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Abstract

Cyber-Physical Systems (CPSs) represent a critical class of interconnected systems
where physical processes are tightly integrated with computation and communi-
cation layers. Their growing deployment in safety-critical infrastructures, such as
autonomous transportation, industrial automation, and smart energy grids, makes
them highly exposed to malicious intrusions. Among the most harmful threats are
adversarial sensor attacks, which can stealthily corrupt measurement data and un-
dermine the reliability of state estimation, control performance, and safety.

Traditional observer-based approaches, such as the Luenberger observer, pro-
vide accurate state estimation under nominal conditions but lack robustness against
adversarial corruption. In this context, sparsity-aware estimation techniques in-
spired by compressed sensing and convex optimization have recently emerged as
promising tools. This thesis explores these methods by revisiting Secure State Esti-
mation (SSE) through the lens of sparse optimization and developing observer-based
counterparts capable of jointly reconstructing both the system state and the attack
vector. Particular attention is given to the Sparse Soft Observer (SSO) and its
Deadbeat variant (D-SSO), which extend proximal-based iterative algorithms for
sparse optimization into recursive observer structures for dynamic CPSs.

While practically effective, the stability and convergence of SSO and D-SSO have
not been proven in the literature. Building on these insights, the main contribution
of this work is the analysis of the stability of observer design in the presence of
adversarial sensor attacks. The proposed analysis introduces a novel error dynam-
ics representation and leverages Lyapunov-based tools to establish formal stability
guarantees.

Overall, this thesis shows that sparsity-promoting observers, reinforced by the
newly developed theoretical foundation, constitute a robust approach. The results
pave the way for real-time implementations and distributed extensions in multi-
agent CPSs, highlighting the potential impact of the proposed methodology on the

resilience of future cyber-physical infrastructures.
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Chapter 1

Introduction

Cyber-Physical Systems and Their Challenges

Cyber-Physical Systems (CPSs) are large-scale interconnected systems where
physical processes are deeply integrated with computation, communication, and
control. They appear in a wide variety of applications, ranging from autonomous
driving and industrial automation to smart grids, medical devices, and robotics
[1, 2, 3]. The tight interaction between the cyber and physical layers makes CPSs
powerful, but also vulnerable to failures and malicious intrusions.

In infrastructures that are critical to safety, the reliability of the state estimation
process is very important because controllers depend on having accurate information
about the system state. Any manipulation with sensor data can spread through the

control loop, causing instability, unsafe actions, or a drop in performance.

Adversarial Attacks and Secure State Estimation

When discussing the main threats in the context of CPSs, malicious sensor at-
tacks must be mentioned. To integrate robustness to external attacks into the design
of an observer, it is necessary to understand the characteristics of attacks that differ
from normal measurement noise. Unlike the latter, which is random and often mod-
eled probabilistically, attacks are generated by external agents that aim to mislead
the system, and it is not always possible to find a mathematical model that can
characterize them. This difference requires the development of new methodologies
that go beyond classic estimation.

In the last decade, a wide body of literature has addressed this problem under
the term Secure State Estimation (SSE). A common assumption is that attacks are

sparse, meaning that only a limited number of sensors are compromised at each
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time. This assumption is reasonable in large-scale networks, where an attacker may
have limited resources, and it has enabled the adoption of sparsity-aware techniques
inspired by compressed sensing [4|. Notably, ¢;-based formulations such as the Lasso
have been successfully applied to reconstruct both the state and the attack vector,
see for example [5].

It is important to highlight that the stability of ¢; formulations has not yet been
formally demonstrated in the scientific literature. This limitation encourages the
need to find alternative methodologies that can guarantee stability without requiring

excessively stringent assumptions about the attack structure.

Sparsity in Secure State Estimation

In the literature about secure state assessment, a central thought is that mali-
cious attacks are sparse. This suggests that, at any moment, only a small number
of sensors are affected, and most data remains trustworthy. This modeling choice is
motivated by the fact that in large-scale CPSs, such as power grids or distributed
sensor networks, it is unrealistic for an attacker to compromise all sensors simulta-
neously, due to resource, access, or synchronization limitations.

Denoting the attack vector a(k) € R™ affecting the measurement at time instant

k, the sparsity assumption states that
la(k)]lo < m,

where || - ||o indicates the number of non-zero elements of a vector. This means that
the number of attacked sensors is small compared to the total number of sensors
present in the system. This assumption allows us to study the effect of external
attacks using sparsity-promoting optimization algorithms [4], as will be analyzed in
Chapter 4.

It is important to remark, however, that sparsity is not an intrinsic property of at-

tacks, but rather a working hypothesis that makes the estimation problem tractable.

Observer-Based Approaches

Parallel to optimization-based methods, observer design remains a fundamen-
tal tool in control theory for state estimation. Classical structures, such as the
Luenberger observer, provide asymptotic or optimal estimation in the absence of

adversarial perturbations. More recently, extensions such as the Sparse Soft Ob-
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server (SSO) and its deadbeat variant (D-SSO) have been introduced, combining
recursive observer design with sparsity-promoting regularization; **see [5| for de-
tails™*. These approaches can be interpreted as observer counterparts of iterative

optimization algorithms like ISTA.

Structure of the Thesis

The remainder of the thesis is organized as follows. Chapter 2 introduces the
mathematical preliminaries, including definitions of stability and ISS theory. Chap-
ter 3 presents CPS modeling and discusses security challenges. Chapter 4 reviews
secure state estimation methods, focusing on sparsity assumptions and their lim-
itations and introduces alternative formulations such as Elastic Net. Chapter 5
develops the new observer design and provides a detailed stability analysis. Chap-

ter 6 illustrates an application to localization in the presence of adversarial attacks.



Chapter 2
Mathematical Preliminaries

Definition 1 (Discrete-Time Linear Time-Invariant (LTT) System). A discrete-time
system is called Linear Time-Invariant (LTT) if it satisfies the following two proper-

ties:

1. Linearity: For any inputs uy (k) and ug(k) producing outputs yi (k) and ya(k),

respectively, and for any scalars o, f € R:

auy (k) + Pus(k)(k) — ayi(k) + Py2(k), Vk € Z.

2. Time Invariance: If the input u(k) produces the output y(k), then the shifted
input u(k — s) produces the shifted output y(k — s), for any integer shift s.

Proposition 1 (State-Space Representation of Discrete LTI Systems). A discrete-

time LTI system can be represented in the state-space form:

x(k+1) = Axz(k)+ Bu(k),
y(k) = Ca(k) + Du(k),

(2.1)

where x(k) € R" is the state, u(k) € R™ is the input and y(k) € RP is the mea-
surement vector. A € R"™" B € R™™ (C € RP*", and D € RP*™ are constant

matrices.

Proof. The linearity and time-invariance properties imply that the system’s evolu-
tion is fully described by constant matrices acting on the current state and input.
The representation above is the most general finite-dimensional form of a discrete-

time LTT system. O
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Remark on notation: It is important to highlight that throughout the thesis,

the notation ||-|| denotes the ¢, norm.

Proposition 2 (Young’s Inequality for Inner Products). Let a,b € R™ and v > 0.
Then: |
2a"b<~va'a+ =b"0. (2.2)
Y

Proof. From the Cauchy—-Schwarz inequality:
la" 0] < [all B (2.3)

and from the arithmetic-geometric mean inequality (with z = /¥ ||a|| and y = %)

1
2|fall flo] Svl!aH2+;HbH2- (2.4)
Combining these results and noting that a'a = ||a||> and b"b = ||b||* yields the
stated inequality. O]

2.1 Stability of Discrete-Time Systems via Lyapunov
Theory

Stability is an important concept in the study of dynamical systems, since it
describes the system’s ability to maintain or recover a desired behavior if small
perturbations occur. The subsequent definitions have been excerpted from [6].

A stability analysis is essential to predict the behavior of the system when sub-
jected to perturbations around the equilibrium point, determining whether the sys-
tem converges or remains bounded to it. A straightforward approach to study the
stability of a system is the Lyapunov’s direct method, which allows one to avoid
solving the equations of the system explicitly.

Stability analysis plays a key role in cyber-physical systems (CPS), although the
following discussion is general, the results obtained can also be applied to our case
study.

Before introducing Lyapunov theory, it is convenient to recall the following fun-

damental definition.

Definition 2. A function f(t,x) is said to be Lipschitz continuous in (¢, ) if there

exists a constant L > 0 such that

1f(t2) = f(Ey)ll < Lz -y

7
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for all (t,x) and (t,y) in a neighbourhood of (t,Z). The constant L is referred to as
the Lipschitz constant.

Now, consider the case f(t,z) = f(x), i.e., when f does not explicitly depend on

time:

e If every point in an open and connected domain D C R"™ admits a neigh-
borhood Dy where the aforementioned inequality holds with some constant
Lo > 0, then f is said to be locally Lipschitz on the domain D

e f is said to be Lipschitz on a set W if the same inequality holds for all points
in W with a common Lipschitz constant L. Moreover, any locally Lipschitz

function on D is Lipschitz on every compact subset of D.
e fis globally Lipschitz if it satisfies the inequality on the whole space R™.

The Lipschitz constant L does not change with time if f(¢, z) explicitly depends on
time ¢. In this case, the same definitions hold uniformly in t over a given time inter-
val. Specifically, if f(¢, x) is globally Lipschitz on R™ with a constant L independent
of ¢, then it is said to be globally uniformly Lipschitz.

Lastly, keep in mind that any function that is continuously differentiable on a domain

D is likewise Lipschitz continuous on that same domain.

2.1.1 Basic Definitions of Stability

Consider the general nonlinear discrete-time system:
w(k+1) = f(z(k),  2(0) = xo, (2.5)

where f : D — R” is locally Lipschitz in D C R" and suppose f(0) = 0, that is
x = 0 is an equilibrium point for the system (2.5) (all this can be extended for an

equilibrium point different from 0).

Definition 3 (Stability). The equilibrium point x = 0 is said to be stable in the

sense of Lyapunov if, for each € > 0, there exists a 6 = §(¢) such that
lxol| <6 = ||z(k)|| <e, Vk=>0.

Definition 4 (Instability). The equilibrium point x = 0 is said to be unstable if it

18 not stable.
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Definition 5 (Asymptotic Stability). The equilibrium x = 0 is asymptotically sta-

ble if it is Lyapunov stable and § can be chosen such that

|zo]| <6 = lim z(k) =0
k—o0

2.1.2 Lyapunov Direct Method for Discrete-Time Systems

Lyapunov’s direct method provides a powerful tool to establish stability without
explicitly solving the system equations. The idea is to construct a scalar Lyapunov
function that behaves like an energy measure, decreasing along the system trajec-

tories.

Theorem 1 (Existence of a Lyapunov function implies stability). Let x = 0 be an
equilitbrium point for the system 2.5 where f : D — R™ is locally Lipschitz in D C R"
and 0 € D. Suppose there exists a continuous function V : D — R such that:

V(0)=0, V(x)>0, VxeD\{0}
V(f(x))—V(x) <0, VxeD.

Then x = 0 is stable. Moreover, if
V(f(z)) = V(z) <0, VzeD\{0},

then x = 0 1s asymptotically stable.

