we performed an ablation study comparing multiple
floating-point configurations for (Figure 5.6). The tested configurations include
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fp64 (double precision), £p32 with both HIGH and HIGHEST accumulation precisions,
and an adaptive version of £p32 where a search algorithm dynamically selects the
precision of each matrix multiplication based on its numerical sensitivity.

The baseline model, £p64, represents the reference implementation, providing high
numerical accuracy but also the greatest computational and memory cost. The
fp32 HIGH configuration corresponds to the TensorFloat-32 (TF32) standard, where
accumulation precision is limited to a 10-bit mantissa, but receives a great speed-up
due to the use of GPU tensor cores [18]. In contrast, fp32 HIGHEST maintains
a full 23-bit mantissa in matrix multiplication accumulations, offering a closer
approximation to the fp64 baseline. Finally, the £p32 + search configuration
leverages the automatic mixed-precision search algorithm, which applies the lowest
possible precision to each matrix multiplication without degrading the final output.
These results highlight the improvement capabilities of the use of quantization
strategies in VBGS, not only from a computational and memory point of view, but
also in terms of final reconstruction quality.
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Figure 5.6: PSNR comparison between floating-point precision configurations.
The adaptive £p32 + search mode achieves the best reconstruction quality, out-
performing even the fp64 baseline, while the fp32 HIGH (TF32) variant shows a
significant quality drop. Full £p16 training is omitted as it leads to precision errors
and incomplete training.

5.6 Discussion

The results presented in section 5.4 demonstrate that quantization and memory
optimizations do not degrade the visual fidelity of the reconstructions; on the
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contrary, they can sometimes improve generalization by reducing overfitting to the
training frames.

From a quality perspective, the optimized implementation consistently maintained
the PSNR value of the baseline algorithm. Interestingly, the optimized implemen-
tation sometimes outperforms the baseline in terms of PPSNR, particularly in the
Van Gogh Room and Skokloster Castle. This suggests that the aggressive use of
double precision in the original version may have introduced unnecessary numerical
rigidity, potentially leading to overfitting on the training frames. By selectively
lowering precision, the optimized version appears to generalize better to unseen
views.

Another interesting result can be found looking at the latency decreases of the
optimized implementations across the two GPUs. The relative speed increase, in
fact, does not match and seems to be higher on the embedded platform. This point
could be attributed to multiple reasons:

o« Memory bandwidth: on the Jetson is much lower than on the A5000, which
could mean VBGS memory bottlenecked the board while the problem was
less present on the server GPU.

« CUDA and Tensor cores performance ratio: while the ratio of Tensor
cores and CUDA cores is the same between the 2 platforms (the A5000 has 8
times the cores of the Jetson), the performance ratio is not. The CUDA cores
on the A5000 are 22 times more powerful than the ones on the Jetson, while
the Tensor cores have only 5 times more throughput. Using mixed precisions,
many more operations used tensorfloat32, which could have led to this
difference in speed increase.

Overall, the results validate the optimization strategy: through targeted memory
reductions and mixed-precision quantization, advanced probabilistic algorithms
such as VBGS can be deployed on constrained platforms. Beyond the specific
case of VBGS, these findings suggest that systematic profiling and mixed precision
tuning can provide a general recipe for adapting complex numerical models to
embedded environments.
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Chapter 6
Conclusions

This thesis presented an optimization framework for Variational Bayes Gaussian
Splatting with the specific goal of enabling deployment on embedded GPU platforms.
Originally developed for high-end GPUs with abundant memory and computational
power, VBGS was not previously adapted to devices with stringent resource con-
straints. By systematically profiling the algorithm, identifying its bottlenecks, and
introducing targeted optimizations, this work demonstrated that SoA probabilistic
3D scene reconstruction methods can be made practical on devices such as the
NVIDIA Jetson Orin Nano.

6.1 Summary of contributions

The first contribution of this work was a detailed profiling of the VBGS training
loop. Memory and latency analyses revealed critical inefficiencies and non-essential
use of double precision arithmetic. These investigations provided a clear roadmap
for optimization.

The second contribution consisted of algorithmic modifications designed to reduce
memory footprint. By rewriting the statistics accumulation routiness, peak allo-
cations were eliminated, reducing maximum memory consumption by up to 75%.
This improvement alone was essential to make execution feasible on the Nano’s 8
GB memory budget.

The third contribution was the introduction of a rigorous quantization strategy:.
An automatic mixed-precision search algorithm was developed to assign the most
efficient precision to every operation while preserving output quality within a
user-defined tolerance. This algorithm, based on the jaxpr representation, allowed
systematic exploration of the trade-off between precision and accuracy, and proved
to be both effective and generalizable.

