W 1859 e

POLITECNICO DI TORINO

Master degree course in Cybersecurity

Master Degree Thesis

Forensic Analysis of Malware:
Identification of Indicators of
Compromise and Automation of the
Investigative Process in Windows and
Linux Environments

Supervisor
prof. Atzeni Andrea

Candidate
Cosimo VERGARI

ACADEMIC YEAR 2024-2025

Summary

Digital forensic analysis is fundamental for comprehending malware attacks and rebuilding the ac-
tions taken by attackers to compromise information systems. Modern malware frequently employs
sophisticated persistence and evasion techniques that leave behind evidence, known as Indicators
of Compromise (IoCs), on various artefacts, including disk, memory, and network environment.
Identifying such IoCs is of prime importance for post-mortem analysis, enabling analysts to infer
attacker actions and impact on the system. Nonetheless, the amount and intricacy of forensic data
present significant problems, therefore rendering the process laborious and prone to oversights.

This thesis examines the identification of IoCs in Windows and Linux environments and ex-
plores the combination of automation and Al to assist forensic workflows. The study focuses
on three main areas: file system and disk artifacts, memory dumps, and network traffic. A
proof-of-concept framework was developed for automating the extraction, analysis, and report-
ing of forensic evidence. Disk and file system artifacts are examined with Plaso and the Digital
Forensics Virtual File System (DFVFS) python library, Memory dumps are analyzed through
Volatility3 plugins, and network captures are analyzed via automatic extraction of contacted ips
and domains and checking them against the VirusTotal Threat Intelligence APIs. The framework
can generate a compiled, systematic report that combines all the IoCs identified and highlights
unusual behavior for further analysis via forensic investigators. The generated report also suggests
next steps to the Forensic Team and tries to provide a verdict about the state of the machine
(compromised or not).

The framework was evaluated with actual malware samples within managed virtual machine
environments. Findings show significant time savings via automation, as a number of forensic
processes, done manually for centuries, become a single workflow. In addition, the thesis compares
the performance and practicality of local Al models against world-leading cloud AI solutions (e.g.,
Gemini 2.5 Pro) via the application of some prompt engineering and optimisation techniques like
chunking. It also evaluates the compromise between efficiency and privacy. Large language models
are employed for the purpose of understanding extracted evidence, determining potential attack
patterns, and generating report narratives, providing analysts with intelligible information along
with ongoing expert direction.

The innovations of methodology presented here are threefold: (i) systematic evaluation and
the related IoCs within the disk, memory, and network spaces for Windows and Linux; (ii) an
experimental proof-of-concept framework showing the automated acquisition, examination, and
reporting of forensic evidence; and (iii) an insightful analysis of Al-assisted forensic workflows,
highlighting advantages, limitations, and privacy concerns. This work showcases that combining
ToC-focused analysis with Al-supported automation can enhance the efficiency, consistency, and
usability of digital forensic investigations, setting the stage for more scalable post-mortem analysis
of malware.

Contents

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6

Background and motivation L0000
Problem statemento L
Research objectives
Scope of the Thesis
Contributions of the Thesis

Thesis structure e e

2 Theoretical Background and Literature Review

2.1
2.2

2.3
2.4

2.5

2.6

Introduction to Digital Forensics
Indicators of Compromise (ToCs)
2.2.1 Definition and classification oL oo
2.2.2 Standards and representation formats
Digital forensic investigation lifecycle oo oL
Analysis techniques in different domains L.
2.4.1 File system forensics L
2.4.2 Memory forensics e e e
2.4.3 Network forensics L
Automation and Al in Digital Forensics,
2.5.1 Existingtools L
2.5.2 Potential and limitations of AT oL,
State of the Art in Malware Forensics and IoC Identification
2.6.1 Foundations of IoC-Centric Forensics
2.6.2 Windows: Persistence Techniques and IoCs
2.6.3 Linux: Persistence Techniques and IoCs
2.6.4 Comparative Themes and Detection Methodologies
2.6.5 Mitigation, Evasion, and Research Gaps

3 Methodology

3.1

Experimental laboratory setup

3.1.1 Virtual Machine Configurations

3.1.2 Infection Procedures with Samples from Any.Run.

3.1.3 Acquisition of Artefacts (HDI, RAM, PCAP)
4

10
10
10
10
11
12
13
13
13
14
14
14
15
15
15
16
24
30
33

4 Framework Implementation

4.1 Automated Framework and Processing Pipeline
4.1.1 Framework Setup
4.1.2 Initialization of a new forensic case: createcase.py
4.1.3 Integrity check of artefacts: verify_signatures.py
4.1.4 General analysis workflow L o oo

4.2 Processing orchestrator: process_acquisition.py
4.2.1 Disk Image processing module
4.2.2 Memory processing moduleo Lo
4.2.3 Network processing module Lo oL

4.3 Creating the final report based on acquired evidence: final_report_generation.py . .

Results Discussion and Evaluation

5.1 Obtained reports and IoCs detected
5.1.1 Disk Analysis
5.1.2 Memory Analysis
5.1.3 Network Analysis
5.1.4 Forensic Summary & Verdict 0oL,

5.2 Prompt engeneering Lo Lo Lo
5.2.1 Observed effects in practice o 0oL

5.3 Why Local LLM: suspect privacy concerns in the forense investigation

5.4 FEvaluation of automation effectiveness oL oL
5.4.1 Windows: Ludbaruma Infected Machine
5.4.2 Windows: Conhoz Loader Infected Machine
5.4.3 Windows: Not Infected Machine
5.4.4 Linux: Prometei Infected Machine
5.4.5 Linux: GhOst RAT Infected Machine
5.4.6 Linux: Not Infected Machine

5.5 Evaluation for Local Models L
5.5.1 Setup of the test-bed via polito HPC
5.5.2 Comparison with Gemini L 0L

5.6 Summary OVerview e e

Conclusions and Future Work

6.1 Interpretation of Results
6.2 Limitations L
6.3 Future Work L

6.4 Closing Remarks

38
38
38
39
40
41
42
42
46
49
50

51
51
51
52
53
53
55
56
56
56
57
o8
60
61
62
64
64
64
64
65

A Appendices 69

A1l User Manual 69
A.1.1 Guide for Polito HPC oo 71

A.2 Programmer’s Guide 72
A21 Disk Module e 72
A.2.2 Memory Module 73
A.2.3 Network Module 74
A.2.4 Al Analysis and Report Generation 75
A.2.5 Extensibility Guidelines L L 75

A.3 Full Project Structure 75
A.4 Forensic Agents Prompts o 76
A.4.1 Disk Agent Prompts 76
A.4.2 Memory Agent Prompts L o 78
A.4.3 Final Report Prompts 79
A.4.4 Disk Agent for Local LLM Prompts 81
Bibliography 83

Chapter 1

Introduction

1.1 Background and motivation

Cyberattacks and advanced malware pose a major threat to information systems nowadays. Dig-
ital forensics sits at the heart of investigating these incidents, helping analysts and researchers
understand techniques, locate infected assets, and reconstruct timelines. By examining disk,
memory, and network artifacts, investigators identify malicious activity through Indicators of
Compromise (IoCs), which clarify attacker’s actions and aid inference of likely objectives.

The emerging challenge in this field is scale and complexity. Modern malware often uses
stealthy, persistent methods and leaves behind fragmented, confusing traces. Manually triaging
terabytes of data scattered across diverse sources is laborious, slow, and prone to error. Traditional
workflows struggle to match the volume and velocity of today’s threats, increasing the risk of
potential oversights and delayed incident response.

Manual effort has long been the bottleneck. Effective forensic work demands deep knowledge
across file systems, memory internals, and network protocols. With data volumes expanding,
completing sufficient analysis within operational timelines is increasingly difficult—yet essential
for mitigating damage and preventing follow-on attacks. These pressures underscore the need
for creative approaches that improve the efficiency, reliability, and reproducibility of malware
forensics.

1.2 Problem statement

Digital forensic analysis of malware is currently hindered by the numerous and sophisticated
nature of digital evidence. The manual extraction of Indicators of Compromise (IoCs) from
different artifacts, such as file system entries, memory dumps, and connections in the network,
is a resource-consumption operation which is not scalable. This manual workflow increases the
potential for human error and significantly increases the time required for post-mortem analysis,
thus pushing delay in response actions and critical insights. The lack of an integrated, automated
process for collecting, analyzing, and reporting forensic evidence from multiple sources represents
a key limitation in current practice.

1.3 Research objectives

This thesis aims to help addressing the above limitations by analyzing the application of automa-
tion and Large language Models (LLMs) to enhance the digital forensic analysis of malware. The
primary objectives are the following:

Introduction

e Systematic IoC Identification: To systematically identify and analyze the most impor-
tant Indicators of Compromise out of three main forensic artifacts: disk image file system,
memory dumps, and network traffic. The analysis will be conducted under both Windows
and Linux operating systems.

e Development of an Automated Framework: To design and build an automated proof-
of-concept framework for forensic evidence collection, analysis, and reporting. The frame-
work will integrate established open-source tools with custom logic for optimizing the in-
vestigative process.

e Analysis of AI-Assisted Workflows: To examine the effectiveness and viability of lever-
aging large language models (LLMs) to support forensic analysis. This includes quantifying
their capacity to parse evidence, identify attack patterns, and generate comprehensive re-
port narratives, while balancing the efficiency, privacy, and performance trade-offs between
on-premise and cloud-based AI deployments.

1.4 Scope of the Thesis

This research focuses on post-mortem analysis of malware in Windows and Linux operating sys-
tems that run on managed virtual machines. The study limits itself to three broad categories of
forensic evidence: disk and file system artifacts (using Plaso and DFVFS), memory dumps (using
Volatility3), and network captures (using automated domain/IP extraction and API-based threat
intelligence). The proof-of-concept framework developed is built to demonstrate a systematic,
automated workflow, and its testing is conducted on actual malware samples. The Al component
of the research specifically utilizes and compares the performance of local and cloud-based LLMs,
like Gemini 2.5 Pro, for interpretation of evidence and report generation. This thesis does not
concern handling real-time incidents or coming up with new malware detection schemes.

1.5 Contributions of the Thesis

The significant contributions of the present thesis are threefold:

e A structured methodology for correlating and analyzing IoCs in the disk, memory, and
network areas of Windows and Linux systems and providing a general overview of a breach.

e A proof-of-concept experimental setup that demonstrates an efficient, automated pipeline
for the acquisition, analysis, and systematic reporting of forensic evidence with significant
time savings compared to traditional manual methods.

e A reflective consideration of the integration of AI models within forensic workflows, present-
ing the advantages, constraints, and key privacy concerns associated with the use of large
language models to support digital investigations.

This research collectively demonstrates how an IoC-focused analysis, powered by Al-augmented
automation, can significantly enhance the efficacy, reliability, and usability of digital forensic anal-
yses to pave the way for more efficient and scalable post-mortem malware analysis.

1.6 Thesis structure

This thesis consists of six chapters:

e Chapter 1: Introduction provides an overview of the research topic, states the problem,
formulates the objectives of the study, and elucidates the scope and the contribution of the
research.

Introduction

Chapter 2: Theorical Background and Literature Review discusses existing research
and methodologies used in digital forensic analysis, with a focus on IoCs identification.

Chapter 3: Methodology describes the tools and techniques used for data collection. It
explains the setup of the virtual environments, the process for executing malware samples
and for the collection of artefacts from the infected machines.

Chapter 4: Framework Implementation describes the architecture and implementation
of the automated forensic framework, giving a detailed analysis on how the framework works.

Chapter 5: Results Discussion and Evaluation evaluates the performance of the built
framework, analyzes the findings with regard to the performance of Al assistance, and
compares the efficiency and privacy impacts of different AT models.

Chapter 6: Conclusion and Future Work summarizes the key findings of the thesis,
reformulates the main contributions, and describes potential future research avenues.

Chapter 2

Theoretical Background and
Literature Review

2.1 Introduction to Digital Forensics

In its strictest connotation, Digital Forensics is the application of computer science and investiga-
tive procedures involving the examination of digital evidence - following proper search authority,
chain of custody, validation with mathematics, use of validated tools, repeatability, reporting, and
possibly expert testimony[1]. To maintain its reliability in legal and investigative contexts, digital
forensics is grounded in a set of principles: evidence integrity, strict chain of custody, repeatability
of methods, and admissibility in court. These ensure that findings are not only technically sound
but also defensible in judicial proceedings. Digital Forensics spans multiple domains, including
file system analysis (e.g., recovering deleted files or timestamps), memory forensics (e.g., uncov-
ering running processes or injected code) and network forensics (e.g., tracing malicious traffic or
intrusions). Each domain requires specialized methods and tools, but all share the same forensic
rigor. Over time, digital forensics has had to adapt to numerous challenges: stronger encryption,
anti-forensic techniques designed to obscure traces, increasing sophistication of malware, and the
rapid evolution of computing environments. These factors complicate the extraction and interpre-
tation of evidence, pushing the field toward more automation and intelligence-driven approaches.
Within this context, digital forensics plays a crucial role in malware investigations, where identify-
ing and correlating Indicators of Compromise (IoCs) can provide actionable insights into attacker
behavior. Automating the detection, structuring, and reporting of IoCs not only accelerates in-
vestigations but also strengthens the reliability of forensic findings—making it a central theme of
this research.

2.2 Indicators of Compromise (IoCs)

2.2.1 Definition and classification

An Indicator of Compromise (IoC) is a malicious indicator whose presence on a device or network
indicates the device might have been compromised [2]. Also, IoCs “signal that a data breach,
intrusion, or cyberattack has occurred” by revealing traces of malicious activity [3]. In Advanced
Persistent Threats (APT) and postmortem workflows, IoCs are the traces that SIEMs (Security
Information and Event Management) correlate to surface attacker presence and actions across the
kill chain (step-by-step model describing the phases of a cyberattack from initial reconnaissance
through the attacker’s end goal), supporting incident reconstruction and threat hunting at host
and network levels. Their practical value is tactical: rapid detection, containment, and enrich-
ment of cases with actionable context tied to known malware, infrastructure, and TTPs (Tactics,
Techniques, and Procedures) via structured Cyber Threat Intelligence (CTI) feeds. [4]

IoCs can be categorized in three main types:

10

Theoretical Background and Literature Review

e Atomic IoCs: Atomic indicators are those which cannot be broken down into smaller parts
and retain their meanings in the context of an intrusion. Examples of atomic indicators
include TP addresses and domain names. [4]

e Computed IoCs: Computed indicators are those which are derived from data involved in
an incident. Examples of computed indicators include hash values and regular expressions.
[4]

e Behavioral IoCs: Behavioral indicators are collections of computed and atomic indicators,
often subject to qualification by quantity and possibly combinatorial logic. An example of
a complex behavioral indicator could be repeated social engineering attempts of a specific
style via email against low-level employees to gain a foothold in the network, followed by
unauthorized remote desktop connections to other computers on the network delivering
specific malware; a simpler example could be a document file creating an executable object.
Such indicators are captured as tactics, techniques and procedures (TTP), representing the
modus operandi of the attacker. [4]

Another classification can be based on the source of the IoC, which can be:

o Network-based IoCs: Artifacts derived from network traffic or configurations. Typical
examples include malicious IP addresses or domains, unusual DNS queries, or anomalous
packet flows. These indicators are detected by analyzing network logs and flow data.[3]

e Host/file-based IoCs: Artifacts found on endpoints. Examples include suspicious file
hashes, file paths/names, malicious Windows Registry keys, or specific email attachment
signatures. Forensic tools can scan disks for known malware hashes or YARA signatures in
files.[3]

Some ToCs are more valuable than others. Atomic markers such as hashes and IPs are easy
for attackers to change (“low on the pyramid of pain”), whereas higher-level indicators (e.g.,
behavioral patterns or TTPs) are harder to evade [5]. In practice, analysts use a hierarchy, such
as David Bianco’s Pyramid of Pain 2.1, to prioritize indicators from low-level (file hashes, IPs)
up to high-level tactics and procedures.

2.2.2 Standards and representation formats

To share and automate IoC information, the community has adopted standardized formats. The
Structured Threat Information Expression (STIX) is a widely used language and JSON-based
schema for encoding threat intelligence, including indicators [7] [8]. A STIX Indicator object
contains a pattern (using STIX Cyber Observable expressions) that describes malicious activity
(e.g., a URL or file pattern) which can be matched against observed data [7] [8]. Similarly, the
Incident Object Description Exchange Format (IODEF) is an IETF standard for exchanging inci-
dent information in a machine-readable way [9]. These formats allow IoCs (IP addresses, hashes,
domain names, etc.) to be packaged with metadata (timestamps, confidence levels, descriptions)
for sharing across organizations.

Specialized signature formats are also used. For example, YARA is a rule-based language for
defining malware signatures: a YARA rule contains text or binary patterns that identify a malware
family in files [8]. IoC feeds often include YARA rules to detect file-based threats. Other legacy
formats include OpenIOC and sharing protocols such as TAXII (for transporting STIX data) [8].
In short, STIX/TAXII form a modern framework for sharing IoCs and threat intelligence across
systems.

For broader context, IoCs are often mapped to frameworks such as MITRE ATTE&CK, which
defines adversary tactics and techniques. ATT&CK is “a globally-accessible knowledge base of
adversary tactics and techniques based on real-world observations” [10]. Linking IoCs to ATT&CK
helps analysts understand how an indicator (e.g., a registry change or a file hash) fits into an
attacker’s overall behavior.

11

Theoretical Background and Literature Review

PYRAMID OF PAIN

CHALLENGING

ANNOYING) NETWORK/HOST
ARTIFACTS

SIMPLE
DOMAIN NAME

IP ADDRESS
EASY

Figure 2.1. Pyramid of Pain, Source: [6]

2.3 Digital forensic investigation lifecycle

Digital forensic investigations generally follow a multi-phase lifecycle [11]. A common model,
described in NIST SP 800-86, includes Collection (Acquisition), Examination/Analysis, and Re-
porting [11]. Each phase has specific goals and requirements:

e Acquisition: This initial phase involves identifying, seizing, and imaging digital media
while preserving its integrity [11]. Investigators create bit-for-bit forensic copies of storage
devices (hard drives, SSDs, mobile storage) and may also capture volatile memory (RAM)
and network logs. Tools such as write-blockers and cryptographic hashing are used to
ensure the original data is not altered and its integrity can be verified. Chain-of-custody
documentation is established at this stage. Because some data (e.g., RAM contents, active
network connections) is transient, collection must be timely and methodical [11].

e Analysis: In this phase, examiners process and interpret the acquired data [11]. They
use automated tools and manual techniques to extract relevant artifacts (files, emails, logs,
registry entries, etc.), recover deleted content, and correlate events. For instance, timeline
analysis may reconstruct a sequence of file accesses; keyword searches might locate incrim-
inating documents; and log analysis can trace attacker activity. The analysis is guided by
investigative questions and hypotheses. Sophisticated methods (e.g., carving unallocated
space, parsing file systems, or using Volatility plugins) help uncover hidden or complex ev-
idence. NIST notes that analysis must use “legally justifiable methods” to derive useful
information from the data [11].

e Reporting: The final phase documents findings in a clear, structured report [11]. The re-
port details the procedures used, the evidence discovered, and how conclusions were reached
[11]. Tt may include summaries of tool output, diagrams (e.g., timelines, graphs of network
flows), and expert interpretation. Effective reporting translates technical results into under-
standable language for non-technical stakeholders (e.g., judges, attorneys) and highlights
the evidentiary value. Recommendations for security improvements or further investigation
can also be included [11]. NIST emphasizes that the report should describe the methods
and tools used, and provide a rationale for each conclusion [11].

12

Theoretical Background and Literature Review

Each phase is iterative: findings in analysis may prompt the collection of additional evidence,
and reporting may reveal gaps requiring further examination. However, these core stages —
acquisition, analysis, and reporting — form the backbone of any digital forensic process [11].

2.4 Analysis techniques in different domains

2.4.1 File system forensics

File system forensics focuses on on-disk data structures [12]. Investigators analyze the file system
architecture (e.g., NTFS, FAT32, ext4) to reconstruct directories, files, and metadata [12]. This
enables the recovery of deleted or hidden files and timestamps. For example, examining the NTFS
Master File Table (MFT) and $LogFile can reveal when files were created, modified, or accessed
[12]. Analysts also examine unallocated space (free areas) for file remnants, a process known as
file carving, and review artifacts such as system logs, shortcut (LNK) files, and registry hives for
user activity.

For NTFS, practitioners manually interpret Master File Table (MFT) records and attributes,
including $Bitmap, $AttrDef, and $UpCase, while correlating redo/undo operations of $LogFile
with MFT sequence numbers and directory relationships. Additional examination of unallocated
clusters, slack space, and shadow copy metadata enables the recovery of orphaned records. User-
centric traces, such as ShellBags, shortcut (LNK) files, and Most Recently Used (MRU) entries,
are correlated only after establishing metadata coherence [13, 14].

In the ext4 file system, investigators parse superblocks, group descriptors, inodes, and extent-
based structures. Journal transactions and bitmaps are then validated to test allocation integrity,
while updates to directory entries are ordered with respect to journal commits to infer causal
sequencing [15, 16]. File carving is employed cautiously as a hypothesis-driven approach, with
recovered fragments treated as low-confidence until reconciled with allocation and journaling
evidence [13, 14].

Commercial and open-source tools (e.g., EnCase, FTK, Autopsy/The SleuthKit) automate
much of this work [12], but manual inspection of file system metadata is often required to interpret
complex cases. Through file system forensics, examiners can detect malware placed on disk,
identify exfiltrated data, and correlate file events with user or attacker actions [12].

2.4.2 Memory forensics

Memory (RAM) forensics analyzes the contents of a system’s volatile memory image [17]. Since
RAM holds running processes, open network connections, decrypted data, and other transient
artifacts, memory analysis can reveal evidence not present on disk [17].

A principled approach involves validating structural invariants across multiple object graphs—such
as process lists, Virtual Address Descriptors (VADs), thread tables, and handle references—to
identify inconsistencies suggestive of code injection or process hollowing [18, 19]. Expected oper-
ating system semantics (e.g., coherence between Process Environment Block (PEB) and Thread
Environment Block (TEB) structures, correct loader-linked module lists, and valid thread start
addresses mapped to legitimate binaries) provide baselines for anomaly detection. Deviations
prompt deeper validation, such as entropy assessments or Portable Executable (PE) header checks
[18, 19]. Networking artifacts (e.g., sockets, TLS structures) are further correlated to their owning
processes, providing attribution for communications without conflating discovery with interpre-
tation [20].

Investigators capture a memory dump from a live system and then use frameworks such as
Volatility to parse it. Volatility, one of the most widely used memory forensics platforms [21],
provides plugins to extract process lists, DLLs, network sockets, registry hives, plaintext creden-
tials, and more. For instance, malware that runs only in RAM (fileless malware) can be detected
by scanning memory for known signatures or unusual code injections. By examining memory

13

Theoretical Background and Literature Review

artifacts, analysts can uncover the state of the system at the time of compromise, including pro-
cesses spawned by attackers or remnants of encrypted communication. Overall, memory forensics
is essential for capturing the “live” view of the system during an incident [17] [21].

2.4.3 Network forensics

Network forensics involves capturing and analyzing network traffic and logs to trace an attack’s
path [22]. Tt focuses on data in transit, such as packet captures (PCAP) from network taps,
NetFlow records, router/firewall logs, and IDS/IPS alerts. By reconstructing TCP/UDP ses-
sions, analysts can follow communications between infected hosts and external servers, revealing
command-and-control channels, data exfiltration or lateral movements.

Network forensic analysis reconstructs communication flows and validates their semantics
against expected service and protocol models. Initial triage often occurs at the flow level, where
anomalous features such as beaconing patterns, asymmetric byte transfer, or baseline deviations
identify sessions of interest [13, 23]. Session reassembly and protocol parsing refine this process,
validating header—payload alignment, TLS handshake consistency, Server Name Indication (SNI)
fields, Application-Layer Protocol Negotiation (ALPN), and timing coherence. DNS traffic is of-
ten analyzed as a control plane, where characteristics such as unusual top-level domains (TLDs),
elevated NXDOMAIN response rates, or domain generation algorithm (DGA)-like queries guide the
prioritization of inspection before conventional indicator-of-compromise correlation [24]. For exfil-
tration detection, analysts compare byte directionality and burst structures against the expected
behavior of host roles, validate compression or chunking signatures, and investigate covert chan-
nels through entropy measurements and framing irregularities.

It enables responders to identify compromised devices on the network, understand the scope of
a breach, and implement containment measures. In summary, network forensic techniques focus
on traffic capture and analysis to uncover evidence of intrusion across the network layer [22].

In practice, a streamlined and reproducible toolchain is recommended. Evidence may be
acquired via packet capture (PCAP) or structured flow logs and analyzed with a protocol parser
such as Zeek, which generates structured summaries for connections, DNS, TLS, and HTTP traffic
[25]. Wireshark is typically reserved for deep inspection of anomalous flows, while external threat
intelligence services are queried to validate destination reputations. To ensure rigor, queries must
be timestamped, and provenance preserved for later cross-correlation across forensic domains

26, 27].

2.5 Automation and AI in Digital Forensics

2.5.1 Existing tools

A number of forensic tools incorporate automation to streamline analysis. Suites such as EnCase,
FTK, Autopsy/SleuthKit, and various commercial alternatives can automatically parse file sys-
tems, carve known file types, index keywords, and generate timelines [12]. Specialized tools also
exist for memory analysis (e.g., Volatility) and network traffic examination (e.g., network flow
analyzers, deep packet inspection tools) that automate specific tasks.

Despite these capabilities, human expertise remains essential. As one expert observes, “existing
commercial digital forensics tools support automation to some extent, but there is still a need for
a human expert” [28]. In practice, many time-consuming subtasks — such as validating matches,
tuning extraction rules, or interpreting ambiguous artifacts — still require manual review.

Nonetheless, current tools greatly accelerate forensic workflows by handling routine tasks,
allowing analysts to focus on deeper investigative analysis.

14

Theoretical Background and Literature Review

2.5.2 Potential and limitations of Al

Artificial Intelligence (AI) and Machine Learning (ML) promise to further augment forensic anal-
ysis. Because digital investigations often involve massive data volumes, Al can assist by auto-
matically sifting through logs, disk images, and memory dumps to flag anomalies. For instance,
ML classifiers can be trained to recognize malware patterns or suspicious user behavior; anomaly
detection algorithms can highlight unusual network traffic profiles; and deep learning models may
assist in triaging images or audio for relevant content [28]. In essence, Al excels at repetitive,
high-volume tasks: it can rapidly “filter the haystack” and surface potentially relevant evidence
for human review [28].

However, the integration of Al into forensic workflows faces significant challenges. Machine-
learned models can inherit biases from their training data, leading to false positives or false
negatives if the data is not representative [28]. Many AI algorithms, particularly deep learning,
operate as opaque “black boxes,” making it difficult to explain why a particular result was flagged.
In forensic contexts, this is problematic because findings must be reproducible and defensible in
court. As the literature notes, evidence derived from AI must be transparent: “in forensics, where
findings may be used in court...having transparent and auditable decision-making. ..is a must”
[28]. Accordingly, research emphasizes explainable AT (XAI) and human-in-the-loop approaches,
where analysts guide or validate automated suggestions [28].

In summary, current Al tools can enhance efficiency (e.g., automatic triage of images, clustering
of related artifacts, pattern recognition) [28]. However, they are not a panacea: experts must
still interpret results and make final judgments. The state of the art is therefore a hybrid model,
leveraging Al to handle scale and speed while relying on human analysts for insight and verification
[28]. Future progress in Al forensics will focus on building robust, explainable models and curated
training datasets, but the need for expert oversight will remain critical.

2.6 State of the Art in Malware Forensics and IoC Identi-
fication

This section reviews the state of the art in digital forensic examination of malware with a focus on
the identification of Indicators of Compromise (IoCs) across Windows and Linux environments,
emphasizing persistence mechanisms, their observable artifacts, and methodological approaches
that enable reliable detection and repeatable investigations. The discussion synthesizes persistence
taxonomies, detection and mitigation workflows, and operating-system—specific auto-start exten-
sibility points, connecting technique-to-artifact mappings that inform automation and Al-driven
correlation in subsequent chapters.

2.6.1 Foundations of IoC-Centric Forensics

A forensically robust IoC is a stable, attributable artifact that reliably signals malicious state
transitions, including modified keys, created services, scheduled jobs, or hijacked components that
persist across reboots and user sessions in Windows and Linux systems. Literature on persistence
catalogs repeatedly shows that durable malware presence depends on auto-start extensibility
points and privileged configuration surfaces whose changes can be enumerated and baselined to
identify drift and malicious anchoring of code execution paths.

