\\
\\ 1859 s

\\.\ %d‘

POLITECNICO DI TORINO

Master Degree Course in Cybersecurity

Master Degree Thesis

Real-Time Automated Forensic Evidence
Collection in Critical Systems

Leveraging Advanced Network Monitoring Tools for Enhanced Cybersecurity
Incident Response

Supervisor
prof. Andrea Atzeni

Candidate
Pierfrancesco ELIA

ACADEMIC YEAR 2024-2025

Alla mia famiglia,
ar miet amict,
alle persone che mi vogliono bene.

Summary

This thesis addresses an important challenge in modern cybersecurity: the vast gap between threat
detection and forensic examination that allows attackers to steal sensitive data or erase evidence
within minutes but traditional forensic response measures take hours or even days to initiate.
The average data breach in the world costs $4.88 million USD, as per the 2024 Cost of a Data
Breach Report from IBM, and companies that respond more quickly save around $2.22 million
compared with slower-responding peers, highlighting the financial imperative behind automated
forensic readiness. The research shows how the open-source network monitoring platform Zabbix
can be innovatively repurposed to enable in real-time the gathering of forensic evidence with legal
admissibility standards in mind, tailored in particular to the needs of environments with scarce
resources, air-gapped networks, industrial control networks, and legacy infrastructures in which
standard STEM/SOAR deployments become infeasible.

Existing enterprise forensic solutions pose key shortcomings that make this research trajectory
imperative. Vendor SIEM systems such as Splunk Enterprise Security (high renewal cost) and
IBM QRadar (high deployment fees) are far too costly for 85% of organisations, while being highly
dependent on cloud connectivity as well as requiring specialised staff. Current solutions such as
Elastic SIEM rely on internet connectivity that is unsuitable for air-gapped industrial networks,
while established forensics software such as EnCase is based on post-incident reactive models that
do not capture volatile evidence in real-time active attacks. This leaves a market need where 70%
of organisations do not have proper forensic automation in their toolkit, especially in industrial
control systems as well as resource-limited settings where common SIEM/SOAR installations
become technically and financially impracticable.

The basic breakthrough is in modular design comprising four pieces, which translates the capa-
bilities of Zabbix for infrastructure monitoring into an inclusive platform of forensic automation.
The Detection Module uses the underlying trigger system of Zabbix to identify security-related
patterns with the aid of logical expressions, temporal functions, and statistical correlations, fo-
cused on indicators of compromise instead of typical performance measures. Tailored triggers
utilize correlation logic that blends multiple telemetry sources, such as anomalies in network
traffic, unusual patterns of process execution, and occurrences of failed authentication, while
accomplishing sophisticated mitigation of false positives through contextual filtering, temporal
examination, as well as hierarchical frameworks of dependencies.

The Response Module manages automated responses through the action framework of Zabbix,
enabling the execution of scripts triggered by security-related events while maintaining contextual
information through macro expansion and runtime parameters. The module acts as an intelligent
dispatcher that initiates evidence-gathering operations independently with escalation plans and
cooldown times in order to prevent redundant runs. The Acquisition Module is composed of
special-purpose scripts written specifically for the extraction of volatile and semi-volatile evidence
such as memory dumps, packet captures, process trees, system logs, and network connections,
with each script running autonomously in order to prevent data contamination while outputting
structured metadata and verifying cryptographic integrity.

The Preservation Module enacts extensive procedures for chain-of-custody using SHA-256
hashing, time-stamping synchronized with NTP, and storage mechanisms that are tamper-evident,
thereby ensuring legal admissibility. This module preserves thorough audit trails that document

4

collection methods, timestamps, triggering conditions, and script executions, in addition to facil-
itating encrypted transmission to safe remote repositories. The architectural framework priori-
tizes the separation of concerns, permitting individual components to be independently versioned,
tested, and deployed while ensuring cohesive integration through the native orchestration capa-
bilities of Zabbix.

Empirical verification performed in controlled lab experiments identifies exemplary perfor-
mance characteristics that are valid for production environments. Two in-depth case studies
verify the effectiveness of the framework in diverse threat scenarios. The first case study emu-
lates data exfiltration in measuring the unauthorized movement of 30 GB of company information
through SFTP, accurately detecting prolonged outbound traffic anomalies in excess of 10 Mbps
thresholds and collecting forensically significant artifacts that provides a detailed system state
snapshot. The second case study analyzes unauthorized service provisioning with sophisticated
backdoor detection using Zabbix Low-Level Discovery in monitoring industrial network services,
accurately detecting services deployed in Python that conceal themselves as genuine diagnostic
interfaces, thus collecting unique evidence regarding the incident.

Forensic integrity verification confirms all evidence gathered remains legally admissible with
dual-layer SHA- 256 hashing, full metadata documentation, and NTP time sync. Individual arti-
facts are immediately crypto-verified at the point of creation, while full evidence stores undergo
holistic verification that covers all materials included. Chain-of-custody protocols involve metic-
ulous recordation of the means of collection, script versions, system configurations, and operator
context, with encrypted transmission over protected channels and tamper-evident storage with
write-once, read-many access protection.

Rigorous testing proves quantitative superiority over available methods in significant perfor-
mance measures. The system realizes important cost savings compared to commercial forensic
automation solutions while achieving high detection accuracy. Response time optimization re-
alizes 30-second initiation of evidence collection compared to 2-4 hour delays in legacy forensic
processes. The solution remedies essential deployment scenarios where commercial solutions fall
short: air-gapped networks (100% offline operability), legacy industrial applications (no-agent
requirements), and small-medium businesses (zero licensing fees). Forensic integrity assurance
by dual-layer SHA-256 hashing and detailed chain-of-custody documentation secures legal admis-
sibility standards identical to enterprise solutions at infinitesimally lower implementation costs,
bringing automated forensic capabilities within reach of organizations previously priced out by
commercial offerings.

The framework addresses critical needs across multiple sectors including industrial control
systems where traditional security tools prove unsuitable due to real-time constraints or legacy
system limitations, air- gapped networks requiring forensic capabilities without external con-
nectivity, small-medium enterprises needing cost-effective alternatives to expensive commercial
platforms, and regulatory compliance supporting GDPR, HIPAA, and PCI-DSS requirements
through comprehensive audit trails and evidence preservation mechanisms. Future directions
involve the integration with machine learning for better detection of anomalies, container foren-
sics extending the capability into Docker or Kubernetes deployments, cloud evidence collecting
modifying methodologies in support of AWS CloudTrail and Azure Activity Logs, and industrial
protocol analysis offering custom modules for Modbus and DNP3 inspection of network traffic.
Modular design allows for extensibility via standard input/output descriptions that facilitate the
incorporation with various other monitoring platforms in addition to the Zabbix. This research
effectively demonstrates that the established network monitoring infrastructures can be skillfully
re-purposed as comprehensive forensic automation infrastructures with no requirements for special
devices or significant additional costs. The proven framework empowers enterprises with practical,
legally acceptable, and functionally efficient response systems that handle incidents, particularly
in resource-constrained environments in which commercial solutions are frequently out of the
question. The empirical verification through controlled experiments verifies technical possibility
as well as forensic legitimacy and forms the foundation of wide-scale use in diverse application
scenarios while driving the field of automated digital forensics through the novel application of
available monitoring infrastructure.

Contents

Introduction

1.1 Why Timing is Pivotal in Security Incidents
1.2 Case Studies of Real-World Security Failures
1.3 Accuracy and Integrity in Automated Forensics

1.4 Purposes and Goals

Background and State of the Art

2.1 Digital Forensics and Incident Response
2.2 Network Analysis and Digital Forensics Tools
2.3 Network Monitoring Solutions in Cybersecurity

2.4 Comparative Analysis of Monitoring Solutions

Automated Forensic Data Collection Model with Zabbix
3.1 Conceptualizing Zabbix for Forensic Readiness
3.1.1 Continuous Monitoring to Tamper-Proof Storage
3.1.2 Why Zabbix is Suitable for Real-Time Evidence
3.2 Modular Architecture for Evidence Collection
3.2.1 Overview of the Proposed Architecture
3.2.2 Interaction Between Zabbix Modules
3.3 Triggering Mechanisms and Custom Logic
3.3.1 Designing Triggers for Forensics
3.3.2 Reducing False Positives o
3.4 Automated Response Workflow in Zabbix
3.4.1 Executing Scripts from Triggers oo
3.4.2 Multi-Step Forensic Collection
3.5 Limitations and Design Considerations
3.5.1 Zabbix Constraints in a Forensic Context
3.5.2 Design Philosophy: Separation of Concerns
3.6 Readiness for Case-Based Applications
3.6.1 Customizability and Scalability of the Model

3.6.2 Transition to Real Scenarios

10
11
12

13
13
15
17
19

4 Workflow Model for Automated Forensic Collection 34

4.1 Environment Preparation and Setup oL 34
4.1.1 Secure Access and Authentication Framework 34
4.1.2 Prerequisites Verification and Package Installation 35

4.2 FEvidence Collection Execution o 35
4.2.1 Focused Data Acquisition and Examination 35
4.2.2 Policies on Integrity and Secure Storage 36

4.3 Generalization of Scriptable Logic 37

5 Implementation and Configuration 38

5.1 Laboratory Environment Setup L. 38
5.1.1 Architecture Overview 38
5.1.2 Virtual Hosts and Monitoring Targets 39
5.1.3 Data Collection and Logging Tools 39
5.1.4 Security-Oriented Trigger Design 40
5.1.5 Response Actions and Alerting Mechanisms 40
5.1.6 Evidence Collection Scripts o 41

5.2 Case Study I: Detection of Data Exfiltration 42
5.2.1 Threat Scenario and Indicators 42
5.2.2 Zabbix Items and Triggers for Network Anomalies 42
5.2.3 SSH Infrastructure and Authentication Framework 44
5.2.4 Client System Preparation and Dependencies 44
5.2.5 Package Installation Requirement 45
5.2.6 Execution Summary 47

5.3 Case Study II: Unauthorized Service Deployment 48
5.3.1 Threat Scenario and Indicators 48
5.3.2 Using Zabbix Low-Level Discovery for Service Monitoring 49
5.3.3 Trigger Logic and Detection Algorithms 52
5.3.4 Scripted Response and Evidence Collection 53
5.3.5 Laboratory Implementation and Testing 55
5.3.6 Evidence Analysis and Forensic Value 58
5.3.7 Performance Analysis and System Impact 60
5.3.8 Execution Summary 61

5.4 Data Integrity and Secure Storage 62
5.4.1 Hashing and Timestamping of Collected Artifacts 63
5.4.2 Retention and Tamper-Proof Storage Options 63

5.5 Chapter Summary e e 64

6 Analysis of Results

6.1 Performance Evaluation
6.2 Evidence Quality Assessment
6.3 Detection Accuracy Analysis
6.4 Scalability and Deployment Considerations

7 Conclusions and Future Work

7.1 Research Contributions
7.2 Constraints and Restrictions

7.3 Future Research Directions

A User Manual

A.1 Prerequisites
A.2 Laboratory Structure
A.3 Virtual Machine Creation
A.4 Victim Host Preparation

A.5 SSH Key Setup
A.6 Zabbix Appliance Initial Setup

A.7 Uploading Templates and Hosts
A.8 Script Deployment

A.9 Configuring Actions
A.10 Testing the Laboratory
A.11 Evidence Access and Validation
A.12 Appendix: File Overview
A.13 Summary

B Developer Manual
B.1 Case Study 1: Data Exfiltration Evidence Collection Script
B.1.1 Script Overview
B.1.2 Script Architecture
B.1.3 Detailed Script Analysis o
B.1.4 Customization Guidelines o
B.1.5 Integration with Zabbix Actions, .
B.1.6 Performance Considerations,
B.2 Case Study 2: Unauthorized Service Detection and Evidence Collection Script . . .
B.2.1 Script Overview e
B.2.2 Script Architecture
B.2.3 Detailed Script Analysis L o
B.2.4 Customization Guidelines oL
B.2.5 Integration with Zabbix Triggers
B.2.6 Performance and Security Considerations
Bibliography

65
65
66
66
67

68
68
68
69

71
71
71
71
72
72
72
73
73
73
74
74
74
74

75
75
75
75
75
81
82
82

83
83
83
89
91
91

92

Chapter 1

Introduction

Digital forensics is increasingly seen as a vital element within the discipline of modern-day cyber-
security, especially in high-risk scenarios where swift identification and response to intrusions are
essential. Forensic practices are generally manual and follow the incident; however, the move to-
ward automation systems and quickly performed analytical techniques offers exceptional potential
to close the gap between detection and investigation. This dissertation explores the integration of
monitoring systems into the process of digital forensics, with specific emphasis on the deployment
of Zabbix as a leading open-source monitoring tool.

The conversation begins by considering situations where forensic preparedness is of critical
need, focusing mostly on operational environments like industrial networks and air-gapped sys-
tems. Then the conversation spells out the main goal of the study: to clarify how a particular
monitoring device, initially intended for purposes other than security, can be adapted to enable
real-time and automated collection of forensic evidence.

Later studies follow a systematic approach. First, they review existing developments relevant
to digital surveillance and forensics. Next, they present a conceptual evidence collection framework
with Zabbix, culminating in the conducting of test cases in virtual environments, finally leading to
an evaluation of the tool’s advantages and disadvantages. The overall goal remains the significant
enhancement of the burgeoning field of proactive forensics with an effective, flexible, and affordable
measure, while simultaneously investigating how forensic readiness could be improved in resource-
constrained environments.

1.1 Why Timing is Pivotal in Security Incidents

In the modern cybersecurity field, a consensus among specialists is that organizations can be ex-
pected to face a security breach; hence, the question is not whether a breach is to be expected, but
when. This fact has been supported by ongoing data brought forth in yearly sector publications,
such as IBM’s Cost of a Data Breach Report [1], which in 2024 reported the global average cost
of a breach at a record 4.88 million USD. Furthermore, the report highlights that not only do
breaches occur more often, but also become progressively more aggressive as a result of longer
detection and response times.

In this case, the two most critical steps are Time to Detect (TTD) and Time to Respond
(TTR). They specify the duration from the compromise inception to its discovery and the time
required to effectively respond to the scenario post-detection of the breach. Organizations that
reduce TTD and TTR not only have a greater chance of containing attacks sooner but also of
preserving useful evidence, maintaining business continuity, and reducing monetary and reputa-
tional damage. IBM'’s figures suggest that organizations with faster response times save around
2.22 million USD compared to organizations with more lengthy incident management processes.

Real-time incident detection is thus a fundamental aspect of contemporary cyber defense
mechanisms. However, in most contexts, the response is still predominantly reactive and highly

9

Introduction

dependent on human intervention. Analysts must manually inspect logs and alerts to discover
anomalies, which could be the time the intruder has already exfiltrated sensitive information,
turned off logging, or propagated laterally across systems. This lag is particularly dangerous in
high-value or time-sensitive environments, such as medical, industrial control systems, or military
installations, where attackers can cause real harm within minutes.

Furthermore, as cyber threats become more complex, the chance to spot and fix them before
they cause damage is getting smaller. Advanced Persistent Threats (APTs), insider threats, and
fileless malware operate quietly and quickly. As a result, even a short delay can lead to serious
consequences, like data corruption, service outages, or legal penalties.

To address this, more organizations are turning to automation in their security processes to
not only detect but also respond to threats instantly. This includes using automated tools to
gather forensic data the moment an incident is suspected. Automating these responses can help
capture important evidence, start isolation procedures, and support security teams with incident
management before analysts begin their manual investigations. Therefore, this thesis concludes
that timing is the key requirement for a safe and reliable response to cyberattacks.

The diagram in Figure 1.1 shows the links between the detection gap, response gap, and
prevention gap. Together, these three areas emphasize how crucial timing is for each process, as
it directly affects an organization’s ability to limit damage and build resilience.

Prevention Gap

Time to put preventative
measures in place to
avoid future attacks

Detection Gap
Time between actual
breach and discovery

Have we been

breached?
PREVENTION DETECTION
Can we avoid this GAP GAP Response Gap
from happen{ng - Time between discovery to
again? L1 | remediation to limit damage

RESPONSE 1

GAP

¥ How bad is it?

Figure 1.1. Detection, response, and prevention response gaps in incident management.

1.2 Case Studies of Real-World Security Failures

The importance of timely detection and response is described through documented cybersecurity
breaches. Real-life incidents often show how minor delays or missed alarms can lead to large-scale
incidents. This chapter section two of the most interesting cases: the 2024 CrowdStrike outage
and the Target data breach of 2013, each highlighting examples of the consequences of a lack of
timing and inadequate response strategy.

In July 2024, a flawed software update issued by the cybersecurity firm CrowdStrike [2] caused
one of the most disastrous security incidents in recent years. The update spread in minutes to
millions of Windows-based systems, triggering system crashes in hospitals, airports, government
agencies, and industrial control networks. The problem was caused by an incompatibility related
to Falcon’s security agent, but was exacerbated by the absence of a real-time rollback process
and the rushed release of the update without warning. The timing of this incident was crucial;
a few minutes caused worldwide downtime. Manual intervention was necessary to recover several
systems, and the presence of BitLocker encryption on organizational systems hindered forensic
analysis and data recovery activities. The CrowdStrike incident demonstrates that a patch with
good intentions can escalate into a huge failure in the absence of an automated monitoring or
containment process.

10

Introduction

A second example, while more historical, remains pertinent: the 2013 Target breach [3]. Threat
actors had compromised the retailer’s network through credentials stolen from a third-party ven-
dor. Despite the presence of security controls, including malware detection capabilities, that
picked up the malicious behavior, the alarms were either ignored or deprioritized by security staff.
The attackers exfiltrated sensitive payment card information for over 40 million customers before
the breach was discovered. Investigation showed that the attack could have been prevented much
earlier if the warnings had been heeded in a timely fashion. In this case, it was the delay in
response - not the failure to detect - that was the root cause of the breach’s success. These exam-
ples demonstrate a shared principle: the identification of threat is not sufficient without prompt
and concerted action. They also indicate that conventional security mechanisms are not always
sufficient in the face of dynamic threat environments. If either entity had incorporated real-time
automated forensic response capability into their surveillance systems, the exposure time could
have been drastically shortened.

With the above limitations in mind, the current dissertation promotes the creation of meth-
ods that combine real-time response functions with holistic forensic mechanisms. The suggested
methods should be able to respond to incidents in real-time, independently capture relevant in-
formation, and store such information for later analysis and possible prosecution purposes.

1.3 Accuracy and Integrity in Automated Forensics

Although timing is crucial in handling security incidents, the concept of speed must be approached
carefully in the field of digital forensics. Rapid responses are essential to mitigate ongoing attacks
alongside limiting damage, yet the forensic evidence gathered has to be trustworthy and admissible
in legal processes. Hence, it is implied that evidence collection can not solely rely on speed,
moreover, it must also ensure accuracy, integrity, and completeness.

In traditional forensic procedures, trained personnel manually handle evidence acquisition.
These professionals follow set protocols to maintain the chain of custody. They use hashing
algorithms to ensure data integrity and store the collected evidence in secure devices or distributed
storage. While this process is very reliable, it is also slow and takes up a lot of resources.

In fast-paced environments, such as critical infrastructure, defense systems, or industrial net-
works, delays in evidence collection can lead to the loss of volatile data or give adversaries a
chance to cover their tracks.

Automating processes presents both opportunities and risks. On one hand, automated systems
can quickly respond to detect incidents, running predefined scripts to gather logs, memory dumps,
or network traces without human input. However, this automation must not undermine the
forensic validity.

The challenges of automatic evidence collection include ensuring that:

collected data is not modified or overwritten during the process;
e appropriate hashing and time-stamping are applied at collection time;
e scope of collection is carefully defined to avoid irrelevant data;

e cvidence is securely stored and access-controlled to maintain the chain of custody.

Evidence collection is a complex process, and one example is Microsoft’s BitLocker [4], a full-
disk encryption mechanism widely used among enterprises to secure company data stored inside
work PC’s of their employees. Automated forensic tools must be able to interact with encrypted
systems without violating security policies or corrupting the content. This process requires precise
timing: in fact, it is essential to acquire live data from RAM or disk images before the encryption
mechanism seals the system, or while a trusted access is still active.

Additionally, automated collection must also account for context: what is considered relevant
evidence varies depending on the type of incident. For example, in case of a brute-force attack

11

Introduction

login attempt logs and authentication system responses are critical; in a data exfiltration scenario,
network packet captures and process execution records may be more relevant.

Although the timing of security incidents is of the utmost significance, the concept of swiftness
must be carefully considered by the field of digital forensics. Timely responses are important in
reducing current threats alongside minimizing damage; however, the evidence recovered in such
situations must be valid as well as acceptable in a court of law. Therefore, it can be justifiably
stated that the evidence collection process cannot be based solely on swiftness; alongside it must
emphasize accuracy, authenticity, as well as thoroughness.

1.4 Purposes and Goals

Given the growing prevalence of cyber threats and the urgency to institute responsive measures,
the author has explored in this thesis the possibility of bringing network monitoring in line with
automated processes of forensic data gathering. The hope here is not to replace traditional forensic
methods but to create an additional system that can instantly react to anomalies as found to aid
in preserving evidence through an automation system.

The key question that guides the focus of this inquiry is:

How can a network monitoring tool like Zabbix be effectively used not just for the real-
time detection of security incidents, but also for initiating and supporting automated
forensic evidence gathering without compromising accuracy and legal admissibility?

In answering this question, the thesis provides a systematic approach that includes both a
theoretical examination and an empirical investigation of the question under study.

The first step is to create an automation framework that responds directly to network events
being monitored by Zabbix. This is a matter of identifying what kind of incidents should be
handled automatically, what information needs to be gathered, and what tools to explore in
conjunction with Zabbix to accomplish these things.

The secondary goal is to perform an in-depth evaluation of Zabbix’s feasibility as a possible
solution for the task at hand. While Zabbix is well known as an open-source monitoring system,
its usability for forensic use is not adequately addressed in most common setups.

The purpose of this work is to present a practical, technically sound, and legally aware con-
tribution to forensic readiness by exhibiting that proactive forensic techniques and monitoring
enable quicker response rates while also protecting critical data.

12

Chapter 2

Background and State of the Art

Before implementing the recommended resolution, it’s important to investigate the theoretical
background in combination with the practical frameworks making up this research. The chapter
includes an in-depth examination of key concepts dealing with digital forensics, incident response,
as well as network monitoring, along with an in-depth investigation into the history surrounding
automated forensic technology incorporation into current technology.

It covers an analytical comparison between traditional forensic tools and procedures against
modern, real-time, and automated ones. Special attention goes to surveillance technology and its
impact on security, exploring how common tools, such as STEM systems, intrusion detection, and
log management, enable forensic operations.

The final comments in the paper acknowledge Zabbix as a viable candidate with great potential
for utilization in forensic environments. While Zabbix has mostly been utilized through infras-
tructure models, its modularity, combined with its scripting functionality, indicates potential for
diverse utilization. This section presents the background context required for the discussion in the
following chapter, explaining Zabbix’s use in forensic environments while pointing out additional
settings in which it can be used. The argument frames both the strengths and weaknesses tied to
Zabbix, thus enabling deeper critical appraisal in the future.

2.1 Digital Forensics and Incident Response

Digital Forensics and Incident Response, or DFIR, combines two cybersecurity fields to streamline
threat response while preserving legally and technically sound evidence against criminals.

National Institute of Standards and Technology defines digital forensics as a process that
involves identifying, capturing, analyzing, and investigating data while maintaining data integrity
and keeping at all times a rigorous chain of custody [5]. Digital forensics can handle a range
of data sources such as media files, logs, memory dumps, and network communications; its chief
objectives include evaluating the scope and ramifications of security incidents, reproducing events,
and providing relevant intelligence to aid decision-making or to aid legal proceedings.

In addition, an expansive definition of incident response begins with a clear definition of
the word incident, which refers to a violation or a suspected violation of agreed-upon computer
security policies or mutually agreed-upon security protocols. Thus, incident response is defined
as the organized process used to handle and recover from a cyber assault. Examples that are
pertinent to computer security incidents include botnets deluging a server with millions of requests
to gain access, phishing operations carried out by email, unauthorized access to data by personnel,
and extortion plots organized by hackers who demand ransom for public release of confidential
organizational data.

Traditionally considered separate disciplines, digital forensics and incident response are in-
creasingly complementary within real-world deployments. The complementary nature of these two
fields highlights the importance of acquiring and scrutinising digital evidence efficiently and/or

13

Background and State of the Art

near real-time as part of a holistic approach to security strategy. Computer Security Incident
Response Team (CSIRT) is fundamental to managing and resolving all incidents affecting the
security of the organization efficiently within a timely response period. The team is central to
securing information and has the responsibility to maintain the tenets of Confidentiality, Integrity,
and Availability (CIA) within organizational assets and sensitive data.

The digital forensics process is usually classified into four basic steps:

e Identification: The act of revealing pertinent digital evidence, such as files, data stored in
RAM, network packets, application logs, etc.;

o Preservation: Capturing and saving data in a forensically sound manner, typically by
using imaging or snapshot software;

e Analysis: Data examination using a variety of tools and approaches to discover relation-
ships, identify anomalies, and reconstitute events;

e Reporting: A detailed document that communicates results clearly, succinctly, and within
legal requirements.

There are standard models such as NIST SP 800-61 [6] or ISO/IEC 27035, that provide guide-
lines for developing incident response capabilities. Examples of those guidelines are preparation,
detection, containment, eradication, recovery, and lessons learned, which together form the oper-
ational core of a modern CSIRT.

In order to ensure the legal admissibility of evidence, there is a need for collected materials
to be carefully tracked within prescribed chains of custody. With modern forensic investigations,
the application of timestamped acquisitions, the use of hashing functions like SHA256 to ensure
data integrity, and establishing accountability with access logs are important requirements.

Incident response techniques increasingly emphasize the importance of forensic examination.
Such examination provides an in-depth understanding of basic incident dynamics, identifies in-
volvement of internal and external actors, as well as defines the scope of data that has been
attacked. Gaining such insights at this juncture can significantly impact approaches taken for
restoring systems, inform development of possible policies that can be used to forestall similar
events, and aid compliance with legal and regulatory requirements.

In recent years, there has been a dramatic growth in the prevalence of sophisticated attack
behaviors, like Advanced Persistent Threats (APTs), internal threats, and malware that exists
only within memory or leaves very little residual evidence behind. They demand a shift in
digital forensics from classic post-mortem examinations to an approach that focuses on stronger
integration with real-time detection systems and automated collection tools for evidence. As such,
there has been a great deal of focus devoted to the notion of forensic readiness [7]. Forensic
readiness relates to an institution’s ability to enhance capabilities within that institution.

One of the biggest challenges to achieving forensic readiness is managing volatile data. Volatile
data that is present in system memory (RAM), network buffer, or temporary files can be easily lost
by actions like rebooting or by log rollovers. Forensic professionals counter this problem by using
live forensic tools like Volatility, along with collection techniques that are aimed at making data
acquisition possible from systems that are operational. Systems need to be always pre-configured
to support non-intrusive and safe data capture whenever possible.

Another important challenge relates to the mismatch between response times. Classical foren-
sic examination can take a few days to a few weeks to deliver decision-ready results. In comparison,
attackers can acquire sensitive data or clear logs within minutes. The comparison underlines why
automation is so important by combining forensic techniques with monitoring ones. Organizations
can start to gather evidence as soon as an attack occurs, thus collapsing the interval between the
breach and subsequent response.

Digital forensics is central to ensuring compliance with regulatory standards and legal enforce-
ment; regulations like GDPR, HIPAA, and PCI-DSS mandate that organizations present evidence
for data breach incidents as well as subsequent response activities. Denial of access to forensic

14

Background and State of the Art

data makes this process exceedingly difficult. The need is particularly acute within industries
like defence and manufacturing. Downtime incidents, acts of sabotage, or unauthorized data
access pose a potential threat to national security. Thus, there is a need to ensure that digital
forensics works efficiently within standalone/air-gapped networks that are not connected to cloud
resources or remote support systems. The need highlights an equally important requirement to
develop forensic readiness to bolster response capacity, along with an offline response plan.

In such conditions, forensic preparedness should function independently, without aid, to serve
for proper collection, preservation, and correlation of evidence at the scene; this often requires
compliance with robust data export policies set by national security authorities. New develop-
ments around this matter have underlined a need for various specializations to intersect, especially
those that are connected to forensic professionals, admin systems professionals, and info security
professionals. The unifying of monitoring procedures with forensic techniques not only helps to
create instant containment actions but also guarantees proper treatment of evidence, as illustrated
by Eoghan Casey [8]. The unification acts as a basis for using all-inclusive tools aiming to inte-
grate investigative as well as detection procedures; one such tool later to be analyzed within this
paper, is Zabbix. As such, incident response and digital forensics function ever more reciprocally.
The two specialisms are reliant upon one another to ensure that response to the issues presented
by cybercrime occurs quickly, efficiently, and within legal bounds.

