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Summary
This thesis focuses on the development and testing of an Electrical
Power System (EPS) C++ model for the In-Orbit Servicing (IOS)
mission. It begins with an introduction outlining the objectives of the
IOS mission, followed by a general overview of the Generic Application
Security Framework and the security protocols used for telemetry and
telecommand operations in space missions. The state-of-the-art chapter
presents the technologies that were considered during the development
phase, including both those adopted and those ultimately not used.
Afterward, Chapter 3 describes the development environment, while
the following sections detail the design and implementation phases.
This part of the work focuses in particular on the battery model, the
Power Line Interface, and the MILBUS1553 interface, also explaining
the physical characteristics and parameters that were used to extract
and validate the corresponding models. Finally, Chapter 5 discusses
the testing procedures and compares the obtained results with real-
world data and the expected performance defined in the documentation
provided by Thales Alenia Space. The final chapter summarizes the
conclusions and future work for possible improvements.
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Chapter 1

Introduction

1.1 Context - What is a Digital Twin and
why it’s foundamental for security

This thesis presents the development of a new satellite simulator for In-
Orbit Servicing (IOS) missions, an Italian Space Agency (ASI) project
led by Thales Alenia Space. This work investigates the integration of
advanced technologies and methodologies to enhance satellite opera-
tions and mission planning. The introduction provides a comprehensive
overview of the research topic, its primary objectives, and the signifi-
cance of the study, thereby establishing a foundation for the subsequent
chapters.

They serve as an indispensable tool for testing, validation, and
training. A simulation environment functions not only as a platform
for pre-launch verification but also as a crucial asset for validating new
versions of On-Board Software (OBSWW) before their deployment on
a live satellite. This rigorous process is essential for minimizing the
risk of mission-critical failures, a fundamental concern in the field of
aerospace engineering. The simulator’s fidelity, therefore, must closely
approximate that of the real satellite, ensuring that simulation results
provide a reliable basis for predicting the behavior and performance
of the actual spacecraft. Consequently, the data acquired during a
simulation is considered a trustworthy source for informed engineering
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and operational decisions. The implementation of this high fidelity is a
significant technical challenge, requiring meticulous attention to detail
in modeling physical phenomena, from orbital dynamics to the subtle
electrical properties of components.

The application of simulation technology extends beyond pre-launch
activities. It is particularly vital for missions such as In-Orbit Servicing,
where OBSW updates may be required to adapt to unforeseen circum-
stances or to prolong the operational lifespan of the spacecraft. A
high-fidelity simulator enables comprehensive regression testing of new
software, meticulously verifying that enhancements do not inadvertently
introduce faults or compromise performance. The ability to perform
such extensive testing in a controlled environment is invaluable, as it
prevents costly and potentially mission-ending issues that could arise
from deploying untested software updates in orbit.

Throughout the satellite production lifecycle, the simulator performs
multiple critical functions. It is employed during the early design phases
to test the functionality of satellite subsystems and is subsequently
used to validate the OBSW before its deployment. Furthermore, the
simulator is an essential tool for training operators and engineers, pro-
viding a secure environment for practicing complex and time-sensitive
procedures, ranging from routine maneuvers to responding to critical
emergency scenarios. The realism of the training environment, enabled
by the simulator’s high fidelity, is crucial for building the operational
competence and confidence of ground control teams.

This research focuses predominantly on the development of the Elec-
trical Power System (EPS) simulator, a subsystem of utmost importance
to the satellite. The EPS simulator is responsible for modeling the
satellite’s power generation, storage, and distribution, thereby guaran-
teeing a consistent and reliable power supply throughout the mission.
A stable and accurate power model is a prerequisite for the meaningful
simulation of other subsystems, such as propulsion or attitude control,
whose operational capabilities are intrinsically linked to power avail-
ability. Therefore, a robust EPS simulation represents a foundational
element for the entire virtual spacecraft model, providing the energy
backbone that dictates the functionality and performance of all other
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simulated systems.

1.2 Cybersecurity in Space
It is essential not only to create an environment that has an high
fidelity to real life architecture but also it is foundamental to make
sure that the simulator and the models follow a standardized path
of development so that the models can be considered scalable. It is
also very critical the security behind the development of the simulator,
the coding language used and the architecture of the simulator itself.
Cybersecurity might seem like a secondary concern in this context but
it isn’t because if the simulator is compromised, the entire mission could
be at risk. A security breach could allow unauthorized manipulation of
the simulator’s models or data, leading to the generation of incorrect
telemetry, corrupted telecommands, or misleading system responses.
Such issues could propagate into the operational phase by influencing
mission planning, validation processes, or even onboard software, poten-
tially resulting in mission failure or damage to spacecraft hardware. For
this reason, during the development of the simulator, several essential
coding practices were applied to ensure that the code remains secure
and that the simulator’s architecture is robust against cyberattacks
and data tampering.

In 2013, ESA started and Agency-internal activity on Secure Software
Engineering (SSE) with the participation of several ESA directorates
and projects. The main objective of this activity has been to standardise
secure software engineering processes on top of existing European
Cooperation for Space Standardisation (ECSS) software engineering
and product assurance standards and to provide practical guidance to
the ESA software engineering practitioners supporting effective and
efficient implementation of these SSE practices and processes. The
standard has been developed first internally for ESA but the plan is to
evolve it to ECSS level. The main outputs of this activity are several
documents: [1]

• A Secure Software Engineering Gap Analysis Technical Note that
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documents gaps found between the ECSS standards and secure
software and systems engineering best practices;

• An Internal Secure Software Engineering Standard that specifies
and formalises secure software engineering processes on the basis
of the ECSS E-40 and Q-80 software engineering standards;

• An Internal Secure Software Engineering Handbook of guidelines
for implementation of the standard;

• A Glossary of Secure Software Engineering Terms;

• A Baseline Catalogue of Security Requirements that contains se-
curity requirements to be used during the security requirements
specification process as defined in the standard.

1.2.1 Generic Application
Security Framework (GASF)

ESA, together with industry, has developed the Generic Application
Security Framework (GASF) to support the software requirements
engineering processes defined in the SSE standard. The framework
provides both a catalogue of software security requirements and tools
that help technical officers and developers select those relevant to a
given project. Since the tool operates independently of the catalogue,
it can also be used with new catalogues from SSE standardization
or even in other domains such as IT infrastructure and hardware
development. The security requirements themselves vary depending on
the criticality of the information handled, the formal classification of
the software, its deployment environment, and any higher system-level
security constraints. For every new development, the technical officer
must select from a wide range of possible requirements. GASF simplifies
this by using requirement templates based on security profiles. These
templates act as filters: some focus on confidentiality, integrity, and
availability levels determined during risk assessment; others capture
the characteristics of the deployment environment such as a DMZ
or internal network; and a third type incorporates project-specific
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recommendations derived from system-level security engineering. All
templates can be applied in combination, and the tool automatically
detects conflicts or inconsistencies that the technical officer must resolve
manually. Once the selection is made, the requirements can be tailored
further and saved as a project template. The resulting set can then
be exported in multiple formats, including Word, Excel, and CSV
for import into DOORS. While further evolution of the framework
is planned, the current version is already mature and, in the case of
mission data systems, its use has become mandatory under ESA’s
Information Security Management System (ISMS). [1]

Figure 1.1: GASF Tool Requirements Specification Process. [1]

1.2.2 Security in Space transmissions for teleme-
tries and telecommands

The SDLS Protocol is a data processing method for space missions that
need to apply authentication and/or confidentiality to the contents of
Transfer Frames used by Space Data Link Protocols over a space link.
The Security Protocol is provided only at the Data Link Layer (Layer
2) of the OSI Basic Reference Model, as illustrated in the figure below.
[2]

SDLS ensures that data exchanged between spacecraft and ground
stations is protected from threats such as unauthorized access, tam-
pering, or replay attacks. It does this by integrating cryptographic
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Figure 1.2: SDLS Protocol in the OSI Model. [2]

protections directly into the data link layer, independent of higher-layer
applications or specific cryptographic algorithms

It can be used with several CCSDS space data link protocols:

• Telemetry (TM)

• Telecommand (TC)

• Advanced Orbiting Systems (AOS)

• Unified Space Data Link Protocol (USLP)

The protocol relies on the concept of a Security Association, which
defines the cryptographic context under which communication takes
place. Each Security Association is essentially a one-way session that
binds together the choice of cryptographic algorithms, the secret keys,
the rules for handling initialization vectors and sequence numbers, and
the format of the header and trailer. To identify the correct association,
every protected frame carries a Security Parameter Index in its header.
This index allows the receiver to select the right cryptographic state
and thus interpret the frame correctly.
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Figure 1.3: Security Protocol Interaction with Space Link Frames [2]

When a frame is prepared for transmission, the SDLS protocol in-
tervenes through what is known as the ApplySecurity function. The
partially constructed transfer frame, which already contains mission
data and the standard CCSDS headers, is passed to this function.
The function adds the security header, sets the sequence number, and
optionally introduces an initialization vector or padding information
depending on the chosen mode of operation. It then applies the selected
cryptographic transformation. If the mission requires confidentiality,
the mission data within the frame is encrypted. If the mission requires
integrity and origin assurance, a message authentication code is com-
puted over selected parts of the frame. If both services are required,
encryption is applied first and authentication is calculated over the
resulting ciphertext. The computed message authentication code, when
present, is written into the trailer. The secured frame is then handed
back to the data link protocol, which adds the remaining protocol-
specific elements such as error control fields before transmission.

At the receiving end, the ProcessSecurity function reverses these
operations. The function begins by examining the security header
to extract the Security Parameter Index, which links the frame to
the appropriate Security Association. Once the association has been
identified, the receiver verifies that the sequence number falls within
the acceptable replay window. This mechanism ensures that previously
valid frames cannot be resent maliciously, since any frame with an
unexpected sequence number is discarded. The receiver then checks
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the message authentication code in the trailer. A valid code confirms
that the frame has not been altered in transit and that it originated
from an authorized sender. If encryption has been applied, the function
decrypts the protected data field, restoring the original mission data
for delivery to the upper protocol layers.