Methodologically, effective IoC discovery blends static topology of likely persistence locations
with dynamic observation of installation-time mutations in registries, service control managers,
scheduler stores, and user profile scripts to link cause—effect chains that survive system lifecy-
cle events. Tool-supported workflows leverage well-known enumerators and monitors to detect
anomalous entries, locations, and parent—child execution relationships that betray covert loading
of malware at boot or logon boundaries.

15

Theoretical Background and Literature Review

2.6.2 Windows: Persistence Techniques and IoCs

Windows malware persistence literature converges on a core set of techniques that dominate
field observations, providing a structured map from adversary methods to forensic artifacts and
operational detectors. A comprehensive review[29] enumerates ten high-prevalence techniques:
Run/RunOnce keys, Startup folders, Scheduled Tasks, Winlogon helper abuse, IFEO hijacking,
Accessibility program swaps, Applnit DLLs, DLL Search Order Hijacking, COM hijacking, and
Windows Services—each with characteristic registry paths, files, and event channels that yield
actionable ToCs.

Boot/Logon Auto-Start

"Registry Run/RunOnce Key (RRK) is a typical sub-technique in the Boot or Logon
Autostart Execution group. According to our assessment, this is malware’s most used persis-
tence technique. It is easy to implement, and malware exploits the run registry key for privi-
lege elevation.” [29] Run and RunOnce keys are frequently abused to invoke payloads per-user or
machine-wide, rendering registry value creation in HKCU/HKLM (Hive Keys Local Machine/Cur-
rent User) hive paths a primary IoC that can be baselined and continuously audited with autorun
enumerators and change monitors.

The following run keys are created by default in Windows 32-bit version:[29]
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunOnce
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnce

If the application is 32-bit but Windows is 64-bit, the run keys are created by default in:[29]

HKEY_LOCAL_MACHINE\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Run

HKEY_LOCAL_MACHINE\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\RunOnce

HKEY_CURRENT_USER\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Run

HKEY_CURRENT_USER\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\RunOnce

The difference between the Run and RunOnce is that ”the RunOnce keys will run the programs
when Windows boots the next time only, and then the entries will be deleted and not executed
again.” [29] The malware uses this for persistance by creating a subkey with a name of the attacker
choice and then a value that represents the full path of the malicious payload to execute on startup.
This is an example of a registry hive of a machine infected with the LokiBot malware as can be
seen in figure 2.2:

B Registry Editor - a X
File Edit View Favorites Help
[Compute\HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersiom\Run
BackgroundAccessipplications A || Name Tpe Dots
g;‘;"’""YA“E”Ma"W” ab{(Default) REG 7 walue not sef)
¥ jkeq) REG_SZ CAUsers\hy\appData\Localkcajykeaivbs

c
c::i:“ote 0 OneDrive REG. o2 TCAUsers\hyVappDatawL ocalMicrosoft\oneDrive\OneDrive.exe” /background

CloudExperienceHost
CloudStore

ContentDeliveryManager
Controls Folder (Wow6d)

Figure 2.2. LokiBot infected hive example [29]

For a forensic analyzer point of view, this hives are present in the following files:

e HKCU entries live in the user’s NTUSER.DAT hive.
(e.g "\ Users\username\NTUSER.DAT")

16

Theoretical Background and Literature Review

e HKLM entries live in the SYSTEM/ SOFTWARE machine hives.
(e.g "\Windows\System32\SOFTWARE or \SYSTEM’)

”"The Startup folder is a feature available in Windows OS that enables a user to run a speci-
fied set of programs automatically when Windows starts. This folder aims to provide convenience
for the users to gain instant access to the programs used frequently.” [29] It provides an equivalent
logon persistence as the hive keys, with filesystem shortcuts and executables whose placement
and naming provide file path IoCs and timeline anchors correlated.

"Typically, malware downloads payloads to a specific hidden location (e.g., AppData), then
builds a shortcut to those files and places them in the Startup Folder. This way, when Windows
checks the Startup Folder, it will launch the malware’s payload. Similar results can be achieved
if malware copies itself to the Startup Folder.” [29]

The cited folders are the following:

User-specific:
C:\Users\ [Username] \AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup

System-wide:
C:\ProgramData\Microsoft\Windows\Start Menu\Programs\StartUp

An example of infected StartUp folder is showed in figure 2.3

= | Startup

¥ - m} X
Home Share View [}
&« v <« Microsoft > Windows > StartMenu > Programs > Startup v O) Search Startup
A [0 Name Date modified Type Size
s Quick access
desktop.ini Configuration sett. 1KB
I Desktop P - — .
| &7 Microsoft Shortcut ke |
& Downloads
=| Documents

&=/ Pictures
malware{packer,

Malwares

Figure 2.3. Infected Startup folder example [29]

"Winlogon or Winlogon.exe is a legitimate process that takes care of user logons, assigns
security to the user shell, and loads user profiles into the registry. It can also be used to run the
DLLs or executable files when a user logs in.”[29] Winlogon helper abuse targets Shell, Userinit,
and Notify parameters under Winlogon keys, introducing DLL or EXE paths that start at logon;

modifications to these values and unexpected binaries in system directories constitute high-fidelity
ToCs.

The programs that Winlogon launches are placed under the following registry keys:

32-bit:
HKLM\Software\Microsoft\WindowsNT\CurrentVersion\Winlogon

64-bit:
HKLM\Software [\Wow6432Node\] \Microsoft\Windows NT\CurrentVersion\Winlogon

Attackers can modify these registry keys and add the path to the malware, which the Winlogon
process will initiate. The subkeys which are commonly utilized by malware in this persistence
technique are:[29]

e Winlogon\Notify refers to notification package DLLs responsible for handling Winlogon
events. The Dipsind malware family and Bazar malware have registered as a Winlogon
Event Notify DLL to achieve persistence.[29]

17

Theoretical Background and Literature Review

e Winlogon\Userinit refers to userinit.exe — when a user signs in, the user initialization
software is performed. Some malware using this type of subkey are Wizard Siper and
Remexi.[29]

e Winlogon\Shell refers to explorer.exe. The system shell is executed when a user logs on.
By setting the value “Shell” with “explorer.exe, %malware_pathfile’%” under the registry
key, the Gazer backdoor can maintain its existence and repeat malicious activities on the
victim system. Tropic Trooper and Turla malware also implement a similar technique.[29]

An example of infected hive registry can be seen in figure 2.4

B Registry Editor - [m] X
File Edit View Favorites Help
Compute\HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows NT\Currentversion\Winlogon

v CurrentVersion ~

Name Type Data
AppCompatFlags REG_SZ

25] (Default) (value not set)

BackgroundModel
Devices

EFS

Fonts
HostActivityManager
IcM
MsiC:

24 BuildNumber

5| DP

25| ExcludeProfileDirs
#FirstLogon

25| ParseAutoexec

54 PUUACtive

REG_DWORD
REG_BINARY
REG_SZ
REG_DWORD
REG_SZ
REG BINARY

000004362 (19042)
2 00 &8 00 0e 00 00 00 0c 00 00 00 23 8 6b 57 00 00 00 00 00 00 00 00 02 32 5 93 8b 28.d7 0102 9a 9f .
AppData\Local;AppData\Locallow;$Recycle.Bin;OneDrive;Work Folders

000000000 (0)

1

2386 57011000000 0d 0034 00 b8 b6 01 00 81 b9 01 00 81 b9 01 00 d2 00 0000 05 00 11 00 ec 4t a...

Network

|28 shell

REG_SZ

explorer.exe, "\Users\hyAntuser.dat.L0G3"

PrinterPorts
TileDataModel
TokenBroker
Windows
Winlogan
Windows Search

Figure 2.4. Infected Winlogon registry hive example [29]

Scheduled Execution

” Another way to perform persistence is to take advantage of the scheduling functionality when
executing malware or for repeated malware execution. This technique is also called Scheduled
Task (or Job). Attackers can configure to execute the malware at a specified time or during
system startup via Windows utilities such as schtasks or at.”[29] Scheduled Task/Job persistence
uses schtasks.exe or at.exe to trigger repeated execution on boot, logon, or intervals, producing
ToCs in Task Scheduler definitions, registry-backed stores for legacy tooling, and operational
logs that record task creation, modification, and invocation. Forensics emphasize reviewing task
names, principals, actions/commands, and parent process ancestry to detect anomalous entries
and lateralized remote scheduling, yielding both configuration and process lineage 1oCs.

In a forensic analysis point of view, the folders and hives to look for this kind of IoCs are the
following:

o SOFTWARE hive file
Path on disk: C:\Windows\System32\Config\SOFTWARE
It Contains:
— HKLM\Software\Microsoft\Windows NT\CurrentVersion\Schedule\TaskCache\Tasks
— HKLM\Software\Microsoft\Windows NT\CurrentVersion\Schedule\TaskCache\Tree

which are the authoritative stores where Windows loads tasks from (triggers, actions, prin-
cipals, GUID mapping).

e Tasks directory (XML task files)
Path on disk: C:\Windows\System32\Tasks\ (and subfolders)
It Holds the Tasks XML definitions on disk.

An example infected folder and task would look like the ones in figure 2.5 and 2.6
18

Theoretical Background and Literature Review

PERMISSIONS uID G S LAST_MODIFIED NAME
? 20! -29 7 Microsoft
\icrosoftEdgeUpdat
W ftEdgeUpdat

npcapwatchdog
ok
oka

Figure 2.5. cotzhost infected task folder example

D

(D) Task Schedules — o
File Action View Help
L A s 7
(5 Task Scheduler (Local) Name Sotus Triggers Nen Actions
> _m Task Scheduler Library _)
© (B MicrosoftEd... Running Multiple triggers defined 1770 Task Scheduler Library -
(B MicrosoftEd.. Ready At 17:04 every day - After triggered, repeat every 1 hour for a duration of 1 day. 16/0 @ Create Basic Task..
(@ Mysal Ready At 17:34 on 15/08/2025 - After triggered, repeat every 10 minutes indefinitely. 1670 © Create Task.
@ Mysa2 Ready At log on of any user
- - - - Import Task...
@® MyTask Ready At 17:54 on 15/09/2025 - After triggered, repeat every 5 minutes indefinitely. 16/0
(B npcapwatch... Ready At system startup [l Display All Running Ta...
ok Running At log on of any user &1 Enable All Tasks History
S oka Ready () MyTask Properties {Local Computer) X
(©) OneDrive Re... Ready
General Triggers Actions Conditions Settings History (disabled) E
General Triggers Actions When you create a task, you must specify the action that will occur when your task starts.
Name: My Task
— = - -
Location: \ Action Details
Author WiNFoRENsE | Sterta progrem cwindows\templconhoz.exe
Description: o
Security nntinns

Figure 2.6. cotzhost infected task example

Execution Flow Hijacking

"Image File Execution Options (IFEO) is a Windows registry key, a sub-technique of the
Event- Triggered Execution group. It means that the attackers may establish persistence and/or
elevate privileges using system techniques that trigger execution based on specific events.” [29]
Image File Execution Options establish debuggers for target executables, enabling privilege esca-
lation and persistence by redirecting application launches; registry Debugger values under IFEO
keys form precise IoCs that are readily audited and rarely benign outside developer contexts.
IFEO is placed at:

32-bit:
HKLM\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\Image File Execution
Options

64-bit:
HKLM\SOFTWARE [\Wow6432Node] \Microsoft\Windows NT\CurrentVersion\Image File
Execution Options

The malware only needs to create a subkey as follows to make this configuration:

Key: HKLM\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\Image File Execution
Options\notepad.exe
Value for debugger: REG_SZ: <malware_full_path>

an example of this is provided in figure 2.7 where a dummy payload is used (calc.exe).

19

Theoretical Background and Literature Review

[Registry Editor - o X
Fle Edit View Favorites Help
ComputeAHKEY_LOCAL MACHINE\SOFTWARE NTC File Execution Op exe

GRE Iniisize [Nome e ats

1™ a5) Default) REG_SZ (value not se)

V|| Image file Execution Options a8 Debugger REG_SZ chwindowshsystem3Acalc.exe
{ApplicationVerifierGlobalSettings}

ExtExport.exe

GoogleUpdate.exe
idabh.exe
ieduinit.exe
ieinstalexe
ielowutil exe
ieUnatt.exe
iexplore.exe
MicrosoftEdgellpdate.exe
MRT.exe
mscorsvw.exe
msfeedssync.exe
mshta.exe
MsMpEng.exe
MsSense.exe
ngen.exe

v TRt exe

PrintDialog.exe v

Figure 2.7. IFEO example [29]

If we start the notepad.exe process, we accidentally enable the malware payload even though
it is not a debugger. That is the way malware establishes persistence by IFEQO.[29]

"DLL Search Order Hijacking is a persistence technique in the Hijack Execution Flow
group. The attackers execute malware or harmful payload by manipulating the way operating
systems run applications. When a program is launched on the system, it loads several DLLs
libraries into the memory space of its process. Windows searches these files in the predefined
locations in specific search sequences. By taking advantage of this principle, malware will hijack
the search order to maintain its activities on the system. If an application does not specify where
to load a DLL from, Windows will load a specific DLL in the following order:”[29]

e Windows verifies if the DLL has previously been loaded into memory. If yes, Windows
uses that DLL; if not, Windows will check if the DLL is listed in the KnownDLLs registry
key (Figure 19), which speeds up system DLLs loading. If the DLL is loaded in the list of
KnownDLLs, the system uses its copy of the KnownDLLs (and the KnownDLLs’ dependent
DLLs, if any) instead of searching for the DLL.

e HKEY_LOCAL_MACHINE\SYSTEM\ CurrentControlSet\Control\Session Manager\KnownDLLs
e The directory the calling process was loaded from.

e The system directory: C:\Windows\System32.

e The 16-bit system directory: C:\Windows\System.

o The Windows directory: C:\Windows.

e The current directory.

e The directories that are listed in the PATH environment variable.[29]

So DLL Search Order Hijacking places malicious DLLs earlier in lookup sequences, creating
ToCs as unexpected DLL loads from user-writable locations, current working directories, or non-
standard paths, detectable via module inventories and SafeDIISearchMode enforcement checks.

Attackers may put a malicious DLL in a directory, which will be searched before the location
of a legitimate library is utilized. It causes Windows to load the attacker’s malicious library
whenever the victim process requests it.[29] To trace this persistence technique, we need to carry
out process analysis and file system analysis to monitor the creation, replacing, renaming, or
deletion of DLLs on the system. Besides, it is needed to monitor the DLLs loaded from abnormal
directories.[29]

20

Theoretical Background and Literature Review

To trace this persistence technique, we need to carry out process analysis and file system
analysis to monitor the creation, replacing, renaming, or deletion of DLLs on the system. Besides,
it is needed to monitor the DLLs loaded from abnormal directories.[29]

In a forensic analyst poit of view, we need to check the registry hive to search for suspicious
dlls.

Example of a clean KnownDLLs hive registry can be found on figure 2.8

B Registry Editor - [m} X

File Edit View Favorites Help
Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\KnownDLLs

ServiceGroupOrder ~ || Name Type Data 0
ServiceProvider ab) (Default) REG_SZ (value not set)
v Session Manager ab)_wowb4cpu REG_SZ wow64cpu.dil
2"'52?“\”:222‘:”"°”‘ a5]_wowarmhw REG_SZ wowarmhw.dil
cz:ngur:uon Manager 28] xtajit REG_SZ xtajitdll
DS Devices aB)advapi32 REG_SZ advapi32.dil
Environment aB)clbcatq REG_SZ clbcatqdil
Executive ab]combase REG_SZ combase.dll
FileRenameOperations aB)COMDLG32 REG_SZ COMDLG32.ll
1/0 System aB)comi2 REG_SZ comi2dll
Kernel ab) DifxApi REG_SZ difxapidil
KnownDLLs aB)gdi32 REG_SZ gdi32.dll
Memory Management ab)gdiplus REG_SZ gdiplus.dil
NamespaceSeparation 25)IMAGEHLP REG_SZ IMAGEHLP.dII
Power a8)IMM32 REG_SZ IMM32dII
?ﬁss':;ey;‘j'“ ab)kemel32 REG_SZ kernel32.ll
WeA aB)MSCTF REG_SZ MSCTEdll
SNMP v || 28)MsvcRT REG_SZ MSVCRT.dIl v

< > < >

Figure 2.8. Clean KnownDLLs hive registry example [29]

” Applnit DLLs is a mechanism that allows custom DLLs to be loaded into the address
space of every interactive application. Both legitimate softwares and malware use Applnit DLLs
with the same purpose: to hook system APIs and implement alternate functionality.” [29] AppInit
DLLs abuse forces loading of attacker DLLs via user32.dll across interactive processes, making
the Applnit_DLLs and LoadAppInitDLLs registry values, along with the presence of unknown
DLLs in system directories, strong IoCs particularly on legacy or insecure-boot configurations.

The configuration values specify Applnit DLLs’ operation in the registry key below. The
malware only needs to use a batch script or through calls APIs like RegSetValueEx to set “Load-
Applnit_ DLLs” to value “1” to enable this technique.[29]

An example can be seen in figure 2.9.

32-bit:
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Windows

64-bit:
HKEY_LOCAL_MACHINE\Software [\Wow6432Node] \Microsoft\Windows
NT\CurrentVersion\Windows

"Component Object Model (COM) is a binary-interface standard working as a client-
server model to implement objects used by different technologies and frameworks such as DCOM,
OLE, OLE Automation, ActiveX, Browser Helper Object, COM+, Windows Shell, and Windows
Runtime.” [29] Component Object Model hijacking replaces InProcServer32 paths for CLSIDs,
yielding registry redirections to untrusted locations and stealthy load-on-use persistence; per-user
HKCU COM entries superseding HKLM defaults are especially rich IoCs. COM works by defin-
ing objects through interfaces that are independent of the language or framework used, ensuring
interoperability across applications. When a COM client requests a service, the COM infrastruc-
ture locates the corresponding server and loads its implementation (often a DLL) into memory,
enabling seamless communication. This mechanism, while powerful, also provides attackers with
a pathway to abuse COM objects for persistence or malicious code execution. ”The principle of
COM is straightforward. Every time a program (COM client) runs on the system and uses the
service provided by COM Server (or COM Object), it will download the associated DLL into the

21

Theoretical Background and Literature Review

B Registry Editor
File Edit ‘iew Favorites Help
Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows

Ole A Type Data
gn::llneiv:wders b o s
p“l 00k Express 25| Applnit_DLLs CAPROGRA~Intel\ResN32.dll I
oo | UxUUUUUUUU (L)
Personalization
Phone 5| DesktopHeaplLo... REG_DWORD 000000001 (1)
Ph ab|DeviceMNotSelect.. REG_SZ 15
otos
Pim %5 DwminputUsesl... REG_DWORD 0x00000001 (1)
PLA #5|EnableDwminpu... REG_DWORD 0x00000007 (7)

PlayToReceiver
PointOfService
Palicies

%5|GDIProcessHan... REG_DWORD 0x00002710 (10000
ab icol i

5| LoadApplnit_DLLs

REG_DWORD (x00000001 (1)

PolicyManager I ELOTE) | T e v Thnputan

Poom 4| ShutdownWarni... REG_DWORD OxFFFFFFFF (4294967295)
PowerShell ab|Spooler REG_SZ yes

Print 24| ThreadUnrespon... REG_DWORD 0x0000014 (500)
Provisioning ab|TransmissionRet.., REG_SZ 90

PushRouter 5| USERNestedWWin... REG_DWORD 0x00000032 {50
RADAR 24| USERPostMessa.. REG_DWORD 0x00002710 (10000)
Ras %8| USERProcessHa.. REG_DWORD 0x00002710 {10000)
RAS AutoDial ab]\Win3zkLastWrit.. REG_SZ 1D70CDFA1739D30
ResPresence

Ralizhilibs Anslhocic

Figure 2.9. initDLL infected hive registry example [29]

process. It creates the opportunity for the attackers to take advantage of COM Object to perform
persistence.” [29] It should be noted that the COM server can be in the form of the in-process
server (DLL file) or out-of-process server (EXE file).[29] A COM object is determined by a unique
number named Class Identifier (CLSID) in:

HKEY_CURRENT_USER\Software\Classes\CLSID
HKEY_LOCAL_MACHINE\Software\Classes\CLSID

An example of infencted COM hive registry can be seen in figure 2.10.

B Registry Editor - O x
File Edit View Favorites Help
Zomputer\HKEY_CURRENT_LISER\SOFTWARENClas sesACL SID\[b573350b-0545-43b 1-a6ee -63b d00bdaSe TInprocServer32

{7AFDFDDB-F914-11€4-8377-6C 3BES0DS80C} A || Name Type Data
{82CABDE3-01AD-4CEA-0D75-BEACS 1810A9E} ab) (Default) REG_SZ |c DE0395-E52F-467C-BE3D-CA573291692E Napi-ms-win-downleve - Ibgg-11-1-0._d|
{917E8742-AA3B-7316-FA12-10485FB 32242} ¥ ThresdingModel REG_SZ Bpartment

{94260C4E-071A4-4116-00E6-52E557 06 7EAE}
{8489FEB2-1025-4D01-B783- D120 0F 77 2}
{98AZF320-3624-42D0- 0320-1AMEIELCCCI}
{AQI96493-DCOG-4AEF-BEED-SFFCCAEF20E]
{A244CECS-DBEI-4EDS-B0D7-A0527COB4113}
{ATBED123-AB77-4068-9962-2ASDID2F7F 30}
{A9267148-7BFC-4DOB-A035-80021 395FFAB)
{AE151444-5D7D-4D 18-BC TF- 320669628000}
v | {B5fG3500-0548-48b - 6ee-BBb00bAa5e7)
InprocServer32
{BBAS012A-FO5A-4ECB-B16D-BOI31 B380CAS}

Figure 2.10. infected COM hive registry example [29]

System Process Abuse

"Windows Service is a sub-technique in Create or Modify System Process group. The mal-
ware will be executed repeatedly by creating or modifying system-level processes. These pro-
cesses are referred to as services and run in the background. It is the reason why this persis-
tence technique is called Windows Service.”[29] Windows Service persistence creates or mod-
ifies services to auto-start malware under SYSTEM, with IoCs including new service entries,
anomalous binPath values, service types mapping to EXE/DLL/driver, and suspicious invo-
cations of sc.exe, regsvrd2.exe, PowerShell, or WMI during service creation. Literature un-
derscores cross-view comnsistency checks between registry service configuration, service control

22

Theoretical Background and Literature Review

manager snapshots, and process trees to catch masqueraded or hijacked services. On Win-
dows, the installed services and their configuration are stored in the following registry key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services[29]

The attackers have many methods to create services on Windows:

e Using sc utility: malware uses cmd. exe to execute commands such as sc create (creating
a service) and sc start (starting a service). For example, to create a service with the name
malwar3 for the file malware.exe located in C:\Temp\ and launch it automatically:

sc create malwar3 binpath=C:\Temp\malware.exe start=auto && sc start malwar3

The parameter binpath specifies the payload path, and auto ensures the service starts
automatically.

o Using regsvr32.exe: to register services with the following command:

regsvr32.exe <path_to_service_dll>

e Using batch script: malware executes a specific .bat file downloaded from a Command
& Control server, which invokes sc to create and start the malicious service.

e Using Windows API functions: malware may call functions such as CreateService()
to create a service and StartService() to start it. Modern malware often includes these
functions in its Import DLL table.

e Using PowerShell: malware can create a service with:

New-Service -Name "malware" -BinaryPathName "C:\Temp\malware.exe" -Description
"DemoWinService" -StartupType Automatic

and then start it with the command sc start malware.

e Using Windows Management Instrumentation (WMI): WMI scripts can automate
administrative tasks. Attackers may use wmic to create services or establish persistence.

Attackers can also modify or hijack existing, unused, or disabled services to reduce detection.
Malware may embed its payload or load another malicious file from a remote server and register
it as a secondary service. Some modern malware combines this technique with the Masquerading
technique to make payloads appear legitimate.[29]

After registering as a service, the malware runs under the services.exe process, either directly
if executable, or via svchost.exe. A listing of services launched under svchost.exe can be found
here: HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Svchost[29]

An example of services hives are in figures 2.11 and 2.12.

Representative Detection Tools and Workflows

Canonical detection tooling includes Sysinternals Autoruns for auto-start extensibility enumer-
ation, Process Monitor for registry and filesystem change auditing, Regshot for differential hive
snapshots, and timeline/process graphers that reconstruct installation-to-persistence sequences as
evidentiary narratives. Methodologically, analysts correlate modified keys, file drops in hidden or
profile paths, and scheduler/service entries with execution artifacts to build IoC sets that drive
triage, hunt queries, and automated reporting.[29]

23

Theoretical Background and Literature Review

[Registry Editor — [m] X
File Edit View Favorites Help
ComputenHKEY_LOCAL MACHINE\SYSTEM\CurrentControlSet\Services\wuauserv
v SYSTEM Name Type Data
> ActivationBroker 28)(Default) REG_SZ (value not set)
>~ ControlSet001 'a5|DependOnService REG_MULTI_SZ rpess
v = CurrentControlSet 25|Description REG_SZ dll,-106
>~ Control abDisplayName ~ REG_SZ @%systemrootd\system32\wuaueng.dll,-105
i E:;‘:;tvare profiles %)ErrorControl REG_DWORD 0x00000001 (1)
> B polices HFailureActions REG_BINARY 80510100 00 00 00 00 00 00 00 00 03 00 00 00 1...
< B Survicns 2blimagePath REGEXPANDSZ %systemroot%\system32\svchost.exe -k netsvcs -p
s B8 NET CLR Data 'aB|ObjectName REG_SZ LocalSystem
5 1 NET CLR Networking | Z-JRequiredPrivileges REG_MULTI SZ ge SeC ilege SeCreate...
5~ NET CLR Networking | | ilSenviceSidType REG_DWORD 000000001 (1)
5 = NET Data Provider fo || /Start REG_DWORD 0x00000003 (3)
>~ NET Data Provider fo SvcMemHardLim.. REG_DWORD 0x000000f6 (246)
> NET Memory Cache . #iSveMemMidLimit... REG_DWORD 0x000000a7 (167)
> NETFramework #)SvcMemSoftlimi.. REG_DWORD 0x00000058 (88)
13940hci #iType REG_DWORD 0x00000020 (32)
> 7 Aarsve
5 7 Barue 211824
Figure 2.11. windows services hive registry
[Registry Editor = o X
File Edit View Favorites Help
Computer\HKEY_LOCAL_ MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost
> 7 Schedule Name Type Data
> [Seckdit ab(Default) REG_SZ (value not set)
> B sensor 2B AarSvcGroup REG_MULTL_SZ Aarsve
> 7 setup =blappmodel REG_MULTI_SZ EntAppSvc StateRepository WalletService
>~ SoftwareProtectior | §\zropeadiness REG_MULTISZ AppReadiness
z zzzM ablautoTimeSve REG_MULTI SZ autoTimeSve
Subscrptions 2BAinstSVGroup REG_MULTI_SZ AxinstsV
3 = Superfetch | | 28BcastDVRUserser.. REG_MULTI_SZ BeastDVRUserService
<[svehost =bBthAppGroup REG_MULTI_SZ BluetoothUserService
AarsucGroup abCamera REG_MULTI_SZ FrameServer
appmodel ab]CameraMonitor REG_MULTI_SZ FrameServerMonitor
autotimesve =b)ClipboardSvcGro... REG_MULTISZ chdhsve
BcastDVRUsers: | 2bDcomlaunch REG_MULTISZ Power Brokerinfrastructure LSM PlugPlay DcomLau..
btagservice 25| defragsve REG_MULTI_SZ defragsve
BthAppGroup | 25|DevicesFlow REG_MULTI SZ DeviceAssociationBrokerSvc DevicesFlowUserSve D...
Camera 2b/GPSvcGroup REG_MULTI_SZ GPsve
CameraMonitol | 2b|GraphicsPerfSvcG... REG_MULTI_SZ GraphicsPerfSve
ClipboardSveGr | aB|iCService REG_MULTI_SZ vmicheartbeat
defragsvc aBlimgsve REG_MULTI_SZ StiSve
DevicesFlow 25]InvSvcGroup REG_MULTI SZ InventorySvc
GPSvcGroup 2B|LocalService REG_MULTI SZ nsi WdiServiceHost w32time EventSystem RemoteR...
GraphicsPerfSve | 6) calServiceAnd... REG_MULTISZ SSDPSRV upnphost SCardSvr BthHFSrv QWAVE fdre...
::j:v’:gfoup ab|LocalServiceNet.. REG_MULTI_SZ TimeBrokerSvc WarpJITSve eventlog AudioSrv Win...
LcemseMonagd aB]LocalServiceNoN... REG_MULTI_SZ DPS PLA NcdAutoSetup CoreMessagingRegistrar
Localearvics 28lLocalServiceNoN... REG_MULTI_SZ BFE mpssvc
Localservicoan. | 2olLocalSystemNet.. REG_MULTI_SZ HvHost WdiSystemHost WiaRpc trkwks AudioEndpo...
LocalserviceHtt || 22McpManagemen... REG_MULTI SZ McpManagementService
LocalserviceNe | 22lnetprofm REG_MULTI_SZ netprofm nlasvc
LocalServiceNe | blnetsves REG_MULTI SZ lanmanserver IKEEXT iphipsve seclogon EapHost sc...
LocalServiceNo | 2bNetworkService REG_MULTI_SZ CryptSve lanmanworkstation WinRM WECSVC DNS..
LocalServiceNo | 2bNetworkServiceA... REG_MULTI_SZ KtmRm
=5|NetworkServiceN... REG_MULTI_SZ PolicyAgent

Figure 2.12. services that run under svchost

2.6.3 Linux: Persistence Techniques and IoCs

Linux persistence literature emphasizes account manipulation, SSH key-based access, scheduled
execution via cron and systemd timers, shell initialization backdoors, dynamic linker abuse, and
lower-level boot and module vectors, each mapping to distinct files, directories, and configura-
tion surfaces that serve as IoCs. Contemporary surveys broaden beyond cron to systemd unit
orchestration, XDG autostart in desktop contexts, and package and development tool hooks that
convert routine administrative actions into covert execution.