2.2 Network Analysis and Digital Forensics Tools

Network analysis is a cornerstone of digital forensics and is at the heart of understanding and
examining cybersecurity attacks. As more advanced attackers utilize networks to assault systems,
move laterally, exfiltrate data, or manage command-and-control (C2) operations, the ability to
visualize, collect, and analyze network traffic is the pillar of adequate detection and subsequent
incident investigation.

Network evidence can be examined on different levels. Raw packets provide the most infor-
mation, flows offer useful summaries, and protocol analyzers extract important context. Each
level provides unique insights. Using all these tools together helps investigators create a complete
picture of a security incident.

Network forensics involves recording, monitoring, and analyzing network traffic to identify
patterns of malicious activity or to reconstruct the sequence of events in a security incident. It is
different from endpoint or disk-based analysis, which focuses on communication between systems
- who sent what, when, and to whom. This is critical in cases of data theft, denial of service
(DoS) attacks, or advanced persistent threats (APTs). Network traces provide crucial evidence
of lateral movement or attempts to steal data.

Network forensic analysis usually begins by collecting packet data or logging flows at key
network points, such as routers, firewalls, or taps. The main aim is to create a timeline of network
activity that can reveal anomalies, unauthorized access, and potentially harmful communications.

The core of network forensics is the ability to capture and store network packets securely
and in a way that maintains their integrity. Wireshark is the standard tool for capturing and
analyzing packets. It offers a detailed graphical interface for looking at packet-level information,
with features for protocol decoding, flow reassembly, and advanced filtering. Wireshark is great
for small-scale analysis or for diving deep into specific flows.

In larger systems where capturing all packets is not feasible due to high data volume, command-
line tools like tcpdump and dumpcap are used for capturing traffic at high rates. These tools
allow users to apply custom filters and integrate scripts to capture traffic based on set criteria.
The captured data is usually stored in PCAP format, which is the standard for archiving and
later analysis.

For packet capture evidence gathered using packet capture equipment to be admissible in
later forensic analysis, it needs to comply with strict technical requirements. First, accurate and
synchronized clocks, generally via NTP, need to be used for information gathered to be successfully
ordered and correlated across systems. Second, cryptographic hash functions like SHA-256 need to

15

Background and State of the Art

be used upon capture for integrity preservation and indication of tamper detection. Secure devices
with limited access, role-based authorization, and tamper-evident logs for auditing need to be used
to provide accountability and traceability. Such basic controls are needed for preservation of the
chain of custody and for ensuring network-based evidence will be able to stand up to challenge in
legal, regulatory, or disciplinary proceedings.

While full packet capture yields maximum visibility, it is expensive and typically not feasible
for long-term storage. More practical and scalable is flow-based monitoring, which aggregates
packets into communication sessions or flows. Tools like NetFlow [9], IPFIX, and sFlow provide a
summary of network interactions, including source/destination IPs, ports, protocol used, number
of packets, and bytes transmitted.

Flow information can also be useful for identifying anomalies such as out-of-pattern data
transfers, beaconing behavior (characteristic of malware C2 channels), or traffic to/from untrusted
geo-locations. These tools are typically installed at core routers and serve as an early-warning
indicator of compromise.

Open-source flow collectors such as nfdump, ntopng, and YAF (Yet Another Flowmeter [10])
can be combined with other monitoring solutions to provide alarms and facilitate historic probing.
Flow records do not include payload information but are highly valuable in pattern detection and
enabling richer analysis where needed.

While packet and flow data give an underlying perspective, protocol analyzers allow the ex-
traction of semantic meaning from traffic that is captured. Zeek, formerly known as Bro, is among
the most sophisticated tools within this class. It is a comprehensive analysis engine, reading net-
work traffic in real time and logging for numerous protocols like HTTP, DNS, SSL/TLS, FTP,
and SMTP [11].

Zeek doesn’t inspect packets but instead generates detailed logs of session contents and meta-
data. As an example, for an HTTP session, Zeek can log the requested URL, the user agent,
server response, and response time. These are easier to query and correlate than packet contents
and are also most appropriate to forensic timelines.

Modular design of Zeek supports the integration of custom scripts and detectors, which further
enhances its capacity to identify suspicious activity, policy contraventions, and application misuse.
Zeek logs are usually inspected by log aggregation platforms such as the ELK Stack or Splunk to
enable correlation with system logs and security alerts.

To allow qualitative analysis of data, dashboards and visualization tools like Kibana or Grafana
are used by various organizations to track traffic patterns, examine anomalies, and inform decision-
making during response. These platforms promote situational awareness and enable stakeholders
who are less technically inclined to interpret forensic results.

The field of network forensics is greatly aided by the introduction of context to data that
has been collected. Tools that map IP addresses to geolocation, WHOIS information, domain
authority, or threat intelligence can take simple traffic captures and turn them into actionable
information.

For example, Passive DNS databases enable the tracking of domain history across time in-
tervals, Threat intelligence platforms label IPs and domains, and GeolP scans identify traffic
originating from high-risk locations.

Enrichment tools are particularly useful when traffic is heavy and prioritization is necessary.
They are often used alongside Security Information and Event Management (STEM [12]) systems
for correlating network events with known attack indicators.

The value of network data relies not just on its collection, but also on its preservation. In-
terestingly, they are being integrated into automated detection pipelines, where anomaly-based
events can lead to packet capture, log enrichment, or evidence archiving in near real time. This
is important in time-sensitive investigations and aligns with the principles of forensic readiness.

Proven best practices dictate that:
e Access to forensic data is strictly controlled and logged, with role-based access
control (RBAC), multi-factor authentication (MFA), and detailed audit trails;
16

Background and State of the Art

Metadata is comprehensively recorded for every capture, including cryptographic hash
(e.g., SHA-256), precise source and destination context, capture location, and timestamps;

Retention policies are enforced according to legal, regulatory, and operational
requirements, ensuring that forensic artifacts are preserved for the appropriate duration;

e Captured traffic is routinely validated for integrity, with scheduled hash verification
tasks to detect potential storage corruption or unauthorized modifications;

All forensic procedures are documented and reproducible, enabling traceability and
facilitating audits or third-party verification.

This verifies that network captures can be produced as admissible evidence in the courtroom
or for disciplinary hearings, and that the forensic process is retained throughout the full duration
of the investigation process.

The more difficult it is to discover cyber attacks and the more valuable it is to respond fast,
network forensic tools need to be able to integrate with real-time detection systems. Flow analy-
sis, protocol inspection, and traffic capture allow us to easily observe active attacks. Integrating
forensic tools into live monitoring systems enhances the ability of organizations to respond and re-
main accountable. The process is proactive and ensures valuable evidence is gathered, recognized,
and reserved for further analysis.

2.3 Network Monitoring Solutions in Cybersecurity

Network monitoring also plays a central role in the field of cybersecurity because network moni-
toring enables staff in an organization to monitor the activities of devices, services, and users in
a networked setting [13]. As opposed to the use of forensic tools following the occurrence of an
incident, monitoring systems are in constant use and provide real-time feedback about the state
of the IT infrastructure.

The network monitoring tools can also be classified broadly into three categories according to
their application and analysis depth:

e Infrastructure Monitoring Tools - These tools emphasize operational measures like CPU
usage, memory capacity, disk storage, and service availability. These tools mainly find
application in system availability management and I'T performance.

e Intrusion Detection/Prevention Systems (IDS/IPS) - They check network traffic for prede-
fined attack patterns or behavioral anomalies and are capable of triggering actions taken for
warning or blocking.

e Security Information and Event Management (SITEM) Systems - The SIEMs collect and parse
logs from many different sources and apply rules to detect complex patterns of attacks and
generate alerts.

Each of the devices plays a different function in the detection and response, thus it can be
integrated into a multi-level security infrastructure.

System infrastructure monitor software such as Zabbix, Nagios, and Prometheus aggregate
real-time metrics from servers, network gear, applications, and services. The platforms themselves
are not security-specific but can be reassigned for monitoring for unusual behaviors indicative of
a compromise, such as:

e Isolated spikes in network or CPU activity;

e System or service restarts on a routine basis;

e Sudden login attempts or failed authentication;

17

Background and State of the Art

e Elevated disk activity or abrupt log file increase.

The above indicators, once established as alerts and merged within automation scripts, support
the timely identification of potentially malicious activity. Zabbix, for example, allows one to create
triggers that activate upon thresholds being exceeded: such responses may include notification
emails, running of scripts, or log events. In this way, infrastructure monitoring serves as a first
layer of visibility and proactive handling in the security framework.

For Operational Technology settings, such as manufacturing or infrastructure, the application
of endpoint agent or common antivirus software is often constrained by outdated systems or the
necessity for real-time capabilities. In such a case, the application of infrastructure monitoring
software becomes relevant for the identification of early anomalous activity, such as unusual CPU
or network activity occurring between controllers. Such anomalous activities can act as early
indicators of compromise in systems normally hard to monitor or secure by common security
applications.

Intrusion Detection Systems (IDS), including Snort [14], Suricata [15], and Zeek, are employed
to scrutinize network traffic for the identification of known threats. These IDS function passively
by generating alerts, whereas Intrusion Prevention Systems (IPS) possess the additional capa-
bility to actively obstruct traffic. Signature-based IDS demonstrates considerable effectiveness
in detecting specific threats, such as malware payloads and port scans; however, it frequently
encounters challenges with zero-day or stealth attacks. In response to this limitation, a variety
of platforms have begun to integrate anomaly detection, heuristics, and behavioral models. For
example, Suricata facilitates multi-threaded analysis and protocol-aware inspection, rendering it
appropriate for high-performance operational contexts.

A combination of the alerts from the IDS/IPS and the STEM or log management systems pro-
vides improved forensic traceability and cross-correlation in the user or system events. Security
Information and Event Management (SIEM) products provide a centralized view of the security
posture of an organization. According to NIST SP 800-92, a SIEM should collect, normalize, and
examine security-relevant information from various sources in support of incident identification
and handling [16]. Products like Splunk, IBM QRadar [17], Elastic Stack (ELK) [18], and Lo-
gRhythm collect logs from firewalls, servers, authentication servers, endpoint detection tools, and
so forth.

Contemporary Security Information and Event Management (SIEM) platforms typically pro-
vide real-time notifications triggered by breaches of predefined rule sets or the surpassing of es-
tablished risk thresholds. Furthermore, these platforms facilitate integration with external threat
intelligence sources to enhance detection capabilities and employ advanced analytical techniques
or machine learning algorithms to identify anomalies that might otherwise remain unnoticed.
Additionally, these systems support extensive data indexing necessary for retrospective forensic
investigations and adherence to regulatory compliance requirements. Despite their considerable
flexibility, STEM platforms frequently exhibit complexity and demand significant resources for
both initial deployment and ongoing operation. Skilled personnel are required to establish corre-
lation rules, refine log ingestion procedures, and ensure that appropriate data retention protocols
are effectively implemented. To improve certain operational aspects, some organizations have be-
gun to utilize Security Orchestration, Automation, and Response (SOAR) systems that automate
and standardize response procedures [19].

Each monitoring solution type serves a distinct role in the detection pipeline: continuous
monitoring allows for real-time visibility of system and operational performance, IDS/IPS tends
towards inspection of network-level behavior, SIEM allows for the correlation and long-term an-
alytics across the entire infrastructure.

In practice, the interaction of these systems forms a robust defense-in-depth approach. Zabbix,
for example, sees a suspiciously high CPU usage, Suricata sees malicious packets concurrently,
and a SIEM sees the two and recognizes a series of unsuccessful logins, confirming a brute-force
attack in progress.

Despite not being specifically created as forensic instruments, monitoring systems are vital in
facilitating forensic preparedness. Their contribution is evident in the following ways:

18

Background and State of the Art

Assuring the storage and logging of telemetry and logs;

Initiating alerts for deeper forensic collection;

e Preserving context and metadata, which are significant in constructing the timeline;

Supporting legal and regulatory investigations by maintaining event traceability.

Network monitoring products act as the monitoring elements of a security system in an or-
ganization and reveal the first signs of compromise while also allowing for swift, evidence-led
responses.

Furthermore, as this work examines, the use of tools such as Zabbix not only gives more insight
into operations but also forms the basis for forensic readiness. With the right configuration, Zabbix
can also be incorporated into automation for the collection of evidence and therefore cause the
advent of a security event to trigger forensics recording and alerts in near real time [20].

2.4 Comparative Analysis of Monitoring Solutions

The topic of forensic preparedness has attained ever-broadening prominence among both technical
research studies as well as industrial cybersecurity practice. Organizations that run under fast-
paced, highly complex, and unpredictable cyberattacks require methods for reducing mean time
to detect (MTTD) as well as mean time to respond (MTTR), while keeping evidence handling
forensically sound. There exists an increasing collection of work combining monitoring, detection,
as well as automated evidence collection intended for filling the gap between operations (SOC)
as well as investigations (DFIR). This section broadens the comparison among Zabbix as well
as competing methods, incorporating open-source NIDS/HIDS stacks, enterprise SIEM/SOAR
platforms, as well as technical prototypes for automated, trigger-based forensic collection.

Academic Prototypes and DFIR Frameworks

Many of the research studies propose systems reacting to indicators of compromise (IoCs) or
abnormal behavior by immediately collecting volatile and non-volatile evidence.

AutoForensics Li et al. [21] outline AutoForensics, an architecture for reacting to suspicious
activity by capturing system state, memory dumps, and metadata snaps at near-real-time latency.
Tamper resistance through the use of hashing and chain-of-custody logging takes top priority for
the system, and supports SIEM-driven triggers as well in an effort to minimize lag between
detection and collection.

Cloud Forensic Readiness Marturana et al. [22] suggest a modular forensic readiness frame-
work for the cloud that initiates capture workflows in response to IDS alert events, filling evidence
volatilities characteristic of cloud-native infrastructure (e.g., transient instances, containerized
workloads).

DFIR for OT/Critical Systems The NIST DFIR methodology for Operational Technology
(OT) [23] codifies industrial incident handling where the safety and availability requirements
dictate policy-guided, minimally intrusive capture. It completes the industrial monitoring stacks
by prescribing when and where forensic capture must take place without disrupting mission-critical
operations.

Automation in Digital Forensics The domain has reached a consensus on more precise defi-
nitions and boundaries regarding automation [24], facilitating tiers that encompass scripted tasks
to entirely automated, event-driven pipelines. This body of literature emphasizes the necessity of
integrity, reproducibility, and legal admissibility as essential alongside efficiency and comprehen-
siveness.

19

Background and State of the Art

Industry-Grade Stacks (SIEM/SOAR, HIDS/NIDS) and Open Ecosystems

NIDS/HIDS exemplars (Zeek, OSSEC/Wazuh) Zeek excels at rich protocol-level teleme-
try and retrospective reconstruction but doesn’t natively provide cryptographic sealing or chain-
of-custody beyond log controls [11]. OSSEC and its continuation, Wazuh, offer host-based in-
trusion detection, file integrity monitoring, and central management, commonly utilized as an
aid for forensic triage and post-incident examination. Wazuh implementations showcase efficient
centralized log management as well as selective investigations in practice [25, 26, 27].

Open-source SIEM platforms (Elastic/ELK) Elastic Stack enables scalable log ingestion,
correlation, and anomaly detection led by ML, as well as acts as the analytics engine for open-
source SIEM product offerings [26]. Forensic integrity components are inherent to it (crypto-
graphic sealing of captured images, for example). However, tend to require add-in tooling or
custom pipelines.

Enterprise SIEM/SOAR (Splunk, QRadar, Elastic Security) Enterprise STEM/SOAR
offers playbooks and automation of responses to orchestrate acquisition steps on triggers (behav-
ioral and rule-based). Surveys point to their depth but also point to operational complexity and
resource requirements as being too high in tight OT or air-gapped applications [28, 26].

Blockchain-secured Evidence Integrity and Chain of Custody

Recent works explore the use of blockchain for enhancing chain-of-custody auditability. Solutions
range between smart-contract-based access controls and immutable evidence metadata to IoT
investigation-specific architectures [29, 30]. They aspire for transparency, non-repudiation, as
well as cross-organizational trust, but ISO/IEC 27037 integration and scalability remain areas of
future work.

Positioning Zabbix for Automated Forensic Readiness

Although its primary development was not for forensic purposes, Zabbix presents a trigger-action
system for the purpose of orchestrating external forensic acquisition processes when exactly
defined anomaly states occur. In the architecture proposed in this dissertation, Zabbix triggers
invoke scripts first, saving volatile memory or critical runtime states as snapshots, then logging
and timestamping data, and finally starting restricted network capture sessions.

By embedding hashing, timestamping, and chain-of-custody logging within those scripts, foren-
sic integrity may be added to Zabbix workflows. It maintains the strengths of Zabbix-lightweight
deployment, agent/agent-less flexibility, heterogeneity support-whilst delivering DFIR-compliant
acquisition at the time of detection. Compared to enterprise-caliber STEM /SOAR, Zabbix requires
more custom script work for forensic-caliber documentation and integrity assurance; compared to
research prototypes with built-in integrity modules, Zabbix prioritizes extensibility at the sacri-
fice of vertical completeness. It’s the usual trade-off of choice for resource-limited or legacy OT
environments, air-gap networks, and heterogeneous mixes where operator control and footprint
matter.

20

Background and State of the Art

Comparative Tables

Table 2.1. Academic Proposals and Forensic-Readiness Features
Proposal/Framework Trigger-based | Integrity & CoC Mechanisms | Primary Contexts
AutoForensics Yes SHA-256 hashing, automated Enterprise, real-time inci-
chain-of-custody logging, dent response.
tamper-proof storage.

Cloud Forensic Readiness Yes Workflow-driven integrity con- Ephemeral workloads, con-
trols, cloud-native evidence han- tainer forensics.
dling.

NIST DFIR for OT Policy Process-level integrity guidance, Critical infrastructure, in-
safety-constrained acquisition. dustrial control.

Automation in DF Varies Reproducibility emphasis, vali- General DFIR methodology.
dation frameworks.

Blockchain CoC Event Immutable metadata, smart con- IoT investigations, multi-org
tracts, distributed trust. cases.

Table 2.2. SIEM/Monitoring Tools and Forensic Capabilities

Tool/Stack Trigger-based Forensic Integrity Features Deployment Context

Zabbix Yes External scripting for hashing, IT/OT, air-gapped, legacy
timestamps, custody logs. systems.

Zeek (Bro) Partial Log-level controls only, no cryp- Network-centric monitoring.
tographic sealing.

OSSEC/Wazuh Yes File integrity monitoring, limited Enterprise/SME, some ICS
native CoC. deployments.

Elastic/ELK SIEM Yes Pipeline extensions for integrity, Large-scale IT, hybrid cloud.
no native imaging seal.

Enterprise SIEM/SOAR Yes Audit trails, case management, Enterprise, cloud, MDR ser-
variable imaging integrity. vices.

Trade-offs and Complementarity

Academic proposals such as AutoForensics prioritize end-to-end forensic soundness with low-
latency capture and built-in integrity and custody controls [21]. Frameworks for OT environments
emphasize policy-constrained acquisition that respects safety and operational continuity [23].
Enterprise SIEM/SOAR delivers orchestration breadth but at higher complexity and resource
cost [28]. Open stacks (Zeek, OSSEC/Wazuh, Elastic) are modular and extensible, yet typi-
cally require additional engineering to meet strict forensic admissibility thresholds, especially for
cryptographic sealing and formal chain-of-custody [26, 11, 27].

Zabbix sits at a pragmatic midpoint: a lightweight, scriptable monitoring platform that can
trigger external acquisition and integrity workflows at the precise time of detection, which is
critical for volatile evidence. In constrained or heterogeneous environments, this flexibility and
low footprint can outweigh the absence of built-in forensic modules-provided that acquisition
scripts enforce hashing, timestamping, custody logs, and storage hardening. In this sense, Zabbix
can act as the forensic readiness orchestrator in a pipeline that satisfies DFIR expectations.

Summary

Although Zabbix itself does not provide native forensic sealing or formal chain-of-custody, it makes
up for it with extensibility and accurate trigger-action orchestration on disparate and resource-
limited hardware. Through the combination of scripted hashing, timestamping, custody logs,
and secure storage, Zabbix affords an affordable and technically possible basis for automated,
incident-based evidence collection. It complements research papers focusing on legal soundness
and enterprise SIEM/SOAR, providing orchestration breadth, making Zabbix a resilient focal
point for forensic readiness in mixed IT/OT environments.

21

Chapter 3

Automated Forensic Data
Collection Model with Zabbix

This chapter outlines the primary contribution of this thesis: an exhaustive architecture intended
to employ Zabbix as a vehicle for the acquisition of real-time digital forensic evidence. Comple-
mentary to the comparative evaluation provided by Chapter 2, which emphasized the potential
advantage of Zabbix compared to commercial SOAR offerings with respect to flexibility and econ-
omy, this chapter moves from theoretical discussion to practical architectural design.

The organizational structure seeks to guide the reader through a systematic process, from
theoretical foundations to implementation readiness. The first part discusses the fundamental
nature of Zabbix, applying a forensic approach to demonstrate how standard infrastructure mon-
itoring functionalities can be reworked to serve evidential needs. This discussion is guided by the
constraints identified in Section 2.4, i.e., the lack of inherent forensic integrity features in Zabbix,
but it makes up for these by taking advantage of its established strengths in trigger-based and
programmatic behavior.

Next, a modular architecture is introduced that divides the process of collecting forensic
evidence into four discrete but related components: detection, response, acquisition, and preser-
vation. The architecture complies with the separation of concerns principle, aiming to increase
the resilience of forensic systems; in addition, it allows for the inclusion of external tools to
overcome the limitations faced when using Zabbix in isolation. Every module is designed to be
self-contained; however, they are linked in the shared working system of Zabbix.

The final parts of this chapter analyze the main challenges that come with trigger design,
minimizing false positives, and the automation of workflow orchestration. Special attention is
given to the technical dimensions and design features that need to be taken into account when
adapting a multifunctional monitoring device for forensic use. The analysis wraps up by assessing
the scalability and flexibility of the framework, thus providing grounds for the empirical studies
that will be discussed in the next chapters. The thorough analysis justifies the theoretical sig-
nificance and practical applicability of the proposed approach, showing potential for leveraging
the architectural flexibility of Zabbix in a bid to create an affordable alternative for sophisticated
automated forensic systems.

3.1 Conceptualizing Zabbix for Forensic Readiness

In order to explore the possibility of Zabbix in providing automated forensic readiness, it is critical
to firstly grasp the inherent mechanisms supporting its monitoring capabilities. This section
examines the traditional monitoring capabilities, such as metric aggregation, anomaly detection,
and information retention, and how these would be improved to satisfy evidentiary standards.
The focus is placed on the approaches through which data integrity, timestamp validation, and
automated reaction can provide a premise for a verifiable forensic collection process.

22

Automated Forensic Data Collection Model with Zabbix

3.1.1 Continuous Monitoring to Tamper-Proof Storage

Zabbix has been used conventionally in mission-critical environments for real-time monitoring
of IT infrastructure health, availability, and performance. Its modularity and adaptability have
made it an effective tool for identifying anomalies and notifying system administrators in real
time. In its essence, Zabbix works by collecting information from monitored hosts via agents
or SNMP and matching these metrics with user-defined thresholds. Upon deviation of a metric
from expected operations, Zabbix generates a trigger and performs set actions. This provides
for quick identification of faults and assists organizations in meeting service-level agreements and
maintaining the stability of infrastructure.

Nonetheless, the same principles that allow for high-availability monitoring can be used for
forensic purposes. Since Zabbix captures and stores metric history in a structured and times-
tamped format, it naturally creates a partial audit trail of system activity. Combined with item-
level historical logging, actions, and external scripts, Zabbix can be set up to act as a real-time
sensor to trigger forensic evidence collection. For example, an unexpected network traffic spike
or failed login attempts can be indicators of compromise, and Zabbix can be set up to instantly
run a logging script or start packet capture.

Zabbix’s local database, in addition, (usually based on MySQL or PostgreSQL) provides ro-
bust, tamper-resistant logging of system events. While not a tamper-proof archive in itself, its
support for external log signing and hashing mechanisms allows the construction of a pipeline that
extends from real-time monitoring to secure and verifiable storage. This proves particularly sig-
nificant in contexts where events must be preserved for legal or regulatory reasons, in cases where
near-immediate visibility into system activity can improve both incident response and subsequent
forensic analysis.

3.1.2 Why Zabbix is Suitable for Real-Time Evidence

The migration from being a largely reactive monitoring tool to becoming a core element of a
forensic incident response framework relies mainly on its modular and extensible design. An
important factor that enables this extensibility is its event-driven nature, as seen in Zabbix. This
aspect not only allows for accurate data collection but also allows for the running of scripts based
on user-provided parameters. Unlike traditional post-event forensic methods, which are largely
based on the retrospective analysis of logs, this integration enables evidence collection at the time
of its detection, while maintaining its volatility and contextual integrity.

Before delving into the analysis of Zabbix’s forensic capabilities, it is essential to understand
what the main components of the architecture are and how they interact with each other. The
Zabbix distributed monitoring system is divided into four main elements: the Zabbix server
represents the central processing node, which is responsible for evaluating the activation conditions
and storing historical data within a backend database, generally based on MySQL or PostgreSQL.

Zabbix agents, installed on monitored hosts, are processes that deal with the collection of
local statistics and the execution of authorized remote commands. Zabbix proxies, on the other
hand, operate as intermediate collectors in distributed configurations, with the goals of reducing
network load while ensuring the monitoring of isolated network segments.

Finally, the web frontend provides the interface for the overall configuration, visualization, and
management of the monitoring system. Communication between these components can occur
in active polling mode, where the server queries agents, or via passive trapping, where agents
proactively send data to the server; both exchange mechanisms are protected by PSK (Pre-Shared
Key) or certificate-based encryption systems.

Zabbix adopts a decentralized architecture, composed of agents, proxies, and a central server,
whose coordination takes place via polling or trapping-based communication mechanisms. Data
collected by monitored hosts is stored in a backend database and made available through a front-
end web interface. Zabbix agents, installed on endpoints, collect and transmit system performance
information at user-configurable intervals. This data, called elements, is processed by the server
evaluation engine, which simultaneously checks for the occurrence of predefined conditions. When

23

Automated Forensic Data Collection Model with Zabbix

a trigger returns a positive value, Zabbix can react, such as sending notifications or running
automated scripts.

The inherent flexibility that is built into Zabbix’s architecture makes it usable in forensic
environments. Detection of abnormal activity, like unauthorized network access, unexpected
spikes in CPU loads, or file integrity breaches, can be used as triggers. The triggers then run
external forensic scripts to gather volatile data, create file hashes, or take system snapshots.
Zabbix’s ability to be used with nearly any scriptable process makes it a solid bridge between
real-time monitoring and forensic analysis.

Figure 3.1 outlines the general architecture of Zabbix together with its principal components,
namely the Server, Database, Web Frontend, Proxies, and Agents. Elaborating on this infrastruc-
ture, Figure 3.2 illustrates a schematic view of the logical relationships between these components
within an architecture to support forensic functionality, showing how standard monitoring tech-
niques can be extended to allow for the automatic gathering of evidence.

Web Frontend
UI & API

Y

Agent A Zabbix Server W history & config ‘(Database
8 Scheduling & Eventsj VLHistory/ Trends/Config

Zabbix Proxy 2

A

Agent B Agent C

Figure 3.1. General Zabbix architecture: Server, Database, Web Frontend, Proxies, and Agents

This architectural flexibility directly addresses the deployment constraints identified in Sec-
tion 2.4, particularly Zabbix’s suitability for “IT, OT, Air-gapped, Legacy” environments as docu-
mented in Table 2.2. Especially beneficial are situations where conventional Security Information
and Event Management (SIEM) products or Endpoint Detection and Response (EDR) technol-
ogy are not practical because of operational constraints or security considerations. Industrial
Control Systems (ICS), stand-alone tactical operations, and aged infrastructures often lack the
resources or privileges needed to apply security products requiring considerable system resources.
In these environments, Zabbix presents an advanced but flexible tool that, when implemented
with minimal disruption, can be customized with security-oriented functionality.

Furthermore, the structured format of item polling in Zabbix, combined with its extremely
flexible trigger expressions, ensures accurate detection specifically crafted according to the envi-
ronment under supervision. The count (), avg(), and nodata() functions permit temporal and
statistical correlation between disparate metrics, while macros enable a dynamic method of con-
veying contextual information into scripts. All this, coupled with secure storing of evidence along
with hash verification procedures, makes Zabbix an integral tool for preserving data integrity and
securing the chain-of-custody throughout the lifecycle of the incident handling process.

The core assumption is that forensic preparedness need not be viewed as the creation of entirely
new solutions, but as a rigorous examination of how existing monitoring tools, like Zabbix, can be
used to greatest advantage. Properly configured and armed, Zabbix becomes more than a simple
telemetry collector and instead becomes a watchful forensic guard, making it possible to collect
evidence in near real-time, the gap between detection and legal defensibility thus being closed.