Theorem 2 (Global asymptotic stability from Lyapunov). Let consider the system
(2.5), where f: D — R™ is locally Lipschitz in D C R™ and 0 € D. Let V : R* - R

be a continuous function such that:
1. V(0)=0and V(z) >0,V xz € D\ {0};
2. ||lz|| = 00 = V(z) — oo;
3. The forward difference AV (z) =V (f(x)) —V(z) <0, Vo € D.

Then the equilibrium point x = 0 is globally asymptotically stable.

If an equilibrium point is globally asymptotically stable, then it is the only
possible equilibrium point of the system (2.5).

Remark. The previous theorem can be explained intuitively if we think of the func-
tion V(x) as an "energy" function. If the energy decreases (AV(x) < 0) along the
trajectory, the system dissipates energy and consequently the state converges to

equilibrium.
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2.1.3 Linear Systems and the Discrete Lyapunov Equation

Consider the linear time-invariant (LTT) system:
z(k+1) = Ax(k), (2.6)

where A € R™ " is the state transition matrix. The origin is an equilibrium point

of the system.

Theorem 3 (Eigenvalue Condition for Stability). The equilibrium x = 0 is stable if
and only if all the eigenvalues of A satisfy |\;| < 1 and the algebraic and geometric
multiplicity of the eigenvalues with absolute value 1 coincide. The equilibrium point
x = 0 1s globally asymptotically stable if and only if all the eigenvalues of A are such
that | \;| < 1.

A matrix A with all the eigenvalues in absolute value smaller than 1 is called
a Schur matrix, and it holds that the origin is asymptotically stable if and only if
matrix A is Schur.

In this case, a quadratic Lyapunov function can be chosen as
V(z)=2"Pz, P=P">0.
The corresponding Lyapunov difference is
AV(z) =V (f(x)) - V(z) =2 " ATPAz — 2" Px =" (ATPA - P)z:= —2"Qx

Using Theorem 1 we have that if () is positive-semidefinite the origin is stable,
whether if Q is positive definite the origin is asymptotically stable. Fixing a positive

definite matrix Q, if the solution of the Lyapunov equation
ATPA—-P=-Q, (2.7)

with respect to P is positive definite, then the trajectories converge to the origin.

Equation (2.7) is known as the discrete Lyapunov equation.

Remark. For every Schur matrix A, the discrete Lyapunov equation admits a unique
solution P > 0 for each @) > 0. This gives the asymptotic stability of linear systems

a clear algebraic criterion.

10
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2.1.4 Summary

Lyapunov stability theory provides a rigorous mathematical framework to an-
alyze the convergence and robustness of discrete-time systems and observers. In
CPSs, it serves as the foundation for the design of secure estimation algorithms

capable of guaranteeing stability even in the presence of malicious attacks.

2.2 Input-to-State Stability

2.2.1 Introduction

Input-to-State Stability (ISS) is a fundamental concept in modern control theory,
introduced by Eduardo Sontag in the 1980s [7, 8] and later extended to discrete-time
systems by Jiang and Wang [9]. ISS’s main goal is to create a theoretical framework
that explains how a system’s state changes over time, both in relation to its initial
conditions and when it is affected by external inputs or disturbances. This method
combines the ideas of internal stability and robustness, which are especially helpful
for studying nonlinear systems, control networks, and cyber-physical systems that
are affected by changes.

An ISS system is intuitively such that the impact of inputs on the dynamics of
the state is bounded and measurable: the state converges to zero if the input tends

to zero, and the state stays bounded if the input is bounded.

2.2.2 Comparison Functions

For the following stability analyses, it is necessary to introduce the following
classes of functions to characterize the comparison functions and their asymptotic
behavior: The subsequent definitions have been excerpted from Isidori’s seminal
work [10].

Definition 6. A continuous function « : [0, ) — [0, 00) is said to belong to a class
IC if it is strictrly increasing and «(0) = 0. If a(0) = oo and lim, ., a(r) = oo, the

function is said to belong to class K.

Definition 7. A continuous function [ : [0,a) — [0,00) is said to belong to class
ICL if, for each fixed s, the function

a :[0,a) = [0,00) (2.8)
r HB(T75>

11
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belongs to a class K and, for each fixed r, the function

¢ :]0,00) — [0, 00)

(2.9)
s > fB(r,s)
is decreasing and lim,_,., ¢(s) = 0,
2.2.3 Formal Definition
Consider a discrete-time system
v(k+1) = f(z(k), u(k)), z(0)= =, (2.10)

with z(k) € R", u(k) € R™, and f : R" x R™ — R" locally Lipschitz and such that
£(0,0) = 0.

Definition 8 (Input-to-State Stability). System (2.10) is said to be Input-to-State
Stable (ISS) if there exist a function B € KL and a function v € K such that, for

every initial state xo and for every bounded input u(-),

el < Aol &)+ (sup i) . > 0 (211)

Equation (2.11) formally expresses that the state z(k) is bounded by two contri-
butions: the decay of the internal dynamics (first term) and the effect of the input

(second term).

2.2.4 ISS-Lyapunov Function

Using specific Lyapunov functions, it is possible to verify the ISS, following the

following approach:

Definition 9 (ISS-Lyapunov Function). A continuous function V : R™ — Rsq is an
ISS-Lyapunov function for system (2.10) if there exist oy, e, 3 € Ko and o € K
such that

a1 ([lzol]) < V(xo) < aa((|zol), (2.12)
V(f(xo,u)) = V(xo) < —as(l[xoll) + o ([lul), (2.13)

for all xyg € R™ and for all u € R™.

Theorem 4 (ISS-Lyapunov Equivalence, Jiang & Wang, 2001). System (2.10) is
ISS if and only if there exists an ISS-Lyapunov function.

12
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The proof relies on systematic constructions of Lyapunov functions based on the

system’s response to bounded inputs.

2.2.5 Robustness and Applications

An essential tool for assessing system robustness is ISS, which measures a sys-
tem’s capacity to reduce noise and disturbances. This is essential in real-world
scenarios where sensors and actuators are subject to uncertainties, measurement

noise, and malicious attacks.

13



Chapter 3

Cyber-Physical Systems: Modeling

and Security

The integration of computation, communication, and control has led to the emer-
gence of Cyber-Physical Systems (CPSs), which represent the structure of modern
technological infrastructures. These systems are characterized by the tight cou-
pling between the physical processes governed by the laws of physics and the cyber
components that process information and make control decisions.

To fully understand the functioning of CPSs, a multidisciplinary approach is re-
quired, as it requires expertise in systems theory, control theory, and communication
networks. Two aspects play an important role in CPSs. One is related to system
modeling, which describes the system dynamics from both a physical and computer
perspective. The second concerns security analysis, which ensures adequate system
behavior even under adverse conditions.

This chapter provides a comprehensive overview of the architecture and math-
ematical modeling of CPSs. Finally, the security challenges arising from cyber at-
tacks, which can compromise the proper functioning of the system, are also pre-
sented. These concepts serve as an introduction to Chapter 4, which explores secure

state estimation techniques in greater depth.

3.1 Definition and Architecture of CPSs

Cyber-Physical Systems (CPSs) are systems in which computation, networking,
and physical processes are deeply intertwined. The National Institute of Standards
and Technology (NIST) defines CPSs as “smart systems that include engineered
interacting networks of physical and computational components” [11]. These systems

operate by collecting data from the physical world via sensors, processing the data

14
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through computational units, and acting on the environment through actuators.
This forms a tight feedback loop between the cyber and physical layers. CPSs, are
Sensors, actuators, computational units and communication infrastructure are the

main parts that make up a CPS, each performing a different function:

Sensors: Devices for gathering information from the physical world;

Actuators: Equipment that responds to control inputs by performing physi-

cal actions;

Computational units: Data processing and decision-making modules;

e Communication infrastructure: Data transmission channels, frequently

wireless, between components.

3.2 Examples of CPSs

Cyber-Physical Systems are widely deployed across several domains of engineer-
ing and technology. One prominent example is that of autonomous vehicles, which
integrate numerous sensors such as LIDAR, GPS, and cameras, along with vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) communication systems, to enable
safe and intelligent navigation in dynamic environments [12].

Another important application is found in industrial automation, where CPSs
consist of networks of programmable logic controllers and robots that perform syn-
chronized tasks in real time, often under strict safety and timing constraints [13, 14].

CPSs are also exemplify by smart grids. In order to ensure efficiency and re-
silience, these systems integrate digital sensors and control units with physical infras-
tructure for electricity distribution. This allows for real-time monitoring, demand-
response tactics, and fault detection [15]. CPSs are found in medical equipment
like surgical robots, insulin pumps, and pacemakers. These systems, continuously
monitor physiological signals and modify their operation accordingly [16, 17, 18|.

Finally, wireless sensor networks (WSNs) represent a class of CPSs where spa-
tially distributed nodes, each equipped with sensors and limited computing power,
collaborate to monitor environmental, structural, or industrial parameters. These
systems are essential for applications such as indoor localization, forest fire detection,

and infrastructure health monitoring [19, 20].

15
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3.3 Mathematical Modeling of CPSs

CPSs can be modeled using several frameworks. As a starting point, we can
model CPSs as discrete-time (DT) LTT systems:

z(k+1) = Az(k) + Bu(k), y(k)= Cz(k)+ Du(k) (3.1)

for k=0,1,2,... € R; z(k) € R*; u(k) € RP; y(k) € R%

Where z(k) is the system state, u(k) the input, and y(k) the output. For instance
x(k) can represent the position of a moving target at time instant k and y(k) is the
vector of the measurements taken by ¢ different sensor nodes.

In this scenario, A, B, C, and D are constant matrices describing the dynamics and
measurement relations. For instance, in a localization problem, x(k) may represent
the position and velocity of a target, while y(k) corresponds to the measurements
collected by multiple sensor nodes.

Subsequently, we will address the problem from a broader perspective: that of multi-
agent systems. We refer to a network of agents modeled as dynamical systems,
each with a local state and inputs, communicating over a graph to achieve a global

objective such as consensus.

3.4 Security Challenges in CPSs

The integration of networking and computing makes CPSs vulnerable to attacks.
It is important to highlight that external attacks cannot be treated as simple noise or
disturbances. Therefore, it is necessary to develop appropriate strategies to counter
them. The main characteristics of an external attack include sparsity, meaning that
only a limited number of sensors are affected, since the sensor nodes are physically
distributed; consequently, only a small subset of them can be targeted. Further-
more, a "good attack" is stealthy, meaning it is designed to mimic noise. Moreover,
detection is made more difficult by the fact that a well-designed attack is not easily
recognizable with a precise mathematical model. Such attacks can be introduced on
both the system’s sensors and actuators. The original discrete-time system can be

modified by adding additive terms to the state and measurement equations:
z(k+1) = Az(k) + Bu(k) + b(k), y(k) = Cz(k)+ Du(k) + a(k) (3.2)

for k=0,1,2,... e R; z(k) € R"; u(k) € RP; y(k) € R%; b(k) € R"; a(k) € R%

Where a(k) represents attacks on sensors and b(k) the attacks on actuators.

16
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These attacks can significantly compromise state estimation and control performance

if not properly addressed.