Identity and Access Vectors

If an attacker successfully compromises a host system, one common technique to maintain persis-
tence is through the creation of a new user account[30]. This approach leverages legitimate
administrative utilities to minimize detection. For example, a new user with a corresponding
home directory in /home/username can be created using the following command:

Create a user account with a home directory in /home/username
sudo useradd -m <username>

24

Theoretical Background and Literature Review

Set a password for the created account to enable login
sudo passwd <username>

On most Linux distributions, the root account exists by default but may be disabled or lack an
assigned password. An attacker can activate the root account by assigning it a password, achieved
via the following command:

sudo passwd

While enabling the root account grants direct administrative access, another persistence mech-
anism involves creating a new user and assigning them administrative privileges by adding the
account to the sudoers group. This can be done as follows:

sudo usermod -aG sudo <username>

Through these methods, adversaries can establish persistent administrative access on a com-
promised Linux host, thereby facilitating continued control and privilege escalation.

User and root account creation or privilege assignment through sudoers modifications produce
ToCs in passwd, shadow, group, and sudoers files, as well as in audit trails of useradd, passwd,
and usermod invocations that indicate persistence provisioning.

From a forensic analyst point of view, the main location to look for this kind of IoCs in disk
are the following:

e /etc/passwd, /etc/shadow, /etc/group, /etc/gshadow — these files record local
accounts, hashed credentials references and group membership. Compare current copies
with backups (/etc/passwd-, /etc/shadow-) to spot recent additions or modifications;
check file timestamps (mtime, ctime) and entry UIDs/UID allocation gaps that often reveal
ad-hoc accounts.

e /etc/sudoers and /etc/sudoers.d/ — explicit sudo privileges and drop-in sudoers files.
Malicious actors sometimes add a file to /etc/sudoers.d/; inspect for unexpected entries
and incorrect file mode (should be 0440).

e /home/[username]/ and /root/ — newly-created home directories Check ownership,
timestamps and shell history files (e.g. .bash_history).

e /var/log/auth.log (Debian/Ubuntu), /var/log/secure (RHEL/CentOS) and systemd
journal — authentication events, sudo invocations, passwd changes, and useradd/usermod
activity. Use ausearch/aureport against /var/log/audit/audit.log (if auditd enabled)
to find syscall-level evidence of useradd, passwd, usermod and chpasswd calls.

e /var/log/audit/audit.log — if the Linux Audit framework is enabled this contains ex-
ecve, setxattr, and other syscall records that can link processes to account creation or file
modifications.

e /var/log/faillog, /var/log/wtmp, /var/log/btmp, /var/log/lastlog — interactive
login records and failed login attempts; can show usage of newly-created accounts.

For maintaining persistence access to the machine, an adversary could also modify the related
file authorized keys file to maintain persistence on the victim host.[30] SSH authorized_keys
tampering is a prevalent persistence method; unexpected keys, unusual comments, and anoma-
lous file ownership or timestamps in user and root .ssh directories are crisp IoCs.

To verify whether unauthorized access keys have been introduced, the forensic analyst should
inspect the contents of the /home/[username]/.ssh/authorized keys file for newly appended
or suspicious SSH keys.

25

Theoretical Background and Literature Review

Scheduled Execution

”Persistence access to the machine can be done by creating several specific scheduled tasks, there
are usually two ways of creating the scheduled tasks: ‘cronjobs modification/creaton‘ or ‘mali-
cious timer modification/creation*” [30] Cron-based persistence can be established in system-wide
crontabs, cron.d drop-ins, and individual user crontabs. Indicators include newly added entries,
jobs running as root that execute untrusted scripts, or unusual schedules used as opportunistic
beacons. These modifications typically appear in specific cron configuration and spool locations
such as:

e /etc/crontab — system-wide crontab file; inspect for new or suspicious entries.
e /etc/cron.d/* — drop-in cron configuration files; check for unexpected scripts or jobs.

e /etc/cron.hourly/, /etc/cron.daily/, /etc/cron.weekly/, /etc/cron.monthly/ —
scheduled task directories; review for unauthorized scripts.

e /var/spool/cron/crontabs/* — per-user crontab files; look for jobs running as root or
unusual users.

Inspect these files for unexpected entries, suspicious command lines, or recent timestamps that
align with other signs of compromise.

An example of cron file can be seen in figure 2.13. An attacker could just add to that file the
line:

*/5 * * * * /opt/backdoor.sh

to run the backdoor script every 5 minutes.|[30]

~

/etc/cron.d/sysstat
The first element of the path is a directory where the debian-sal
script is located
PATH=/usr/libexec/sysstat:/usr/sbin:/usr/sbin:/usr/bin:/sbin:/bin

Activity reports every 10 minutes everyday
5-55/10 * * * * root command -v debian-sal > /dev/null & debian-sal 1 1

Additional rum at 23:59 to rotate the statistics file
59 23 % * * root command -v debian-sal > /dev/null & debian-sal 60 2

Figure 2.13. example of cron file

”all the services within the linux machine are triggered on boot time , they have specific init
entry in boot process. but these services can be triggered at specific times also using ‘timers‘.” [30]
Systemd timers and services provide modular, stealthier persistence; new units in /etc/sys-
temd/system with ExecStart pointing to non-standard scripts and periodic OnUnitActiveSec
triggers are prime IoCs supplemented by journald records. [30]

In modern Linux distributions, systemd serves as the primary init system and service man-
ager, responsible for initializing the user space and managing system services [31] [32]. While
systemd provides a robust framework for legitimate service management, its flexibility can be
exploited by adversaries to establish persistent footholds on compromised systems [33]. Forensic
analysts must therefore be aware of all possible locations and mechanisms through which services
may persist.

Systemd service definitions are primarily stored as unit files with a .service extension. These
files define the execution parameters of a service, including its start commands, dependencies, and
restart policies. From a forensic standpoint, the relevant locations include [31, 34]:

26

Theoretical Background and Literature Review

e System-wide service directories: /etc/systemd/system/ for custom or administrator-
installed services, and /1ib/systemd/system/ or /usr/lib/systemd/system/ for default
OS services. Analysts should compare these files against known package lists to identify
anomalies.

e User-level service directories: /home/[username]/.config/systemd/user/ contains
services that start upon user login, which can be abused to bypass system-wide detection
mechanisms.

e Override directories: /etc/systemd/system/<servicename>.service.d/ and the di-
rectory /run/systemd/system/<servicename>.service.d/ allow modification of legiti-
mate services through drop-in files.

o Target-linked symlinks: /etc/systemd/system/multi-user.target.wants/ contains
the symlinks indicating which services are configured to start automatically at boot.

e Timers: Systemd timers, located at /etc/systemd/system/*.timer and the directory
/home/ [username] /. config/systemd/user/*.timer, can schedule the execution of ser-
vices similarly to cron jobs.

e Runtime and volatile directories: /run/systemd/system/ and /var/lib/systemd/
store temporary and runtime unit files, which may reveal transient activity even if the
system is rebooted.

Forensic analysis should also include a careful review of all [Service] directives in unit files.
Fields such as ExecStart, ExecStartPre, ExecStartPost, and ExecReload may point to scripts
or binaries in non-standard locations (e.g., /tmp, /var/tmp, or hidden user directories). Any
execution command not associated with known packages or administrative scripts warrants deeper
investigation [33].

Systemd introduces a multi-layered persistence landscape. Analysts must consider system-wide
and user-level service definitions, drop-in overrides, target-linked symlinks controlling automatic
startup, timer units as alternative persistence mechanisms, runtime artifacts revealing transient
activity, and the contents of [Servicel] directives for anomalous execution paths. A systematic
approach covering these elements increases the likelihood of detecting both obvious and stealthy
persistence mechanisms in Linux environments [31, 33].

The following table summarizes the most relevant systemd persistence locations and mecha-
nisms that a forensic analyst should investigate:

Persistence Point Location

System-wide services /etc/systemd /system/

Default OS services /lib/systemd /system/, /usr/lib/systemd/system/

User services /.config/systemd /user/

Drop-in overrides */* service.d/ e.g. /etc/systemd/system/sshd.service.d/
Target-linked symlinks | */*.wants/ e.g. /usr/lib/systemd/system/graphical.target.wants/
Timers * timer e.g. /etc/systemd/system/backup.timer
Runtime/volatile /run/systemd/system/, /var/lib/systemd/

Table 2.1. Summary of Systemd Persistence Mechanisms

An example of malicious .service could look like this:

[Unit]

Description=Bad service
[Service]
ExecStart=/opt/backdoor.sh

with the associated .timer :

27

Theoretical Background and Literature Review

[Unit]
Description=malicious timer
[Timer]

OnBootSec=5
OnUnitActiveSec=bm
[Install]
WantedBy=timers.target

Here ‘OnUnitActiveSec=5m‘: is how long to wait before triggering the service again , after
every 5 minute the malicious service is triggered , and potentially give persistence access to the

machine.[30]

Shell and Session Hooks

”The shell in linux is the most crucial part of its enviroment , but it does load with lots of
other configuration files , that are executed whenever the shell start or ends”.[30] User shell
startup files (.bashrc, .bash_profile, .profile) and system-wide profiles (/etc/profile, /etc/profile.d,
/ete/bash.bashre) can be backdoored to execute payloads at interactive session start, creating IoCs
as appended commands, encoded one-liners, or suspicious sourcing of remote paths. Table 2.2
summarizes the most relevant Bash initialization and termination files that may be leveraged for

persistence and thus should be carefully examined during forensic analysis.

File(s)

Description

/etc/bash.bashrc

System-wide file executed at the start
of an interactive shell (e.g., tmux).

/etc/bash_logout

System-wide file executed when the
shell terminates.

~/.bashrc

Widely exploited user-specific startup
script executed at the start of a shell.

~/.bash_profile, “/.bash_login, ~/.profile

User-specific login files; whichever is
found first is executed.

~/.bash_logout

User-specific cleanup script executed
when a shell session closes.

/etc/profile

System-wide file executed at the start
of login shells.

/etc/profile.d/*.sh

All .sh files in this directory are exe-
cuted at the start of login shells.

Table 2.2. Common Bash initialization and termination files relevant to persistence

and forensic analysis.

An example of an infected .profile would look like this:

if running bash

if [-n "$BASH_VERSION"]; then

include .bashrc if it exists

if [-f "$HOME/.bashrc"]; then
"$HOME/ . bashrc"

fi

fi

chmod +x /opt/backdoor.sh

/opt/backdoor.sh

Message of the Day (M OTD) update scripts under /etc/update-motd.d can be weaponized
to trigger code upon SSH logins, leaving IoCs in modified templates and reverse-shell constructs
embedded in header scripts. "MOTD stands for Message of The Day which is a message that

28

Theoretical Background and Literature Review

gets displayed to users when they SSH into the system. It’s configured in the /etc/update-
motd.d/ directory and threat actors can place arbitrary commands into any of the files listed
there. Therefore for this article it can be used as a method of persistence and we get a reverse
shell back whenever a user SSH to the system.”[30] For example, adding a one liner:

bash -¢ ‘bash -i >& /dev/tcp/192.168.1.132/1234 0>&1’

To the file ’/etc/update-motd.d/00-header’ will create backdoor for persistance on the system
each time the MOTD is visualized.[30]

Loader and Linker Abuse

Dynamic linker hijacking via LD_PRELOAD or /etc/ld.so.preload injects attacker .so li-
braries into processes, with existence or modification of preload files and non-standard shared
objects in world-readable locations forming high-value IoCs, especially when system-wide. ”The
LD_PRELOAD allow attackers to load shared object files into to process’s address space prior to
the program itself, thus potentially allowing the control over the execution flow. The LD_PRELOAD
can be set by writing the ‘/etc/ld.so.preload’ file or utilizing the ‘LD_PRELOAD‘ environment
variable.”[30] By default both LD_PRELOAD variable and file /etc/ld.so.preload are not set,
so the sole exixstance of those files is extremly suspicious and should be analyzed by a forensic
analyst.

SUID misuse and binary wrapping introduce persistence via privileged helpers; ToCs
include unexpected SUID bits on scripts or custom binaries, divergence from distribution baselines,
and wrapped utilities that proxy to originals after malicious action.[30] The SUID bit set alone
does not consist in a critical or definitive IoC, but shold be investigated.

Boot, Service, and Autostart Surfaces

Legacy rc.local execution allows boot-time persistence when present and executable, generat-
ing IoCs as appended commands near exit lines and mismatched permissions and owners. The
file is located in /etc/rc.local, and an exaple of an infected one is the following:

#!/bin/sh -e

#

rc.local

#

This script is executed at the end of each
multiuser runlevel.

Make sure that the script will "exit 0" on
success or any other

value on error.

#

In order to enable or disable this script just
change the execution

bits.

#

By default this script does nothing.
/path/to/your/malicious/script.sh

exit 0

System-level services created via systemd units with benign names but untrusted ExecStart
targets, coupled with enablement flags and timer pairings, provide durable, low-noise persistence
with configuration file and journal IoCs. ”Using systemd services is a modern and efficient way
to achieve persistence in Linux. systemd is the init system and service manager in most Linux
distributions, responsible for bootstrapping the user space and managing system processes af-
ter booting. By creating a custom systemd service, you can ensure that specific applications

29

Theoretical Background and Literature Review

or scripts run automatically at system startup.” [30] Malicious services are created in the file
/etc/systemd/system/. An example is the following:

[Unit]

Description=My custom service
After=network.target

[Service]

Type=simple
ExecStart=/path/to/my_script.sh
Restart=on-abort

[Install]
WantedBy=multi-user.target

Developer and Package Tooling Hooks

APT hooks under /etc/apt/apt.conf.d enable before/after command execution during package
operations, rendering arbitrary reverse-shell one-liners or script invocations in hook files potent
ToCs during routine maintenance windows.

Git hooks (.git/hooks/*) and pager configuration in .gitconfig can embed on-commit or on-log
execution paths, leaving IoCs as executable hook scripts and environment-driven pager commands
that chain to shells.[30]

Desktop and Device Event Triggers

XDG autostart persists in GUI sessions via /.config/autostart/*.desktop entries pointing to
scripts or interpreters, with unexpected desktop entries and hidden script targets serving as IoCs.

Udev rules in /etc/udev/rules.d that trigger on device attach can run attacker code, yielding
IoCs as newly introduced rules with RUN directives tied to network or shell actions.[30]

Kernel and Low-Level Extensions

Loadable kernel modules present stealthy persistence; IoCs include unsigned or non-vendor
modules, anomalous module paths, and insmod/modprobe histories that deviate from platform
baselines.

Database triggers and environment manipulation represent higher-level persistence in
application stacks, with IoCs discovered via schema inspections and environment variable overrides
that redirect execution or load alternate libraries.[30]

2.6.4 Comparative Themes and Detection Methodologies

Cross-platform patterns reveal that high-utility persistence exploits configuration substrates that
are both durable and routinely read by trusted components, producing IoCs that concentrate in
registries and service catalogs on Windows and in init/service managers and profile scripts on
Linux. Effective methodologies therefore prioritize continuous enumeration of auto-start points,
integrity checks of configuration stores, and correlation of file drops with scheduled or service-
based invocations to attribute code-loading pathways.[29][30]

Windows-centric workflows emphasize registry diffs, autorun inspections, task and service au-
dits, and DLL/module inventories, while Linux-centric workflows emphasize cron and systemd au-
dits, SSH key reviews, and shell/profile integrity checks, each forming the backbone of automated
IoC harvesting pipelines. Across both systems, process lineage analysis linking configuration
changes to parent processes like scripting engines, service managers, and schedulers strengthens
attribution and reduces false positives in IoC-driven triage.[29][30]

30

Theoretical Background and Literature Review

Below there is a summary table of all the IoCs files location for a quick look, For windows

refer to 2.3 For Linux refer to 2.4

Persistence technique

Files / Registry hives / Locations to analyze

Registry Run / RunOnce keys
(RRK)

HKCU: \Software\Microsoft\Windows\CurrentVersion\Run

HKCU:\...\RunOnce

HKLM: \Software\Microsoft\Windows\CurrentVersion\Run
HKLM:\...\RunOnce

On-disk: C:\Users\<user>\NTUSER.DAT (HKCU)
C:\Windows\System32\Config\SOFTWARE (HKLM).

and

Startup Folder

User startup: C:\Users\<User>\AppData\Roaming
\Microsoft\Windows\Start Menu\Programs\Startup

System startup: C:\ProgramData\Microsoft\Windows\Start
Menu\Programs\Startup

Look for .1nk shortcuts, payloads in AppData, timestamps and
alternate data streams.

Winlogon helper abuse

Userinit / Notify)

(Shell /

Registry keys: HKLM: \Software\Microsoft\Windows
NT\CurrentVersion\Winlogon

(also ...\Wow6432Node ... on x64 for 32-bit entries).
On-disk: C:\Windows\System32, NTUSER.DAT for per-user
changes if applicable.

Scheduled Tasks (Task Scheduler)

On-disk task XMLs:
subfolders)
Registry/task cache: C:\Windows\System32\Config\SOFTWARE
Keys: HKLM: \Software\Microsoft\Windows
NT\CurrentVersion\Schedule\TaskCache\Tasks
...\TaskCache\Tree (triggers, actions, GUIDs).

C:\Windows\System32\Tasks (and

Image File Execution Options

(IFEO)

Registry: HKLM: \SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Image File Execution Options)\<exe>
On-disk: indicated debugger path binary locations; check
C:\Windows\System32 and payload path.

DLL Search Order Hijacking

Registry KnownDLLs: HKLM:\SYSTEM\CurrentControlSet
\Control\Session Manager\KnownDLLs

Inspect process module lists, unexpected DLLs loaded from
non-system or user-writable directories; on-disk filesystem lo-
cations where the malicious DLL resides.

Applnit DLLs

Registry: HKLM: \Software\Microsoft\Windows
NT\CurrentVersion\Windows

Values: AppInit DLLs, LoadAppInit._DLLs; examine system
DLL directories and any unknown DLLs referenced.

COM / InProcServer32 hijacking

Registry CLSID / ProgID paths under HKCR and per-
user equivalents (HKCU\Software\Classes); explicitly
check HKEY_CURRENT_USER\Software\Classes\CLSID and
HKEY_LOCAL_MACHINE\Software\Classes\CLSID.

Check InProcServer32 paths for unexpected locations and the
corresponding on-disk DLLs.

Windows Services

Registry: HKLM:\SYSTEM\CurrentControlSet\Services

Check binPath values, service type, Start value, and

Svchost groupings: HKLM: \Software\Microsoft\Windows
NT\CurrentVersion\Svchost
On-disk: service executable paths (e.g.,

C:\Temp\<payload>.exe), driver files, and Service Control
Manager snapshots.

Accessibility / Binary Replacement
(e.g., utilman.exe, sethc.exe)

On-disk system binaries in C:\Windows\System32 (compare file
hashes, sizes, timestamps); check IFEO debugger overrides and
shadow copies; examine SYSTEM / SOFTWARE hives for related
modifications.

Table 2.3: Summary — Windows persistence techniques and primary
files/locations to analyze (IoC sources).

31

Theoretical Background and Literature Review

Persistence Technique

Files / Locations to Analyze

Account Manipulation / User
Creation

/etc/passwd, /etc/shadow, /etc/group, /etc/gshadow
/etc/sudoers, /etc/sudoers.d/

/home/[username]/, /root/

/var/log/auth.log (Debian/Ubuntu), /var/log/secure
(RHEL/CentOS)

/var/log/wtmp, /var/log/btmp, /var/log/lastlog,
/var/log/faillog

SSH Key Persistence

/home/[username]/.ssh/authorized keys

/root/.ssh/authorized keys

Scheduled Execution: Cron
Jobs

/etc/crontab
/etc/cron.d/*

/ete/cron.hourly/, /etc/cron.daily/, /etc/cron.weekly/,
/etc/cron.monthly/

/var/spool/cron/crontabs/*

Scheduled Execution: Systemd
Timers / Services

etc/systemd/system /*.service, *.timer
/ete/sy y

/lib/systemd/system/, /usr/lib/systemd/system/

/.config/systemd /user/

/etc/systemd /system/jservicey,.service.d/

/etc/systemd /system/* . wants/
/run/systemd/system/, /var/lib/systemd/

Shell and Session Hooks

e " /.bashrc, 7/.bash_profile, ~/.profile, ~/.bash_logout
e /etc/bash.bashre, /etc/profile, /etc/bash_logout

e /etc/profile.d/*.sh

e /etc/update-motd.d/*

Dynamic Linker / Loader Abuse

e /etc/ld.so.preload
e Non-standard shared libraries (.s0) in writable directories

e SUID binaries: unexpected / anomalous permissions

Legacy Boot Persistence
(rc.local)

e /etc/rc.local

Developer and Package Tooling
Hooks

e /etc/apt/apt.conf.d/*
e .git/hooks/*
e " /.gitconfig

Desktop Autostart / Device
Event Triggers

e " /.config/autostart/*.desktop

e /etc/udev/rules.d/*.rules

Kernel and Low-Level Exten-
sions

e /lib/modules/ (malicious kernel modules)

e lsmod / /proc/modules (loaded module inspection)

Application-level DB triggers / env variables

Table 2.4: Linux Persistence Techniques and Associated Files/Locations

for Forensic Analysis

32

Theoretical Background and Literature Review

2.6.5 Mitigation, Evasion, and Research Gaps

Mitigations in Windows include baselining auto-start extensibility points, enforcing SafeDIISearchMode,
restricting IFEO usage, hardening accessibility binaries, and monitoring for anomalous service and sched-
uled task creation, each reflecting technique-specific control points surfaced in the literature. Linux
mitigations prioritize key hygiene, principle of least privilege for sudoers, hardening of systemd units and
timers, linker preload controls, and integrity monitoring of shell profiles and automation hooks to reduce
stealth execution paths, with routine audits providing rapid IoC discovery.[30][29]

Adversary evasion leverages masquerading, per-user configuration precedence (e.g., HKCU over HKLM
COM), living-off-the-land binaries, and legitimate scheduler/service interfaces to blend in, pushing re-
search toward deeper baseline modeling and anomaly detection on configuration semantics rather than
mere presence. Open gaps remain in scalable, cross-artifact correlation and in automated narrative gener-
ation that connects IoC sets to attacker TTPs, motivating the integration of automation and Al explored
in later chapters of this thesis.[29][30]

33

Chapter 3

Methodology

3.1 Experimental laboratory setup

To test the automated framework against machines that were infected by real malware samples, I firstly
needed a controlled environment to acquire infected artefact samples safely. To achieve this, I set up a
virtual laboratory consisting of both Windows and Linux machines. By infecting these machines myself,
I maintained full control over the chosen samples and the persistence mechanisms or artefacts they left
behind.

3.1.1 Virtual Machine Configurations

The first step in my methodology was the selection of the operating systems. I chose Windows 11
and Ubuntu 22.04, as they are among the most widely adopted platforms in real-world environments.
Another reason for this was that both are supported by the ANY.RUN sandbox, which I later employed
to validate the results produced by the automated framework. In particular, this allowed me to cross-check
the framework’s findings against Indicators of Compromise (IoCs) derived from the same real malware
samples executed within the same sandbox environment. To generate disk artefacts suitable for later
analysis, I adopted the flat VMDK storage method in VirtualBox, which produces fixed-size disk images
ready for forensic examination. This method creates fixed-size disk images, which are particularly well-
suited for forensic examination because they preserve the disk structure in a consistent and uncompressed
form. In contrast, dynamically allocated disks, while more space-efficient, can introduce fragmentation
and unnecessarly make more complex the task of acquiring the disk artefact in my case.

Windows VM

For the Windows virtual machine, I used Oracle VirtualBox and installed an official Windows 11 image.
The VM was configured in the following way:

e NAT network mode: Provides internet access to the virtual machine while isolating it from the
host network, reducing the risk of accidental malware propagation.

e BitLocker disabled: Ensures full access to the disk for forensic analysis and imaging, preventing
encryption from interfering with artifact collection.

e Guest Additions enabled: Improves VM usability and integration, allowing for easier file transfer
and enhanced performance without affecting malware behavior.

e Additional tools installed:

— WinRAR: Facilitates the extraction and handling of compressed files or malware samples
delivered as archives.

— Wireshark: Enables network traffic capture for analyzing malware communication and iden-
tifying IoCs.

— Dumplt: Allows for memory acquisition to analyze malware behavior in volatile memory.
The tool is available on GitHub: Dumplt GitHub link.

34

https://github.com/thimbleweed/All-In-USB/blob/master/utilities/DumpIt/

Methodology

Also, to avoid interference during malware execution in the virtual machine box, i had to permanently
disable Windows Defender. The following steps ensured Defender was disabled before capturing an initial
snapshot of the VM:

1. Disable Tamper Protection.
2. From an elevated Command Prompt, run:

reg add "HKLM\SOFTWARE\Policies\Microsoft\Windows Defender\Real-Time Protection" /v
DisableRealtimeMonitoring /t REG_DWORD /d 1 /f

reg add "HKLM\SOFTWARE\Policies\Microsoft\Windows Defender" /v DisableAntiSpyware /t
REG_DWORD /d 1 /f

This two commands set the correspondant hive registry keys to disable real-time monitoring and the
main anti-spyware component of Windows Defender, effectively preventing the antivirus from interfering
with subsequent malware execution or the generation of disk artefacts. By modifying these keys prior
to capturing the initial VM snapshot, I ensured that the system state reflected a clean baseline without
Defender actively monitoring or altering file system activity. similar to a zero-day attack scenario or an
environment with outdated antivirus definitions. Without such a configuration, the malware samples [
use, being previously discovered and analyzed, would be immediately detected as threats by the antivirus
and removed, preventing meaningful analysis. Once configured, the machine was ready for controlled
infection and artefact acquisition.

Linux VM

For the Linux virtual machine, I installed Ubuntu 22.04.5 (desktop, amd64) on VirtualBox. A really
important challenge arose when using Volatility 3 for memory analysis, as it requires the exact kernel
symbol table corresponding to the installed kernel version. In some cases, retrieving the correct symbols
proved complex. Further details are provided in the next chapter in the memory analysis section.

This VM is configured with NAT network mode and has Guest Additions enabled, just like
the Windows VM, for the same reasons: to provide internet access while isolating the VM from the host
and to improve usability without affecting malware behavior. There is no need to disable any antivirus,
as Ubuntu does not include one by default. On this VM, I installed the following tools:

e LiME: Linux Memory Extractor, widely used tool for acquiring volatile memory in Linux OS.
Used to acquire the memory dump from the VM to analyze malware behavior in RAM. The tool
is available on GitHub: LiME GitHub link.

e 7-Zip: Utility for handling compressed files, enabling extraction of malware samples delivered as
archives.

e TShark: Command-line version of Wireshark, used for capturing and analyzing network traffic
generated by malware.

Once configured, the VM was ready for malware infection and analysis.

3.1.2 Infection Procedures with Samples from Any.Run

To infect the virtual machines, I obtained malware samples from the platform app.any.run. I specifically
searched for reports containing persistence mechanisms by filtering for “malicious” samples with ATT&CK
Matrix persistence techniques (e.g., T1060: Registry Run Keys / Startup Folder).

This choice reflects the focus of the study: scenarios where the victim has already been infected and
rebooted several times, leaving traces in memory, disk, or network artefacts.

