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Chapter 1 Introduction

Today, Micro Aerial Vehicles (MAVs) are widely used for different tasks such
as industrial inspection, surveillance, and emergency response due to their
high maneuverability and utility. Currently, there are numerous techniques
that aim to balance the time required for coverage with spatial coverage
efficiency and to improve energy consumption.

The main component in this context is the path planner, which is respon-
sible for computing feasible and optimal paths that follow a set of viewpoints
chosen as the best locations to evaluate the purpose of the exploration. The
improvements in perception and computation have enhanced the quality of
MAYV autonomy and opened research to new techniques based on the use of
Al

To improve computational speed, a single robot can be used, which works
well in the case of small environments to scan. However, in the case of large
scenarios, a single robot may not be sufficient due to its limited battery life
and sensor faults. For these situations, the use of multi-robot systems can
provide better performance in terms of robustness and coverage efficiency.

Coverage path planning approaches are split into two main areas: model-
based and model-free approaches. The difference between these two methods
lies in the prior knowledge of the environment that will be explored, which
serves as a parameter to determine the trajectory and to plan the next
viewpoint.

Model-based approaches utilize CAD models or point-cloud maps to plan
efficient coverage paths, leveraging the available geometric information to
avoid collisions with objects and coordinate between multiple robots.

In the literature, there are different techniques based on the model-free
approach such as frontier-based and Next Best View (NBV), which repre-
sent the state of the art in this field. Frontier-based approaches identify
boundaries between explored and unexplored regions and select one of these
frontiers as the next target point to guide the robot during navigation.

NBV methods sample different viewpoints in the space and select the
optimal one based on an information gain function that considers both the
sensor orientation and the potential increase in environmental knowledge if
the robot moves to that pose.

As a new solution, we uses a novel multi-robot coverage path planning



(CPP) [1] approach for observing objects with known geometry. Our tech-
nique is based on the computation of the online path provided by a ground
station, in contrast to the classical methods where the paths are optimized
offline and require extensive computational resources.

The feasibility of this method is enabled by the use of a PH-tree data
structure, which accelerates the identification of unobserved regions without
the need to track frontiers or calculate NBVs. This approach allows for real-
time task assignment and path planning, making it suitable for resource-
constrained MAV systems.

The purpose of this report is to present and compare the results obtained
with our method and the state-of-the-art technique. To ensure a fair com-
parison of our method against different coverage strategies, we have selected
and adapted two representative techniques from frontier-based and NBV
approaches to work with known environmental geometry. This adaptation
allows for direct performance comparison under equivalent conditions.

In this work a comprehensive benchmarking study is presented that eval-
uates performance across different asset sizes and complexity levels. The
comparison employs multiple metrics based on energy consumption, dis-
tance traveled, and exploration time to provide a comprehensive assessment
of each approach.

To validate the practical applicability of our findings, we have tested all
three techniques in realistic simulation environments that closely replicate
real-world conditions and constraints.

The experimental setup is based on the use of Webots as simulation envi-
ronment and ROS Noetic as the middleware framework for inter-component
communication. In simulated experiments, the communication between
the ground control computer and MAVS is established through MAVROS
that provides the standard protocol translation between ROS messages and
MAVLink communication standard.

As a complementary contribution, we also present a model-free approach
for single-drone operation using a voxel map data structure for environment
representation and a TSDF-based path planner for path generation and
execution. This paves the way towards potential implementations of multi-
robot frameworks for exploration mission in unknown environmnents.



Chapter 2  Literature review

2.1 Coverage

Coverage path planning for multi-robot systems aims to define optimal tra-
jectories that enable multiple robots to observe various objects in space while
minimizing operational costs such as time and energy consumption.

The technique implemented by Waelti et al. [1] provides an innovative
solution based on the use of a PH-Tree data structure, making multi-robot
systems more efficient in terms of energy consumption and capable of per-
forming several tasks online.

To ensure a fair comparison between the PH-Tree-based technique and
other approaches present in the literature, we decided to select two different
techniques belonging to distinct groups of exploration methods: sampling-
based techniques and frontier-based techniques.

For the first group, we selected the NBV approach since it represents the
main technique used in autonomous exploration research. As a technique
belonging to the second group, we selected an approach based on the use of a
collector of different frontiers that guarantees good performance for frontier
selection.

The selected techniques are presented in this chapter and represent a
comprehensive insight into the current state-of-the-art in multi-robot cover-
age systems.

2.1.1 Previous works

The work of Waelti et al. [1] represents the primary method analyzed in this
benchmarking study, as it introduces a novel approach for multi-robot cov-
erage path planning (CPP). The key distinguishing features of this method
compared to traditional approaches lie in the utilization of the PH-tree data
structure for spatial indexing and its fully online execution, which eliminates
the need for frontier tracking.

The method employs a hybrid system architecture that ensures clear
separation between task assignment and individual robot path planning re-
sponsibilities. The ground station is responsible for generating tasks for each
robot and managing potential failures related to robot collisions or unsafe
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path conditions. This centralized architecture enhances robustness against
problems during exploration and accelerates the computational process for
individual robot task execution.

Each robot computes its trajectory without requiring offline optimiza-
tion, as is typically necessary in classical techniques. This online approach
provides greater flexibility and adaptability compared to pre-computed meth-
ods, allowing the system to respond dynamically to changing conditions and
robot configurations.

The experimental validation conducted by Waelti et al. [1] demonstrates
promising results in terms of coverage efficiency and scalability across various
scenarios. However, as discussed previously, the objective of this work is
to provide a comprehensive comparison with state-of-the-art techniques in
coverage path planning.

For this purpose, we have selected two dominant approaches in CPP:
the frontier-based method developed by Caiza et al. [2] and the Next-Best-
View technique proposed by Bircher et al. [3]. These methods have been
adapted to work with known environments, allowing for direct performance
comparison under equivalent conditions with the PH-tree-based approach.

2.1.2 PH-Tree

The PH-tree (PATRICIA-hypercube-tree) designed by ZAxischke et al. [4] is
the core component of our technique, as it guarantees better performance in
identifying promising areas of exploration. It combines binary PATRICIA-
tries with hypercube navigation to achieve efficient data access and storage.

With respect to tradition spatial indexing data structure such as KD-
Trees, which split the space along one dimension per node, the PH-tree
splits space in all dimension simultaneously at each node, thereby reducing
the tree depth compared to binary alternatives.

One key advantage is its space efficiency achieved through a combina-
tion of prefix-sharing and bit-stream serialization. In this way, the PH-tree
achieves storage requirements equal to or even lower than non-indexed struc-
tures.

The main aspect that guarantees better performance for path planning
application is the query performance, which benefits from the hypercube
structure, allowing efficient spatial range searches. Furthermore, the struc-
ture’s ability to perform efficient nearest-neighbor queries makes it ideal for
identifying unobserved regions in coverage applications.

Another significant advantage is the PH-tree’s update efficiency. The
structure requires modification of at most two nodes for any insert or delete
operation, without the need for rebalancing. This characteristic makes it
particularly suitable for online applications where frequent updates are re-
quired, such as real-time coverage path planning systems.
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In the context of multi-robot coverage, the PH-tree enables efficient spa-
tial queries to identify unobserved voxels without the computational over-
head of frontier detection or Next-Best-View calculations. This capability
allows our method to perform task assignment in real time while maintaining
spatial awareness of the coverage progress.

2.1.3 NBYV technique

Next-Best-View (NBV) technique is one of the most widely used approaches
for autonomous exploration and coverage path planning. The main concept
behind it is the selection of the most informative viewpoint from a set of
candidates based on the maximum value of information gain associated with
each sampled viewpoint, which considers the potential increase in environ-
mental knowledge.

The Bircher et al. approach [3] represents the first version of NBV-
based coverage planner and is widely used in autonomous exploration re-
search. Their receding-horizon planner employs a tree-based sampling strat-
egy where viewpoints are iteratively sampled and evaluated based on infor-
mation gain criteria. Using an RRT* tree construction algorithm, a finite
iteration random tree is computed, and based on a dedicated information
gain function, the first edge of the best branch is chosen as the next view-
point. In this approach, the environment is mapped using an occupancy
map where each voxel is classified as occupied or free. In Figure 2.1, it is
possible to see the exploration of a house using the approach proposed by
Bircher [3], where the points represent the sampled points of the tree expan-
sion when the system searches for a path to a prescribed target. The pink
lines represent the different branches of the tree structure, while the green
one indicates the optimal branch with the highest information gain.

The drawback of this implementation is the computational overhead as-
sociated with repeated tree construction and the tendency toward local op-
tima due to its receding horizon nature. At each iteration, the entire tree
is discarded except for the executed branch, resulting in significant compu-
tational waste and potential loss of valuable path information. Schmid et
al. [5] introduced a novel NBV approach based on the main concept of the
RRT* path planner.

Their informative path planning algorithm expands and maintains a
single tree of candidate trajectories. Instead of discarding non-executed
branches, this method uses the concept of rewiring to keep nodes alive and
refine intermediate paths. This approach allows the algorithm to use a single
objective function while maximizing path utility.

The method demonstrates particular strength in applications requiring
accurate 3D reconstruction, introducing a novel TSDF-based gain formula-
tion that accounts for measurement uncertainty and surface quality. Using
TSDF data acquired during exploration, it is also possible to improve the
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Figure 2.1: Bircher’s NBV exploration in unknown space

path and evaluate the impact a viewpoint has on map reconstruction. The
proposed gain function considers both sensing noise (which scales quadrati-
cally with depth) and state estimation uncertainty.

However, NBV approaches face several computational challenges due
to information gain evaluation. In these techniques, gain computation re-
quires 95% of the planner’s runtime, especially when based on volumetric
information derived from frequently updated occupancy maps. This com-
putational burden becomes particularly significant in real-time applications
with resource-constrained systems.

In the context of this benchmarking study, the NBV technique realized
by Bircher et al. [3], adapted as described in section 4.2 for exploration
of known assets, serves as a good representative approach for sampling-
based coverage planning, allowing direct comparison between our technique
and frontier-based methods in terms of coverage efficiency, computational
performance, and path quality under the same environmental conditions.

2.1.4 Frontier-based technique

Frontier-based technique is one of the most widely used approaches in au-
tonomous exploration. It is based on identifying frontiers, which are defined
as the boundaries between known and unknown space, and selecting one as
a navigation goal until complete exploration is achieved.

Rapid exploration with Multi-Rotors by Cieslewski et al. [6] introduces
an innovative approach to frontier selection for high-speed scenarios. Instead
of computing information gain for each frontier, it uses a reactive mode that
selects one frontier within the field-of-view of the robot. The method ad-
dresses the challenge of exploration time versus coverage quality trade-offs,
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demonstrating that while traditional frontier-based approaches can increase
total path length, they significantly reduce exploration time when robots
can maintain consistently higher speeds.

Figure 2.2: Frontier-based exploration in unknown space

The Efficient Frontier-based exploration strategy (EFP) developed by
Zhang et al. [7] presents an innovative strategy to address the challenges of
inefficient and incomplete map construction. Using UFOMap, it improves
3D environment representation and implements a hierarchical frontier struc-
ture. This approach selects the best frontier using Fast Euclidean Clustering
(FEC), which reduces the computational time required for obtaining rele-
vant viewpoints. The algorithm maintains both local and global frontier
lists, enabling consideration of only local update ranges during frontier de-
tection without traversing the entire map.

The Caiza et al. [2] approach uses a novel exploration method that com-
bines traditional frontier-based exploration with a collector strategy, which
stores information regarding frontiers and updates the environmental map.
In this way , this approach provides an efficient way to enhance the explo-
ration and to have a map that considers the uncertainty of measurements
provided by the robot’s sensors.

The collector strategy is defined by two different phases: filtering and
selection of best frontier. In each iteration, the system stores and validates
frontiers detected and computes an information gain associated with each
frontier based on the unknown area that would be seen if that frontier was
chosen. At the end, the collector chooses the best frontier taking into ac-
count the information gain and the distance to be traveled from the robot’s

11



Francesco Scatigno: Multi-Robot Coverage Benchmarking

position to the frontier.

For our purpose, Frontier-based techniques represent a good choice as a
comparative approach since they are widely used in real-world and industrial
application. By implementing a version based on Caiza’s approach [2] , we
have realized a version described in section 5.1 for exploration of known
assets that can guarantee a fair comparison with other techniques.

2.2 Exploration

As a second part of this work, we chose to move forward in the design of
a framework for exploration of unknown assets. In recent years, several
techniques have defined methods for simultaneously mapping and navigat-
ing unknown environments. The continuous update of the map using data
gathered by sensors present on the robot needs to be managed well in or-
der to obtain sufficient information about the environment and to guarantee
collision-free navigation of the robot.