17



Chapter 4
Secure state estimation for CPSs

As discussed in the previous chapter, cyber-physical systems (CPS) are inherently
vulnerable to external attacks that can compromise the correct functioning of sen-
sors and actuators. Traditional estimation and control techniques, such as the Lu-
enberger observer, fail in the presence of malicious attacks.

The goal of this chapter is to formalize the problem of secure state estimation
under sparse sensor attacks.Our goal is to create estimation algorithms that can
reliably recover the system state even in the case that an adversary arbitrarily
perturbs with a portion of the measurements.

We first define the attacked system model and characterize the fundamental
limitations imposed by observability attacks. Next, we present formulations based on
optimization that draw inspiration from sparse recovery theory. Lastly, we introduce

observer dynamics that use the sparsity assumption to estimate malicious attacks.

4.1 State estimation of an LTI system

Before addressing the problem of state estimation in presence of attacks, it is
important to understand the basics concepts of state estimation and observability
in a simpler and more general context. The goal is to clearly define the concepts
of observability and observers (in particular the Luenberger observer), providing
a rigorous starting point to extend the theory to secure state estimation in more
realistic scenarios subject to disturbances or attacks.

Let us consider the discrete-time LTT system:
z(k+1) = Ax(k), y(k)=Czx(k) (4.1)

where z(k) € R"; y(k) € R, A € R™™; C € R?™.
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When we talk about estimation, we refer to the process of inferring the system state
from the available measurements. If the system under consideration is known (i.e.,
the matrices A and C' are known), then estimating the initial state is sufficient to
determine all future states of the system. A system is observable if there exists a
finite time 7" such that z(0) can be recovered from measurements y(k). We can also

determine whether a system is observable from a mathematical standpoint:

z(k+1) = Ax(k), y(k)=Cux(k)

¢

y(0) = Cx(0)
y(1) = Cz(1) = CAz(0)
= { y(2) = Cx(2) = CAx(1) = CA%z(0)

y(T —1) = - CAT-12(0)

In matrix form:
y(0) C
1 CA
v 0 (4.2)

y(T'—1) CAT
——_———
OreRIT:n

Whenever the equation (4.2) has a unique solution, the system is observable.
If ¢T > n, and rank(Or) = n, we can solve the equation by (pseudo)inverting it.

If T'= n, we define the observability matrix O,, as:

C
CA

C A

The following fundamental result, originally proved by Kélman in the 1960s, char-

acterizes the observability of the system.

Theorem [Kalman, 1960s,|[21]]
An LTI system is observable if and only if the observability matrix O,, has full rank,
ie.,

rank(O,,) = n.

This condition ensures that the initial state of the system can be uniquely determined
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from the output measurements over a finite time horizon.

4.2 Luenberger state observer

For a discrete-time LTI system:

z(k+1) = Azx(k)
y(k) = Cx(k)

a standard structure for state estimation is the Luenberger observer, defined as:

(k+1) = Az(k) + Ly(k) — 9(F)]
(k) = Ci(k)

=

<>

where (k) is the estimated state, and L € R™*9 is the observer gain matrix to be

designed.

Error Dynamics

Let e(k) = 2(k) — x(k) denote the estimation error.

(k+1)=2k+1)—a(k+1)
= Ai(k) + L(y(k) — §(k)) — Az (k)
= A((k) — x(k)) — LC(2(k) — 2(k))
= (A—LC)e(k).

From the error dynamics expressed above, it is straightforward to verify that the
observer is asymptotically stable if and only if A — LC' is Schur.
A fundamental result guarantees that an appropriate gain L exists under the

observability assumption:

Theorem 5. If the pair (A, C) is observable, then there exists a gain matriz L such

that the matrix A — LC' is asymptotically stable.

This ensures that the estimation error e(k) converges to zero as k — oo, i.e., the

observer asymptotically tracks the true state.
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Dead-beat observer

The speed of convergence of the Luenberger observer depends on the eigenvalues
of A— LC'. In some cases, it is desirable to choose these eigenvalues to be all zero;
this leads to the so-called deadbeat observer, which converges in exactly n steps.

Pole placement techniques can be used for observer design.

The Luenberger observer offers a baseline structure for secure state estimation,
but it is susceptible to sensor attacks. We need to exploit a new strategy to address

this issue.

4.3 Secure state estimation

Let us consider the following CPS model with attacks on sensors:
x(k+1)=Ax(k), y(k)=Cx(k)+ a(k)

We assume that each sensor i takes a single (scalar) measurement: y; € R. The goal
of Secure State Estimation (SSE) is to estimate the system state z(k) from
output measurements y(k), even in the presence of external attacks on the sensors.
From the perspective of attack identification, we do not focus on estimating the
magnitude of the attack, but rather on identifying which sensors are under attack.
Secure State Estimation is challenging due to the lack of any prior information about

a(k), such as its dynamics or probabilistic distribution.

4.3.1 SSE for static systems

The Optimal Decoder D,

To address the problem of secure state estimation, we need to account for the
presence of attacks, which represents the key difference with respect to the previous
(non-adversarial) case. To simplify the analysis, we first consider a static system
with A = I, so that we can isolate and study the problem associated with the attack
component. The attacks can be reasonably assumed to be sparse, and this property
can be exploited to recover their effect and correctly estimate the state. Following
the approach introduced in [22], we define the optimal decoder D, as the solution

to the following optimization problem:

Dy(y) := arg peamin lallo subject to y = Cz + a, (4.3)
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where ||al|o denotes the £y norm, i.e., the number of nonzero entries in the attack
vector a.

This decoder aims to reconstruct the state x by identifying the sparsest possible
attack vector a that explains the discrepancy between the measurement y and the
nominal output Cz. Although Dy achieves optimal performance in terms of resilience
against sparse attacks, the associated optimization problem is combinatorial in na-
ture, meaning that it requires searching over all possible combinations of nonzero
entries in a. Specifically, minimizing the ¢y norm is an NP-hard problem, i.e., a
problem for which no known algorithm can find the exact global solution in poly-
nomial time. As a consequence, this approach becomes computationally intractable

for large-scale systems.

Relaxed Decoder D, via ¢; Minimization

To address the issue related to the intractability of the optimal decoder Dy, a
more computationally efficient formulation is required. A common approach is to
replace the non-convex ¢, norm with its best convex approximation: the ¢; norm.
This leads to a relaxed formulation of the decoding problem.

We define the decoder D; : R? — R"™ as the solution of:

meﬂg},ic{leﬂaq |lal]; subject to y = Cz + a, (4.4)
where ||al|; denotes the sum of the absolute values of the entries of the vector a.
This optimization problem is convex, and therefore computationally feasible us-
ing standard convex optimization techniques. The decoder D; can be viewed as
a relaxation of the original problem defined by Dy, and as such, it is generally
suboptimal compared to Dy in terms of attack correction capabilities.
However, D, is a useful tool in practice for secure state estimation in the presence

of sparse adversarial attacks because it balances tractability and performance.

Compressed Sensing Correlation

The relaxation introduced with the decoder D; naturally leads to an interest-
ing connection with the theory of compressed sensing (CS). By reformulating the
optimization problem in a more compact form, it becomes apparent that the esti-
mation of the system state in the presence of sparse attacks can be viewed through
the same mathematical lens as the recovery of sparse signals from limited measure-
ments. Compressed sensing provides a well-established theoretical and algorithmic

framework for reconstructing sparse vectors from an underdetermined set of linear
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equations |23, 24]. This framework relies on the observation that, under suitable
conditions on the sensing matrix, a sparse signal can be exactly recovered by solving
an {;-minimization problem instead of the original fy-minimization one, which is
computationally intractable.

This analogy is especially relevant to secure state estimation: the measurement
matrix C' acts as the sensing operator, and the attack vector a represents the sparse
signal in CS. The task of recovering both the attack vector and the system state is
thus closely related to sparse recovery in compressed sensing, and the measurement
corruption introduced by sparse attacks can be interpreted as a sparse perturbation
of the true output.

This correspondence not only provides valuable theoretical insight into the prop-
erties of the relaxed decoder D; but also allows the application of well-known CS
results, such as recovery guarantees and algorithmic approaches, to the problem of
secure state estimation. In this section we formalize this connection and introduce
the partial compressed sensing formulations that arise in this context.

The optimization problem in (4.4) can be equivalently rewritten in a compact
form by defining the augmented matrix G = (C' I) € R?*("*9 and the stacked

. x .
variable z = € R™"4. The constraint becomes:

y=Gz. (4.5)
Thus, the optimization problem becomes:

min |la|l; subject to y = Gz, (4.6)

z€Rnt+

where the objective still involves only the a component of z. This compact formu-
lation reveals a strong connection with the theory of compressed sensing (CS).
According to CS theory, a k-sparse vector x € R™, with k < n, can be accurately

recovered from a set of compressed linear measurements:
y = Ox + (noise), yeRI, q¢g<mn, (4.7)

provided that the sensing matrix © € R?*" satisfies specific conditions.
The measurements y are corrupted by a sparse attack a, and the goal is to recover

the original state x despite this sparse corruption.
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The original sparse recovery problem is expressed as:

m]%n |z]lo subject to Oz = y. (4.8)
TzeR™

which is combinatorial in nature and NP-hard.

To make the problem tractable, a common approach is to relax the fy-norm to
its best convex approximation, the ¢;-norm. This leads to the well-known Basis
Pursuit formulation:

min ||z||; subject to Oz = y. (4.9)
zER™

An alternative and widely used variant is the Lasso (Least Absolute Shrinkage
and Selection Operator) formulation introduced by Tibshirani in 1996 [25]. It in-
troduces a regularization term that penalizes the /;-norm while allowing for noisy
measurements: )

- 2
min o0z =yl + Allzfli, A >0. (4.10)

Here, )\ is a hyperparameter that controls the trade-off between sparsity and data
fidelity.

In the context of secure state estimation, the idea of sparsity is applied not to
the state vector z, but to the attack vector a € R?. This leads to what can be
considered a “partial” version of the standard CS formulations.

The Partial Lasso formulation introduces a trade-off between fitting the mea-

surements and promoting sparsity in the attack vector:

()

where G = (C' I) is the augmented measurement matrix.

2

+ Malh, A>o0. (4.11)
2

min —
zER™, a€RT 2

These formulations allow for secure state estimation in scenarios with measure-

ment corruption.

Partial Lasso for SSE

In the context of Secure State Estimation (SSE), we now address a formula-
tion that explicitly accounts for both adversarial attacks and measurement noise.
Consider the static model

y=Cr+a+tn,

where z, € R™ denotes the unknown system state, a, € RY represents a sparse attack

vector, and 17 € R? models measurement noise. The goal is to estimate the true state
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x. despite the presence of these perturbations.
A widely used and effective approach to this problem is the Partial Lasso (P-

Lasso) formulation, which casts the estimation as a convex optimization problem:

min  F(z,a) + G(a),

zER™, a€RY

where the objective is composed of a data-fitting term

1
F(z,a) = 5|Cx +a -yl

and a regularization term promoting sparsity in the attack vector:
G(a) := Allalls,

with A > 0 being a design hyperparameter that balances data fidelity and sparsity.
The presence of the ¢;-norm in the cost function encourages sparse solutions for a,
making this formulation particularly suited to scenarios where only a small subset
of sensors may be compromised.