I tried to select types of malwares with different kind of persistance technique where possible. However,
the selection was constrained by the availability of samples in ANY.RUN. The platform does not provide
access to all historical malware, but only to those publicly uploaded within the last six months (as of
March 2025, the time of writing this thesis).

All samples were downloaded in compressed archives (password: infected) without file extensions.

In the following section lies the list of the sample collected from anyrun.

35

https://github.com/504ensicsLabs/LiME

Methodology

Windows: Worm:Win32/Ludbaruma

Worm:Win32/Ludbaruma is an MPress-packed worm that prioritizes persistence and stealth over imme-
diate payload execution. It hijacks the screensaver mechanism, creates autorun registry entries under both
HKCU and HKLM (including Wow6432Node), and drops executables with system-like names in various
directories. Persistence is reinforced through registry tampering that disables user options and registry
tools, hindering manual cleanup. The worm also shows SMB activity indicative of lateral movement but
no C2 traffic during short execution.

From a forensic perspective, the most relevant Indicators of Compromise (IoCs) are anomalous entries
in the Run and RunOnce registry hives. These entries use benign-looking names (e.g., “MSMSGS,”
“Serviceadmin”) that map to suspicious binaries in non-standard paths (e.g., C.exe, Data.EXE). Since
such registry artifacts persist across reboots and are recoverable post-mortem, they provide strong and
reliable evidence of infection.[35]

Windows: Conhoz Loader

The Conhoz loader is a UPX-packed 32-bit PE malware that uses a living-off-the-land (LOtL) approach
to establish persistence, manipulate system defenses, and stage additional payloads via scripted tasks and
HTTP beacons. It launches cmd.exe and u.exe and leverages Windows utilities—schtasks, sc, reg, wmic,
netsh, attrib, and PowerShell—to persist, tamper with policies, and execute scripts.

Main Forensically relevant IoCs:

e Scheduled tasks: The malware creates tasks such as MyTask, oka, Mysal, and Mysa2, running
under the SYSTEM account on logon or at frequent intervals. These tasks provide reliable auto-
matic execution across reboots and can be repeatedly recreated if deleted, making them resilient
against cleanup attempts.

¢ WMI and IFEO modifications: Conhoz manipulates WMI consumers and filters, and config-
ures IFEO “Debugger” redirections targeting binaries like 001.exe and 32/64.exe. This allows the
malware to hijack legitimate process launches, further strengthening persistence and stealth.

Additional ToCs include runtime artifacts (C.exe, C.dat, C.bat) and transient IE cache files. Among these,
scheduled task names and WMI/IFEO modifications are the most forensically significant, providing clear
evidence of automated execution and loader activity. These IoCs allow investigators to identify Conhoz
infections, track persistence mechanisms, and reconstruct its loader and staging behavior.[36]

Linux: Prometei

The Prometei-associated Linux ELF sample is a 64-bit, statically linked malware that targets x86-64
systems, performing cryptomining preparation and lateral movement. It runs with elevated privileges,
modifies its executable’s ownership and permissions, and ensures persistence via a systemd service (uplug-
play.service). During execution, it collects system information, inspects running processes, and modifies
system files to establish a durable foothold.

Forensically relevant IoCs include:

e Systemd persistence: Presence and active/enabled state of the system service located in the
path /usr/lib/systemd/system/uplugplay.service.

¢ Executable placement and permissions: /usr/sbin/uplugplay with root ownership or broad
execution rights.

e Host profiling artifacts: Temporary changes to /etc/hosts and outputs from system interroga-
tion commands (os-release, hostnamectl, uname, uptime).

e Network indicators: Outbound HTTP requests to Prometei-linked domains/IPs, following the
“xinchao” C2/DGA pattern.

These artifacts collectively indicate stealthy persistence, reconnaissance, and modular design for prop-
agation, allowing investigators to trace Prometei infections before cryptomining activity occurs.[37]

36

Methodology

Linux: GhOst RAT

This 64-bit ELF sample achieves persistence on Linux by creating and enabling a systemd service named
remote-client.service. It runs with elevated privileges via sudo, adjusts ownership and permissions, and
uses systemctl daemon-reload, enable, and start to ensure the service executes automatically across
reboots. Supporting artifacts include launchtime.txt, /logs/remote-client.log, and the service unit file
/etc/systemd /system /remote-client.service, providing clear forensic evidence of malware presence.

Process execution follows a chain of dash, bash, chown, chmod, sudo, and systemctl, culminating in
the RAT component running under systemd supervision. The malware exhibits GhOst RAT behavior,
performing environment reconnaissance (locale, timezone, network configuration) and connecting to C2
servers at a87.mee333.com:443 and lc.liuddiaselli.com:5650. Network activity is marked by repeated 200
responses and Go-http-client user agents, with sandbox whitelisting isolating malicious flows to GhOst-
linked hosts.

Forensically relevant IoCs include:

e Service unit: /etc/systemd/system/remote-client.service
o Log file: "/logs/remote-client.log
e C2 domains/IPs: a87.mee333.com / 103.215.78.27, 1c.liuddiaselli.com / 118.107.46.162

These artifacts make systemd-based persistence the primary forensic indicator, allowing investigators
to identify GhOst RAT infections, trace initialization procedures, and reconstruct the malware’s remote-
control activity.[38]

3.1.3 Acquisition of Artefacts (HDI, RAM, PCAP)

After infecting the VMs, I manually acquired the artefacts generated by the infected machine. This
included disk image, memory dumps (RAM), and packet captures (PCAP).

e Disk Image: Used the generated vmdk-flat file from VirtualBox VM directory. Note: If you
want to convert a normal vindk to a flat one, you can use the VBoxManage command-line tool
provided with VirtualBox:

VBoxManage .exe clonemedium disk "source.vmdk" "destination.vmdk" \
-—-format VMDK --variant Fixed

e RAM:

— Linux: Created a memory dump using LiME:

sudo insmod lime-$(uname -r).ko "path=memdump.lime format=lime"

— Windows: Used Dumplt by executing the provided binary.

e PCAP: Captured network traffic for 60 seconds with Wireshark or TShark. Done with the GUI
with Wireshark or with the command line with TShark:

sudo tshark -i any -a duration:60 -w net_traffic.pcap

All artifacts were collected after a full shutdown and reboot of the machine, simulating a real-world
scenario in which the malware was allowed to persist in the system.

37

Chapter 4

Framework Implementation

4.1 Automated Framework and Processing Pipeline

After manually acquiring these artefacts, I developed a Python-based framework to process them auto-
matically, integrating suitable libraries for parsing and analysis.

This chapter focuses on the practical implementation and internal functioning of the automated
forensic framework. Unlike the methodology chapter, which discussed the rationale behind the chosen
approaches, here we concentrate on how the framework operates in practice.

The following sections provide a detailed description of the framework’s architecture, the individual
modules that process and analyze forensic evidence, the workflows that guide its operation, and the
outputs it produces. Through this chapter, the reader will gain a clear understanding of the framework’s
structure, capabilities, and behavior during forensic analysis.

The PoC framework, can be found in the following github repository: https://github.com/fuju/
ForensicAutonomousFramework.

In figure 4.1 there is a call-graph describing the workflow and provides an high-view description of
each script role in the framework.

A full overview on the framework project folder structure, can be seen in the appendix A.3.

The User Manual and the Programmer’s Guide can be found in the appendix A.1 and A.2 respectively.

4.1.1 Framework Setup

To prepare the environment for the analysis framework, the following steps should be performed:

e Install Python. It is recommended to use Python 3.9 to ensure compatibility with all dependencies
and scripts, as some components may not fully support more recent Python versions.

e Create a virtual environment. Using a virtual environment isolates the project dependencies
from the system Python installation, avoiding potential version conflicts and ensuring reproducibil-
ity.

e Install dependencies. All required Python packages are listed in requirements.txt. Installing
them ensures that the framework can execute all scripts and modules correctly.

e Modify virtual environment paths if necessary. By default, the virtual environment is located
at <framework_home>/venv. If a different path is used, it must be updated accordingly in the main
cofiguration file config.py.

e Install Volatility3 symbol tables. These tables are required for memory analysis. They can
be installed either directly from the repository or by manually extracting them and converting via
dwarf2json. More on this in section Section 4.2.2.

e Optional fix for older python versions: Run patch_tshark.py only if you chose to use a python
version older that 3.7. This script fixes the errors related to the deprecated library ”distutils”.

After completing these steps, the environment is fully prepared and ready for analysis tasks.

38

https://github.com/fuju/ForensicAutonomousFramework
https://github.com/fuju/ForensicAutonomousFramework

Framework Implementation

Extracted Artefacts

(disk image, memory dump, network traffic)

Createcase.py

- creates case folder

- hashes the collected
artefacts and creates a
signed manifest

process_acquisitions.py

- Starts the analysis of the available
artefacts.

scan_disk.py

- responsible of the analysis of the disk
image

- Scans disk for os main partition

- Extracts configured files and folders
and saves it in the case folder

- creates an extraction map to correlate

scan_memory.py

- responsible of the analysis of the
memory dump
- runs in parallel all the configured
memory analysis plugins and
saves the outputs in the case

- starts the Al agent to scan extracted files

the original path on the disk images to folder
the file path in the case folder
¥
Al_agent.py ask_ai.py

and folders to find anomalies

N

- Generates singular
reports analysis of
each plugin cutput to
find anomalies.

scan_network.py

- responsible of the
analysis of the
network traffic
- uses Threat

Intelligence Known

Threats database
against contacted ips
and domains

cat_file.py

- tool called
autonomously by the
Al agent to further

folder_scan.py

- tool called
autonomously by the
Al agent to further

h ¥ Y

- generates a final report for the case with Al

final_report_generation.py

based on all the collected reports and loCs
- provides an Al verdict, observations,
narrative and suggested next steps for the
forensic team

A

inspect the content of inspect the contents
the files on the disk of a folder
image
Figure 4.1.

4.1.2

The create_case.py script ingests digital artifacts—such as hard disk images, memory dumps, and
network traffic captures— and establishes a standardized working environment for subsequent forensic

Framework call graph and overview

Initialization of a new forensic case: createcase.py

39

The initialization phase constitutes a critical step in preparing digital forensic investigations. To address
this requirement, a dedicated Python utility was developed to automate the creation of a new forensic
case, promoting consistency, reproducibility, and evidentiary reliability.

Framework Implementation

analysis. It ensures that the case directory structure, metadata generation, and integrity verification are
performed in a uniform and auditable manner.

Functional Capabilities. The tool is organized into modular components, each handling a specific
aspect of case initialization:

e Logging configuration: dual logging records events in real-time (console) and persistently (log
file), ensuring full traceability.

e Artifact acquisition: forensic artifacts are collected, categorized (disk, memory, or network data),
and hashed using SHA-256 to verify integrity.

e Directory and template creation: a standardized case structure is generated with subdirectories
for acquisition, processing, and reporting. Template files and example modules are instantiated to
streamline future workflow.

e Metadata generation: core case information (case identifier, OS type, acquisition date) is docu-
mented. A manifest of computed file hashes is produced and optionally digitally signed.

e Signature verification: public keys can be used to authenticate manifests, ensuring authenticity
and evidentiary integrity.

e Finalization: artifacts are moved to their permanent acquisition directory, hashes are recomputed
and verified, and automated downstream processing can be triggered.

Workflow. The operational sequence proceeds as follows:

1. The investigator provides the case identifier, hash identifier, OS type, and artifact source directory.
2. Artifacts are temporarily copied, hashed, and validated.

3. A permanent case directory is created with standardized subdirectories:

e 00_meta: metadata files and optional malware samples,

e 0Ol_acquisition: original forensic artifacts,

e 02_raw_checksums: manifest of hashes (digitally signed if required),

e 03_processing: directories for subsequent analysis (disk, memory, network),

e 04_reports: contains the generated final report.

4. Integrity checks recompute file hashes at the destination.
5. Metadata and optional digital signatures are generated to maintain chain-of-custody.

6. Automated analysis pipelines may launch for the next investigative stage.

Through systematic SHA-256 hashing and optional digital signatures, the program safeguards forensic
materials’ authenticity and provides verifiable proof that no alterations occur during acquisition and
preparation. This methodology aligns with chain-of-custody requirements, ensuring transparency and
reproducibility. The initialization utility establishes a reproducible, standardized, and secure foundation
for forensic investigations, supporting both manual and automated analysis.

An example command for executing the script is:

python3 createcase.py --signing-key private_key.pem --verify-key \
public_key.pem 2025 demo ../../../VMs/WinForense/artefacts/ \
windows -y

This command will initiate the framework by creating the case folder structure, copying and hashing
the artefacts from the ’../../../VMs/WinForense/artefacts/’ folder, creates the manifest file, signing and
verifying it with the given public private key pair, and runs automatically the processing phase without
prompt asking for a windows operating system.

4.1.3 Integrity check of artefacts: verify_signatures.py

Ensuring the integrity of collected digital artefacts is essential for maintaining evidentiary reliability
throughout the forensic process. To this end, a Python-based utility was implemented to verify the
authenticity of forensic case files by validating their digital signatures against a provided public key. This
verification step complements the case initialization procedure by confirming that integrity manifests and
checksum files have not been altered since their creation.

40

Framework Implementation

Functional Capabilities. The script is structured into modular functions that collectively implement
automated digital signature verification:

e Signature verification: the function verify_signature() leverages the OpenSSL command-line
utility to confirm whether a hash or manifest file matches its corresponding digital signature using
the specified public key. Verification outcomes are logged, indicating success or failure.

e Signature discovery: the function get_signature_files() retrieves all files with the configured
signature extension (e.g., . sig) searching for the signed manifest file from the checksum subdirectory
of the forensic case folder.

e Batch processing: the function process_signatures() orchestrates the validation process. It
iterates over all discovered signature files, locates the corresponding checksum or manifest file
(derived by stripping the signature extension), and performs verification. Missing or corrupted files
are logged with warnings or errors.

e Logging: the program employs Python’s logging module, configured via global parameters, to
provide detailed and timestamped audit trails of verification activities.

Workflow. The operational workflow proceeds as follows:

1. The investigator specifies the path to the forensic case folder and the path to the public key (PEM
format).

2. The script derives the checksum directory based on the case folder and the configuration constants.
3. All signature files in the directory are identified (e.g., manifest.txt.sig).

4. Each signature file is paired with its corresponding hash or manifest file and verified against the
provided public key using OpenSSL.

5. Results are logged, indicating for each file whether verification succeeded, the corresponding hash
file was missing, or the verification failed.

By automating the validation of SHA-256 digital signatures, the utility provides strong assurance
that forensic case manifests and associated checksum files remain unaltered after signing. Successful
verification reinforces the chain-of-custody by demonstrating integrity and authenticity of the evidence.
Warning: Non-repudiation is possible if the public and signed keys are associated with a valid certificate,
but certificate controls are not automatically made by the framework.

Conversely, verification failures signal either accidental corruption or deliberate manipulation, both of
which are critical findings in a forensic investigation. In this way, the integrity verification utility functions
as a safeguard, ensuring that all downstream analysis is performed on trustworthy and verifiable artefacts.

An example command for executing the script is:

python3 verify_signatures.py windows/2025_demo public_key.pem

4.1.4 General analysis workflow

The framework workflow is structured into the following main phases:

e Disk Analysis

— Extraction of files and folders from the disk image using Plaso and Digital Forensics Virtual
File System modules. If windows os, also extraction of registry hives and autorun keys using
the python-registry library.

— Al agent-based analysis of selected files and folders to detect anomalies or suspicious be-
havior.

e Memory Analysis

— Use of Volatility 3 plugins for memory analysis.

— AT analysis of plugin outputs to identify anomalies or indicators of compromise.
e Network Analysis

— Scanning IP addresses and domains using the VirusTotal API.
e Final Report

— Consolidation of all findings into a single final report using Al.
— Issuing a final verdict based on the collected evidence and providing suggested next steps
for the forensic team.

41

Framework Implementation

4.2 Processing orchestrator: process_acquisition.py

Whereas the case initialization and signature verification scripts focus on preparing and validating ev-
idence, the acquisition processing utility (process_acquisition.py) acts as an orchestration layer for
the automated execution of forensic analysis pipelines. Its primary role is to coordinate the processing
of disk, memory, and network artefacts by invoking specialized external tools, managing their execution
environment, and consolidating their outputs.

Functional Capabilities. The script is composed of modular functions that encapsulate distinct
tasks in the orchestration workflow:

e Disk scan: the function run_disk_scan() launches a dedicated disk forensic script (scan_disk.py),
passing the acquired disk image as input.

e Memory scan: the function run_memory_scan() executes the memory forensic script responsible
of running the configured volatility plugins (scan_memory.py) and subsequently processes its plugin
outputs using an Al-based analysis module (ask-ai.py).

e Network scan: the function run_network_scan() executes the network forensic script responsible
of extraction known malicious ips and domains (scan_network.py) on packet capture (.pcap) files.

e Virtual environment support: the helper function run_script() enables each tool to be ex-
ecuted within a Python virtual environment, ensuring dependency isolation and reproducibility
across heterogeneous toolchains.

e Final reporting: once all scans are completed, the script invokes the reporting utility python
script (final _report_generation.py) to integrate results into a structured forensic report, using
AT to generate narratives and suggested next steps for the forensic team.

Workflow. The operational sequence of the tool can be summarized as follows:

1. The investigator specifies the path to the forensic case folder.
2. The script executes the disk scan, memory scan, and network scan in sequence.

3. After each stage, if an error is encountered, the investigator is prompted to decide whether to
continue or abort processing.

4. During memory analysis, plugin outputs are further processed through the AT module, and tempo-
rary lock files used by rate-limiting mechanisms are removed once processing completes.

5. After all modules have been executed, the final reporting script is launched to consolidate results
into a single forensic report.

By automating the coordinated execution of multiple forensic modules, encapsulating their dependen-
cies within isolated environments, and generating an integrated report, the acquisition processing utility
provides an end-to-end orchestration layer that streamlines and standardizes the forensic investigation
workflow.

4.2.1 Disk Image processing module

The Disk Image processing module is responsible for analyzing disk images acquired from the infected
virtual machines. It leverages established forensic tools and integrates Al-driven analysis to identify
persistence mechanisms and other indicators of compromise. It is divided in two steps:

1. Extraction of persistence-related directories/files: This step involves identifying and ex-
tracting directories, files and registry hives that are likely to contain persistence mechanisms, such
as the ones discussed in chapter 2 of this thesis.

2. Agentic AI analysis: In this step, an Al-agent is employed to analyze the extracted files for
suspicious content. This includes searching for unusual patterns, metadata inconsistency and other
signs of malicious activity.

42

Framework Implementation

Extraction of persistence-related directories/files

The script that manages this is: scan-disk.py

This Python script automates the extraction of persistence-related artifacts from disk images and
subsequently analyzes them using a an AI agent that can think using cloud based (Gemini AI) or any
local LLM model. It integrates dfVFS library and Plaso to support forensic file system access across
multiple disk image formats and operating systems.

Main functionalities. The script provides a range of functionalities that cover acquisition, metadata
documentation, and Al-driven reasoning:

e Volume scanning and partition selection: a custom mediator guides dfVFS to select the most
relevant partition (the partition containing the file system), prioritizing NTFS when available, or
otherwise the largest partition. This ensures that key operating system volumes are consistently
analyzed.

e OS detection and artefact targeting: the file system type is analyzed to classify the image as
Linux or Windows. Corresponding predefined artefact paths are then loaded (e.g., autorun registry
hives, startup folders, cron jobs).

e File and directory extraction: artefacts are recursively copied to a case-specific output folder.

Path normalization and collision handling mechanisms prevent overwriting when duplicate names
occur (eg. multiple NTUSER.DAT files assigned to different users).

e Registry hive analysis: if registry hives (NTUSER.DAT, SOFTWARE, SYSTEM) are encountered,
autorun-related keys are automatically parsed using python-registry, and human-readable re-
ports are generated.

e Extraction map: a CSV map is created to document the correspondence between original disk
paths and their local copies, ensuring transparency and reproducibility.

e Al-assisted reasoning: Al analysis is launched for every extracted artefact or directory. In-
dividual files are reported in JSON, directories in Markdown. Reports are consolidated under a
dedicated “agent reports” folder for easy review.

e Logging and error resilience: a configurable logging system records debug, warning, and error
messages, ensuring traceability of failures without halting the entire process.

Workflow. The automated procedure follows a structured pipeline:

1. The investigator specifies the input disk image and case folder.
2. Volumes are scanned; the partition containing the file system is selected.

3. The OS type is inferred and corresponding persistence artefact paths are loaded from the main
configuration file.

4. files and folders are recursively extracted, while registry hives are parsed and results are exported
in plain-text.

5. An extraction map in CSV format is saved, linking original and local artefact locations.

6. The AI agent is invoked on the extracted artefacts, producing JSON/Markdown reports that high-
light potential persistence mechanisms.

Through its combination of file system scanning, registry hive extraction, and Al-assisted post-
processing, the tool extends classical forensic methods with automated reasoning. The CSV extraction
map guarantees reproducibility of the acquisition process, while the Al-generated reports provide action-
able insights into subtle or concealed persistence artefacts. As such, the utility plays a central role in
bridging evidence extraction with interpretative analysis in digital forensic workflows.

Agentic AT analysis

The AI_agent.py script implements a semi-automated forensic reasoning framework that integrates de-
terministic Python-based extraction scripts with probabilistic reasoning from the Gemini LLM or a local
Ollama backend. It coordinates the iterative analysis of disk image artefacts by orchestrating a loop of
LLM-based inference and external tool execution until a forensic conclusion is produced, using LangGraph.

43

Framework Implementation

Configuration and Logging. The utility imports all runtime parameters from a centralized config-
uration file, including Gemini API keys, model names, token limits, script paths, timeouts, and logging
settings. Multiple API keys are maintained and rotated automatically in case of daily quota exhaustion.
Logging is dual-channel: results are written both to the console and to a persistent Markdown log, with
each run beginning from a clean execution log to preserve case isolation.

State Management. Analysis state is maintained in the MyState structure, a typed dictionary con-
taining the history of LLM responses, the current step index, flags for finalization, and the most recent
output. Long conversation histories are automatically summarized through Gemini or Ollama to reduce
prompt size while retaining forensic context.

Reasoning Workflow. The agent is modelled as a LangGraph state machine with two primary
stages:

1. Think (LLM reasoning): A prompt is built from the execution context and the current input
(directory listing or file content). The LLM is instructed to behave as a forensic analyst and may
issue either a Final Answer with IoCs and anomalies, or an Action request to run a Python tool for
further inspection. Large inputs are segmented into row-preserving chunks and reintegrated after
deduplication to keep the analysis tractable.

2. Act (tool execution): When an action is requested, the agent validates the script path, executes it
under timeout control, captures both stdout and stderr, and appends the results to the conversation
history. Outputs are truncated if overly long in local mode.

This think—act loop continues until the LLM outputs a conclusive forensic verdict.

Error Handling and Resilience. Robustness is provided through layered exception management:

e API key rotation: on daily quota exhaustion, the client switches to the next available Gemini
key.

e Transient failures: errors such as rate limiting or server faults trigger exponential retry attempts
up to a configurable maximum.

e Tool errors: failures in auxiliary scripts are logged but do not terminate the entire reasoning
cycle.

File Examination. When invoked with the --examine option, the agent retrieves the target file
content using an external extraction script and submits it to the LLM. The model must return a structured
JSON response including the filename, a suspiciousness flag, explanatory reasoning, and a list of IoCs.
Reports are saved to an optional output file for integration with downstream analysis pipelines.

Execution Flow. Two principal operational modes are supported:

1. Folder analysis: the selected starting folder for the analysis from a disk image is scanned via
an auxiliary script (folder_scan.py), and the directory listing is iteratively explored through the
think—act loop.

2. File analysis: a single artefact is inspected in depth, visualizing its contens via an auxiliary script
(cat_file.py) and structured results are written into a JSON file.

Reporting. All interactions are preserved in Markdown logs, including LLM responses, observations,
tool outputs, and errors. The final stage produces a consolidated response containing the most recent
reasoning step, extracted forensic observations, and a verdict of suspicious findings. Optionally, a compact
final report containing only the last LLM, observation, and answer blocks may be exported.

The design thus implements a hybrid forensic agent: deterministic utilities provide guaranteed ex-
traction fidelity, while the LLM contributes adaptive reasoning and anomaly detection. Together, they
enable reproducible, explainable, and resilient forensic workflows over disk images.

44

Framework Implementation

Al-agent tools
As said before, the Al agent can call these two auxiliary tools:

e Cat Tool: The cat_file.py tool script implements a minimal but effective forensic utility to locate
the root operating system partition within a disk image and shows the content of a file relative to
that root. It integrates dfVFS, Plaso’s StorageMediaToolVolumeScanner, and pytsk3 to achieve
cross-platform support for Linux and Windows file systems with bounded, investigator-friendly
output.

Core functionalities.

— Automated partition scanning: a custom mediator (MyMediator) ensures non-interactive
enumeration of partitions in the provided disk image.

— OS root detection: the script attempts Linux detection first, then falls back to Windows
heuristics:

1. Linux roots are validated by checking for canonical directories (/usr, /var, /etc, /bin)
at the file system root.

2. Windows roots are confirmed when top-level entries (Windows, Program Files, Users)
are found on NTFS/FAT volumes.

— file content: given a relative path, the tool retrieves and prints the file content:

*

NTFS files are accessed via pytsk3, using a custom Img Info adapter to bridge dfVFS
file objects with TSK’s APIL.

* EXT files are read using dfVFS path specifications, with symbolic links detected and
reported instead of being followed.

— Safe output formatting: content is first decoded as UTF-8; on failure, a byte-wise fallback is
applied with simple run-length encoding (e.g., X*12%) to preserve readability under MAX_OUTPUT
and CHUNK_SIZE constraints.

— Configurable logging and safety: output limits are configurable, adapting the tool to
quick triage or deeper inspection use cases.

Workflow. The typical workflow is:

1. The tool action is called by the AT agent, that specifies the disk image path and the file path
relative to the OS root.

2. The scanner enumerates available partitions and constructs a scan tree.
3. Linux root detection is attempted; if unsuccessful, Windows heuristics are applied.

4. If no root is found, the process terminates with an error. Otherwise, the chosen root is used
to resolve the requested file.

5. If a file is specified, its content is displayed with strict safety bounds and sanitized formatting.

Forensic considerations. This utility provides the Al agent with a compact method for in-
specting the content of suspicious files that needs to be further analyzed (e.g., configuration files,
startup scripts, logs) without mounting the full file system. Its bounded output minimizes risks as-
sociated with large or binary data, while the conservative root detection heuristics ensure resilience
across diverse disk images. Symbolic links are reported to prevent accidental traversal, and NTFS
access via pytsk3 offers fine-grained forensic control.

By combining flexible scanning, OS-aware heuristics, and safe file content display, the script delivers
an efficient forensic tool to permit the Al-agent to scan the content of files.

e Folder ScanTool: This tool focuses on analyzing the contents of a folder within the disk image.
The script is a lightweight forensic utility for enumerating the contents of directories within disk im-
ages. It leverages dfVFS and Plaso’s StorageMediaToolVolumeScanner to provide a cross-platform,
read-only file system navigator with OS-aware heuristics for root detection.

45

Framework Implementation

Core functionalities.

— Automated volume scanning: has the same workflow as the above mentioned cat tool.
— Directory listing: prints contents with aligned columns, including:

* Permissions (POSIX style for Linux, simplified indicators for Windows)
* Owner and group identifiers

* File size

* Last modification timestamp

* File or directory name

— Cross-platform formatting: supports Linux-style (1s -1) and Windows-style listings.
Missing or incomplete metadata is replaced with placeholders to prevent errors.

Workflow.

The AT agent invokes the tool providing the disk image and a directory path to list.
The scanner enumerates volumes and constructs a hierarchical scan tree.
Linux root detection is attempted first; if unsuccessful, Windows heuristics are applied.

Upon identifying a root partition, the corresponding file system is opened using DFVFS.

AN A

The requested directory is listed with the appropriate formatting routine based on OS type.

Forensic relevance. The tool provides a rapid mechanism to provide a directory listing without
mounting the image. Directory listings expose critical metadata useful for triage and preliminary
analysis, such as identifying system directories, user files, or anomalous content.

Notes and safeguards.

Root detection heuristics are conservative; unusual or highly customized systems may require
manual verification.

— Missing or incomplete metadata is safely replaced with placeholders to ensure output consis-
tency.

— Windows-style permissions are simplified and do not reflect full NTFS access controls.

— The script is read-only and avoids modifying the source media.