Our technique uses data obtained by the ToF sensor and defines frontiers
as boundaries between known and unknown areas. In the following section,
we present the work of Zhou et al. [8] that guarantees smooth exploration
through the use of a frontier manager that stores all obtained data.

2.2.1 FUEL

FUEL (Fast UAV Exploration) is a hierarchical framework developed by
Zhou et al. [8] and represents an innovative method for frontier-based ex-
ploration in unknown environments. This approach provides a novel solu-
tion to the fundamental challenges of traditional frontier-based approaches
through the use of a FIS (Frontier Information Structure) and hierarchical
path planning.

The aspect that guarantees improvement in terms of time required for ex-
ploration is the incremental update of FIS. Traditional frontier-based meth-
ods require full map analysis at each iteration, which can suffer from high
computational overhead in case of frequent environmental changes. Through
the use of FIS, during exploration the system updates only frontiers that
belong to portions of the environment that have changed since the last it-
eration. When new frontiers appear in the map, the system clusters them
with already present ones.

After this step, it saves the cells occupied by the frontiers and associates
an axis-aligned bounding box to each cluster. During exploration, the di-
mensions of each cluster are considered and updated, and especially when
cells of existing frontiers are no longer present, it removes them from FIS

12
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Figure 2.3: Hierarchical path planner used in FUEL

The other main innovation is the use of a hierarchical planner defined
by three steps that guarantees separation between global path planning and
local trajectory optimization. In Figure 2.3, it is possible to see an example
of hierarchical planner where the final path differs from the starting one,
guaranteeing a more efficient exploration. As the first step, the planner finds
a global tour to cover the existing frontier clusters by solving a standard
Asymmetric Traveling Salesman Problem (TSP). In this way, the system
can solve the problem quickly using existing algorithms.

After that, a local viewpoint refinement is applied to obtain an improve-
ment in the exploration rate. This refinement process optimizes the posi-
tioning of viewpoints within each cluster to maximize information gain while
considering vehicle dynamics and sensor constraints.

As the last step, it generates a B-spline trajectory between the new view-
points to obtain a trajectory that enables the drone to use all its dynamic
capabilities. The B-spline representation ensures smooth trajectories that
respect acceleration and velocity constraints, allowing for efficient and safe
navigation through complex environments.

One of the key advantages of FUEL is its scalability to large-scale en-
vironments. The incremental frontier maintenance approach ensures that
computational requirements do not grow exponentially with environment
size, For these reasons, we have decided to use the FIS as part of our explo-
ration techniques comparison, as it guarantees fair performance in complex
environments such as buildings. FUEL serves as a representative example
of modern frontier-based techniques that successfully balance exploration
efficiency with computational tractability.

13



Chapter 3  Our technique

3.1 System architecture

The PH-tree-based technique implemented in [1], which is benchmarked in
this work, is based on the use of a hybrid system architecture that combines
the advantages of centralized control with the flexibility of distributed plan-
ning. As shown in Figure 3.1, the system is divided into two main levels: a
centralized level composed of the ground station that is responsible for task
assignment and coverage state monitoring, and a distributed level composed
of robots that generate their own paths and coordinate with each other for
the execution of planned trajectories.

Ground
Station

Register

>» Assign Task

Declare Task Complete >«

Figure 3.1: System architecture of our approach

The ground station acts as a coordination center that manages different
roles during the exploration process. First, it maintains a global observation
map that incorporates knowledge regarding voxels that have been observed
and those that need to be covered.

Through the use of a PH-tree, the ground station identifies unobserved
regions and generates specific tasks for each robot. Another task performed
by the centralized component is managing robot registration and unregis-
tration, allowing flexible configuration of robots during exploration based
on the number of voxels remaining to be observed.

All communications between the ground station and robots follow a
request-acknowledgment protocol that ensures the synchronization neces-
sary for effective dynamic task planning and allocation.

14
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Individual robots possess local autonomy that allows them to perform
several tasks during exploration. When the ground station assigns a task to
a robot, each drone is capable of determining whether that task is feasible
based on its local position and capabilities. Using RRT* path planning, they
evaluate a path taking into account the viewpoints provided by the ground
station and collision constraints with other robots. Inter-robot coordination
is based on the use of open channels where each robot transmits its posi-
tion and planned trajectory to avoid conflicts and optimize the utilization
of operational space. The use of two different levels of communication in
the system, where communications between the ground station and robots
require acknowledgment from the receiving party to ensure synchronization,
while inter-robot communication is performed on open channels without
synchronization, minimizes bandwidth requirements while maintaining co-
ordination effectiveness.

3.2 Environment representation

The environment representation is defined by the use of a voxel discretiza-
tion of the 3D space. Each voxel has the same size L and corresponds to
a discrete volume element of the known asset. By changing the L parame-
ter, we improve the accuracy of the coverage tracking while increasing the
computational requirements of the system. Starting from a 3D mesh or a
point cloud, the system incorporates this information into the voxel grid
structure by associating each point p with a voxel. The indexing is based
on an intrinsic relationship where the index i=[is, iy, 4] is obtained by the
floor operator i= £. The system uses three distinct types of maps, each
serving a specific purpose in the coverage framework. The Observation
map shown in Figure 3.4 acts as a tracking map for the coverage progress
throughout the mission. This map presents information about voxels status
and the face status for each of voxel’s six face. The face status can be one
of four states:

e UNKNOWN if uninitialized

UNOBSERVED if observable but not yet observed

OBSERVED if successfully observed
e OBSTRUCTED if blocked by other voxel

Based on the faces status, a voxel can be:

e UNOBSERVED when has at least one face unobserved
e OBSERVED when has at least one face observed
e UNREACHABLE when all faces arr obstructed

15
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Figure 3.2: Region of interest Figure 3.3: Avoidance map

Figure 3.4: Observation map

Figure 3.5: The three different types of maps used by our method

16
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At the beginning of exploration, all voxels are set as UNOBSERVED
or OBSTRUCTED based on neighboring voxels and respectively the voxels’
face status. When a robot completes a task, the ground station performs
ray-tracing to identify the observed voxels and changes their status based
on that evaluation.

The Region of interest map shown in Figure 3.2 is a crucial subset of
observation map that is used for the definition of the target area for coverage.
Using a PH-Tree data structure, the system stores all voxels within the ROI
to enhance performance regarding spatial queries for task generation.

One of the main aspects computed on the ROI is the observability check
for all voxels within the ROI. In some cases, voxels might be buried under
other voxels or located in unreachable hollow volumes. Through the use of
a sampling technique of viewpoints on the bounding box of the ROI, the
system checks if the voxels are observable by tracing rays from the closest
viewpoint to the voxel and checking if there is line-of-sight.

In this way, the number of voxels Npg is less than the number of voxels
present on the observation map Np,qp, and the ROI map results lighter than
the other one.

The last map used is the Avoidance map shown in Figure 3.3, and it
is used for the design of collision-free path planning. Due to this purpose,
the avoidance map is an independent voxel grid containing N,,q voxels that
presents a coarser resolution with respect to the observation map. This
resolution difference can considerably reduce memory footprint while main-
taining sufficient detail for safe navigation. The typical configuration uses
L, = 0.2m for the avoidance map compared to L = 0.1m for the observation
map, resulting in an 8:1 reduction in the number of voxels.

The construction process begins by including all voxels from the observa-
tion map in the avoidance map, then iteratively adding additional voxels by
considering all twenty-six possible neighbors to each already present voxel.
This expansion operation is repeated until a desired ”thickness” is achieved
between the surface of the observation map and the avoidance map, cre-
ating a safety buffer that accounts for robot dimensions and positioning
uncertainties.

3.3 Task Assignment Strategy

The task assignment strategy has been designed to work in multi-robot
coverage missions and to operate entirely online, adapting to changing con-
ditions and robot availability during the mission.

When the ground station identifies Kppy nearest unobserved voxels to
each robot’s current position using PH-Tree data structure, the task assign-
ment process begins.

Using the spatial query defined by the PH-tree, the assigned tasks are

17
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feasible for the robot and contribute to homogeneous coverage progress.

Each task is defined and includes several key components that guaran-
tee sufficient information for individual robots to plan their paths. A task
consists of:

e a target voxel index
e one of voxel’s face that requires observation

e a set of viewpoints that provide a LOS to that face

The presence of multiple viewpoints instead of just one enhances flexi-
bility in path planning and enables the robot to choose the most suitable
one with respect to its current state and local constraints. The technique
used to obtain different viewpoints is based on using a ray-tracing process
from the voxel face to be observed.

As a first step, the system traces rays from the target voxel in different
directions and evaluates potential viewpoints based on multiple criteria: the
viewpoint must be obstacle-free, there must be line-of-sight from the voxel
to the viewpoint, and the distance from the voxel center to the viewpoint
must be within the sensor’s operational range.

The ground station stores the tasks assigned to each robot in a buffer
with a limited capacity of 20 to obtain several advantages such as avoiding
redundant evaluations when a potential task is already in the robot’s buffer,
rejecting tasks that have already been discarded, and enabling efficient task
sorting.

The parameter used for task sorting is a cost function c(w,r) that evalu-
ates the suitability of a viewpoint w for robot r. It takes into account factors
such as distance, heading alignment, and accessibility.

The function used is the following :

A6
c(w,r) =0.6(0.1Ap; + 0.1Ap, + 0.8Az) + ().4u
T

where:
e Ap is the difference between viewpoint position and robot position
e Af is the difference between viewpoitn’s heading and robot’s heading

The task assignment strategy guarantees robustness against robot failures
and handles dynamic conditions thanks to several mechanisms applied at
each iteration. If a task is completed, the ground station updates the obser-
vation map and assigns new tasks to keep the system working.

If a robot reports a task as aborted, the ground station assigns another
one or modifies task parameters to improve feasibility.

18
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For a better comparison with the other two techniques, we have decided
to use the actual framework while changing the task manager strategy, guar-
anteeing that all techniques work with the same path planner and the same
failure manager.

3.4 Individual Robot Path Planning

The path planning component used by the robots is a distributed solution
that enables each robot to find a path to assigned viewpoints while coordi-
nating with other robots to avoid collisions and improve system performance.

Moving the planning process to the robots instead of the ground station
reduces computational effort and provides robots with the flexibility to adapt
quickly to local conditions and dynamic environments.

The algorithm used to find the path is RRT*, which has been adapted
for coverage purposes. The algorithm starts with the creation of a random
tree that grows until a viewpoint is reached. Each time a new node is added
to the tree, the robot checks if there is line-of-sight between it and the
target viewpoints. In this way, the system is capable of identifying the most
accessible viewpoint quickly.

Once a path is obtained, the system improves path quality by perform-
ing iterative pruning to remove redundant waypoints when direct line-of-
sight exists between non-consecutive waypoints. Collision avoidance is im-
plemented through multiple layers of checking. As a first step, the algorithm
verifies if there are collisions with the avoidance map derived from the 3D
model, ensuring that there are no intersections of the path with obstacles.

Subsequently, the system considers the current pose and planned paths
of other robots and estimates if there are any conflicts during trajectory
execution.

If during movement the robot encounters an unpredictable object or
intersects the path of another robot, the system is able to stop the robot
and request a new task. In this way, the coverage process does not need to
stop and can continue efficiently.

Path execution is managed through trajectory generation that considers
the vehicle’s dynamic constraints and capabilities. Using parameters such
as maximum velocity and acceleration limits, it generates a trajectory that
guarantees effective observation of the assets to be explored.

19



Chapter 4 NBYV technique

Starting from the implementation developed by [3]|, we have readapted it
to work with known assets in contrast to unknown ones. This technique is
part of the vast area of sampling-based methods that rely on sampling new
points in the configuration space. The state-of-the-art technique proposes
the use of a receding-horizon strategy which samples points randomly and
selects the best one by considering the associated gain regarding the new
knowledge acquired.

The main aspect of this algorithm is to generate an exploration path
composed of viewpoints and to choose the first viewpoint of the best path
as the most advantageous. The use of continuous feedback guarantees ro-
bustness against errors and enables rapid assessment of the remaining area
to explore. This method is based on the use of an occupancy map in which
the environment is depicted through small volumes, denoted ‘voxels’, each
volume having an associated observation state. Typically, we have three
types of voxels:

® Vipee: free volumes which can be used to generate the path
o V,..: occupied volumes representing objects

e V,..s: residual volumes that cannot be associated with any of the pre-
viously mentioned classes

When proceeding with exploration, we start from all volumes as Vi, (un-
mapped volumes) and set an observation state for each voxel. The explo-
ration ends when Vipee U Voee = V' \ Vies [3] and the drone returns to the
starting station.