Figure 1.4: ApplySecurity and ProcessSecurity Functions [2]

The protocol supports three operational modes, namely authentica-
tion only, encryption only, and authenticated encryption. Each mode
makes use of the same structural framework of headers and trailers,
ensuring a consistent integration with the underlying telemetry, telecom-
mand, AOS, or USLP transfer frames. The integrity of the frame header
fields can be selectively protected by the authentication mechanism,
while confidentiality is always applied exclusively to the data field.

Replay protection is a fundamental part of the protocol. Each
transmitted frame carries a sequence number that is strictly monotonic
within the context of a Security Association. The receiver accepts
only frames whose sequence numbers fall within a defined acceptance
window, which allows the system to tolerate expected transmission
delays but prevents attackers from injecting old frames back into the
stream.

The integration of SDLS into CCSDS protocols is designed to be
minimally invasive. Synchronization and channel coding sublayers
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remain unaffected, and legacy infrastructures can continue to operate
with minimal adjustments. The only modifications occur within the
construction and interpretation of transfer frames, which gain additional
security metadata while still conforming to the original structural
constraints of the CCSDS standards.

For mission planning, the lengths of the security header and trailer
fields are defined as managed parameters. They remain constant
throughout the mission to guarantee predictable frame sizes and to sim-
plify hardware and software implementations. Security Associations can
be preloaded before launch or activated dynamically during operations,
depending on the mission profile. The management of keys, associations,
and other control functions is not defined within the protocol itself
but is delegated to the Extended Procedures defined in a companion
standard, which allows agencies to adapt security management to their
operational environment.

In practice, the Space Data Link Security protocol provides a system-
atic method of embedding cryptographic protection into every frame
transmitted between spacecraft and ground stations. By doing so, it en-
sures that the data remains confidential when required, that its integrity
and authenticity can always be verified, and that replayed transmis-
sions cannot compromise the mission. This approach makes SDLS a
fundamental building block for secure space communications, offering
a balance between rigorous security requirements and the operational
constraints of long-duration and cross-agency missions.

1.3 In Orbit Servicing Mission
In-orbit servicing (IOS) represents one of the most transformative trends
in space operations and spacecraft lifecycle management. Traditionally,
satellites are launched into orbit with all the propellant, hardware, and
capabilities they will ever have, which imposes a strict limit on mission
duration. Once the propellant is depleted or a critical subsystem fails,
the satellite becomes unusable and is either left in a disposal orbit or
turned into space debris. This paradigm has shaped the economics
of space missions for decades, where reliability margins are pushed
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to the extreme, redundancy is built into nearly every design, and
replacement missions require the launch of an entirely new spacecraft
costing hundreds of millions of dollars.

The concept behind IOS missions is to break this “one-shot” model
of spacecraft operations by introducing servicing spacecraft that can
interact physically with satellites already in orbit. These servicing
spacecraft, sometimes called “space tugs,” “servicers,” or “robotic ser-
vicing vehicles,” are equipped with advanced guidance, navigation, and
control (GNC) systems, robotic manipulators, docking mechanisms, and
specialized payloads. Their role is to rendezvous with client satellites,
establish a controlled physical or robotic interface, and perform tasks
that would traditionally require direct human intervention. By enabling
servicing in orbit, IOS opens the door to extending mission lifetimes,
upgrading payloads, managing orbital traffic, and even reducing space
debris.

Figure 1.5: In-Orbit Servicing Mission Concept

At the heart of IOS missions lies the technological challenge of
autonomous or semi-autonomous rendezvous and docking. Unlike the
International Space Station (ISS), where cooperative docking ports
and human crews facilitate servicing, most operational satellites were
never designed to be serviced. This means the servicer must be able to
capture non-cooperative targets — satellites without docking adapters,
sometimes tumbling or passively stable — requiring the use of robotic
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arms, vision-based navigation, and sophisticated control algorithms.
Once the servicer establishes a stable configuration, it can carry out its
primary functions.

One of the most significant functions of IOS is refueling. Satellites
in geostationary orbit (GEO), for example, rely heavily on onboard
propellant for station-keeping maneuvers. Once this propellant is
exhausted, the satellite must be retired, regardless of whether its
payload is still fully functional. An IOS spacecraft equipped with a
propellant transfer system can dock with the satellite and replenish its
fuel tanks, effectively resetting the mission lifetime clock and allowing
years of additional service. This capability drastically changes the
economics of GEO communication satellites, where revenue is directly
tied to operational longevity.

Another key function is repair and maintenance. Damage to space-
craft components, such as a malfunctioning antenna or solar array,
can cripple a mission. Through the use of robotic manipulators and
modular toolkits, IOS spacecraft can perform corrective actions such as
deploying stuck mechanisms, replacing modular parts, or restoring par-
tial functionality to otherwise lost assets. In the future, satellites may
even be designed with replaceable “orbital modules,” making repairs
and upgrades more akin to maintenance cycles on Earth.

A further application of IOS is relocation. Satellites often need
to change orbital positions, especially in geostationary orbit where
slots are valuable and subject to regulatory coordination. A servicing
spacecraft can attach itself to a client satellite and act as a tug, moving
it into a new slot, transferring it to a graveyard orbit at the end of
life, or repositioning it into medium or low Earth orbit for a new
operational phase. This tug capability can also serve military and
Earth Observation purposes, where responsive repositioning of assets is
highly desirable.

The broader vision of IOS extends beyond simple life-extension
missions. It provides the foundation for an in-space economy where
spacecraft can be maintained, upgraded, and even assembled on-orbit.
Future missions may involve installing new payload modules to en-
hance functionality, building larger space telescopes piece by piece, or
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servicing lunar and Mars communication relays. By reducing waste,
extending functionality, and enabling new mission architectures, IOS
missions transform satellites from disposable assets into serviceable
infrastructure.

1.4 Objectives of the Thesis
The central aim of this research is to create a simulation environment
that is characterized by both robustness and flexibility. To achieve this,
a set of key design guidelines was established for the project:

• Compliance with ECSS SMP standard: Adherence to the
European Cooperation for Space Standardization (ECSS) SMP
standard ensures that the simulator meets recognized industry
benchmarks for quality, interoperability, and reliability. This adher-
ence is fundamental to enabling the reuse of models across different
simulation environments and facilitating their exchange between
various organizations and missions (Clause 1, Scope). Compli-
ance with this standard establishes a shared understanding of core
concepts and a common type system, both of which are essential
prerequisites for effective collaboration and model portability. This
standardization obviates the need to recode models for disparate
simulation platforms, thereby simplifying the integration of new
components and fostering partnerships with international stake-
holders. The standard, for instance, specifies common time kinds
(e.g., EpochTime, MissionTime) and an object-oriented architec-
ture, ensuring all components speak the same technical language.
For this reason the SIMULUS framework uses C++ as its native
language, as it is the language of the ECSS-E-ST-40 standard.

• Integration of SIMULUS This involves the integration of the
SIMULUS to form a comprehensive and dependable system. This
aligns with the ECSS-E-ST-40-07C standard, which seeks to en-
hance the portability and reuse of simulation models by defining
a standardized interface between the simulation environment and
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its models. The SIMLUS framework provides the foundational
communication and data management infrastructure required for
their integration. This hybrid approach capitalizes on the strengths
of a commercial platform for core architecture and the reliability of
publicly-funded, mission-proven components for specific functional
models.

• Creation of a modular, extensible simulation environment:
The architectural design prioritizes modularity, enabling the seam-
less addition or modification of subsystems, and extensibility, al-
lowing the system to support diverse mission scenarios without
necessitating a complete redesign. The SMP architecture is specifi-
cally engineered to support this paradigm, as it distinctly separates
Simulation Models (which provide application-specific behavior,
such as the EPS components) from the Simulation Environment
(which supplies core services like the scheduler and time keeper)
(Clause 4.3). The modularity of the system ensures that changes
or updates to a single subsystem, like the EPS, do not introduce
cascading failures in other, unrelated components, such as the At-
titude Control System (ACS). This structural separation simplifies
maintenance, allows for parallel development by specialized engi-
neering teams, and ensures the simulation can evolve concurrently
with the physical spacecraft’s design.

• Support for various mission scenarios: This entails the devel-
opment of a simulator capable of operating under a broad spectrum
of operational conditions, from standard maneuvers to complex
in-orbit servicing tasks. This functionality includes the capacity
to simulate diverse orbital environments, communication latencies,
and various hardware states, encompassing both nominal operation
and predefined failure modes, to provide a truly comprehensive
and realistic testing platform. For example, a mission scenario
might involve simulating a rendezvous and docking procedure, re-
quiring precise modeling of both the chaser and target satellites,
their propulsion systems, and their relative dynamics. The simula-
tor’s design must be robust enough to handle the complexity and
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dynamic range of such events.

• Enables realistic testing, validation, and analysis of space-
craft operations: This represents the overarching objective, ac-
complished through the simulator’s ability to precisely model the
intricate interactions between different subsystems and the space
environment. The simulator provides a robust and dependable
platform for OBSW validation, mission performance analysis, and
personnel training in a risk-free virtual setting. This is crucial for
verifying the logic of the OBSW, detecting potential deadlocks, and
optimizing operational sequences before they are ever executed on
the real satellite, a process that directly impacts mission safety and
success.

These guidelines are applied to any simulator developed under the
SIMULUS framework, extending beyond the scope of this thesis. The
primary focus of this thesis was on the development of the EPS, with
the remainder of the simulator to be developed in future work.

Specifically, the core objectives of this thesis were:

• To establish the development environment for the simula-
tor and the EPS simulator, encompassing the installation of the
SIMULUS SMP framework and the configuration of the develop-
ment environment. This constitutes a crucial initial step to ensure
compliance with the standard’s defined interfaces and common type
system, which are necessary for component interoperability (Clause
4.2). The absence of this standardized foundation would render
communication between components unfeasible, undermining the
core principle of a modular design.
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Figure 1.6: EPS Architecture

• The development of a Battery model capable of replicating
the behavior of a real IOS satellite battery, including charging,
discharging, power provision to subsystems, and communication
with other components via the SIMULUS framework interfaces.
This model must accurately represent the battery’s state of charge,
temperature, and degradation over time.