24

Automated Forensic Data Collection Model with Zabbix

Zabbix Agent
(Monitored Host)

Y

Zabbix Server Zabbix DB
(Trigger Evaluation) (Historical Data)

Y Y

Trigger Action Web Frontend
(Script Execution) (Operator Interface)

Y

Forensic Storage
(Timestamped Directory)

Figure 3.2. Logical flow of forensic-enabled Zabbix architecture

3.2 Modular Architecture for Evidence Collection

3.2.1 Overview of the Proposed Architecture

The outlined approach shares more with modular architecture than with a monolithic system, in
that individual modules have clearly defined functions in the process of evidence collection. Since
the modular approach increases this process’s reusability, scalability, and maintainability can be
upgraded, and examined with little danger to the stability of the pipeline as a whole due to defined
responsibilities. Communication between the modules takes place through Zabbix’s action system
and therefore guarantees cohesion and consistency between these units in the process.

The underlying assumption behind the conceptual design proposed in this research states that
the forensic evidence collection needs to be performed neither in a fragmented and reactive spirit
nor in isolation, but should be integrated within an automated and organized procedural system.
Zabbix presents a useful template for aggregating this pipeline of evidence through its user-defined
action and trigger functions.

The Detection Module recognizes suspicious or possibly dangerous activity within the ob-
served infrastructure. Although using common Zabbix triggers and items, the focus of this mod-
ule’s logic lies in the detection of patterns that are characteristic of security events, more than
ones that are related to performance-based situations. Detection thresholds can be either tempo-
ral (e.g., repeated failed efforts to log in within 30 seconds) or metric-based (e.g., anomalous usage
of listening ports). These triggers are the primary means to stimulate the process of gathering
forensic information.

When an anomaly is discovered, the Response Module is triggered. This module encapsu-
lates the inherent logic of the Zabbix Action, defining the relevant commands to issue in response
to defined triggers. It allows for custom scripts to be run locally (on the host) or remotely (through
SSH or agent commands). Here, the response process doesn’t actively alert or resolve incidents; it
serves more like a dispatcher that triggers scripts with the scope of evidence gathering. Execution
process ensures preservation of contextual information and reduces redundancy in execution, done
through escalation levels or cool-down timers.

25

Automated Forensic Data Collection Model with Zabbix

Detection Module
Zabbiz Triggers
Response Module
Zabbiz Actions

b

Acquisition Module
Custom Scripts (e.g., tepdump)

~

Preservation Module
Hashing, Timestamping, Archival

Figure 3.3. Modular Workflow for Automated Forensic Collection using Zabbix

The Acquisition Module comprises all scripts and procedures required for acquiring evidence
that qualifies as either semi-volatile or volatile. Based on the incident categorization, this module
can perform different actions like invoking a memory dump through the usage of external tools,
invoking a packet capture (e.g., using tcpdump), capturing live process trees, gathering certain
extracts from the log base, or listing open network connections. Each of these scripts executes
atomically and is constructed to prevent data contamination. Generated outputs are always
written to a temporary secure directory that utilizes a special name convention derived from a
timestamp and hash identifiers, making traceability easier to accomplish.

The last operation is performed by the Preservation Module, calculating a hashing function
for all gathered data (e.g., using SHA-256) and embedding timestamp information. This module
ensures that evidence remains securely saved, encrypting sensitive elements if required, and stores
it in a format that will only allow additive updates. In addition, it keeps a thorough history
of the chain of custody record, recording information about the individual who gathered data,
the gathering time, the situations that required data gathering, and any scripts that were run.
With proper configuration, the module can handle moving evidence artifacts to remote forensic
vaults or secure remote storage areas. Note the intentional difference in logic between preservation
and acquisition: the former emphasizes rapid data extraction, whereas the latter emphasizes its
appropriate legal and procedural protection. Post-event forensics and legal admissibility are eased
during required usage through the architecture.

3.2.2 Interaction Between Zabbix Modules

Incorporation of the four advanced modules (Detection, Response, Acquisition, and Preservation)
follows an ordered but flexible format that takes cues from Zabbix’s internal macro expansion,
runtime logic, as well as escalation plans. Once an anomaly has been detected, the trigger records
the event but also fires an action that runs an orchestrated command. These scripts act per
parameter drawn from the environment, sent via Zabbix macros, thus ensuring each action remains
properly contextualized and documented with the date and time.

The structure supports synchronous and asynchronous execution of operations. For example,
acquisition scripts can finish before preservation routines are initiated, or else they can execute
simultaneously in case a decrease in latency is necessary. The mechanism of synchronization is
managed by Zabbix’s native dependency management and escalation policies. These policies allow
the creation of conditions under which the execution of actions is triggered, define retry periods,
and introduce fallback mechanisms.

26

Automated Forensic Data Collection Model with Zabbix

Under this architectural model, the action mechanism of Zabbix becomes the unifying factor
that connects the different modules, thus enabling a consistent response pipeline. At the end of
each of these stages, execution is transferred to the next one through systematically organized
books and by recording the output. This way, the evidence lifecycle proceeds seamlessly: detection
triggers the collection process, capture scripts capture volatile or semi-volatile data, and retention
features enforce integrity mechanisms, ensuring secure artifact storage.

Unlike other, more centralized digital forensic suites like traditional STEM/SOAR integration,
the modular platform takes advantage of the strengths of ”adaptability, simplicity, and automa-
tion,” as described in Section 2.4, thus offering increased performance with lower system overheads
along with increased portability. For example, solutions like Splunk, when SOAR-integrated [28],
support end-to-end forensic orchestration; however, these tend to require proprietary connectors
along with complex configuration processes that are difficult to use. In contrast, the Zabbix-
based approach follows the basic tenets defined in forensic guidelines like NIST SP 800-101 [31],
which include automation, integrity checking, and non-interference of running system processes.
In addition, this modular approach reduces the effect of individual failures; individual modules
could be isolated, inspected, and improved independently. The use of customized scripts, with
version control and auditing procedures as complements, dramatically increases traceability, an
important factor in ensuring legal compliance. Accordingly, in small deployments with limited
enterprise-wide solutions, Zabbix presents an adaptive, non-obtrusive substitute that ensures ad-
equate forensic readiness.

By synchronizing, in real time, the forensic pipeline with stimuli and enabling script-driven
execution with an intention toward evidence collection and preservation, this system achieves its
forensic goals while, at the same time, respecting fundamental principles of system resilience and
maintainability. The interactivity among the modules goes beyond typical functionality, with an
obvious design choice that’s best aligned with current best practices in building forensic systems.

3.3 Triggering Mechanisms and Custom Logic

3.3.1 Designing Triggers for Forensics

The proposed modular design includes the Detection Module, which leverages the trigger facility
inherently found in Zabbix to initiate the forensic evidence pipeline. The trigger found in Zabbix
serves as a logical function that evaluates monitored item values, changing its status to problem
when certain conditions are met. In order to ensure forensic readiness, it is important that these
triggers be configured not only to monitor operational health but also to recognize special patterns
that indicate security breaches, thus allowing for timely and effective measures directed towards
evidence gathering.

Unlike performance-focused monitoring, which largely evaluates service responsiveness and re-
source utilization, the purpose of the underlying forensic triggers is to correlate system-level mea-
sures with security-relevant indicators. Such correlation often means the aggregation of multiple
telemetry sources - e.g., deviations from normal CPU performance, unusual invocations of pro-
cesses, or sudden spikes in network traffic by destination - via the application of logical operators
along with time functions. For instance, the Zabbix function avg(/host/key, (sec|#num)<:time
shift>) can be set up to detect extended abnormal behavior within a given timespan, while
the count () function can be utilized for identifying repeated patterns, for instance, multiple
unsuccessful authentication attempts or multiple invocations of suspicious process IDs.

A key forensic observation tool is the use of the nodata() function, which indicates true
when there is no data from a monitored entity within a given time interval. This feature helps
identify possible log suppression or alteration by agents. For example, correlating the output of
nodata() from audit logs with data related to system uptime helps trigger the generation of alerts
when expected activity reports are absent, indicating that a logging service has been disabled or
compromised. Triggers in Zabbix can have nested expressions, allowing complex logical conditions
to better map onto real-world attack behaviors. As such, a forensic trigger can be configured to
only trigger upon the combination of an escalation of network traffic out and the running of a

27

Automated Forensic Data Collection Model with Zabbix

non-whitelisted process, greatly reducing false alarms when compared to single-condition-based
rules. Such complex logic is especially relevant to detecting complex events like data extraction
or lateral movement, where no single metric on its own is definitive.

Forensically guided trigger construction requires a delicate balance between sensitivity and
specificity. Rules with high sensitivity produce a high number of false positives, while those with
high specificity leave subtle indicators of compromise undetected for too long. The balance is best
struck by iterative refinement, informed by historic baselines, tested with empirical evaluation
under controlled circumstances. In this way, a structured approach could include the deployment
of prev() and change () functions to pinpoint deviations from the baselines for normal operations,
with rules to detect abnormal service restarts or anomalies with the user authentication behavior.
The design of the triggers becomes, therefore, a dynamic aspect of the organization’s forensic
readiness architecture, responding to changes both within the infrastructure as well as the threat
environment.

[Ttem]—v[Trigger]—»[Action]—»[Acquisition Script]—»[Evidence Storage]

Figure 3.4. Compact logical flow from monitored item to preserved forensic evidence.

3.3.2 Reducing False Positives

Under the modular architecture that this thesis presents, the trigger logic incorporated inside the
Detection Module has the essential task of determining the correct instances needed to trigger the
acquisition and preservation phases. However, the major challenge within this process is the min-
imization of false positives. In the scope of forensic automation, the consequences of a misleading
trigger are particularly significant, with every activation event starting up resource-hungry pro-
cesses like memory dumps, network captures, or comprehensive log extractions. These processes
not only require extensive computational resources but also come with the risk of overwhelming
the analyst with unnecessary alerts, eventually leading to the loss of confidence within the system.

Zabbix offers several ways to do this with its handling of complex, contextual activation cri-
teria. The availability of logical operators like && and || allows for the combination of various
independent conditions into a composite, high-confidence trigger expression that accommodates a
wide range of diverse, independent conditions to include: the duration for which the CPU thresh-
old would need to be exceeded, the absence, on a pre-determined whitelist of known legitimate
applications, of the errant process, and the presence, on the host computer’s network, of simulta-
neous suspicious network traffic. The resulting composite condition logic largely eliminates false
events, like temporary spikes in workload or maintenance activity, thus focusing forensic analysis
on events where multiple corroborating indicators imply potentially malicious activity.

Temporal functions enhance the effectiveness of noise reduction by separating transient irreg-
ularities from persistent deviations within normal behavioral patterns. The functions delta(),
trendavg(), and max() can be used over variable time intervals to prevent transient irregu-
larities, like spikes on system update during log-on, from being falsely identified as widespread
forensic activity. This capability can be tailored to system roles through the use of user or host
group macros, thus raising sensitivity for mission-critical servers while permitting more relaxed
thresholds on endpoint systems that are low risk.

A further relevant method is to link incidents between different hosts. Zabbix implements the
trigger dependency mechanism, which allows secondary triggers to be automatically deactivated
when a related primary trigger is activated. For example, if an anomaly is detected at the
perimeter of the entire network, triggers related to internal systems can be temporarily suppressed
until the main problem is resolved, thus avoiding the production of redundant evidence. This
hierarchical model of dependencies promotes priority setting and ensures that investigations focus
on the aspects with the greatest impact.

Intrinsic escalation policies for action establishment can be a means to counter unwarranted
disruptions. An incremental approach might begin with fairly non-intrusive investigative tasks,

28

Automated Forensic Data Collection Model with Zabbix

like detailed log analysis or procedural listing, at the time a suspicious condition is detected,
escalating to more intrusive methods, like packet capture or memory imaging, only if the sus-
pect condition persists across successive testing cycles. A systematic escalation maximizes the
effectiveness of resource utilization without compromising preparedness for pervasive evidence
gathering when needed.

Context filtering, facilitated by the enforcement of whitelists and anomaly baselines, adds
another level of sophistication. By modeling benign behaviors explicitly observed, such as sched-
uled security scanning or software deployment processes, the system can avoid misclassifying such
events as incidents. Context sensitivity can be achieved by setting scheduled trigger suppression
periods or by adjusting the threshold dynamically with the help of operational calendars. Fi-
nally, the reduction of false positives across the scope of forensic monitoring cannot be viewed
as a monolithic configuration challenge but instead calls for an iterative optimization strategy.
Desiderata obtained from actual activations should inform the constant tuning of those triggered
on logic, thresholds, and correlation measures. In the scenarios where high confidence is required -
e.g., operational technology networks for mission-critical infrastructure or radio silo-based defense
systems - the incremental refinements enable the running of the forensic triggers with increased
accuracy and reliability. Although the present analysis focuses on rule-based optimization, future
studies could explore the integration of statistical anomaly detection or machine learning tech-
niques with the Zabbix trigger analysis paradigm, as shown by other investigations on hybrid
monitoring systems [32, 33].

3.4 Automated Response Workflow in Zabbix

3.4.1 Executing Scripts from Triggers

Zabbix supports a complex architecture that allows the implementation of automated responses
through its Action feature, which allows the sending of remote commands or messages upon certain
events. While this feature so far has mostly been employed in alerting system administrators via
SMS or mail, it can be customized towards forensic applications through linking a trigger to a
custom script that is written to undertake a succession of evidence-gathering measures.

With the implementation of this approach, one specifically effective method consists of setting
up a custom Media Type or using the Remote Command feature. With either approach in mind,
Zabbix will be prompted to run a given script either hosted on the remote host that will be
targeted for monitoring or on a preselected remote collector node. This given script will be linked
to a trigger via an action that was previously configured via the Zabbix frontend and/or APIL.

One significant benefit of this setup is the ability to integrate dynamic runtime parameters in
the script. Zabbix macros like {HOST.HOST}, {IPADDRESS}, {ITEM.VALUE}, and {EVENT.DATE}
can be woven in the command string, which will be replaced with relevant values related to the
alerting event upon execution. This allows for some level of contextual understanding that’s unique
to the host and to the event, a functionality that’s critical in automating forensic analysis. As a
case in point, you might supply the IP address of a troublesome host to a script that you want to
kickstart a packet capture session specifically for that endpoint. Upon running the script, it must
be ensured that it functions properly and that it logs appropriately. Scripts should also return
appropriate exit codes following POSIX guidelines, where 0 indicates successful termination, and
any non-zero indicates error. Additionally, every run must produce log output, either locally or
sent to a centralized log aggregator, with information about the timestamp, received parameters,
and performed actions, including any errors that took place. Such output of the log plays a
crucial role not only for debugging but also for maintaining the integrity of the forensic chain of
custody and procedural reproducibility. Ideally, every action script will compute a hash function
(e.g., SHA-256) for any produced artifact and retain the artifact and its respective metadata in
an immutable manner.

To ensure that commands are run only on systems that hold explicit permission, you must
set the EnableRemoteCommands parameter to 1 in the settings of the agent. We also advise
you to adopt command whitelisting as a supplemental measure to prevent the commencement of
unwanted and malicious activity due to improper settings.

29

Automated Forensic Data Collection Model with Zabbix

3.4.2 Multi-Step Forensic Collection

Zabbix’s ability to aggregate different response actions makes it suitable to manage a streamlined
forensic acquisition process. Despite the lack of native support for complex workflows and the
management of states, its scripting capabilities and event-based architecture make it act like a
coordinator to collect evidence throughout numerous stages.

In a traditional setup, a system that identifies abnormal behaviors - in the form of unauthorized
port scans, unusually bulk data transfers, or suspicious CPU usage - can trigger a series of
actions through the medium of a shell script. This shell script, in turn, triggers a series of
commands specifically designed to systemically and logically collect forensic evidence in real-
time. For example, the script triggers the running of tcpdump to generate a summary of selectively
filtered packets based on relevant IP addresses or ports for a period of five minutes. The resultant
.pcap file might then be sent to a timestamped directory, and its integrity verified through the
generation of a SHA-256 hash, with the results written to an accompanying .sha256 file.

Later, scripting might also develop the ability to keep logs of activity, run process snapshots
(e.g., ps aux or 1sof), and aggregate system metrics, all of which are recorded in addition to the
network trace. These files generated through scripting can be made transferable or ready for long-
term preservation through archiving and compression, depending on data preservation policies
defined in the environment. This entire process can be done in full automated mode through
scripting and within defined privilege limitations to ensure the protection and proper processing
of sensitive information. To complete the response workflow, Zabbix can be configured to notify
an external system such as a central STEM, a webhook endpoint, or an administrator via email or
Telegram, attaching relevant logs or referencing the archive path. This notification closes the loop
between detection and operator awareness and enables further inspection by incident handlers.

This architectural system places Zabbix in the role of forensic readiness enabler, ensuring that,
in the event of an incident, evidence is always gathered, annotated, hashed, timestamped, and
saved in a digital format without any manual intervention required. This system, in one of its
numerous lightweight configurations, suits resource-scarce organizations, air-gapped systems, or
industrial environments where significant SOAR system installations would be impractical.

The approach adheres to the established theoretical foundations in research articles related to
reactive forensics automation [21] and minimal intrusion prepared structures [34]. This demon-
strates that common monitoring applications, like Zabbix, can facilitate considerable evidence
collection without continuous violations and in compliance with regulatory norms.

3.5 Limitations and Design Considerations

3.5.1 Zabbix Constraints in a Forensic Context

Although Zabbix provides a versatile and extensible model for monitoring networks and systems,
its native capabilities were not designed specifically for the scope of digital forensics. This section
highlights the main limitations to consider in adapting Zabbix to strengthen effectiveness in
forensic analysis.

Table 2.2 shows that Zabbix lacks built-in forensic integrity features; therefore, it requires
using ancillary scripts for the handling of evidence. Specifically, Zabbix lacks inbuilt abilities to
carry out basic forensic activities, such as full packet capturing, memory acquisition, or disk-image
extraction.

Second, the temporal accuracy of the data acquired in Zabbix depends on the internal polling
intervals and the synchronization of the clocks of the monitored hosts. In forensic science, times-
tamps and their granularity play a very important role in reconstructing reliable timelines and
proving the randomness of events. If the system clocks of the agents or the Zabbix server are
not properly synchronized via NTP, the collected information risks losing forensic validity due to
temporal discrepancies. Studies such as [35] indeed underline the importance of having accurate
and verifiable timestamps.

30

Automated Forensic Data Collection Model with Zabbix

Another limiting factor is the processing model for actions and script execution in Zabbix.
Scripts triggered through Zabbix actions are run as the user credentials of the Zabbix agent or
server and hence inherit environmental restrictions and privileges set up on the host operating
system. For example, capturing packets on the network might require root privileges, and config-
uration errors with respect to such privileges will accidentally hinder the data gathering process.
As such, privilege assignments must be carefully set up; sudoers policies must be clearly stated;
and the script is properly placed to utilize this solution within the context of production efficiently.
Additionally, Zabbix lacks built-in functionality for the tamper-evident and secure storing of har-
vested artifacts. Guarantees for forensic integrity - usually accomplished with the help of hashing
algorithms, timestamping, and chain-of-custody documentation - need to be provided through
additional scripts or tools. Unlike forensic-focused tools such as AutoForensics [21] or Splunk
SOAR systems [28], which provide built-in forensic capabilities as shown in Table 2.2, Zabbix
requires users to implement these features externally.. As a result, more components are required
for the secure archiving of data, such as specially designed servers, append-only logs, or immutable
storage-compliant systems.

Although these limitations do not prevent the use of Zabbix for forensic purposes, they require
a conscious and competent approach to its use. Administrators need to overcome the lack of built-
in forensic functions by using the versatility of Zabbix to import external tools.

3.5.2 Design Philosophy: Separation of Concerns

Despite the admitted limitations, the architectural model is based on a layout to fight complexity
and enhance maintainability along the lines of the separation of concerns principle. Each part of
the forensic pipeline - namely, the detection, response, acquisition, and preservation - is designed
to act autonomously with the possibility of interaction through well-defined interfaces and triggers.

For instance, the detection mechanism built into Zabbix triggers can be individually tuned or
optimized separately from the script used for the gathering of evidence. As such, the acquisition
module, like a shell script running tcpdump or journalctl, has the flexibility to replace or up-
grade to more advanced tools with minimal need for customization of the detection parameters.
Similarly, the preservation module for hashing, timestamping, and the securing of artifacts as
archives can individually meet organizational requirements or adapt to regulatory requirements
like GDPR. or ISO/IEC 27037.

In forensic engineering, this modularity is critical, where sources of evidence, data formats,
and legal constraints vary widely across scenarios. A monolithic, strongly coupled design would
limit such adaptability and introduce risks at the time when modifications were needed. On the
contrary, the system proposed in this thesis allows for versioning, testing, and distributing each
component individually, following a low-coupling orchestration approach.

In addition, the definition of logical components contributes to the effectiveness of the safety
assessment and compliance with incident response processes. Distributing responsibilities among
distinct modules helps define separate boundaries of trust and solidify the principle of least privi-
lege. For example, the script used for hash evaluation can be carried out on a highly constrained
system with minimal exposure, while the detection mechanism remains the responsibility of the
monitoring staff. Ultimately, employing this modular approach complies with both secure system
design principles and good forensic practices. This ensures that the system remains maintainable,
extensible, and capable of integrating future improvements into evidence acquisition or preserva-
tion technologies without compromising existing detection logic.

3.6 Readiness for Case-Based Applications

3.6.1 Customizability and Scalability of the Model

The working effectiveness of the model of forensic collection is directly related to its ability
to respond to new threats as they emerge, adapt to changing infrastructural requirements, and

31

Automated Forensic Data Collection Model with Zabbix

participate in process refinement exercised continuously. The research-based architecture utilizing
Zabbix-enriched automated and modular setups is highly adaptive and scalable for its practical
use.

The fundamental reasoning employed for the identification of incidents through the model
demonstrates extensive flexibility for differing incident types through the calibration of the pa-
rameters being monitored with the corresponding thresholds. For instance, the system can detect
attempts to exfiltrate data through the inspection of the amount of outbound network traffic,
while privilege escalations might be discovered through abnormal system calls, unintended user
group membership changes, or abnormal usages of sudo. Such extensions are not required for
the strengthening of the facility architecture; instead, they are used to add new triggers involving
relevant metrics and activities. Such flexibility is essential for security applications, as the attack
strategies continually change.

In addition to that, the acquisition script and response script built into the Zabbix actions
model are subject to further refinement and incremental version upgrades. Initial versions might
depend on simple tools like tcpdump or ps; they have the potential to greatly expand by im-
plementing sophisticated data gathering mechanisms, integrating with centralized log storage
systems, or providing connectivity to digital forensic storage systems down the road. Since Zab-
bix is able to take script parameters as input and run any executable available on the server where
the Zabbix server program is running, the possible alternatives are truly unlimited. Another form
of adaptability is achieved through the ability to adjust triggers by applying historical behavioral
baselines. Zabbix is able to apply statistical functions like avg (), count (), and trendavg() across
different periods. What this does is allow administrators to set up triggers for finding anomalies
based on things other than set values, but on behavior different from the norms normally expe-
rienced by the thing being monitored. As such, organizations are able to set up adaptive alarm
thresholds, thereby keeping false alarms to a minimum and better reflecting the true operating
characteristics of the systems.

The second important criterion is with regard to scalability, more particularly for wide-scale
IT or OT deployments. Zabbix originated as software to support distributed monitoring through
the use of proxies to allow for horizontal scaling with minimal architectural adjustments. Further
agents or proxies can be added seamlessly to handle additional hosts, network sub-blocks, or
sensors, all operating within the previously set up trigger-action-collection model. In addition to
that, the orchestration logic is not limiting; each trigger is free to trigger its matching actions
autonomously and hence support real-time incident identification and processing across different
nodes.

The model’s scalability and customizability allow it to apply to various settings and threat
conditions. No matter if the organization needs to monitor just a few standalone hosts or its
entire infrastructure, the modular nature of the system ensures that adaptation and extension of
the forensic logic take place with minimal friction over time.

3.6.2 Transition to Real Scenarios

While the model proposed operates on theoretical as well as on structural levels, its empirical
effectiveness is subject to verification by systematic testing. In the next chapter of the book, two
simulation scenarios for attack were utilized on a virtualized test laboratory to demonstrate the
possibility for Zabbix to act as an efficient real-time forensic enabler.

The first situation involves an attempted exfiltration of data by the internal user, who ex-
filtrates sensitive files to the unauthorized external server. The detection mechanism relies on
sudden surges in outbound traffic and anomalies in process forking. As a response, it triggers the
logic framework to initiate an acquisition script meant to collect the logs, active network connec-
tions, packet captures, and then lock down the former with cryptographic integrity guarantees.

The situation provided is related to the illegal setup of a service, that is, the installation of
a hidden web server on a compromised device. In this situation, the detection phase utilizes
the Zabbix Low-Level Discovery mechanism to detect hidden services and runs several evidence-
gathering procedures involving port scanning, process scanning, and filesystem analysis. In line
with the situation above, tamper-resistant integrity is maintained for the harvested artifacts.

32

Automated Forensic Data Collection Model with Zabbix

The test cases provided not only act as examples of proof-of-concept but are templates for
possible implementation in real-world scenarios as well. They illustrate that on-demand invocation
is possible for every module - detection, action, acquisition, preservation - without the need for
human intervention and hence present relevant forensic data on time. In addition, they highlight
the adaptability of the proposed solution for incident-specific requirements as illustrated by the
example of minimal redesign for different threat scenarios.

The transition from theoretical design to real-world implementation validates the model as
effective and provides insightful angles on the trade-offs and best strategies involved with im-
plementing Zabbix as a forensic automation tool. Due to its simple and flexible architecture,
it implies that small to medium-sized businesses with limited resources are able to adopt this
approach to enhance their incident response and evidence capture mechanisms despite the lack of
investment in enterprise-class SOAR products.

33

Chapter 4

Workflow Model for Automated
Forensic Collection

This chapter provides a full and modular framework for forensic automation of data collection,
without any specific monitoring tool. We look for a standard procedure set to be usable with
Zabbix or replaceable with any other tools, with the same logical structure and without loss of
integrity, traceability, and reproducibility.

We first outline the configuration of the environment, stressing the setup of secure remote
access using SSH keys, strict authentication procedures, and automatic verification of required
forensic software. Target systems must meet all prerequisites to ensure effective evidence gather-
ing.

We then clarify the evidence collection execution, whereby particular commands are utilized
to gather volatile and non-volatile states, as well as process metadata, history of use, and system
logs. Each file gathered is immediately hashed utilizing SHA-256 and stored within structured
metadata, and consequently, a chain of custody resistant to alterations.

In conclusion, this chapter addresses the topic of secure artifact retrieval and storage, detail-
ing methods for encrypted transmission, archive management, and verification of integrity post-
transfer. We conclude with an analysis of the flexibility of these elements, resulting in a dynamic
framework that satisfies both enterprise and regulatory standards independently of Zabbix.

4.1 Environment Preparation and Setup

4.1.1 Secure Access and Authentication Framework

The implementation of efficient forensic automation requires a dependable and verifiable method-
ology for the remote access of specified systems. This framework employs SSH key-based au-
thentication to ensure the integrity and non-repudiation of all operations conducted during the
evidence collection procedure.

First, a unique forensic user account is created on each target to be monitored, with permissions
of no higher than what’s necessary to gather the information. In the master server, the Zabbix
server, for example, high-security elliptic-curve or RSA algorithms of a minimum of 4096 bits are
employed to create public keys. The corresponding public key is thus stored on the target host,
in the forensic user’s home directory, to be precise, in .ssh/authorized keys, with a file mode
of 600 to guarantee it can not be altered without permission.

Target’s SSH server is made secure by disabling password login (PasswordAuthentication
no) and root login (PermitRootLogin no) and enabling only the essential key exchange and cryp-
tography. The directive AllowUsers also restricts login to the intended forensic user. Additionally,
further utilities like fail2ban[36] may be utilized to tightly monitor failed login attempts.

34

Workflow Model for Automated Forensic Collection

Host-specific HostKey lines are also configured on the collection server’s . ssh/known_hosts file
to protect from man-in-the-middle attacks. Connections are set using StrictHostKeyChecking
yes and BatchMode yes, so interactive prompting doesn’t occur and your automated scripts do.
Pre-collection, a preparatory verification checks SSH access functions, and the forensic user can
run necessary commands without prompting for a sudo password. A short test script on every
target checks necessary binaries (e.g., ss, lsof, tcpdump) and indicates missing dependencies.
By enforcing key-based access and a strict SSH policy, this setup allows a safe, tamper-resistant
method of remotely controlling every step of the automated forensic workflow.

4.1.2 Prerequisites Verification and Package Installation

Early in the process of collecting on a forensic basis, it’s necessary to be assured that the target
host has all the pertinent binaries and system utilities to facilitate the successful gathering of
evidence. This checking process is done on an automated basis by the collecting script at the time
of negotiation for a secure connection.