So folder_scan.py is a compact, cross-platform file system navigator for forensic triage. It combines
DFVFS, Plaso volume scanning, and OS-specific heuristics to identify root partitions and produce
clear, aligned directory listings for both Linux and Windows file systems to feed the Al-agent.

4.2.2 Memory processing module

The memory processing module focuses on analyzing RAM dumps acquired from the inspected machine.
It utilizes Volatility 3 plugins for in-depth memory forensics and incorporates Al-driven analysis to identify
anomalies and potential indicators of compromise.

Setup of the Volatility 3 environment

This step is crucial for memory processing and must be executed manually if inspection machines that
have Linux os. The main difficulty lies in the fact that Volatility 3 requires specific symbol table images
for analyzing memory, which are not always easy to obtain. While Windows 11 (or any other Windows
distribution) symbols are automatically downloaded by Volatility, for Ubuntu symbols (or any other
Linux distribution) is required for the user to manually feed them into the volatility framework. While
there are some repositories online made by users that distribute ready-to-use symbol tables for various
linux distribution, the exact symbol table for the kernel of the Linux distribution some may use, is not
guaranteed to be in it. So i will give a guide in case the forensic investigator needs to extract it manually.

The procedure is the following:

46

Framework Implementation

Step 1: Check the Banner from the Memory Dump
python3 vol.py -f memdump.lime banners

this will give the user the exact banner to match in the symbol table. For example, in my case
was:

Linux version 6.8.0-60-generic (buildd@lcy02-amd64-098) (x86_64-linux-gnu-gcc-12
(Ubuntu 12.3.0-1ubuntul~22.04) 12.3.0, GNU 1d (GNU Binutils for Ubuntu) 2.38)
#63722.04.1-Ubuntu SMP PREEMPT_DYNAMIC Tue Apr 22 19:00:15 UTC 2

(Ubuntu 6.8.0-60.63722.04.1-generic 6.8.12)

Step 2: Verify if the Community Repository already provides the Symbol Table In
my case, the symbol table was already available in a community-maintained repository [39].

Step 3 (if not in the Repository): Build a Matching Symbol File A comprehensive
guide on how to create Linux symbol tables for Volatility using a tool called dwarf2json is available in
HackTheBox resources [40].

Step 4: Inspect the Banner in the generated Symbol File
python3 vol.py isfinfo -f volatility3/symbols/linux/linux-<version>.json.xz

At this point, it is necessary to ensure that both banners match byte-for-byte. In my personal
experience i got a lot of trouble before realizing this point: even minor changes in the banners (eg. the
day or the hour in the date of release) will cause volatility3 to not work.

Step 5: Install the symbol table in Volatility3 framework Copy the symbol table (.json or
.json.xz) to the correct folder for linux symbols, which is:

<volatility3_home_path>/symbols/linux/

With this setup Volatility3 is ready to scan both Windows and your specific Linux distribution memory
dumps.

Parallel execution of Volatility plugins: scan_memory.py

The memory processing module leverages the parallel execution capabilities of Volatility 3 to enhance
the efficiency of memory analysis. By distributing the workload across multiple CPU cores, the system
can concurrently process different memory artifacts, significantly reducing the time required for in-depth
analysis. This approach is particularly beneficial when dealing with large memory dumps or when multiple
plugins need to be executed in tandem. The script that manages this is: scan_memory.py

Main functionalities.

e Task orchestration for memory analysis: Builds a list of Volatility plugin executions across
multiple memory dumps organized by OS type (Linux/Windows) and case folders. Tasks include
dynamically constructing shell commands and managing output paths.

e Parallel plugin execution: Uses ThreadPoolExecutor to run multiple Volatility plugins concur-
rently, optimizing CPU usage and reducing total runtime. Progress is displayed via tqdm progress
bars.

e Logging and monitoring: All activity—including task start, success, failure, and cleanup—is
logged to a configurable file. Logs are timestamped and structured for easy review.

e Output validation and cleanup: Some volatility plugins, may fail to produce outputs for various
reasons (e.g. malformed memory data sector). So after plugin execution, output files with very
short content (metadata with empty output), are automatically removed.

¢ Configurable execution parameters: Global configuration variables control maximum parallel
workers, and logging settings.

47

Framework Implementation

Workflow.

1. The memory dump is parsed though the default case artefact directory (or optionally a custom
external folder).

2. Volatility3 plugins tasks are executed in parallel using a thread pool; each task logs its start and
reports success or failure.

3. After completion, output files with no content are removed to reduce clutter.

Notes and safeguards.

e Parallel execution is controlled by MAX_WORKERS to avoid overloading system resources.

e The script uses read-only operations on memory dumps, maintaining forensic soundness.

This design supports efficient and reproducible memory forensics at scale. Parallel task management
accelerates investigations, logging ensures accountability, and conservative cleanup maintains clarity in
results. By relying exclusively on read-only operations, the script safeguards forensic integrity, while
adjustable global parameters—such as the maximum number of workers—allow investigators to balance
performance against resource constraints in diverse environments.

Al-driven analysis of memory artifacts: ask_ai.py

After generating the Volatility plugin outputs, this script creates a report analyzing them using Al.

ask_ai.py is a dedicated Python utility script developed to automate the production of structured
forensic reports using LLMs.

The script generates narrative Markdown reports that emphasize anomalies and interpret their forensic
relevance. It integrates with large language models (LLMs)—either via the Gemini API or local LLMs
(e.g., Ollama)—to augment traditional forensic interpretation, while enforcing strict controls on rate
limiting, token management, and quota compliance to guarantee operational stability.

Functional Capabilities. The tool is organized into modular components, each addressing a distinct
stage of automated report generation:

e Forensic report generation: produces Markdown-formatted sections directly from plugin out-
puts, highlighting deviations of evidentiary importance and providing contextual interpretation.

e LLM integration: communicates with the Gemini API or local Ollama models to generate struc-
tured analyses, supporting multi-key rotation for quota exhaustion and configurable retry strategies.

e Rate limiting and token control: when using cloud-based services, enforces maximum requests
per minute (RPM) and tokens per minute (TPM), validates input size against service constraints,
and automatically waits, retries, or rotates API keys to maintain reliability.

e Input and output management: ingests target output files, dynamically constructs prompts,
and writes Markdown reports to structured case directories for reproducibility.

e Chunking strategy for large inputs: if the input exceeds model size limits, the script splits
the data into smaller row-based chunks, processes each sequentially, and reassembles results into a
unified forensic report. This part is extremly useful for local LLMs configurations, as larger input
token sizes significantly increase the model’s processing time.

Workflow. The operational sequence unfolds as follows:

1. The processing orchestrator calls this script sequentially with all the plugin outputs available in the
case.

2. The target system output is parsed and a structured prompt is dynamically constructed, instructing
the model to identify anomalies and generate an evidence-focused Markdown report.

3. For Gemini mode, the rate-limiting mechanism validates the prompt against quota thresholds (RP-
M/TPM), waiting when necessary and handling retries or API key rotation automatically.

4. For local mode, oversized inputs are chunked and processed iteratively, with intermediate results
merged into a coherent final report.

48

Framework Implementation

5. The resulting Markdown report is written to the appropriate case folder within a standardized
directory structure, maintaining traceability.

Through systematic analysis of memory outputs, the utility highlights suspicious activity and ab-
normal system behavior in a reproducible manner. The combination of automated anomaly detection,
structured reporting, chunk-based processing for large datasets, and robust operational safeguards ensures
that the generated outputs are both analytically valuable and evidentially sound. By integrating large lan-
guage models under strict control mechanisms, the tool supports investigators in producing transparent,
reliable, and actionable forensic analyses.

4.2.3 Network processing module

The network processing module automates the analysis of network traffic captures obtained from poten-
tially compromised machines. It leverages Wireshark for packet inspection and integrates with threat
intelligence services to identify suspicious IP addresses, domains, and other observable indicators.

The script scan_network.py implements this functionality, providing a reproducible and structured
workflow for network forensic triage.

Functional Capabilities. The module is organized into distinct components, each addressing a key
stage of network analysis:

e IOC extraction from PCAPs: Parses network capture (PCAP) files to extract potential Indica-
tors of Compromise (IoCs), including IP addresses, domains, and file hashes, using the Pcap helper
module.

e Threat intelligence integration: Queries the VirusTotal API for each extracted IOC, retrieving
summary statistics that classify detections as malicious, suspicious, harmless, or undetected.

e Rate limiting: Enforces configurable delays between queries (VT_RATE_LIMIT_DELAY) to ensure
compliance with API request constraints.

e Result aggregation and management: Consolidates query results into a CSV file while saving
detailed JSON reports for IOCs flagged as malicious or suspicious.

e Summary reporting: Produces concise overviews of malicious or suspicious IOCs, including
previews of relevant sections of the full JSON report for rapid assessment.

Workflow. The operational sequence proceeds as follows:

1. The processing orchestator sends command-line arguments, including the PCAP file to process, the
source of IOCs, and the destination case folder for output storage.

2. The script extracts potential IoCs from the PCAP file using the Pcap module.

3. For each I0C, the VirusTotal API is queried, with summary statistics collected while respecting
rate-limiting constraints.

4. Aggregated results are saved to a CSV file, and detailed JSON reports are retained for I0Cs
identified as malicious or suspicious.

5. A summary of all flagged IOCs is printed to the console, providing a quick reference for further
analysis.

Forensic Relevance. This module provides a systematic and reproducible method for identifying
and evaluating network-based Indicators of Compromise. By integrating threat intelligence services, it
enables rapid triage of suspicious IP addresses, domains, and o ther network observables, while producing
both high-level summaries and detailed reports suitable for forensic investigation.

Safeguards and Operational Notes.

e IOC types are normalized to comply with VirusTotal API endpoints.
e HTTP errors and missing data are handled gracefully, with statuses recorded in the results.

e Rate-limiting ensures compliance with API constraints, preventing service throttling or rejection.

49

Framework Implementation

e CSV outputs are sanitized to maintain readability and manageable file sizes, while detailed JSON
files preserve comprehensive forensic information.

Through these measures, the network processing module ensures that extracted IoCs, analyses, and re-
ports are accurate, reproducible, and evidentially reliable, supporting both automated triage and detailed
forensic investigation.

4.3 Creating the final report based on acquired evidence:
final_report_generation.py

The final _report_generation.py module automates the collection, formatting, and synthesis of artefacts
into a unified case report. It provides a scalable pipeline for aggregating outputs from disk, memory, and
network analyses, converting heterogeneous formats into structured Markdown, and enriching the results
with an Al-generated forensic summary.

The system begins by traversing predefined subfolders within a case directory, scanning for files with
supported extensions. Each artefact is loaded and normalized according to its type: plain text, JSON,
and Markdown are incorporated directly, while CSV files are parsed into structured tables and re-encoded
for readability. Unsupported or missing formats are logged with warnings, preserving transparency while
avoiding workflow interruptions. File contents are consistently formatted and prefixed with block-quoted
syntax, ensuring that original records remain visually distinct within the consolidated report.

Once artefacts are assembled, the module generates a hierarchical Table of Contents. This is derived
automatically from Markdown headings, with anchors formatted in a manner compatible with version-
controlled platforms such as GitHub. This guarantees navigability across potentially lengthy reports,
while maintaining alignment with forensic documentation standards.

A critical feature of the tool is the integration of large language models for evidence-driven sum-
marization. The system can operate either with the local Ollama API or remotely via Google Gemini,
selected by the investigator through a simple command-line flag. To accommodate long or fragmented
input, content can be segmented into word-based chunks, with each part summarized iteratively before
being synthesized into a final verdict. This chunking strategy prevents token overflows while enabling
contextual aggregation across intermediate summaries. When operating locally, retries and backoff mech-
anisms protect against transient failures during model inference. In cloud-based operation, the script
automatically rotates across multiple Gemini APT keys if quotas are exceeded, and introduces delays for
rate-limited or server-side errors. These safeguards ensure continuity of operation even under constrained
conditions.

The final report is composed of three integrated sections: the collected artefacts grouped by analysis
domain, the Al-assisted synthesis presented as a forensic summary and verdict, and a navigable Table of
Contents for structured access. The entire process is logged in detail, including discovered files, processing
decisions, API interactions, and error handling routines. This combination of deterministic artefact
collection and adaptive summarization provides both reproducibility and interpretative support, balancing
the rigor of forensic documentation with the efficiency of automated analysis pipelines. A more detailed
description of the contents of the final report is given in the next chapter.

50

Chapter 5

Results Discussion and Evaluation

5.1 Obtained reports and IoCs detected

The Framework generates a final report that includes all the results on the analysis taken by the automated
tools and Al, giving a fast overview of the findings and the IoCs detected on the target system. The report
is structured in different sections, each one dedicated to a specific aspect of the analysis. The sections
are the following:

5.1.1 Disk Analysis

This section aggregates filesystem and registry hives artifacts.

e MD reports: Contains all the reports generated by the Al regarding the AI crawling of the file
system configured (in config.py) folders. An example can be:

LLM Response

I have reviewed the contents of the ’/etc/cron.d/.placeholder’ file. The file
contains comments explaining its purpose: it’s a placeholder to prevent the
package manager (’dpkg’) from removing the ’/etc/cron.d’ directory if it
becomes empty. This is a legitimate practice, and the file itself contains

no executable commands. Therefore, my initial suspicion was unfounded, and
this file is not malicious.

The other files in the directory, ’anacron’ and ’e2scrub_all’, are standard system
cron jobs with modification dates well before any potential incident, making them
unlikely to be involved.

Based on this, the ’/etc/cron.d/’ directory does not appear to contain any anomalous
files or persistence mechanisms.

Observation: The content of ’/etc/cron.d/.placeholder’ confirms it is a benign system
file. The other files in the directory also appear to be legitimate. No anomalies were
found in this directory.

Final Answer: {}

e JSON reports: Contains the reports of the analysis of a single file:

*xetc_profile.d_debuginfod.csh.json*x*
File Analysis Report

nn llj son

{
"file_name": "/etc/profile.d/debuginfod.csh",
"suspicious": true,
"reasoning": "The script is intended to configure the DEBUGINFOD_URLS environment

51

Results Discussion and Evaluation

variable by reading from system configuration files. However, the very last line,
’setenv DEBUGINFOD_URLS \"\"’, unconditionally overwrites this variable with an
empty string. This action nullifies the entire purpose of the script and effectively
disables the debuginfod client functionality for any user logging in. This could
be a deliberate act of sabotage to hinder debugging and analysis on the system,
which is a suspicious modification.",
"indicators": [
"The script’s final command ’setenv DEBUGINFOD_URLS \"\"’ negates all preceding
logic and disables the intended functionality."
]
}

e TXT reports: Contains all the configurable registry key found in the extracted registry hives. for
example:

Registry autorun keys extracted from NTUSER_WsiAccount.DAT

[Software\Microsoft\Windows\CurrentVersion\Run]
OneDriveSetup = ’C:\\Windows\\System32\\OneDriveSetup.exe /thfirstsetup’

[Software\Microsoft\Windows\CurrentVersion\Run]
OneDriveSetup = ’C:\\Windows\\System32\\OneDriveSetup.exe /thfirstsetup’

[Software\Microsoft\Windows NT\CurrentVersion\Winlogon]
ExcludeProfileDirs = ’AppData\\Local;AppData\\LocalLow;
$Recycle.Bin;0OneDrive;Work Folders’

BuildNumber = 26100
FirstLogon = 0O

5.1.2 Memory Analysis

This section containts the AI generated reports of the configured volatility3 plugin raw outputs. It is
structured as follows:

e MD reports memory: Contains all the Al generated reports regarding the output analysis of
the volatility3 plugins. for example:

Memory Analysis - PsList
Plugin Overview

The ‘PsList‘ plugin enumerates the processes running on the system at the time of
memory acquisition.

This is a fundamental step in memory analysis, used to identify running
applications, system services,and potentially unauthorized or malicious processes.
The plugin provides key details for each process, including its Process ID (PID),
Parent Process ID (PPID), name, user context (UID/EUID), and creation time.

Narrative Analysis

The process listing reflects a standard boot sequence and user session for a
Linux graphical desktop environment.

The initial processes are kernel threads (PPID 2) and the ‘systemd‘ init
process (PID 1).These are followed by the startup of various system-level
daemons and services, all children of ‘systemd‘.

52

Results Discussion and Evaluation

Forensic Interpretation

The process ‘b560f76£7603e3e (PID 763) is highly suspicious and warrants
immediate further investigation. Its cryptic name, execution as root, and
persistence as a service are strong indicators of potential malicious activity.
The process appears to be a backdoor or remote access trojan designed to run
automatically at system startup.

xRecommended Next Steps:

1. Dump the process memory for PID 763 to perform static and dynamic

analysis on the executable.

2. Use the ‘netscan‘ plugin to determine if this process has established

any network connections.

3. Examine systemd service unit files (e.g., in ‘/etc/systemd/system/°¢,
‘/run/systemd/system/¢) for entries related to this executable.

4. Correlate the process creation time with system logs (e.g., ‘journalctl®,
¢/var/log/syslog‘) to find related events or error messages.

5. Analyze the command line arguments and environment variables for this

process to gain further context.

5.1.3 Network Analysis

This section contains a csv report about all the contacted IPs and domains within a time span of 60 seconds
analysis. The report checks all the ips and domains against the VirusTotal Known Threat intelligence
API to discover which vendors assign that value as malicious, suspicious or harmless. This kind of analysis
serves to an investigation to confirm a compromise with possible C2 communications. An example:

**xvt_ioc_results.csvkx*

""esv

ioc,malicious,suspicious,harmless,undetected

"{’type’: ’ip’, ’value’: ’91.189.91.100’}",0,0,60,35

"{’type’: ’domain’, ’value’: ’lc.liuddiaselli.com’}",3,3,58,31
"{’type’: ’domain’, ’value’: ’canonical-bos0O1l.cdn.snapcraftcontent.com’}",0,0,63,32
"{’type’: ’ip’, ’value’: ’185.125.188.61°}",0,0,60,35
"{’type’: ’ip’, ’value’: ’2001:67c:1562::1d’}",0,0,0,95
"{’type’: ’domain’, ’value’: ’dashboard.snapcraft.io’}",0,0,64,31
"{’type’: ’domain’, ’value’: ’api.snapcraft.io’}",0,0,63,32
"{’type’: ’ip’, ’value’: ’185.125.188.62°}",0,0,62,33
"{’type’: ’ip’, ’value’: ’162.159.140.220°}",0,0,62,33
"{’type’: ’domain’, ’value’: ’lc.yusfezu99.com’}",0,0,0,95
"{’type’: ’ip’, ’value’: ’2620:2d:4000:1012::fc’}",0,0,0,95
"{’type’: ’ip’, ’value’: ’202.58.105.227°}",0,0,0,95

"{’type’: ’ip’, ’value’: ’185.125.188.54°}",0,0,62,33
"{’type’: ’ip’, ’value’: ’91.189.91.101°}",0,0,60,35

"{’type’: ’ip’, ’value’: ’2620:2d:4000:1010::117°}",0,0,0,95
"{’type’: ’ip’, ’value’: ’2620:2d:4000:1010::42°}",0,0,0,95
"{’type’: ’ip’, ’value’: ’172.66.0.218°}",0,0,61,34

"{’type’: ’ip’, ’value’: ’2620:2d:4000:1010::2d6°}",0,0,0,95
"{’type’: ’ip’, ’value’: ’185.125.188.57°}",1,0,60,34
"{’type’: ’domain’, ’value’: ’lc.zhanaslifa32.com’}",3,1,60,31

5.1.4 Forensic Summary & Verdict

This final section fuses disk, memory, and network findings into a concise narrative using Al, trying to
give a final verdict about the state of the machine: Compromised (Suspicious) or Clean (Inconclusive /
Not Compromised). The Al also suggests next steps for the forensic team to continue the investigation.
For example

53

Results Discussion and Evaluation

Forensic Summary & Verdict
Suspicious/malicious activity (report)x

A comprehensive analysis of the provided disk, memory, and network evidence reveals
multiple correlated indicators of compromise. While forensic analyst activity was
identified and excluded, several key findings strongly suggest the system has been
compromised.

1. **Persistence Mechanism Established on Disk:**
Disk analysis uncovered a suspicious systemd service file named
‘remote-client.service‘ created in ‘/etc/systemd/system/¢ on 2025-09-22.
The ‘multi-user.target.wants‘ directory was modified minutes later, indicating
this service was enabled to start automatically on boot. This is a common technique
used by malware to establish persistence.

2. =**xSuspicious Process Running in Memory:**
Memory analysis corroborates the disk findings. A process named ‘b560f76£7603e3e°
(PID 763) was found running with root privileges (UID 0). Its parent process is
‘systemd® (PID 1), and its start time of ‘2025-09-22 13:33:55°¢ aligns closely with
the creation of the ‘remote-client.service‘ file. The randomized, hexadecimal-like
process name is a strong indicator of malware attempting to evade detection.

3. *xNetwork Communication with Malicious IOCs:*x*
Network analysis identified communications with domains and an IP address flagged
as malicious by VirusTotal. Specifically, the domains ‘lc.liuddiaselli.com‘ and
‘lc.zhanas1fa32.com‘, and the IP address €185.125.188.57¢ have multiple malicious
verdicts. The pattern of the domain names is consistent with Domain Generation
Algorithms (DGAs) often used for Command and Control (C2) communication.

4. #*xAnti-Forensic/Anti-Debugging Modifications:**
Two system configuration scripts, ‘/etc/profile.d/debuginfod.sh‘ and
‘/etc/profile.d/debuginfod.csh‘, were modified. In both cases, a line was added to
unconditionally clear the ‘DEBUGINFOD_URLS‘ environment variable, effectively
disabling the ‘debuginfod‘ client. This action serves no legitimate purpose and is
likely an attempt to hinder debugging and analysis of processes on the system.

Forensic analyst activity, including the use of ‘su‘, compiling and loading the LiME
kernel module with ‘insmod‘, and handling a sample file named ‘virus.elf‘, was observed
in the memory analysis but is considered benign and consistent with the evidence
collection process.

Final Verdict: Suspicious

Reasoning: The evidence is strongly correlated across disk, memory, and network
artifacts. A persistence mechanism (‘remote-client.service‘) on disk directly corresponds
to a suspicious, randomly named process (‘b560f£76£7603e3e‘) running in memory.

This activity is further linked to network communications with known malicious domains
and an IP address. The presence of anti-forensic modifications to system scripts
strengthens the conclusion of malicious intent.

**Next Steps for Forensic Team:*x*

1. **Analyze the Service File:** Examine the contents of
‘/etc/systemd/system/remote-client.service‘ to determine the full path of the
executable it launches.

2. **Recover the Malware:** Based on the service file, locate and recover the

binary associated with the ‘b560f76£7603e3e‘ process for static and dynamic analysis.
3. *xFull Network Log Review:** Correlate the malicious IOCs from the network
report with full packet captures or firewall logs to determine the timeline and
extent of C2 communication.

54

Results Discussion and Evaluation

5.2 Prompt engeneering

A focused prompt-engineering strategy was essential to make the forensic AI components accurate, ex-
plainable, and operationally reliable at scale across disk, memory, and network artefacts. The final prompt
set, that can be consulted in A.4, enforces tight output schemas, embeds domain guardrails that suppress
false positives from forensic tooling and workflows, and enables chunked, stateful reasoning that respects
token and latency constraints for both local and cloud LLMs. In practice, these design choices serve four
main goals:

Standardize outputs for deterministic downstream parsing

e Reduce hallucinations by constraining style and scope

Encode forensic domain caveats (e.g., LIME, Dumplt side-effects, volatility3 plugin malfunctions)

Support long-context inputs via chunking and summarization for local models under strict token
context lenght.

These goals reflect the framework’s modular pipeline and the dual-mode operation with Gemini and local
LLMs described in Chapter 4.

Output schemas and parsing Every operational prompt mandates exact formats (JSON keys or
Markdown sections) so that agent outputs can be machine-parsed without brittle heuristics. Examples
include the DISK file analyzer’s strict JSON and the chunk summarizers’ fixed-key JSON. Also, to reduce
randomness in the responses for local models, the TEMPERATURE parameter of the LLM model was set
to ’0.1°. The temperature parameter is used to control the level of creativity and variability in the model’s
outputs. A lower value (closer to 0) makes the responses more deterministic and focused as we need in
our case because an agentic behevior is needed for post processing, while higher values increase diversity
and randomness, which can lead to more creative but potentially cause promblems in the parsing. This
minimized post-processing errors and enabled reliable aggregation into the final report generator that
composes multi-source narratives deterministically.

Domain guardrails to reduce false positives Prompts explicitly whitelist analyst actions (e.g.,
extracting password-protected samples “infected”, LIME insmod, memory acquisition tools) and caution
against reading plugin parsing artifacts as malicious (e.g., absurd UID/GID, corrupted names, impossi-
ble timestamps). This codifies recurring caveats from the methodology and implementation, materially
lowering false positives in Volatility outputs and during disk scanning decisions. The final summariza-
tion prompt further enforces conservative verdicting, requiring corroboration across evidence types before
“Suspicious,” and allowing “Not Compromised” or “Inconclusive” otherwise.

Token management and chunking Long artefacts (directory listings, Volatility dumps, multi-
plugin corpora) are processed via chunk prompts that:

e preserve row boundaries
e filter for anomalous/relevant lines
e carry compact context between chunks

e emit stable JSON for lossless merge

Agentic control and action formatting The disk-folder analysis prompt implements a con-
strained think—observe—act loop: the LLM must decide anomalies, propose a single highest-priority Action
with exact CLI syntax, and keep all other leads in “Final Answer” for later follow-up. This reduced tool-
chaining unuseful information and encouraged depth-first exploration with traceable state summaries via
the DISK summarizer prompt, aligning with the LangGraph state machine and auxiliary scripts (catfile,
folderscan).

Date- and path-aware heuristics Disk prompts embed precise rules for timestamp anomalies
(future-only, strict greater-than comparisons) and platform-accurate path separators, plus treatment of
symlinks and SUID/SGID anomalies. These micro-heuristics, enforced in-prompt, cut spurious flags from
legitimate historical files and from virtualization artefacts intentionally excluded, improving precision
without external code filters.

55

Results Discussion and Evaluation

Conservatism and evidence correlation The final report prompt encodes conservative decision
rules: do not over-weight single weak artefacts; require cross-domain corroboration (e.g., disk persistence
plus matching network hits) for “Suspicious”; and emphasize follow-up steps over categorical claims under
ambiguity. This directly improved verdict calibration across the integrated report generator described in
the implementation

Cloud vs Local Because local LLMs have smaller contexts and slower long-input throughput, the
prompts emphasize chunking, brevity, and deterministic schemas; for cloud models, rate limits and key
rotation are complemented with prompts that avoid verbose reasoning and strictly control output length.
In both modes, the same guardrails and schemas yielded comparable structure and reduced variance,
facilitating fair efficiency and privacy comparisons in Chapter 5.

Representative prompt patterns

e Strict JSON for file triage with named keys and boolean “suspicious” to enable automated counting
and dashboards. The prompt reminds models of current date handling to avoid time-based false
positives.

e Folder analysis with “LLM / Observation / Final Answer / Action” blocks to segment reasoning,
findings, and next-step tooling, capped at a single action to stabilize the loop and logs.

e Memory reporting with baseline-aware comparison, a compact summary table, narrative signifi-
cance, and explicit caveats on LiME and plugin artifacts, producing courtroom-friendly sections
with minimal editing.

e Chunk templates that force single-JSON-object outputs and forbid extra prose, preventing parser
failures during large-batch runs across plugin outputs and directory trees.

5.2.1 Observed effects in practice

Suppressing known analyst- and tool-related artefacts, together with filtering plugin anomalies, reduced
false positives across both memory and disk phases, thereby strengthening the reliability of automated
alerts prior to human review. At the same time, the combination of chunking and summarization preserved
throughput for local models, prevented quota overruns in cloud deployments, and, through the use of
consistent schemas, simplified the merging of results in the reporting pipeline. Finally, the enforcement of
a single-action constraint and the application of a future-date suppression rule minimized noisy escalations,
ensuring that tool invocations were directed toward the highest-risk files and directories while maintaining
a reproducible audit trail in the agent logs.

5.3 Why Local LLM: suspect privacy concerns in the forense
investigation

Local LLM inference keeps sensitive disk, memory, and network artefacts on-premise, reducing exposure of
PII, credentials, and proprietary code to third parties and aligning with evidentiary integrity requirements.
It preserves chain of custody and data sovereignty by avoiding outbound transfers and cross-border
processing, simplifying audits and legal defensibility. It eliminates cloud-side telemetry and retention risks,
allowing strict egress controls and isolated execution within analysis VMs or enclaves with least-privilege
access to artefact slices. It supports deterministic redaction and hashing workflows before inference, while
maintaining the framework’s conservative, corroboration-based verdicting without leaking intermediate
findings to external providers.