• The development of a Solar Array model designed to provide
power to the satellite subsystems, with the functionality to track
the sun cycle and supply power to the entire spacecraft. This
model incorporates algorithms to calculate solar flux based on the
spacecraft’s orientation, a key factor in power generation.

• The development of a Power Distribution and Control
Unit (PCDU) model capable of managing the power supplied
by the sources and distributing it to the various loads as required.
According to the ECSS standard, such application-specific ele-
ments are referred to as components, which are the fundamental
building blocks of a simulation, instantiated with a well-defined
contract to their environment (Clause 3.2.4). These components
serve to encapsulate the behavior of physical hardware, allowing en-
gineers to concentrate on logical interactions rather than low-level
implementation details.
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• The integration of SIMULUS framework interfaces to fa-
cilitate communication between components and the simulator.
This involved the implementation of MILBUS1553 and PowerLine
protocols. Thanks to the compliance with SMP standard, inter-
component communication is handled through three primary
methods: direct interface-based, data flow-based, and event-based
communication. These standardized communication methods guar-
antee that components from different developers or departments can
interact effectively. The implementation of specific physical proto-
cols like MILBUS1553 and PowerLine is therefore managed within
the framework’s communication layer, preserving the platform-
independent nature of the higher-level models and allowing for
easier model exchange and reuse.

• Implementation of MILBUS1553 and PowerLine protocols
to enable communication between the EPS simulator and other
subsystems. The MILBUS1553 protocol is a widely used standard
for spacecraft data bus communication, while the PowerLine pro-
tocol is used for power distribution and control. These protocols
are essential for ensuring that the EPS can effectively interact with
other components of the satellite simulator.

In chapter 4 it will be discussed the physical functionalities of each
component and how they have been designed and developed.
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Chapter 2

State of the Art
This chapter provides a comprehensive overview of the current state
of satellite simulation technology and software engineering practices
that are used to provide high-fidelity simulation environments. It de-
scribes the technologies used in the development of the thesis, including,
UML diagrams, design patterns and the SIMULUS framework. It
also discusses some other possible options used for satellite emulator
development, highlighting the advantages and disadvantages of each
approach.

2.1 Technological Overview
2.1.1 C++ Programming Language
C++ is a high-performance, object-oriented programming language that
is widely used in the development of complex systems, including satellite
simulators. Its features, such as low-level memory manipulation, strong
type checking, and support for both procedural and object-oriented
programming paradigms, make it particularly suitable for developing
high-fidelity simulators. C++ allows for fine-grained control over system
resources, which is essential for simulating the intricate behaviors of
satellite subsystems. Also C++ is the native language of the ECSS-E-
ST-40 standard, which is used in this thesis.
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2.1.2 VMWare Workstation Pro
VMWare Workstation Pro is a powerful virtualization software that
allows users to run multiple operating systems on a single physical
machine. It was used to create a virtual machine environment for the
development of the satellite simulator. It was needed to simulate the
operating system beacuse in order to introduce the Telecommunica-
tions between the OBC and earth station the simulator needs another
windows machine that runs the ECHO environment.

2.1.3 SUSE Linux Enterprise
SUSE Linux Enterprise is a robust and reliable operating system that
provides a stable platform for running complex applications, including
satellite simulators. It is known for its security features, scalability,
and support for enterprise-level applications. The choice of SUSE
Linux Enterprise was made to fulfill the requirements of the SIMULUS
framework which can be run on any UNIX-like operating system, but is
optimized for SUSE Linux Enterprise. This choice ensures compatibility
with the framework’s requirements and provides a stable environment
for development and testing.

2.1.4 UML Diagrams - Magicdraw
UML (Unified Modeling Language) diagrams are a standardized way
to visualize the design of a system. They are particularly useful in
software engineering for modeling the architecture, components, and
interactions within a system. In the context of satellite simulation, UML
diagrams can be employed to represent the structure and behavior of the
simulator, including its components, their relationships, and the flow
of data between them. The software used for creating UML diagrams
in this thesis is MagicDraw, a powerful tool that supports various
UML diagram types, including class diagrams, sequence diagrams, and
activity diagrams. Later on it will be discussed how these diagrams are
created and used in the development of the simulator.
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Figure 2.1: MagicDraw UML Diagram Example

2.1.5 SIMSAT
SIMSAT is a specific, object-oriented software architecture for real-time
satellite simulation. It’s a "simulation kernel" or a core framework that
provides the infrastructure for building satellite simulators. SIMSAT
was developed by the European Space Operations Centre (ESOC)
and is used to create high-fidelity simulators for satellite missions.
SIMSAT provides the essential services and interfaces for the simulator,
such as scheduling, data management, and control interfaces, allowing
developers to focus on creating the specific models for the satellite’s
subsystems (e.g., power, attitude control, communications). SIMSAT
is an example of a simulation infrastructure that can be made SMP-
compliant to allow for model reuse.
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Figure 2.2: SIMSAT Architecture

2.1.6 SIMULUS 10.3
SIMULUS is the European Space Agency’s complete simulation infras-
tructure, essentially a suite of frameworks and libraries that provide
the backbone for spacecraft simulators. Unlike SIMSAT, which is just
the simulation kernel responsible for time management and model
execution, SIMULUS defines the overall architecture, interfaces, and
toolchain that allow a simulator to be built, integrated, and connected
to external systems. It establishes the standards and runtime services
that all models and simulation kernels must adhere to so that different
subsystems can interoperate seamlessly.

At its core, SIMULUS provides a generic simulation framework com-
pliant with the ESA-endorsed SMP (Simulation Modelling Platform)
standard. This means that subsystem models, whether describing
orbital dynamics, thermal behavior, or power management, are imple-
mented in a standardized way with well-defined interfaces for initializa-
tion, time stepping, and data exchange. These models are compiled,
usually in C or C++, and loaded into the simulation environment
as shared libraries. SIMSAT is one possible runtime kernel within
SIMULUS that executes these SMP models, but SIMULUS itself en-
compasses more than just execution: it also handles the definition of
model metadata, the configuration of the simulator, the management
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of telemetry and telecommand flows, and the connection to ground
control systems.

Technically, SIMULUS provides the infrastructure to integrate not
only analytical or physics-based models but also processor emulators
like TEMU4. TEMU4 runs unmodified satellite flight software binaries,
which can then exchange data with subsystem models running under
SIMSAT. The SIMULUS framework ensures that timing, synchroniza-
tion, and data exchange across these heterogeneous components remain
consistent. For example, during the simulation of an in-orbit servicing
mission, SIMULUS can orchestrate the spacecraft dynamics models
(running in SIMSAT), the robotic arm kinematics and contact dynamics
libraries, and the onboard flight software executing inside TEMU4. The
result is a single coherent simulator that behaves as though an actual
spacecraft and its client satellite were in orbit.

Another crucial technical role of SIMULUS is to interface with exter-
nal systems using standardized telemetry and telecommand protocols,
especially the ECSS Packet Utilization Standard (PUS). This allows a
simulator built with SIMULUS to connect directly to a mission control
system, validating operational procedures under realistic conditions.
For IOS missions, this means that ground operators can test how the
servicer will respond to docking commands, refueling sequences, or
relocation maneuvers, using the exact same control consoles they would
operate during a real mission.

In short, SIMULUS can be thought of as the ecosystem within which
SIMSAT and TEMU4 operate. It defines the rules of interaction, pro-
vides the supporting services for data exchange and control, enforces
SMP compliance for portability and reuse of subsystem models, and
ensures interoperability with mission control infrastructures. With-
out SIMULUS, you could still run models in isolation with SIMSAT
or emulate software with TEMU4, but you would not have a com-
plete spacecraft simulator capable of supporting development, testing,
training, and validation across the full spacecraft lifecycle.
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2.1.7 Simulink
Simulink is a MATLAB-based graphical programming environment for
modeling, simulating and analyzing multidomain dynamical systems.
Its primary interface is a graphical block diagramming tool and a
customizable set of block libraries. It offers tight integration with the
rest of the MATLAB environment and can either drive MATLAB or
be scripted from it. Simulink is widely used in automatic control and
digital signal processing for multidomain simulation and model-based
design.

2.1.8 ECHO Environment
ECHO Windows machine is a specialized software environement devel-
oper by Thales Alenia Space that provides a set of tools and services for
developing and testing satellite software that is SIMULUS compliant.
It is used to simulate the ground control systems that interact with
the satellite and specifically it sends telemetries and telecommands,
providing an interface to send raw bytes of data written in hexadecimal
format or to standardized standard based on the protocol used in the
communication. the TM/TC exchange is managed through ECHO SW
while the externally developed models use the ISIS interfaces to connect
with the board, trough CAN Bus or the 1553 Bus.

2.1.9 TEMU Processor Emulator
An emulator is a software or hardware system that mimics the behavior
of another system, allowing hardware designed for one environment to
run in a different one. Specifically for this case the TEMU emulator
allows the emulation of the OBC of the satellite. TEMU is a widely used
processor emulator that supports a variety of architectures including
ERC32, LEON2, LEON3, LEON4, LEON 5, P2020 and ARM.
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2.1.10 PUS Protocol
The Packet Utilization Standard (PUS) is a protocol defined by the Eu-
ropean Cooperation for Space Standardization (ECSS) for the exchange
of the PUS defines how telecommand (TC) packets and telemetry
(TM) source packets are used for remote monitoring and control of
spacecraft subsystems and payloads. It structures operations into ser-
vices, each corresponding to fundamental spacecraft functions such as
telecommanding, verification, telemetry reporting, on-board scheduling,
monitoring, memory management, and troubleshooting. [3]

More of this will be discussed later on during the development of the
MILBUS1553 interface.
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Feasibility study
This section of the thesis is dedicated to the feasibility study meaning
that it will describe

• How the environment was configured, the tools used for the de-
velopment of the simulator and the difficulties met during the
setup

• The architecture of the simulator and how it is structured

• The technological choices made during the development.