The P-Lasso problem is convex, but standard gradient descent methods cannot
be applied because the ¢;-norm is non-differentiable. Iterative first-order optimiza-
tion algorithms that take advantage of the prozimal mapping [26] concept can be
used to solve this.

Considering the convex function G : R? — R defined before, its proximal map-

ping is defined as:

| 1 )
proe() = argnin { Gl + Ja— 213}

In our case, with G(a) = Al|al, the proximal mapping becomes:

| 1 )
proxa, (2) = argmig {Alall + 5l - #13}.

This operator is known as the soft thresholding or shrinkage operator and is
separable across the components of the vector. In other words, it can be applied

component-wise:

Sy (z) = fori=1,...,q. (4.12)
0 otherwise,
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This operation reduces the magnitude of each component by A, setting it to zero
if its absolute value is smaller than .

This efficient computation of the proximal operator allows the use of proximal
gradient methods for solving the P-Lasso problem, ensuring a computationally fea-
sible approach to secure state estimation even in the presence of sparse adversarial

corruption and measurement noise.

Elastic Net for Secure State Estimation

An extension of the partial Lasso involves the elastic net model, which also uses

the fo-norm optimization variable. It is defined as:
.. .1 2 o2
(#,0) = argmin Zfly — Cz —all; + Alall + Sllall, (4.13)

where A ;1 > 0 are regularization parameters.

This formulation retains a sparsity-promoting component by minimizing the ¢
norm derived from Lasso.

The Elastic Net can be interpreted as a natural extension of Lasso and Ridge
regression, both of which belong to the family of proximal optimization methods [4].
Throughout the thesis, this regularization algorithm will be applied in the theoretical

discussion presented in Chapter 5.

4.3.2 Iterative Algorithms for Solving the P-Lasso Problem

A limitation of the P-lasso problem is its non-differentiability. Specific optimiza-
tion algorithms are used to solve this optimization problem. This section presents
two such algorithms, both belonging to the class of first-order methods: the Iterative
Soft Thresholding Algorithm (ISTA) and the Inertial Jacobi Alternating Minimiza-
tion (IJAM). These algorithms are presented in [4].

Inertial Jacobi Alternating Minimization (IJAM)

The first algorithm proposed is IJAM, which, as described previously, finds a
solution to the P-Lasso problem. It uses a parameter v € (0, 1], which must be
tuned correctly to stabilize the convergence of the algorithm.

The algorithm proceeds as follows:

e Initialization: Set 2(0) = 0 € R™, a(0) = 0 € RY, and choose an inertia

parameter v € (0, 1].
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e Iterative step: For £ =0,1,..., T

z(k+1) = arg iIelIIRI}l F(z,a(k)) = C'(y — a(k)),

a(k +1) = S [a(k) — v(Ca(k) + a(k) — )],
where CT denotes the Moore-Penrose pseudoinverse of C'.

Iterative Soft Thresholding Algorithm (ISTA)

An alternative approach to solving the P-Lasso problem is offered by the Iterative
Soft Thresholding Algorithm (ISTA). This method leverages the fact that the data-
fitting term F(x,a) is differentiable with respect to z, enabling a gradient descent
update, while the term G(a) = A||a]|; is treated via its proximal mapping.

The ISTA algorithm follows these steps:

e Initialization: Set 2(0) = 0, a(0) = 0, and choose a step size v > 0.

e Iterative step: For £k =0,1,..., Thax:

rv(k+1) = 2(k) — vV, F(x(k),a(k)) = 2(k) — vCT (Cz(k) + a(k) — v),
a(k +1) = Sx [a(k) —v(Cx(k) + a(k) — y)] .

The ISTA algorithm can be interpreted as a gradient-proximal method, where
each iteration alternates between a gradient descent step on the smooth part of the
objective and a proximal step to handle the non-smooth ¢;-regularization. The use
of the soft-thresholding operator in both IJAM and ISTA highlights the key role of

sparsity-promoting regularization in robust state estimation.

Summary. Both [JAM and ISTA are provably convergent under standard as-
sumptions, with IJAM offering greater stability through its inertial parameter and
ISTA providing a natural proximal gradient interpretation. These methods enable
effective and scalable solutions to secure state estimation problems in the presence

of sparse adversarial disturbances.

4.3.3 SSE for dynamic systems

Having previously studied and discussed the problem of secure state estimation
in the context of static systems, we now extend our analysis to dynamic systems.

This allows us to incorporate the effect of state evolution over time, addressing

27



CHAPTER 4. SECURE STATE ESTIMATION FOR CPSS

dynamic estimation problems where the system matrix A differs from the identity
matrix.

We consider a discrete-time linear model of a Cyber-Physical System (CPS),
where the measurements may be affected by sparse malicious attacks. The dynamics

of the system are described by the following equations:

z(k+1) = Ax(k),
y(k) = Cx(k) + a(k),

where z(k) € R™ and a(k) € R? represent the system state and the attack, respec-
tively at time step k, y(k) € R? is the measurement vector, A € R™™" is the state
transition matrix, and C' € R?*" is the output matrix. As described before, the
scenario considered promotes the sparsity of the attack.

We now extend the model of the CPS with sparse sensor attacks over a finite
observation horizon of T" time steps. Assuming no process noise, the evolution of the
system state is given recursively by the state equation z(k 4+ 1) = Az(k), and the

output is affected by a sparse attack vector a(k), resulting in the measured output:
y(k) = Cz(k) +a(k), for k=0,1,...,7 —1.

By recursively applying the state equation, we can express each measurement

y(k) in terms of the initial state z(0) as follows:

(4(0) = Cz(0) + a(0),
y(1) = CAz(0) + a(1),
y(2) = CA%x(0) + a(2), (4.14)

(y(T — 1) = CAT'2(0) + a(T — 1).

By stacking all the output equations into a single expression, we obtain the

following compact matrix form:

y(0) C a(0)
y@) | C:A 2(0) + a(l) |
y(T'—1) CAT! a(T —1)
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where Op € R97*" This batch formulation reveals that the overall measurement
vector over time is a linear function of the initial state x(0), plus the stacked sparse
attack vector.

We thus obtain a system of ¢7" linear equations with n + ¢7" unknowns, i.e., the
n-dimensional initial state and the ¢7T-dimensional attack vector. This structure un-
derpins sparse state estimation techniques such as Partial Lasso, where the recovery
of £(0) is made possible despite the presence of sparse adversarial corruptions in the

output.

Dynamic CPS Model under Constant Sparse Sensor Attack

Let us now consider a particular case of the cyber-physical system (CPS) model
in which the sensor attack vector remains constant over time. Specifically, we assume
that for each time step k = 0,1,..., the attack vector satisfies a(k) = a for some
unknown but fixed vector a € R?. The system dynamics are still governed by the

linear discrete-time state-space equations:

z(k+1) = Azx(k),
y(k) = Cx(k) + a,

(4.15)

where z(k) € R™ denotes the state of the system, y(k) € R? the measured output,
A € R™ " the state transition matrix, and C' € R9*" the output matrix. The vector
a models a sparse adversarial signal injected into the sensor measurements.

By unrolling the system outputs over time, we obtain:

([ y(0) = Cz(0) +a,
y(1) = CAz(0) + a,
y(2) = CA*x(0) + a, (4.16)

(y(T — 1) = CAT'2(0) +a.

This set of equations can be compactly expressed in matrix form as:

y(0) a
y(:l) = 0ra(0)+ | | (4.17)
y(T'—1) a
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where Or denotes the standard observability matrix of order T, defined as:

C
CA .
or=| 7 | ermm (4.18)
CAT

We may then rewrite the system in the form:

y(0) c I
y(:1> _ C:A 1 <x(0)> | (419
y(T'—1) CAT- T

where I € R?7%? is the identity matrix. We define the augmented observability matrix

O’ of the extended system as:

c I
CA I

O = ' | e ReFx(Fa), (4.20)
CAT-1 T

The augmented system can thus be interpreted as a linear system with state
T
(x(O)T aT> € R"*7 and observability matrix O%.
Now, we aim to determine whether this system is observable and under which

conditions observability holds.

Observability of Dynamic CPSs under Constant Sensor At-
tacks

We now consider the observability of a dynamic cyber-physical system (CPS)
subject to constant sensor attacks. Recall the system model (4.15) The analysis

of observability in such an augmented setting is closely related to the study of

composite systems, as discussed by Davison and Wang in [27].

Proposition 3 (Observability under Constant Attacks). Let us assume that the
attack-free system (A, C) is observable. If the matriz A has an eigenvalue equal to

1, then the dynamic CPS under constant attacks is not observable.

Proof. If A has an eigenvalue equal to 1, then the matrix I — A € R™ " has a
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corresponding eigenvalue equal to 0, which implies that I — A is not full rank.

We analyze the observability of the augmented system:

y(0) c 1

1 CA 1
v o <x> , where Oh=| 7 . (4.21)

. a . .

y(T'—1) CAT-V T

We consider T' = n + ¢, the minimal time horizon needed to ensure observability

in the nominal (attack-free) case. We want to study whether the matrix O/ has full

oA <x> —0. (4.22)

By applying a change of basis and row operations, the system can be written

< C I) (x) _ ( Cr+a ) _o (4.23)
OTfl(A—I) 0 a OTfl(A—I)Jﬁ

This yields the two conditions:

rank. Define the equation:

equivalently as:

Cr+a=0, (4.24)
Or_1(A— Dz =0. (4.25)

Because (A, C) is observable, the matrix O7_; has full column rank. Therefore,
OT_ﬂJ:O <~— v=0.

However, from (4.25), we know that (A—1I)z = 0 is a non-trivial equation due to the
presence of an eigenvalue at 1, which implies that A — I is not full rank. Therefore,
there exist non-zero solutions = # 0 that satisfy (A — I)z = 0.

Plugging this into (4.24), we get:
a=—Cu,

which defines infinitely many possible values for a corresponding to the null space
of A—1.

Hence, the kernel of O is non-trivial: there exist non-zero vectors < ) such
a
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that O “) = 0. This implies that O}, does not have full column rank and the
a

system is not observable.

Consequences for Observer Design

The above result highlights a critical limitation: the existence of a constant
attack vector may make the augmented system unobservable, even if the system is
observable in the attack-free scenario.

This situation is particularly critical when the system matrix A has an eigenvalue
at 1. In these cases, classical observer designs, such as the Luenberger observer, fails,

since they rely on the assumption of full observability of the augmented system.

Nevertheless, if additional structural information about the attack is available—for
example, the knowledge that it is sparse—this limitation can be addressed by ex-
ploiting such information in the observer design. Sparse estimation techniques pro-
vide a natural framework in this context, as they aim to jointly recover both the
system state and the attack vector by minimizing a specific norm (commonly the
¢, norm) of the attack signal. By incorporating this sparsity assumption into the
estimation process, it becomes possible to reconstruct the true state even when clas-
sical observability conditions fail. This insight motivates the development of sparse

observers, a topic we explore in detail in the following sections.