The script checks for the presence of necessary packages, including zip (used for compressing
evidence artifacts), tcpdump (for gathering network traffic), psmisc (pstree-based process hierar-
chy), net-tools (for obsolete networking tools like netstat), and essential system utilities such
as 1sof, ss, ps, sha256sum, and df. In case a necessary package is missing, it informs the oper-
ator and automatically attempts to install missing packages (e.g., apt-get update && apt-get
install <missing-packages> on the scenario of Debian-based systems), then proceeds with its
activities.

Under Case Study I (detection of data exfiltration - Section 5.2), particular importance
is attached to utilizing tcpdump and lsof for real-time capture of network traffic and mainte-
nance of an active connection under constant surveillance; a lack of them would detract from
the completeness of the response. For Case Study II (the inappropriate use of services within
an industrial setting - Section 5.3), the script also examines permitted access to directories and
logging subsystems and checks for Python module availabilities in situations of custom industrial
diagnostics being employed.

Automated verification allows for real-time checking of performance, minimizes the chance of
partial collections, and facilitates standardization of collections conducted on different systems.
In case of necessity, a person can version and collect a customized list of prerequisites suitable
for each particular case study, thereby facilitating tool-specific preparations irrespective of the
situation.

4.2 FEvidence Collection Execution

4.2.1 Focused Data Acquisition and Examination

The preliminary stage of automated forensic acquisition encompasses the methodical gathering
of volatile and non-volatile artifacts from all levels of systems. This aspect is engineered with
resilience and adaptability as cornerstones to achieve full evidence gathering, irrespective of a
system setting or operating condition.

The data acquisition method employed is a unified plan developed particularly for the distinct
nature of the target environment. Discovery of network interfaces is done through a range of
fallback processes: the script first attempts to find active interfaces using existing utilities (ip
-0 link show), and if this fails to work, it falls back on using standard methods. For each
discovered interface, custom packet capture processes are started in parallel, thereby augmenting
time coverage and minimizing the time it takes for acquisition.

Its service and process cataloging is performed likewise within an equally rigorous framework
to consolidate many data sources and develop a holistic picture of the state of the system. Its
workflow correlates active network ports to processes and pulls rich metadata like process IDs,
locations of executable files, environmental variables, and open file handles. Binary integrity

35

Workflow Model for Automated Forensic Collection

checking is accomplished efficiently using SHA-256 hashing of executable files, and file access
patterns of process-specific files are acquired using selective 1sof invocations.

User activity building involves a comprehensive collection of the shell history of all user ac-
counts available. The program goes through the home user directories methodically and discovers
and accumulates the shell command histories (bash, zsh), keeping file permission constraints in
mind. Administrative accounts are specially taken care of, and efforts are made to restore the
root history if permissions allow.

The summarization of system logs allows for sophisticated selective sampling, focusing on log
sources considered essential to security (e.g., auth.log, syslog, and secure), and at the same
time condensing data size using tail-based extract techniques. The surveillance of recent file
changes targets directories marked as high-risk (/tmp, /var/tmp, and /opt), using a time window
to be configured to account for recently installed artefacts or settings.

The architecture’s context-aware specialization manifests in the industrial setting with addi-
tional collection modules aimed at scenario-dependent entities like OT-selective service settings,
PLC diagnostic information, and industrial protocol log messages. In this extensible architecture,
the cross-platform collection logic is preserved, and the scenario-dependent needs are met with
modular additions instead of full redeployment.

4.2.2 Policies on Integrity and Secure Storage

Data integrity preservation is a governing principle throughout the entire process of evidence
collection, and it’s accomplished using multiple levels of cryptographic verification and access
control measures. This multi-level framework ensures the preserved artifacts are maintained with
evidential credibility from the beginning of acquisition, long after long-term storage, and on to
any eventual legal proceedings.

Instantaneous integrity sealing process proceeds in tandem with the data acquisition process.
The first step of being subjected to further operations is to execute a hashing process for all files
utilizing the SHA-256 algorithm. The first hashing creates a distinctive marker that is employed
within verification processes appearing later. Hashing is conducted on separate components,
including process listings, network captures, log segments, and user activity listings, and on
aggregated metadata files, thereby establishing an exhaustive integrity model of the complete
data collection session.

The subsequent process of verification that confirms information accuracy is known as pre-
transfer verification. Before transferring the complete evidence archive across the network, a hash
computation is performed to ensure data integrity. This hash serves two primary purposes: it
identifies any potential corruption that may occur during the packaging phase and generates a
singular value that allows for end-to-end verification throughout the transfer process. The hash
is calculated on the receiving end and is recorded in a separate sidecar file that accompanies the
evidence archive. Post-transfer validation constitutes the final step of the validation process. The
received archive’s hash is again recalculated on the collection server and compared with the original
hash value provided by the original system. In the event of a mismatch, the user is immediately
alerted, and the compromised archive is barred from being entered into the evidentiary storage
system. The cleanup of transient files on the target computer takes place only after the hash
validation has been completed. This procedure guarantees that the evidence remains retrievable
in the event of any transfer errors.

Tamper-evident storage framework works alongside a hashing function, backed by well-defined
access control measures. Specific forensic folders are employed to preserve evidence repositories
with write-once, read-many access permissions. In the initial process of depositing data, only
permitted collection processes have the ability to store data. Afterwards, it is disabled and allows
only authorized forensic examiners and audit processes to read the evidence. This ensures that
once evidence is incorporated within the storage framework, it can in no way be modified by people
who are not authorized, yet still enables required access for conducting ongoing investigations.

36

Workflow Model for Automated Forensic Collection

4.3 Generalization of Scriptable Logic

The forensic workflow chapter demonstrates a tool-agnostic architecture, therefore not dependent
on any particular monitoring platform. Even if Zabbix happens to be the main control system here,
the fundamental script logic of this solution is intended to be easily adaptable for it to be made
compatible with different STEM systems, SOAR systems, or custom automation deployments, all
without jeopardizing forensic processes’ integrity and the workflow’s efficacy.

Modular abstraction forms the building block of this generalization strategy. Each component
of the forensic pipeline - environmental preparation, data acquisition, integrity measurement, and
secure storage - represents a separate module with clearly defined input and output specs. The
execute model for running remotely, built on SSH, takes standard parameters (target IP, creden-
tials, incident context) and generates predictable output (timestamped archives, hash manifests,
execute logs), regardless of the platform on which it was launched. This abstraction allows or-
ganizations to deploy the tool in tandem with existing security orchestration solutions like IBM
QRadar SOAR, Splunk Phantom, or Microsoft Sentinel without requiring changes to the sup-
porting infrastructure. Standardization of input and output allows for effortless integration of
different monitoring systems. Data collection scripts require three major inputs in particular:
system identifiers, authorization information, and data relevant to incidents. Output files thus
created conform to a standard format, encapsulating a compressed evidence directory, a hash file,
and an inclusive report of actions conducted. This standardization allows the framework to work
as a forensic microservice within large-scale incident response systems, wherein alerts from across
network monitoring utilities (e.g., Nagios and Prometheus), intrusion detection systems (e.g.,
Suricata and Zeek), or endpoint detection solutions (especially OSSEC and Wazuh) are triggered
off runs of a collection process through standardized API calls or command-line invocations. The
mechanisms of platform adaptation allow a simple transition to different monitoring solutions.
The Zabbix trigger logic, which searches network issues based on thresholds and monitors service
discovery, can be replicated on other platforms by their query languages and alert mechanisms.
You can, for instance, use Watcher queries in the case of the Elastic Stack in search of the same
indicators of compromise, and alert rules in Grafana in order to initiate the same forensic col-
lection processes. The primary collection logic remains the same and requires individual settings
of triggers on a particular platform. The framework’s extensibility and customizability provide
organizations with the means to customize the framework to meet their particular needs with-
out forgoing forensic adequacy. Other collection modules can be incorporated by adhering to a
prespecified method: error handling efficiently, maintaining detailed logging, calculating integrity
hashes, and chain-of-custody documents are not altered. For example, a few special environ-
ments include a requirement for container-related forensics (e.g., collecting Docker or Kubernetes
artifacts), evidence acquisition from cloud services such as AWS CloudTrail and Azure Activity
Logs, or industrial protocol analysis including Modbus and DNP3 traffic analysis. Each of the
extensions possesses the same security standards and legal acceptability as the parent framework.
Its vendor-neutral approach enables organizations to implement automated forensic tools with-
out consideration of the security infrastructure currently in place. Such a platform provides a
solid base to the automation of incident handling, of the kind characterized by versatility, able to
counter technological evolution without losing advanced forensic sophistication levels.

37

Chapter 5

Implementation and
Configuration

Extending substantially on the conceptual theory laid out within Chapter 3, the fourth chapter
extends the structure and organization of two simulated attack scenarios placed within a fully con-
trolled virtual lab environment. The overarching task remains to assess the functional efficiency,
flexibility, and evidential value of the implemented automated forensic pipeline via Zabbix, while
identifying potential practical limitations or challenges likely to arise within the test process.

Both scenarios mimic data exfiltration performed by an insider, resulting in abnormal out-
bound network activity and the lack of approved file transfers. The second scenario depicts the
unauthorized creation of a hidden service, often related to a backdoor listener or an uncommon
web server. In both case studies, we begin with a concise threat model that describes the motives
of the attacker, environmental limitations, and relevant indicators of compromise. We then define
the logical layout of the laboratory, including the Zabbix Server, monitoring agents, the attack-
ing machine, and remote storage, and define how the interaction among these elements enables
real-time, holistic detection and automation of evidence collection.

This chapter covers the major configuration parameters, namely trigger definitions, corre-
sponding actions, and evidence storage policies, with an emphasis on major design decisions.
Detailed, step-by-step installation and setup procedures for every module are given, along with
the full source code for the bash scripts used for collecting the data and hashing, included in
Appendix A (User Manual) and Appendix B (Developer Manual).

This empirical study brings together theoretical concepts and real-world applications to an-
alyze the feasibility and value proposition of the proposed methodology for automated real-time
forensics in cybersecurity operations.

5.1 Laboratory Environment Setup

5.1.1 Architecture Overview

The experimental setup is made up of a closed virtual world that contains four different virtual
machines, all carefully built to play a specialized role during the collection of forensic evidence.
The setup mimics real enterprise networking infrastructures while ensuring total experimental
parameter control, minimizing extraneous factors that can disrupt forensic analysis integrity.

At the core of the system is the Zabbix Server running on Ubuntu Server 24.04 LTS and
Zabbix 7.0 LTS, and is the primary enabler for whole-of-environment monitoring and triggering
of forensic activities. The architectural structure of the system, therefore, has a core monitoring
MySQL database, a web interface, and alert administration procedures, all working together to
enable automated evidence collection procedures. The use of Long Term Support versions enables
consistency and stability in the experimental environment over long test periods.

38

Implementation and Configuration

A focused Victim Host under Ubuntu 24.04 LTS serves as the main object under study,
featuring a running and installed Zabbix agent to send system data and perform remote actions
upon certain triggers. The configuration mimics a typical endpoint from a security perspective
that is no different from a legitimate entity vulnerable to assaults during a real security incident,
involving typical services, including web applications, file transfers, or database work that might
be attacked by malicious behaviors.

Network typology employs a hybrid approach that combines NAT and a networking bridge
to produce truthful communication schemes, while preserving experimental isolation. This setup
allows the laboratory to simulate internal network communications and also external connectivity
models, without exposing the test environment to real Internet traffic that could compromise
forensic evidence or introduce uncontrolled variables into the experimental design.

5.1.2 Virtual Hosts and Monitoring Targets

In the laboratory setup, a particular IP configuration and a detailed hostname are allocated to
every virtual machine, thus facilitating meaningful networking operations and correlating forensic
traces between different system components. The schema for addresses is regulated by a well-
defined structure that outlines specific roles of different systems in the context of the experimental
design framework.

The subnet address range 192.168.20.0/24 was chosen for the network infrastructure, in
which the Zabbix Server is zabbix-srv (IP: IP: 192.168.20.120) and the Victim Host is
victim-host (IP: 192.168.20.130). A correct breakdown of the network is favored by ad-
dressing, which clearly differentiates traffic models without damaging functionality for analytical
purposes, but also for monitoring activities.

Victim Host setup is implemented to mirror an industrial endpoint by running a range of
common services commonly utilized in the enterprise sector. This virtual machine will simulate
an industrial appliance, with Modbus and a diagnostic simulator server.

To enhance the likelihood of attack simulations, the Victim Host uses datasets that reproduce
sensitive business data, such as personnel lists, financial information, and configuration files con-
taining credentials or system data. The datasets are strategically positioned to create credible
data access schemes that, in real situations, would provide forensic evidence for security incidents.
This configuration allows detailed testing of the collection of network-facing evidence via multiple
file transfer protocols that could be targeted by attackers.

A local NTP server is used in all systems to ensure that system clocks are synchronized,
thus ensuring correct correlation of timestamps on collected forensic artifacts. The temporal
alignment must be preserved to preserve the integrity of the evidence timelines and support a
precise reconstruction of the attack campaigns following the analysis of the incident.

5.1.3 Data Collection and Logging Tools

The evidence collection procedure is built upon a carefully selected set of command-line tools and
custom scripts, carefully constructed specifically to gather a variety of evidence classes effectively
and maintain integrity during the collection process. These tools work at multiple levels inside
the system to allow for all possible evidence sources, from base network traffic to advanced system
activities.

Network traffic acquisition is mostly handled by tcpdump, a sophisticated command-line packet
analysis tool that captures and saves network traffic in PCAP format, all in real-time. The tool
is configured to capture all of a packet’s content by not truncating, through the use of the -s
0 flag, and always writes packets out to disk, minimizing temporary data loss during system
interruptions, through the use of the -U flag. The acquired network traffic is invaluable when
reconstructing attack timelines, identifying data exfiltration threats, and investigating command-
and-control traffic.

39

Implementation and Configuration

The system state documentation utilizes a set of readily available Unix tools, including 1sof
to monitor open files and network connections, ss and netstat to list network sockets, ps to
inspect process trees, and top to monitor system resources in real time. This combination of
utilities provides a comprehensive snapshot of system activity at the time of evidence collection,
thus helping forensic analysts correlate process behavior with attendant network interactions and
file access patterns.

The use of advanced system auditing is made available through auditd, which is the Linux Au-
dit Framework. This offers monitoring in kernel space while operating in user space, thus protect-
ing from interference by potentially malicious software. The audit daemon is configured to monitor
security-relevant system calls, attempts to access files, privilege elevation, and authentication-
related events, creating a comprehensive audit trail that supports real-time detection as well as
forensic examination after the fact. The effectiveness of Automation and Orchestration is made
possible through the use of custom bash scripts that manage workflows related to evidence col-
lection, maintain specified naming conventions, perform cryptographic hashing to verify data
integrity, and manage secure storage of collected artifacts. Such scripts include error-handling
mechanisms, logging capabilities, and timestamp synchronization, ensuring forensic integrity and
reducing risks of human errors in critical operations related to evidence collection.

The dual use of these tools creates a multiplexed system of evidence collection, essentially
obtaining ephemeral as well as persistent artifacts while simultaneously maintaining chain-of-
custody procedures essential for the legal admissibility of digital forensic evidence.

5.1.4 Security-Oriented Trigger Design

To enable the easy identification of forensic-relevant events with reduced latency and increased
accuracy, a set of tailored Zabbix triggers has been created to monitor abnormal behaviors that
could indicate a possible compromise. First, outbound traffic spikes are identified through the use
of a threshold over the net.if.out metric. More specifically, we employ the function

victim-host:net.if.out[ens160].avg(60) > 1250000

where 125000 represents about 10 Mbps of network traffic. The threshold is a persistent increase
in upload volume, and this is a possible sign of a data exfiltration attempt.

Subsequently, unexpected deployment of new services can be monitored via Zabbix’s Low-
Level Discovery (LLD) on systemd drives. Drives obtained from systemd.list_services are
compared with a predefined whitelist; any changes or additions to service entries trigger. The
detection of unauthorized backdoors that allow privilege escalation is precisely enabled by this
described method.

victim-host:industrial.port.listen[4444].last() > 0

Every trigger is classified under a Security group classification to promote escalation man-
agement. The dependencies are organized such that traffic triggers that have a high volume can
mute notifications from lower-priority one-socket connections, preventing alert surges. The trig-
gers all have a defined severity macro (for instance {TRIGGER.SEVERITY}) to facilitate automated
evidence collection procedures, offering information on the needed level of response urgency.

5.1.5 Response Actions and Alerting Mechanisms

Zabbix encapsulates the essential nature of forensic automation by its ability to handle alerts
from humans and automated response mechanisms through its robust Actions framework. If a
forensically relevant trigger is fired, Zabbix can alert operators while, in the meantime, triggering
evidence collection procedures without human intervention.

Hierarchical Alerting and Escalation concept describes various levels of notification chan-
nels that mirror incident severity and the corresponding responses required. The escalation system

40

Implementation and Configuration

supports a tiered notification strategy, where primary alerts are sent to first-line technical staff
via email, while recurring incidents not resolved within specified time intervals get automatically
escalated to more senior officials through SMS or collaborative communication tools [37]. For ex-
ample, a data exfiltration trigger could immediately alert the SOC team via email, and then notify
the CISO after a 30-minute delay in case of no response. Additionally, it could simultaneously
alert executive management through integration with Microsoft Teams if the incident persists for
more than two hours. Every escalation level operates independently with time thresholds, both
for limited escalation sequences and continuous repetition until resolution.

Automatic Response Actions refer to the inherent ability to gather forensic data in real time
without the need for operator intervention. Zabbix Actions offer the means to execute remote
commands employing several methods: direct system commands via installed agent, SSH-based
execution for agentless environments, and custom script execution via the global script mecha-
nism. These automatic responses can be used to initiate packet capture sessions with tcpdump,
initiate memory dumps with external tools, or activate extensive evidence collection procedures,
all performed within seconds of triggering. The actions framework supports conditional logic,
allowing diversified response schemes based on trigger severity, host groups involved, or time
criteria.

Multi-Modal Notification Integration goes beyond standard email notifications by in-
cluding modern collaboration systems and multiple communication channels. Integrated webhook
support caters to easy integration with Slack, Microsoft Teams, Telegram, and custom API end-
points, and SMTP configurations support plaintext and HTML messages, injecting forensic con-
text through Zabbix macros. The notification system maintains diligent audit trails, registering all
send attempts, delivery checks, and receipt acknowledgments to satisfy forensic chain-of-custody
requirements.

Integration of automated procedures and human-initiated alerts facilitates a complete incident
response system, whereby technical staff acquire expedient situational awareness, and the collec-
tion and storage of forensic evidence occur automatically, ensuring that the capture of perishable
evidence proceeds independently from human-initiated delays.

5.1.6 Evidence Collection Scripts

The automated evidence collection process is carried out through a series of modular scripts that
can be triggered through Zabbix Actions on either the server or target host. The scripts play
a double role: carrying out active mitigation and collecting forensic evidence, and are grouped
under three functional groups.

To detect and analyze traffic on specified interfaces for a defined user duration, network capture
scripts are used in conjunction with tcdump. Scripts can be done remotely via SSH or by the
Zabbix agent system.run function, accepting parameters related to interface naming, save path,
and capture filters, storing files systematically with timestamps.

Momentary data is extracted from system snapshot scripts, also including currently running
processes (ps aux), available open file descriptors (1sof), loaded kernel modules, and current
network sockets (ss). Snapshots are stored as structured data in JSON format or as simple text
files and, consequently, facilitate rapid triage activity and correlation with network acquisitions.

Scripts in the textitIntegrity and Mitigation section create SHA-256 hashes of critical binaries,
configuration files, and captured artifacts, while simultaneously recording checksums in metadata
logs to ensure the veracity of the chain of custody. In high-severity incident scenarios, scripts
can additionally perform active responses, for example, blocking suspicious IP addresses using
iptables or stopping compromised services via systemctl stop commands.

Scripts reside centrally on a repository stored on the Zabbix Server and are delivered securely to
your monitored hosts when needed, through automated file distribution mechanisms. Scripts keep
a record of their activities, exit codes, and timing information inside a designated Zabbix log file.
In this approach, automated forensic processes ensure adaptability, scalability, and sustainability,
all while removing the necessity for human interaction on critical incident response activities.

41

Implementation and Configuration

5.2 Case Study I: Detection of Data Exfiltration

5.2.1 Threat Scenario and Indicators

In the first case study, a realistic data exfiltration event is emulated, which covers the unauthorized
transfer of about 30 gigabytes of sensitive corporate data from a monitored host system, namely
the victim-host (IP address: 192.168.20.130), to an attacker-controlled server via the Secure Copy
Protocol (SCP).

This attack illustrates a common insider attack pattern, where legitimate authorized creden-
tials and resources were used to access valuable organizational data. The attack uses common
network protocols and utilities prevalent in most Unix-based operating systems, thus making it
difficult to distinguish between legitimate system administration and malicious activities, espe-
cially when there is no proper monitoring in place.

These indicators hint at the likelihood of such an event:

e Protracted outbound traffic anomalies: There has been a significant and extended
increase in network traffic volume on the victim’s primary interface, vastly exceeding baseline
patterns set by normal operational behavior;

e Process execution signatures: Running of file transfer processes such as scp, rsync,
curl, or FTP clients, defined by parameters signifying processes of moving extensive volumes
of data;

e Network Connectivity Patterns: Opening persistent TCP connections with external
hosts, particularly hosts not previously known within the communicative structures of the
environment;

e Resource utilization increases: There exists a temporal association among increased
utilization of CPU, disk I/0, and network interfaces and data transfer activities.

Figures 5.1 and 5.2 show the system under investigation’s outbound traffic behaviors and
CPU usage over the course of simulating an exfiltration event. The net.if.out metrics for
interface ens160 show a dramatic spike from baseline levels near zero to sustained throughput
over 600 Mbps, lasting throughout the transfer phase. Although this specific metric cannot be
used as a primary detection metric due to its inherently global nature, its correlation with CPU
usage trends provides further corroborating evidence of heavy data handling activity.

Victim Host: Interface ens160: Bits sent
800 Mbps

600 Mbps
400 Mbps
200 Mbps

Obps

05:54:30PM
06:01:30PM
06:02:30PM

05:55:30PM
05:56:30PM
05:57:30PM
05:58:30 P4
05:59:30 P4
06:00:30PM
06:03:30 P4
06:04:30PM
06:05:30PM
06:06:30PM
06:07:30PM

last min avg max
B Interface ens160: Bits sent [all] 3.22Kbps 2.98Kbps 321.28 Mbps 630.44 Mbps

Figure 5.1. Outbound traffic (net.if.out [ens160]) measurements showing sustained data exfil-
tration activity over approximately 9 minutes, with peak throughput exceeding 600 Mbps.

5.2.2 Zabbix Items and Triggers for Network Anomalies

The detection architecture leverages Zabbix’s native network discovery capabilities combined with
precisely configured monitoring items and trigger logic to achieve rapid anomaly identification with
minimal false positive rates.

42

Implementation and Configuration

Victim Host: CPU utilization

last min ave max
M cPU utilization [all] 05258 % 0.5258 % 23.838 % 86.8855%

© Trigger: Linux: High CPU utilization [> 90]

Figure 5.2. CPU utilization correlation during the data transfer window, demonstrating system
resource consumption associated with large-scale file operations.

Network Interface Discovery and Monitoring

Before the adoption of targeted traffic tracking, the victim host was configured using Zabbix’s
Low-Level Discovery (LLD) functionality, which let the system automatically find and monitor
all available network interfaces. The discovery service identified the primary interface ens160,
instead of the more traditionally anticipated eth0, thus ensuring that the tracking system properly
accommodated the network settings of the target system.

The autodiscovery protocol employed the property net.if.discovery, which produces a
JSON array containing all network interfaces and their related attributes:

{#IFNAME} = "ens160"
{#IFDESCR} = "ens160"
{#IFTYPE} = "6"

For each interface found to be meeting operational parameters (status up and not loopback),
the following monitoring components were automatically created:

e net.if.inlens160] — volume of input data in bytes per second
e net.if.out[ens160] — outbound traffic in bytes per second

e net.if.total[ens160] — interface cumulative

Other elements of network monitoring included:

e net.tcp.listen[10050] — check the availability of the Zabbix agent.
e net.if.collisions[ens160] — network error identification

e Custom user parameters executing ss -s and netstat -s for connection state enumeration

Trigger Configuration and Logic

The primary detection mechanism was defined by carefully determined threshold values based on
the baseline traffic conditions of the environment being monitored. The trigger expression was
given as:

{victim-host:net.if.out[ens160] .avg(60)}>1250000

This alert occurs when the average data transfer rate of outward data exceeds 1,250,000 bytes
per second (about 10 Mbps) during a 60-second interval. The level was deliberately set greater
than ordinary admin data traffic but below levels typical of common backup processes, thus
balancing the sensitivity of detection and realistic operational utility.

The system has an improved recovery system meant to prevent oscillation under margin situ-
ations:

43

Implementation and Configuration

victim-host:net.if.out [ens160].avg(1800)}<1250000

The recovery criterion requires traffic to persist below the specified threshold without interruption
for 30 minutes (1800 seconds) before the clearing of the alert condition to avoid intermittent
disruptions of data transmission, restarting the incident response procedure. The level of the
trigger was set as High to enable fast escalation via the alerting hierarchy of the monitoring
system. Additionally, auxiliary dependencies were introduced to prevent the triggering of alerts
during scheduled times of system maintenance or when the Zabbix agent cannot be reached.

5.2.3 SSH Infrastructure and Authentication Framework

The automated evidence-gathering system requires a secure, password-free authentication method
between the clients being monitored and the Zabbix Server (192.168.20.120). This was accom-
plished using RSA public key cryptography and separate security hardening mechanisms.

Creation and Installation of SSH Keys

In this forensic collection service, a key pair using RSA was created as defined on the Zabbix
Server.

ssh-keygen -t rsa
The resulting public key was added to the approved keys configuration of each monitored host:
ssh-copy-id forensic@192.168.20.130

To support security controls, the SSH server setup on the monitored systems was limited to
only accepting key-based authentication for forensic data collection purposes, along with addi-
tional restrictions that limited the key’s use to specific command execution patterns.

SSH Session Verification and Protection

All SSH connections made by the evidence collection system employ strict host key verification
and cautious parameterization of connection options:

ssh -1 /etc/zabbix/.ssh/forensic_key -o StrictHostKeyChecking=yes
-0 ConnectTimeout=30 -o BatchMode=yes forensic@endpoint command

Connection attempts are logged on either end to create an extensive audit trail of forensic
access exercises. Inclusion of the BatchMode=yes parameter ensures interactive prompts won’t
compromise the productivity of the automated data gathering procedure, and ConnectTimeout=30
helps to prevent delays related to unresponsive targets.

5.2.4 Client System Preparation and Dependencies

Successful evidence gathering requires monitored systems to maintain specific software packages
and configurations. A comprehensive dependency verification process was implemented to ensure
the reliability of collection under changing system configurations.

44

Implementation and Configuration

5.2.5 Package Installation Requirement

The script intended for evidence collection performs automatic dependency verification for the
following critical packages, which might not be provided with the guest operating system:

e zip/unzip: Essential to creating evidence archives and verifying their integrity.

e tcpdump: Network packet capturing tool that requires high privileges.

e psmisc: Process hierarchy tools including pstree for relationship mapping

net-tools: Core networking tools like netstat to guarantee compatibility.

Isof: Listing of open files and network sockets
On Ubuntu/Debian systems, these dependencies are installed via:
apt-get update && apt-get install -y zip tcpdump psmisc net-tools lsof

The collection script checks if packages are available during the time of initialization and prints
useful warnings if necessary tools are missing, thereby achieving progressive degradation of the
collections rather than complete failure.

Privilege and Sudo Configuration Criteria

Several of the previous evidence acquisition methods require higher permissions, particularly
network packet capture with tcpdump and thorough file system analysis using 1sof. Rather than
constantly asking for root access to the account used for acquisition, another sudo configuration
was set up:

forensic ALL=(ALL) NOPASSWD: /usr/sbin/tcpdump, /usr/bin/lsof

This setting allows the forensic collection account to run certain privileged commands without
requiring password authentication, allowing for automated processes while maintaining security
boundaries.

Automated Logging and Packet Capture Activation

With the triggering activation, Zabbix initiates a full evidence collection process through its
Action mechanism, running a centralized forensic script on the Zabbix Server. This design ensures
consistency in collection methods for all monitored hosts, while at the same time maintaining
centralized management and logging.