3.1 Development Environment
This section will discuss the development environment used for the
simulator, including the tools and technologies employed, as well as the
challenges encountered during the setup process. Since the research was
conducted in collaboration with Thales Alenia Space the project and
the development environment needed to be secured and isolated from
the rest of the network. The machine was configured to be working on
a private VLAN that allowed communication with other machines in
the laboratory and the gateway to the internet, but not with the rest of
the network. After this initial configuration it was essential to retrieve
the best possible performances from our machines. The computers used
for the development were equipped with
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• Intel Core Ultra 9 285K Processor

• 128GB RAM

• 2 TB Hard Drive

• 1 x 24" LED monitor

• Video adapter 1 GB for double monitor

• Mouse

• Keyboard

• Dual Ethernet interface

The main problem with this machine was the processor since the
Intel Core Ultra 9 285K processor does not allow Hyper-Threading
Intel technology. This means that in order to push the emulation
environment we needed to assign specific cores called P-Cores of the 24
present to the process that was running the VMWare Workstation Pro
software. This was done to ensure that the virtual machine had enough
resources to run smoothly and efficiently, as the simulator requires
significant computational power to simulate the various subsystems of
the satellite.

3.2 Simulator Architecture
To start things off it is important to first describe the architecture of
the simulator and how it is structured.
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Figure 3.1: Internal components and external interfaces.

As shown in Figure 3.1 and briefly said in Chapter 2, the simulator is
composed of several internal components and external interfaces. The
main concept is that the machine that runs suse hosts the SIMSAT
simulator that provides a GUI for managing and allowing interactions
between models while the ECHO environment runs on a separated
Windows machine that simulates the ground station control which
sends telecommands and recieves telemetries from the satellite. Models
are developed in C++ and follow the ECSS-E-ST-40-07C standard,
which defines the Simulation Model Portability (SMP) standard. This
standard ensures that models can be reused across different simulation
platforms, promoting interoperability and efficiency in the development
process. This concept is called model portability and is a key feature
of the SIMULUS framework.

3.3 ECSS SMP Simulator - SIMSAT
SIMSAT is a simulation infrastructure framework developed by the
European Space Agency, designed to provide the core environment for
spacecraft simulators. It is not itself a simulator of satellites, but rather
a simulation kernel that manages how different subsystem models inter-
act, execute, and synchronize during a simulation. SIMSAT provides a
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simulation engine that handles time management, either in real-time or
accelerated modes, and coordinates the execution of different subsystem
models. It also offers a model integration framework where subsystem
models, written in languages like C, C++, or Fortran, can be com-
piled into dynamically linked libraries and loaded into the SIMSAT
environment. These models represent specific spacecraft components
and are executed under the scheduling of the kernel. SIMSAT also
provides control and monitoring facilities such as GUIs, logging systems,
telemetry displays, and debugging tools, making it suitable for training
operators and validating mission procedures.

3.4 SMDL Emulator Model - TEMU4
Technically, TEMU4 provides instruction-accurate or cycle-approximate
emulation of processors commonly used in space applications, such as
LEON (SPARC-based), ARM, and other mission-specific architectures.
It translates the binary instructions of the flight software into host ma-
chine instructions and executes them while also emulating peripherals,
memory, and bus systems. This allows the same compiled flight software
image that would fly on the satellite to be executed inside TEMU4.
Through this mechanism, engineers can test bootloaders, operating
systems, device drivers, middleware, and high-level mission applications
in a realistic environment without risking expensive hardware.

The tool provides interfaces for simulation control and monitoring,
so developers can step through execution, inject faults, or monitor
registers, memory, and I/O devices. TEMU4 can integrate with higher-
level spacecraft simulators like SIMSAT, creating a full testbed where
SIMSAT models the spacecraft subsystems and dynamics, while TEMU4
executes the on-board software stack in a virtual processor environment.
This combination allows for end-to-end verification of how software
reacts to spacecraft behavior and vice versa.
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Design and Development
In this section it will be discussed the design patterns and the devel-
opment process of the EPS. As mentioned in the previous sections,
work was devided in three main parts including the develpment of the
Battery model, the Solar Array model and the PCDU model. The part
that will be discused will be the battery model and the development
of the PCDU model, the PowerLine interface and the MILBUS1553
interface. To do so it is important to first understand the EPS physical
functionalities and how they interact with each other.

The next section will describe the physical functionalities of a pro-
totype of Battery used for space missions and how the design was
extracted from them.

Specifically these steps are the ones that will be described in the
following section:

• Description of the physical functionalities and lifecycle of a space
Battery

• Description of the UML diagrams designed starting from the phys-
ical functionalities

• Description of the development of the Battery model, PowerLine
and MILBUS1553 interfaces, specifically:

– XML configuration files and their structure.
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– The main classes in the Battery Model and their relationships.
– The main functions of the Battery model and how they interact

with each other.
– Development and implementation of the PowerLine interface,

discussing some pseudo-code took from the actual code.
– Overview of the MILBUS1553 interface and of the PUS protocol.
– Code implementation of the MILBUS1553 interface and the

functions developed.
– Overview on the handling of telecommands and telemetries

implemented for the MILBUS1553 interface.

4.1 Space Battery Functionality
A battery is an assembly of interconnected electrochemical cells. Each
cell is composed of an anode that provides electrons, a cathode that
accepts them, an ion-conducting electrolyte, and a separator to prevent
short circuits, all housed within a hermetic case with terminals for
the external circuit. Batteries for space missions are divided into two
main classes: primary (non-rechargeable) and secondary (rechargeable).
Primary cells are ideal for "one-shot" applications, such as long-distance
planetary missions, where power is needed for a brief period after a
long cruise.

Figure 4.1: Battery Cell [4]
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These are typically Lithium (Li) based, chosen for their high specific
energy (over 500 Wh/kg), flat discharge characteristic, and very long
shelf life of up to 10-20 years. The specific chemistry, such as Li-SOCl2
or Li-MnO2, is selected based on the mission’s requirements for energy,
power, and operating temperature. Secondary cells are essential for
missions requiring repeated charge and discharge cycles, like those in
Low Earth Orbit (LEO) or Geostationary Orbit (GEO) that experience
frequent eclipses. Currently, Lithium-Ion (Li-Ion) technology is the
standard for rechargeable space batteries, offering high specific energy
up to 180 Wh/kg and a long cycle life. These cells can be assembled
in different configurations, such as connecting serial strings in parallel
("s-p") or parallel groups in series ("p-s"), depending on factors like
redundancy and management complexity. The performance of any
battery is heavily influenced by its temperature and State of Charge
(SoC).

For space applications, batteries are typically designed for an opti-
mal operating range of 0°C to +30°C. Maintaining this temperature
is critical; higher temperatures can improve performance by reducing
internal resistance but also accelerate irreversible chemical degradation,
while low temperatures increase resistance. Thus, thermal manage-
ment systems with heaters and coolers are often necessary to ensure
optimal performance and longevity. Key performance metrics define
a battery’s capability. Specific Energ(Wh/kg) and Specific Volume
(Wh/l) measure its energy density by mass and volume, respectively.
Depth of Discharge (DoD) indicates the percentage of energy used per
cycle and is a critical factor in determining the battery’s lifespan; a
higher number of cycles, typical for LEO missions, necessitates a lower
DoD, whereas GEO missions with fewer eclipses can tolerate a higher
DoD. Proper management is paramount for the safety and reliability
of Li-Ion batteries. Charging typically follows a constant current phase
until a voltage limit is reached, followed by a taper charge at constant
voltage. It is crucial to prevent both overcharge (above 4.1-4.2V per
cell) and over-discharge (below 3V per cell), as these conditions can
lead to irreversible damage or dangerous thermal runaway events. To
mitigate these risks, cells incorporate multiple safety features. These
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protections include pressure-sensitive devices to prevent overcharge,
"Polyswitch" devices to limit current during an external short-circuit,
and multi-layer "shut-down" separators that melt at high temperatures
to reduce ionic conductivity. Within the spacecraft’s Electrical Power
System (EPS), the battery plays a central role. It stores energy from
the solar array during sunlight, provides power during eclipses, and
supplements the solar array during peak power demands. The Power
Control and Distribution Unit (PCDU) manages these functions using
a Battery Charge Regulator (BCR) and a Battery Discharge Regulator
(BDR). The BCR controls charging and protects against overcharge,
while the BDR regulates the power supplied to the spacecraft bus and
prevents over-discharge [4].

Figure 4.2: State of Charge

This image shows the relationship between the State of Charge (SoC)
and the Elecromotive Forse (EMF) of a Li-Ion battery. As is easy to
imagine the bigger the SoC the higher the EMF of the battery.

To simulate the correct behavior of a battery it was important to first
underline the correct specifics of the IOS satellite battery. For privacy
and security reasons these informations cannot be disclosed within
this thesis. However, the specifics and the functionalities modeled are
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representative of the real IOS battery.

4.1.1 Battery UML Design
The engineering design process requires to extract the software require-
ments from the physical functionalities of the system. The battery
required to carefully read the documentation provided by Thales Alenia
Space and understand the architecture of the battery. For IOS case
the battery is composed of Battery Cells connected in parallel, each
cell has a specific capacity, voltage, internal resistance and a maximum
charge and discharge current. The battery is connected to the PCDU
though a single Power Line interface that allows to transfer current
between the two components. Redundancy was not considered during
the development of the battery model, although it is present in the real
IOS satellite battery.

The first step for a correct design, considering that the ECSS SMP
standard is very similar to a factory method design pattern, is to
create an UML diagram. As mentioned during the State of the art
chapter, UML diagrams were created using the MagicDraw software.
To start things off it was important to understand the environment
of the SIMULUS standard associated with MagicDraw. MagicDraw
allows to define custom profiles suitable for ECSS standard, the preset
was already available in the development environment provided and it
was only required to understand how to create the UML diagrams.