4.4 Sparse Soft Observer for CPS with Sparse Sen-
sor Attacks

In cyber-physical systems (CPS), sensor attacks can severely compromise the
ability to accurately observe the system state. When such attacks are sparse, mean-
ing only a small subset of sensors are affected at any time, it is possible to design
observers that explicitly leverage this sparsity to improve state estimation accuracy.
One effective approach in this context is the Sparse Soft Observer (SSO), which is
closely related to optimization methods such as the Iterative Shrinkage- Thresholding
Algorithm (ISTA).
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4.4.1 Sparse Soft Observer (SSO)

The Sparse Soft Observer is a recursive algorithm that estimates both the system
state and the sparse attack vector simultaneously. At each time step, it receives the
system output, which is corrupted by the sparse attack, and updates its estimates

according to the following rules:

e The state estimate is updated by applying the system dynamics and correcting
it based on the residual between the predicted and measured outputs. This

correction is modulated by a gain term that includes the system matrix.

e The attack estimate is updated via a soft-thresholding operation, which pro-
motes sparsity by shrinking small components towards zero. This step exploits

the knowledge that attacks are sparse.

Formally, the update equations can be written as:
i(k+1) = Ai(k) — vACT (4(k) — y(k)),

a(k +1) = Sy la(k) —v(g(k) —y(k))],

where (k) = Cz(k) + a(k) is the predicted output, v > 0 is a step size parameter,

A controls the sparsity level, and S, is the element-wise soft-thresholding operator.
e Initialization: 7 > 0, 2(0) € R", a(0) € RY.

e Per k =0,..., Thax:

4.4.2 Relation to ISTA

When the system matrix A is the identity, the Sparse Soft Observer reduces
exactly to the classical ISTA method for solving the underlying sparse recovery
problem. ISTA performs a gradient descent step on the differentiable part of the
objective function, followed by a proximal mapping via soft-thresholding to enforce

sparsity in the attack estimate.

33



CHAPTER 4. SECURE STATE ESTIMATION FOR CPSS

4.4.3 Deadbeat Sparse Soft Observer (D-SSO)

An upgraded version of the Sparse Soft Observer, called the Deadbeat Sparse Soft
Observer (D-SSO), incorporates a correction gain L designed so that the eigenvalues
of the matrix (A — LC) are zero. This choice enables the state estimation error to
be driven to zero in a finite number of steps, hence the term “deadbeat.” The update

equations for the D-SSO are:
2(k+1) = Az(k) — L(g(k) — y(k)),

a(k +1) = Sy la(k) — v(g(k) —y(k))]-

If the number of sensors ¢ is at least equal to the state dimension n, and the gain
L is chosen as the Moore-Penrose pseudo-inverse of C, denoted C, then the D-SSO
coincides with the Inertial Jacobi Alternating Minimization (IJAM) algorithm.

e Initialization: 7 > 0, 2(0) € R, a(0) € R?

o Per k =0,...,Thax:

y(k) = Cx(k) + a(k)
y(k) = Cz(k) + a(k)
Z( ) — L(y(k) —y(k)), where eig(A— LC)=0

4.4.4 Summary and Remarks

The development presented throughout this section highlights a conceptual and
methodological transition: we started from optimization algorithms to manage the
sparsity of the attack vector and gradually evolved toward a dynamic observ formu-
lation suitable for cyber-physical system under sensor attacks.

The Sparse Soft Observer represents the non-linear observer counterpart of the
Iterative Shrinkage-Threshlding Algorithm (ISTA), where the SSO explicitly in-
corporates the system dynamic through the state transition matrix A. The same
considerations can also be made comparing the D-SSO with the Inertial Jacobi Al-

ternating Minimization algorithm (IJAM).
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4.4.5 Limitation and Further Developments

Despite their effectiveness and concept, the Sparse Soft Observer (SSO) and its
deadbeat variant (D-SSO) present certain theoretical limitations that remain open
challenges in the current literature.

Specifically, there is currently no formal evidence of both observers’ stability,
despite the fact that they both show excellent empirical performance in estimating
the system state and the attack vectors. This challenge results from the nonlinearity
of the estimation process, due to the soft-thresholding operator, which creates dis-
continuities and makes it impossible to use traditional linear system analysis tools
directly.

The analysis is further complicated in dynamic settings, where the interaction
between the state evolution and the sparsity-enforcing dynamics introduces addi-
tional coupling effects that challenge existing theoretical frameworks.

These open issues motivate the development of a new class of nonlinear observers
specifically designed to retain the robustness and sparsity-awareness of the SSO while
enabling a rigorous stability analysis. Unlike the analysis carried out in this section,
the upcoming model does not rely on the assumption of constant attacks; instead, it
is formulated to handle general time-varying attack signals, thereby extending
the applicability of the observer to a broader range of adversarial scenarios.

The new observer architecture, presented in the next chapter, not only offers a
theoretical foundation for convergence guarantees but also deepens our understand-
ing of the dynamic behavior of sparsity-based estimation methods in cyber-physical

systems under adversarial conditions.
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Chapter 5
New theoretical formulation

In this section, we introduce a novel theoretical framework for the estimation
of states and detection of sparse attacks in cyber-physical systems (CPSs). The
proposed formulation extends classical observer designs by explicitly incorporating
a structured attack estimation mechanism based on a shrinkage operator inspired
by the Elastic Net regularization. This new approach enables the simultaneous
estimation of the system state and the attack vector, while guaranteeing desirable
convergence properties under sparsity assumptions.

First, we describe the dynamics of the CPS under consideration and introduce
the nonlinear dynamics of the new observer. We then present fundamental theorems
regarding the stability of the observer, which guarantee correct estimation of the
state and the attack. Complete proofs of the theorems described above are provided.

We focus on a class of discrete-time linear cyber-physical systems (CPSs) de-
scribed by:

x(k+1) = Ax(k),
(5.1)
y(k) = Cz(k) + a(k).
where £ € N is the sampling instant, the state is x(k) € R", the measurement vector
is y(k) € RP, and the attack vector is a(k) € RP. The system matrices are A € R"*"
and C' € RP*™,
Each sensor i € {1,...,p} provides a measurement y;(k); we assume that sensor
i is under attack at time k if and only if a;(k) # 0. The attack vector a(k) is assumed
to be sparse, meaning that only a small number of sensors are compromised at any

given time step.
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5.1 Novel formulation

In this section, we provide a detailed presentation of the proposed estimation

scheme. We consider the following dynamic estimator:

ik +1) = Az (k) + Lj(k),
a(k +1) = Y(a(k) — eL2y(k)), (5.2)

y(k) = C(&(k) — x(k)) + a(k) — a(k).

where © € R"™ denotes the estimated system states, and a € RP represents the
estimated attack vector, which shares the same dimension as the measured output
y € RP and the estimated output § € RP. The output mismatch is defined as
y=y—yecR

The matrix L; € R™*P represents the gain matrix of the linear observer dynamics,
while the matrix L, € RP*P governs the nonlinear dynamics of the attack estimate.
The nonlinear dynamics is related to the function ¥,, which is described below.

The estimator is inspired by the (strongly convex) Elastic Net model in 4.13,

which augments the Lasso formulation with a Tikhonov regularization term:

oA . 1 2 H 2
() =arg_min lly—Co—ali+Aal, +5 a6
where A > 0 and g > 0 are regularization parameters. This formulation enforces
sparsity through the /;-norm while maintaining strong convexity via the f>-term,
thereby enhancing numerical stability and convergence.

The associated shrinkage operator is defined as

1
U,(2) = T 5\Ifl(z) =q-¥(z2), (5.4)
with 0 > 0, where
- (5.5)
15 '

quantifies the contribution of the fs-regularization term. the nonlinear function
Uy (+) is the soft-thresholding operator presented in 4.12. A larger ¢ (equivalently,
larger 1 in (5.3)) leads to a stronger Elastic Net effect with increased shrinkage,

while smaller ¢ values yield behavior closer to the Lasso case (¢ — 1).
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5.1.1 Assumptions

In order to move forward, the following assumptions are needed.
Assumption 1. The couple (A, C') is observable.
Assumption 2. The following properties are satisfied by the function ¥, : R" — RP:

1. W, (0) = 0;

2. there exists a symmetric positive definite matriz () € R™™ such that, for all
s e R,
Uy(5) QUy(s) < s'Qs;

3. W, 1s Lipschitz continuous, i.e., there exists a constant ly > 0 such that, for
all 5,5 € R",
[Wq(s) = Wq(s + 35)|| < lll3]-

Assumption 3. There exists a matrix Ly such that the following inequality holds

for all admussible a:
U, (6 —eLy(CI(a) + a)) " QUy(a —eLy(CTI(a) +a)) < pl'a’ Qa,

where 0 < pll < 1.

5.1.2 Main results

Theorem 6. Suppose Assumptions 1-3 hold and a(k) = 0 for all k. Then, there

exist observer gains Ly and Lo such that the estimation errors
e(k) = a(k) — x(k), a(k)
are globally asymptotically stable (GAS) at the origin:

lim e(k) =0, lim a(k)=0.

k—o00 k—o0

Theorem 7 (ISS with Respect to Attack). Suppose Assumptions 1-3 hold. Then,
for any bounded attack a(k) # 0, the estimation errors (e(k),a(k)) satisfy a discrete-
time Input-to-State Stability (ISS) property with respect to a(k):

le(R) + llalk)]] < Ble(0)]] + la(0)]}, k) + v(oiggk IIG(J')H)’ vk >0,

for some B € KL and v € K.
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5.1.3 Proof of the main results

To simplify the notation and improve readability, we adopt the following con-
vention: all variables evaluated at time k will be denoted without the time index
(e.g., a(k) = a), while variables at time k + 1 will be indicated with a superscript
"+" (e.g., a(k+ 1) =a™).

Preliminaries

To analyze the convergence properties of the estimator, define the state estima-
tion error
e:=1—z. (5.6)

The error dynamics can be written as

et =zt — 2t
= Az + Li(C@—x)+a) +v, — A
= (A+ L10)6+L1€L— L1a+vx. (57)

Introduce the change of variable
n=e—Ti(a), (5.8)

where 7 represents the estimation error adjusted by a nonlinear mapping I1(+) of the

estimated attack a.

Lemma 1 (Existence and Lipschitz continuity of II). There exists a function II :
RP — R"™ such that

(A+ LiC)(a) 4+ Lia — I1(¥,4(a)) = 0, (5.9)

and II is Lipschitz continuous with constant

[

E = )
" |)\max(A+LlC) _q’

where ¢ = ly is the Lipschitz constant of W,.

Proof. Define F:= A+ L,C. Consider the series

[e.e]

Ma) =—> F'LiWl(a). (5.10)
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Verification of the equation:
I(Uy(a)) ==Y  F'Lvl (a)
1=0

- _ Z F'LV (a)
=1
= FII(a) 4 Lia.

Lipschitz continuity:

[e.9]

@) =—>» F'Lv.(a)

=0

ZF—l—lLl (\ij](az) - \Ifé(al)) "

=0

(@) — M(ag)[| =

ly

Do (F)JET [L1| lar — azf]

Given that the Lipschitz constant of the operator ¥, is {y = 1+r6 = ¢, the k-th

iterate W, is Lipschitz continuous with constant (.