4.1 SOTA Gain Computation

The gain is determined by counting the amount of unmapped space that can
be explored if the robot reaches the sampled point. In the literature, there
are many formulas used to exploit this gain, which differ based on which
aspects are prioritized. The method analyzed as a starting point uses the
following formula to compute the gain for the sampled point ny, :

Gain(ng) = Visible(M,ﬁk)ef)‘C("I’z—l)
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where:

o Visible(M, &) is the set of unmapped and visible voxels from config-
uration & defined as pose and heading of the robot and that belong
to the occupancy map M

e c(oF |) € Ry is the cost of following the path of , from the config-
uration &1 to the configuration &. It is defined as the Euclidean
distance between the coordinates of the starting and end configura-
tions.

e )\ € R, is a coefficient which penalizes high path costs [3]

4.2 Implementation Approach

Our implementation maintains the main paradigm of the state-of-the-art ap-
proach while introducing modifications to adapt it to explore known struc-
tures. As described previously, we chose to modify the task generation step
to enable a fair comparison of the three techniques described.

For this purpose, we designed a class that defines the main functions of
our receding-horizon NBV technique and a main function that serves as a
wrapper for task generation.

The concept behind the nbv implementation is illustrated in Figure
4.2. The system is defined by a pipeline of interconnected modules, each
responsible for exploiting specific aspect of the optimization process while
maintaining bidirectional communication to achieve optimal performance.
The architecture follows a top-down hierarchical approach where each block
functions as a consumer of the previous block’s output and provides feed-
back. The three main blocks are:

e Voxel Candidate Selection block focuses on high-level decisions
about where to sample and which candidates to evaluate. Thanks to
the use of adaptive sampling strategies that use performance metrics
to enhance the sampling approach in real-time, we reduce the required
sampling points from 50-100 to 15-30 points with respect to the original
approach.

e Gain Computation block concentrates on the evaluation of view-
point quality through a multi-factor evaluation mechanism using a
ThreadPool! for parallel processing.

e Spatial Caching System block operates as the system’s memory
component, storing information about successful sampling regions to
influence future decisions.

!ThreadPool is a design pattern that manages a pool of worker threads to execute tasks
concurrently.
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The Voxel Candidate Selection block serves as the coordinator of the
entire system, managing the flow of information between the lower-level
computational components and the higher-level decision-making processes.
The core innovation in the system is the parallel processing capabilities,
enabled by the ThreadPool architecture, which guarantees concurrent exe-
cution across all three blocks.

This approach allows the Voxel Candidate Selection to the execution of
different sampling approaches simultaneously while the Gain Computa-
tion is performed in parallel. Another aspect that improves execution is
the use of a Spatial Caching System, which operates as a continuous
background process, updating and maintaining cached gain computations
and successful sampling regions without blocking the primary computation
pipeline (Figure 4.1).

Sampling Thread

~

3 Spatial Caching Thread

N
~

Gain Computation Thread

~

Planning Thread

Figure 4.1: Thread execution pipeline showing parallel processing architec-
ture

The bidirectional arrow in the diagram emphasize the communication
protocols defined between the blocks. The Voxel Candidate Selection re-
ceives information and performance metrics from the lower blocks and ad-
justs its sampling strategy and selection criteria based on real-time perfor-
mance. The Gain Computation block communicates with the upper and
lower blocks, exchanging specific data types:

e From Voxel Candidate Selection: received sampled viewpoint can-
didates defined by position coordinates and orientation

e From Spatial Caching System : received previously computed gain
values usign viewpoint hash keys

e To Spatial Caching System: sends computed information gain val-
ues

Due to this structure, we generate a feedback loop where frequently
accessed computations are automatically cached, and the cache contents
influence future sampling decisions.
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( Voxel Candidate Selection )
Sampling Parallel Gain Best Voxel
Strategies Computation Selection

. J

s . . N

Gain Computation
Ray Casting & Frontality & Cache-based
Visibility Check Height Factors Optimization
s N
Spatial Caching System
Region-based Weight Update Adaptive
Sampling Strategy Sampling
. J

Figure 4.2: Architecture of improved NBV system

This modular design ensures that each block can be optimized or re-
placed without affecting the others, provided the communication interfaces
are maintained. It enables the system to scale dynamically based on avail-
able computational resources,with each block adjusting its internal paral-
lelization level according to the system’s current capacity. In the following
subsection, the sampling strategy used to sample new viewpoints will be
presented.
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4.3 Sampling strategy

Regarding the sampling technique, the function implements an adaptive
sampling strategy to search promising viewpoints in the 3D space. Instead of
using a uniform sampling of the environment around the asset, this method
focuses its search on areas that yield high information gain. To maintain in
memory the most valuable regions, we design a sampling-cache data struc-
ture that stores a collection of sampling regions. Each region is defined by
a structure composed of:

e A center point
e A radius defining the region extension
e A weight indicating the sampling priority

For point sampling, we used a probabilistic weight-based selection de-
fine by: 70% of sampling using a cache-base weighted approach that se-
lects promising spatial regions from the sampling cache and generates new
viewpoint inside these high-success regions,while 30% of sampling using the
Algorithm 1 for broader exploration. This algorithm sample a new point
selecting between four strategies based on a random probability value: o-
perturbation around the previous best viewpoint, circular sampling around
the object, side-based sampling from cardinal directions, or distant sampling
for wide-area coverage.

The weighted approach chooses a region based on the regions weight
through weighted random selection. The region with the higher weight is
chosen, and a point is sampled within it. We save the polar coordinates
of the point in the x-y plane and the height is determined by evaluating
the optimal value to achieve the highest probability of observing the most
unobserved voxels. In this way, we create a cylindrical sampling volume
around each region center and concentrate our research in promising regions
while still allowing for broader exploration. As a first step, this cache is
initialized by creating different regions defined as:

e Continuity Region with center at the robot’s current position, weight
of 0.5 (lower sampling probability in the weighted random selection)
and radius of 2 meters

e Object-centric Regions strategically positioned around the object’s
bounding box at a distance calculated as doptimar = -max(Wonj, Pobj, lobj)
where o = 1.5 is a scaling factor and wey;, hopj, lop; are the object’s
width, height, and length respectively. These regions are placed at
45° intervals around the object’s perimeter when the object geometry
permits circular navigation, otherwise positioned at the corners and
midpoints of the bounding box faces. Each regions has a weight of 1.0
and a sampling radius of 0.5 - doptimai-
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Fach region is selected randomly, where a weight of 0.5 is assigned to the
Continuity Region and 1 to each Object-centric Region.

In this way, we ensure the provision of good viewpoints of the unexplored
object while maintaining some sampling points near the current drone’s

position.
O = Q

w=1.0 w=1.0
. doptﬂnal
Q Object eO
w=1.0 w=1.0
0O O
(W:O5) w=1.0 Q w=1.0

w=1.0

O Continuity Region (w=0.5)
O Object-centric Region (w=1.0)

Figure 4.3: Spatial sampling cache regions showing continuity region around
robot position and object-centric regions distributed around the target ob-
ject

Based on the exploration result, the Sampling Cache is modified through
the following steps, improving the performance of the next sample step. The
algorithm adds a new region to the cache when points are sampled from the
30% alternative sampling strategy (Algorithm 1) and yield higher informa-
tion gain than a threshold. The system sets the weight of the new region
proportional to the gain value and updates the total weight to maintain
probabilistic selection. The weight of existing regions are updated based on
how many high-gain viewpoint are sampled into their boundaries. If the
updated weight is lower than a threshold, it means that region has been
successfully explored and it is removed from the cache. Subsequently, high-
gain viewpoints that have generated new sampling regions serve as starting
points for selecting new viewpoints, which will be located in close proximity
to these points and will also reduce the path length required to reach them.

When the adaptive sampling is not applied and the cache is empty, the
system falls back to using the Algorithm 1, which implements several
sampling strategies chosen by random probability.

25



Francesco Scatigno: Multi-Robot Coverage Benchmarking

Algorithm 1 Sample New Point

._.
@

11:
12:
13:
14:
15:
16:
17:
18:

Boxr +— GETBOUNDINGBOX

Copject < (Bo first + Boxsecond)/2 > Object center

p < GETRANDOMPROBABILITY

if nprevious available AND p < 0.2 then > Strategy 1: J sampling
return nprevious + 0

else if 0.2 < p and p < 0.8 then > Strategy 2: Circular sampling

Nsample < SAMPLEPOINTAROUNDOBJECT
CoMPUTEOPTIMALHEIGHT (N sqmple )
return Nemple
else if 0.8 < pand p < 0.94 then > Strategy 3: Sampling on object
sides
Nsample < SAMPLEPOINTONRANDOMSIDE
CoMPUTEOPTIMALHEIGHT (N sgmple )
return nemple
else > Fallback Strategy: More distant sampling
Nsample < SAMPLEPOINTDISTANT
CoMPUTEOPTIMALHEIGHT (N sgmple )
return Nemple

end if

Based on the value of the uniform probability p € [0,1], one of the

following technique is applied:

e Best Viewpoint Perturbation (p < 0.2, 20% chance): samples
new viewpoints by adding small random perturbations to the current
best viewpoint to achieve fine-grained exploration around the already
successful areas.

e Circular Sampling Around Object (0.2 < p < 0.8, 60% chance):
samples points in a circular manner along the x-y plane around the ob-
ject using a beta distribution approximation to favor optimal viewing
distances.

e Side-Based Sampling (0.8 < p < 0.94, 14% chance): chooses one
of the four sides of the object (North,East,South,West) and samples
different viewpoint to provide sufficient views ensuring comprehensive
coverage

e Fallback Wide-Area Sampling (p > 0.94, 6% chance): uses a wider
circular pattern to sample more distant viewpoints and guarantees that
the system does not get stuck in local optima during the exploration.

In Figure 4.4, it is possible to see one visual representation of the

sampling stage of our NBV implementation during the inspection of Fiffel
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Tower. The green points represent the viewpoints that surround the entire
object with higher concentration in regions with the highest probability of
sampling points with good information gain within them. In this case, the
areas around the back of the Eiffel Tower present the regions characterized
by the highest values of the probability weight and consequently the highest
number of sampled points.

4.4 (Gain Computation

The other main function used in this technique is the computation of the
Information Gain associated with each of the sampled viewpoints. This
function is crucial for making informed decisions about where the robot
should move to maximize the efficiency. As shown is the Algorithm 2, this
is a multi-factor evaluation mechanism designed to works with the Cache
system. As a first step, the algorithm uses a cache mechanism to avoid re-
dundant calculation and improve computational efficiency. We use mutex
protection to ensure threads safety in multi-thread environments allowing
concurrent access, and implement a size limit with automatic cleanup that
removes older entries when the cache exceeds a fixed-limit of items to prevent
unbounded memory growth. After the definition of the caching structure,
the function needs to simulate the position of the drone and define the orien-
tation to evaluate the ray-cast. For this reason, it evaluates the orientation
needed to visualize the object by considering the nearest unobserved voxel
position with respect to the sampled point and returns the angle 1) on the
x-y plane. The value of 9 is obtained by the following formula:

Tﬂ = arctan 2<yvoxel — Ydrones Lvoxel — xdrone)

where (Zyozel, Yvozel) 18 the nearest unobserved voxel coordinates and
(Zdrones Ydrone) 18 the drone position in the x-y plane. Using this angle, the
ray casting process is initialized and the main part of the function starts
measuring important information. The ray casting process simulates the
robot’s depth camera by casting multiple rays according to the camera’s
field of view (FOV) and resolution. It determines which voxels would be
hit by each ray when the drone is in that pose and records the face that
would be observed. The function uses the set of observed voxels to define
the Visible(ny) as in the article [3]. The use of the voxel grid’s hash function
to generate unique identifiers for each voxel coordinate enables us to elim-
inate duplicates in that set, ensuring that each voxel is counted once and
preventing double-counting of information. Each voxel is classified based on
its observation status, which can be:

e UNOBSERVED: voxels that haven’t been seen before
¢ OBSERVED: voxels that have already been seen
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To evaluate the information gain IG, the function uses is the following:

IG(nk) = Nunobserved : Ffrontality : Fheight : Fdistance

The number of unobserved voxels Nypopserved 1S One parameter of the final
formula and is multiplied by specific factors.

One of these factors is the frontality factor Ftrontality, Which ensures the
robot faces the object directly for optimal observation quality. It is defined
as:

0 dcamera : dobject )

Frontality = max(0, cos(Ocamera—object)) = max | 0, o
|dcamera| : |dobject|

where ci;amem is the camera’s forward direction and J;bject is the direction
from camera to the object. Its value is between 0 and 1 and depends on the
cosine value between the camera’s forward direction and the object direction,
In this way, the drone is force to see the voxels frontally.