Following the UML of the battery model:
The UML diagram is structured as follows:

• BtaModel: this is the main class of the battery model, it inherits
from the SMDLmodel and GenericCyclicModel classes provided
by the SIMULUS framework. It contains all the attributes and
methods necessary to simulate the battery behavior, including state
of charge, voltage, current, temperature, and methods for charging,
discharging, and updating the battery state.

• BtaCellPack: this class represents a pack of battery cells connected
in parallel. It contains attributes such as the number of cells, total
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Figure 4.3: Battery UML Diagram

capacity, and methods to calculate the overall voltage and current
of the pack. Also methods inside this classes are called by the
BtaModel class to regurally update the state of the pack.

• BtaPackGroup: this class was created to represent a group of
battery cell packs. Originaly it was implemented to manage redun-
dancy and failure of the packs but this functionality is not still
implemented and will be added in future work.

• BtaConfiguration: this structure contains all the configuration
parameters for the battery model, also defines the numbers for the
first time the battery is turned on.

• PowerLine: finally the PowerLine interface is a standard interface
provided by the SIMULUS framework, this was defined but not
initialized in the UML diagram. The initialization was performed
later on during the coding of the battery model.
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As shown in Figure 4.3, the battery inherits from the SMDLmodel
GenericModel and GenericCyclicModel, this is because for the ECSS
SMP standard models are required to inherit from a hierarchical struc-
ture of classes that provide functionalities for generic models. Specifi-
cally, a battery, is required to be constantly running and updating its
state, therefore it was chosen to inherint from the GenericCyclicModel
class. For SIMULUS, but in general for C++ programming, there are
some methods that are mandatory to implement in order to have a
working model. Choosing the correct model to simulate the battery is
a crucial step, as it defines the behavior and interaction of the battery
within the simulation environment.

Once the UML diagram and design was completed and agreed on
with the supervisor, MagicDraw allows to export the UML diagram
in a C++ code skeleton. This skeleton provides the basic structure
of the classes and methods defined in the UML diagram,without the
actual implementation of the methods. This skeleton was then used as
a starting point for the development of the battery model, filling in the
methods with the actual logic and algorithms to simulate the battery
behavior. The skeleton looks like something like this:
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Figure 4.4: Sample Code Skeleton

The code skeleton also includes the import of the necessary libraries
and namespaces required for the model based on the model from
which the specific class inherits. This ensures that all the required
dependencies are available for the implementation of the battery model.
It is also worth mentioning that this is not the only way to create a
model for SIMULUS, it is also possible to manually do it by creating the
classes, importing the right libraries and inheriting from the right classes.
As it will be discussed later on, some attributes and methods were
added manually without passing through the UML design first. The
methods shown in the UML diagram are the ones that were imagined
being essential at the beginning of the design process, but during the
development some methods were added or removed based on the actual
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needs of the model.

4.2 Battery Model Development
This section is one of the core arguments of the thesis, as it will
describe the development process, and choices that were made during
the implementation of the battery model. As explained in the previous
section, the starting point was the code skeleton provided by MagicDraw,
so the first idea that came to mind was to start implementing the
methods one by one. But first it was essential to understand how
SIMSAT works and how to test the model, so that it would have
been possible to test the methods as they were implemented. SIMSAT
connects to the code through XML files that define the models and
their configuration. Specifically for the configuration that was provided
by Thales Alenia Space, the core XML file merged all the models that
needed to be shown in the SIMSAT GUI like so:

Figure 4.5: XML Configuration File

This XML file defines the models that will be loaded into the SIMSAT
environment, including their names, types, and configuration files. The
<SubNodes> refere to aliases creaded in the original BTA.xml file that
needed to be created manually. The following image shows an example
of XML file since it is not possible to show the original one.
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Figure 4.6: Sample XML Configuration File

Once opened the SIMSAT GUI by launching the script ./SIMSAT.sh
in the terminal, the structure of the satellite and the SIMULUS en-
vironement is visible. It is possible to observate the fields previously
created in the UML diagram and their values. Once SIMSAT is running
and correctly configured with the XML files showing the skeleton of the
battery model, it was then possible to start implementing the methods.

4.2.1 BtaModel Class
The class BtaModel once initialized calls a method called

CreateAllContainedModels(Smp::ISimulator* dynsim) which takes
as input a pointer to the a Simulator object. This method is used to
create all the sub-models that are contained within the battery model.
First of all it calls a function called BtaXmlFilParser() which based
on the BtaConfiguration and the parameters set for numberOfCells,
vMaxCell, vMaxCell, ... instantiates and calculates the BtaCell-
Pack values for the configuration based on this formula:

ppacketNumber = Ncells

Nparallel

vmax = vcell
max · ppacketNumber

vmin = vcell
min · ppacketNumber

After calculating the values for each pack, the method
CreateAllContainedModels creates the packs in a loop that recursvely
calls the method CreateContainedModel
which is a method provided by the SIMULUS framework, present in the
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CommonRoot namespace, which takes as input the Simulator pointer,
the cell name, a pointer to the parent model, and the UUID identifier of
the model created. After this each pack field is initiated with the values
present in the basic configuration by following the coding practices
that avoid any cybersecurity risk. Each input is validated and checked
before being assigned to the attribute. The loops iterates for each cell
pack present in the battery.

4.2.2 Pulse Raising Port
The first implementation was the PulseRaisingPort method. This
method is called when the model is started and it is
used to initialize the model. It is present in the GenericCyclicModel
class and it is mandatory to implement it. In order to implement the
PulseRaisingPort method it was defined a function called

UpdateModel(tasi::sve::bta::btaconfig::BtaVariableUpdate
variable). This function takes as input an enum variable that is used
in a switch case to update the model based on the variable passed as
input. The cases are the following and for each case a specific logic is
defined:

1. BTA_ACTIVE_PACKS: Calculates the number of active packs
based on the current state of the battery and update the capacity
of the Battery based on the number of active packs.

2. BTA_STATE_OF_CHARGE: Calculates the State of Charge
(SoC) for each cell pack using this formula:

(vbtaV oltage = vbtaVoltage + EMFcellPack)

3. BTA_CURRENT: Calculates the current flowing through the bat-
tery based on the power line interface and update the current
attribute of the battery.

4. BTA_EOC_WORKING_POINT: this switch case is very complex
so it requires a separate section to be explained and discussed.
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4.2.3 End of Charge Working Point switch case
This switch case is the most complex one because it requires to costantly
update both the Depth of Discharge (DoD) of the battery and the SoC
of each single cell pack. First the running DoD is saved in a temporary
variable, then the Maximum and Minimum voltage is assigned based
on the configuration file for each cell. It is important to underline that
the current flowing in the battery is represented by only one variable
iChgOrDchgEfficiency. This variable is positive when the battery is
taking power from the PCDU and negative when the battery is giving
power to the PCDU. After the assignment of the DoD, if the efficiency
is different from zero, the current is set to 0.0 and, if positive the
efficiency of the flowing for the current is calculated by following this
forumla

CurrentEfficiency = − current

batteryEfficiency

while if the current is negative the efficiency is calculated by following
this formula:

CurrentEfficiency = − current · batteryEfficiency

Later the DoD is updated by following this formula:

tempDod + = iChgOrDchgEfficiency · ∆t

FROMH→NS · Cactual

After this each cell pack is recursively updated by calling a method
present in the BtaCellPack.cpp class. This method will be discussed
in the section dedicated to the BtaCellPack class.

4.2.4 PulseRaisingPort XML Configuration
Once the function PulseRaisingPort has been implemented it is im-
portant to modify the XML configuration file and define the frequency
at which the function will be called. This is done by adding the following
line in the XML file:
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<InterfaceLink Name="">
<ProviderNode>BTA</ProviderNode>
<Reference>refClockFrequency_8</Reference>
<ConsumerNode>PULSE_GENERATOR</ConsumerNode>

</InterfaceLink>

This line defines a link between the BTA model and a pulse generator
function, which will call the PulseRaisingPort method at a frequency
of 8 Hz. This means that the method will be called 8 times per
second, allowing the battery model to update its state and perform any
necessary calculations.

Lastly the BtaModel.cpp class implements the instantiation of the
PowerLine interface by calling the method SetPortImplementation()
which binds by using the keyword bind of the std library to the methods:

• GetCurrent: returns the current flowing through the battery.

• GetVoltage: returns the voltage across the battery.

• SetCurrent: sets the current flowing through the battery.

• SetVoltage: sets the voltage across the battery.

This initialization is done by assigning the
powerPortImplementation.<method><Current/Voltage>Port to the
corresponding method. This section will be largerly discussed in the
PowerLine section.

4.2.5 BtaCellPack Class
The BtaCellPack class represents a pack of battery cells connected in
parallel. It contains attributes such as:

• packResistance: represents the resistance of the cell pack.

• dodValue: represents the Depth of Discharge (DoD) of the cell
pack.
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• balancingStatus: represents the balancing status of the cell pack.

• electromotiveForce: represents the electromotive force (EMF) of
the cell pack.

• isInFailure: boolean that indicates if the cell pack is in failure.

It also implements methods that are called by the BtaModel class to
update the pack recursively.
The UpdateBtaPack(Smp::Float64 iBta) method takes as input the
current flowing in the battery and calculates the current dodValue of
the cell pack by following this formula:

xDoD + = iBta · ∆t

FROMH→NS ·
1
Cnominal · Nparallel

2
The Depth of Discharge (DoD) of a battery is defined as the fraction

of the nominal capacity that has been discharged up to time t:

DoD(t) = 1
Ctotal

Ú t

0
I(τ) dτ

where

• I(τ) is the battery current (positive for discharge),

• Ctotal = Cnominal · Nparallel is the effective nominal capacity of the
pack,

• the integral computes the total charge withdrawn from the battery.