= ¢ \'| Izl
< 12 (ltr) | ity o~

[ =0

=/ ¢ \'T Iul
= Z(Amax<F>) R (F) 1917 21

L =0

The geometric series converges when /\#(F) < 1, and in this case we obtain:
max
1

1= AmaZ(F)

1Ll

H(ar) — I(as)| < Amax (F)

||a1—a2|’
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The Lipschitz constant of the function II can be computed as follows:

|1 L]
L= >\maz(F) Amax(F)
|| L]
= (5.11)
|/\maX(F) - ql
]

5.1.4 Globally asymptotically stability when a =0

Proof. Consider the equation (5.2), when a is set to zero, then by applying the

change of coordinate the system is as follow:
= (A+LC)[n+1(a)] + Lia — 1 (Vy(a —eLay)),
0t =W, (a—elyy), (5.12)

g=Ce+a=C(n+1(a)) + a.

We can observe that:
el =eLy (Cn+ Cll(a) + a), (5.13)

In this case, the system evolves as:

=(A+ LiC)n+ Ay(n,a),

(5.14)
at =V, [a—eLy(CIL(a) + a)] + Au(n, a),
where the perturbation terms are defined as:
Ay =11(Yy(a)) — I(¥g (@ — eLo(Cn + CII(a) + @), (5.15)

A, =, [a — eLy(Cn+ CI(a) + a)] — U, [a — eLo(CTI(a) + a)] .

Using the Lipschitz continuity of the functions involved, we have:

1A = [TL(Wg (@) = I (Wq (0)[] < lur [ Wq (@) — Wq (D) < luly, [l — b
la = bl = lleLa (Cn + CTL(a) + a)|| < ebs (o [Inll + (1 + Lelr) [|al])

18]I < ebnla, bo (bo [|nl] + (1 + £cbn) [la]]) (5.16)
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From the definition of A,, we write:

A, =, [0 — eLy(Cy + CT(a) + )] -, [ — £Lo(CTI(a) + a)]

J N J/

-

b1 b2

Again, using Lipschitz continuity:

HAaH = H\Ijq (bl) - \Ijq (bZ)H < g\l!q ||b1 - b2||
[b1 = ba| = [leL2Cn| < elole ||n]]

1Al < by, bole |n] (5.17)
We consider the Lyapunov function:
W =n"Pn+pua' Qa, (5.18)

with P > 0, Q > 0, and pu > 0.
At this point, we have to introduce an additional assumption:

We analyze its difference along the trajectories:

W —W =n"(A+ L,C) P(A+ L,C)n—n" Pp

+2n"(A+ LiC) ' PA, + A PA,
+ (@ —eLy(I1(a) + @) " QU (a — eLo(I(a) + a)) — pa' Qa

~~

+2u0,() T QAL + pA ) QA,. (5.19)

WH—W = (1+7)n" (A+ LiC) " P(A+ LiC)n—n' Py

1
+(14+—)A)PA,
Tn

+ (14 7))y (@ — eLo(T(a) + @) QU (a — eLy(TI(a) + @) — pa' Qa

1
+(1+ —)pd, QA,.
Va
Rewriting the Lyapunov function:

AW < =uax(P) [1]1% + ey [nl]* + eca llall” — 1 (1= 95) Amae( @) llal* + pedy [In]|*
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where:

1
ey =2(1+ 7—)||P||52n5144§€2c
n

1
ca=2(1+ 7—)\|P|w%{egqe§ (1+ leln)?
n

1
dy = dy = (1+ 7) QI &, 6268

Pa
(1 + Va)

v=(mlp—1)+p).

/A
pa_

Thus, we ensure W+ — W < 0 for all 5, a, provided:

(5.20)

£ < & — min {VAmaw(P> 2 (1 - ,0;/) >‘ma96<Q> } _

cn + pudy Ca

Hence, for a sufficiently small gain parameter ¢, the observer guarantees asymp-

totic convergence to the origin. O

5.1.5 Verification of assumption (3)
The goal is to determine for which values of Ly assumption (3) holds.

Proof. This estimate exploits the following property of the soft-thresholding opera-
tor:
T, (s)' QU (s) < ¢?s' Qs. (5.21)

The equation becomes:
(I — eLy)a — eLyCTL(@)) " Q (I — eLy)a — eLyCT(a)) < 24T Qa,
We select Lo:

. 1
L2 —mln{m,l}l. (522)

21C|n — ¢\ . 1 RY 21C|n — ¢\ . 1 ) oo
et S | 11 b b S [P @) ) <2 a"a.
(( 2 > 30T “”) Q(( 201 )¢ e W ) = gt @

200 — ¢
pQ(g):CL:

9
20t 20l

<1,
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) 1 R T R 1 . " . .
(pg(s)a — 5%0&1 CH(a)) Q <p2(5)a — €2€C€H CH(a)) < %GTQG
TAs L E tria . £ . X
(T Qo+ 1o ) TCTQOTIE) — 2T QOTI()
ot
Ths L E s X e X AT
< pole)?a’Qa + e I(a)"CTQCII(a) + e Il(a)"CTQCTI(a) + pa(e)*Ca’ Qa
ctin ctin
< (1 +Ome)?) a’Qa< %a"qa

(5.23)

Remark. The inequality above is satisfied because both multiplicative factors, (1 +
()pa(e)? and Z—;’, are strictly less than one for appropriately chosen parameters. In
particular, by selecting the observer gain ¢ > 0 sufficiently small, together with suit-
able choices of the constant ¢ of the shrinkage operator and the weighting associated
with the f3-norm, the left-hand side can be made smaller than the right-hand side
while remaining positive definite.

Consequently, Assumption (3) is fully satisfied, ensuring the existence of the ob-
server gain Lo and the associated contraction property. This demonstrates that the

suggested design guarantees the required convergence and stability characteristics.

]

5.1.6 ISS propriety when a # 0

The above ISS result provides a general discrete-time framework. In particu-
lar, it applies directly to our estimator dynamics (5.2) when the attack a(k) # 0.
Specifically, by defining the state as * = (n,a) and the input as v = a, and ob-
serving that the nominal system (with a = 0) is GAS, the Lipschitz continuity of
the perturbation terms A, and A, ensures that all the conditions of the theorem
are satisfied. Therefore, the estimation errors (n(k), a(k)) satisfy a discrete-time ISS

property with respect to the attack a(k).
Theorem 8. Let f: R" x R™ — R" such that the following is verified:

o There exist P=PT =0, p € (0,1) such that

f(2,0)TPf(x,0) < pa' Px Ve € R"
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o there exists ¢ > 0 such that

|f(x,v) - f($,0)| < €|U|
|f(@,0)] < L] + €[]

Then, system ™ = f(x,v) is ISS w.r.t v.

Proof. Pick V = 2" Pz. Then

VYt -V = f(z,v) Pf(z,v) — 2" Px
= f(2) Pf(x) = 2" Pr+ (flw,0) Pf(z,0) = fl2) Pf())
< —(1=p)a"Pr+ (flw,0) Pfle,v) ~ f(z,0) Pf(x)
+ fla,0) Pf(@) = f(x) Pf())
< —(1=p)" Pa+ f(,0) P(f(z,0)) - f(2))

+f(2) P(f(z,v)) = f(x))
< —(1 = p)a’ Pr+ ((|z] + [v])|P|€]v] + €2]]| P[]

1
< —(1-p)aT Pz +Cla + 2 CIPICEIP + Dlol?

¢ T Lo
< (1-p— Pr+ —

1—
with v = ¢2|P|(20?|P| + 1). Selecting ¢ = Tp)\min(P) we obtain

1_
V-V < —T'Ov+w|2

with ¥ = ~(.
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Chapter 6

Numerical simulations

6.1 Dead-beat sparse soft observer

In this section, we present numerical simulations to assess the effectiveness of the
Deadbeat Sparse Soft Observer (D-SSO) in estimating the state of a cyber-physical
system (CPS) under sparse sensor attacks. The results demonstrate the observer’s

ability to accurately reconstruct both the system state and the attack signal.

6.1.1 Simulation Setup

We consider a discrete-time linear system of the form:
x(k+1) = Ax(k), y(k)=Cx(k)+ a(k),

where z(k) € R" is the state vector, y(k) € R? is the output, and a(k) € R? is the

sparse attack vector.

e System dimension: n = 15, number of sensors: ¢ = 30

e The matrices A € R™™ and C' € R?*" are randomly generated with indepen-
dent and identically distributed entries following a standard normal distribu-

tion, i.e., (0, 1).

To ensure that the cyber-physical system (CPS) is marginally stable, the ma-
trix A has one eigenvalue equal to 1. This procedure allows us to analyze the
performance of the observer in a scenario where the system is neither asymp-
totically stable nor unstable, which is particularly relevant when evaluating

the impact of constant or sparse sensor attacks.

46



CHAPTER 6. NUMERICAL SIMULATIONS

e The attack vector a(k) is constant and sparse (h = 3), with non-zero entries

at randomly selected sensor positions.
e The D-SSO is initialized with #(0) = 0, a(0) = 0.
e The observer gain L is selected such that eig(A — LC) = 0.

e Concerning the hyperparameters, we empirically set v = 0.7 and A = 1071

6.1.2 Algorithm

Algorithm 1: Dynamic Sparse Soft Observer (D-SSO)
Input: A > 0,v > 0, A, C, L; such that all eigenvalues of A — L;C'" are null

r(k k
Output: #(k) = estimate of z(k)
a(k) a(k)

1 Initialization: 2(0) =0, a(0) = 0;

2 for k=0,1,... do
3 | Acquire new measurement: y(k) = Cz(k) + a(k);

4 | Predicted measurement using current estimates: g(k) = Cz(k) + a(k);
5 State estimation update: z(k + 1) = Az(k) — Ly (9(k) — y(k));
6 Attack estimation update: a(k +1) = Sy (a (k) — v

7 end

6.1.3 Results

Figure 6.1 shows the mean corresponding error on the attack and state vec-
tors over 50 simulations. For clarity, the state estimation error is presented on a

logarithmic scale.
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Average MASE over 50 runs Average MSE over 50 runs
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Figure 6.1: On the left the MASE, on the right the MSE for the DSSO algorithm
in case of marginally stable case

6.1.4 Discussion

One of the main problems when using the Deadbeat Sparse Soft Observer (D-
SSO) lies in the proper tuning of the parameters involved, namely the soft-thresholding
parameter A and the step size v. If these parameters are not selected appropriately,
the estimation of both the system state and the attack vector may become inaccu-
rate.

In particular, the step size v affects the convergence and stability of the observer.
An improper choice may lead to slow convergence or divergence of the estimation
process. Since the simulation plots the mean over 50 runs, it can happen that for
some system scenarios the chosen parameter pair works quite well; however, there
are cases in which the parameter pair is not suitable for estimation purposes. Unfor-
tunately, in the literature, there is no proper theoretical framework for computing
these parameters. Therefore, a proper calibration of these parameters is essential to

ensure reliable performance of the observer.
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6.2 New theoretical formulation

In order to verify and demonstrate the novel theoretical formulation presented
in Chapter 5, we provide a number of numerical simulations in this section. The
purpose of these simulations is to clearly compare the suggested method with the
Dynamic Sparse State Observer (D-SSO) method and show how well it performs
under different circumstances.