5.4 Evaluation of automation effectiveness

The Automated framework was tested against artefacts collected from Virtual Machines infected with
one of the samples described in Chapter 3 or not infected at all, to see the framework effectiveness of
detecting post-mortem compromises in a machine.

All the referred reports in the next sections can be found in the github link alongside the Framework
PoC at https://github.com/fuju/ForensicAutonomousFramework

56

https://github.com/fuju/ForensicAutonomousFramework

Results Discussion and Evaluation

5.4.1 Windows: Ludbaruma Infected Machine

Groud truth from AnyRun live sandbox reports

The Any.Run live sandbox analysis of the Ludbaruma sample provides a reliable ground truth for the
Windows infection scenario with this malware, capturing both static identifiers and the dynamic behav-
iors that define its tradecraft on Windows. The submitted object is a PE32 GUI executable tagged as
Ludbaruma and adjudicated “Malicious activity”.

At runtime, the specimen dropped and executed multiple binaries named to mimic core Windows
processes—WINLOGON.EXE, SERVICES.EXE, CSRSS.EXE, and LSASS.EXE in the user-scoped Ap-
pData Local WINDOWS directory, all bearing the same “Oncom” company string and 0.00.0020 version,
signaling process masquerading as part of the execution chain annotated by the behavior graph with
LUDBARUMA labels on the parent and the spawned WINLOGON.EXE. These faux system-named chil-
dren inherited medium integrity under the “admin” account context and were associated with file system
activity including executable drops, creation in user directories and temporary paths, and a failed attempt
to create an executable under the Windows directory, with additional manipulation of desktop.ini that
may serve to cloak folders.

Persistence is unambiguously established via registry-based mechanisms, prominently a screensaver
hijack: the sample and its spawned WINLOGON.EXE wrote HKEY_CURRENT_USER/Control Pan-
el/Desktop values SCRNSAVE.EXE to C:/WINDOWS/system32/Mig mig.SCR, ScreenSaverIsSecure to
0, and ScreenSaveTimeOut to 600, which Any.Run elevates as “The process uses screensaver hijack for
persistence.” Complementing this vector, the malware set multiple Run keys across HKCU and HKLM /-
SOFTWARE/WOWG6432Node to auto-start both a payload at C:/WINDOWS/xk.exe (value “xk”) and
the masquerading binaries via values MSMSGS, Serviceadmin, Logonadmin, and System Monitoring,
pointing to the dropped WINLOGON.EXE, SERVICES.EXE, CSRSS.EXE, and LSASS.EXE under the
user’s AppData Local WINDOWS path, while policy hardening keys were abused to degrade visibility by
writing NoFolderOptions=1 and DisableRegistryTools=1. Any.Run explicitly flags “Changes the autorun
value in the registry,” “Process was added to the startup,” and “Executable file was dropped,” aligning
with a registry-centric autorun strategy that blends user and WOWG6432Node locations to ensure reliable
logon persistence and hinder remediation.

Network and interprocess communication observations show a local SMB named pipe interaction
by WINLOGON.EXE via the srvsvc pipe with data transfer, a pattern often associated with lateral
coordination or local service enumeration, though the standout behavior in this run remains the local
persistence and masquerading rather than overt command-and-control; ancillary processes like slui.exe
queried proxy configuration and software policy settings, and background activity from Outlook was
captured but appears orthogonal to the core malicious chain. The behavior overview further lists “Known
threat” and “Inspected object has suspicious PE structure,” corroborating the family tag and the packed
nature of the binary.

In sum, the sandbox-derived ground truth for the Ludbaruma infection on Windows demonstrates
a compact, packed dropper that achieves persistence through an HKCU screensaver hijack and multi-
ple autorun Run keys, deploys masquerading executables under user AppData with system-like names,
performs desktop.ini manipulation suggestive of cloaking, and engages SMB srvsvc pipe communication,
collectively producing a set of high-confidence Indicators of Compromise across disk, registry, and process
artifacts that are consistent with dropper-led, registry-persistent malware on modern Windows hosts.

Autonomus Framework Final Report and Comparison

The autonomous framework reproduces core elements of the ground truth profile by extracting Run-key
persistence for system-like payloads under user profile paths and identifying anomalous Startup artefacts
indicative of auto-execution on logon. Specifically, the pipeline surfaces HKCU Run entries pointing to
WINLOGON.EXE and SERVICES.EXE under Local Settings\Application Data\ WINDOWS, mirroring
the ground truth’s masquerading and registry-based autorun strategy within the user context. In parallel,
the Startup folder inspection flags an unexpected “Empty.pif” executable in the all-users Startup path as a
strong persistence signal, expanding coverage beyond the registry and reinforcing multi-vector persistence
detection in line with the dropper’s objectives. The file was indeed a malicious payload as confirmed
manually later after the review of the report with a virustotal sandbox scan, that can be consulted at www.
virustotal.com/gui/file/5516e1764287a417ab2fb7710333d81fbcc4986c075583ccbecd0df8cd434786.

In volatile memory, the framework’s Volatility3 workflow detects false positive caused by plugin mal-
function: it wrongly address this as ”process masquerading” consistent with the tradecraft evidenced

57

www.virustotal.com/gui/file/5516e1764287a417ab2fb7710333d81fbcc4986c075583ccbecd0df8cd434786
www.virustotal.com/gui/file/5516e1764287a417ab2fb7710333d81fbcc4986c075583ccbecd0df8cd434786

Results Discussion and Evaluation

on disk, including truncated executables such as fontdrvhost.ex and VBoxService.ex, which emulate le-
gitimate binaries while deviating in naming and location semantics. This happens because the 'psscan’
plugin wrongly reconstructs the name of a process truncating it, in this case: ”VBoxService.ex” or ”font-
drvhost.ex”.

Network telemetry enrichment via VirusTotal highlights at least one contacted IP adjudicated mali-
cious by a vendor, providing a tentative external corroboration channel while acknowledging that Lud-
baruma’s standout behaviors in the ground truth are local persistence and masquerading rather than
overt C2 in the observed window.

To highlight agreement and divergence, four comparisons are instructive.

e First, both the ground truth and the framework converge on user-scoped masquerading of system
process names and Run-key autoruns, confirming the same persistence vector and naming scheme
within the user profile hierarchy.

e Second, the framework surfaces an additional Startup artefact (Empty.pif) not enumerated in the
ground truth narrative, plausibly reflecting environmental or temporal variation and illustrating
the framework’s breadth in persistence enumeration across filesystem loci beyond registry paths
alone.

e Third, while Any.Run emphasizes screensaver hijack keys, these specific keys are not explicitly
present in the provided framework outputs, delineating a coverage gap that motivates extending
registry parsing to Control Panel\Desktop hives for high-recall persistence validation.

e Forth, the memory scan produced a false positive caused by a volatility plugin malfunction, misclas-
sifying some legitimate processes as masquerading executables. This illustrates the need for cross-
plugin corroboration and truncation-aware heuristics to avoid such artefacts being misreported as
true malicious activity. This should be already addressed by the memory prompt part:

Handle plugin malfunctions carefully: do not interpret them as malicious
indicators.

Examples:

- Extremely large or non-standard values for PID, PPID, UID, GID, EUID, or EGID.
- Corrupted or garbled process names.

- Impossible timestamps (e.g., year 1930 or similar).

as can be seen in A.4. These guidelines should help reduce false alarms, though in some cases the
ATl may still flag them incorrectly as can be seen here.

Effectiveness is anyway evidenced along three dimensions.

e Accuracy is demonstrated by reproducing core Ludbaruma IoCs across disk (user-path WINLO-
GON.EXE/SERVICES.EXE) and autorun mechanisms, yielding a final verdict of suspicious that
coheres with the sandbox adjudication and behavioral expectations for a dropper maintaining logon
persistence.

e Coverage iis achieved through the concurrent harvesting of Startup folders, Run keys, Winlogon
context, memory process scans, and network IoC triage, enabling cross-artefact triangulation that
mitigates false negatives common in single-source workflows.

e Actionability is reflected in concrete next steps emitted by the pipeline—process dumping, artefact
isolation, and IoC-driven network scoping—which shorten the gap between detection and investiga-
tive escalation in post-mortem operations.

In summary, when evaluated against the Any.Run ground truth, the framework reliably detects Lud-
baruma’s hallmark persistence and masquerading behaviors and augments the picture with Startup-based
persistence findings, thereby validating the automation approach while revealing precise opportunities to
expand registry hive coverage for screensaver hijack and WOW6432Node keys. This outcome supports the
thesis claim that IoC-focused, Al-assisted automation can improve efficiency and consistency in malware
post-mortem analysis on modern Windows hosts.

5.4.2 Windows: Conhoz Loader Infected Machine

Groud truth from AnyRun live sandbox reports

The Any.Run live sandbox execution of conhoz.exe on Windows establishes a clear ground truth of a
UPX-packed loader that performs system reconnaissance, aggressive persistence via Task Scheduler and

58

Results Discussion and Evaluation

WMI, security evasion through Windows Defender exclusions, service and firewall manipulation with
netsh/sc, and multi-endpoint HTTP communications indicative of payload staging and C2 checks. The
sample is a PE32 console executable compressed with UPX, tagged as a loader with “evasion” traits.

The malware spawns a dense chain of living-off-the-land binaries to assert control, persist, and tam-
per with system configuration. It creates and removes numerous scheduled tasks, including the cre-
ation of “MyTask” to execute C:/Windows/Temp/onhoz.exe as SYSTEM every 5 minutes and “oka”
to run C:/Windows/inf/aspnet/lsma22.exe as SYSTEM every 3 minutes, alongside multiple deletions of
tasks named in Windows-like patterns (e.g., “WindowsUpdatel/3,” “MicrosoftsWindows[u/z/a],” “Up-
date2/3/4”), indicating both installation and cleanup of autorun mechanisms. It further issued schtasks
/run on “oka,” confirming activation of the scheduled payload. Complementing Task Scheduler, the
specimen exercised WMI-based persistence and cleanup in the root/subscription namespace by adding
and deleting __EventFilter, CommandLineEventConsumer, ActiveScriptEventConsumer, and FilterTo-
ConsumerBinding objects (e.g., deleting consumers “killmm3/killmm4”), a hallmark of stealthy autorun
and tasking that survives restarts and user context changes.

Security and service posture were actively manipulated to reduce detection and enable payload execu-
tion. The process executed PowerShell to add broad Windows Defender exclusion paths that cover Temp,
Debug, Public Pictures, various INF /aspnet and system directories, SysWOWG64 caches, and service pro-
file Temp directories, a move that materially degrades on-access scanning in the most likely drop zones.
It used IFEO (Image File Execution Options) to set Debugger values for uihost32.exe, uihost64.exe, and
vid001.exe, a technique discussed in chapter 2, and attempted ACL changes via cacls/icacls to protect
scripts and block wscript/cscript execution, suggesting anti-remediation and script handling controls.
Service management via sc.exe included configuring a service xWinWpdSrv and attempts to start it,
consistent with service-mode persistence even if the referenced service was absent at the time (Exit code
1060).

Network stack controls were tuned through netsh and IPsec policy manipulation in ways that align
with lateral movement gating and exfiltration facilitation. The sample created and assigned an IPsec
“BlockPorts” policy with filter lists and rules affecting TCP ports 135 and 445 (add/delete mirrored
filters, create/delete firewall rules “deny tcp 139/445,” and broad “tcp all” allow rules), toggled firewall
state across profiles, and added/deleted custom rules, indicating dynamic reconfiguration to both restrict
detection vectors and maintain command channels. The command flow also included repeated PING
delays to sequence operations and TASKKILL invocations targeting mssecsvc.exe and named payloads,
implying either cleanup of competing malware or staged updates.

System reconnaissance and environment shaping steps were evident throughout execution. Conhoz.exe
read machine GUID, computer name, product name, environment variables, and Internet Settings, re-
peatedly touching WPAD keys, zone mappings, proxy enablement, and legacy connection settings, in-
cluding writing and deleting values under HKCU /Software/Microsoft/Windows/Current Version/Internet
Settings and associated WPAD subkeys, which influences outbound routing and detection evasion. The
program created files and folders under user directories and Temp, executed batch files (wmia.bat), and
hid command output, while issuing multiple WMIC queries that enumerate and prune processes (includ-
ing a predicate to delete svchost.exe instances with unexpected paths), demonstrating both situational
awareness and suppression of suspicious host artifacts.

Overall, the sandbox ground truth for conhoz.exe typifies a modern UPX-packed Windows loader:
it seeds persistence through both scheduled tasks (SYSTEM context, frequent intervals) and WMI con-
sumers/filters, disables or sidesteps protections via Defender exclusions and ACL edits, prepares service-
based hooks, and actively reshapes the firewall/IPsec surface, while establishing multiple external HTTP
touchpoints that trigger IDS signatures associated with executable delivery and scripted tasking. These
observations yield high-confidence IoCs across binary hashes, scheduled task names and paths, WMI sub-
scription artifacts, Defender exclusion registry usage via PowerShell, IFEO Debugger keys, and specific
external IPs/domains contacted during the run.

Autonomus Framework Final Report and Comparison

The autonomous framework reproduces key elements by extracting a cluster of suspicious tasks (e.g.,
Mysal, Mysa2, MyTask, ok, oka) and confirming an operational task that executes the malicious file
C:\windows\temp\conhoz.exe as SYSTEM every 5 minutes, evidencing scheduled task—based autorun
and payload execution. It further detects security control tampering by identifying removed triggers
from the Windows Defender Scheduled Scan task on the incident date, consistent with defense evasion
highlighted in the sandbox, while additional anomalies (e.g., RegisterDevice WnsFallback timestamp align-
ment) support a coordinated configuration phase.

59

Results Discussion and Evaluation

Volatility memory analysis augments attribution: an anomalous parent-child relationship where a
process called svchost.exe spawns ctfmon.exe suggests process abuse in a service context, Moreover,
svchost.exe instances holding handles to the IFEO registry hive suggest IFEO-based hijack preparation
or persistence, reinforcing the sandbox’s IFEO narrative through memory evidence. These findings tie
autorun configuration to runtime manifestations, enabling cross-artefact reasoning about loader lifecycle
and execution surfaces.

Network enrichment via VirusTotal shows at least one contacted IP with a malicious verdict by a
vendor, partially aligning with the sandbox’s multi-host HTTP telemetry and IDS detections despite
dataset emphasis on benign Microsoft/CDN infrastructure, and reflecting the loader’s tendency to pair
local foothold with opportunistic HTTP staging.

In summary:

e Both analysis confirm Scheduled Task persistence with explicit execution paths and SYSTEM
context, validating task parsing fidelity.

e Both attest to IFEO involvement: the sandbox via Debugger keys and the framework via IFEO
handle activity in memory, indicating the same evasion/persistence vector from distinct evidence
planes.

e The sandbox documents WMI subscriptions and Defender exclusion keys, which are not yet enu-
merated by the framework output, motivating module extensions for WMI repository parsing and
Defender policy artefact extraction to improve recall on stealthy persistence and AV evasion.

Overall, the framework demonstrates accuracy by reproducing core loader IoCs, breadth by correlating
disk, memory, and network artefacts, and actionability via concrete response steps (isolation, payload and
memory dumps, IFEO audit, network correlation), thereby validating the automation approach against
the Any.Run ground truth while revealing specific opportunities to expand WMI and Defender artefact
coverage.

5.4.3 Windows: Not Infected Machine

In the report of a not infected windows machine analysis, the disk and task artefacts match a non-
infected Windows baseline: user/system Startup folders contain only standard desktop.ini, registry
Run/RunOnce keys list benign Microsoft OneDrive entries, and \Windows\System32\Tasks enumerations
(e.g., XblGameSaveTask) are consistent with stock services without anomalous names or timestamps.
This convergent absence of persistence IoCs across multiple loci corroborates the ground truth of a clean
system.

Network reputation checks predominantly return harmless for Microsoft CDN and telemetry end-
points, with a single IP (150.171.22.17) flagged by one vendor, an expected low-confidence outlier for
large CDNs absent any process or flow attribution. In a clean baseline, such solitary reputation noise
should not influence the overall classification without corroborating evidence.

Memory analysis reported two anomalies for svchost.exe (PID 1648): duplicate .EPROCESS records
via psscan and two handles with code-like names, which the report interprets as potential DKOM and in-
jection. Yet, without confirmatory pslist concealment, malfind/d111ist/vadinfo indicators, or process-
bound network correlations, these findings are low-specificity and may reflect stale structures or handle
decoding artifacts common in live captures.

Three overstatements are evident.

e DKOM is inferred from duplicate PIDs without validating hidden status or memory region anoma-
lies, exceeding evidential support in a clean context.

e The “code-like” handle names are elevated without verifying handle types, owning services, or
alternative parsing explanations, risking misclassification of benign artifacts.

e The final verdict suggests linkage to a weak VirusTotal flag despite no process attribution, illus-
trating narrative drift beyond available data.

Taken together, the framework shows strong precision in disk artefacts and scheduled tasks, as well as
appropriate network whitelisting. However, it disproportionately elevates ambiguous memory heuristics
to a “Suspicious” verdict, even in a clean-host scenario. Introducing a correlation threshold—requiring
consistent indicators across at least two artefact classes before escalating severity—would better align
reporting with the clean ground truth and mitigate LLM-style hallucinations in baseline comparisons.
Although this correlation threshold is already enforced at the prompting stage, the Al occasionally still
overstates findings, leading to LLM-style hallucinations despite the safeguard.

60

Results Discussion and Evaluation

5.4.4 Linux: Prometei Infected Machine

Groud truth from AnyRun live sandbox reports

The Any.Run live sandbox execution of the Linux ELF sample on Ubuntu 22.04.2 provides authoritative
ground truth consistent with Prometei botnet behavior, capturing both static and dynamic identifiers.
The binary is identified as an ELF 64-bit LSB executable for x86-64, statically linked and notably lacking
a section header, a trait often observed in minimally structured droppers; with tags “prometei” and
“botnet.

Dynamic behavior begins with privilege preparation and service-based persistence, aligning with
Prometei’s known emphasis on durable footholds for resource hijacking. The launcher chain employs sudo
to change ownership and mark the ELF executable, then executes the payload under root, after which the
specimen interacts intensively with systemd: daemon-reload, enable, and start operations target a unit
named uplugplay.service, culminating in the creation of /usr/lib/systemd/system/uplugplay.service and
the invocation of /usr/sbin/uplugplay as a persistent service; Any.Run explicitly flags “Writes to Systemd
service files (likely for persistence achievement)” and records subsequent starts of uplugplay with the -
Dcomsve parameter, affirming service-managed persistence in the host OS. The behavior summary also
notes “Process was added to the startup” and “Process starts the services,” reinforcing the operational
pivot from a transient dropper to a resident service executing under root.

Process and host-enumeration activity are pervasive and consistent with a botnet client staging for
mining and command reception. The specimen and its service component issue repeated environment
checks—hostnamectl, uptime, uname -a—and probe for the presence of process names such as uplugplay
and upnpsetup via pgrep and pidof, suggestive of self-monitoring and conflict avoidance routines common
to long-running Linux bot clients. It reads /etc/hosts, touches profile files, and records a small operational
footprint in /etc/Commld, while Any.Run lists six malicious and two suspicious processes overall during
this task, with uplugplay singled out by both heuristic and network-based detections as the primary
malicious component. The service’s execution context is root with unknown integrity level, amplifying
the potential for system modification and network reconfiguration beyond user space.

Network telemetry strongly corroborates Prometei command-and-control patterns and infrastructure,
including detections tied to the family’s “xinchao” motif. The uplugplay service issues HTTP GET
requests over cleartext to multiple external endpoints: 152.36.128.18 at /cgi-bin/p.cgi with parameters
including base64-encoded host inventory and environment descriptors; 18.142.91.111 at xinchaocccfea.net
/cgi-bin/p.cgi with auth and enckey parameters, marked malicious; and 85.214.228.140 at xincccfea.org
/cgi-bin/p.cgi returning 404, all consistent with multi-endpoint C2 or fallback logic. The debug output
logs repeated Suricata alerts “ET MALWARE Prometei Botnet CnC DGA - xinchao Pattern,” as well as
“Possible Compromised Host AnubisNetworks Sinkhole Cookie Value” indicators, strengthening attribu-
tion to Prometei and indicating potential interaction with sinkholed infrastructure. Baseline whitelisted
traffic to connectivity-check.ubuntu.com and api.snapcraft.io is also recorded, providing environmental
context and preventing false attribution of benign OS telemetry to the malware.

Taken together, the sandbox-derived ground truth shows a Prometei Linux implant that establishes
persistence via a systemd unit (uplugplay.service) and runs a root-owned backdoor client (uplugplay)
which conducts host reconnaissance and engages in HT'TP communications with infrastructure patterned
around “xinchao,” triggering IDS signatures specific to the Prometei botnet. These observations yield
high-confidence Indicators of Compromise spanning binary hashes, the systemd service path/name (/us-
r/lib/systemd/system/uplugplay.service; /usr/sbin/uplugplay), the on-host artifact /etc/Commld, and
specific external IPs and domains (152.36.128.18, 18.142.91.111 at xinchaocccfea.net, 85.214.228.140 at
xincecfea.org) with characteristic /cgi-bin/p.cgi URLSs, forming a comprehensive basis for disk, memory,
and network detection within Linux-focused forensic workflows.

Autonomus Framework Final Report and Comparison

The autonomous framework corroborates this profile by identifying a root-executed uplugplay process
chain in memory (uplugplay into sh into uplugplay), with parentage from systemd (PPID 1), which
is emblematic of service-managed daemonization and parent detachment, thereby confirming a resident
implant rather than transient execution; process lineage and timestamps in pslist further align with the
sandbox’s persistence narrative, enhancing attribution fidelity for the observed runtime.

Disk artefacts explicitly surface the persistence mechanism: the unit file located in the following path
/usr/lib/systemd/system/uplugplay.service configured to launch /usr/sbin/uplugplay, alongside a
clean baseline across system cron and systemd directories otherwise showing only standard units and

61

Results Discussion and Evaluation

VMware/Snap dependencies, which concentrates suspicion on the uplugplay pair as the single anomalous
service footprint. In parallel, /etc/profile.d/debuginfod.sh and /etc/profile.d/debuginfod.csh
contain terminal lines that clear DEBUGINFOD_URLS, which the analysis classifies as deliberate defense
evasion rather than a benign variance, because the override unconditionally disables debuginfod and is
inconsistent with the scripts’ prior logic and typical packaging defaults.

Network enrichment flags multiple Canonical/Snapcraft endpoints as benign while isolating three IPs
with vendor-malicious verdicts (185.125.190.18, 185.125.190.27, 185.125.188.57), furnishing an external
corroboration channel that can be temporally correlated with the active uplugplay runtime to strengthen
C2 attribution despite the absence of family-specific URL motifs in this dataset. Extending URL-path
extraction, high-port correlation, and content-signature matching would further improve recognition of
Prometei-style patterns in future runs without relying solely on reputation tallies.

Three comparisons emphasize convergence and residual gaps.

e Both sources confirm a root-owned uplugplay process tree anchored to systemd, validating volatile
attribution against service-based persistence and establishing a coherent disk-to-memory linkage
for the implant.

e The framework enumerates the exact unit and binary paths:
(/usr/lib/systemd/system/uplugplay.service, /usr/sbin/uplugplay) and flags a false positve
debuginfod script sabotage as defense evasion.

e Family-specific C2 markers (for example, “xinchao” and /cgi-bin/p.cgi) remain absent in these
outputs, motivating module extensions for HT'TP path extraction and signature matching to reach
parity with sandbox detections when such telemetry is available.

Overall, the framework demonstrates accuracy by reproducing the implant’s runtime identity and
systemd lineage, breadth by correlating disk persistence, in-memory execution, and reputation-backed
network endpoints, and actionability through concrete next steps (isolation, hashing and reversing of the
malicious binary /usr/sbin/uplugplay, targeted memory dumps for PIDs 1597/1599, and time-aligned
flow correlation), thereby validating the automation approach while identifying focused enhancements for
Linux persistence enumeration and C2 pattern reconstruction in subsequent iterations.

5.4.5 Linux: GhOst RAT Infected Machine

Groud truth from AnyRun live sandbox reports

The Any.Run live sandbox execution of the Linux ELF sample on Ubuntu 22.04.2 establishes a clear
ground truth consistent with GhOst-family Remote Access Trojan behavior, including explicit Suricata
detections for GHOST C2 traffic and outbound communications to infrastructure flagged as malicious.
The sandbox tags the specimen as “remote,” “rat,” and “ghOst,” and classifies the verdict as “Malicious
activity,” providing a robust static and behavioral fingerprint for downstream IoC correlation.

Dynamic execution shows privilege-oriented setup followed by service-based persistence consistent
with a Linux RAT installing itself as a systemd-managed client. The launcher sequence uses sudo to
change ownership and permissions of the ELF, then invokes the payload under root, after which the
program interacts with systemd to daemon-reload, enable, and start a unit named remote-client.service,
with corresponding file writes to /etc/systemd/system/remote-client.service and the creation of runtime
generator artifacts characteristic of systemd activation workflows; Any.Run flags “Writes to Systemd
service files (likely for persistence achievement)” with activity attributed to systemd and sudo during the
run, indicating high-confidence service persistence on Ubuntu targets.

Process and file activity further corroborate RAT staging and operational logging. The behavior pages
enumerate the creation of /home/user/Desktop/launch_time.txt and /home/user/Desktop/logs/remote-
client.log by the ELF process, suggesting explicit time-stamping of execution and operational telemetry
under a logs directory, while the behavior graph notes “Process was added to the startup,” “Executable file
was dropped,” and “Task has injected processes,” collectively aligning with a service-managed persistence
and possible in-memory tasking patterns often observed in RAT families. The task recorded 290 total
processes with 71 monitored and one marked malicious, reflecting the instrumented Ubuntu environment
and the malware’s service-related interactions, including repeated systemd generator invocations during
enable/start cycles of the remote-client unit.

Network telemetry captures both benign baseline contacts and GhOst-typical C2 indicators. Alongside
whitelisted Canonical and Snapcraft endpoints used by the OS, the ELF issued a successful GET to
https://a87.mee333.com/api/get_client (103.215.78.27) and established a TLS connection to the socket

62

Results Discussion and Evaluation

118.107.46.162:5650 for lc.liuddiaselli.com, the latter marked “malicious” with a nonstandard high port
fitting RAT command channels; the debug output includes multiple “ET MALWARE Backdoor family
PCRat/GhOst CnC” detections and “Go-http-client” user-agent observations, consistent with a Go-based
networking stack leveraged by contemporary RAT reimplementations. Any.Run summarizes the sample
as “Connects to the CnC server,” “Connects to unusual port,” and “Contacting a server suspected of
hosting a CnC,” providing both destination IoCs and protocol/port characteristics for network-based
detection and blocking.

Environmental checks and system shaping behaviors support evasion and stability of the installed
service. The malware process checks timezone, reads network configuration via sudo, and issues systemctl
is-active and start commands for remote-client.service, indicating logic to verify and maintain service
state post-install; additional shell utilities (df, cat, tr, mesg) appear in the chain as part of environment
enumeration and scriptable control. While the sandbox reports “No Malware configuration” in the static
pane, the runtime C2 beacons and service file creation strongly indicate a configuration retrieved or
embedded at runtime via the /api/get_client request path, a pattern consistent with RATs that bootstrap
tasking from remote profiles after initial execution.

Taken together, the sandbox ground truth for this ELF sample demonstrates a GhOst-like Linux RAT
that achieves persistence by installing a systemd service (remote-client.service), logs execution artifacts
to user-accessible paths, and communicates with external infrastructure including a87.mee333.com and
lc.liuddiaselli.com over HTTPS and an unusual TCP port 5650, respectively, generating Suricata sig-
natures tied to PCRat/GhOst families. These observations yield high-value IoCs across binary hashes,
the systemd unit file path/name, runtime log and timestamp file paths, and specific domains, IPs, and
ports contacted, forming a comprehensive basis for disk, memory, and network detection in Linux forensic
workflows.

Autonomus Framework Final Report and Comparison

The framework corroborates service persistence by detecting a newly created service located in the
path /etc/systemd/system/remote-client.service and near-immediate modification of the trigger file
multi-user.target.wants, indicating enablement at boot in line with the sandbox’s “Writes to Systemd
service files” and startup behavior. Parallel inspection of /usr/lib/systemd/system and user-scope ser-
vice directories distinguishes stock units from attacker-controlled persistence, localizing the implant’s
foothold to the system scope.