In discrete form, with a simulation time step ∆t, the DoD can be
updated incrementally as:

DoDk+1 = DoDk + Ik · ∆t

Ctotal

Since ∆t is typically expressed in nanoseconds while capacity is given
in ampere-hours, a unit conversion factor FROMH→NS is introduced
to ensure dimensional consistency:
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DoDk+1 = DoDk + Ik · ∆t

FROMH→NS · Cnominal · Nparallel

This equation corresponds directly to the implementation:

x_dodValue + = iBta · ∆t

FROMH→NS · (Cnominal · Nparallel)
which updates the state variable x_dodValue by accumulating the

fraction of capacity discharged in each simulation step.
After updating the DoD, the method computes the EMF of the cell

pack based on the updated DoD and the vMin and vMax of the battery
by following this formula:

EMF =
1
Vmin − Vmax

2
· xDoD + Vmax

where:

• E is the electromotive force (variable y_electroMotiveForce),

• Vmax (vMaxCell) is the maximum cell voltage at full charge,

• Vmin (vMinCell) is the minimum cell voltage at full discharge,

• xDoD (x_dodValue) is the depth of discharge, normalized between
0 and 1.

This linear formulation has the following properties:

xDoD = 0 ⇒ E = Vmax, battery fully charged,

xDoD = 1 ⇒ E = Vmin, battery fully discharged.

Hence, the equation performs a linear interpolation between the max-
imum and minimum cell voltage as the battery is discharged. Although
the actual voltage–DoD characteristic of real batteries is nonlinear, this
linear approximation ensures:

1. computational simplicity for simulations,

2. EMF values always constrained within the physical bounds [Vmin, Vmax],
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3. sufficient accuracy for system-level studies and control design when
high-fidelity electrochemical modelling is not required.

This makes the relation a practical first-order model of the EMF as
a function of the depth of discharge.

Figure 4.7: Battery EMF mock representation as a function of DoD

This image shows a mock representation of the EMF as a function of
the DoD. As shown in the image, when the battery is fully charged the
EMF is equal to the maximum voltage of the battery, while when the
battery is fully discharged the EMF is equal to the minimum voltage
of the battery.

Finally the State of Charge (SoC) is calculated by following this
formula:

xSoC = E − Vmin

Vmax − Vmin

This formulation ensures the following boundary conditions:

E = Vmax ⇒ xSoC = 1 (fully charged),
E = Vmin ⇒ xSoC = 0 (fully discharged).
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For intermediate voltages E ∈ (Vmin, Vmax), the SoC takes a value in
the range (0,1), thus providing a continuous measure of the remaining
charge. The equation can therefore be interpreted as a linear mapping
from the physical voltage domain [Vmin, Vmax] to the normalized SoC
domain [0,1].

Although real battery voltage–SoC characteristics are generally non-
linear, this linear approximation is sufficient for high-level modeling
and system simulations, as it guarantees simplicity, boundedness, and
a direct relation between voltage and state of charge.

This functions are called recursively by the BtaModel class to update
the state of each cell pack.

4.3 PowerLine Interface Development
This section is dedicated to the development of the PowerLine interface.
The PowerLine interface is a standard interface provided by the SIMU-
LUS framework which allows to simulate the power transfer between
two components. For this context the components that needed to
be connected were the PCDU and the Battery. For doing so it was
important to underline and understand which one is the Consumer
Node and which one is the Producer node. The steps for implementing
a PowerLine interface are the following:

• Define the PowerLine interface in the UML diagram, this step was
done in the BtaModel UML diagram as shown in the previous
section.

• Enstablish the connection between the two models in the XML
configuration file of the Bta by defining the <ConsumerNode>

• Define the methods that will be used to get and set the current
and voltage of the PowerLine interface.

• Bind the methods to the PowerLine interface by using the bind()
method provided by the std library.
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• Call the ConnectPort method provided by SIMULUS framework to
connect the PowerLine interface to the model. This function takes
as input the name of the PowerLine, the PowerLine pointer and a
boolean that indicates if the connection is bidirectional or not.

Once the methods have been defined and implemented, in the Pcdu
class it was required to initialize and define the PowerLineInterface by:

1. Get the list of components connected to the battery \\
power port
2. Select the first component in that list
3. Check if this component implements the \\
IPowerLineIF interface

a. If yes, assign it to _btmInterface
b. If no, assign null to _btmInterface

Once the dynamic cast succeeds and the pointer _btmInterface is as-
signed, the BtaModel class effectively gains access to the set of methods
exposed by the IPowerLineIF interface. This is a critical step because
it transforms the relationship between the battery model (BtaModel)
and the power distribution unit (Pcdu) from a loose coupling (sim-
ply being connected through a generic port) into a strongly typed,
interface-driven interaction. In practice, the Pcdu class implements
the IPowerLineIF interface, which means it provides concrete imple-
mentations for all methods declared in the interface. By storing a
pointer of type IPowerLineIF* in _btmInterface, the BtaModel does
not need to know the exact type or internal structure of the connected
component. Instead, it can simply call the interface methods, relying
on polymorphism to ensure that the appropriate Pcdu implementation
is executed at runtime.
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Figure 4.8: Example of a Power Line interface between a power
supplier model and a power consumer mode [5]

This design pattern has several important implications. First, it
enforces abstraction and modularity. The BtaModel interacts only with
an abstract contract (IPowerLineIF), not with the full Pcdu class. This
makes the battery model independent of the specific implementation
details of the power distribution unit. If in a future evolution of the
system the Pcdu class were replaced by another component that also
implements IPowerLineIF, the BtaModel code would not require any
modification.

Second, this approach provides flexibility and extensibility. Because
the cast is performed at runtime using dynamic_cast, the system checks
whether the connected component actually supports the interface. If it
does, the cast succeeds and the interaction becomes available. If it does
not, _btmInterface remains null, and the BtaModel can either refrain
from making calls or raise an appropriate error. This means the same
software architecture can support different configurations of connected
components without hardcoding assumptions into the BtaModel.

Third, binding the Pcdu methods to the interface ensures safe and
structured communication between subsystems. The Pcdu exposes only
the operations defined in the IPowerLineIF interface, which acts as a
contract specifying exactly what the BtaModel is allowed to do. For
example, the interface may provide methods to request power, report
consumption, or enable and disable certain lines. By restricting access
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to these well-defined operations, the architecture reduces the risk of
unintended side effects and enforces discipline in subsystem interactions.

From a broader system engineering perspective, this mechanism
exemplifies separation of concerns. The battery model is responsible for
tracking state-of-charge, depth-of-discharge, and electromotive force,
while the power distribution unit is responsible for delivering electrical
energy to spacecraft subsystems. The interface provides the bridge
between the two domains, enabling the battery to influence and be
influenced by the power distribution logic, while keeping each component
isolated in its own domain of responsibility.

Finally, in simulation environments such as those used for spacecraft
power system verification, this approach is particularly valuable. By ab-
stracting interactions through interfaces, the simulation framework can
easily swap in different models of the Pcdu (e.g., a simple stub for early
validation, a high-fidelity electrical model for hardware-in-the-loop tests,
or even a real hardware connection) without modifying the BtaModel.
This ability to decouple the model from the implementation ensures
that the simulation remains scalable, maintainable, and adaptable to
evolving mission requirements.

4.4 MILBUS1553 Interface Development
4.4.1 MILBUS1553 Overview
For the MILBUS1553 development it was first important to under-
stand how the MILBUS1553 works and what are its functionalities.
The MILBUS1553 is a military standard that defines a serial data
bus used in avionics and aerospace applications for communication
between various subsystems. MIL-STD-1553 is a military standard
that defines the mechanical, electrical, and protocol characteristics for
a serial data bus used primarily in avionics systems. It specifies a
digital, command/response, time-division multiplexing data bus for
interconnecting multiple remote terminals (up to 31) with a single bus
controller over a dual-redundant twisted shielded pair transmission line.
The protocol uses Manchester II bi-phase encoding at a 1 Mbps bit rate
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and has fault-tolerant features with dual redundant buses for reliability.
[6]

Key features of the MIL-STD-1553 protocol include:

• A single Bus Controller (BC) initiates all data communication with
Remote Terminals (RT).

• Messages consist of 16-bit data words with command, status, and
data types.

• Data transfers follow a command/response protocol format.

• The bus uses a balanced line physical layer with Manchester encoded
data.

• Redundant buses provide increased fault tolerance.

• Defined timing behavior allows RTs to respond within strict timing
windows.

• Bus Monitors can passively observe bus traffic without communi-
cation participation.

In the IOS mission, MILBUS1553 protocol is used to communicate
between the On-Board Computer (OBC) and various subsystems, in-
cluding the Electrical Power System (EPS). Both the SADE and the
PCDU have MILBUS1553 interfaces to receive commands and telemetry
data. The OBC acts as the Bus Controller, while the SADE and the
PCDU function as Remote Terminals. The Data Packet arrives at the
OBC from ground via the TT&C system in a PUS format. As antici-
pated in the State of the Art chapter, the PUS standard is a protocol
for telemetry and telecommand data exchange between ground and
space systems. PUS defines a common language of services and pack-
ets for controlling spacecraft subsystems. Ground sends standardized
telecommand packets, spacecraft replies with telemetry according to the
same service definitions. This guarantees reliable, mission-independent
operations.
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4.4.2 PUS Overview
For simulation purposes the services used is the second one, which is the
telemetry service. The telemetry service allows to send telemetry data
incapsulated inside a PUS packet. This allows the OBC to automatically
decode the data and extract the custom MILBUS1553 command and
data word.

The service 2 PUS packet structure is as follows:

Figure 4.9: PUS Service 2 Packet Structure [7]

As shown in the image, for the simulation case, the MILBUS1553
command and data word are incapsulated inside the Data field of the
PUS packet. Usually the defined service is understood by the OBC and
an appropriate response is given but for the simulation it was necessary
for testing purposes to create a custom service that would allow to send
the MILBUS1553 command and data word directly to the PCDU.