Implementation Roadmap

The Zabbix Action named Data Loss Prevention - Forensic Collection was created with the
following operational parameters:

e Conditions: Trigger = Data Loss Prevention Alert (>10Mbps for 1m)
AND Trigger value = PROBLEM
e Operations: Remote command execution with 30-second timeout

e Recovery Operations: Notification to the incident response team with the evidence
archive location

45

Implementation and Configuration

The Action starts the forensic collection script with dynamically populated parameters, based
on the configuration of the triggering host:

/usr/local/bin/collect_remote_evidence.sh {HOST.IP} {HOST.FORENSICUSERNAME}

Here, HOST.IP represents the Internet Protocol address of the first host, and the latter
HOST.FORENSICUSERNAME refers to the account under which Secure Shell (SSH) authentication
is carried out.

Workflow for Evidence Collection and Data Acquisition

Evidence-gathering procedure solely takes place on the intended host via SSH remote command
executions and strictly follows an accurately defined order:

1. Environment Preparation

e Creation of a timestamped directory with appropriate permissions for operations
(e.g. /tmp/forensics_192.168.20.130.20250812_133515)

2. Volatile Data Capture
e Running process enumeration via ps aux, capturing PID, PPID, command lines, exe-
cution time, and resource utilization

e Hierarchical process relationships through ps -eo pid,ppid,cmd,etime,user and/or
pstree -p command

e Network socket tables via ss —tunap and netstat -anp for established connections
e Open file descriptor enumeration through 1lsof, identifying all files, network connec-
tions, and system resources in use

3. Historical Data Acquisition

e History of shell commands typed everywhere (e.g., .bash history, .zsh history)
e System log segments from syslog, auth.log, messages
e Authentication and access logs for correlation with network events
4. Network Traffic Acquistition
o Issuing the command ip -o 1link show allows active network interfaces to be identified
automatically
e Concurrent execution of tcpdump on each interface with 60-second capture duration

e Complete packet acquisition (-s 0) and prompt clearing of the buffer (-U) to ensure
data integrity

e Individual PCAP files per interface help to isolate information and improve the ana-
lytical processes

5. Metadata Generation
e Determining hosts (hostname, IP addresses, and system information)
e Collection of timestamps and execution context

e Network interface configurations and status

e Complete inventory of collected files with sizes and hashes
6. Cryptographic Integrity Protections

e Individual file hashes stored in hashes_20250812_133515.sha256

e Archive-level hash verification after compression

46

Implementation and Configuration

e Hash file formatting that is verification compatible using sha256sum -c
7. Transfer and Compression

e ZIP archive creation containing all the materials collected
e Archive hash calculation using only filenames without including absolute paths

e Verified safe transmission using SCP to the Zabbix Server evidence repository

Evidence Artifacts and Data Analysis

The applied collection process for this case study yielded the development of a large evidence
repository containing the artifacts listed in Table 5.1. The collection comprised a total of 10 main
evidence files with their associated metadata, ranging from brief network state dumps to large
open file lists.

The full forensic implications were obtained from

e Network connection data reveals a substantial number of TIME_WAIT connections from
the exploited host to the Zabbix server, implying a period of heightened monitoring activity
during the incident;

e Structured data about processes unveils the occurrence of established SSH connec-
tions, namely, (sshd: forensic@pts/0 and sshd: forensic@notty), corresponding to
the evidence collection session itself;

e Command history analysis for all user accounts, including system installation steps, like
the installation of packages and setting up SSH keys;

e Network interface configuration confirming the primary interface designation as ens160

rather than conventional ethO naming.

Figure 5.3 shows the state of the Zabbix dashboard at the moment of the trigger activation,
highlighting the recording of the issue event and the launch of the automated response procedure.

Current problems

Timev Info Host Problem « Severity Duration Update Actions Tags

04:31:55 PM ¢ Vietim Host ' Linux; Interface ens160; Data Loss Prevention Alert (>10 Mbps for 1m) 49s Update interface: ens160

Figure 5.3. Zabbix monitoring dashboard at the moment of trigger activation, showing the high
outbound traffic problem event and automated response initiation.

5.2.6 Execution Summary

The complete detection-to-evidence-collection workflow operated autonomously without human
intervention, demonstrating the viability of fully automated forensic readiness in network security
monitoring environments. From initial trigger activation at 13:35:15 UTC on August 12, 2025, to
completion of evidence archive transfer and integrity verification, the entire process was completed
within approximately 90 seconds.

The collected evidence dataset provides a comprehensive snapshot of system state during the
simulated data exfiltration event, enabling detailed forensic analysis of:

e Process execution timelines correlating with network traffic anomalies;

e Network connection establishment patterns and external communication attempts;

e System resource utilization during large-scale data transfer operations;

47

Implementation and Configuration

e Historical command execution patterns indicating preparation or reconnaissance activities.

The successful execution validates both the technical implementation of the automated col-
lection framework and the operational procedures for evidence preservation and chain of custody
maintenance. The cryptographic integrity protections ensure that collected evidence meets foren-
sic standards for admissibility and reliability.

This foundational evidence dataset serves as the basis for detailed analytical procedures doc-
umented in Chapter 5, where correlation analysis, timeline reconstruction, and threat attribution
methodologies are applied to demonstrate the investigative value of automated collection systems
in network security incidents.

Table 5.1. Forensic artifacts collected during Case Study I execution

Artifact Filename Size | Content Description
processes_20250812_133515.txt 19386 | Complete process listing (ps aux)
open _files_20250812_133515.txt 418635 | Global file descriptor table (1sof)
process_hierarchy_20250812_133515.txt 1776 | Process tree structure (pstree -p)
process_tree_20250812_133515.txt 13550 | Detailed process relationships
netstat_20250812_133515.txt 17744 | Network conn. tables (netstat)
sockets_20250812_133515.txt 25602 | Socket state info (ss -tunap)
network files 20250812_133515.txt 3150 | Network file descriptors (1sof -i)
collection_metadata_20250812_133515.txt 1728 | Host metadata and collection invent.
root_bash_history_20250812_133515.txt 1393 | Root account command history
pier_bash_history_20250812_133515.txt 1915 | User account command history
hashes_20250812_133515.sha256 790 | SHA-256 integrity checksums
packets_ens160.20250812_133515.pcap 17664639 | Network packet capture (60 seconds)
Total Evidence Files 12 | Complete system state snapshot

5.3 Case Study II: Unauthorized Service Deployment

5.3.1 Threat Scenario and Indicators

The second case study analyzes a sophisticated attack strategy commonly seen in industrial and
operational technology environments: the unauthorized deployment of network services intended
to provide constant access while pretending to be legitimate industrial diagnostic interfaces. Such
an attack is a severe security flaw in environments where stringent service baselines are critical,
notably in industrial control systems, manufacturing networks, and segregated operational envi-
ronments. Any slight deviation from approved configurations in these environments can be a sign
of activity associated with advanced persistent threats.

The attack pattern depicts a case where an adversary has gained initial access to a closely
monitored host system in a commercial environment and thereupon strives to set up lasting access
by deploying a bespoke service written in Python, which mimics legitimate industrial diagnostic
sessions. This malicious service sets up a connection on TCP port 4444 and combines messaging
and functionality with a theme of industrial procedures, minimizing the risk of rapid detection
during typical penetration testing or ordinary administrative activity.

This attack pattern demonstrates the methods used by attackers in practical situations focused
on critical infrastructure, where attackers utilize the complexity and variety of industrial envi-
ronments to hide malicious services within legitimate operational technology resources. Modern
industrial networks almost always support a variety of diagnostic interfaces, protocol gateways,
and monitoring services on non-standard ports, thus creating a situation where unauthorized
services can coexist undetected for extended periods in the lack of proper monitoring provisions.

The threat landscape covers various attack vectors, which are playing increasingly important
parts in contemporary cybersecurity events:

48

Implementation and Configuration

Backdoor Deployment: One of the basic tactics is building lasting remote access by employ-
ing lightweight network listeners, thus allowing for command execution with negligible disruption
of system usage. Such services are carefully crafted to mimic legitimate industrial procedures,
including proper interface definitions and supporting status report facilities.

Impersonation of Industrial Protocols: Advanced attackers are increasingly employing
tactics that mimic real industrial communication protocols and diagnostic interfaces, making
detection challenging unless proper protocol analysis or proper service baseline monitoring has
taken place. This is a hidden service that produces ostensibly legitimate replies to industrial status
queries and maintains predictable messaging patterns that conform to the expected behavior of
industrial interfaces.

Stealth Characteristics of Operations: The illegal service uses sophisticated evasion tech-
niques, including minimal use of resources, unusual installation mechanisms, and adaptable port
usage, all designed to help it avoid detection by regular security monitoring systems. This service
has an essentially low system footprint, which allows it to operate below detection levels set by
normal endpoint protection systems.

Critical indicators of compromise (IoC) tied to the illegal use of services go beyond basic
network monitoring and include features relevant to both behavioral and contextual analysis:

e Unrecognized Network Listening Ports: Detection of unrecognized network services,
particularly those associated with ports which are not part of the organization’s service
whitelisting or defined within established network architecture guidelines.

e Detection of Anomalous Process Execution Patterns: Detection of interpreter pro-
cesses, such as Python, Ruby, or Node.js, to run scripts from temporary directories or unex-
pected alternate file system locations, generally associated with transitory or unauthorized
activities.

e Patterns of Network Connectivity: Identifying dormant ports handling inbound con-
nection requests from outside hosts or questionable IP addresses can be a potential indicator
of reconnaissance activity or the establishment of command-and-control activity.

e Service Registration Anomalies: The discovery of services running outside of defined
system management silos, including systemd, points to the possible presence of unauthorized
installs that bypass traditional configuration methods and installation procedures.

e Process Hierarchy Irregularities: The identification of network services started by user
shells or interactive sessions, rather than processes started by system initialization, suggests
the likelihood of manual deployment rather than approved service installation.

The attack simulator combines realistic operational scenarios with environmental constraints
to ensure detection mechanisms are tested within scenarios that are close representations of real-
world deployments within industrial networks. Within the test laboratory, real industrial services
utilizing default ports (502 for Modbus TCP and 8080 for industrial Web applications) are used to
set up natural baseline scenarios and to test the detection system’s ability to differentiate between
legitimate and illegitimate network services.

5.3.2 Using Zabbix Low-Level Discovery for Service Monitoring

The unauthorized service deployment identification framework utilizes the Low-Level Discovery
(LLD) functionality of Zabbix to achieve a comprehensive and dynamic insight into network
service levels within the monitored infrastructure. This approach enables frequent observation of
service deployment operations, together with a comprehension of the inherently dynamic nature of
modern operational technology systems, where services can be appropriately integrated, altered,
or removed within typical operational procedures.

49

Implementation and Configuration

Discovery Rule Configuration and Architecture

The basic detection functionality employs a sophisticated, customized discovery protocol, which
systematically documents active network service resources by correlating multiple complementary
data feeds. This system aims to ensure complete network resource identification, thus minimizing
service detection evasion:

Discovery Rule: Industrial Services Discovery

Key: industrial.services.discovery

Update Interval: 2 minutes

Keep Lost Resources: 60 days

Filter: {#PROCESS} matches @(python3|python|node|ruby)

The discovery script combines the output of several system utilities to generate a comprehen-
sive list of network services, utilizing various data-gathering methods to ensure the accuracy of
detection:

Socket State Analysis: The first enumeration methodology utilizes the ss -tulpn com-
mand to list all currently active listening TCP and UDP sockets and their respective process
information. This methodology is established as the most reliable method of discovery of active
network listeners, regardless of their particular implementation procedures or service registration
requirements.

Cross-Referencing Network Statistics: The netstat -anp command enables one to re-
trieve additional information on connection statuses and corresponding processes, which can help
verify socket state information obtained through the primary enumeration method and aid in the
discovery of potential mechanisms of service hiding.

Process Validation and Correlation: The cross-check of listening procedures next to
output from 1lsof -i enables clear process identification and enables detection of sophisticated
methods of process hiding or impersonation, which can evade simpler enumeration approaches.

The discovery script generates Low-Level Discovery information in JSON, including detailed
metadata about each service discovered:

{
"data": [
{
"{#PORT}": "4444",
"{#PID}": "2043",
"{#PROCESS}": "python3",
"{#CMDLINE}": "/tmp/stealthy_backdoor.py",
"{#USER}": "bob"
},
{
"{#PORT}": "502",
"{#PID}": "1847",
"{#PROCESS}": "python3",
"{#CMDLINE}": "/opt/modbus/modbus_server.py",
"{#USER}": "modbus"
}
]
}

enabling the automatic creation of monitoring elements for every service discovered, and also
providing adequate context information required to execute actions related to forensic investiga-
tions and threat attribution.

50

Implementation and Configuration

Item Prototype Configuration and Monitoring Logic

The system develops an independent monitoring component for every service discovered by the
Low-Level Discovery process, to monitor the operational status and behavioral properties of the
discovered service:

Port Listening Status Monitoring:

Name: Industrial Port {#PORT} Listening Status
Key: industrial.port.listen[{#PORT}]

Type: Zabbix agent

Update interval: 30 seconds

History storage period: 7 days

Process Existence Verification:

Name: Industrial Service Process {#PROCESS} on Port {#PORT}
Key: industrial.process.check [{#CMDLINE}]

Type: Zabbix agent

Update interval: 1 minute

History storage period: 30 days

Service Connectivity Testing:

Name: Industrial Port {#PORT} Connectivity Check
Key: industrial.modbus.check[127.0.0.1,{#PORT}]
Type: Zabbix agent

Update interval: 2 minutes

History storage period: 7 days

The design of the prototype enables exhaustive investigation in relation to appropriate data
retention approaches, which balance forensic requirements with storage optimality concerns.

Discovery Script Implementation and Logic

The discovery script of industrial service utilizes advanced enumeration tactics specifically crafted
to work within the complex and diverse dynamics of operational technology systems. It works
by systematically scanning a fixed set of ports usually associated with industrial protocols,
such as legacy Modbus TCP (502), industrial Web portals (8080), MQTT communication ports
(1883/8883), and countless proprietary industrial protocols (20000, 44818, 47808, 102). This set
of ports reflects legitimate industrial network architectures, where a diverse set of customized
protocols work in conjunction with one another to enable the functionality of systems such as
manufacturing, process control, and facilities management.

The enumeration process employs different system utilities in conjunction to gather detailed
data regarding services. The script calls the ss command under specific parameters to identify
network sockets in the listening state, then performs a detailed process analysis to extract relevant
contextual data related to each identified service. For every active port discovered, the discovery
process performs process identification through PID extraction, command-line analysis, and user
context assessment, thus providing detailed information regarding service characterization.

The script uses effective error-handling mechanisms, which ensure the continuation of func-
tionality even in the event of failure or incompleteness of individual process queries. Where
process information is unavailable, fallback values are used, which reliably prevent script failure
and ensure continuity of the discovery process. Additionally, the use of defensive programming
mechanisms enables effective functionality on a variety of system configurations and variable ap-
plications of security policy, which would otherwise obscure process visibility. The output format
conforms to the strict JSON Low-Level Discovery specifications defined by the Zabbix discovery

51

Implementation and Configuration

engine. Therefore, the script generates properly formatted JSON output containing definitions
of macros like PORT, PID, PROCESS, CMDLINE, and USER, thus enabling the automated
setup of monitoring items enriched with contextual information. The JSON output is validated
for format using the jq tool to ensure both syntactical correctness and conformity with Zabbix’s
parsing requirements.

The discovery process utilizes a sophisticated port-scanning technique aimed at reducing un-
necessary resource usage while at the same time confirming accurate identification of relevant
industrial services. Rather than performing sweeping network scans, the script focuses on ports
known to be associated with established industrial protocols, relieving system load and minimizing
the chances of interfering with operational technology systems vulnerable to network interaction.

The data-validation mechanisms built into the script ensure that the data collected on pro-
cesses accurately reflects the system state, thus preventing propagation of false information
throughout the monitoring system. Process presence analysis, command-line input validation,
and user context investigation offer further protection for data integrity, thus enhancing the reli-
ability of the follow-on monitoring and notification operations associated with known services.

5.3.3 Trigger Logic and Detection Algorithms

The detection technique utilizes a complex, multi-level approach consisting of baseline comparison,
anomaly detection, and context validation. This technique exhibits a low false positive incidence
and is effective in tracing services that are indeed unauthorized.

Primary Detection Trigger Configuration

The core detection principle utilizes the ability of Zabbix to trigger on newly detected services
that are above the threshold of approved industrial services:

Trigger Name: Unauthorized Industrial Service Detected on Port {#PORT}
Expression: {industrial-host:industrial.port.listen[{#PORT}].change()}>0

and {industrial-host:industrial.port.listen[{#PORT}].last()}>0
Severity: High
Recovery Expression: {industrial-host:industrial.port.listen[{#PORT}].last()}=0

This trigger setup includes multiple levels of verification to ensure detection accuracy:

The change () method detects the time when a previously non-monitored port starts to actively
listen, which means a new available network service.

The last() function checks that the service in question still actively listens, thus avoiding
false positives caused by transient network conditions or temporary port bindings.

String pattern analysis of command line histories can be useful in identifying potentially
malicious service implementations.

Advanced Trigger Logic and Correlation

Then, the detection system employs sophisticated correlation logic, which identifies legitimate
patterns of industrial service usage and maintains its reactivity to wrongful usage:

Trigger Name: Suspicious Process Execution Pattern - Industrial Network

Expression: ({industrial-host:industrial.process.check[python].last()}>0
and {industrial-host:industrial.port.listen[4444].last()}>0)

Severity: Warning

Dependencies: Network Infrastructure Maintenance Window

52

Implementation and Configuration

The correlation trigger also evaluates multiple system properties:

Process-Port Correlation: Detection logic identifies when interpreter processes (Python,
Ruby, Node.js) are associated with network listeners on non-standard ports, indicating potential
unauthorized script execution.

Host Context Validation: This process combines host identification protocols intended
to distinguish between systems authorized to run diagnostic services and systems where such a
service would be a violation of security.

Maintenance Window Integration: Dependency relationships prevent false alarms during
scheduled maintenance activities when legitimate diagnostic tools may be temporarily deployed.

Baseline Management and Whitelist Implementation

The detection process utilizes adaptive service baselines, which include sanctioned operating ad-
justments and the detection of unauthorized changes:

Approved Industrial Services Configuration

Macro: {$APPROVED_PORTS}

Value: 502,8080,1883,8883,20000

Description: Whitelisted ports for legitimate industrial services

Macro: {$APPROVED_PROCESSES}
Value: modbus_simulator.py,diagnostic_server.py,scada_interface
Description: Authorized industrial service executables

Baseline’s validation logic integrates the above macros in the trigger expressions:

Trigger Condition: {industrial-host:industrial.port.listen[{#PORT}].last()}>0
and {#PORT} not in {$APPROVED_PORTS}
and {#PROCESS} not in {$APPROVED_PROCESSES}

This approach supports service authorization management while, at the same time, providing
automatic detection of unauthorized implementations.

5.3.4 Scripted Response and Evidence Collection

When an unauthorized service deployment is discovered, the Zabbix action system triggers an
in-depth protocol for evidence collection by running a custom industrial forensic collection script.
This evidence collection process employs an advanced forensic acquisition framework that has been
carefully crafted for OT environments, where conventional forensic practices may be ineffective
or inappropriate because of operational limitations and the fragility of the involved systems.

Action Configuration and Trigger Response

The Zabbix Action process is outlined with clear parameters to ensure proper initiation of evidence
collection:

Action Name: Industrial Security - Unauthorized Service Response
Conditions:
- Trigger = "Unauthorized Industrial Service Detected on Port {#PORT}"
- Trigger value = PROBLEM
- Host group = Industrial Systems
Operations:
- Remote command: /usr/local/bin/industrial.sh {HOST.IP} {ITEM.KEY} forensic

53

Implementation and Configuration

- Command timeout: 180 seconds
- Execute on: Zabbix server
Recovery Operations:
- Send notification: Security team with evidence archive location

The operation setup involves dynamic parameter transmission, which provides key contextual
information about the incident that triggered the action and thus enables precise and effective
gathering of information related to the particular security event.

Evidence Collection Workflow and Methodology

The forensic collection process adopts a systematic methodology that captures significant infor-
mation about the current state of the system, focusing on traces relevant to unauthorized service
installations.

1. Environment Preparation and Initialization
e Creation of timestamped evidence directory with secure permissions: /tmp/fo-
rensics_{TARGET_HOST}_{TIMESTAMP}

e Initialization of collection metadata, including session identifiers, timestamps, and tool
versions information

e Validation of collection tool availability and privilege requirements
2. Network Service Enumeration and Analysis
e Complete port scanning and listener identification using ss -tulpn for comprehensive

network service inventory

e Cross-correlation with netstat -anp output to ensure detection completeness and
identify potential evasion attempts

e Inspecting network file descriptors using 1sof -i to capture network activity that goes
beyond simple port listening
3. Process Investigation and Binary Analysis
e Comprehensive list of processes, including parent-child relationships, command-line
arguments, and the execution context

e Detection of binary paths and generation of cryptographic hashes towards executable
integrity verification

e Obtaining environmental parameters relevant to every procedure associated with net-
work listeners

e Memory mapping analysis for enhancement of advanced malware detection capabilities
4. Historical Activity Reconstruction

e Command history collection from all user accounts, including root and service accounts

e System logs analysis focusing on authentication events, process executions, and network
activity

e Examination of the file system timeline related to recently modified files within tem-
porary and application directories
5. Industrial-Specific Artifact Collection
e Analysis of industrial application directories (/opt/industrial/) for configuration
files and log data

e Collection of protocol-specific logs and communication traces relevant to industrial
operations

54

Implementation and Configuration

e Valid industrial services record for foundational comparison and attack attribution
6. System State Documentation

e Running service enumeration through systemctl list-units for complete service in-
ventory

e Resource utilization metrics, which include CPU, memory, and disk usage during the
incident period

e Configuring network interfaces and checking the routing table

e Security policy and access control mechanism verification

Cryptographic Integrity and Chain of Custody

The evidence collection procedure includes rigorous integrity protection measures intended to
ensure forensic admissibility:

Individual Artifact Hashing: Each collected file undergoes immediate SHA-256 hash cal-
culation upon creation, with hash values stored in corresponding .sha256 files for independent
verification;

Consolidated Hash Repository: Distinct hash values are combined into a large forensic
report, thus making central integrity verification and detection of potential tampering easier;

Archive-Level Verification: The overall evidence archive is subjected to cryptographic hash
computation before and after transfer, hence allowing detection of corruption or tampering in case
they happen during collection or transfer procedures;

Temporal Attestation: During the collection, timestamp information is incorporated uti-
lizing system clocks set by NTP, allowing timelines to be reconstructed accurately and correlated
with outside event sources;

Chain of Custody Documentation: Detailed documentation on collection methods, use of
instruments, and evidence management must be maintained to ensure compliance with legalities
related to digital forensic evidence.

5.3.5 Laboratory Implementation and Testing
Test Environment Configuration and Baseline Establishment

The evaluation of the unauthorized use of services was carried out in the given study case envi-
ronment described in Section 5.1, which utilized an enhanced network topology and a monitoring
system designed to mimic industrial systems.

The implementation of this evaluation required careful cooperation between the legitimate in-
dustrial services and the malicious backdoor service to generate realistic detection cases accurately
reflective of operational technology configurations.

Reliable operating parameters were determined by the use of two main industrial services,
which provided realistic background conditions for the detection system:

Modbus TCP Simulator Service:

Service: /opt/industrial/modbus_simulator.py

Port: 502 (Standard Modbus TCP)

Process: python3

User: modbus

Description: Legitimate industrial protocol simulator

55

Implementation and Configuration

Industrial Diagnostic Web Interface:

Service: /opt/industrial/diagnostic_server.py

Port: 8080 (Industrial Web Interface)

Process: python3

User: apache

Description: Authorized diagnostic and monitoring interface

The above legitimate services were specifically created using Python interpreters in order to
test the detection system’s ability to distinguish between authorized and unauthorized Python-
based services running in a common environment, thus testing the effectiveness of the monitoring
framework’s context analysis.

Unauthorized Service Implementation and Deployment

The backdoor service simulator utilizes an advanced implementation that utilizes Python to em-
ulate the behavioral patterns and interface functionalities characteristic of authentic industrial
diagnostic systems within operational technology environments. The service is crafted with ma-
licious purpose and runs on TCP port 4444, taking advantage of complex masquerading mecha-
nisms to ensure smooth integration into legitimate industrial monitoring systems, thus allowing
for stealthy remote access by simulated intruders.

The architecture design centers on a multi-threaded network service with the ability to effi-
ciently manage multiple client connections at one time, all the while maintaining the operating
look and feel of a standard industrial diagnostic interface. Service start-up entails checking avail-
able ports in order to avoid potential conflicts with currently active network services, followed
by the typical TCP-socket binding and listener setup usually seen in industrial service deploy-
ment. The threading design ensures individual client connections do not hinder the fundamental
workings of the core service, thus allowing for the real-time access characteristic of true industrial
monitoring systems.

The backdoor service has sophisticated capabilities that enable it to mimic industrial proto-
cols, hence making it possible to offer responses to basic diagnostic questions in data formats
and response types indistinguishable from actual conditions. When status questions regarding
the system are asked, the service generates realistic responses that include emulated data from
programmable logic controllers, readings from environmental sensors like temperature and pres-
sure, and performance indicators like production rates and machine utilization statistics. The
responses are carefully crafted to follow the formats and value ranges common in legitimate in-
dustrial diagnostic interfaces, making it difficult to detect using casual manual examination.

Masquerading itself as a legitimate operational infrastructure, the service integrates a broad
command execution feature that provides remote attackers complete access to system function-
alities. This command execution feature operates through a hidden interface that captures any
command of the system and sends its output over the defined network channel. Employing its
dual-mode capacity, the service can sustain the illusion of complete legitimacy during normal
system administrative operations while at the same time providing full system takeover via the
hidden command interface.

The service utilizes a range of covert operating components constructed to fall below the
threshold of detection of typical security surveillance systems. Patterns of resource utilization are
carefully aligned with the typical parameters associated with legitimate industrial activity, thus
evading detection systems invoked by increased CPU or memory utilization which would invoke
resource-based detection systems of anomalies. Additionally, network traffic patterns are care-
fully monitored to avoid developing unusual communication patterns, with connection manage-
ment tailored to emulate the irregular connectivity pattern associated with legitimate diagnostic
interfaces.

The error management mechanisms and operational robustness of the backdoor service en-
sure its reliable availability, even under adverse system conditions. Conflict port detection at

56

Implementation and Configuration

deployment minimizes the likelihood of service disruption, while sufficient error-recovery mecha-
nisms provide continued functionality on occurrence of network outages or shortages of system
resources. Additionally, the service includes logging-suppression mechanisms that minimize the
production of forensic information and maintain the reporting of operational status typical of a
legitimate industrial diagnostic tool. The effort aims at refining automated systems’ detection
ability by integrating terms applicable in business scenarios, thus producing status reports highly
analogous to real documents. Besides, it embraces operational behaviors emulating those in ac-
tual industrial diagnostic procedures. This all-inclusive simulation tactic evaluates the detection
system’s ability to detect complex threats utilizing sophisticated evasive tactics, instead of rely-
ing on conspicuous malignant signatures or behavioral patterns easily discerned by conventional
security surveillance procedures.

Zabbix Agent Configuration for Industrial Monitoring

The client host requires a customized agent configuration to support Low-Level Discovery (LLD)
for industrial service monitoring:

/etc/zabbix/zabbix_agentd.conf additions
UserParameter=industrial.services.discovery,/usr/local/bin/ind_discovery.sh
UserParameter=industrial.process.check[*] ,pgrep -f "$1" | wc -1
UserParameter=industrial.port.listen[*],ss -tlnp | grep -c ":$1 "

Additionally, the forensic collection competency requires additional permissions for certain
actions:

/etc/sudoers.d/forensic-collection
forensic ALL=(ALL) NOPASSWD:/usr/sbin/tcpdump /usr/bin/lsof /bin/ss /bin/netstat

This configuration allows automated evidence collection with the minimum privilege needed
for the collection, thus not violating system integrity.

Detection Verification and Timing Analysis
The Zabbix monitoring system rapidly detected the unauthorized use of services within the spec-
ified discovery period. Careful examination of the timing demonstrates the complete timeline of

both detection and response:

Timeline Analysis - Unauthorized Service Detection

T+00:00 Backdoor service deployment initiated on victim host

T+01:45 Scheduled LLD execution discovers new service on port 4444

T+01:47 Item prototypes execution for newly discovered service

T+01:52 Initial data collection confirms persistent service operation

T+02:05 Primary detection trigger evaluates and fires (unauthorized port)
T+02:08 Zabbix Action framework initiates forensic collection script

T+02:12 SSH connection established and evidence collection starts

T+03:28 Collection process completes and evidence archive created

T+03:35 Archive transfer to Zabbix server completed with integrity verification
T+03:40 Cleanup of temporary evidence files on the victim host

T+03:42 Recovery notification sent to the security team with archive location

This timeline reflects the ability for effective detection and response within approximately 3
minutes and 42 seconds after initial service deployment, thus providing sufficient speed to address
operational security requirements while enabling complete evidence preservation.