Memory analysis identifies a root-owned process b560£76£7603e3e (PID 763) with PPID 1 (systemd)
and a start time shortly after boot, which is emblematic of unit-managed daemonization consistent with
a RAT client. Environment and netfilter analyses contextualize the process within a standard Ubuntu
GNOME/VirtualBox session and show no kernel-hook tampering, supporting a user-space implant model
rather than a rootkit. Bash-history reconstruction separates benign analyst actions (LiME build and
insmod) from the suspicious service-run process, improving timeline attribution.

Network enrichment reports mixed reputations, including malicious verdicts for 1c.liuddiase1li.com
and related domains amid benign Canonical/Snapcraft traffic, offering external corroboration while un-
derscoring the need for UA/port-aware filtering to disambiguate RAT beacons from OS telemetry. The
absence of explicit /api/get_client path and TCP 5650 correlation in current outputs motivates extend-
ing URL-path extraction, high-port correlation, and TLS-fingerprint capture to fully mirror GhOst C2
signatures. So in comparison to the ground truth sandbox report:

e Both sources confirm systemd-based persistence via remote-client.service, validating unit de-
tection and enablement timing.

e Memory forensics exposes a hex-named root process under systemd, strengthening runtime linkage
between disk persistence and execution beyond static evidence.

e The sandbox documents exact C2 paths and ports, whereas the framework presently surfaces
domain-level verdicts without path/port reconstruction, motivating module extensions for URL,
port and TLS-aware telemetry.

Overall, the framework demonstrates accuracy by reproducing the RAT’s persistence and runtime
identity, breadth by correlating disk, memory, network, and anti-analysis artefacts, and actionability
through concrete next steps (unit inspection, binary recovery, and C2 correlation), validating the au-
tomation approach against GhOst ground truth while identifying precise enhancements for URL-path and
port-aware C2 detection.

63

Results Discussion and Evaluation

5.4.6 Linux: Not Infected Machine

In the report of a not infected linux machine analysis, the disk baseline is consistent with a non-
infected Ubuntu system: /etc/cron.d contains only standard maintenance entries (e.g., e2scrub_all,
anacron), /etc/systemd/system presents expected .wants/.requires symlinks and no anomalous units,
and /usr/lib/systemd/system reflects stock multi-user services with coherent metadata; user-scope au-
toruns likewise show only benign Snap desktop integration. These convergent findings indicate absence
of service-, timer-, or user-scope persistence and align with the clean ground truth.

Memory-resident network controls show integrity: Netfilter hooks resolve to the in-kernel symbol
apparmor_ip_postroute with Is Hooked set to false across namespaces, providing no evidence of redirection
or packet-hiding consistent with kernel-level malware. Environment-variable inspection characterizes a
VirtualBox-hosted Ubuntu GNOME Wayland session for user vboxuser with standard PATH and locale
configuration and without suspicious variables (e.g., LD_.PRELOAD), supporting a benign runtime context.

Two anomalies merit cautious interpretation. First, the same false-positive as discussed before
/etc/profile.d/debuginfod.sh and debuginfod.csh end with statements that clear DEBUGINFOD_URLS;
while flagged as anti-analysis, this remains a configuration variance until confirmed against package
baselines (dpkg --verify) or change history, and is insufficient alone to infer compromise. Second,
kworker/ul8:4 appears in pslist with implausible credentials; in the absence of corroborating indicators
(suspicious modules, malfind hits, hooked netfilter), plugin parsing artifacts are a more likely cause in a
clean image.

Relative to the ground truth, the final narrative overweights isolated, low-specificity signals. Elevating
the debuginfod override to defense evasion without provenance checks risks false positives in managed or
lab systems. Similarly, presenting the kworker credentials as DKOM-adjacent while conceding probable
parsing error contributes to an “Inconclusive” verdict despite broad evidence of cleanliness, indicating
a need to may recalibrate severity thresholds other than the already present prompt safeguards against
this.

5.5 Evaluation for Local Models

5.5.1 Setup of the test-bed via polito HPC

The successful testing of local models was made possible thanks to the PoliTo HPC infrastructure[41].
This setup enabled experiments with high-end models, such as llama3.1:70b on an A100 GPU, as well as
fast inference with qwen3:30b and gemma3:27b on A40 GPUs.

The computing node that used for hosting the Ollama local model was not directly accessible from
outside the cluster and could only be reached through the login nodes. As a result, I was unable to
expose an API port from the computing node to my local machine—even attempts with SSH tunneling
were blocked by the firewall. Consequently, the only viable solution was to install and run the framework
directly on the computing node. Installing the framework on the computing node posed some challenges.
I could not use apt or sudo, and the default Python version available was 2.7, whereas my framework
required Python 3.11. Initially, I attempted to install all binaries locally, but encountered issues with
certain C libraries—most notably with the pytsk3 dependency. To overcome this, I chose a hybrid
solution: I installed only the Ollama binaries directly on the computing node, while running the rest of
the framework inside a Docker image I had prepared on my laptop. This image, containing all precompiled
dependencies, was executed on the computing node through Apptainer.

With this setup, I was able to successfully test the framework with local models. The DockerFile to
build the image, can be found in the thesis github repository:
https://github.com/fuju/ForensicAutonomousFramework

5.5.2 Comparison with Gemini

The reports generated by the local model produced results that were largely comparable to those obtained
with Gemini, though with some notable limitations. Due to its comparatively simpler architecture, the
local model occasionally misclassified modification timestamps as occurring in the future. This issue
persisted even when the model was explicitly prompted with contextual information about the current
date and provided with examples of how to determine whether a date lies in the future. Additionally, the

64

https://github.com/fuju/ForensicAutonomousFramework

Results Discussion and Evaluation

local model introduced a small number of false positives; however, these did not significantly compromise
the overall quality or reliability of the reports.

The complete set of reports generated with the local model is available in the associated GitHub
repository https://github.com/fuju/ForensicAutonomousFramework.

For these experiments, the local model employed was “dengcao/Qwen3-30B-A3B-Instruct-2507”,
whose configuration is summarized below:

® Model architecture: qwen3moe
Parameters: 30.5B

Context length: 262,144
Embedding length: 2,048
Quantization: Q4_K_M

Capabilities
e Completion
® Tools
® Reasoning

Experimental parameters
® Context window: 31,072
Repeat penalty: 1
Stop sequences: "<|im_start|>", "<|im_end|>"
Temperature: 0.1
Top-k: 20
Top-p: 0.95

5.6 Summary overview

The PoC framework effectively automates cross-artifact IoC discovery on Windows and Linux, reproducing
sandbox-derived tradecraft while identifying targeted coverage gaps; its Al-assisted reporting accelerates
analysis but requires stricter corroboration thresholds to avoid over-weighting isolated anomalies in clean
baselines or false positives. Cross-platform strength is evident in registry and scheduled-task persistence
detection on Windows and systemd-backed persistence on Linux, with memory—disk—network correlation
improving attribution and actionability.

65

https://github.com/fuju/ForensicAutonomousFramework

Chapter 6

Conclusions and Future Work

This thesis demonstrated that an IoC-centric, cross-artifact workflow—spanning disk, memory, and net-
work—combined with automation and carefully constrained LLM assistance, can materially improve the
efficiency, consistency, and actionability of malware post-mortem forensics across Windows and Linux
systems. The proof-of-concept pipeline reduced manual toil, produced structured evidence syntheses,
and enabled conservative, corroboration-based verdicts, while exposing concrete avenues to strengthen
precision and coverage in operational settings.

6.1 Interpretation of Results

The results validate three core contributions:

e A systematic methodology for correlating Indicators of Compromise (IoCs) across disk images,
memory dumps, and network captures for both Windows and Linux.

e An automated pipeline that acquires, processes, and consolidates artefacts into a unified report.

e An evaluation of Al-assisted reasoning that balances efficiency with privacy by comparing local and
cloud models under prompt safeguards and chunking constraints.

— In Windows scenarios, the pipeline consistently surfaced registry- and task-based persistence,
IFEO-related signals, and startup artefacts.

— In Linux scenarios, it detected systemd-backed persistence and aligned memory /runtime ob-
servations.

— VirusTotal-enriched network observables provided external corroboration when available.

The integrated reporting favored cross-domain agreement—requiring persistence evidence to align with
runtime and network traces for escalated verdicts—thereby improving calibration against both infected
and clean baselines, though occasional overstatement in memory heuristics underscores the value of stricter
correlation thresholds and plugin-aware caveats already introduced in the prompting layer.

Operationally, automation converted many “for centuries manual” steps into a reproducible workflow
that preserved chain-of-custody principles, logged decisions, and produced machine-parsable reports for
downstream review; this yielded meaningful time savings and reduced variance in triage quality across
cases and artefact types. Al assistance, when constrained by deterministic schemas, rate-limit controls,
and domain guardrails, enhanced narrative cohesion and anomaly prioritization across long, heterogeneous
outputs; local models provided privacy benefits for sensitive artefacts, whereas cloud models offered robust
long-context behavior and stability, highlighting an actionable trade-off envelope for forensic teams.

6.2 Limitations

Despite promising results, several limitations remain. First, the framework showed incomplete detec-
tion coverage in specialized Windows artefacts—such as WMI subscriptions, Defender policy artefacts,
screensaver hijacks—as well as in Linux command-and-control (C2) telemetry (e.g. TLS fingerprints),

66

Conclusions and Future Work

indicating the need for expanded parsers and richer network feature extraction beyond domain/IP rep-
utation. Additionally, detection coverage remains incomplete for disk and memory-based malware per-
sistence, suggesting the integration of techniques such as YARA rule-based scanning for the disk module
and reference outputs from clean systems for the memory module. Network analysis could also benefit
from Suricata/Snort-based traffic inspection to detect a broader range of malicious behaviors.

Second, memory analysis precision can be affected by malformed plugin artifacts (e.g., truncation or
duplicate EPROCESS in psscan), which, if not counterchecked, may bias verdicts; while prompt guardrails
mitigate this, code-level cross-plugin heuristics would further reduce false positives in clean baselines.

Third, the LLM layer—especially local models with smaller or slower contexts—occasionally mis-
judged false future date anomalies or elevated weak signals; although strict schemas, temperature control,
and context chunking improved determinism, residual variability motivates additional post-inference val-
idators, correlation thresholds, or specialized LLM tools before verdict escalation.

Privacy and deployment constraints also shape applicability. Cloud inference raises data sovereignty
and evidentiary exposure risks that many forensic cases cannot accept, whereas local inference demands
GPU capacity and model curation. Future deployments may instead rely on secure offline environments
or automated data-sanitization processes that consistently remove sensitive information before analysis.

Finally, while Any.Run-sourced malware traces and clean VMs provide grounded and reproducible
scenarios, broader validation across malware families, versions, and live enterprise telemetry would bet-
ter quantify generalization and robustness at scale. Furthermore, the framework could benefit from
multi-role report generation, dynamically adapting structure and technical detail according to the in-
tended audience—technical analysts, investigators, or managerial stakeholders—to improve usability and
decision-making within forensic teams.

6.3 Future Work

Several improvements are immediately actionable and define the pathway toward a more comprehensive,
scalable, and explainable forensic automation framework.

On the disk side, as said before, extending Windows coverage to WMI repository and subscription
parsing, Defender exclusion and policy extraction, and screensaver hijack detection will address current
blind spots. Similarly, Linux telemetry coverage—particularly in command-and-control (C2) traces such
as URL path, port profiling, and TLS/JA3 fingerprinting—requires further expansion. These additions
would bridge the incomplete detection coverage observed in the experiments and support broader gener-
alization across different persistence and evasion mechanisms.

On the network side, integrating richer context—such as URL path analysis, TLS fingerprinting, and
lightweight flow features—alongside PCAP-to-process attribution, Suricata/Snort-based inspection, and
expanded port profiling will raise the precision of network traffic scans beyond basic domain/IP reputation.
This will enable the framework to detect more subtle and diverse malicious behaviors consistent with real-
world RAT and C2 operations.

On memory analysis, constructing correlation heuristics that fuse plugins deltas with baseline outputs
from non-infected systems and module signature validation can optimize the memory analysis process.
This will reduce false positives and strengthen the AI model’s ability to distinguish genuine anomalies
from routine system activity.

On automation and reporting, the inclusion of YARA-based scanning for recovered binaries and
STIX/TAXII export will further enhance CTT interoperability and downstream threat-hunting capabili-
ties. Moreover, the introduction of multi-role report generation, where output complexity and terminology
adapt dynamically to the audience (technical analysts, investigators, or managerial staff), can significantly
improve communication, situational awareness, and decision-making within forensic teams.

For the Al layer, continued evaluation of local versus cloud LLMs—focusing on distilled, long-context
local models and structured few-shot exemplars—can preserve privacy while enhancing stability. Nonethe-
less, the observed variability in inference quality, particularly under limited context windows or high load,
suggests the need for additional post-inference validators, strict schema enforcement, and specialized
LLM-based tools to ensure reliability. Incorporating clean-system reference data could also guide the
LLM toward context-aware differentiation between benign and anomalous patterns.

In terms of validation and scalability, extending the experimental scope to encompass a wider spectrum
of malware families, versions, and enterprise telemetry will be crucial to assess robustness and generaliza-
tion at scale. Leveraging containerized and HPC-enabled workflows—as already explored for local LLMs

67

Conclusions and Future Work

under Apptainer—can support large-batch investigations, reproducible experiments, and controlled data
egress compliant with enterprise Digital Forensics Incident Response (DFIR) requirements.

Finally, beyond technical refinement, future work should include usability and transparency studies,
examining how Al-assisted automation can be integrated into operational forensic pipelines while main-
taining evidentiary rigor and auditability. Together, these directions form the foundation for a more
interoperable, resilient, and human-aligned digital forensics ecosystem capable of meeting the evolving
challenges of modern cyber investigations.

6.4 Closing Remarks

By centering the investigation on IoC correlation across disk, memory, and network, and by pairing
automation with principled Al assistance, this work shows a practical path to faster, more reliable post-
mortem malware forensics that respects evidentiary rigor while embracing scalable analysis patterns.
The framework’s strengths—reproducibility, cross-domain synthesis, and privacy-aware Al—provide a
foundation for broader adoption; the identified gaps define a clear roadmap toward higher recall, stricter
precision, and richer attribution in real-world incident response.

68

Appendix A

Appendices

A.1 User Manual

To use the framework, the easieast way is to use the DockerFile provided in the related thisis github:
https://github.com/fuju/ForensicAutonomousFramework.

First, clone the github framework with the following command:
git clone https://github.com/fuju/ForensicAutonomousFramework

Then, edit the main framework configuration (Framework/config.py) file with your needs, in particu-
lar:

OLLAMA_MODEL_FAST : "name of the ollama model to use for simpler tasks like summarizing"
OLLAMA_MODEL : "name of the main ollama model used for the thinking agent and more complex tasks"
OLLAMA_BASE_URL = : "url for contacting the ollama API, default is http://0.0.0.0:11434"

GEMINI_MODEL_NAME = "name of the cloud model to use, default is gemini-2.5-pro"

Important: If you want to analyze Linux artefacts, you NEED to provide the correct symbol table.
To do so, just put it in the DockerFile folder under the name of: ”linux_symbol_table.json.xz” To find or
generate the correct symbol table, refer to the section of the thesis 4.2.2.

To build the image you need to install docker. Open a terminal and navigate in the folder with the
dockerFile, then use the command:

docker build -t autonomus_framework:latest

If you are on Mac or any other arch:
docker buildx build --platform linux/amd64 -t autonomus_framework:latest .

This will generate the docker image ready to be used in a container.

Then to interact with it, use the command:
docker run -it autonomus_framework:latest bash

I reccommend to bind the artefacts folder into the docker image, to do so, use the command:
docker run -it -v /path/to/artefacts:/app/artefacts autonomus_framework:latest bash

this will bind your artefacts folder into the container. Note: use this exact file names for the different
tipes of artefacts:

69

https://github.com/fuju/ForensicAutonomousFramework

Appendices

e Disk image: ’hdd_image_flat.vmdk’
e Memory dump: 'memdump.lime’ or 'memdump.raw’

e Network scan: ’net_traffic.pcap’

If you want to do permanent changes to your config file or have problems with containers speed or
space, bind also the FrameWork into the container:

docker run -it -v /full/path/to/artefacts:/app/artefacts \
-v FrameWork:/app/FrameWork \
autonomus_framework:latest bash

Note: The ”-v FrameWork:/app/FrameWork” command does not bind a host folder — it creates
a named Docker volume called FrameWork. That lives inside Docker’s storage, not your filesystem. You
can check the mountpoint of the volume with the command:

docker volume inspect FrameWork

Once inside the container, export your API keys into those ENV variables (e.g with the command
?export GEMINI_API_ KEY=jyour_api_key;,):

GEMINI_API_KEY : Gemini API keys, up to 4 different keys
(they will rotate if you arrive at you key quota).
GEMINI_API_KEY_2
GEMINI_API_KEY_3
GEMINI_API_KEY_4

VT_API_KEY : VirusTotal API key.

To create a Gemini API key, follow this guide: https://ai.google.dev/gemini-api/docs/api-key?
hl=it
To create a VirusTotal API key, follow this guide: https://docs.virustotal.com/v2.0/reference/
getting-started

if you want to use signing, put your private and public PEM keys in the folder:
FrameWork/certificates/private_key.pem and FrameWork/certificates/public_key.pem

To start the full analysis, go into the FrameWork folder and activate the virtual environment:

cd FrameWork/
source venv/bin/activate

and execute the command:
python3 createcase.py <case_prefix> <case_name> ../path/to/artefacts/folder/ <os_type>
additional optional flags are:

--signing-key path/to/private_key.pem (e.g certificates/private_key.pem)
--verify-key path/to/public_key.pem (e.g certificates/public_key.pem)

-y : automatically start the processing without asking prompt

--local : If set, use ollama models instead of gemini

--skip_copy : skips the copy of the artefacts into the case directory
--no_hash : skips the hash and manifest phase

The framework will then generate the report in the following folder:

FrameWork/<os_type>/<case_prefix>_<case_name>/04_reports/final_report.md

70

https://ai.google.dev/gemini-api/docs/api-key?hl=it
https://ai.google.dev/gemini-api/docs/api-key?hl=it
https://docs.virustotal.com/v2.0/reference/getting-started
https://docs.virustotal.com/v2.0/reference/getting-started

Appendices

A.1.1 Guide for Polito HPC

To use the framework with the PoliTo HPC, you need first to save the image as a .tar file and upload it
to the login node. To do this use the following commands:

docker save -o framework.tar autonomus_framework:latest
scp framework.tar username@hpc-legionlogin.polito.it:/home/username/

Also upload the artefacts you need to analyze to the login node:

scp -r path/to/artefacts/folder/ \
username@hpc-legionlogin.polito.it:/home/username/artefacts/

Since the computing node can only communicate with the login node, you need to also install ollama
on the login node and run it on the computing node. To install the binary of ollama do the following
commands on the login node:

mkdir -p ollama/bin

cd ollama/bin

wget https://github.com/ollama/ollama/releases/latest/download/ollama-linux-amd64.tgz
tar -xvzf ollama-linux-amd64.tgz

chmod +x ollama

Now you can request a computing node with GPU (e.g):

srun --partition=gpu_a40 --gres=gpu:1l --cpus-per-task=8 \
--mem=48G --time=04:00:00 --pty bash

Then setup the environment variables for ollama:

export PATH=$HOME/ollama/bin:$PATH

export OLLAMA_MODELS=$SCRATCH/ollama/models

export OLLAMA_FLASH_ATTENTION=true

export OLLAMA_HOST=http://0.0.0.0:11434

export OLLAMA_CONTEXT_LENGTH=262144 # max context lenght of your choosing
export OLLAMA_KV_CACHE_TYPE=q8_0 # optional

export OLLAMA_MAX_LOADED_MODELS=1 # optiomnal

You can start the ollama service and pull the models you want to use for the framework with the
following commands:

ollama serve &
ollama pull <model_name>

Now use apptainer to build the image and run the framework:
apptainer build framework.sif docker-archive://framework.tar
apptainer shell --writable-tmpfs --bind \
/home/username/artefacts:/app/artefacts framework.sif

once inside the sandbox, you can run the framework as in the section above, for example:
cd /app/FrameWork/
source venv/bin/activate
export VT_API_KEY=<your_VirusTotal_API_key>
python3 createcase.py --signing-key certificates/private_key.pem \
--verify-key certificates/public_key.pem 2025 linux_local_test \\

../artefacts/linux/second_sample_b/ linux --skip_copy -y --no_hash --local

to modify the configuration file, you can use the "nano” command already installed in the docker
image.

71

Appendices

A.2 Programmer’s Guide

This guide is intended to Programmers that wants to understand, mantain or extend the framework.
The general architecture of the project can be seen in A.3.
The diagram that explains the workflow of the framewrok can be seen in figure 4.1.
The full prompts feeded to the Al models can be seen in A.4.
A general description on how each part of the framework works, can be seen in chapter 4 of this thesis.

The following information will describe which part of the framework can be expanded and how.

A.2.1 Disk Module

The Disk module is responsible for the analysis of file system artifacts extracted from disk images or
mounted evidence directories. It integrates tools such as The Sleuth Kit (TSK) and Plaso to extract
relevant Indicators of Compromise (IoCs) from low-level file metadata and timeline data. This module
can be extended (for example) by:

e Adding new parsers for additional file system formats or artifact types. The detection of the operat-
ing system and its corresponding artifact patterns is managed by the detect_os_and_artifacts()
function:

def detect_os_and_artifacts(fs_type: str):
if "ext" in fs_type or "linux" in fs_type:
return "linux", LINUX_ARTIFACT_PATHS
elif "ntfs" in fs_type or "windows" in fs_type:
return "windows", WINDOWS_ARTIFACT_PATHS

New file system types (e.g., APFS, exFAT, or ReFS) can be supported by adding corresponding
branches to this function and defining new lists of artifact paths in the configuration file (e.g.,

config.py):

APFS_ARTIFACT_PATHS = [
"/private/var/db/launchd.db/*",
"/Library/LaunchAgents/*.plist",

]

Once declared, these paths will automatically be processed by the process_volume () function using
the FileSystemSearcher API provided by dfVFS.

Similarly, to support new artifact categories (for example, browser profiles or scheduled task caches),
the developer can simply expand the relevant artifact path list and the recursive extraction logic
will handle copying and local storage transparently.

e Integrating additional timeline correlation logic. Currently, the module focuses on the extraction
and static collection of persistence artifacts. To add a temporal or behavioral correlation stage
(e.g., cross-referencing file modification times with system event logs), developers can hook into the
end of the process_volume() function or extend it with an additional correlation routine.

For example, after the call to:
logger.info(f"Extraction for {os_type} artifacts completed in ’{output_dir}’")

a function such as correlate_artifacts_timeline(extraction_map) could be invoked. This func-
tion might parse file timestamps (from file_entry.GetStatObject() .mtime) and align them with
other sources (e.g., logon events, prefetch execution traces, or Plaso timelines).

To maintain modularity, it is recommended that any new correlation logic be implemented in a
separate module (e.g., timeline_correlator.py) and imported at runtime.

e Expanding the normalization logic to include new IoC types or STIX/OpenlOC mappings. Nor-
malization of the extracted artifacts is currently managed within the save_extraction map()
function, which writes the extraction map to CSV and ensures path consistency through the
normalize_path_slashes() helper.

To introduce a richer normalization stage aligned with IoC standards (such as STIX 2.1 or Ope-
nlOC), developers can extend this step by:

72

Appendices

— Adding a new function, e.g. convert_extraction map_to_stix(), that converts each extracted
file or registry entry into a standardized object.

— Implementing a mapping layer that classifies each artifact by IoC type (e.g., File:Path,
Registry:Key, Process:Name).

— Optionally exporting a JSON-LD or STIX 2.1 bundle that can be consumed by other forensic
or threat intelligence tools.

Such functions can be called after save_extraction map() within extract_artifacts(), preserving
the current workflow order and maintaining compatibility with the AI analysis pipeline.

e Implementing deleted file recovery and integration with the artifact extraction pipeline.
Another useful extension to the Disk module is the ability to recover deleted files (so-called “trash”
or “unallocated” data) from disk images. This feature is crucial in forensic investigations, as deleted
files can still contain traces of persistence mechanisms or indicators of compromise.
A dedicated function, for instance recover_deleted files(), can be added and called within
process_volume() after the extraction of known artifacts:
This function should use the dfVFS API to iterate through deleted file entries that are still phys-
ically recoverable within the file system. Recovered files can be saved in a separate folder (e.g.,
recovered/) under the current case directory. They can then be automatically included in the AI
analysis stage by extending the run_gemini_ai() function to parse the additional recovery folder.
To facilitate integration, the function may also log recovered file metadata (file name, size, and
recovered path) to the same extraction map CSV, ensuring that they are normalized and included
in the IoC generation workflow.

A.2.2 Memory Module

The Memory module handles the processing of volatile memory dumps and focuses on extracting
ToCs related to process activity, network connections, and in-memory artifacts. It uses tools such as
Volatility3 for data extraction and provides structured outputs that can be automatically parsed by
the AT analysis component. Future developers can extend this module (for example) by:

e Implementing new Volatility plugins or analysis scripts. The plugins executed on each memory
dump are defined in the configuration file (config.py) under the dictionary PLUGINS_BY_0S. For
example:

PLUGINS_BY_0S = {
"windows": ["windows.pslist", "windows.registry.hivelist", "windows.malfind"],
"linux": ["linux.pslist", "linux.netstat", "linux.lsof"]

}

To add new plugins or custom analysis scripts, developers simply append the plugin names to
the relevant OS list in config.py. The task-building functions (build-tasks, build_tasks_auto,
build-tasks_from folder) automatically detect these new entries and schedule their execution.
Output for each plugin is saved in a case-specific folder, with the plugin name used as the output
filename.

e Adding correlation functions between memory artifacts and disk/network IoCs. To integrate mem-
ory analysis with disk or network IoCs, developers can implement correlation functions that combine
the outputs of Volatility plugins with extraction maps from the Disk and Network modules.

A suggested approach:
— After plugin execution (execute_tasks_in parallel()), parse the text output files to extract
relevant indicators such as processes, network connections, or registry keys.
— Cross-reference these indicators with disk artifact maps (extraction map.csv) or network
logs.
— Store correlated results in a standardized format for AI analysis or report generation.
Such correlation logic can be implemented in a separate module, e.g., memory_correlator.py, and
called after memory plugin execution.

e Comparing plugin output with a clean baseline.

An effective approach could be to to compare the outputs of Volatility plugins against a baseline
memory dump obtained from a known clean (non-infected) system.

The workflow can be as follows:

73

Appendices

— Maintain a set of baseline memory dumps for each supported OS, ideally corresponding to
standard system configurations.

— After running plugins on the target memory dump, parse the outputs (e.g., processes, DLLs,
network connections).

— Compare each parsed indicator with the corresponding plugin output from the baseline ma-
chine.

— Highlight differences that may indicate malicious activity, such as unexpected processes, in-
jected code, anomalous loaded modules, or unusual network connections.

— Store the anomalous findings in a structured format for Al-assisted analysis or reporting.
Implementing this approach requires a dedicated comparison module (e.g., baseline_comparator.py),
which can be called after the parallel execution of all Volatility plugins. This method allows the

framework to detect deviations from normal behavior rather than relying solely on known IoCs,
providing a more flexible detection mechanism for previously unseen malware.

A.2.3 Network Module

The Network module manages the collection and analysis of network traffic data. It supports parsing
of PCAP files and integration with external sources such as ANY.RUN or sandbox reports to extract and
correlate network-based IoCs. Future developers can extend this module (for example) by:

e Adding new parsers for alternative report formats or sandbox APIs. Currently, the module supports
PCAP files and VirusTotal API queries. Developers can extend it by implementing new parsers for
alternative network sources or sandbox outputs:

— Create a new parser class or function that extracts IoCs from the desired file format (e.g.,
Zeek logs, Cuckoo sandbox JSON reports).

— Ensure that extracted IoCs are returned as a standardized set of string representations for
compatibility with the rest of the pipeline.

— Integrate the new parser into the main workflow, similar to extract_iocs_from_pcap(), so

that the subsequent VirusTotal or correlation functions can process them seamlessly.

e Integrating automated enrichment with external threat intelligence feeds. The module demonstrates
integration with VirusTotal via query_virustotal(). To add new sources:
— Add API credentials and base URLs to config.py.

— Implement a query function that accepts an IOC and returns a structured dictionary contain-
ing at least: type, value, and a classification or score.