The optimized implementation achieved substantial improvements. On the RTX
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Ab5000, the training latency decreased from 70.12 s to 18.33 s per frame, while
peak memory usage dropped from 9.44 GB to 1.11 GB. On the Jetson Orin
Nano, where deploymennt of the baseline algorithm results in an OOM error, the
optimized implementation reduced latency from approximately 900 s to 180 s per
frame and enabled stable execution within the 8 GB memory limit. Importantly,
reconstruction quality was maintained or improved, with PSNR results confirming
the effectiveness of mixed-precision optimization.

6.2 Broader implications

The results highlight two broader lessons. First, high-precision computation is often
unnecessarily conservative in complex algorithms: careful downcasting not only
reduces latency and memory use, but can also improve generalization by preventing
overfitting to training frames. Second, embedded GPUs are particularly sensitive
to inefficient memory usage and precision choices. Diversely from a workstation-
class GPU that can mask inefficiencies with computational power, on constrained
hardware such inefficiencies dominate execution time.

The mixed-precision search algorithm is a notable outcome in its own right. Al-
though developed for VBGS, it is generic by design and can be applied to a wide
range of JAX-based numerical models. Its ability to automatically adapt precision
assignments makes it a valuable tool for future research on edge deployment of
probabilistic or machine learning algorithms.

6.3 Limitations

Despite the improvements, several limitations remain. The optimized VBGS
implementation, although significantly faster, still operates far from real-time on
the Jetson Nano. The offline search procedure for mixed-precision assignments is
computationally demanding and must be executed on a more powerful device before
deployment. Furthermore, the number of Gaussian components was fixed across
environments, which led to poor performance in larger scenes such as Skokloster
Castle.

6.4 Future work

Future research could extend this work along several directions. From a systemic
perspective, integrating dynamic model resizing, as done in gradient-based Gaussian
Splatting, would allow the model to better manage 3D space across environments
of varying scale; furthermore, on-device depth estimation could avoid the need for
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depth data, reducing the requirements to only RGB data and camera parameters.
From an algorithmic perspective, reducing the cost of the mixed-precision search
through fast heuristics and dividing the graphs into memory manageable subgraphs
could make it viable directly on embedded hardware. From an hardware point
of view, the use of embedded boards with support of tensor cores for £p16 could
substantially increase the performance compared to the Jetson Nano.

6.5 Final remarks

In conclusion, this thesis demonstrated that by combining systematic profiling and
mixed-precision quantization, it was possible to adapt an advanced probabilistic
reconstruction framework for embedded deployment. The optimized VBGS imple-
mentation not only makes training feasible on resource-constrained devices, but also
opens the door to future developments in edge robotics and real-time perception.
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Chapter 7

Appendix

7.1 VBGS Update Rules

In this section, we provide an insight on the closed-form updates used in VBGS.
The rules are derived from the general theory of variational inference with conjugate
exponential family distributions [8].

7.1.1 General setting

Given observed data D = {(s,,c,)}\_, consisting of spatial coordinates s, and
color vectors ¢,, the generative model is defined as:

2, ~ Cat(m), (7.1)
Sn | Zn = k ~ N(Ns,k7 Es,k)a '
Cn | Zn = k ~ N(,uc,k:’ Zc,k)a (73)
with priors
Hs ks Es,k ~ NIW<mO,37 Ro,s;, ‘/0,37 V0,5)7 (74)
He, ks Ec,k ~ NIW<mO,ca Ro,c, ‘/O,Ca VO,C)a (75)
7 ~ Dir(ap). (7.6)

7.1.2 Variational approximation

We adopt a mean-field factorization of the variational posterior:

it 2) = ( T ate)) (1L s Bt Zo)at). (1)
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Each factor is chosen from the same family as the prior, ensuring tractability:

q(zn) = Cat(yy), (7.8)
Q(Ms,ku Es,k) - NIW(mt,s> Rit,s) ‘/t,sy Vt,s>7 .
q(m) = Dir(ay). (7.10)

7.1.3 Coordinate ascent updates
The variational parameters are optimized by maximizing the ELBO. Using the

conjugacy properties of the exponential family, the following updates are obtained:

E-step (responsibilities). For each data point (s,,c,), the responsibility 7, x
of component £ is:

10g Yk 0¢ By, 5, 0 108 (S | s,y )] (7.11)
+ By s llog plen | e Xer)] (7.12)
+ Eq(m[log me]. (7.13)

M-step (parameter updates). For each component k, the natural parameters
are updated as:

N

Mk = Mok + Z Yok L (Tr), (7.14)
n=1
N

Vi = Vo + Z Y ks (7.15)
n=1

where T'(z,) are the sufficient statistics of the Gaussian likelihood:
T(5,) = {5, 55, }, T(cn) = {cn, cac, }. (7.16)

Dirichlet update. The mixture weights posterior parameters are updated as:

N
Oét’k = ()é()’k -+ Z 'Yn,k' (717)

n=1

These closed-form updates make it possible to integrate new data sequentially
without gradient descent, forming the basis of continual learning in VBGS.
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7.2 Initialization strategies
The baseline VBGS experiments considered two initialization strategies:

o Data Init: Means initialized from randomly sampled datapoints (s, ¢,),
providing good coverage of the dataset from the start.