The height factor Fpeign::

- ‘ Zsample ~Roptimal ‘

Fheight =e

that addresses energy consumption. For our comparison, we consider verti-
cal movements as the most energy-consuming action, generally consuming
3-5 times more energy than horizontal movements. This factor considers the
position along the z-axis of the sampled point and an optimal height zoptima
to see the object, considering only the x and y coordinates of the sampled
point. This value is calculated by considering the lateral distance djgteral
from the sampled point and the object’s center on the x-y plane:

Zoptimal = “obj + B : dlate’r’al

with dlateral = \/(xsample - xobj)2 + (ysample - yobj)2 and /3 the height scal-
ing coefficient that indicates how much the viewing height increases with
respect to the lateral distance. Starting from the object center’s z coordi-
nate, it adds a height proportional to the lateral distance, creating a cone-like
optimal viewing surface. This shape has been chosen to address two main
aspects: Energy optimization and Camera angle optimization. The
cone keeps the drone at lower altitudes when the drone is close to the ob-
ject, avoiding vertical movements that consume more energy, and guarantees
adequate viewing angles to the object’s surface.
As a final factor, we consider the distance factor Fy;siance:

Fdistance — 677'max(0:dlateral 7doptimal)

where v is the distance penalty coefficient and doptimq; is the optimal viewing
distance, penalizes viewpoints that are too distant from the object being
explored. When all these factors are evaluated, the function associates the
computed value with the sample point and saves everything in the cache
memory.
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Algorithm 2 Compute Gain

W W W W W W W W W W N NN DN DNDDNDNNDNDN = e e
SEX IS T EIVESDXISATAESNESDPIDT R DN D

Cachepey <+ CREATECACHEKEY (position, yaw)

if Gaincgene contains Cacheye, then return Gainggene[Cacheye,]
end if

Box + GETBOUNDINGBOX

Copject — GETOBIJECTCENTER(Box)

Ucenter < Cobject - pOSitiOH

Y+ atanZ('Ucenter (y)7 Ucenter (l‘))

q < QUATERNION(v, z)

SETPOSEDEPTHCAMERA (g, position)

hitindices, hit faces < DEPTHCAMERACASTRAYS

. if hitingices 1S empty then

Gainegehe[Cacheyey] < 0.0

return 0
end if

© Nunmapped < 0, nobserved < 0
: for index in hit;,gices dO

hash <— HASHINDEX(index)
if Vopserveq contains hash then continue
end if
add(hash) to Vipserved
if CONTAINVOXEL(index) then
status <— GETSTATUS(index)
if status = UNOBSERVED then nypmapped + +
elsengpserved + +
end if
end if
end for

: kp < 1.0 > Frontality factor
o if vVeenter > 0 then

Vforward < ¢ * T
k < Vtorward - Veenter > Cosine of the angle between the two vectors

ks + max(0.1, k)?

. end if

laist — position — Copject

t hoptimal < COMPUTEOPTIMALHEIGHT ({144¢ra1)

. kp, < COMPUTEHEIGHTFACTOR (position, hoptimal, ldist)
: kg < COMPUTEDISTANCEFACTOR (position)

: gain A kunmapped * Nunmapped * kf : kh : kd

i Gainegene[Cacheyey| < gain

: return gain
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Figure 4.4: Sampling visualization during Eiffel tower’s exploration. Green

points show the sampled viewpoints generated by the adaptive sampling
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4.5 Comparison

In this subsection, we will analyze the main differences between our im-
plementation and the state-of-the-art approach [3]. The comparison will
highlight the improvements and their positive impacts.

Regarding the sampling strategy used in both implementations, they
present significant differences that enhance the system by preventing wasted
time in finding good viewpoints. In the state-of-the-art technique, they used
a simple sampling strategy that considers a uniform distribution around the
exploration environment. In this way, the sampling does not adapt based
on previously sampled viewpoints and cannot guarantee finding a good one
at the end of one iteration.

However, our strategy used obtain information from previous successful
viewpoints and improves future sampling by generating new regions that
could be optimal for sampling. This knowledge is saved in memory and
updated throughout the mission. Another aspect is the use of performance
metrics to adapt the sampling strategy in real-time.

From a computational perspective, we can say that our technique pre-
vents getting stuck in local optima and reduces the computation time needed
per iteration since it requires fewer sampling points than the original to find
one that is good enough.

The following table lists the performance metrics for both techniques:

Metric Original Approach | Our Approach
Samples to find sufficient viewpoints 50-100 15-30
Success rate per sample (%) 15-25 45-65
Computation time (s) 0.5-2.0 0.15-0.5

Table 4.1: NBV Performance Comparison Metrics across mockups asset
coverage using single robot

Regarding gain computation, the original version used only two metrics
to define the value of information gain: Visible and the cost ¢ to reach the
sampled point from the current drone position.

In this way, it considers only seeing as many unobserved voxels as pos-
sible and reducing the distance that must be traveled, without considering
energy consumption reduction. Our implementation instead adds two other
factors: energy consumption and frontality of viewing.

In this way, the ground station chooses a viewpoint that requires less
energy consumption to reach and ensures stable visualization of the final
viewpoint, discarding those with unstable positions during path travel. An-
other differing aspect regards the processing architecture used.

The original version uses sequential processing where it evaluates one
viewpoint at a time, and performance scales linearly with problem size. Our

31



Francesco Scatigno: Multi-Robot Coverage Benchmarking

parallel processing architecture solution enables the system to use all avail-
able processing power and evaluate multiple candidates simultaneously, dis-
tributing computation across all available cores. The following table shows
a metric comparison of the techniques:

Metric Original Approach | Our Approach
100 viewpoints evaluation (s) 15-25 2-4

Peak Memory usage (GB) 1.6-3.2 2.4-3.2
CPU utilization 12-25% 85-95%

Table 4.2: NBV Performance Comparison Metrics

Other advantages derive from the use of a caching system that reduces
average computation time and eliminates redundant calculations. In the
original version, since there is no caching storage, the system recomputes the
gain for viewpoints already analyzed, evaluating them multiple times and
losing computational time that could improve the algorithm’s performance.

Using caching, we scale our computational power to what is available on
the computer where the code is run, and it ensures higher quality viewpoint
selection since it enables us to save important information for sampling
strategy adaptation.

Using storage limitation and dynamic management, we prevent unbounded
memory growth that can block the entire simulation, and we automatically
manage cache content by eliminating unnecessary information.

These improvements collectively transform the NBV approach from a
general exploration tool into a specialized, efficient, and robust system for
known asset inspection and mapping, making it particularly suitable for
inspection tasks.

32



Chapter 5  Frontier-based tech-
nique

For the second comparison technique, we consider as a starting point the
frontier-based technique developed by [2]. This approach belongs to the
frontier-based technique in which the next viewpoint is chosen by finding
the optimal boundary between unknown and known space.

This method presents an innovative collector strategy capable of achiev-
ing global exploration and map creation. The state-of-the-art technique
stores and validates the frontiers detected during exploration.

In this way, they balance the exploitation of the known map with the
exploration of unknown areas [2].

As with the previously discussed NBV technique, this technique starts by
considering the entire environment as unknown and, during the exploration,
associates to each voxel a status that can be either free or occupied.

The general task terminates when the total amount of the occupied or
free voxels corresponds to the entire set of starting voxels, with the exception
of some voxels considered as residual that remain unexplored.

The main goal of the technique is to find the frontier with the highest
information gain by identifying the frontiers and clustering them to reduce
the amount of data to be stored.

Through the use of continuous frontier validation, it guarantees robust-
ness against map updates and enables efficient assessment of the remaining
area to explore.

The basic concept used regards the definition of frontier, defined as the
free voxels with at least one unknown neighbor. We collect all of the found
frontier in the F' set defined as follows:

F = {vf € Vjpee : Ineighbor(vy) € Vi }

where vy depicts a frontier voxel, V.. is the set of free voxels, Vy;, is the
set of unknown voxels, and neighbor(vs) represents the neighboring voxels
of vy in the 3D grid. Subsequently, the entire set is checked by considering
the previous version of the set I’ and computing the intersection of the two
sets, defined as Fj.

On this set, a mean shift clustering algorithm is applied to reduce com-
putational complexity and remove redundant exploration targets. The two
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parameters that characterize this algorithm are the kernel and the band-
width. The Kernel is a selected function used for instantiate how neighbor-
ing points affect the clustering process. In our case,we choose a Gaussian
kernel. On the other hand, bandwidth is a parameter that defines the size
of the neighborhood that is considered during clustering. The choice of the
bandwidth is relevant since it balances the computation time and the desired
outcome. The kernel regulates the dimension of the “window” over which
the mean is calculated. The frontiers are saved in the collector within the
set Fao.

In order to choose the best frontier, the algorithm associates to each
clustered frontier an information gain as a measure of the unexplored region
would be visible from a viewpoint positioned at 1 meter in the same direction
of the unobserved face of the best frontier center voxel. It is defined as:

Nunk
Ntotal
where Nynknown and Niotqr are the number of unknown voxels and the num-
ber of voxels inside a cubic sampling region centered in the frontier center.
This region is define by:

e The center located in the centroid of the frontier cluster

e The edge length equals to 2 time the camera sensor range

The collector filters the frontiers by discarding those that have a lower
information gain value compared to a certain threshold.

It also updates the information gain considering the distance between
the drone and the frontier, and removes the frontiers already visited.

The frontier with the highest gain is chosen and used by the path planner
as the next viewpoint.

5.1 Implementation Approach

Our implementation follows the main paradigm of the state-of-the-art ap-
proach with significant modifications to enable exploration of known assets
and improve computational efficiency.

As done for the NBV technique, we chose to modify only the task gen-
eration step of [1] to ensure a fair comparison between the three techniques.
The designed class outputs a task structure containing the voxel to be con-
sidered for next viewpoint selection.

Figure 5.1 illustrates the structure of the frontier-based implementa-
tion, defined by a pipeline of interconnected modules responsible for exploit-
ing specific aspects of the process. The modules are:

e Frontier Detection & Clustering module focuses on identifying
and clustering frontier voxels
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e Information Gain Computation module concentrates on the math-
ematical evaluation of frontier quality

e Filtering & Validation module operates as memory and validation
component of the system

e Selection & Navigation module choose the final frontier

The Frontier Detection and Clustering module begins by processing each
voxel from the PH-tree structure, determining whether it represents a valid
frontier point with proper face status or neglecting it.

After frontier creation, it employs an optimized mean-shift algorithm
that reduces the computational complexity of subsequent operations by al-
lowing the system to consider groups of frontiers instead of individual ones.
In this way, the number of elements to process moves from |F| individual
frontiers to |C| frontier clusters, where |C| < |F|, reducing the computa-
tional effort required by information gain evaluation.

The Spatial Grid optimization block enhances clustering performance
using a spatial hash grid that accelerates neighbor search, reduces memory
access patterns, and enables efficient batch processing of frontier candidates.

Subsequently, the Information Gain Computation module evaluates the
information gain value of each frontier.

The use of adaptive sampling enables the system to concentrate compu-
tational resources in areas likely to yield sufficient information to establish
the potential of the considered frontier.

The system performs visibility analysis to determine line-of-sight be-
tween the robot position and frontier location. Finally, energy and distance
factors are evaluated to ensure the algorithm considers energy optimization
during exploration. The Filtering and Validation module ensures that only
feasible and valuable frontiers proceed to the selection phase. It applies var-
ious analyses, including obstruction-free verification and confirmation that
information gain exceeds a fixed threshold. The final module handles the
decision-making phase by evaluating a final utility factor and sorting all
available frontiers based on this parameter. The chosen frontier is converted
into a task structure and sent, like the other two techniques, to one of the
available robots.

5.2 Frontiers Detection and Clustering

The main step in our implementation is the frontier detection that presents
fundamental changes from traditional approaches, implementing a two-phase
strategy defined as: individual frontier creation and advanced clustering al-
gorithm.
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The first phase focuses on checking each voxel present in the PH-tree
structure and creating individual frontiers from them. This approach differ-
entiates from Caiza’s [2] method since it does not consider the boundaries
between free and unknown space but between seen and unseen space within
the reconstructed asset.

As shown in Algorithm 3 (lines 1-3), the first step is to check if the
VoxelGrid contains voxels related to the reconstructed asset. Another im-
portant step is related to the initialization of the face status if not already
defined (lines 4-8). In this way, the system associates to that voxel a status
based on an analysis of the neighborhood voxels. If a neighboring voxel
exists in the grid, the face is marked as OBSTRUCTED; otherwise, it is
marked as UNSEEN, indicating a potential observation target. After this
step, the system creates an individual Frontier object for each voxel using
the CreateNewFrontier 4 method. A frontier object is defined by the fol-
lowing characteristics: position, information gain, boolean value that stores
the validity of the frontier, and a list of the voxels inside the frontier (lines
9-12). The initial individual frontier creation acts as an intermediate rep-
resentation that store spatial information before the clustering algorithms
groups adjacent frontiers into clusters.