We consider a variety of scenarios that reflect realistic operating conditions,

including;:

e No attack: a baseline scenario in which the system operates without mali-
cious interference, serving as a reference case for performance evaluation. In
this scenario, the initial condition of the attack estimate is not null, but a
random value, allowing us to investigate the observer’s transient behavior and

its convergence properties in the absence of attacks.

e Constant attack: a scenario where a persistent attack signal affects the

system, representing a steady adversarial disturbance.

e Time-varying attack support:a scenario that mimics a more realistic ad-
versarial strategy where the attack’s support changes over time after a prede-

termined number of iterations.

¢ Sinusoidal attack: is a time-varying attack that mimics a dynamic and more

difficult adversarial condition by having sinusoidal characteristics.

By analyzing the errors in state and attack estimation, we are able to evaluate

the effectiveness of the observer presented in Chapter 5 in all four scenarios.

Algorithm 2: L2 based observer
Input: A\ > 0,A,C, Ly, La,q € (0,1), Let € > 0 be sufficiently small
Output: <£(k)> = estimate of (gC(k))
a(k) a(k)
1 Initialization: #(0) =0, a(0) =0 for £ =0,1,... do
2 Acquire new measurement: y(k) = Cz(k) + a(k)

3 | Predicted measurement using current estimates: (k) = Cz(k) + a(k)
4 | State estimation update: z(k + 1) = Az(k) + L1 (y(k) — y(k))
5 Attack estimation update: a(k+ 1) =q- Sy (a (k) —eLly (9 (k) —y (k)))

6 end
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6.2.1 Numerical simulation

In this section, we present numerical simulations to assess the effectiveness of
the observer involving the soft-thresholding operator in estimating the state of a
cyber-physical system (CPS) under sparse sensor attacks. The results demonstrate
the observer’s ability to accurately reconstruct both the system state and the attack

signal.

6.2.2 Common Simulation Setup

We consider a discrete-time linear system of the form:
x(k+1) = Ax(k), y(k)=Cz(k)+ a(k),

where z(k) € R" is the state vector, y(k) € R? is the output, and a(k) € R? is the
sparse attack vector.

To ensure that the cyber-physical system (CPS) is marginally stable, the matrix
A is constructed so that it has one eigenvalue equal to 1. This construction procedure
allows us to analyze the performance of the observer in a scenario where the system
is neither asymptotically stable nor unstable, which is particularly relevant when

evaluating the impact of constant or sparse sensor attacks.

e A systematic exploration of the hyperparameter A\ and of the gain L, was
carried out with the objective of identifying the combination that yields the
minimal estimation error. As regards the L, parameter, a research was car-
ried out around the theoretical value. All simulations were compared with
those performed with the DSSO, and to have the most reasonable comparison

possible, a grid search was also performed for the DSSO parameters.

e To evaluate the error, we introduce a cost function defined as a convex combi-
nation of the state estimation error and the attack estimation error according

to a parameter «:
cost = - MSE + (1 — a) - MASE (6.1)

where:

— MSE: Mean Squared Error (state estimation accuracy),

— MASE: Mean Attack Support Error (attack support recovery).
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By introducing the parameter a € [0, 1], the relative importance of the attack sup-
port error (MASE) and the state estimation error (MSE) can be adjusted. Specif-
ically, o values near 1 highlight the precision of reconstructing the system state,

whereas « values near 0 give priority to accurately identifying the attacked sensors.

Remark on the computation of the errors The error on the state is quantified
through the Mean Squared Error (MSE), computed as the average of the squared
differences between the true state and its estimate, i.e., MSE = mean((x — :%)2)
For the attack vector, instead, the interest lies not in its exact numerical values but
in identifying which sensors are effectively under attack. In other words, the goal
is to correctly recover the support of the true attack vector. To this end, we define
the Mean Attack Support Error (MASE) as a measure of the mismatch between the
true and the estimated supports. A particular case occurs when all the entries of the
estimated attack vector are zero: in this situation, the error is set to 1, since we know
that the true attack vector has exactly three nonzero components (||a|lo = 3). This
is not true only in the case where no attacks corrupt the system. By construction,
the value of MASE ranges between 0 and 1, where values close to zero indicate a
good detection of the attacked sensors, while values close to one correspond to a

complete failure in identifying them.

6.2.3 No attacks

In this scenario, the attack vector a(k) is assumed to be zero, and to evaluate the
ability of the observer to converge to zero, we initialize it with a random estimate

of the attack support.
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Figure 6.2: On the left, the comparison of the MASE between the D-SSO and the
new theoretical approach is shown, while on the right, the corresponding comparison
of the MSE on the estimated state is displayed, in the case without any attacks.

6.2.4 Constant attack

In this scenario, the attack vector a(k) is assumed to be constant and sparse

(h = 3), with non-zero entries at randomly selected sensor positions.
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Figure 6.3: On the left, the comparison of the MASE between the D-SSO and the
new theoretical approach is shown, while on the right, the corresponding comparison
of the MSE on the estimated state is displayed, in the case of constant attack.

6.2.5 Time-varying attack support

In this scenario, the support of the attack vector a(k) is assumed to change ran-
domly every 400 iterations, while the attack vector itself remains piecewise constant

and sparse (h = 3).
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Figure 6.4: On the left, the comparison of the MASE between the D-SSO and the
new theoretical approach is shown, while on the right, the corresponding comparison
of the MSE on the estimated state is displayed, in the case where the attack support
varies over time.

6.2.6 Sinusoidal attack

In this scenario, the attack vector a(k) is characterized by a constant and sparse

support (h = 3), whereas its nonzero entries evolve according to a sinusoidal law.
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Figure 6.5: On the left, the comparison of the MASE between the D-SSO and the
new theoretical approach is shown, while on the right, the corresponding comparison
of the MSE on the estimated state is displayed, in the case where the attack follows
a sinusoidal pattern.

6.2.7 Discussion

The proposed algorithm has shown promising results in the context of secure
state estimation under sparse sensor attacks. The procedure for tuning the hyper-
parameter \ and the gain matrix L, proved effective: through a systematic search
it was possible to identify an optimal pair that balances the reconstruction of the
state with the detection of the attacked sensors. The adopted cost function, combin-
ing the Mean Squared Error (MSE) and the Mean Attack Support Error (MASE),
allowed us to evaluate the performance along two complementary directions: ac-
curacy in tracking the system dynamics and reliability in identifying the malicious
perturbations.

From the numerical simulations, it emerged that the observer is capable of accu-
rately reconstructing the state trajectories, even in the presence of non-constant and
sparse attacks on the sensors. In particular, the estimation error on the states con-

verges to values close to zero, while the support of the attack vector is consistently
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identified. The construction of the system matrix A, ensuring marginal stability,
highlighted the robustness of the algorithm also in non-trivial dynamical scenarios,

where the system is neither asymptotically stable nor unstable.

6.3 Localization problem

6.3.1 Introduction to Localization, Detection and Tracking

Localization refers to the process of estimating the position of a target using
measurements collected from sensors or the environment.
However, our goal is not limited to solving localization problems. We aim to

broaden our perspective by also addressing the following types of problems:

e Detection — determining whether a target is present in the environment;

e Tracking — estimating the trajectory of a moving target over time.

Localization, detection, and tracking tasks are fundamental in a wide range of
Cyber-Physical Systems (CPS) because they require a complex system involving
both physical and digital components. The localization problem is a current case
study, as it is essential to enable cooperation between different agents, particularly in
multi-agent systems and collaborative robotics. Even in the context of localization,
security must be given great importance, as a well-designed external attack can lead

to larger problems related to human safety.

Received signal strength

Localization fingerprinting refers to techniques that match the fingerprint of some
characteristic of a signal that is location-dependent. In our development, we will
consider the so-called RSS-fingerprint. RSS stands for Received signal strength, and

it is defined as:

RSS(d) = P, — P; — 10alogy, <dio) +¢ (6.2)
where:
e P, is the transmission power, expressed in dBm;
e ( is the distance between the transmitter and the receiver;

e P, denotes the average path loss in the environment;
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e dj is a reference distance (typically dy = 1 meter);

e « is the attenuation coefficient that depends on the environment (e.g., walls,

obstacles);

e ¢ represents a random noise component, typically modeled as a Gaussian vari-
able.

Localization via RSS Fingerprinting

Localization fingerprinting refers to a class of techniques that estimate the po-
sition of a target by matching signal characteristics,commonly the Received Signal
Strength (RSS), that vary with location [28]. The fundamental idea is that the
signal’s "fingerprint" at each position is unique enough to serve as an identifier for

that location.

General Fingerprinting Approach

The fingerprinting process is typically divided into two main phases:

1. Training (offline) phase: A set of fingerprints is collected throughout the
environment by placing the target in known positions. At each of these po-
sitions, the system records signal characteristics such as RSS from multiple

SENSOors.

2. Runtime (online) phase: The current RSS measurements collected by the
sensors are compared with the pre-recorded fingerprints. The target’s location
is estimated by identifying the most similar fingerprint.

RSS-based Fingerprinting

In this thesis, we focus on RSS fingerprinting within a wireless sensor network
(WSN). The following procedure shows the essential steps to properly perform the

training phase and the runtime phase.

Training phase:
1. Divide the environment into a grid of cells.

2. For each cell, place the target at the center and let the sensors record the RSS

values.
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Runtime phase:
1. When a new target appears, each sensor measures the RSS.

2. Localization is then performed by determining in which cell the new RSS vector

best matches the stored fingerprints.

Each grid cell represents a possible location where the target can be found, and
the system predicts the most likely one based on current measurements by solving

an optimization problem.

RSS-Fingerprinting: Training Phase

During the RSS-fingerprint training phase, a dictionary Dis created that collects
measurements from all sensors. This dictionary is essential for solving the optimiza-
tion problem in the runtime phase. The structure of the dictionary is presented
below.

The main steps are as follows:

The environment is divided into a grid of n cells.

The target device is placed sequentially in each cell (typically at the center).

In each position, the target broadcasts a signal that is received by the sensors

deployed in the area.

Each sensor i measures the RSS and stores the result, building a signature

that characterizes the signal strength for each cell.

Let us denote by D; ; the RSS measurement acquired by sensor 7 when the target
is located in cell j. Then, each sensor i constructs a local dictionary as a column

vector:

D;,
D;»

Di,n

By collecting the measurements from all g sensors in the Wireless Sensor Network
(WSN), we obtain the global dictionary:
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Dy

D
D=| | eR™™

-
Dq
This dictionary D will then be used during the online phase to estimate the posi-

tion of the target by comparing new measurements with these reference signatures.

6.3.2 Mathematical Model and Localization Algorithms

After the training phase, in which the dictionary D € R?*" is constructed from
signal strength measurements in each cell of the environment, the runtime phase

focuses on using new measurements to estimate the current location of the target.

Problem Setting

We consider a centralized scenario, where:

e Each of the ¢ sensors acquires a measurement y; € R of the received signal
strength (RSS) when the target is active.

e All the sensors send their measurements to a centralized fusion center (FC).
e The FC stores the dictionary D and processes the measurement vector y =
Y1, 9" € RYL
Ideal vs. Realistic Scenarios

In an idealized setting, we assume:

e Each fingerprint D, ; is unique across all cells j.

e The RSS measurements taken during the training and runtime phases are

perfectly consistent.