4.5 Implementation of the MILBUS1553
Interface

This section describes in detail the implementation of the MILBUS1553
interface within the simulator. The interface was realized through the
creation of the class Pcdu1553.cpp, which is responsible for managing
the communication between the Power Control and Distribution Unit
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(PCDU) and the On-Board Computer (OBC) over the MILBUS1553
protocol.

The Pcdu1553.cpp class inherits from the SMDLmodel and
GenericCyclicModel base classes, both of which are provided by the
SIMULUS framework. SIMULUS offers a standardized interface for
MILBUS1553 communication, which automatically generates a set
of default communication functions. While this approach provides a
generic interface, it also introduces limitations, since the framework
does not allow customization of the protocol’s behavior. To overcome
this restriction, a custom MILBUS1553 implementation was required,
tailored to the needs of the simulator.

4.5.1 Interface Functions
The SIMULUS framework requires the implementation of two main
functions for bus communication: BTtoRT and RTtoBC. However, in
the current state of the simulator, only the BCtoRT function has been
implemented and customized, as it represents the most relevant com-
munication direction for the PCDU use case.

The function prototype is defined in the library as follows:

virtual void BCtoRT(const ::Smp::UInt16 command,
::Isis::SystemIF::DataWords data,
::Isis::SystemIF::ExchangeStatus* exchangeStatus,
const ::Smp::DateTime exchangeEpochTime,
const ::Smp::Duration exchangeSimTime);

The BCtoRT function receives as input:

• the complete data word transmitted over the bus,

• the command word,

• a pointer to the exchange status,

• the epoch time of the exchange, and

• the simulation time.
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While not all of these parameters are fully exploited in the current
version of the simulator, they have been included to ensure scalability
and to facilitate future extensions.

4.5.2 Command Handling
At runtime, the function retrieves the latest message received by ac-
cessing the lastMessageReceived field. This variable is automatically
updated based on communications with the OBCs of SIMSAT and
TEMU4. Once the message is available, the function executes the ap-
propriate command by evaluating it within a switch-case structure.

The commands currently supported by the system are the following:

• M1553MsgType::CMD_BROADCAST_BC2RT_READ (for broadcast com-
munications),

• M1553MsgType::CMD_BC2RT_READ (for point-to-point communica-
tions),

• M1553MsgType::MODE_BROADCAST_BC2RT_READ (for mode commands).

Each command triggers a specific behavior. Among them, the
CMD_BC2RT_READ command is the most complex, since it requires decod-
ing the incoming data word, extracting subcommands, and executing
the corresponding action. This process is encapsulated in the function
caseCmdBcRtRead(data, commandW), which takes the data word and
the command word as inputs.

4.5.3 Subcommand Decoding
The caseCmdBcRtRead function is responsible for parsing the data word
and identifying the operation to be executed. The decoding logic can
be summarized as follows:

cmd = lower 7 bits of data
turnOnOrOff = bit 7 of data
load = bits 8–15 of data
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switch (commandW.subAddress):
case SA_2:

Log("Inside PCDU SA_2")

switch (load):
case 0:

// Control the power state of a specific load
SetStatusLoad(load, turnOnOrOff)

end switch
break

default:
Log("Inside PCDU DEFAULT SA")
break

end switch

In this logic:

• the lower 7 bits of the data word encode the command identifier,

• the 7th bit specifies whether a given load should be turned on or
off, and

• bits 8 to 15 identify the target load within the PCDU.

The subAddress field of the command word determines which subsys-
tem or functionality of the PCDU is being targeted. For example, SA_2
(Subaddress 2) is associated with the control of power loads. Within
this subaddress, a second switch-case evaluates the load variable, and
depending on the value of turnOnOrOff, the corresponding load is
either enabled or disabled.

This hierarchical decision structure makes the implementation mod-
ular and scalable: additional subaddresses and load cases can be in-
troduced without altering the core function design. In this way, the
simulator can gradually expand to support more complex behaviors of
the PCDU, while maintaining a clear mapping between MILBUS1553
messages and PCDU operations.
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Chapter 5

Validation and Testing
In this chapter, the validation and testing procedures for the developed
battery model and MILBUS1553 interface are discussed. and shown.
It is important to understand that the validation and testing of the
models are not performed on a real scale since the real data of the IOS
mission cannot be shared due to confidentiality reasons. The battery
model will be tested by starting to gather data from the SIMSAT GUI
and appending it to a text file. This data will be crunched and plotted
using Python scripts that provide a visual representation of the battery
behavior. The main parameters that will be plotted are the State of
Charge (SoC), Depth of Discharge (DoD), Voltage, Current and Power.

5.1 Battery Model Testing
The battery testing is performed by running the SIMSAT environment
and launching the BTA model. Once the model is running, the relevant
parameters are monitored and recorded over time. Also the simulation
stages are checked constantly meaning that the satellite switches from
Eclipse, sunlight and Battery only modes. The main parameters that
are monitored during the test are:

• State of Charge (SoC) over seconds

• Battery current over seconds
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• VBus voltage over seconds

The VBus is the value that indicates the voltage read by the PCDU
on the power line interface. This value is calculated as follows:

V Bus = Vbattery + Requivalent · Ibattery

The current could be positive or negative depending on the direction.
The logic behind these test is the following:

• The simulator is kept up for a long time, considering that times in
the simulator runs 4 times faster than real time, this means that 1
hour of simulation is equal to 15 minutes of real time.

• While the simulator is running the data is gethered and appended
periodically, every 0.125 seconds, to some text files that record
each step of the simulation, capturing data from both battery and
solar arrya.

• The simulation constantly alternates between sunlight, eclipse and
battery only modes. This is done to test the battery behavior in
all the possible scenarios.

• Finally once the simulations automatically ends, this is done by
checking that the simulation time has reached a predefined limit,
the data is processed and plotted using a Python script that reads
the text files and plots the relevant parameters.

The idea is to recreate as much as possible the real graphs shown in
the IOS Power Budget document. These graphs cannot be disclosed
due to confidentiality reasons but the main idea is to recreate the same
behavior shown in the document.

5.2 Graphs and Results
This section will discuss the results obtained from the testing and the
plots generated by the Python script. The main idea is to show that
the battery model behaves as expected under various scenarios.

All the graphs are divided in the phases that represent various stages
of the simulation which are:
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• Phases 1 and 2: starting SOC will be equal to 94% corresponding
to PCDU EOCV 61.5

• Phases 2b, 3 and 4: starting in sunlight with the minimum admis-
sible 45% SOC reached at the end of the ascent phase

Specifically:

• Phase 1: Ground and launch

• Phase 2: Launcher Separation to SA deployment

• Phase 2b: SA deployment to target release - starting in sunlight

• Phase 3: In-orbit phase (S-band Tx only)

• Phase 4: In-orbit phase (S-band + X-band Tx)

5.2.1 State of Charge (SoC) over seconds

Figure 5.1: State of Charge (SoC) over seconds

This graph shows the State of Charge (SoC) of the battery over time.
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Figure 5.2: First three phases of the battery SoC

During the first three phases the battery is discharging since during
launch phase the satellite is not receiving any power from the solar
array. During the ground and launch phase and the launcher separation
to SA deployment, the power generation is always equal to zero. From
"solar panels deploy" onwards, the orbital phase begins, during which
power is supplied by the solar panels in the sunlight phase and by the
on-board batteries in the eclipse phase. This behaviour is also visible
and similar to one shown in the IOS power budget document.
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Figure 5.3: Last phase of the battery SoC

During the last phase the battery is constantly switching between
charging and discharging. This is due to the fact that during this
phase the satellite is transmitting data using both S-band and X-band
transmitters. This means that the power consumption is higher than
the power generation during the sunlight phase. This behaviour is also
visible and similar to one shown in the IOS power budget document.
The state of charge does not ever reach the minimum value required by
the power budget.

5.2.2 Battery Current over seconds

Figure 5.4: Battery Current over seconds

This graph shows the current of the battery over time.
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Figure 5.5: First three phases of the battery current

During the first three phases the battery is discharging since during
launch phase the satellite is not receiving any power from the solar
array. During the ground and launch phase and the launcher separation
to SA deployment, the power generation is always equal to zero. From
"solar panels deploy" onwards, the orbital phase begins, during which
power is supplied by the solar panels in the sunlight phase and by the
on-board batteries in the eclipse phase. This behaviour is also visible
and similar to one shown in the IOS power budget document.
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Figure 5.6: Last phase of the battery current

During the last phase the battery is constantly switching between
charging and discharging. This means that once the current reaches a
certain threshold, the battery management system must quickly respond
to prevent overcharging or excessive discharging, ensuring the longevity
and reliability of the battery pack. Meaning that the current arriving
to the Battery can be constant at times, allowing the battery to never
overcharge or discharge too much.

5.2.3 VBus Voltage over seconds

Figure 5.7: VBus Voltage over seconds

This graph shows the Voltage over the Bus between battery and PCDU
over time. As mentioned early this is calculated as :

V Bus = Vbattery + Requivalent · Ibattery

Maeaning that depending on the current flowing through the battery,
the voltage will be higher or lower than the battery voltage.
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Figure 5.8: First three phases of the VBus voltage

During the first three phases the battery is discharging since during
launch phase the satellite is not receiving any power from the solar
array so the VBus voltage is decreasing over time.

Figure 5.9: Last phase of the VBus voltage
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Once the satellite reaches phases 4 and 5 the VBus stabilizes and
starts to oscillate between a minimum and maximum value. This is due
to the fact that during this phase the satellite is transmitting data using
both S-band and X-band transmitters. This means that the power
consumption is higher than the power generation during the sunlight
phase. This behaviour is also visible and similar to one shown in the
IOS power budget document.