« Random Init: Means initialized from uniform distributions (s ~ U[—1,1],
¢~ 6(0)), independent of data.

Data-based initialization generally improves convergence speed and reconstruc-
tion quality. The experiments of our optimized version only consider random
initialization, as this is the closest setting to a real-world environment.

7.3 Hyperparameters Initialization values

Tables 7.1 and 7.2 summarize the canonical hyperparameters initialization values
used in our experiments. Values are consistent with the ones in the original VBGS

paper [3].

Table 7.1: Parameters of the conjugate priors over likelihood parameters. n. is
the number of components, I is the identity matrix of size 3 x 3. Parameters are
in the canonical form of the corresponding distribution.

Distribution Parameter name Initialization value

ms 0
Kok 10721
P Uk, s, Ek,s 7
( ) Vo 2.25-106-n, - I
Nk 5
m&k 0
Kek 10721
C?Z C ’
Dlither Hiee) Vi 108 - 1
Ne ke 5
p(m) 097 ni
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Table 7.2: Parameters of the initial approximate posteriors over likelihood pa-
rameters. n,. is the number of components, [ is the identity matrix of size 3 x 3.
Parameters are in the canonical form of the corresponding distribution.

Distribution Parameter name Initialization value

Mk M,k init
K.k 1076.1
g\E,s, 2k,s ,
( ) Vi 2.25-100 - n, - I
ns’k 5
M,k Me k,init
Kok 10721
q\Uk,c, Ek,c 7
( ) Vo 108 - 1
Nk 5
q(m) Qg ni

7.4 Implementation details

This section provides additional details about the implementation of the automatic
mixed-precision framework described in Section 4.5. The following utilities were
developed in order to manipulate jaxpr representations, evaluate functions under
different precision assignments, and build consistent quantization maps. These
details are reported here to give a complete view of the software engineering required
to realize the methods, while the main text focuses on the algorithmic aspects.

7.4.1 Jaxpr helper class

The MixedJaxprHelper class acts as a central interface for managing multiple
versions of a function’s jaxpr at different numerical precisions. It provides:

 Storage of ClosedJaxpr objects for different {dtype, matmul precision} pairs.
» A quantization dictionary mapping operation indices to assigned precisions.

« Utilities to mark which operations have already been processed during the
quantization passes.
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o A deep-copy method that carefully avoids duplicating JAX internal source
information and tracebacks, reducing memory overhead when exploring alter-
native quantization configurations.

This helper encapsulates the otherwise verbose calls to jax.make_jaxpr and
default _matmul precision, and exposes a unified interface to the quantization
pipeline.

7.4.2 Evaluation under mixed precision

To assess the effect of quantization, two main functions are used:

o evaluate_with_replacement (): evaluates the function output by replacing
only one equation of the jaxpr with its quantized counterpart, while keeping
all other operations at reference precision. This isolates the non-compound
sensitivity of a single operation.

o evaluate_mixed_jaxpr(): reconstructs the function execution by traversing
the jaxpr and applying the current quantization dictionary. Operations not
listed in the dictionary default to fp64.

These functions implement a custom evaluation loop, where inputs and outputs are
explicitly written to and read from a temporary environment. This design mirrors
the execution semantics of the jaxpr, but allows overriding the dtype of individual
primitives.

7.4.3 Normalization and pruning

The function normalize_floats() reconstructs a Jaxpr in which all floating-point
variables, constants, and outputs are retargeted to a single dtype. During this pass,
redundant convert_element_type operations are eliminated to prevent spurious
casts. Similarly, strip_unused_eqns() applies dead-code elimination to prune
unused variables or intermediate computations. These utilities are important to
keep the quantized jaxpr graphs compact and avoid over-counting unnecessary
operations during sensitivity analysis.

7.4.4 Memory safety

The helper remove_unused_environment_variables() ensures that temporary
values are deleted from the evaluation environment once they are no longer re-
quired by subsequent operations. This prevents unbounded growth of the variable
environment.
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7.4.5 Casting strategy

Finally, the safe_cast () function standardizes conversions to lower precision. It
only casts when necessary:

o Floating arrays and scalars are converted if their dtype differs.
o Integers and booleans are returned unchanged to preserve semantics.
o Python floats are wrapped in JAX arrays only if the target dtype requires it.

This approach avoids introducing redundant same-precision conversions and keeps
the evaluation loop as close as possible to the original function behavior.
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