Under these assumptions, each sensor could in principle localize the target indepen-
dently by solving:
Find j such that D, ; = y;.

However, in practice, this scenario is unrealistic due to the presence of noise and the

similarity of measurements across neighboring cells. As a result:

¢ Runtime measurements deviate from training values.

e Different cells may yield similar RSS vectors.
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The k-Nearest Neighbors (k-NN) Approach

Given the evident differences between the ideal case and the real one, it is nec-
essary to find optimization algorithms suitable for minimizing the errors that arise
in the real context. A common strategy to estimate the location is the k-nearest
neighbors (k-NN) method. This algorithm works as follows:

e Assume that only one target is present.

e Given the measurement vector y € RY, the fusion center searches for the

column D, of the dictionary D that is closest to y in the Euclidean norm:
J=arg_min [ D; =yl

where D; = [D; D,;]" is the j-th column of D.

’j’...’

The algorithm just presented provides a simple approach for single-target localiza-
tion, but becomes inefficient when multiple targets are present. This justifies its

natural extension to multi-target scenarios, as described below.

Multi-Target Localization and Computational Complexity

The k-NN algorithm can be extended to localize multiple targets by exploiting
the approximate additivity of RSS. For instance, if there are targets located in cells

J1 and 7jo, the measurements received by sensor 7 can be approximated as:
y; = D; j, + D, ;, + noise
Thus, the optimization becomes:
(j1.J2) = arg  min [|D;, + Dj, = yll3

However, the number of possible combinations grows combinatorially with n and k:
n . .
< k‘) possible configurations

This renders the problem computationally intractable for large values of n and k
(NP-hard).
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Localization as a Binary Linear Regression Problem

An alternative approach is to cast the localization task as a constrained opti-

mization problem:

Find z € {0,1}"
such that Dz =y

ixj = ]{5
j=1

Here, the binary vector = encodes the positions of the k targets (with 1 indi-
cating presence in a given cell), and Dx = y models the additive RSS contribution
of each active target. However, since this is a mixed-integer problem, it is again

combinatorially hard to solve and belongs to the class of NP-hard problems.

Problem Relaxation and Regularized Optimization Methods

In the previous formulation, the localization problem was modeled as a binary

linear regression problem with combinatorial constraints:

This formulation, although expressive, is computationally intractable in realistic

scenarios due to its NP-hard nature.

Relaxation: Least-Squares

A first relaxation involves neglecting the binary and cardinality constraints, al-
lowing x to take real values:
reR"

In the presence of noise, the relation Dz = y is reformulated as a least-squares
problem:

& = arg min || Dz — y||3

This formulation is effective when the number of sensors ¢ is greater than or equal

to the number of cells n (¢ > n), making the system overdetermined.
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Relaxation: Lasso and Elastic Net Approach

However, in cases where ¢ < n, i.e., when the number of sensors is smaller than
the number of cells (which is typical in practical scenarios), the system becomes un-
derdetermined. Moreover, in many situations, the number of targets is significantly
smaller than the total number of cells, that is, k < n.

In such cases, it is useful to exploit the sparse structure of the vector x by using
Lasso regression:

& = arg min | Dz —yl5 + Al

The addition of the ¢; regularization term promotes sparse solutions, in which only a
small number of components of x are significantly different from zero. This approach
is particularly suitable for multi-target localization problems.

As discussed in the previous chapters, an alternative regularization scheme is
given by the Elastic Net, which combines the ¢/ and ¢5. IN the context of localization,

its formulation is
& = argmin [|Dz — y[3 + Ml + & )3
sCRn 2 2 2
where A\, u > 0 are regularization parameters.

Robust Localization under Sparse Sensor Attacks

In adversarial scenarios, some sensors may be compromised by attacks, leading
to corrupted measurements. In this context, it is assumed that such attacks are
sparse.

To model this situation, a vector a € R? is introduced to represent the effect of

the attacks on the received measurements:

. : Poa fa
ta=arg _min||Dw+a—yls+ Xl + Aallaly + 5 ll2ls + S llall

This formulation is an extended Elastic Net problem, where both the state and the
attack vector are regularized by introducing a combination of the ¢; and {5 norms.
The algorithm to solve the previous optimization problem is illustrated in the

next section.

Algorithm Setup

The proposed algorithm aims to estimate the position of a target and to detect

possible sensor attacks in a wireless localization scenario, starting from noisy received
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signal strength (RSS) measurements. The data used in the algorithm are loaded from

a file, which contains the following variables:

e D € RY™ the dictionary, whose columns represent the expected RSS fin-
gerprints associated with each of the n candidate target positions, and whose

rows correspond to the ¢ sensors in the network.

o y € R the vector of measured RSS values collected by the sensors at a

given time.

The dictionary and the measurement vector are combined as:
G =1[D I,

where I, € R7*? is the identity matrix. The augmented dictionary G is constructed
in such a way that the first n columns correspond to the possible cells in which the
target can be found taken from dictionary D, while the remaining ¢ columns serve
to model the possible additive signals of the attacks. Thus, the estimation problem
can be written as

y=Gz= Dz +a,

where z € R"™ represents the (sparse) position vector of the target and a € RY
represents the (sparse) attack vector.

The concatenated variable is defined as

x
z=| | eR"™,
a

which is set to zero at first, presuming that there isn’t a target or an attack.

N = 1000 iterations are performed by the iterative algorithm presented below.
The main parameters, which were selected based on the new theoretical formulation,

are:
[ ] LQ,

e )\,, )\,: soft-thresholding parameters that encourage sparsity on the attack

estimate a and the target estimate x, respectively;

® (., q, that are derived from Elastic Net regularization theory.

Whereas the nonzero entries in a identify the sensors that are under attack, the

nonzero entries in  indicate the estimated target location.
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Algorithm 3: Elastic net for localization problem
Input: N,y € R} G € R0 X >0, )\, >0, ¢, € (0,1), ¢, € (0,1),
Ly, >0

T x
Output: <A> = final estimate of ( >
a a

0
Initialization: Z(0) = ( )

[y

0
2 for k=1to N do

v(k) = 2(k) — eLo GT (G2(k) — y(k))
4 Separate variables:

Yo(k) =71n(k),  Yalk) = Ynttena(k)
5 Apply elastic-net soft-thresholding:

2(k+1) = ¢u - S, (a(k))

a(k+1) = ga - Sx, (7a(k))

6 Recombine estimates:

7 end

Results

Below there is a visual representation showing the functioning of the grid-based
localization approach. The figure illustrates how the environment is divided into cells
and how the algorithm estimates the target position based on sensor measurements.

In particular, the system has 100 cells and 20 sensors, five of which are under attack.
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Figure 6.6: Target localization and sensor attack estimation results displayed on a

grid.

As we can see from the figure 6.6, the observer was able to identify both the cell
containing the target and which of the 20 sensors were attacked. In the figure 6.6,
the cell containing the target is marked with a green star, the sensors under attack

are marked with orange "X"s, while the remaining sensors were not attacked.

Estimated target position and attacked sensors

i R = S I IIIIIIIIIIIIIIII S o ”“”““I“““. IIIIIIIIIIIIIIII S i SS”:“”“““””“E IIIIIIIIIIIIIIII =
: O
52 : :
0 |
e e e B TRV PRI ST SN B,
@) : :
; : : 5 S3:
SRCIEY W NN "SR SN NS U o U
S e
S10 :
e et ATTACK. oo e SR s e s S
s19 -V
T & N ok TN Y. S - S = W o O
LI T el
| . armac
il Luse e
ATTACK OS? 200 g Lay o
IR T AT s g ................ _ ................................................................. ................ ATT}E\CK
. S20 :
Os15§ O . S11
Lt aiii el ey .................................................................................. 816 ......... @ ..............
ATTACK
I 1 I 1 1 b I 1 1 i
0 100 200 300 400 500 600 700 800 900 1000
*Target
OSenosrs
¢ Sensors under attack

6.4 Real world case

It is very interesting to examine a real world case study inspired by an example

presented in [29] where the system under study is an unmanned ground vehicle
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(UGV), which is a ground vehicle that operates without an onboard human presence.
This scenario is particularly relevant since the state transition matrix A has an
eigenvalue equal to 1, a condition that, as previously discussed, directly affects the
system’s observability properties. The UGV is equipped with three sensors. The

system dynamics and output equations are characterized by the following matrices:

1 0.
. 0.0099 o=
0 0.9876

For the simulation study, the malicious attack is acting on the second sensor.

o O =
— = O

This scenario allows us to evaluate the observer’s behavior under marginal stability
conditions. The simulation results evaluating the errors in state and attack estima-

tion are shown below.

A_}rerage MASE over 50 simulations C&verage MSE over 50 simulations
- 1 T T

| |, norm
0.9r ! — — -DSSO
| 101 R g
0.8 1 \
| 5 . i‘\_
S07} 1 g W0 pEag
w | i =
< 5] | hY
o061 I e 1 A \
£ 5107 E N\
@ 0.5 ——lrom|| & ' \
5 — = 'DSSO 2 \
£ &5 102 -
Z o4l | 31 ‘l
: .
= 0.3 1 8 102 1
1 = |
0.2 1 l
I 104 F \
0.1 | \
| -
0 . . 105 . |
0 500 1000 1500 0 500 1000 1500
k k

Figure 6.7: On the left, the comparison of the MASE between the D-SSO and the
new theoretical approach is shown, while on the right, the corresponding comparison
of the MSE on the estimated state is displayed, in the UGV scenario.

Interpretation of Results

The simulation shown in figure 6.7 shows that the observer is able to reconstruct
the system state fairly accurately and, furthermore, is able to determine which of
the three sensors is under attack. Specifically, the error in estimating the attack

support is zero, confirming the observer’s correct operation in this regard, while the
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state estimation error converges to values close to zero. The scenario studied proved
relevant for theoretical speed, given that matrix A has an eigenvalue of 1, placing
us in a marginally stable case.

The results obtained encourage further investigation for real-world implementa-

tion.
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Chapter 7
Conclusion and future prospects

This thesis investigated the problem of secure state estimation, starting from the
theoretical foundations necessary to develop and enrich existing models in the liter-
ature, which present limitations when the system is subjected to malicious attacks.
The main contribution of this thesis was to develop a new observer model, which is
capable of estimating both the state and the attack. Under specified assumptions,
the stability of the observer in the presence of malicious attacks is demonstrated
via a Lyapunov-based approach. The proposed model did not require restrictive
assumptions during its theoretical formulation, and this aspect does not limit its
application to more real-world scenarios in contexts where the type of attack can-
not be classified. The new observer architecture showed promising results in both
synthetic and realistic scenarios, managing to estimate both the system state and
the attack support. Overall, the results obtained in this thesis constitute a solid
theoretical foundation in the field of SSE. Secondly, this work paves the way for
potential future developments. Possible directions include real-world applications
in the field of autonomous vehicles, industrial automation, medical equipment, and
localization problems. Furthermore, a possible future development is to reformulate

and extend the new theoretical approach developed in a decentralized context.
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