The Zabbix console during the discovery period is illustrated in Figure 5.4 and shows the
automated detection of the unauthorized service and subsequent triggering:

57

Implementation and Configuration

Current problems

Time v Info Host Problem « Severity Duration Update Actions Tags
03:06:39 PM ¢ Victir 1m 26s Update RN type: industrial

Figure 5.4. Zabbix Low-Level Discovery dashboard showing automatic detection of unauthorized
service on port 4444 and creation of associated monitoring items.

5.3.6 Evidence Analysis and Forensic Value
Collected Artifacts and Data Quality Assessment

The automation of evidence collection produced a large forensic dataset of 18 different evidence
files and around 3.7 MB of digital forensic data. This dataset contains different types of evi-
dence, which are needed to perform exhaustive incident analysis and operations related to threat
attribution.

Table 5.2 lists a comprehensive set of forensic artifacts gathered, their dimensions, and de-
scriptive information on their content.

Table 5.2. Forensic artifacts collected during Case Study II execution

Artifact Filename Size (bytes) | Content Description
listening_ports.txt 2847 | Complete port enumeration (ss -tulpn)
netstat_anp.txt 4523 | Network connection state tables
Isof_all_network.txt 8934 | Global network file descriptors
Isof_port_4444.txt 487 | Targeted analysis of suspect port
ps-port_4444.txt 312 | Process details for backdoor service
exe_path_4444.txt 89 | Binary path and metadata
exe_hash_4444.sha256 97 | Cryptographic integrity hash
binary_python3_-1935_port4444.txt 156 | Binary analysis for suspect process
environ_python3_1935_port4444.txt 1247 | Process environment variables
Isof_python3_1935_port4444.txt 892 | File descriptors for suspect process
process_tree.txt 3421 | Complete process hierarchy mapping
running_services.txt 12847 | Systemd service enumeration
history_root.txt 2156 | Root account command history
history_forensic.txt 891 | Forensic user account history
memory_usage.txt 245 | System memory utilization snapshot
disk_usage.txt 198 | Filesystem utilization analysis
cpu_usage.txt 4567 | CPU and process performance data
recent_files.txt 1890 | Timeline of recently modified files
industrial_logs.txt 0 | Industrial application logs

report.txt 8934 | Comprehensive collection report
Total Evidence Files 20 | Complete incident documentation

Key Forensic Findings and Incident Attribution

Analysis of the collected evidence reveals multiple critical indicators confirming unauthorized
service deployment and providing detailed insight into attack methodologies:

Network Service Analysis: The listening_ports.tzt file contains detailed information of a
service (Python3, PID 1935) currently running on TCP port 4444, which is not listed among
the sanctioned permitted services of the organization. Follow-up verification via netstat_anp.tzt
validates the active service and network access;

Process Investigation: Tracing a ps_port_4444.txt clarifies the overall command-line ex-
ecution environment: python3 /tmp/industrial_backdoor.py, which translates into running

58

Implementation and Configuration

an unauthorized script from a temporary directory, usually associated with volatile or malicious
activity;

Binary Integrity Verification: The exe_hash_j444.sha256 contains the SHA-256 crypto-
graphic hash of the binary of the Python interpreter, thus allowing its comparison with established
reference points and the identification of potential threats related to binary manipulations/sub-
stitutions;

Environmental Context Analysis: An analysis of the process environment variables (env-
iron_python3_1935_port4444.txt) presents informative findings concerning the execution environ-
ment, user rights, and potential persistence mechanisms employed by the unauthorized service;

Command History Attribution: A review of files history_root.tzt and history_forensic.txt
reveals evidence of backdoor implementation activities, including timestamps for file creation,
service starting commands, and potential reconnaissance activities that took place before deploy-
ment;

Process Relationship Mapping: This file, process_tree.txt, outlines the relationship of
the backdoor service to its associated parent processes, thus providing valuable chronological
information and possible links to specific user sessions or attack vectors.

Timeline Reconstruction and Attack Pattern Analysis

The wide variety of evidence permits a detailed reconstruction of the chronology of unauthorized
service deployment by matching different types of artifacts:

Incident Timeline Reconstruction - Unauthorized Service Deployment

14:23:15 - Initial file creation in /tmp/ directory (recent_files.txt)
14:23:18 - Python interpreter execution initiated (process_tree.txt)
14:23:19 - Network socket binding on port 4444 (listening_ports.txt)
14:23:20 - Service enters listening state (lsof_port_4444.txt)
14:23:25 - First connection attempt logged (netstat_anp.txt)

14:25:12 - Zabbix discovery cycle detects new service

14:25:17 - Monitoring items created for port 4444

14:27:03 - Detection trigger fires (unauthorized service alert)
14:27:08 - Forensic collection initiated via SSH

14:28:24 - Evidence collection completed and archived

The creation of such a timeline demonstrates the system’s ability to provide a clear record
of events, suitable for detailed forensic analysis, courtroom testimony, and upgrading of security
procedures.

Comparative Study of Legitimate Services

The evidence collection methodology included extensive information related to valid industrial
activities, thus enabling the effective separation of authorized and unauthorized uses of the net-
work.

Characteristics of Genuine Services

e Services run from the specified installation directories (/opt/industrial/);

e Process execution initiated by system startup mechanisms;

Registered systemd service management framework associated services;

The configuration files reside in specific, standard directories.

59

Implementation and Configuration

Unauthorized Service Indicators

Executing scripts within ephemeral directory paths;

Initiation done manually through interactive shell sessions;

Lack of inclusiveness in system service registries and service management frameworks;

Non-standard port selection outside approved protocol ranges.

This comparative analysis proves the accuracy of the detection system in differentiating be-
tween legitimate operational technology services and illegitimate security threats.

5.3.7 Performance Analysis and System Impact
Detection Performance Metrics

The overall performance assessment shows that automated forensic data acquisition operates
within the optimal performance ranges of operational technology systems, where system stability
is key to effective operations:

Discovery Performance: Low-Level Discovery execution has been achieved within a mean
time of 4.7 seconds during different test iterations, with a resource utilization of less than 2% of
the system’s total CPU and memory resources;

Detection Latency: The complete detection cycle from service deployment to trigger acti-
vation averages 127 seconds, well within acceptable incident response timeframes for industrial
security monitoring applications;

Evidence Collection Duration: Comprehensive forensic data gathering completes within
76 seconds on representative industrial hardware configurations, ensuring minimal operational
disruption during security incident response;

Network Bandwidth Utilization: Transferring evidence requires usage of around 4.2 MB
of network bandwidth during both collection and archival transfers, which shows a negligible
influence on total network utilization in the industrial setting.

System Resource Impact Assessment

Detailed resource utilization analysis confirms minimal impact on monitored system performance:

Resource Utilization Analysis - Case Study II

CPU Usage During Collection: 8.3} peak, 3.1% average

Memory Consumption: 47 MB maximum, 23 MB average

Disk I/0 Operations: 892 read operations, 234 write operations
Network Connections: 3 SSH sessions, 1 evidence transfer
Temporary Storage: 3.9 MB peak utilization

Collection Duration: 76 seconds total

These approaches reflect that forensic collection processing works well under the allowable
resource constraints characteristic of production industrial environments.

60

Implementation and Configuration

Monitoring Overhead Analysis

The persistent costs involved with maintaining the Low-Level Discovery mechanism have an in-
significant impact on the system:

Discovery Execution Frequency: 2-minute intervals result in 720 discovery cycles per
24-hour operational period

Per-Cycle Resource Consumption: Average 0.3% CPU utilization for 4.7-second execu-
tion duration

Memory Footprint: Stable 12 MB resident memory usage for discovery script execution
Storage Requirements: 50 KB daily log generation, 1.8 MB monthly retention requirement

Systematic observational data show stable trends in resource usage, showing no decrease over
prolonged durations of operation.

5.3.8 Execution Summary

The unauthorized service deployment case study proves the operational feasibility and effectiveness
of using automated forensic data collection using Zabbix in industrial and operational technology
environments. The meticulous implementation not only proves the technical feasibility of the
monitoring system but also the evidentiary value of the collected data to security incident response
activities.

Technical Achievement Validation

The case study execution successfully met all necessary technical requirements:

Rapid Detection Capability: The Low-Level Discovery mechanism successfully identified
the installation of unauthorized services in 127 seconds after activation of the first service, demon-
strating effective real-time monitoring capabilities that meet operational security requirements.

Comprehensive Evidence Collection: The forensic evidence automation process collected
20 distinct artifacts, totaling 3.7 MB of evidence, thus providing a complete report of the situation,
as befits detailed incident handling and legal proceedings.

Minimal Impact on Operations: The performance measurement reveals that both data ac-
quisition systems and monitoring systems run efficiently concerning allowable resource constraints
within industrial production environments, with a maximum utilization of resources under 9%
during evidence-gathering operations.

Preserving Forensic Integrity: Authenticating cryptographic hashes by secure transmis-
sion protocols ensures that the collected evidence meets the forensic integrity standards required
for admission into judicial processes and regulatory compliance.

Demonstrating Operational Efficacy

The effective implementation of the case study sustains several core operating competencies:

False Positive Minimization: The detection system efficiently distinguished legitimate
industrial services, for instance, the web interface for diagnosis and Modbus simulator, from illegal
services, particularly backdoor listener, thus demonstrating competent contextual analytical and
baseline management skills.

Industrial Environment Compatibility: The industrial monitoring framework operates
with ease under the limitations of operational technology, incorporating suitable industrial pro-
tocols and service deployment practices while providing end-to-end security monitoring.

Automated Response Integration: The whole process, including detection through col-
lection, operates automatically and hence allows for quick incident response during off-hours or
in environments that lack security personnel.

61

Implementation and Configuration

Quality Assurance of Evidence: The forensic evidence collected has sufficient information
that supports thorough incident analysis, which includes timeline reconstruction, attack attribu-
tion, and security policy enhancement.

Comparative Analysis of Contemporary Commercial Products

The open-source-based implementation with Zabbix shows many advantages compared to propri-
etary Security Information and Event Management (STEM) solutions and Security Orchestration,
Automation, and Response (SOAR) technology:

Cost Effectiveness: Open-source implementation eliminates licensing costs while providing
comparable detection and collection capabilities to commercial forensic automation platforms.

Customization Flexibility: The modular design enables adaptation to suit specific indus-
trial environments and possible threat contexts, thus avoiding dependency on vendors or profes-
sional services engagements.

Operational Technology Compatibility: Lightweight resource requirements and network-
friendly operation make the system suitable for resource-constrained industrial environments
where commercial security tools may not be feasible.

Air-Gapped Environment Support: The stand-alone architecture operates well within
isolated networks, thus excluding dependency on Internet connectivity to procure threat intelli-
gence or access cloud-based analytic capabilities.

Forensic Value and Legal Admissibility

The comprehensive evidence collection demonstrates adherence to digital forensic best practices:

Chain of Custody Preservation: Stringent documentation of evidence collection, crypto-
graphic integrity, and transmission protocols must be maintained to protect against tampering
and ensure forensic evidence is admissible in court.

Comprehensive Documentation: The set of 20 artifacts provides a wealth of system state
data, well-suited to expert witness statements and rigorous forensic analysis practices.

Incident Timeline Reconstruction Ability: The incorporation of temporal data among
different evidence sources allows for the accurate building of incident timelines pertinent to liti-
gation and incident response.

Technical Attribution Support: Process analysis, binary hashing, and contextual informa-
tion collection about the environment provide critical technical information necessary for threat
attribution and security policy development.

The successful execution of Case Study II validates the viability of utilizing monitoring-based
automated forensic collection in situations where there are illegal service installations within indus-
trial establishments. The whole evidence collection, minimized operational activity disruption,
and following implemented forensic protocols prove that commercial infrastructure monitoring
software can be appropriately modified to provide enhanced security capabilities without requir-
ing dedicated forensic tools or large ancillary infrastructural investment. This approach presents
organizations with an affordable and easily deployable way to acquire automated forensic solu-
tions in situations where commercially available security options might be found inappropriate or
inaccessible because of operational limitations, regulatory issues, or financial constraints.

5.4 Data Integrity and Secure Storage

Forensic integrity of collected evidence largely relies upon the maintenance of cryptographic in-
tegrity and the establishment of tamper-evident storage processes throughout the entire collection
and preservation lifecycle. The automatic forensic pipeline developed includes various layers of
security for the collected data in such a way that the collected artifacts attain legal admissibility
and stand up for technical analysis in the case of incident handling or litigation.

62

Implementation and Configuration

5.4.1 Hashing and Timestamping of Collected Artifacts

Every artifact generated during the automated collection process is subjected immediately to
expedient cryptographic hashing through the SHA-256 algorithm, such that any subsequent mod-
ifications or corruption of the data can be discerned through hash verification practices. The hash
computation occurs at the time of the file creation, predating any network transfer or archiving
operations, such that a base integrity fingerprint is set for every collected item.

The script set uses a two-layer hashing method so that distinct files get distinct hash calcu-
lations that get written out in their own respective .sha256 files. A full hash value calculation,
on the other hand, executes on the full complement of evidence across all its constituent artifacts
concurrently. This enables exact validation on a per-piece basis as well as across an entire package
of a collection.

Temporal attestation utilizes coordinated system clocks that are maintained through Network
Time Protocol (NTP) services across all laboratory machines, thereby ensuring the uniformity
and legal robustness of timestamp data. Every artifact obtained contains creation timestamps,
initiation times for collection, and completion markers, facilitating precise timeline reconstruction
during forensic analyses. The timestamp data is directly incorporated into the metadata of the
evidence and is cross-verified with Zabbix’s internal event logging to create various points of
temporal verification.

The integrity validation process goes beyond mere hash value generation and incorporates
extensive metadata recording of the collection environment, script versions, system configuration
settings, and operator context. The contextual detail is valuable in establishing the trustworthi-
ness of evidence collection procedures and showing proof of conformance to forensic best practices
during litigation or regulatory audits.

5.4.2 Retention and Tamper-Proof Storage Options

The storage architecture for evidence enacts a retention hierarchy constructed such that short-
term access needs are balanced by long-term preservation responsibilities. Write-once directory
storage employs filesystem permission restrictions for prohibiting illicit modification and yet allows
for read access by authorized forensic staff and analysis software.

Local repository stores employ directory naming conventions utilizing time stamp information
and host identifiers, and build in inherent segregation boundaries preventing cross-contamination
of different incident investigations. The storage directories use permission masks defining write
access restricted to the collection service account and providing read-only access for designated
forensic analysis accounts such that collection and examination responsibilities remain distinctly
delineated.

Secondary preservation procedures include encrypted transmission to designated servers via
Secure Copy Protocol (SCP) and RSA key-based authentication. The repositories use extra access
controls in the form of dedicated forensic storage accounts possessing distinct credential spaces
from the operational system administration. The remote storage systems include geographic
separation and extra redundancy security for hardware failure or compromise scenarios.

ZFS snapshots or BTRFS copy-on-write features at the filesystem level can be implemented
by high-level storage infrastructure to create immutable point-in-time copies of an evidence store.
Such snapshot capabilities provide better protection from unintentional changes while enabling
the fast restoration of evidence states for further examination or validation activities. Reten-
tion model supports preservation of varying duration based on factors like incident severity and
applicable regulations. The more serious incidents with a likelihood of crime or regulatory non-
compliance would be assigned longer retention periods along with stricter protection measures,
whereas routine security events could make use of shorter retention cycles that are more compat-
ible with business function and storage resource management.

63

Implementation and Configuration

5.5 Chapter Summary

This chapter presents an in-depth analysis of the autonomous procurement of forensic evidence
by performing a thorough case study survey in a controlled laboratory environment. The research
protocol systematically evidenced both the technological possibility and procedural effectiveness
of using Zabbix monitoring software to achieve real-time forensic readiness against diverse threats.

The first case study validated the efficacy of pattern identification related to data exfiltration
activities using network traffic anomaly monitoring, obtaining full evidence collection within 90
seconds after the start of the main trigger. Deployed detection algorithms successfully identified
abnormal long-duration outbound network traffic patterns that exceeded defined baseline thresh-
olds with negligible false positive rates using carefully tuned trigger expressions and temporal
correlation analysis.

The second case study implemented a comprehensive discovery infrastructure for identifying
unauthorized service deployments, often found in operational technologies. The effective execution
of Low-Level Discovery effectively identified services within 127 seconds after activating backdoors,
meanwhile collecting a sizeable set of forensic artifacts totaling 3.7 MB of evidentiary data spread
across 20 categories of artifacts.

Thus, the analysis of the two case studies has demonstrated that the modular architectural
model enables the clear delineation of responsibilities for detection, response, acquisition, and
preservation, while the built-in action model of Zabbix ensures the seamless integration between
the four facets. The evidence capture practices have ensured cryptographic integrity via SHA-256
hashing and maintained temporal accuracy via NTP synchronization, while the storage practices
are designed as tamper-evident and adherent to admissibility requirements.

The performance analysis revealed that in both scenarios, there was virtually no operational
impact seen, with the usage of resources remaining well below 9% during the peak collection times
and the network bandwidth consumption limited to about 4.2 MB per incident. These results
support the suitability of the system for deployment on resource-limited environments, like in-
dustrial networks or air-gapped systems, where traditional enterprise security products may be
impractical. The understanding of the process of execution supports the main hypothesis that
the current network monitoring infrastructure can be redirected to provide forensic automated
functionalities, effectively eliminating the need for advanced forensic hardware or significant ad-
ditional infrastructural investments. The successful achievement of both scenarios can provide
not only quantitative evaluations but also comparative studies in real-world applications with
industrially procured automated forensic devices, being a starting point for the overall findings
elaborated in the assessment offered in Chapter 6.

64

Chapter 6

Analysis of Results

6.1 Performance Evaluation

The assessment of the automated forensic evidence collection system indicates a stable and de-
pendable performance throughout both experimental conditions, with discernible variations that
highlight the unique attributes of each security incident alongside their corresponding detection
techniques. The comparative examination indicates that Case Study I (Data Exfiltration - Chap-
ter 5.2) successfully concluded evidence gathering within the predetermined time limit, whereas
Case Study II (Unauthorized Service Deployment - Chapter 5.3) necessitated a longer duration for
thorough artifact collection. This discrepancy in the length of the collection process is primarily
attributed to the diverse detection strategies utilized, with the data exfiltration scenario relying
on network traffic threshold monitoring and the unauthorized service case employing Low-Level
Discovery methods that require extensive port scanning and service enumeration activities.

The consumption of system resources remained consistently within acceptable operational lim-
its throughout the two collection phases, thereby affirming the system’s appropriateness for de-
ployment in production environments where the continuity of operations is crucial. In the context
of the data exfiltration scenario, the system load levels were kept to a minimum, reflecting a neg-
ligible computational impact during extensive file transfer operations and simultaneous evidence
gathering efforts. The target system functioned effectively, with memory usage staying below
critical thresholds, which illustrates the non-intrusive characteristics of the collection mechanism.
Conversely, the unauthorized service scenario showed a slight uptick in resource consumption,
characterized by moderate CPU usage in both user space and system time, while still preserving
a significant idle capacity during the collection processes. This increase in resource utilization
is directly associated with the thorough service discovery and process enumeration tasks neces-
sary for the identification and characterization of backdoors, including an in-depth analysis of
process trees, listening ports, and executable paths linked to suspicious services. Evidence collec-
tion efficiency demonstrates distinct patterns optimized for each threat scenario, illustrating the
adaptive nature of the forensic collection framework. The data exfiltration case generated com-
prehensive forensic artifacts with emphasis on volume-intensive system state capture, including
extensive open file listings, complete socket information, network connection states, and detailed
process hierarchies that provide comprehensive visibility into system activities during simulated
breach conditions. The collection strategy prioritized broad-spectrum artifact gathering to en-
able thorough data exfiltration pattern analysis and network flow reconstruction. Conversely,
the unauthorized service scenario produced targeted artifacts focused on specific indicators of
malicious service deployment, emphasizing precision over volume with detailed process identifi-
cation, executable path analysis, and comprehensive listening port inventories that demonstrate
the system’s ability to adapt collection depth and breadth based on specific threat contexts.

Network infrastructure impact assessment verifies negligible disruption of operational systems
in both scenarios, an important factor for deployment into industrial environments where net-
work stability impacts production systems directly. The data exfiltrion scenario produced normal
monitoring protocol connections indicating ordinary operational overhead without incremental

65

Analysis of Results

bandwidth usage beyond defined parameters. Administrative access remained accessible during
all collection intervals, verifying preserved system access during forensic activities without adding
connection complexity. The unauthorized service scenario indicated equivalent network efficiency
by employing current communication infrastructure for evidence transfer without adding addi-
tional network load. Bandwidth usage analysis verifies collection activities took negligible network
capability without imposing significant production infrastructure impact and proving the suitabil-
ity of the system for deployment into bandwidth-restricted environments where the preservation
of network capability ensures operational technology continuity.

6.2 Evidence Quality Assessment

The determination of evidence quality points to the system’s ability to build vast forensic artifacts
without collecting unnecessary data and procedural redundancy. From the perspective of the data
exfiltration scenario, the collected artifacts reflect a thorough snapshot of the system containing
process listings, open file descriptors, network socket states, and elaborate process hierarchies.
Together, these artifacts allow for the reconstruction of the entire timeline of the attacker from
the onset of file transfer to the closing of processes, thus ensuring no critical activity is left
undocumented. In the unauthorized services context, the focus of targeted evidence enabled swift
identification of aberrant services while ensuring completeness, evidenced by the identification of
executable paths, service configuration details, and process trees associated with the backdoor
running in port 4444. The absence of gaps within the artifact set supports that the dynamic
discovery logic enforces thorough data capture at the moment of finding the anomaly.

Integrity of data and admissibility to law are preserved by cryptographically verifiable check-
sums calculated at the moment of artifact harvesting. Each file generated by the system is
SHA-256 hashed and written to a secure log, creating an undisturbed chain of custody. In doing
so, the authenticity of the artifacts is never in doubt at the time of later forensic analysis or
use at trial. In addition, synchronization of all watched hosts by NTP ensures temporal cohe-
sion, making it possible to accurately correlate events between disparate data sources without
compromising timeline drift or skew. The system’s ability to reconstruct timelines is proven by
combining temporal metadata derived from file timestamps, the times of process creation, and
network session logs. In the first case study, the correlation of SFTP transfer events and con-
current socket state transitions revealed the exact period and bandwidth characteristics of the
exfiltration of data. In the second case study, synchronization of service-activation logs with spawn
timestamps of processes and recent file modifications enabled accurate mapping of the sequence
in relation to unauthorized service installations. The resulting forensic timeline, reconstructed to
the sub-second level, provides analysts with a practical narrative that contains the order and con-
text of malicious activity, therefore enriching the total evidential value and extending operational
response procedures.

6.3 Detection Accuracy Analysis

The integrated detection mechanisms of the automatic forensic evidence collection system demon-
strated a high degree of precision and a low rate of false positives under both experimental con-
ditions. Within the scenario of the data exfiltration case, the threshold-based trigger watched
for cumulative rates of outbound traffic and only triggered data capture when the continued
transfer rate was above 10 Mbps, practically distinguishing legitimate bulk transfers from mali-
cious exfiltration attempts. During the length of the 30 GB SFTP session, no false triggers were
recorded, thus verifying the reliability of the threshold choice and validating the endurance of
the trigger under varying network conditions. Under the scenario of unauthorized services, the
Low-Level Discovery probe focused on the identification of abnormalities in registration of services
by monitoring the listening port inventory for unauthorized registration. The detection program
identified the Python-based backdoor on port 4444 successfully within 127 seconds, without rais-
ing any false alarms during legitimate durations of service restarts or configuration changes, thus
demonstrating the capability of selective port enumeration while ensuring continued operation.

66

Analysis of Results

Baseline tests conducted on benign system activity over extended observation intervals again
prove out the system’s accuracy. Standard administrative tasks, such as software upgrades, wide-
sweeping file synchronization, and scheduled maintenance scripts, were executed without bringing
about unintended forensic captures, showing the capability of the system to discriminate between
standard administrative procedures and real security breaches. Discrimination of this nature
significantly reduces the occurrence of false positives, therefore conserving storage and process-
ing resources for legitimate anomalous events and streamlining the investigation process. Stress
testing under attack-simulation conditions, including aggressive port scanning and burst traf-
fic methods, justified the strength of the detection logic. Despite exposure to rigorous scanning
techniques and swift changes in service, the system maintained stable operation in addition to con-
tinued detection precision. The use of adaptive time windows, adapting probe intervals according
to recent activity, markedly enhanced the system’s efficacy at noise reduction and prevention of
trigger saturation during times of higher operating intensity. Collectively, these results prove that
the system’s detection framework balances sensitivity and specificity efficiently and thus provides
a credible foundation for real-time forensic preparation for critical infrastructure environments.

6.4 Scalability and Deployment Considerations

Scalability in the architecture under proposal shows how it can support ever-increased infrastruc-
ture complexity without an accompanying increase in resource consumption or administrative
overheads. The distributed monitoring methodology, utilizing lightweight agents instantiated
throughout target systems, ensures processing load linearly escalates based on numbers of end-
point being monitored, whereas exponential growth behaviors common in centralized forensic
products are typically observed. Resource consumption evaluations in both case studies confirm
that per-host effect hovers below 10% system capacity, and as such, deployment across hundreds
of concurrent targets can take place without loss in operational efficiency. The scalability is
further enhanced by an asynchronous evidence gathering mechanism, whereby trigger detection
and artifact creation have been separated as to enable rapid response capabilities even in high-
frequency incident situations, in this case, requiring near-simultaneous forensic capture of multiple
concurrent breach attempts.

Requirements for deployment point to simplicity and automation to minimize organizational
barriers to adoption. The architecture of the system leverages available network monitoring infras-
tructure, and it only requires integration of forensic collection scripts and trigger configuration,
as against replacement of existing security tools. The initial rollout involves installation of agents
through standard configuration management tools, followed by policy deployment through central
monitoring platforms. Modular architecture provides select activation of features based upon risk
profiles of organizations, and it can support gradual deployment, which can extend from core assets
to complete infrastructure coverage over time. Authentication and communication channels take
advantage of in-place SSH key infrastructure, and thus eliminate extra credential management or
specialist secure communication protocols, which can be daunting in regulated environments dur-
ing deployment. Operational considerations also emphasize retention of forensic readiness while
keeping intact the transparency necessary to industrial control systems. The process of evidence
collection operates independently, without detectable modification to, or interaction by, the user,
and ensures production workflow is not inhibited by forensic monitoring efforts. Periodic mainte-
nance activities involve policy verification, retention of artifacts, and verification of agent health,
all of which can be integrated into regular system administration procedures without specific ex-
pertise in forensic specialties. The robustness of architecture to survive network disconnections
and fleeting outages to systems ensures ongoing forensic capability, even during infrastructure
maintenance or unplanned outages. Storage requirements remain under control and predictable
through automation and selective retention policies for artifacts, while cryptographic integrity
mechanisms provide long-term preservation of evidence, in turn facilitating compliance with regu-
lations and law-based requirements. The operational configuration allows organizations to retain
ongoing forensic readiness without investments in resources typical to extensive incident response
efforts.

67

Chapter 7

Conclusions and Future Work

It had successfully shown that current network monitoring infrastructures could appropriately be
converted into comprehensive forensic automation platforms without the need for special-purpose
hardware or significant complementary investments. Lateral confirmation secured through con-
trolled experiments had proven the technological feasibility and forensic legitimacy and thus es-
tablished a baseline for wide-ranging usage across a range of application domains and advanced
the field of automated digital forensics by creative use of well-established monitoring facilities.

7.1 Research Contributions

This dissertation presents several significant contributions to the area of automated digital foren-
sics. The first innovation lies in the systematic reconceptualization of Zabbix, a legacy network
monitoring tool, as a comprehensive platform for the collection of forensic evidence in real time.
This form of upcycling entails a paradigm shift from reactive, event-post forensic practice to
proactive, automated evidence collection operating at the speed of network traffic but without
dependence on the intervals of human response.

Modular architecture framework, comprising Detection, Response, Acquisition, and Preserva-
tion modules, provides a maintainable and scalable solution consistent with the concept of the
separation of concerns. The module is independently testable, deployable, and versionable, with
cohesive integration ensured by Zabbix’s own orchestration features. This approach makes it pos-
sible for the organization to customize the system for the unique threat environment as well as
operational requirements, thus maintaining the integrity of the overarching framework.

The product fills key gaps in cybersecurity infrastructure for a variety of sectors. Indus-
trial control systems enjoy forensic functions while honorably adhering to real-time operating
constraints as well as legacy system impediments. Isolated air-gapped networks benefit from
automated evidence collection without external connectivity requirements, and small-to-medium-
sized businesses achieve enterprise-class forensic automation without vendor lock-in or prohibitive
license rates.