After the initialization of all individual voxels, the system proceeds with
the use of an advanced mean-shift clustering algorithm designed for real-time
robotic applications.

To manage the computational complexity for larger numbers of frontiers,
the algorithm applies a pre-filter stage that removes spatially redundant
frontiers (those within 0.3 meters of each other) ensuring that the over-
all performance remains sufficiently good while maintaining representative
coverage of the frontier space. The 0.3-meter threshold was selected based
on empirical analysis across our test assets. This value provides optimal
performance characteristics:

e Computational efficiency: Reduces frontier processing load by 45-
65

e Coverage preservation: Maintains >96% of theoretical maximum
information gain

e Scale adaptability: Works effectively across asset sizes from 2m to
300m

e Voxel relationship: Equals approximately three times the voxel size
(0.1m), ensuring geometric consistency
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Algorithm 3 Find Frontiers

LF«0 > Initialize empty frontiers list
2: Vindices < GETVOXELINDICESPHTREE

3: for v; € Vindices dO > Vindices: Set of voxel indices from PH-tree
4: if VOXELGRIDCONTAINS(v;) then

5: voxel < GETVOXEL(v;)

6: if HASUNKNOWNFACESTATUS(voxel) then

T: for face =0 to 5 do

8: Uneighbor < GETNEIGHBOR(v;, face)

9: if VOXELGRIDCONTAINS(Upeighbor) then

10: SETFACESTATUS(vOXel, face, OBSTRUCTED)

11: else

12: SETFACESTATUS(vOxel, face, UNSEEN)

13: end if

14: end for

15: UPDATESTATUS(voxel)

16: end if

17: frnew < CREATENEWFRONTIER(vozel)

18: F «— FU{fnew}

19: end if
20: end for

21: return F

Algorithm 4 Create New Frontier

frontier.index < voxel.index

frontier.position < GETCENTER(voxel.index)

frontier.in formation_gain < 0.0 > Initially set to zero
frontier.valid < true

frontier.last_update_time < GETCURRENTTIME

frontier.vozels <— {voxel.index} > Initialize with single voxel
return frontier
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Figure 5.1: Architecture of improved Frontier-Based system

The first innovation is the use of a spatial grid system that guarantees
a reduction of computational complexity for neighbor identification. This
spatial grid is a hash-based data structures where each cell stores references
to frontier points within its boundaries. Using a cell size 1.5 times the
bandwidth, it ensures a good balance between grid resolution and search
efficiency.
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In this way, the neighbor search moves from a complexity of O(n?) brute-
force comparison to a complexity of O(n - k) for grid-based lookup. The
complexity reduction is achieved as follows:

e Grid-based approach (O(n - k)):

1. Hash each frontier to its grid cell: O(1) per point, O(n) total

2. For neighbor search, only check the 3 x3x3—1 = 26 surrounding
cells

_ _n
T |eells|

4. Total complexity: O(n-27- N,) = O(n- k)

3. Expected number of points per cell : N,

In a mean-shift iteration, the spatial grid accelerates neighbor identification
and ensures that all relevant neighbors within the bandwidth are considered.
The 3x3x3 grid search pattern ensures comprehensive neighbor coverage
while maintaining computational efficiency.

Another update with respect to the original Caiza’s [2] version is the ker-
nel function. Their method uses a uniform kernel that considers all neighbors
into the bandwidth in the same way, neglecting their relative distance. Our
implementation uses a Gaussian kernel with adaptive weighting that opti-
mizes convergence speed and cluster quality by giving more importance to
closer neighbors.

The Gaussian kernel uses a cutoff at 2.5 times the bandwidth following
the standard practice in mean-shift clustering to balance computational effi-
ciency with clustering accuracy. The weight threshold of 0.01 orresponds to
the 1% significance level commonly used in statistical analysis and eliminates
negligible contributions that would not significantly affect the mean-shift
computation but consume computational resources.

After convergence, the algorithm performs cluster assignment that pre-
vents redundant cluster creation.

The final step is the construction of the frontier object from the clustering
results with a proper validation.

The information gain associated to it corresponds to the sum of each
frontier clustered and the center point is chosen as the average of the voxels
position if it coincides with the position of a voxel or the nearest one.

An example of the clustering visualization is shown in Figure 5.2. In the
picture are shown the top five frontier clusters ranked by information gain.
Colors indicate frontier priority: Red (highest information gain), Orange
(2nd highest), Yellow (3rd), Purple (4th), and Pink (5th).

During the exploration , frontiers are updated at each iteration following
three phases:

e Validation phase: the system checks if in each existing frontier there
are voxels remain UNOBSERVED. Frontiers containing voxels that
have been explored are removed from the global frontier set.
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e Integration phase: newly detected frontiers from the current iteration
are pre-filtered and after integrated into the global set.

e The system applies Information gain recomputation for all valid fron-
tiers based on current robot position and exploration state.

In this way, the system ensures that the frontier set remains current and
computationally manageable throughout the exploration mission, adapting
to the changing environment state as areas are progressively observed and
mapped.

5.3 Gain Computation

The other main components of our implementation is the information gain
computation that is characterized by different evaluation since it is based
on factors specific for energy-efficient asset inspection. The formula used to
evaluate the gain of a frontier is the following one:

N,
IG(f) = kg ' % : Efactor : Vfactor
ota

where:
e ky: knowledge gain coefficient

® Nunobserved/Ntotar: Tatio of unobserved to total voxels in the frontier
region

e Az: vertical distance with respect to the robot position
® Ejoctor: energy factor considering altitude differences

Efactor - 67/8.|AZ|

where 3 is the energy cost factor
® Viacior: Visibility factor based on line-of-sight analysis

1.0 if line-of-sight exists
Vfactor = P . .
0.5 if line-of-sight is obstructed

The innovation in our approach is the consideration of the vertical movement
cost. As in the NBV case, the major quantity of energy consumed by the
drone is attributed to the vertical movements and for that reason we want to
reduce the displacement along the z-axis and improve the movement within
the plane parallel to the floor.
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This value is used to compute the energy factor since it is defined as
e P5% where beta is a constant factor. In this way, the gain will be lower
than the expected one if is relative position is too far from the current robot
position along the vertical axis. The other factor used is the Visibility factor
that is a penalty factor if there is no line of sight between the robot position
and the frontier center.

By using a ray casting simulation, the algorithm analyzes if there is a
line of sight between the position of the drone and the frontier center.

As shown it the Algorithm 5, the algorithm defines a cubic sampling
region with an extension equal to the parameter o where it samples point to
define how many voxel are unseen inside. implements probabilistic culling
of sample points that are distant from the frontier center.

Points beyond 70% of the maximum sampling radius are skipped with
66% probability, effectively concentrating computational resources on the
most relevant sampling regions while maintaining statistical coverage. These
threshold values have been empirically obtained trying to balance computa-
tional efficiency and sampling accuracy.

5.4 Collector filtering and frontier selection

After the computation of the information gains for each frontier, the collector
saves all the data in a cache and checks all of them by a three-stage filtering.
The first one is related to the obstruction of the frontier.

During the exploration some frontiers can become unreachable and for
that reason it will delete all the frontiers that presents unreachable voxels
within it. The second one is the proximity filtering that prevents the se-
lection of frontiers too close to recently explored area. The last step is the
check if the gain value is higher than a fixed threshold and remove from the
memory the ones that don’t respect this constraint. Finished the filtering
step the collect select the best frontier using a utility factor that balances
information gain with the travel length. Defined as:

_IG()

Y= )

where:
e /G(f) is the information gain

e d(r, f) is the Euclidean distance from the robot position r to frontier
f The utility function uses total Euclidean distance d(r, f) for travel
cost estimation, while the information gain computation IG(f) sepa-
rately considers vertical displacement Az for energy-specific penalties.
This dual approach accounts for both path planning costs (total dis-
tance) and energy consumption patterns (vertical movement penalty),
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providing a comprehensive evaluation that optimizes both travel effi-
ciency and energy expenditure.

In this way, the final selection depends on the information gain but also to
the distance since the desired behavior of this approach is the exploration
of the drone along the object preferring exploring one area before without
moving to another one and come back again since not fully explored.

After the selection the algorithm converts the frontier into a task struc-
ture as defined in [1] and sends it to the ground station node in order to
continue the exploration of the asset.

Algorithm 5 Frontier Information Gain Computation
1: voxel Lookup < CREATESPATIALINDEX(Veyrrent)
2: for f; € F do
3 d < ||fi-position — propot|2

4: Az < || fi-z — Drobot-2]|2

5: Yenergy < eXp(—,B : AZ)

6: DPmin < fi-position — «

7: DPmaz < fi-position + «

8: Nunknown < 0, Niotar <= 0

9: for (,y,2) = Pmin tO Prmar Step Tsampling do

10: Psample < (.’IJ, Y, Z)

11: deenter < ||psample - fz’~P05itiOn”2

12: if deenter > 0.7 then

13: continue

14: end if

15: Vidg < GETVOXELINDEX(Psampie)

16: key < HASH(v;qz)

17: if key € voxel Lookup then

18: Niotal + +

19: if GETVOXELSTATUS(v;4,) = UNOBSERVED then
20: Nunknown + +
21: end if
22: end if
23: end for
24: p Nunknown/maX(Ntotah 1)
25: j_};.gain — kg p-exp(—=X-Az) - Yenergy
26: d (-(fl'.pOS’L't’L'OTL - probot)/”fi .pOSitiOTL - pr3b0t||2
27: hasLOS < CHECKLINEOFSIGHT(Pyobot, d, fi.index)
28: if not hasLOS then
29: fi-information_gain < f;.information_gain x 0.5
30: end if
31: end for
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Figure 5.2: Frontier visualization of two view taken at different times during

exploration showing the top five frontier cluster ranked by information gain
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5.5 Comparison

In this subsection, we will analyze the main differences between our im-
plementation and the state-of-the-art frontier-based approach described in
[2]. The comparison will highlight the architectural modifications and their
impact on exploration efficiency for asset inspection scenarios.

Regarding the frontier detection strategy, the two implementations present
fundamental conceptual differences that significantly impact exploration be-
havior. The original approach employs a classical frontier detection method
that identifies boundaries between free and unknown space in completely
unknown environments. This strategy works well for general exploration
but requires extensive computation to process large frontier sets and may
generate redundant exploration targets. In contrast, our implementation
leverages a-priori knowledge of asset geometry by treating each voxel in the
reconstructed model as an individual frontier candidate. This paradigm shift
enables more targeted exploration since the system focuses exclusively on
relevant geometric features rather than arbitrary space boundaries. Addi-
tionally, our approach incorporates face status initialization that considers
neighboring voxel relationships, ensuring more accurate frontier validation.
From a computational perspective, our technique implements several opti-
mizations absent in the original work. The spatial grid acceleration system
reduces neighbor search complexity from O(n?) to O(n), while adaptive
sampling concentrates resources on promising frontier regions rather than
uniformly sampling the entire frontier space. The following table compares
the performance metrics of both techniques:

Metric Original Approach | Our Approach
Frontiers processed per iteration 200-500 50-150
Clustering computation time (s) 1.5-3.0 0.3-0.8
Memory usage efficiency (%) 60-75 80-95
Frontier validation accuracy (%) 70-85 85-95

Table 5.1: Frontier-Based Performance Comparison Metrics across mockup
asset coverage using single robot

The memory usage efficiency is the ratio of the memory use for frontier
data and the total allocated memory for the entire program. The metric
Frontier validation accuracy is defined as the percentage of detected fron-
tiers that presents a information gain higher than a fixed threshold of 0.4 . It
evaluates how the algorithm identifies frontiers that contribute meaningful
information gain when visited. Regarding information gain computation,
the original version uses a simplified approach based primarily on the ratio
of unknown voxels within a cubic region around each frontier, as opposed to
our approach where... While effective for general exploration, this method
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does not account for energy consumption patterns specific to UAV oper-
ations. Our implementation extends the gain formula with energy-aware
factors including vertical movement penalties e #2% and visibility analysis
through line-of-sight verification. The energy factor addresses the critical
aspect of UAV power consumption, where vertical movements require sig-
nificantly more energy than horizontal displacement. The visibility factor
ensures that selected frontiers maintain clear observation paths, reducing
the likelihood of mission failures due to obstructed viewpoints. Another sig-
nificant difference lies in the filtering and validation architecture. The origi-
nal approach applies basic obstruction checking and distance-based filtering
with limited memory management capabilities. Performance degrades with
duration of exploration as the frontier sets grow without pruning mech-
anisms. Our collector strategy implements a three-stage filtering system
with caching mechanisms that maintain exploration quality while managing
computational resources. The following table illustrates the architectural
differences:

Aspect Original Approach | Our Approach
Information gain factors 1 3
Filtering stages 2 3

Energy consideration Not implemented Exponential decay

Table 5.2: Frontier-Based Architectural Comparison

The integration within our task management framework represents an-
other fundamental distinction. Rather than operating as an independent
exploration module, our frontier-based technique generates tasks compatible
with multi-robot coordination protocols. This integration enables seamless
comparison with NBV and standard approaches under identical operational
conditions while supporting distributed exploration scenarios. However,
these specializations introduce certain trade-offs. The original approach
maintains generality across diverse exploration scenarios, while our imple-
mentation is optimized specifically for asset inspection tasks where geometric
priors are available. The increased computational complexity of multi-factor
gain evaluation may impact real-time performance on resource-constrained
platforms, though spatial optimizations and caching mechanisms largely
compensate for this overhead. These improvements collectively transform
the frontier-based approach from a general-purpose exploration tool into a
specialized, energy-efficient system for known asset inspection, making it
particularly suitable for infrastructure monitoring and industrial inspection
applications where geometric models are available and energy consumption
optimization is critical.
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Chapter 6  Experimental Setup

The experimental setup for the simulation of all techniques exposed is based
on the use of Webots as simulation environment and Ros Noetic as middle-
ware framework for inter-component communication. The computer used for
the simulation presents an Intel Core i7-7700 processor running at 3.6GHz
with 8 cores, 64-bit architecture, and 16GB of RAM. For the real experemts
we use the Starling platform produced by ModalAl Inc., as shown in Fig.
6.1 a). It spans 190 diagonally and weighs slightly more than 300 . The
MAV runs the PX4 autopilot and is interfaced over ROS using MAVROS.
State estimation is performed by monocular VIO, using a 45 downward
looking global shutter wide-angle camera, running Qualcomm’s proprietary
VIO solution mvVISLAM. The MAV is equipped with two forward-facing
sensors: a 4K camera with an overall FOV of 100, and a ToF camera with
horizontal and vertical Field of View (FoV) of, respectively, 85.1 and 106.5,
able to measure distances in the range [0.5,4] . In order to localize the start
location of the robots in the arena 10.1 we use a Motion Capture System
(MCS) with millimeter accuracy from Motion Analysis Inc. The robots use
their onboard VIO to compute their motion from their start location while
the MCS allows to compensate for drift in odometry throughout the flight.
For evaluating the performance of our method with respect to the other
two techniques, we chose several assets that differ in shape complexity and
dimension.

b)

Figure 6.1: a) Real and b) modeled Starling MAV by ModalAI Inc.
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For the virtual simulation we have used the following assets:

e Structure composed by two columns and one diagonal
e Ferrari 296 GTB

e Tank car

e Armadillo

¢ Eiffel Tower

. In the Appendix, a dedicated section contains all the meshes used ( Section
10.3). The experiment are realized with different numbers of robots,ranging
from a single one to a maximum of 5 robots simultaneously. To analyze
the different techniques, we decided to use several parameters based on
distance traveled, time elapsed during the exploration, and energy consumed
by MAVs.

The Coverage Efficiency parameter measures the effectiveness of the ex-
ploration by the ratio of voxels explored to the starting number of voxels in
the PH-tree data structure.

Coverage speed is expressed in em3 /s and indicates how fast the system
is able to obtain information about the environment. It is defined as follows:

3
CS — Vvexplored o onelexplored -l

ttotal ttotal

where Vigzpioreq is the volume explored, defined as the products of voxels
explored times the voxel’s dimension I, and t;.,; the total time spent for the
exploration.

Energy Efficiency is particularly important for real drone applications
due to battery constraints that can affect the overall performance. It is
defined as the ratio between voxels explored and the total amount of energy
consumption.

Regarding the energy consumption calculation, we have used the param-
eters obtained by Zhou [9]. The implemented energy model considers two
main components:

e Aerodynamic drag energy: Eg. .y =7 D *7-AS
e Gravitational potential energy: F,,; =m-g- Az

where 7 is the drag coefficient, D is the diagonal aerodynamic drag matrix,
m is the drone mass and g the gravitational acceleration. These parameters
work for both single and multi-robot cases and enable us to compare the
three techniques.
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Chapter 7  Results

7.1 Simulation results

Starting from single MAV exploration, we used the data obtained during the
execution of each technique and realized a graph that illustrates the decline
in remaining voxels over time. Figure 7.3 shows the exploration behavior of
a single drone using our PH-Tree-based technique during mochup coverage.
The orange line represent a mathematical interpolation of the data point,
providing a smoothed trend line.

As can be seen from Table 7.1, the parameters obtained from the Ferrari’s
coverage demonstrate the efficiency of our technique with respect to the
other two. Our technique presents the highest values in coverage speed
and energy efficiency, demonstrating that our solution satisfies the actual
challenges of MAVs that cannot guarantee a huge battery. The box plot
diagrams shown in Figure 7.4 and 7.5 emphasize the better performance of
our technique since it presents the lowest median values in terms of distance
traveled and energy consumed by MAVs. The tight dimensions of the box
guarantee the possibility to use our approach in real experiments and to
have high enough confidence in the results. The statistical analysis reveals
several advantages regarding using our implementation:

e The narrow box plots for our technique demonstrate highly consistent
result across different experimental conditions

e The small standard deviation demonstrates that our technique has
stable performance independently of asset complexity

e The tight statistical distributions provide confidence that performance
benefits will scale consistently to larger or more complex exploration
tasks

e The absence of outliers reduces the risk of unexpected poor perfor-
mance
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Parameter Our Technique | NBV | Frontier-based
Coverage efficiency 0.99 0.98 0.99
Coverage speed (cm3/s) 3862 2024 3007
Energy efficiency (J 1) 168.29 110.28 101.16
Time (s) 190 210 175
distance (m) 59.3 63.5 57.65
Energy (J) 4.7 7.1 7.8

Table 7.1: Parameters for Ferrari exploration by single MAV

These results also show that the use of PH-TREE as a data structure to
obtain areas to explore guarantees faster coverage of the assets and less waste
of time in points already explored. The NBV has the poorest parameters,
and this situation is due to its probabilistic approach.

Sometimes the system gets stuck in an area characterized by partially
visible voxels, and the probabilistic sampling doesn’t find a valid viewpoint
as fast as the other two techniques. In the case of simple objects, the re-
sults obtained by the use of the Frontier-based technique are more or less
comparable to the ones obtained by our system.

This situation is due to the small number of voxels to explore. In His-
togram 7.1, the comparison between the three techniques with respect to the
distance traveled and the energy consumption is shown. From that graph,
it is easy to understand that the NBV suffers in the exploration of known
assets more than the frontier-based technique.

In the case of big objects, the system requires more time and more
iterations to elaborate the frontiers and to cluster them. As can be seen
in Tables 7.2 and 7.3, the results obtained by the NBV and frontier-based
techniques are lower than the previous case.

Our approach presents the best values for all the parameters, and the
difference between the same parameter of the other techniques is significantly
larger.

The use of multiple MAVs emphasizes the improvements of our method
with respect to the other two, especially in energy-related parameters. Our
method, in the Eiffel coverage with 3 or 5 MAVs, presents energy consump-
tion less than one-third of both the other approaches and with distance
traveled less than half. The frontier-based technique is characterized by the
highest worsening of performance in the case of big and complex assets.
The increase in time needed by the computation and a not totally efficient
frontier choice makes the system not suited for inspection of environments
such as houses or towers. By conducting different tests, we have obtained
Figure 7.2 that shows the mean value along time and the standard devia-
tion. Thanks to this figure, we can see how the system works in the same
way during different iterations and presents the lowest standard deviation
at every timestamp.
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Figure 7.1: Histogram of distance traveled and energy consumption during
exploration of Ferrari asset using 3 robots
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Figure 7.2: Exploration comparison of the three techniques using 3 robots
for Armadillo coverage
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Figure 7.3: Exploration behavior of single drone during mockup’s coverage

Parameter Our Technique | NBV | Frontier-based
Coverage efficiency 0.99 0.98 0.99
Coverage speed (cm?/s) 25235 8456 13194
Energy efficiency (J~1) 147.16 33.08 56.88
Time (s) 257 755 427
distance (m) 266.53 848.84 411.57
Energy (J) 41 193 114

Table 7.2: Parameters for exploration of Eiffel Tower by 3 MAVs

The Frontier-based technique presents a higher standard deviation, es-
pecially during the first 12 tasks, and this is due to the necessity of higher
computational time regarding frontier choice. The NBV presents the high-
est standard deviation in the middle of exploration, and this affects the
reliability of this technique in the presence of assets with complex shapes.

Parameter Our Technique | NBV | Frontier-based
Coverage efficiency 0.99 0.98 0.99
Coverage speed (cm?/s) 34112 13311 17741
Energy efficiency (J 1) 102.11 32.74 52.03
Time (s) 189 479 355
distance (m) 296.89 856.94 511.26
Energy (J) 63 195 124

Table 7.3: Parameters for exploration of Eiffel Tower by 5 MAVs
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Figure 7.4: Box plot of distance traveled by 3 robots during Eiffel’s coverage
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Figure 7.5: Box plot of energy consumption by 3 robots during Eiffel’s
coverage
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Chapter 8 Unknown exploration
technique

Techniques for coverage of known assets guarantee good performance for
the exploration of a priori-known assets by using energy-efficient path plan-
ning and real-time task assignment, but are limited since they cannot adapt
when environmental modifications occur or when prior geometric knowledge
is unavailable. For this reason, increasing research efforts focus on finding in-
novative solutions for the exploration of environments about which we have
no prior knowledge. However, unknown environment exploration presents
unique challenges that require different approaches for frontier detection,
map construction, and navigation in uncertain conditions. In this chap-
ter, we will present our work regarding a novel exploration technique for
unknown environments. Starting from the state-of-the-art techniques, we
have designed a new framework capable of exploring a space and obtaining
a detailed map simultaneously.

With respect to navigation tasks, in the case of exploration of unknown
environments, the system requires that the robot makes decisions based on
incomplete information.

Our method aims to find a reliable solution to this challenge through the
use of three innovations: an asynchronous pipeline architecture, intelligent
frontier selection, and a path planner based on TSDF-informed sampling.

Our implementation is composed of two primary components that work
together:

e VoxMap system (provided and adapted) that processes sensor data
obtained from the ToF sensor and updates a 3D representation of the
environment. With a probabilistic voxel-based approach, it enables
the system to define occupied space and frontiers.

e Robot Exploration system that uses an asynchronous pipeline to
manage several processes such as receiving data from VoxMap, choos-
ing the best frontier, and planning a trajectory to reach it.

The integration between these components enables continuous explo-
ration where mapping and navigation decisions are made concurrently, max-
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imizing exploration efficiency while ensuring safe operation in unknown en-
vironments.

In the following subsections, each important part of our framework will
be discussed in detail, focusing on the main innovations.

8.1 SOTA techniques

In literature, there are different techniques used for exploration that belong
to the class of frontier-based approaches. Frontiers, defined as the areas
that define a boundary between the known and unknown space, are used
as elements for defining the next viewpoint during the exploration, guaran-
teeing good performance in terms of time spent during the exploration and
distance traveled. In our project, we decided to use the concept exposed
in the work of Zhou et al. [8] regarding the use of a sophisticated frontier
manager. While their frontier manager is used for trajectory optimization
and planning efficiency, our version focuses on frontier selection scalability,
providing 10-100x performance improvement over individual frontier evalu-
ation in high-density scenario. In the work of Oleynikova et al. [10] explains
how to use the TSDF-data obtained from the sensor for mapping and plan-
ning in order to improve the performance of path finding and achieve safer
trajectories. Since our work uses a TSDF map of the environment, we chose
to incorporate these values into the RRT* algorithm. While Oleynikova
focuses on direct TSDF-to-ESDF conversion for collision checking in MAV
navigation, we introduce a novel TSDF-informed sampling strategy specifi-
cally designed for exploration scenarios.

8.2 Asynchronous pipeline

The core architecture of our exploration framework is composed of an asyn-
chronous pipeline that coordinates the different subsystems (mapping, plan-
ning and control) to achieve safe and efficient exploration of unknown envi-
ronments.

This solution has been chosen to guarantee optimal performance in real-
time exploration scenarios.