5.2.4 MILBUS1553 Interface Testing
The testing of the MILBUS1553 interface is carried out using a dedicated
tool called ECHO. This software is executed on a separate virtual
machine running Windows 10 and provides the capability to generate
and transmit telemetry packets directly to the On-Board Computer
(OBC) emulator hosted on SIMSAT. The ECHO tool has been designed
to support flexible and customizable testing campaigns, enabling the
operator to create Packet Utilization Standard (PUS) packets
that can be precisely tailored to the needs of the mission under study.
Once these packets are sent, the code previously discussed within the
simulator receives them, analyzes their contents, and automatically
forwards the relevant command and data to the MILBUS1553 interface.
This process makes it possible to validate not only the implementation
of the bus interface itself, but also the correct parsing, handling, and
subsequent execution of telecommands at the OBC level. By confirming
whether a telecommand has been executed successfully or rejected,
engineers can assess the robustness of the entire communication chain,
from packet generation to final system response.

In order to start the testing procedure, several preliminary steps
must be completed. The first step is to launch the SIMSAT environ-
ment, which is accomplished by running the ./SIMSAT.sh script in the
terminal. Once SIMSAT is active, attention shifts to the ECHO virtual
machine. Inside this environment, the executable iride_if.exe must
be run and its configuration verified. Particular care must be taken
to ensure that both the TC_Server and TM_Server share the same
IP address, since any mismatch would prevent proper packet routing.
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Furthermore, the SCid and Satellite_ID parameters must match the
identifiers assigned to the spacecraft under simulation. This ensures
that packets generated by ECHO are correctly interpreted by the OBC
emulator as belonging to the simulated satellite. The configuration
process is illustrated below:

Figure 5.10: TCP/IP Configuration

Once the configuration is finalized, the communication between the
ECHO tool and the SIMSAT OBC emulator is established through a
TCP/IP connection. This connection forms the backbone of the
testing setup, enabling the seamless injection of telemetry data into
the OBC emulator. The virtual machine hosting SIMSAT must be
configured with the appropriate IP address, which serves as the target
endpoint for the ECHO tool. Once the handshake has been successfully
completed, ECHO is able to emulate realistic mission conditions, sending
both nominal and erroneous telemetry data for testing and verification
purposes. When the tool is running correctly, and the iride_if.exe
interface is active, the connection is acknowledged as shown in the
following figure:
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Figure 5.11: Connection accepted by the ECHO tool

The strength of the ECHO tool lies in its user-friendly Graphical
User Interface (GUI), which provides operators with the ability to
define the specific service type and telemetry packets to be transmitted.
The operator can select services and subservices in accordance with the
PUS standard and inject telecommands tailored to specific subsystems
of the spacecraft. Once the telecommand is sent, the OBC emulator
generates a response that allows the operator to verify the success or
failure of the command. This iterative exchange enables rapid identifica-
tion of issues in telecommand parsing or bus communication. Moreover,
ECHO generates a detailed communication log, which becomes a power-
ful debugging tool during development and validation. The logs provide
a record of transmitted commands, received acknowledgements, and
error reports, which can be analyzed retrospectively to reconstruct the
sequence of events and identify root causes of anomalies.

During these interactions, the OBC produces specific telemetry
responses (TM) that reflect the state of the command processing
pipeline. Each response is characterized by a combination of service and
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subservice identifiers, making it possible to trace the exact status of the
telecommand lifecycle. For instance, the OBC returns TM(1,1) when a
telecommand has been correctly received and validated, while TM(1,2)
indicates that the telecommand was received but failed validation. In
the latter case, additional diagnostic information is included to help
developers understand the reasons for rejection. The TM(1,3) response
communicates that the telecommand has entered the execution phase,
while TM(x,x) represents telemetry generated in response to the exe-
cuted command and transmitted back to the ground. Finally, TM(1,7)
indicates that the execution was successfully completed, confirming
that the system has acted on the injected telecommand. This layered
feedback mechanism provides assurance that commands traverse the
entire processing chain reliably, from reception to execution.

Figure 5.12: SIMSAT connection accepted by the ECHO tool

Figure 5.13: ECHO connection configured correctly

The telemetry responses described above form the backbone of the
testing and verification methodology. They provide the necessary insight
to confirm whether the MILBUS1553 interface and the OBC software
behave as expected under a variety of conditions. This methodology
allows engineers to monitor the entire communication chain in a con-
trolled and repeatable environment, significantly reducing the risks
associated with integration and increasing confidence in the correct-
ness of the implementation. By simulating real-world communication
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scenarios and verifying system behavior step by step, the likelihood of
mission-critical failures caused by untested telecommand handling is
greatly diminished.

The telemetry itself is transmitted in raw format, meaning that
the PUS packet is sent as a sequence of bytes without any intermediate
abstraction. The OBC is responsible for decoding the raw packet,
extracting the embedded MILBUS1553 command and its associated
data word, and processing them accordingly. This direct approach
ensures that the testing environment remains faithful to the actual
operational context, where spacecraft receive and process raw telemetry
from ground control. The figure below shows an example of a raw PUS
packet transmitted by the ECHO tool:

Figure 5.14: Demo PUS Packet sent by the ECHO tool

The hexadecimal representation of the packet highlights the embed-
ded MILBUS1553 command and the associated data word. Each packet
corresponds to a distinct telecommand and contains all the necessary
information to drive a specific subsystem behavior. By inspecting the
comments next to the hexadecimal values, one can clearly identify the
role of each packet and its intended effect on the OBC. This level of
visibility into the communication process enables developers to confirm
that the simulator correctly interprets PUS packets and forwards the
proper MILBUS1553 instructions, thereby validating both the protocol
implementation and the subsystem integration.
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Chapter 6

Conclusion and Future
Work
This chapter will discuss the main objectives achieved during the de-
velopment of the thesis and the prospective future work that can be
done to improve the models and the simulator. As outlined in the
introductory chapter, the initial objectives were as follows:

• Development and testing of an EPS system model

• Development and testing of a MILBUS1553 interface

• Development and testing of a power line interface

• Compliance with the ECSS standards for the entire simulator

Each of these objectives has been successfully achieved. The de-
veloped models have been thoroughly tested and validated to ensure
coherence with the mission statements and requirements defined by the
IOS mission documentation, as demonstrated in Chapter 5.

6.1 Future Work and Implementation
Looking ahead, there are significant opportunities for further develop-
ment and enhancement. The full implementation of the entire avionics
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system remains an expansive task, demanding extensive work and rig-
orous testing due to the inherent complexity of the system. Critical
components such as the Robot Control Unit (RCU) and the Teleme-
try, Tracking, and Command (TT&C) system require integration and
comprehensive validation to guarantee robust functionality.

The engineering process for the simulator should continue following
an iterative methodology, replicating the software engineering core steps
employed throughout this thesis:

iterative

• Requirement analysis

• UML design

• Implementation

• Testing and validation

Adhering to this structured approach is imperative to deliver software
that is both robust and reliable.

Regarding refinement and further implementation particularly for
the EPS and other systems developed during this research, several
improvements can be made. Firstly, the battery model design and its
source code should be polished and optimized by removing debugging
artifacts and extraneous comments, which will enhance maintainability
and performance.

The MILBUS1553 interface should evolve to support not only Service
2 of the Packet Utilization Standard (PUS) but also the full spectrum
of service types and their subservices. This entails incorporating the
Interface Control Document (ICD) of the Power Conditioning and
Distribution Unit (PCDU), currently under completion by the avionics
team, into the interface logic. Once done, the interface will handle and
execute the comprehensive set of telecommands defined for the IOS
mission, thereby increasing the fidelity and completeness of command
handling.

Similarly, the power line interface requires extensive additional testing
and expansion. More instances of power line interfaces should be
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developed and integrated corresponding to each terminal and component
on the satellite, specifically from the PCDU to various subsystems
requiring power. This distributed power modeling will improve the
accuracy and realism of power distribution simulations, crucial for
mission success.

From the broader perspective of simulator development and based
on ECSS standards for simulators and software, there are further en-
hancements that can be pursued. ECSS-E-ST-40-08 for simulator
configuration and ECSS-E-ST-40-07 for software engineering provide
guidance on creating modular, reusable, and interoperable simulation
models. Leveraging these standards supports the modularization and
portability of simulation components, allowing improved reuse across
different projects and simulation environments. Following these princi-
ples, future work could focus on refining the simulator infrastructure to
better support model assemblies, scenario configuration, and integra-
tion with external systems, ensuring compliance with emerging space
simulation standards.

Additionally, incorporating other avionics subsystems such as the
RCU and TT&C in adherence to these standards will promote an inte-
grated simulation platform capable of supporting rigorous mission-level
testing and verification. The iterative software engineering process,
guided by UML-based design and compliance to ECSS software en-
gineering recommendations, ensures systematic progress towards a
resilient and extensible spacecraft simulation model.

In conclusion, the future work on this thesis should focus on expand-
ing subsystem coverage, completing PUS service handling, enhancing
power system simulation granularity, and rigorous adherence to appli-
cable ECSS standards for space simulation software. This will ensure
that the simulator evolves into a comprehensive, standards-compliant
tool for spacecraft avionics development and qualification.

If further detailed elaboration on any particular future work aspect
or standards applicability is needed, it can be provided.
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6.2 Final Remarks
This thesis has provided a comprehensive overview of the development
and implementation of an EPS system and a MILBUS1553 interface
within a spacecraft simulator. The work undertaken has successfully
met the initial objectives, including the design, implementation, and
testing of these components, ensuring their functionality and integra-
tion within the larger simulation framework. The adherence to ECSS
standards throughout the development process has further strength-
ened the reliability and robustness of the implemented systems, paving
the way for future enhancements and extensions. The iterative ap-
proach adopted has facilitated continuous improvement, allowing for
the incorporation of feedback and lessons learned throughout the de-
velopment lifecycle. The successful completion of this thesis has laid a
solid foundation for future work in the area of spacecraft simulation
and avionics systems. This includes potential enhancements to the
EPS system, further integration of the MILBUS1553 interface, and
exploration of additional avionics components and their interactions
within the simulation environment. The experience and knowledge
gained through this project will surely contribute to the advancement
of spacecraft simulation technologies and methodologies. The journey
undertaken in this thesis has been both challenging and rewarding, and
it is hoped that the outcomes will serve as a valuable resource for future
researchers and practitioners in the field of aerospace engineering and
simulation.
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