The system’s compliance support for GDPR, HIPAA, and PCI-DSS mandates by means of
detailed audit trails and evidence preservation features offers real-time functional value for organi-
zations subject to strict compliance requirements. Integrity validation by cryptographic means of
dual-layer SHA-256 hashes, NTP-synchronized time-stamping, and tamper-evident data storage
allows for the admissibility of the collected evidence in court.

7.2 Constraints and Restrictions

Although Zabbix offers great flexibility and scale for network monitoring, its use for forensics
purposes manifests a number of intrinsic limitations. The software does not come with inherent

68

Conclusions and Future Work

forensic integrity capabilities, and evidence handling, chain-of-custody recordation, and secure
storing of artifacts all need third-party scripts and tools. The need for complementary compo-
nents enhances system complexity and demands meticulous incorporation for continued forensic
capability.

Forensic timeline reconstruction might relies in some parts upon NTP synchronization of
the watched hosts, and time discrepancies may also render event correlation as well as causal-
ity analysis challenging. The system’s forensic reliability thus relies upon robust network time
infrastructure.

Privilege escalation requirements for particular evidence collection activities, such as net-
work packet grabbing with tcpdump, introduce inherent security risk requiring close management
through the use of the sudoers policies and the principle of least privilege. Though the SSH
key transfer method is a secure one, it provides for a significant administration overhead for
widespread deployments.

Experimental verification occurred against controlled laboratory environments, which may not
completely cover the complexity and diversity of production networks. Real-world applications
face challenges of network congestion, diversity of systems, and limits of operations, which may
impact the efficiency and extent of data collection.

Storage scalability poses long-term operational challenges, especially for organizations with
high incident frequencies or extended retention requirements. This requires careful capacity plan-
ning and archive management policies to prevent storage exhaustion and allow sustainable oper-
ation over extended periods.

Ease of integrating the product with current security infrastructure, such as SIEM products,
incident platforms, and compliance initiatives, entails a great deal of planning and customization
work, which may prove prohibitive for smaller concerns.

The automation-based design inevitably calls for compromises between speed and complete-
ness. As much as the system excels at speedily amassing evidence for the defined threat scenarios,
it might not immediately accommodate new attack trends for which the configured detection
thresholds don’t allow. This limitation requires ongoing integration of the latest threat intelli-
gence and adjusting the trigger logic.

This modular architecture, while providing flexibility and maintainability, introduces coordi-
nation complexity that might impact system reliability under high-load conditions. Component
inter-dependencies require careful monitoring to prevent cascading failures that could compromise
operations during critical incidents.

7.3 Future Research Directions

The integration of machine learning algorithms holds great potential for enhancing detection ac-
curacy and reducing occurrences of false positives. Anomaly detection models, which come from
the study of historical system behavior, might complement rule-based trigger actions with ad-
justable thresholds which change as a function of evolving trends in system operation. Supervised
learning-based techniques would potentially improve the accuracy of the predictive classification
of the threat.

Deep learning techniques, particular recurrent neural networks and transformer-based archi-
tectures, could enable sophisticated pattern recognition for discerning subtle attack signatures
bypassing classic threshold-based detection. Integration with current state-of-the-art threat intel-
ligence feeds could provide real-time model refreshes for calibrating detection capabilities against
new threat vectors.

Unsupervised clustering algorithms could identify previously unknown attack patterns through
behavioral analysis, enabling proactive threat discovery rather than reactive detection of known
indicators. This capability would be particularly beneficial for detecting advanced persistent
threats and zero-day exploits that lack established signatures.

69

Conclusions and Future Work

Container forensics offers a great area for framework extension, as Docker and Kubernetes de-
ployments continue to proliferate the enterprise environment. The fleeting nature of containerized
workloads calls for sophisticated evidence collection mechanisms able to preserve fluid container
states, network policies, and orchestration meta data before containers terminate.

Cloud forensics for the cloud infrastructure, in particular for AWS CloudTrail and Azure
Activity Logs, would extend the framework’s applicability for hybrid and cloud-native infrastruc-
tures. Combinations with the provider’s APIs would enable automated collection of control plane
activities, identity access logs, and resource change events which are central for the cloud incident
response.

Industrial protocol analysis capability for the Modbus, DNP3, and IEC 61850 protocols would
extend the framework’s use for operational technology deployments. Dynamic modules would
parse industrial traffic for invalid control commands, configuration changes, and process manipu-
lation efforts that represent unique threats against critical infrastructure.

Internet of Things (IoT) forensics provides another potential growth area, particularly for lim-
ited devices with lower computational power. The construction of lightweight agents and special-
purpose protocol-based evidence collection modules would potentially bring forensic functionality
into heterogeneous IoT communities.

Standardization of the interface and data format would allow for interoperability with existing
forensic tools and incident response systems. Standardization of the API would provide for inter-
operable interchange of data with STEM systems, threat intelligence systems, and digital forensics
tools, facilitating the development of wide-based security ecosystems.

Open-source community development may expedite feature extension and extend usage in
various organizational contexts. Pre-configured deployment packages, configuration templates,
and best practice documentation would lower barriers for implementation and raise deployment
success rates.

Aligning the regulatory framework, especially with rising cybersecurity standards and require-
ments for digital evidence, would complement the framework’s compliance value proposition. Co-
operation with standards bodies would impact the development of automated forensics standards
acknowledging the value and legitimacy of tool-assisted collection of evidence. Cross-platform
support extension from the Linux environment, involving Windows and network device forensics
support, would extend the applicability of the framework for heterogeneous IT infrastructures.
Platform-independent evidence collection protocol development and universal agent development
would facilitate extensive organizational support. The research foundation thereby laid by this
thesis provides a strong base for the future breakthroughs, as the modular architecture permits
incremental refinements, and the established forensic integrity mechanisms provide ongoing ad-
missibility as functions widen.

70

Appendix A

User Manual

This manual describes how to set up and use the forensic automation laboratory as described in
the thesis. All required scripts and configuration files are provided in a supplementary archive.
The guide is intended for users with basic familiarity with virtualization and Linux command line.

A.1 Prerequisites

e Host OS: Windows 10+, macOS 12+ or Ubuntu 22.04+. (Tested on Windows 11.)
e Hardware: Minimum 16GB RAM, 100GB disk space.
e Software: VirtualBox 7.0+ (https://www.virtualbox.org/)

e Internet Connection for downloading appliances and updates.

A.2 Laboratory Structure

The laboratory consists of two virtual machines:

Zabbix Server: Zabbix 7.0 LTS installed on Ubuntu Server 24.04 LTS, host for monitoring and
evidence collection.

Victim Host: Ubuntu Server 24.04 LTS, configured to simulate compromised and industrial
environments.

Recommended IP configuration (adjust in configs if changed):

e Zabbix Server: 192.168.20.120

e Victim Host: 192.168.20.130

A.3 Virtual Machine Creation

1. Download and install Ubuntu Server 24.04 LTS, refer to the official guide:
https://ubuntu.com/tutorials/install-ubuntu-server

2. Follow the Zabbix 7.0 LTS documentation to install Zabbix:
https://www.zabbix.com/download?zabbix=7.0&os_distribution=ubuntu&os_version=
24.04&components=server_frontend_agent&db=mysql&ws=apache.

71

https://www.virtualbox.org/
https://ubuntu.com/tutorials/install-ubuntu-server
https://www.zabbix.com/download?zabbix=7.0&os_distribution=ubuntu&os_version=24.04&components=server_frontend_agent&db=mysql&ws=apache
https://www.zabbix.com/download?zabbix=7.0&os_distribution=ubuntu&os_version=24.04&components=server_frontend_agent&db=mysql&ws=apache

User Manual

3. Download and install Ubuntu Server LTS on a second VM:
https://ubuntu.com/download/server

4. Assign static IPs matching the above configuration (use Ubuntu Netplan or equivalent).
5. Set both VMs’ main network adapter to Bridged Mode.

6. Enable NTP synchronization on both VMs:

sudo timedatectl set-ntp true

A.4 Victim Host Preparation
1. Install required packages:

sudo apt update
sudo apt install -y tcpdump lsof psmisc net-tools zip python3

2. Create a forensic user with passwordless sudo for required tools:

sudo useradd -m -s /bin/bash forensic

sudo passwd forensic

echo "forensic ALL=(ALL) NOPASSWD: /usr/sbin/tcpdump, /usr/bin/lsof"
| sudo tee /etc/sudoers.d/forensic

A.5 SSH Key Setup

1. On the Zabbix server, generate an SSH key for lab connections:

ssh-keygen -t rsa -b 4096 -f ~/.ssh/zabbix_forensic

2. Copy the public key to the forensic account on the victim host:

ssh-copy-id -i ~/.ssh/zabbix_forensic.pub forensic@192.168.20.130

3. Test login:

ssh -i ~/.ssh/zabbix_forensic forensic©192.168.20.130 hostname

A.6 Zabbix Appliance Initial Setup

1. Start the Zabbix Appliance VM and follow prompts for first boot setup (see official Zabbix
documentation if needed).

2. Access the Zabbix Web Ul at http://192.168.20.120/zabbix.

3. Login with Admin / zabbix and complete the first setup wizard (change password etc.).
72

https://ubuntu.com/download/server
http://192.168.20.120/zabbix

User Manual

A.7 Uploading Templates and Hosts

1. Go to Configuration — Templates and import zbx_templates.yaml from the supple-
mentary archive.

2. Go to Configuration — Hosts and import zbx_hosts.yaml.

3. Verify hosts appear under the correct group and templates are linked.

A.8 Script Deployment

1. Copy all provided scripts from the supplementary archive to the Zabbix server and to the
victim host as indicated:

sudo cp csl-collect.sh cs2-collect.sh /usr/local/bin/
sudo chmod +x /usr/local/bin/cs*.sh
sudo chown zabbix:zabbix /usr/local/bin/cs*.sh

scp csl-generator.sh cs2-*.sh forensic@192.168.20.130:7/
ssh forensic@192.168.20.130 "chmod +x ~/cs*.sh"

2. In Zabbix Web UI, go to Administration — Scripts. Add entries for each collection
script, specifying the correct absolute path (/usr/local/bin/).

Scripts Create script

Y Filter

Name & Scope Used in actions Type Executeon Commands Usergroup Hostgroup Host access
CollectDLP Action operation [fl} Execute DLP Script Server /home/zabbix/csl-collect.sh 192.168.20.130 forensic Al Al Read
CollectServ Action operation ~ [[l] Execute CollectServ Script ~ Server /home/zabbix/cs2-collect.sh 192.168.20.130 "{ITEM.KEY}" forensic Al Al Read

Displaying 2 of 2 found

Figure A.1. Zabbix Scripts

A.9 Configuring Actions

1. In Zabbix Web UI, go to Configuration — Actions.
2. Create action rules associating trigger events with the correct script.

3. Refer to the screenshots (zbx_actions.png, zbx_scripts.png) or Developer Manual for details.

Trigger actions v
Name a Conditions Operations Status Info
Execute CollectServ Value of tag type equals industrial Run script "CollectServ" on hosts: Victim Host IND Enabled
Execute DLP Value of tag type equals dip_trigger Run script "CollectDLP" on hosts: Victim Host DLP Enabled

Template equals DLP Template

Displaying 2 of 2 found

Figure A.2. Zabbix Actions

73

User Manual

A.10 Testing the Laboratory

Case Study 1 (Data Exfiltration):
1. Log into the victim host as forensic, run csl-generator.sh to create sample data.
2. Simulate data exfiltration, for example:
scp bigfile forensic@externalhost:/tmp/

3. The Zabbix web UI should report a trigger event and the configured evidence collection
workflow will be executed.

Case Study 2 (Unauthorized Service Detection):

1. On the victim host, run cs2-authorized-services.sh to start legitimate services.
2. Run cs2-unwanted-service.sh to simulate an unauthorized backdoor.

3. The Zabbix web UI should report the detection and collect focused forensic evidence.

A.11 Evidence Access and Validation

1. Collected forensic archives are stored in /home/zabbix/ on the Zabbix server.

2. Verify their integrity:

cd /home/zabbix
sha256sum -c forensics_<IP>_<TIMESTAMP>.zip.sha256

3. All steps from trigger to evidence collection should be observable from the Zabbix Web UI.

A.12 Appendix: File Overview

e zbx hosts.yaml, zbx_templates.yaml: Zabbix import files for hosts and monitoring tem-
plates.

e csl-collect.sh, cs2-collect.sh: Evidence collector scripts.

e csl-generator.sh, cs2-authorized-services.sh,
textttcs2-unwanted-service.sh: Scripts for generating events and services.

e .png screenshots: Reference for Zabbix Actions/Scripts configuration.

A.13 Summary

This manual provides every step required for a new user to reproduce the lab environment and
test both forensic automation workflows as described in the thesis, using only the provided archive
and public downloads.

74

Appendix B

Developer Manual

B.1 Case Study 1: Data Exfiltration Evidence Collection
Script

B.1.1 Script Overview

The csl-collect.sh script implements automated forensic evidence collection for data exfiltra-

tion scenarios. It operates as a remote orchestrator that executes comprehensive data acquisition

on a target host via SSH, collects multiple evidence types, and securely transfers the resulting
forensic archive back to the Zabbix server.

B.1.2 Script Architecture
Execution Model
The script employs a remote execution model using SSH heredoc syntax. The entire evidence

collection logic runs on the target host, minimizing network dependencies and ensuring atomic
collection operations.

Input Parameters

e TARGET_IP: IP address of the victim/target host

e SSH_USER: Username with appropriate privileges for forensic collection

B.1.3 Detailed Script Analysis
Phase 1: Initialization and Validation

Listing B.1. Parameter Validation
TARGET_IP="$1"

SSH_USER="$2"

if [[-z "$TARGET_IP" || -z "$SSH_USER"]]; then
echo "Usage: $0 <target_ip> ,<ssh_user>"
exit 1

fi

TIMESTAMP=$(date +%Y/m%d_%H%AMAS)
75

Developer Manual

REMOTE_WORKDIR="/var/tmp/forensics_${TARGET_IP}_${TIMESTAMP}"
LOCAL_STORAGE="/home/zabbix"

Key Design Decisions:

e Timestamp Format: Uses YYYYMMDD_HHMMSS for chronological sorting and uniqueness

e Working Directory: Remote temporary directory in /var/tmp (survives reboots unlike
/tmp)

e Local Storage: Centralizes evidence on Zabbix server in /home/zabbix

Phase 2: Remote Execution Framework

The script uses SSH heredoc (<< EOF) to execute a complete forensic collection script on the
target host:

Listing B.2. SSH Remote Execution
ssh -o StrictHostKeyChecking=no -o BatchMode=yes ${SSH_USER}Q@${TARGET_IP} <<
EQF
#!/bin/bash
All subsequent commands execute on TARGET_IP
TIMESTAMP="$TIMESTAMP"
TARGET_IP="$TARGET_IP"
WORKDIR="/tmp/forensics_\${TARGET_IP}_\${TIMESTAMP}"
ZIPFILE="\${WORKDIR}.zip"
EQF

SSH Configuration:

e StrictHostKeyChecking=no: Bypasses host key verification (lab environment)

e BatchMode=yes: Prevents interactive prompts, ensures script automation

Phase 3: Dependency Verification

Listing B.3. Package Requirements Check

check_requirements() {
echo "[REMOTE] Checking required, packages..."
missing_packages=""

if ! command -v zip >/dev/null 2>&1; then
missing_packages="$missing_packages zip"
fi

if ! command -v tcpdump >/dev/null 2>&1; then
missing_packages="$missing_packages tcpdump"

fi

Additional checks for pstree, netstat, lsof

Purpose: Identifies missing forensic utilities and provides clear error reporting. The script
continues execution but warns about potential data loss.

76

Developer Manual

Phase 4: Process Evidence Collection

Listing B.4. Process Information Gathering
collect_process_evidence() {
echo "[REMOTE] Collecting process information"
ps aux > "$WORKDIR/processes_${TIMESTAMP}.txt" 2>/dev/null

ps —eo pid,ppid,cmd,etime,user > "$WORKDIR/process_tree_${TIMESTAMP}.txt"
2>/dev/null

if command -v pstree >/dev/null 2>&1; then

pstree -p > "$WORKDIR/process_hierarchy_ ${TIMESTAMP}.txt" 2>/dev/null
fi
}

Evidence Types:

e processes_*: Complete process listing with CPU/memory usage
e process_tree_*: Parent-child relationships with execution time

e process_hierarchy_*: Visual process tree (if available)

Phase 5: Network Connection Analysis

Listing B.5. Network Evidence Collection
collect_network_connections() {
echo "[REMOTE] Collecting network, ,connections"
ss -tunap > "$WORKDIR/sockets_${TIMESTAMP}.txt" 2>/dev/null
if command -v netstat >/dev/null 2>&1; then

netstat -anp > "$WORKDIR/netstat_${TIMESTAMP}.txt" 2>/dev/null
fi

if command -v lsof >/dev/null 2>&1; then
lsof -i -n -P > "$WORKDIR/network_files_${TIMESTAMP}.txt" 2>/dev/null
if [! -s "$WORKDIR/network_files_${TIMESTAMP}.txt"]; then
lsof -i > "$WORKDIR/network_files_${TIMESTAMP}.txt" 2>/dev/null
fi
fi
}

Multi-Tool Approach:

e ss: Modern socket statistics (preferred over netstat)
e netstat: Legacy compatibility and additional details

e Isof: Process-to-network mapping with fallback options

Fallback Logic: The script attempts multiple variations of lsof commands to handle permis-
sion restrictions and ensure data collection.

Phase 6: File System Evidence

Listing B.6. Open Files Collection
collect_file_evidence() {
echo "[REMOTE] Collecting open, files information"
if command -v lsof >/dev/null 2>&1; then

77

Developer Manual

lsof > "$WORKDIR/open_files_${TIMESTAMP}.txt" 2>/dev/null
if [! -s "$WORKDIR/open_files_${TIMESTAMP}.txt"]; then
echo "lsof produced no output,(may require_ elevated privileges)" >
"$WORKDIR/open_files_${TIMESTAMP}.txt"
fi
fi
}

Critical for Data Exfiltration: Identifies files being actively accessed during the incident,
potentially revealing exfiltrated data sources.

Phase 7: User Activity Forensics

Listing B.7. Command History Collection

collect_user_histories() {
echo "[REMOTE] Collecting user ,command, histories"
mkdir -p "$WORKDIR/user_histories"
for user_home in /home/*; do
if [-d "$user_home"]; then
username=$ (basename "$user_home")
if [-f "$user_home/.bash_history"] && [-r
"$user_home/.bash_history"]; then
cp "$user_home/.bash_history"
"$WORKDIR/user_histories/${username}_bash_history_${TIMESTAMP}.txt"
2>/dev/null
fi
Additional shell histories (zsh, etc.)
fi
done

Root history collection
if [-f "/root/.bash_history"] && [-r "/root/.bash_history"]; then
cp "/root/.bash_history"
"$WORKDIR/user_histories/root_bash_history_${TIMESTAMP}.txt"
2>/dev/null
fi
}

Multi-User Support: Systematically collects command histories from all user accounts,
providing timeline reconstruction capabilities.

Phase 8: System Log Extraction

Listing B.8. Log File Collection

collect_system_logs() {
echo "[REMOTE] Collecting system_ logs"
if [-f /var/log/syslog] && [-r /var/log/syslog 1; then
tail -n 1000 /var/log/syslog >
"$WORKDIR/syslog_tail ${TIMESTAMP}.txt" 2>/dev/null
fi
if [-f /var/log/auth.log] && [-r /var/log/auth.log]; then
tail -n 1000 /var/log/auth.log >
"$WORKDIR/authlog_tail _${TIMESTAMP}.txt" 2>/dev/null
fi
Additional logs: messages, secure

78

Developer Manual

Sampling Strategy: Collects recent log entries (last 1000 lines) to balance completeness
with archive size.

Phase 9: Metadata Generation

Listing B.9. Collection Metadata

create_metadata() {

echo "[REMOTE] Creating metadata file"

cat > "$WORKDIR/collection_metadata_${TIMESTAMP}.txt" << METADATA
Forensic Evidence Collection Report

Target Host: $(hostname)

Target IP: $TARGET_IP

Collection Timestamp: ${TIMESTAMP}
Collection Date: $(date)
Collecting User: $(whoami)

System Info: $(uname -a)

Uptime: $(uptime)

Current Working Directory: $(pwd)
Script Execution User: $SSH_USER

Network Interfaces:
$(ip addr show 2>/dev/null || ifconfig 2>/dev/null)

Files Collected:
METADATA
find "$WORKDIR" -type f -exec 1ls -la {} \; >>
"$WORKDIR/collection_metadata_${TIMESTAMP}.txt"

Forensic Integrity: Creates comprehensive metadata including system state, collection pa-
rameters, and file inventory for chain of custody.

Phase 10: Cryptographic Hash Calculation

Listing B.10. Evidence Integrity

calculate_hashes() {
echo "[REMOTE] Calculating SHA256 hashes"
find "$WORKDIR" -type f -name "*.txt" -o -name "*.pcap" | while read
file; do
if [-f "$file"]; then
cd "$WORKDIR"
hash=$(sha256sum "$(basename ,"$file")" 2>/dev/null)
if [$7? -eq 0 1; then
echo "$hash" >> "$WORKDIR/hashes_${TIMESTAMP}.sha256"
fi
fi
done

Evidence Integrity: Generates SHA256 hashes for all collected files, enabling tamper de-
tection and court admissibility.

Phase 11: Network Traffic Capture

79

Developer Manual

Listing B.11. Packet Capture

collect_network_evidence() {
echo "[REMOTE] Starting packet capture on all interfaces (60 seconds)"
if command -v tcpdump >/dev/null 2>&1; then
interfaces=$(ip -o link show 2>/dev/null | awk -F’:,’ ’{print, $2}’ |
grep -v lo)

for iface in $interfaces; do
echo "[REMOTE] Capturing packets_on_ interface_ $iface"
timeout 60 tcpdump -i "$iface" -w
"$WORKDIR/packets_${iface} _${TIMESTAMP}.pcap" -s 0 -U
2>/dev/null &
done
wait
fi

Multi-Interface Capture: Simultaneously captures traffic on all active network interfaces
with a 60-second timeout to prevent indefinite execution.

Phase 12: Archive Creation and Transfer

Listing B.12. Evidence Archival

create_archive() {

echo "[REMOTE] (Creating ,compressed archive"

cd /tmp

if command -v zip >/dev/null 2>&1; then
zip -r "$ZIPFILE" "$(basename,"$WORKDIR")" > /dev/null 2>&1
if [$7 -eq 0]; then

sha256sum "$ (basename ,"$ZIPFILE")" > "$ZIPFILE.sha256"

fi

fi

Final Phase: Transfer evidence archive and hash file to Zabbix server via SCP:

Listing B.13. Evidence Transfer

scp -o StrictHostKeyChecking=no
${SSH_USER}Y@${TARGET_IP}:/tmp/forensics_${TARGET_IP}_${TIMESTAMP}.zip
"${LOCAL_STORAGE}/${ARCHIVE_NAME}"

scp -o StrictHostKeyChecking=no
${SSH_USER}@${TARGET_IP}:/tmp/forensics_${TARGET_IP}_${TIMESTAMP}.zip.sha256
"${LOCAL_STORAGE}/${ARCHIVE_NAME}.sha256"

Integrity verification
cd "$LOCAL_STORAGE"
if sha256sum -c "${ARCHIVE_NAME}.sha256"; then
echo "[*]_Archive integrity verified, successfully"
fi

Cleanup remote files

ssh -o StrictHostKeyChecking=no -o BatchMode=yes ${SSH_USER}@${TARGET_IP} '"rm
-rf,/tmp/forensics_${TARGET_IP}_${TIMESTAMP}x"

80

Developer Manual

B.1.4 Customization Guidelines
Modifying Collection Scope

Adding New Evidence Types:

Listing B.14. Custom Evidence Function
collect_custom_evidence() {

echo "[REMOTE] Collecting custom_ application data"
Database dumps

mysqldump --all-databases > "$WORKDIR/database_dump_${TIMESTAMP}.sql"
2>/dev/null

Application logs
cp /var/log/myapp/*.log "$WORKDIR/" 2>/dev/null

Configuration files
tar -czf "$WORKDIR/config backup_${TIMESTAMP}.tgz" /etc/myapp/ 2>/dev/null
}

Adjusting Timeouts and Limits:

e Packet Capture Duration: Modify timeout 60 value based on incident requirements
e Log Collection Depth: Change tail -n 1000 to capture more/fewer log entries

e Archive Size Limits: Add size checks before compression to prevent disk exhaustion

Permission and Security Enhancements

Privilege Escalation:

Listing B.15. Sudo Integration

For commands requiring elevated privileges
if sudo -1 | grep -q tcpdump; then
sudo tcpdump -i "$iface" -w "$WORKDIR/packets_${iface}_${TIMESTAMP}.pcap"
-s 0 -U &
else

echo "Insufficient privileges, for packet capture" >
"$WORKDIR/tcpdump_error_${TIMESTAMP}.txt"
fi

SSH Key Security:

e Use dedicated SSH keys for forensic operations
e Implement SSH agent forwarding for multi-hop environments

e Consider SSH certificate-based authentication for enhanced security

Error Handling and Logging

Enhanced Error Reporting:

Listing B.16. Robust Error Handling

execute_with_retry() {
local command="$1"
local max_attempts="$2"

81

Developer Manual

local attempt=1

while [$attempt -le $max_attempts]; do
if eval "$command"; then
return 0O
else
echo "[RETRY_ $attempt/$max_attempts] Command failed: $command"
attempt=$((attempt + 1))

sleep 2
fi
done
return 1

B.1.5 Integration with Zabbix Actions

Zabbix Action Configuration:
e Trigger Condition: Network traffic threshold exceeded
e Action Command: /usr/local/bin/csl-collect.sh {HOST.IP} forensic
e Execution User: zabbix (with appropriate SSH keys)
e Timeout: 300 seconds (5 minutes) to accommodate packet capture

Return Code Handling:
Listing B.17. Zabbix Integration

Ensure proper exit codes for Zabbixz action monitoring
if [$7 -eq 0]; then
echo "[*]_Forensic evidence collection completed successfully"
exit O
else
echo "[*]_ERROR: Forensic collection failed"
exit 1
fi

B.1.6 Performance Considerations

Resource Usage

e Memory: Packet capture requires sufficient buffer space
e Disk: Temporary files may consume significant space during collection
e Network: Archive transfer impacts bandwidth during incident response

e CPU: Compression operations may cause temporary load spikes

Optimization Strategies

e Parallel Collection: Use background processes for independent operations
e Selective Capture: Filter packet capture by protocol or port
e Incremental Transfer: Stream data during collection rather than post-processing

e Compression Tuning: Balance compression ratio against processing time

This script represents a comprehensive approach to automated forensic evidence collection,
balancing thoroughness with practical execution constraints in production environments.

82

Developer Manual

B.2 Case Study 2: Unauthorized Service Detection and
Evidence Collection Script

B.2.1 Script Overview

The cs2-collect.sh script implements specialized forensic evidence collection for unauthorized
service detection scenarios. Unlike Case Study 1, this script focuses on targeted analysis of
specific network services and processes, with emphasis on binary analysis, process relationships,
and industrial environment context.

B.2.2 Script Architecture
Execution Model

The script employs a parameter-driven execution model that extracts the suspect port num-
ber from Zabbix trigger keys and performs focused forensic collection around that specific service.