Each phase of the exploration is separated by the pipeline into three
main threads that operate in parallel:

e Mapping thread that manages sensor data acquisition and process-
ing

e Planning thread that executes path planning through selected fron-
tiers

e Control thread that manages trajectory execution and robot control
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The mapping thread processes data acquired by the VoxMap and updates
the map used by the path planner. It also stores all the frontiers using the
same approach of [8] and saves them into a thread-safe data structure that
can be accessed by other pipeline components without blocking the mapping
process.

The planning thread manages the frontier choice and path generation.
When valid mapping data is available and the system is in searching state,
the thread executes planning operations and generates trajectories using the
path planner integrated with TSDF-informed sampling.

The control thread manages trajectory execution and uses the updated
map information for collision avoidance. The thread continuously monitors
the robot’s state and provides feedback about execution progress. A collision
is defined as situation where the distance between the robot and the occupied
voxels is less than the robot’s safety footprint (robot radius + safety margin
of 0.2 meter). If the sensor detects a distance inferior to the safety footprint,
the control thread blocks the entire trajectory execution and asks for a new
path or a new target from the planning thread.

To ensure robust communication between threads, we decided to use
thread-safe message queues. In this way, the data are processed separately
and do not affect the overall performance of the exploration framework.

The pipeline integration includes a state machine that coordinates explo-
ration state transitions. The system manages transitions between searching
for new frontiers, moving toward targets, and handling mission completion.
Data consistency is maintained through timestamp-based validation and
version-based synchronization mechanisms that ensure logical consistency
between mapping, planning, and control data.

As a last aspect covered by this implementation, it uses a graceful shut-
down procedure that ensures orderly termination of all threads with appro-
priate timeouts and cleanup operations.
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8.3 VoxMap

The main component used in this framework as map builder during the
exploration is the VoxMap. It was not implemented here and was provided
directly by the project supervisor. Thanks to a probabilistic representation
of the three-dimensional space through voxels, it enables to keep information
regarding the occupied space and to identify dynamically unexplored areas.
This particular map is composed of several components that are:

e Probability voxel grid that contains information about the occupied
space

e TSDF voxel grid that, based on the Truncated Signed Distance
Field, enables the system to have a geometric representation of surfaces

e Frontier manager that controls and updates the frontiers based on
the new values of the probability voxel grid

As discussed in the chapter about our technique, each voxel is defined by a
status and its faces status. In addition, each voxel stores a flag that enables
the system to consider it as a frontier or not and a log-odds value about the
occupation status.

When the VoxMap obtains data from the ToF sensor attached to the
robot, it manages all new information acquired in two steps. First, by using
a callback function that saves all the data obtained, and second, an update
function that handles the integration into the occupancy map as shown in
Algorithm 19.

Every time the map is updated, the system updates the log-odds of voxels
that are affected by the changes in the environment. Using ray-tracing from
the sensor position, they set the value of voxel’s log-odds seen by the depth
camera by adding a particular value based on the ray status.

If the log-odds value is higher than a threshold of 0.5, the voxel will be
considered as occupied. These values are:

e P,.. = 0.88 if a ray hits a voxel surface
® Prree = 0.45 if the space is free along the ray’s path

Another step computed during the map’s update is the identification of
frontiers. A frontier is defined as a non-occupied voxel near an occupied one
that represents the transition to unexplored space. The system identifies
them by checking the faces status of each voxel.

The frontier identification starts by considering the newly inserted oc-
cupied voxels. It finds the potential frontier location by examining all six
adjacent faces. If that face is UNSEEN, it represents a potential frontier
location. As a last step, it chooses the best position by considering the
position that best aligns with the sensor’s observation pose.

o6



Francesco Scatigno: Multi-Robot Coverage Benchmarking

In this way, the obtained frontiers provide good target areas for the
exploration of unknown areas with higher compatibility with the previous
robot movements.

As a final step before sending the frontiers to the robot, the system uses
a filter that considers frontiers with a straightforward line of sight.

Algorithm 6 VoxMap Update Function

1: success < false

2: if queue is empty then > Preliminary control
3: return success

4: end if

5: while queue is not empty do > Merging step
6: measurement < queue(0)

7: pose, grid < GETDATAFROMMEASUREMENT(measurement)

8: INSERTSCANINTOOCCUPANCY GRID(pose, gird)

9: POPMEASUREMENT (queue)

10: success < true

11: end while

12: if success then > Frontiers update
13: frontiersppos < UPDATELOSCACHE > Update Los frontiers
14: frontiers < FILTERFRONTIERSBYLINEOFSIGHT(pose)

15: frontiers_updated < true

16: last_frontiers_update <~ CURRENTTIME()

17: PUBLISHSYNCHRONIZEDF RONTIERS( )

18: end if

: return success

Ju—
©

All frontiers that satisfy the conditions imposed by the filter are saved
into a vector in order to have a cache of all possible frontiers available.

During the exploration, the system will be able to move also to areas not
visible from the actual position. The cache is updated at each iteration by a
double check: the first is a verification that saved frontiers are still frontiers,
and the second one checks the TSDF value of each frontier and if it is higher
than a threshold, it will be kept in the cache memory.

By the use of a publisher, the robot receives filtered frontiers and uses
them as the basis for target choice.

In Figure 8.1 is possible to see the defferences between voxels,frontiers
and filtered frontiers. The gray voxel are occupied voxel, the violet voxels
are frontiers defined by the voxmap that don’t satisfied the filter condition
and the red voxels are filter frontiers that are updated each time new mea-
surement is available.
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Figure 8.1: Voxmap’s map representation

8.4 Best Frontier selection

The choice of the best frontier is crucial since it affects the efficiency and
completeness of the exploration process. When the system obtains the fron-
tiers from the Voxmap, it computes a comprehensive utility score U(f;) that
combines several factors: distance factor and information gain potential.

The Distance factor considers the travel cost to reach the frontiers,
preferring closer target that guarantee energy efficiency and reduced execu-
tion time. It is computed in the following way:

D(f;) = e~ ety

where dg, is the 2D Euclidean distance between frontier centroid and robot
position, and wgy, = 2.0 is the distance weight.

The Information gain G(f;) evaluates the amount of new information
about the environment that would be discovered by visiting that frontier.
It is defined as the ratio of unexplored voxels inside a cube centered at the
frontier center with an edge equal to the sensor range.

The Size factor S(f;) considers the numbers of frontiers within a dis-
tance of 0.8 meters from the frontier center. in this way, the system will
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chose frontiers in a area with an high frontier density, which typically corre-
spond to complex geometric structures or transition zones between different
environmental regions

S(fi) = log(1 + |F3|)

where F; is the number of frontiers with the region. The final selection com-
bines these factors through a weighted utility function:

U(fi) = wa- D(fi) +wy - G(fi) +wa - S(fi)

where wq, wg, w, are weighting factors.
The frontier with the highest utility score is selected as next target and
the system moves to find a pose able to see the selected frontier.

8.5 Viewpoint selection

After frontier selection, the robot samples multiple viewpoints within a
spherical region centered on the selected frontier. The sampling process
generates candidate positions within a variable radius ranging from 0.5 to 2
meters around the frontier center.

The system uses the Voxmap to obtain information about the sampled
viewpoint and to apply different validation checks:

e Collision-Free Verification that checks if the sampled position is
inside or too-close to an obstacle. The system uses the safety radius
to guarantee a sufficient margin with respect to occupied voxels.

e Line-of-sight Validation that verifies if there is at least one line-of-
sight between the viewpoint and the target frontier using ray-tracing
technique.

The remaining viewpoints are evaluated by using a scoring mechanism based
on different criteria that take into account position and orientation.

8.5.1 Viewpoint Score

The viewpoint score is defined by the following formula:

Stotal ('U) = Wq - Sdistance(v) + Wp, - Shez'ght (U) + Wo - Sorientation (U)

where wgq, wy, w,, wy are weighting factor, Syistance is a distance score, Speignt
is a height preference score and Sy ientation 1S @ orientation alignment score.
The distance score considers the Euclidean distance between the viewpoint
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and the robot position:

—|v— W
Sdistance(v) =€ || p?‘obot” distance

where v is the viewpoint, p,.pot i the robot position and wg;stance is a dis-
tance weighting factor.

The Height Preference score favors viewpoint that maintains the same
altitude of the current robot position in order to minimize the energy con-
sumption:

Sheight(v) — ef‘z'ufzn)bot “Wheight

where z, and z.opor are respectively the heights of the viewpoint and robot,
and wpeigne is a factor that controls the height preference strength.

The Orientation Alignment score considers if the viewpoint heading
aligns with the robot’s current orientation in order to minimize rotational
movement:

—=e |7/)required —Yeurrent| Worientation

Sm'ientation (U)

where Y;.cquireq is the heading needed to face the frontier from the viewpoint
and Yeyrrent i the robot’s current heading.

In Figure 8.2, it is possible to see the viewpoints sampled around the
selected best frontier. The blue cube represents the best frontier and the
blue viewpoint represents the selected one as the next target. There are
other viewpoints of different colors that summarize information about their
feasibility.

The green viewpoints are sampled points that have passed the two checks
described before, the orange ones are the sampled points that have passed
the validation checks but have a score lower than an imposed threshold of
0.5, and the red ones are the sampled points that do not respect the validity
conditions of the sample check.
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Figure 8.2: Viewpoint sampling and next target selection during exploration
of unknown asset

The candidate viewpoint with the highest total score is selected as the
immediate navigation target, while the original frontier remains the ultimate
exploration objective.

This two-stage approach ensures that the robot can safely and efficiently
position itself to gather maximum information about the unknown environ-
ment while maintaining robust navigation capabilities.

8.6 Path Planner

When the target position is chosen, the path is found by a novel path plan-
ner that takes inspiration from our implementation. Starting from an RRT*
algorithm, we add new optimizations to be integrated in the unknown cov-
erage exploration. The planner acts as a bridge between the VoxMap and
the robot, ensuring safe navigation towards unexplored areas.

Since the system works in dynamic environments characterized by ele-
vated frontier changes and incomplete environmental knowledge, we need
a system able to generate trajectories efficiently and to compute real-time
collision detection in the evolving map.

One of the changes applied in the RRT* is the TSDF-informed sampling.
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We moved from uniform random sampling to intelligent sample generation
that is more likely to yield valuable exploration paths.

The reason behind this choice is due to the fact that TSDF gives us
information that enhances path finding since it enables the system to find
corridors in regions far from obstacles.

If we consider an environment composed of complex structures, the
TSDF map can guide the system to find efficient exploration where free
space areas can offer safer paths and areas near surfaces can provide navi-
gation corridors reliable for the robot’s constraints.

The TSDF-informed sampling employs a probabilistic approach where
the sampling probability at any point is influenced by the local TSDF values:

P(l‘) = Pum'form(l') : WTSDF<1')

where:
® Pyyiform(x) is the uniform sampling probability

e Wrspr(X) is the TSDF-based weight funtion define as:

0 if dTSDF(l') < T
min (1 4+ a - (drspr(x) — 7s)y Winaz)  if drspr(z) > 75

Wrspr(z) = {

where drspr(z) is the signed distance field value at position z,7s = 0.5
is the safety threshold distance, « is a scaling factor that controls the
weight increase rate Wy, = 3.0 is the maximum weight multiplier

In this way, the system samples points that are near surfaces or in open
areas using a higher weight and avoiding obstacles using zero weight.

The other update regards the collision detection that uses a continuously
updated internal representation of the environment, ensuring that planning
reflects the most current understanding of the environment.

Traditional techniques of exploration suffer when they deal with large
and complex environments to check collision-free movement during naviga-
tion.

In our case, we are using a Spatial Hash Manager that addresses
this limitation and significantly reduces the computational complexity of
collision queries.

The spatial hashing approach divides the 3D environment into uniform
buckets containing a precise number of voxels within a specific spatial region.
Each bucket contains the timestamp for cache validation and all voxel indices
within the bucket’s spatial region. In this way, collision detection moves from
a linear search through all n voxels O(n) to a localized search within relevant
k buckets O(k) with k much less than n.
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Figure 8.3: Trajectory generation into a complex environment
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The other advantage of this implementation is the efficient memory man-
agement that guarantees a reduction of allocation overhead during frequent
updates.

As shown in Figure 8.3, we can see the system’s ability to generate a
feasible trajectory inside the explored environment.

In order to integrate the path planner with the VoxMap, we adopt a
multi-threaded environment that ensures data sharing while maintaining
thread safety.

The system architecture separates data acquisition, processing, and plan-
ning into distinct threads that communicate through carefully designed in-
terfaces.