Input Parameters

e TARGET_HOST: IP address of the victim host
e KEY: Zabbix item key containing port number to inspect (format: item[port])

e REMOTE_USER: SSH username for remote access

B.2.3 Detailed Script Analysis

Phase 1: Parameter Extraction and Validation

Listing B.18. Dynamic Port Extraction

TARGET_HOST="$1"
KEY="$2"
REMOTE_USER="$3"

SUSPECT_PORT=$(echo "$XEY" | sed -n ’s/.*\[\([0-91\+\)\1/\1/p’)

if [[-z "$TARGET_HOST" || -z "$SUSPECT_PORT" || -z "$REMOTE_USER"]]; then
echo "Error: Missing parameters."
echo "Usage:$0 <target_ip> <suspect_port> <ssh_user>"

exit 1
fi

Key Design Features:

e Dynamic Port Extraction: Uses regex to extract port number from Zabbix item keys
like net.tcp.listen[4444]

e Strict Validation: Ensures all required parameters are present before remote execution

e Zabbix Integration: Designed to receive Zabbix macro expansions as parameters

83

Developer Manual

Phase 2: Security-Enhanced Remote Execution

Listing B.19. Secure Remote Environment
ssh ${REMOTE_USER}@${TARGET_HOST} bash <<ENDSSH

set -e
umask 077

TARGET_HOST="${TARGET_HOST}"
SUSPECT_PORT="${SUSPECT_PORT}"
TIMESTAMP="${TIMESTAMP}"
EVIDENCE_DIR="${EVIDENCE_DIR}"

Security Enhancements:

e set -e: Immediate script termination on any command failure
e umask 077: Restrictive file permissions (600) for all created evidence files

e Variable Sanitization: All variables are explicitly passed and validated

Phase 3: Comprehensive Metadata Collection

Listing B.20. Forensic Session Documentation

START_TS=$(date --iso-8601=seconds)

echo "ForensicCollection, Session" > "${EVIDENCE_DIR}/${REPORT_NAME}"
echo "Target host: ${TARGET_HOST}" >> "${EVIDENCE_DIR}/${REPORT_NAME}"
echo "Session;start: ${START_TS}" >> "${EVIDENCE_DIR}/${REPORT_NAME}"
echo "Suspect port: ${SUSPECT_PORT}" >> "${EVIDENCE_DIR}/${REPORT_NAME}"
echo "Run by _host: $(hostname)" >> "${EVIDENCE_DIR}/${REPORT_NAME}"

Tool wersions

{
echo "ss version: $(ss —--version 2>&1,,| head -1)"
echo "netstat version: $(netstat —-version 2>&1,| head —1)"
echo "lsof_ version: $(1lsof ~v_2>&1, | head —-1)"
echo "psyversion: $(ps --version; 2>&1,,| head -1)"
echo "sha256sum_ version:_ $(sha256sum_ --versiony | _head —1)"
echo "zipyversion: $(zip,-vy | head -1)"

} >> "${EVIDENCE_DIR}/${REPORT_NAME}"

Enhanced Metadata Features:

e ISO-8601 Timestamps: Precise timing information with timezone data
e Tool Versioning: Documents exact versions of forensic tools used

e Chain of Custody: Records collection host and execution context

Phase 4: Network Service Analysis

Listing B.21. Comprehensive Network Data Collection
Network data and hashes
ss —tulpn > "${EVIDENCE_DIR}/listening_ports.txt" 2>&1
sha256sum "${EVIDENCE_DIR}/listening_ports.txt" >
"${EVIDENCE_DIR}/listening_ports.txt.sha256"

84

Developer Manual

netstat -anp > "${EVIDENCE_DIR}/netstat_anp.txt" 2>&1
sha256sum "${EVIDENCE_DIR}/netstat_anp.txt" >
"${EVIDENCE_DIR}/netstat_anp.txt.sha256"

1sof -i > "${EVIDENCE_DIR}/lsof_all_network.txt" 2>&1

sha256sum "${EVIDENCE_DIR}/lsof_all_network.txt" >
"${EVIDENCE_DIR}/lsof_all_network.txt.sha256"

Multi-Tool Network Analysis:

ss: Modern socket statistics with process information

netstat: Legacy compatibility and detailed connection states

Isof: Process-to-network mapping with file descriptor details

Immediate Hashing: Each evidence file is immediately hashed for integrity

Phase 5: Advanced Process and Binary Analysis

Listing B.22. Per-Process Binary Analysis

while read -r line; do
PORT=$(echo "$line" | awk ’{print_$5}’ | awk -F: ’{print_ $NF}’)
PIDUSER=$(echo "$line" | awk ’{print, $73}’)
if [[-n "$PIDUSER" && "$PIDUSER" != "x"]1]; then
PID=$(echo "$PIDUSER" | cut -d/ -f1)
PROCNAME=$ (echo "$PIDUSER" | cut -d/ -f2)
if [[-d "/proc/$PID"]1]; then
EXEPATH=$(readlink -f /proc/$PID/exe 2>/dev/null)
if [[-n "$EXEPATH"]]; then
BNFILE="${EVIDENCE_DIR}/binary_${PROCNAME}_${PID}_port${PORT}.txt"
HASHFILE="${EVIDENCE_DIR}/binary_${PROCNAME}_${PID}_port${PORT}.sha256"
ENVFILE="${EVIDENCE_DIR}/environ_${PROCNAME}_${PID}_port${PORT}.txt"
LSOFFILE="${EVIDENCE_DIR}/1lsof _${PROCNAME}_${PID}_port${PORT}.txt"
1s -la "$EXEPATH" > "$BNFILE" 2>&1
sha256sum "$EXEPATH" > "$HASHFILE"
cat /proc/$PID/environ | tr ’\0’ ’\n’ > "$ENVFILE" 2>&1
sha256sum "$ENVFILE" > "$ENVFILE.sha256"
lsof -p $PID > "$LSOFFILE"
sha256sum "$LSOFFILE" > "$LSOFFILE.sha256"
fi
fi
fi
done < <(ss -tulpn | tail -n +2)

Advanced Analysis Features:

Binary Fingerprinting: SHA256 hash of each network service binary

Environment Analysis: Process environment variables for execution context

e File Descriptor Analysis: Complete file/socket mapping per process

Granular Evidence: Separate files per process-port combination

85

Developer Manual

Phase 6: User Activity Forensics

Listing B.23. Multi-User History Collection

for userhome in /home/*/; do
user=$(basename "$userhome")
histfile="${userhome}.bash_history"
if [[-r "$histfile"]1]; then
echo "History_for user $user:" > "${EVIDENCE_DIR}/history_${user}.txt"
cat "$histfile" >> "${EVIDENCE_DIR}/history_${user}.txt"
sha256sum "${EVIDENCE_DIR}/history_${user}.txt" >
"${EVIDENCE_DIR}/history_${user}.txt.sha256"
echo "Collected history, for $user." >> "${EVIDENCE_DIR}/${REPORT_NAME}"
else
echo "Noreadable history for $user." >> "${EVIDENCE_DIR}/${REPORT_NAME}"
fi
done

if [[-r /root/.bash_history]]; then
echo "History_ for root:" > "${EVIDENCE_DIR}/history_root.txt"
cat /root/.bash_history >> "${EVIDENCE_DIR}/history_root.txt"
sha256sum "${EVIDENCE_DIR}/history_root.txt" >
"${EVIDENCE_DIR}/history_root.txt.sha256"
fi

Comprehensive User Activity:

e All User Accounts: Iterates through all home directories
e Permission-Aware: Only collects readable history files
e Root Privilege Handling: Separate collection for root account

e Audit Trail: Reports which users had accessible histories

Phase 7: Focused Suspect Port Analysis

Listing B.24. Targeted Port Investigation

echo "Collecting details, for suspect port $SUSPECT_PORT..." >>
"${EVIDENCE_DIR}/${REPORT_NAME}"

LSOF_FN="${EVIDENCE_DIR}/lsof_port_${SUSPECT_PORT}.txt"
lsof -i :${SUSPECT_PORT} > "$LSOF_FN"
sha256sum "$LSOF_FN" > "${LSOF_FN}.sha256"

PID=$(1sof -t -i :${SUSPECT_PORT} | head -n 1 || true)
if [[-n "$PID" 1]; then
echo "Suspect port ${SUSPECT_PORT} PID: $PID" >>
"${EVIDENCE_DIR}/${REPORT_NAME}"

ps auxww | grep "“\\S*_*$PID " >
"${EVIDENCE_DIR}/ps_port_${SUSPECT_PORT}.txt"

sha256sum "${EVIDENCE_DIR}/ps_port_${SUSPECT_PORT}.txt" >
"${EVIDENCE_DIR}/ps_port_${SUSPECT_PORT}.txt.sha256"

EXEPATH=$(readlink -f /proc/$PID/exe 2>/dev/null)
if [[-n "$EXEPATH"]1]; then
sha256sum "$EXEPATH" > "${EVIDENCE_DIR}/exe_hash_${SUSPECT_PORT}.sha256"

86

Developer Manual

1s -la "$EXEPATH" > "${EVIDENCE_DIR}/exe_path_${SUSPECT_PORT}.txt"
sha256sum "${EVIDENCE_DIR}/exe_path_${SUSPECT_PORT}.txt" >

"${EVIDENCE_DIR}/exe_path_${SUSPECT_PORT}.txt.sha256"
fi
fi

Targeted Analysis:

e Port-Specific Investigation: Focuses on the exact port that triggered the alert
e Process Identification: Links port to specific PID and binary
e Binary Analysis: Detailed metadata and hash of suspect executable

e Process Context: Full process information including command line arguments

Phase 8: System State Documentation

Listing B.25. System State Capture
pstree -p > "${EVIDENCE_DIR}/process_tree.txt"
sha256sum "${EVIDENCE_DIR}/process_tree.txt" >

"${EVIDENCE_DIR}/process_tree.txt.sha256"

systemctl list-units --type=service --state=running >
"${EVIDENCE_DIR}/running_services.txt"

sha256sum "${EVIDENCE_DIR}/running_services.txt" >
"${EVIDENCE_DIR}/running_services.txt.sha256"

free -h > "${EVIDENCE_DIR}/memory_usage.txt"
sha256sum "${EVIDENCE_DIR}/memory_usage.txt" >
"${EVIDENCE_DIR}/memory_usage.txt.sha256"

df -h > "${EVIDENCE_DIR}/disk_usage.txt"
sha256sum "${EVIDENCE_DIR}/disk_usage.txt" >
"${EVIDENCE_DIR}/disk_usage.txt.sha256"

top -b -n 1 > "${EVIDENCE_DIR}/cpu_usage.txt"
sha256sum "${EVIDENCE_DIR}/cpu_usage.txt" >
"${EVIDENCE_DIR}/cpu_usage.txt.sha256"

System Context:

e Process Hierarchy: Complete process tree for relationship analysis
e Service Status: All running systemd services
e Resource Usage: Memory, disk, and CPU utilization snapshots

o Performance Impact: Understanding system load during incident

Phase 9: File System Timeline Analysis

Listing B.26. Recent File Modifications
echo "Collecting recently modified files..." >>
"${EVIDENCE_DIR}/${REPORT_NAME}"
find /tmp /var/tmp /opt -type f -newermt ’-1_hour’ -1s >
"${EVIDENCE_DIR}/recent_files.txt"
sha256sum "${EVIDENCE_DIR}/recent_files.txt" >
"${EVIDENCE_DIR}/recent_files.txt.sha256"

87

Developer Manual

Timeline Analysis:

e Recent Activity: Files modified within 1 hour of incident
e Suspicious Locations: Focuses on temporary and optional directories

e Detailed Metadata: Full file listing with permissions and timestamps

Phase 10: Industrial Environment Context

Listing B.27. Industrial System Logs

if compgen -G "/opt/industrial/logs/*" > /dev/null; then
cat /opt/industrial/logs/* > "${EVIDENCE_DIR}/industrial_logs.txt"
sha256sum "${EVIDENCE_DIR}/industrial_logs.txt" >
"${EVIDENCE_DIR}/industrial_logs.txt.sha256"

echo "Collected,industrial log files." >> "${EVIDENCE_DIR}/${REPORT_NAME}"
else

echo "Noyindustrial,logs,found jor directorygempty." >>
"${EVIDENCE_DIR}/${REPORT_NAME}"
fi

Industrial Context:

e Specialized Logs: Collection of industrial control system logs
e Optional Collection: Graceful handling when industrial environment not present

e Comprehensive Logging: Documents whether industrial components are involved

Phase 11: Hash Consolidation and Final Report

Listing B.28. Evidence Integrity Summary

echo "-------——"-"-—"-"-"H—"H—"—m"H—--— ">>
"${EVIDENCE_DIR}/${REPORT_NAME}"

echo "SHA256,,checksums ,collected:" >> "${EVIDENCE_DIR}/${REPORT_NAME}"

find ${EVIDENCE_DIR} -type f -name ’*.sha256’ ! -name "${REPORT_NAME}" |
while read -r hashfile; do

echo "---_ ${hashfile##x*/} ---" >> "${EVIDENCE_DIR}/${REPORT_NAME}"
cat "$hashfile" >> "${EVIDENCE_DIR}/${REPORT_NAME}"
done

END_TS=$(date --iso-8601=seconds)

echo "--————"""1"""--———"-"--—-----—-"-—"—"—"—""-— ">>
"${EVIDENCE_DIR}/${REPORT_NAME}"

echo "Session end: ${END_TS}" >> "${EVIDENCE_DIR}/${REPORT_NAME}"

Final Documentation:

e Hash Consolidation: All evidence hashes in central report
e Session Timing: Precise start and end timestamps

e Integrity Verification: Comprehensive hash documentation

88

Developer Manual

Phase 12: Secure Transfer and Verification

Listing B.29. Secure Evidence Transfer
cd /tmp

zip -r "${ARCHIVE_NAME}" "$(basename ,"${EVIDENCE_DIR}")" > /dev/null 2>&1
sha256sum "${ARCHIVE_NAME}" > "${ARCHIVE_NAME}.sha256"

Transfer and verification
scp ${REMOTE_USER}@${TARGET_HOST}:/tmp/${ARCHIVE_NAME} ${LOCAL_PATH}/

scp ${REMOTE_USER}Q${TARGET_HOST}:/tmp/${ARCHIVE_NAME}.sha256 ${LOCAL_PATH}/

LOCAL_HASH=$(sha256sum ${LOCAL_PATH}/${ARCHIVE_NAME} | awk ’{print,$1}’)
REMOTE_HASH=$(cat ${LOCAL_PATH}/${ARCHIVE_NAME}.sha256 | awk ’{print_ $1}’)

if [["$LOCAL_HASH" !'= "$REMOTE_HASH"]]; then
echo "Checksum mismatch! Transfer ,corrupted."
exit 1

fi

Cleanup

ssh ${REMOTE_USER}@${TARGET_HOST} "rm -rf_ ${EVIDENCE_DIR},
/tmp/${ARCHIVE_NAME}_/tmp/${ARCHIVE_NAME}.sha256"

Transfer Security:

e Cryptographic Verification: SHA256 comparison between source and destination
e Transfer Integrity: Automatic failure detection and error reporting

e Secure Cleanup: Complete removal of temporary files from target system

B.2.4 Customization Guidelines
Port Extraction Customization

Alternative Key Formats:

Listing B.30. Custom Port Extraction

For custom Zabbixz item formats
SUSPECT_PORT=$ (echo "$KEY" | sed -n ’s/.*port_\([0-9]1\+\).*/\1/p’)

For multiple port scemarios
SUSPECT_PORTS=$(echo "$KEY" | grep -o ’[0-9]\+’ | tr ’\n’ ’,’)

Industrial Environment Adaptation

Additional Industrial Analysis:

Listing B.31. Extended Industrial Monitoring

Modbus communication analysis
if command -v modpoll >/dev/null 2>&1; then
modpoll -m tcp -a 1 -r 1 -¢ 10 -t 4 ${TARGET_HOST} >
"${EVIDENCE_DIR}/modbus_test.txt"
sha256sum "${EVIDENCE_DIR}/modbus_test.txt" >
"${EVIDENCE_DIR}/modbus_test.txt.sha256"
fi

89

Developer Manual

MQTT broker analysis
if ss -tulpn | grep -q ’:1883\|:8883’; then
mosquitto_sub -h localhost -t ’#’ -C 100 >
"${EVIDENCE_DIR}/mqtt_messages.txt" &
MQTT_PID=$!
sleep 30
kill $MQTT_PID 2>/dev/null
sha256sum "${EVIDENCE_DIR}/mqtt_messages.txt" >
"${EVIDENCE_DIR}/mqtt_messages.txt.sha256"
fi

Enhanced Binary Analysis

Malware Detection Integration:

Listing B.32. Extended Binary Analysis

Static analysis tools integration
if command -v strings >/dev/null 2>&1; then
strings "$EXEPATH" > "${EVIDENCE_DIR}/strings_${PID}.txt"
sha256sum "${EVIDENCE_DIR}/strings_${PID}.txt" >
"${EVIDENCE_DIR}/strings_${PID}.txt.sha256"
fi

File type analysts
if command -v file >/dev/null 2>&1; then
file "$EXEPATH" > "${EVIDENCE_DIR}/filetype_${PID}.txt"
sha256sum "${EVIDENCE_DIR}/filetype_${PID}.txt" >
"${EVIDENCE_DIR}/filetype_${PID}.txt.sha256"
fi

Library dependencies
if command -v 1dd >/dev/null 2>&1; then
1dd "$EXEPATH" > "${EVIDENCE_DIR}/libraries_${PID}.txt" 2>&1
sha256sum "${EVIDENCE_DIR}/libraries_${PID}.txt" >
"${EVIDENCE_DIR}/libraries_${PID}.txt.sha256"
fi

Network Traffic Analysis

Targeted Traffic Capture:

Listing B.33. Port-Specific Traffic Analysis

Capture traffic specific to suspect port
if command -v tcpdump >/dev/null 2>&1; then
timeout 60 tcpdump -i any port ${SUSPECT_PORT} -w
"${EVIDENCE_DIR}/traffic_port_${SUSPECT_PORT}.pcap" -s 0 &
TCPDUMP_PID=$!
echo "Started packet capture_ for port ${SUSPECT_PORT} (PID: $TCPDUMP_PID)"
wait $TCPDUMP_PID
sha256sum "${EVIDENCE_DIR}/traffic_port_${SUSPECT_PORT}.pcap" >
"${EVIDENCE_DIR}/traffic_port_${SUSPECT_PORT}.pcap.sha256"
fi

90

Developer Manual

B.2.5 Integration with Zabbix Triggers
Low-Level Discovery Integration

Zabbix Template Configuration:

e Discovery Rule: industrial.services.discovery
e Item Prototype: industrial.port.listen [{#PORT}]
e Trigger Expression: {Template:industrial.port.listen[4444].1last()}>0

e Action Command: /usr/local/bin/cs2-collect.sh {HOST.IP} {ITEM.KEY}}

Advanced Trigger Conditions

Multi-Condition Triggers:

Listing B.34. Complex Trigger Logic

Unauthorized service AND high CPU usage
{Template:industrial.port.listen[4444] .1last()}>0
and

{Template:system.cpu.util.avg(5m)}>80

Multiple unauthorized ports
{Template:industrial.port.listen[4444] .1last()}>0
or
{Template:industrial.port.listen[5555].1last()}>0

B.2.6 Performance and Security Considerations

Performance Optimization

e Parallel Evidence Collection: Use background processes for independent operations
e Selective File Analysis: Limit find operations to relevant directories
e Compression Optimization: Use appropriate compression levels for archive size vs. speed

e Resource Monitoring: Include system load checks to prevent overloading target systems

Security Enhancements
e Privilege Isolation: Use dedicated forensic user accounts with minimal privileges
e Secure Communication: Implement SSH certificate-based authentication
e Evidence Encryption: Add GPG encryption for sensitive evidence archives
e Access Logging: Log all forensic collection activities for audit trails

This script provides focused, targeted forensic collection specifically designed for unauthorized
service detection scenarios, with enhanced binary analysis and industrial environment awareness.

91

Bibliography

1]
2]
3]

IBM Security, “Cost of a data breach report 2024, 2024

CrowdStrike, “Crowdstrike global outage: What happened and lessons learned”, 2024

S. Romanosky, “A case study of the target data breach: A lesson in security fail-
ure”, Journal of Information Privacy and Security, vol. 10, no. 2, 2014, pp. 1-16, DOI
10.1080/15536548.2014.1019920

Microsoft Corporation, “Bitlocker drive encryption overview”, 2023

K. Kent, S. Chevalier, T. Grance, and H. Dang, “Guide to integrating forensic techniques
into incident response”, 2006

P. Cichonski, T. Millar, T. Grance, and K. Scarfone, “Computer security incident handling
guide”, 2012

S. Garfinkel, “Digital forensics research: The next 10 years”, Digital Investigation, vol. 7,
2010, pp. S64-S73, DOI 10.1016/j.diin.2010.05.009

E. Casey and G. Stellatos, “The impact of full disk encryption on digital forensics”, Digital
Forensics and Cyber Crime, 2011

Cisco Systems, “Cisco netflow configuration guide”, 2021

CERT NetSA Team, “Yet another flowmeter (yaf)”, 2023

T. Z. Project, “Zeek network security monitor”, 2023, https://zeek.org/

A. Chuvakin, K. Schmidt, and C. Phillips, “Security information and event management
(siem) implementation”, McGraw-Hill Education, 2013, ISBN: 9780071742382

B. Turnbull, B. Irwin, and W. A. Labuschagne, “Network forensics: An analysis of techniques,
tools, and trends”, The Journal of Digital Forensics, Security and Law, vol. 13, no. 4, 2018,
pp. 15-36, DOI 10.15394/jdfs1.2018.1535

] Snort Project, “Snort users manual”, 2023
] OISF, “Suricata - open source ids/ips/nsm engine”, 2024
] A. Chuvakin and K. Scarfone, “Security information and event management (siem) imple-

mentation”, NIST Special Publication, no. 800-92, 2007

IBM Security, “Ibm qgradar siem overview”, 2023

Elastic Co., “Elastic stack documentation”, 2024

A. Alazab and Y. Al-Nashif, “Soar: Security orchestration, automation and response - tech-
niques and applications”, Journal of Cybersecurity and Privacy, 2021

Zabbix Team, “Security monitoring with zabbix”, 2023

X. Li, Y. Zhang, and H. Chen, “Autoforensics: Real-time automated forensic evidence col-
lection architecture”, Proceedings of IEEE Symposium on Security and Privacy Workshops,
2020, pp. 285-294, DOI 10.1109/SPW50608.2020.00053

F. Marturana, S. Tacconi, and A. Merlo, “A framework for cloud forensic readiness in orga-
nizations”, Proceedings of the International Conference on Cloud Computing and Services
Science (CLOSER), 2011, pp. 271-278, DOI 10.5220,/0003391102710278

E. Salfati and M. Pease, “Digital forensics and incident response (dfir) framework for op-
erational technology (ot)”, NIST Interagency Report NIST IR 8428, National Institute of
Standards and Technology, June 2022. This publication is available free of charge from:
https://doi.org/10.6028 /NIST.IR.8428

G. Michelet, F. Breitinger, and G. Horsman, “Automation for digital forensics: Towards a
definition for the community”, Forensic Science International: Digital Investigation, vol. 349,
August 2023, p. 111769, DOI 10.1016 /j.forsciint.2023.111769. Creative Commons Attribution
Non-Commercial No Derivatives License (CC:BY:NC:ND 4.0)

92

https://doi.org/10.1080/15536548.2014.1019920
https://doi.org/10.1016/j.diin.2010.05.009
https://zeek.org/
https://doi.org/10.15394/jdfsl.2018.1535
https://doi.org/10.1109/SPW50608.2020.00053
https://doi.org/10.5220/0003391102710278
https://doi.org/10.1016/j.forsciint.2023.111769

Bibliography

[25]

[26]

[27]

[28]

[29]

[32]

[33]

[34]
[35]

[36]
[37]

C. B. Cunha and D. Cid, “Ossec: Host-based intrusion detection and log analysis”, Technical
Whitepaper, 2008. Open Source HIDS Platform Documentation

J. Manzoor, A. Waleed, A. F. Jamali, and A. Masood, “Cybersecurity on a budget: Evalu-
ating security and performance of open-source siem solutions for smes”, PLOS ONE, vol. 19,
March 2024, p. 0301183, DOT 10.1371/journal.pone.0301183

Jumiaty and B. Soewito, “Protecting applications with wazuh and thehive: Siem and threat
intelligence implementation”, Technical Report 9, Bina Nusantara University, June 2024.
Computer Science Department, BINUS Graduate Program

A. Ammar, M. Karim, F. Alshami, and S. Hasan, “A survey of security information and event
management (siem) and security orchestration, automation and response (soar) platforms”,
IEEE Access, vol. 9, 2021, pp. 154109-154121, DOI 10.1109/ACCESS.2021.3127685

A. Miller and A. Singh, “Chain of custody and evidence integrity verification using blockchain
technology”, Proceedings of the 19th International Conference on Cyber Warfare and Secu-
rity (ICCWS), March 2024, p. 2025, DOI 10.34190/iccws.19.1.2025. Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License

G. Kumar, R. Saha, M. K. Rai, R. Thomas, and S.-J. Lim, “Internet-of-forensic (iof): A
blockchain based digital forensics framework for iot applications”, Future Generation Com-
puter Systems, vol. 120, July 2021, pp. 13-25, DOI 10.1016/j.future.2021.02.016. Accepted
author manuscript - cited as 2025 reference for latest developments

J. Wayman, K. Scarfone, P. Mell, and T. Grance, “Guidelines on mobile device forensics”,
Tech. Rep. NIST Special Publication 800-101 Revision 1, National Institute of Standards and
Technology (NIST), Gaithersburg, MD, May 2014

C. Perera, C. H. Liu, K. Jayawardena, and G. Min, “Anomaly detection and prediction for
smart cities: A survey”, IEEE Communications Surveys & Tutorials, vol. 21, no. 1, 2019,
pp- 779-829

L. Wang, X. Zhao, Y. Tang, and Y. Jin, “A machine learning-based forensic framework
for intelligent intrusion detection and investigation”, Digital Investigation, vol. 44, 2023,
pp. 301-312

D. Marzano, I. N. Fovino, and A. Carcano, “An architectural approach for real-time forensics
in industrial control systems”, Computers & Security, vol. 100, 2021, p. 102086

A. Pal and M. K. Rogers, “Building reliable timelines in digital investigations: Challenges
and opportunities”, 2019 IEEE Security and Forensics, 2019

S. G. Brester, “Fail2ban github repository”, https://github.com/fail2ban/fail2ban
Zabbix STA, “Zabbix documentation: Escalations and action operations”, 2025

93

https://doi.org/10.1371/journal.pone.0301183
https://doi.org/10.1109/ACCESS.2021.3127685
https://doi.org/10.34190/iccws.19.1.2025
https://doi.org/10.1016/j.future.2021.02.016
https://github.com/fail2ban/fail2ban

	Introduction
	Why Timing is Pivotal in Security Incidents
	Case Studies of Real-World Security Failures
	Accuracy and Integrity in Automated Forensics
	Purposes and Goals

	Background and State of the Art
	Digital Forensics and Incident Response
	Network Analysis and Digital Forensics Tools
	Network Monitoring Solutions in Cybersecurity
	Comparative Analysis of Monitoring Solutions

	Automated Forensic Data Collection Model with Zabbix
	Conceptualizing Zabbix for Forensic Readiness
	Continuous Monitoring to Tamper-Proof Storage
	Why Zabbix is Suitable for Real-Time Evidence

	Modular Architecture for Evidence Collection
	Overview of the Proposed Architecture
	Interaction Between Zabbix Modules

	Triggering Mechanisms and Custom Logic
	Designing Triggers for Forensics
	Reducing False Positives

	Automated Response Workflow in Zabbix
	Executing Scripts from Triggers
	Multi-Step Forensic Collection

	Limitations and Design Considerations
	Zabbix Constraints in a Forensic Context
	Design Philosophy: Separation of Concerns

	Readiness for Case-Based Applications
	Customizability and Scalability of the Model
	Transition to Real Scenarios

	Workflow Model for Automated Forensic Collection
	Environment Preparation and Setup
	Secure Access and Authentication Framework
	Prerequisites Verification and Package Installation

	Evidence Collection Execution
	Focused Data Acquisition and Examination
	Policies on Integrity and Secure Storage

	Generalization of Scriptable Logic

	Implementation and Configuration
	Laboratory Environment Setup
	Architecture Overview
	Virtual Hosts and Monitoring Targets
	Data Collection and Logging Tools
	Security-Oriented Trigger Design
	Response Actions and Alerting Mechanisms
	Evidence Collection Scripts

	Case Study I: Detection of Data Exfiltration
	Threat Scenario and Indicators
	Zabbix Items and Triggers for Network Anomalies
	SSH Infrastructure and Authentication Framework
	Client System Preparation and Dependencies
	Package Installation Requirement
	Execution Summary

	Case Study II: Unauthorized Service Deployment
	Threat Scenario and Indicators
	Using Zabbix Low-Level Discovery for Service Monitoring
	Trigger Logic and Detection Algorithms
	Scripted Response and Evidence Collection
	Laboratory Implementation and Testing
	Evidence Analysis and Forensic Value
	Performance Analysis and System Impact
	Execution Summary

	Data Integrity and Secure Storage
	Hashing and Timestamping of Collected Artifacts
	Retention and Tamper-Proof Storage Options

	Chapter Summary

	Analysis of Results
	Performance Evaluation
	Evidence Quality Assessment
	Detection Accuracy Analysis
	Scalability and Deployment Considerations

	Conclusions and Future Work
	Research Contributions
	Constraints and Restrictions
	Future Research Directions

	User Manual
	Prerequisites
	Laboratory Structure
	Virtual Machine Creation
	Victim Host Preparation
	SSH Key Setup
	Zabbix Appliance Initial Setup
	Uploading Templates and Hosts
	Script Deployment
	Configuring Actions
	Testing the Laboratory
	Evidence Access and Validation
	Appendix: File Overview
	Summary

	Developer Manual
	Case Study 1: Data Exfiltration Evidence Collection Script
	Script Overview
	Script Architecture
	Detailed Script Analysis
	Customization Guidelines
	Integration with Zabbix Actions
	Performance Considerations

	Case Study 2: Unauthorized Service Detection and Evidence Collection Script
	Script Overview
	Script Architecture
	Detailed Script Analysis
	Customization Guidelines
	Integration with Zabbix Triggers
	Performance and Security Considerations

	Bibliography