Since the planner needs the current environmental information without
blocking the mapping process or introducing race conditions, the system
presents a double-buffering approach where the VoxMap updates a shared
data structure and the planner maintains a local copy for planning opera-
tions.

Another interface designed to avoid circular dependencies between plan-
ner and VoxMap is a provider-based interface for TSDF data access that
enables the path planner to access TSDF information without direct cou-
pling to the VoxMap implementation.

This multi-threaded architecture ensures that the path planner can op-
erate efficiently with real-time data updates from the VoxMap system while
maintaining thread safety and data consistency throughout the exploration
process.
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Figure 8.4: Webots words 1 and 2 used in the simulation
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8.7 Simulation results

To validate the functionality implemented, we have designed Webots worlds
as shown in Figure 8.4 that present narrow corridors and a complex shape.
The simulation demonstrates the effectiveness of our framework across
both simulation environments.
The first one, characterized by complex geometry and narrow passages,
has been completely covered in 350s, with each iteration requiring 0.5-0.8s,
making this approach feasible for real-world testing.

Metric Environment 1 | Environment 2
Exploration Time (s) 350 270
Total Trajectory Distance (m) 80 65
Energy Consumption (J) 24 20
Energy Efficiency (J/m) 0.30 0.31

Table 8.1: Performance comparison between the two test environments

The energy consumption guarantees the use of MAVs since they are
characterized by low energy storage, and the implementation of a safety
return-to-base mechanism enables the system to operate optimally in case
of unexpected battery discharge.

As shown in Figure 8.5, the last updated map in the simulation ap-
pears equal to the virtual representation and presents several details that
are important for an efficient and safe movement of the robot.

In the second environment, characterized by a simpler layout, the robot
explores it in 270s and with a iteration’s time of 0.3-0.5s. These values are
lower tha those of the previous environment due to the simpler complex-
ity and corridors wide enough that not need a sophisticated computational
checks.

The performance metrics highlight the adaptability of the system to
different environments and the improvement in complex case as narrow cor-
ridors.

The use of asynchronous pipeline architecture and the intelligent frontier
selection guarantees an high computation efficiency while maintaining a good
energy efficiency and exploration completeness.

Table 8.1 summarizes the performance metrics obtained from both test
environments.
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Figure 8.5: Environments reconstruction by the exploration
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Chapter 9  Conclusion

9.1 Exploration techniques benchmark

The first aspect described in this report is a comprehensive benchmarking of
multi-robot coverage path planning techniques for known asset exploration.
As discussed throughout this report, we have analyzed the results obtained
by comparing three different techniques: our technique, NBV, and frontier-
based approaches.

Starting from the state-of-the-art versions of the chosen techniques for
benchmarking, we have adapted them to work with the exploration of known
assets.

The results obtained demonstrate clear advantages of our approach with
respect to the other two in terms of performance and adaptability to the
selected assets.

Our technique achieves the highest energy efficiency independently of en-
vironmental complexity and requires total energy consumption up to three
times less than competing methods. The energy-aware task assignment
strategy reduces vertical movements, which are the most energy-intensive
operations, and privileges lateral displacements.

The use of the PH-tree data structure to define unobserved regions guar-
antees coverage speeds higher than NBV and frontier-based techniques, es-
pecially in multi-robot scenarios. Another advantage of using the PH-tree
is the reduction of total path lengths, demonstrating an efficient exploration
strategy for next target choice and reduced computational time required to
evaluate viewpoints.

With increasing dimension and complexity of assets, the performance
obtained by our approach remains optimal and indicates good scalability
properties for several applications. The other approaches present high per-
formance degradation, especially for complex assets in the case of NBV and
large shapes for frontier-based techniques.

The real experiments validate the results obtained by simulations and
demonstrate the possibility of using our system in practical work such as
building coverage.

While our approach presents better results than the other two approaches,
there are areas to investigate as next steps. The system is based on reliable
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communication between robots and the ground station, but in some cases
this situation cannot be satisfied.

Investigation of communication-constrained scenarios could enhance the
practical applicability of our technique.

9.2 Unknown exploration technique

As the second part of this work, we have developed an unknown explo-
ration technique that presents several technical innovations contributing to
improved performance.

By separating mapping, planning, and control processes, the system be-
comes more robust and reactive to environmental changes. The three-thread
architecture enables concurrent operation of sensor data processing, path
planning, and trajectory execution without blocking dependencies.

The use of a Spatial Hash Manager reduces collision detection complex-
ity, guaranteeing real-time path planning in complex environments.

The bucket-based approach with efficient memory management enables
rapid collision queries essential for dynamic exploration scenarios.

TSDF-informed sampling is the main innovation of the RRT* algorithm
used, since the sampling process is based on data obtained by sensors and
enables the choice of reliable points with respect to the geometric surface
information acquired by the system.

The probabilistic sampling approach guided by TSDF values significantly
improves path quality in complex environments.

The simulation results demonstrate the effectiveness of our unknown
exploration framework. The energy consumption metrics (24J and 20J re-
spectively) validate the system’s suitability for battery-constrained MAVs,
while the implementation of safety return-to-base mechanisms ensures ro-
bust operation during unexpected situations.

As next steps, the system can be redesigned for multi-robot scenarios,
providing an improved version that can manage a large number of robots.

In this way, we can obtain the scalability limits of our implementation.
Although the simulations provide good results, real-world validation across
different environments is necessary for practical deployment confidence.

This research demonstrates the advancement in multi-robot exploration
capabilities of our techniques with respect to state-of-the-art techniques.

The comprehensive approach addressing both known and unknown en-
vironment scenarios provides a complete framework for autonomous explo-
ration systems. The performance obtained guarantees energy efficiency with
high coverage speed and system robustness against collisions between robots.
The work represents a foundation for future research in energy-efficient au-
tonomous exploration in known and unknown spaces that can be applicable
for real-world inspection and monitoring scenarios.
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Chapter 10 Appendix

10.1 Installing/configuring instructions
10.1.1 Third-parties library
The library are located in ./libraries/ directory and are:

o GeometricTools

e PH-Tree C++

e manif

e TSL

10.1.2 Configuration

The parameters used in the NBV and frontier-based technique is in the path
./config/base.yaml with description.
General

e trajectory_directory: folder for trajectory data
e filename: mesh name of object to scan

e task _generation_technique: type of task generation used (Our method, NBV Frontier-
based)

NBYV parameters
e nbv/gain/free: gain coefficient for free cells
e nbv/gain/occupied: gain coefficient for occupied cells
e nbv/gain/unmapped: gain coefficient for unmapped cells
e nbv/gain/degressive_coeff: degressive coefficient for gain
e nbv/gain/zero: threshold to consider zero gain

e nbv/gain/limit_x_low: high limit of sampling on x direction
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nbv/gain/limit_x_high: low limit of sampling on x direction
nbv/gain/limit_y_low: high limit of sampling on y direction
nbv/gain/limit_y_high: low limit of sampling on y direction
nbv/gain/limit_z_low: high limit of sampling on z direction

nbv/gain/limit_z_high: low limit of sampling on z direction

Frontier-based parameters

frontier /similarity threshold: similarity threshold for merging fron-
tiers

frontier /max_frontiers: maximum number of frontiers to keep

frontier /min_frontier_distance: minimum distance between fron-
tiers

frontier /max_frontier_distance: maximum distance between fron-
tiers

frontier /min_frontier_gain: minimum gain for a frontier to be con-
sidered

frontier /box_info_gain _size: size of the box used to compute the
gain

frontier /knowledge_gain: gain for the knowledge of the environ-
ment

frontier /resolution: resolution of the map used to compute the fron-
tiers

frontier /lambda: lambda parameter for the frontier gain

frontier /distance_weight: weight for the distance in the frontier
gain

frontier /bandwidth: Bandwidth for frontier gain

frontier /energy_cost_factor: energy cost factor for the frontier gain
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10.1.3 Running instructions

If you wnat to run the asset coverage you need to start in one terminal the
following node:

roslaunch exploration ground station.launch sim:=<false|true>
rviz:=<false|true> technique:=<0[1|2>

The sim parameter enables the system to work in virtual simulation or in a
real experiment, the rviz parameter enable the visualization of the process
with sever ros messages plotted and the technique parameter enables the
choice of the technique you want to use. To choose the correct technique
you can follow this Table:

Number Technique

0 Our technique

1 NBYV technique

2 Frontier-based Technique

In another terminal you can start a node for each robot:

roslaunch exploration robot.launch robot:=<"robot_name">
debug:=<true|false> arm:=<false|true> sim:=<false|true>

or several robots can be launched by the same terminal:

roslaunch exploration multi.launch arm:=<false|true>
sim:=<false|true>

If you want to run the exploration framework for unkonw environment, you
need to start the following node in a terminal:

roslaunch exploration exploration.launch arm:=<false|true>
sim:=<false|true> rviz:=true

This framework works only for single robot. All experiment’s data will be
saved into the following folder: ./logs/trajectories. For the asset coverage
technique, the data will be saved into a subfolder based on the sim param-
eter. If true, the data are saved in the Simulation subfolder, otherwise in
the Real subfolder. Each experiment will have its own folder that follows
the following nomenclature:

{date_and time} technique_{technique number} object_{object_name}
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If you want to obtain the different graphs present in the results chapter,
you can find several jupyter notebook in ./logs folder that generate all the
graphs and save them into the ./logs/comparison. If not already present,
the system will create a folder with a name that follows this nomenclature:

{object_name} num robots_{number_of robots_used}
For the exploration of unknown environments, the data are saved within
the Unknown subfolder. Each experiment has its own folder that follows

this nomenclature:

{date_and_time} _environment_{environment number}

10.2 Arena real experiment

Figure 10.1: Arena used for real experiment of coverage techniques
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10.3 Meshes used

Figure 10.2: Armadillo’s asset mesh
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Figure 10.3: Tank car’s asset mesh

Figure 10.4: Ferrari’s asset mesh
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10.4 Experiments Results
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Figure 10.6: Exploration comparison of the three techniques using single
robot for mockup coverage
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Figure 10.7: Histogram of distance traveled and energy consumption during
exploration of mockup asset using single robot
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Figure 10.9: Box plot of energy consumption by single robot during mockup
coverage
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Figure 10.8: Box plot of distance traveled by single robot during mockup
coverage
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Figure 10.10: Exploration comparison of the three techniques using 3 robots
for mockup coverage
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Figure 10.11: Histogram of distance traveled and energy consumption during
exploration of mockup asset using 3 robots
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Voxel remaining over time
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Figure 10.12: Exploration comparison of the three techniques using single
robot for Ferrari coverage
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Figure 10.13: Histogram of distance traveled and energy consumption during
exploration of Ferrari asset using single robot
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Figure 10.15: Box plot of energy consumption by single robot during Ferrari
coverage
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Figure 10.14: Box plot of distance traveled by single robot during Ferrari
coverage
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Figure 10.16: Exploration comparison of the three techniques using 3 robots
for Ferrari coverage
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Figure 10.17: Histogram of distance traveled and energy consumption during
exploration of Ferrari asset using 3 robots
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Figure 10.20: Exploration comparison of the three techniques using 3 robots

for Armadillo coverage
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Figure 10.21: Histogram of distance traveled and energy consumption during
exploration of Armadillo asset using 3 robots
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Figure 10.23: Box plot of energy consumption by 3 robots during Armadillo
coverage
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Figure 10.22: Box plot of distance traveled by 3 robots during Armadillo
coverage

87



Francesco Scatigno: Multi-Robot Coverage Benchmarking

Voxel remaining over time

3000

2500

~
°
=3
3

1500

Remaining Voxels

1000

500

== Our Technique
- NBV Technique
= Frontier Technique

150 200 250

300

Figure 10.24: Exploration comparison of the three techniques using 3 robots

for tank coverage
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Figure 10.25: Histogram of distance traveled and energy consumption during
exploration of tank asset using 3 robots
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Figure 10.27: Box plot of energy consumption by 3 robots during tank
coverage
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Figure 10.26: Box plot of distance traveled by 3 robots during tank coverage
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Figure 10.28: Exploration comparison of the three techniques using 3 robots
for Eiffel coverage
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Figure 10.29: Histogram of distance traveled and energy consumption during
exploration of Eiffel asset using 3 robots
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Figure 10.31
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Figure 10.30:

Box plot of distance traveled by 3 robots during Eiffel coverage
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Figure 10.32: Exploration comparison of the three techniques using 5 robots
for Eiffel coverage
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Figure 10.33: Histogram of distance traveled and energy consumption during
exploration of Eiffel asset using 5 robots
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Figure 10.35: Box plot of energy consumption by 3 robots during Eiffel
coverage
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Figure 10.34: Box plot of distance traveled by 3 robots during Eiffel coverage
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