— Include rate-limiting handling and error checking similar to the VirusTotal function.
— Modify process_virustotal_results() to iterate over all configured threat intelligence sources
and merge results.
The enriched IoCs are saved both as a CSV summary and, if malicious or suspicious, as a full JSON
report for forensic inspection.

e Expanding the IoC correlation model with temporal or behavioral patterns. Beyond individual
ToC reputation, the module can correlate network artifacts with temporal or behavioral patterns to
identify suspicious activity:

— Temporal correlation: Compare the timestamps of captured network events or IoCs against
known attack timelines or the system’s disk/memory artifacts.

— Behavioral correlation: Identify patterns such as repeated connections to uncommon IPs,
abnormal port scanning, or malware C2 communication sequences.

— Implement dedicated functions (e.g., correlate_temporal_patterns()) that analyze IoC fre-
quency, sequence, and context across multiple cases or PCAP files.

— Store correlated events in structured tables to feed AI models for automated threat assessment
or to highlight anomalies in forensic reports.

74

Appendices

A.2.4 Al Analysis and Report Generation

The Al-based components of the framework perform the automatic interpretation of extracted IoCs and
the generation of forensic reports. Developers can extend this part by modifying or adding new AI models,
updating the prompt templates (see Appendix A.4), or connecting the system to other data sources for
cross-domain analysis.

Also, expanding the report generation to not just one but multiple report each one tailored to a
forensic team specific role could be useful. To generate reports tailored for specific roles (e.g., malware
analyst, incident responder, network forensic specialist):

1. Define different AI prompt sets for each role in config.py, emphasizing the information relevant
to that specialist.

2. Duplicate the generate_summary() call for each role, passing the role-specific instructions.

3. Assemble separate Markdown reports or append role-specific sections within a single document.

4. Include a unified Table of Contents and summary per report to maintain readability.

This approach ensures that each forensic team member receives a report focused on their operational
needs while maintaining a coherent overall narrative.

A.2.5 Extensibility Guidelines

To maintain modularity and readability, each module follows a clear interface and uses a shared config-
uration file for adjustable parameters. All new code should respect the existing structure and logging
conventions to ensure compatibility with the report generation pipeline. Developers are encouraged to:

e Keep logic separated from configuration.
e Maintain a consistent logging level and output format.

e Follow the naming conventions and modular design outlined in Appendix A.3.
A.3 Full Project Structure

+-- Framework/

+-- config.py # Global configuration (lists, variables, etc.)

+-- createcase.py # Main orchestrator: creates case folder, copies
artifacts, hashes, verifies, starts processing

+-—- process_acquisitions.py # Called by createcase.py, runs analysis scripts
for disk/memory/mnetwork, then report generation

+-- verify_signatures.py # Called by process_acquisitions.py, verifies
manifest file against signatures

+-- patch_tshark.py # Fixes tshark incompatibility for Python < 3.7

+-- requirements.txt # Python dependencies

|

+-- certificates/ # Keys used to sign/verify manifests

|

I

|

|

[

|

|

[

|

[

I

| | +-- private_key.pem
| | +-- public_key.pem
[

| +-- scripts/

| +-- final_report_generation.py # Generates final report with AI verdict
[[

| +-- disk/

| | +-- scan_disk.py # Scans disk images, extracts persistence
| I artifacts, AI analysis with Gemini

[[

| | +-— AI_agent/

| | +-- disk_agent.py # LangGraph AI agent for IOC detection,

| | registry hive extraction

[[

I
75

Appendices

+-- actions/
+-- cat_file.py # AL action: view file contents (cat)
+-- folder_scan.py # AI action: list folder contents (ls/dir)

+-- memory/
| +-- ask_ai.py # AI report generation from memory artifacts
| +-- scan_memory.py # Volatility plugins on memory dump

+-- network/
+-- scan_network.py # Extract IPs/domains from PCAP, query
VirusTotal threat intelligence

+-- windows/

+-- casefolder/ # Example autonomous analysis on Windows
+-- 00_meta/
| +-- case_info.txt # Metadata about the current case

+-- 0l_acquisitions/

| +-- hdd_image_flat.vmdk # Disk image
| +-- memorydump.raw # RAM dump (or memorydump.lime)
| +-- network_traffic.pcap # Network capture

+-- 02_raw_checksums/
| +-- manifest.txt # Manifest file
| +-- manifest.txt.sig # Signature of the manifest

+-- 03_processing/

+-- disk/
| +-- extraction_map.csv # Map: extracted path <=> case folder path
| +-- 00_agent_reports/ # AI agent outputs (.md, .json)

| +-- [extracted files & folders...]

|

+-- memory/

| +-- 00_agent_reports/ # AI reports on plugin outputs (.md)

| +-- clean_examples/ # Reference outputs from clean system

| +-- [volatility plugin outputs...]

|

+-- network/
+-- vt_ioc_results.csv # Extracted I0Cs + VirusTotal results
+-— [full reports of malicious IPs/domains in .json]

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| +-- 05_reports/
|

|

+-- forensic_report.md # Final AI-generated forensic report
+-- linux/
| +-- casefolder/ # Example autonomous analysis on Linux
[
+-- README.md # Project documentation

A.4 Forensic Agents Prompts

This appendix reports the prompt templates used for guiding the forensic Large Language Model (LLM)
agents. They are grouped by functionality: disk analysis, memory analysis, and final reporting.

A.4.1 Disk Agent Prompts

Summarization Prompt. This prompt reduces the context length of the main forensic agent’s
history. It enforces a strict output format to ensure compatibility with the main agent.

Listing A.1. Disk agent summarization prompt

76

Appendices

DISK_AGENT_SUMMARIZE_PROMPT = """You are a subagent that assist a main foremnsic 1lm
agent. you task is to reduce the context lenght of its history. The main agent
accepts only this format, do not add reasoning to your response:

LLM: -

Observation: -

Final Answer: -

Each on a newline.

Here is the history you have to manage:""" #+ "\n".join(history)

File Analysis Prompt. This prompt instructs the agent to analyze a single file for malicious be-
havior. The output must follow a strict JSON format including suspiciousness, reasoning, and potential
Indicators of Compromise (IoCs).

Listing A.2. Disk agent file analysis prompt

DISK_AGENT_ANALYZE_FILE_PROMPT = """You are a digital forensics expert. Analyze the
following file for potential malicious behavior, suspicious indicators, or
anomalies.

Instructions:
1. Examine the content carefully.

2. Decide if the file is suspicious or benign.
3. Identify any indicators of compromise (IoCs) you can find.
4. Return your response in EXACTLY this JSON format:
5. Look out for the dates, today is {current_date}
8
"file_name": "{file_to_examinel}",
"suspicious": true/false,
"reasoning": "<brief explanation of why it is suspicious or benign>",

"indicators": ["<1list of any IoCs or suspicious patterns found>"]

1}

File content:
{file_content}

Folder Analysis Prompt. This prompt enables recursive analysis of a folder structure from a disk
image. It guides the agent in identifying anomalous files or directories and optionally triggers further
scripted analysis.

Listing A.3. Disk agent folder analysis prompt

DISK_AGENT_ANALYZE_FOLDER_PROMPT = """You are a forensic agent that can use a Python
script to analyze a folder.

Your task:
- The input is the output of an ls (Linux/mac0S) or dir (Windows) command, if
linux use "/" if Windows use "\\"".
- Analyze this input to identify any anomalous files or directories, mind the
dates: today is {current_date} (the LAST MODIFIED field of the input has date
format <year>-<month>-<day>) .

For files, if any seem anomalous, return their names as a dictionary (with name
+ reason) in the final answer.
scan all files that may be household of malware persistance.
If you are unsure whether a file is anomalous or not, you may use the
following action to inspect its contents:
{SCRIPT2_PATH} {HDD_IMAGE_PATH} "{{STARTING_FOLDER}M\\\\<file>"
For directories, if any seem anomalous, respond with:
Action: script_name.py <directory_name>
(This will trigger a deeper analysis on the selected directory.)
GO AT LEAST 1 LEVEL DEEP FOR ALL FOUND FOLDERS IN THE INITIAL INPUT

77

Appendices

WARNING: Ignore files usually classified as folder or viceversa, they are not
anomalies but maybe corrupted.

Use the following response formats:

- LLM: <your analysis> - to provide your reasoning or analysis

- Observation: <your observation> - to log any findings or observations

Then follow with:

- Final Answer: <your final answer> - to provide the result or conclusion, include
the full paths

- Action: {SCRIPT_PATH} {HDD_IMAGE_PATH} "{{STARTING_FOLDER}}\\\\<directory_name>"
- if further action is needed, Note: only one action at a time, remember to
add the hdd image path, DONT WRAP IT IN text or anything.Current
history:contextUser input:user_inputPlease provide your analysis and next
steps."""

A.4.2 Memory Agent Prompts

Chunk Memory Prompt. Used when processing large Volatility3 outputs, this prompt filters and
retains only anomalous or relevant rows from memory analysis.

Listing A.4. Forensic memory chunk filtering prompt

FORENSIC_CHUNK_MEMORY_PROMPT = """You are processing a long input of a Volatility3
plugin output.

Your job is to cut the output on only the rows that you find anomalous/relevant to a
forensic case.

Context of previous chunks:

context

RESPOND STRICTLY AND ONLY WITH THIS OUTPUT FORMAT:

130

* Final Output (Only Relevant/Anomalous Rows):

OFFSET (V) PID TID PPID COMM UID GID EUID EGID CREATION TIME File output

PR

input:

PP
{chunk_text}
PRI

Memory Analysis. This prompt analyzes memory dumps. It highlights anomalies, suspicious pro-
cesses, and potential malicious behavior while avoiding false positives due to forensic workflows.

Listing A.5. Forensic memory analysis prompt

FORENSIC_MEMORY_PROMPT = """You are a digital forensic assistant. Your task is to
generate a forensic report section in Markdown format.

Context

You are provided with the outputs of a Volatility plugin executed on the machine
under investigation:
{target_content}

Task

1. Examine the plugin output carefully for anomalies, suspicious entries, or
deviations from expected system behavior.

2. Interpret forensic significance, explaining why findings may indicate malicious
activity or abnormal system behavior.

3. Maintain professional forensic reporting style: concise, factual, and clear. Avoid
speculation unless grounded in evidence.

78

Appendices

4. Ignore and do not flag as anomalous any actions consistent with forensic/analyst
workflows.
Examples:
- Extracting password-protected ZIPs with password "infected" (common for sandboxed
malware samples).
- Renaming or saving extracted malware as files like "malware".
- Loading kernel modules with insmod or modprobe when attributable to forensic
memory acquisition tools (e.g., LiME).
- Using sudo/su to run those tools.
5. Handle plugin malfunctions carefully: do not interpret them as malicious
indicators.
Examples:
- Extremely large or non-standard values for PID, PPID, UID, GID, EUID, or EGID.
- Corrupted or garbled process names.
- Impossible timestamps (e.g., year 1930 or similar).
These must be treated as artifacts of plugin parsing, not as rootkit or malware
evidence.
6. Ignore any processes or artifacts that are clearly part of foremsic or analyst
workflows.
Examples:
- Memory acquisition and analysis tools (e.g., LiME, Volatility, Rekall).
- Network sniffers used for legitimate analysis (e.g., Wireshark) during
investigation.
- Common analyst scripts or debugging tools (e.g., Python scripts, WinDbg).
These should not be flagged as suspicious, anomalous, or malicious.

Output format (Markdown)

- Begin with a section title (e.g., ## Memory Analysis - [PluginName])

- Provide a short overview of what the plugin analyzes.

- Provide a narrative analysis describing the findings.

Conclude with a forensic interpretation (possible implications, next steps).

Warning: insmod is not an IoCs because Lime was use to dump the memory of the machine
by a forense agent.

Respond with just the section, no intro.
nnn

A.4.3 Final Report Prompts

Main Forensic Instruction. This prompt aggregates findings across disk, memory, and network
analysis. It emphasizes conservative evidence-based reporting and provides a structured forensic conclu-
sion.

Listing A.6. Main forensic reporting instruction

MAIN_FORENSIC_INSTRUCTION = """You are analyzing forensic evidence.
Input could be given in multiple JSON chunks if too long.
Summarize the key findings across disk, memory, and network.

Rules:

1. Ignore and do not flag as anomalous any actions consistent with forensic/analyst
workflows.
Examples:

* Extracting password-protected ZIPs with password "infected" (common for
sandboxed malware samples).

* Renaming or saving extracted malware as files like "virus.elf".

* Loading kernel modules with insmod or modprobe when attributable to forensic
memory acquisition tools (e.g., Dumpit, LiME).

* Using sudo/su to run those tools.

2. Plugins could not work correctly. Do not use those evidences for a verdict.
Examples:

79

Appendices

* 997, of the times, extremely large, non-standard values for UID, GID, EUID, and
EGID in process dumps, does not indicate memory structure manipulation, but
the plugin not working correctly.

* Corrupted in memory process names.

3. Only highlight artifacts that cannot be explained as part of forensic workflows.
Examples:

* Unexpected binaries with obfuscation or irregular permissions.

* Network communications with malicious IPs/domains not tied to foremsic activity.

* Registry or configuration artifacts that match known malware patterns and cannot
be explained by legitimate activity.

4. ALWAYS consider the possibility of false positives, the reports of disk and memory
are NOT perfect and 100% reliable. Be always open to suggest the forense agent to
double-check things instead of declaring the machine compromised.

5. Findings must be evidence-based, and verdicts must be conservative:

A single unusual artifact (e.g., oddly named registry key or unknown file) is
*not enough** to declare suspicious without corroboration.

_Corroborating evidence (e.g., matching malicious network traffic, known malware
hash, or suspicious memory behavior) is required for a_ *Suspicious**
verdict.

If findings are weak or inconclusive, state *Not Compromised** or
xInconclusive depending on context.

Format your response in the following sections:

* *xSuspicious/malicious activity (report)**

At the end, provide a concise forensic conclusion in one of the following formats:

Final Verdict: Suspicious

**Final Verdict: Not Compromiseds*

**Final Verdict: Inconclusivexx*

Include a brief reasoning and suggest next steps for the forensic team.
nun

Chunk Processing Template. This template ensures long inputs are processed in chunks while
preserving forensic consistency. Each chunk is summarized in strict JSON format.

Listing A.7. Chunk processing template

CHUNK_PROMPT_TEMPLATE = """You are processing a long input in multiple chunks.
This is chunk {chunk_number}/{total_chunks}.

{context}
Chunk content:
\Il\ll\ll
{chunk_text}
\|l\ll\ll

- Summarize the key findings in this chunk.

When evaluating artifacts, ignore and do not flag as anomalous any actions consistent
with forensic acquisition or analyst workflows. Examples include:
- Use of memory acquisition tools (e.g., DumpIt, LiME, WinPMEM, AVML).
- Execution of insmod/modprobe when attributable to LiME or other acquisition tools.
- Extraction of password-protected malware samples (e.g., ZIPs with password
"infected")
and saving/renaming them (e.g., virus.elf) as part of controlled analysis.
- Privilege escalation via sudo/su when clearly used to run acquisition or analysis
tools.
- Use of analyst scripts for unpacking or staging samples.

Highlight only suspicious or malicious activity that cannot be explained as part of
forensic or analyst workflows.

- DO NOT explain or provide methods.

- You MUST return the output in EXACTLY this JSON format:

{

"chunk_number": {chunk_number},

80

Appendices

"summary": "<readable extracted content from this chunk>"
1}
- Do NOT change the keys.
- Maintain this format consistently for all chunks.
- Return ONLY the JSON object, nothing else."""

Final Prompt Template. This template merges multiple chunk summaries into a unified forensic
analysis, following the main instruction set.

Listing A.8. Final prompt template

FINAL_PROMPT_TEMPLATE = """You have received {number_of_summaries} chunk summaries:
{summaries}

Main Task:

{main_instruction}
nmnn

A.4.4 Disk Agent for Local LLM Prompts

Chunk Disk Prompt Template. This prompt processes lengthy 1ls or dir outputs, retaining
anomalous rows and full folder structures for forensic inspection.

Listing A.9. Chunk disk prompt template

CHUNK_DISK_PROMPT_TEMPLATE = """You are processing a long input of a 1ls output of a
program.

Your job is to cut the output on only the rows that you find anomalous/relevant to a
forensic case.

Keep all the folders in your output.

Context of previous chunks:

PR

{context}

)0

RESPOND STRICTLY AND ONLY WITH THIS OUTPUT FORMAT:

PR

* Final Output (Only Relevant/Anomalous Rows + All Folders):
PERMISSIONS UID GID SIZE LAST_MODIFIED NAME

PR

input:
230

{chunk_text}

20

Local Disk Analysis Prompt. This prompt guides the forensic agent in analyzing a folder listing
from a mounted disk image. It specifies anomaly criteria, recursive inspection, and controlled triggering
of deeper analysis.

Listing A.10. Disk prompt for local analysis

DISK_PROMPT_LLM_LOCAL = """Current history:
{context}

User input:

{user_input}

You are a forensic agent that can use a Python script to analyze a folder.

81

Appendices

Your task:
- The input is the output of an 1ls (Linux/mac0S) or dir (Windows) command, if
linux use "/" if Windows use "\\"".
- Analyze this input to identify any anomalous files or directories, mind the
dates, today is {current_date}.
- For files, if any seem anomalous, return their names as a dictionary (with name
+ reason) in the final answer.
scan all files that may be household of malware persistance.
If you are unsure whether a file is anomalous or not, you may use the
following action to inspect its contents:
{SCRIPT2_PATH} {HDD_IMAGE_PATH} "{{STARTING_FOLDER}}\\\\<file>"
For directories, if any seem anomalous, respond with:
Action: script_name.py <directory_name>
(This will trigger a deeper analysis on the selected directory.)
GO AT LEAST 1 LEVEL DEEP FOR ALL FOUND FOLDERS IN THE INITIAL INPUT
WARNING: Ignore files usually classified as folder or viceversa, they are not
anomalies but maybe corrupted.

Use the following response formats:

- LLM: <your analysis> - to provide your reasoning or analysis

- Observation: <your observation> - to log any findings or observations

Then follow with:

- Final Answer: <your final answer> - to provide the result or conclusion, include
the full paths.

- Action: {SCRIPT_PATH} {HDD_IMAGE_PATH} "{{STARTING_FOLDER}}\\\\<directory_name>"
- if further action is needed, Note: only one action at a time, remember to
add the hdd image path, DONT WRAP IT IN text or anything.Please provide your
analysis and next steps."""

82

Bibliography

1]

2]

National Institute of Standards and Technology, “Nist computer security resource center glossary:
Digital forensics”, https://csrc.nist.gov/glossary/term/digital_forensics, 2025, [Online; ac-
cessed 3-September-2025]

J. Caballero, G. Gomez, S. Matic, G. Sédnchez, S. Sebastian, and A. Villacanas, “The rise of good-
fatr: A novel accuracy comparison methodology for indicator extraction tools”, Future Generation
Computer Systems, vol. 144, 2023, pp. 74-89

Splunk Inc., “Ioc: Indicators of compromise”, 2025, Accessed 2025-08-14

A. Villalén-Huerta, I. Ripoll-Ripoll, and H. Marco-Gisbert, “Key requirements for the detection and
sharing of behavioral indicators of compromise”, Electronics, vol. 11, no. 3, 2022, p. 416

Picus Security, “Mitre att&ck framework: Beginner’s guide”, 2025, Accessed 2025-08-14

Terrabyte Group, “The pyramid of pain in cybersecurity: A strategic approach to ...”, 2025, Blog
post

OASIS Open, “Stix™ 2.x documentation”, 2025, Accessed 2025-08-14

WatchGuard Technologies, “Indicators of compromise overview”, 2025, Accessed 2025-08-14
Wikipedia contributors, “Indicator of compromise”, 2025, Accessed 2025-08-14

MITRE Corporation, “Mitre att&ck®)”, 2025, Accessed 2025-08-14

National Institute of Standards and Technology (NIST), “Guide to integrating forensic techniques
into incident response”, special publication 800-86, NIST, 2006. Accessed 2025-08-14

Trusted Institute, “File system forensics”, 2025, Accessed 2025-08-14

E. Casey, “Digital evidence and computer crime”, Academic Press, 4 ed., 2019

D. Quick and R. Choo, “Forensic collection and examination of digital evidence”, Springer, 2020
W. Zhong and J. Zhang, “Forensic analysis of ext4 journaling and delayed allocation”, DFRWS USA,
2020

D. Garcia and M. Alvarez, “Robust timeline reconstruction from file system journals”, Digital In-
vestigation, vol. 36, 2021, p. 301112

Forensic Science Anthology, “Memory forensics: The analysis of volatile system memory”, 2025,
Accessed 2025-08-14

M. H. Ligh, A. Case, J. Levy, and A. Walters, “The art of memory forensics, updated techniques”,
Wiley, 2020

J. Levy and A. Case, “Detecting process hollowing and code injection in modern windows”, Digital
Investigation, vol. 40, 2022, p. 301401

V. Foundation, “Volatility 3 framework documentation”, https://www.volatilityfoundation.org/
volatility3/, 2024

Volatility Foundation, “Volatility framework for memory analysis”, 2025, Accessed 2025-08-14
Kentik Inc., “Network forensics”, 2025, Accessed 2025-08-14

C. Sanders, “Practical network defense and monitoring”, Rural Technology Fund, 2020

R. Sommer and M. Vallentin, “Modern network telemetry for threat hunting”, ACM Queue, vol. 20,
no. 2, 2022

Z. Project, “Zeek documentation and project overview”, https://www.zeek.org/, 2024

W. Foundation, “Wireshark user’s guide, version 4.7.0”, https://www.wireshark.org/docs/wsug_
html_chunked/, 2025

VirusTotal, “Virustotal threat intelligence api documentation”, 2024, API v3 reference and usage
Forensics Colleges, “Automation in digital forensics”, 2025, Accessed 2025-08-14

T. D. Le, D. Dinh, P. Nguyen T. H., A. Muthanna, and A. Abd El-Latif, “Exploring common malware
persistence techniques on windows operating systems (os) for enhanced cybersecurity management”,
pp- 107-149. 11 2023

Hadess, “The art of linux persistence”, 2023

Freedesktop.org, “systemd manual pages”, 2025. Accessed online: https://www.freedesktop.org/
software/systemd/man/

83

https://csrc.nist.gov/glossary/term/digital_forensics
https://www.volatilityfoundation.org/volatility3/
https://www.volatilityfoundation.org/volatility3/
https://www.zeek.org/
https://www.wireshark.org/docs/wsug_html_chunked/
https://www.wireshark.org/docs/wsug_html_chunked/
https://www.freedesktop.org/software/systemd/man/
https://www.freedesktop.org/software/systemd/man/

Bibliography

32]
(33]

34]
(35]
(36]
37]

(38]

(39]
(40]

(41]

Freedesktop.org, “systemctl manual pages”, 2025. Accessed online: https://www.freedesktop.org/
software/systemd/man/systemctl.html

C. Sanders and J. Smith, “Linux persistence mechanisms and forensic analysis”, Digital Forensics
Magazine, vol. 18, no. 3, 2020, pp. 45-56. Focus on systemd, cron, and user-level persistence

Linux Foundation, “Filesystem hierarchy standard”, 2015

ANY.RUN, “Any.run malware analysis report: Worm:win32/ludbaruma”, 2025, Available at: https:
//any.run/report/9ed5e265c25e1e592bf£48865e83b0980f578£29622cc1c0268a323dfac15639/
96a054fc-9100-483e-89e7-66£2414cd108, Accessed: 2025-09-19

ANY.RUN, “Any.run malware analysis report: conhoz loader”, 2025, Available at: https:
//any.run/report/0512c44f7b16ba8a25913f5e698b79203cf38bdc5c766e23b9fef0d3d1cd8833/
e668e173-cef4-4cb2-ba7d-f0ab57dcfef9, Accessed: 2025-09-19

ANY.RUN, “Anyrun malware analysis report: Prometei”, 2025, Available at: https:
//any.run/report/d5baf5e8574d7a9ef£594b5c5805eef22df2de646ab6fddc5ebd7cba2446ff4a3/
9d71b311-2d7b-4aff-b544-bed896fc8193, Accessed: 2025-09-19

ANY.RUN, “Any.run malware analysis report: ghOst rat”, 2025, Available at: https:
//any.run/report/b560f76£7603e3ec88a874085f15499ec043917d93e306b3b0fb7a913b54£287/
552f2c6c-d8e8-4655-8a34-5c136938bd9f, Accessed: 2025-09-19

Abyss-W4tcher, “Volatility 3 symbols repository”, https://github.com/Abyss-W4tcher/
volatility3-symbols, 2024, Accessed: 2025-08-31

Hack The Box, “How to create linux symbol tables for volatility”, https://www.hackthebox.com/
blog/how-to-create-linux-symbol-tables-volatility, 2023, Accessed: 2025-08-31
“Hpc@polito”, Technical infrastructure / computing facility, 2025, Computational resources provided
by HPCQPOLITO (www.hpc.polito.it)

84

https://www.freedesktop.org/software/systemd/man/systemctl.html
https://www.freedesktop.org/software/systemd/man/systemctl.html
https://any.run/report/9ed5e265c25e1e592bff48865e83b0980f578f29622cc1c0268a323dfac15639/96a054fc-9100-483e-89e7-66f2414cd108
https://any.run/report/9ed5e265c25e1e592bff48865e83b0980f578f29622cc1c0268a323dfac15639/96a054fc-9100-483e-89e7-66f2414cd108
https://any.run/report/9ed5e265c25e1e592bff48865e83b0980f578f29622cc1c0268a323dfac15639/96a054fc-9100-483e-89e7-66f2414cd108
https://any.run/report/0512c44f7b16ba8a25913f5e698b79203cf38bdc5c766e23b9fef0d3d1cd8833/e668e173-cef4-4c52-ba7d-f0a557dcfef9
https://any.run/report/0512c44f7b16ba8a25913f5e698b79203cf38bdc5c766e23b9fef0d3d1cd8833/e668e173-cef4-4c52-ba7d-f0a557dcfef9
https://any.run/report/0512c44f7b16ba8a25913f5e698b79203cf38bdc5c766e23b9fef0d3d1cd8833/e668e173-cef4-4c52-ba7d-f0a557dcfef9
https://any.run/report/d5baf5e8574d7a9eff594b5c5805eef22df2de646a6fddc5ebd7cba2446ff4a3/9d71b311-2d7b-4aff-b544-bed896fc8193
https://any.run/report/d5baf5e8574d7a9eff594b5c5805eef22df2de646a6fddc5ebd7cba2446ff4a3/9d71b311-2d7b-4aff-b544-bed896fc8193
https://any.run/report/d5baf5e8574d7a9eff594b5c5805eef22df2de646a6fddc5ebd7cba2446ff4a3/9d71b311-2d7b-4aff-b544-bed896fc8193
https://any.run/report/b560f76f7603e3ec88a874085f15499ec043917d93e306b3b0fb7a913b54f287/552f2c6c-d8e8-4655-8a34-5c136938bd9f
https://any.run/report/b560f76f7603e3ec88a874085f15499ec043917d93e306b3b0fb7a913b54f287/552f2c6c-d8e8-4655-8a34-5c136938bd9f
https://any.run/report/b560f76f7603e3ec88a874085f15499ec043917d93e306b3b0fb7a913b54f287/552f2c6c-d8e8-4655-8a34-5c136938bd9f
https://github.com/Abyss-W4tcher/volatility3-symbols
https://github.com/Abyss-W4tcher/volatility3-symbols
https://www.hackthebox.com/blog/how-to-create-linux-symbol-tables-volatility
https://www.hackthebox.com/blog/how-to-create-linux-symbol-tables-volatility

	Introduction
	Background and motivation
	Problem statement
	Research objectives
	Scope of the Thesis
	Contributions of the Thesis
	Thesis structure

	Theoretical Background and Literature Review
	Introduction to Digital Forensics
	Indicators of Compromise (IoCs)
	Definition and classification
	Standards and representation formats

	Digital forensic investigation lifecycle
	Analysis techniques in different domains
	File system forensics
	Memory forensics
	Network forensics

	Automation and AI in Digital Forensics
	Existing tools
	Potential and limitations of AI

	State of the Art in Malware Forensics and IoC Identification
	Foundations of IoC-Centric Forensics
	Windows: Persistence Techniques and IoCs
	Linux: Persistence Techniques and IoCs
	Comparative Themes and Detection Methodologies
	Mitigation, Evasion, and Research Gaps

	Methodology
	Experimental laboratory setup
	Virtual Machine Configurations
	Infection Procedures with Samples from Any.Run
	Acquisition of Artefacts (HDI, RAM, PCAP)

	Framework Implementation
	Automated Framework and Processing Pipeline
	Framework Setup
	Initialization of a new forensic case: createcase.py
	Integrity check of artefacts: verify_signatures.py
	General analysis workflow

	Processing orchestrator: process_acquisition.py
	Disk Image processing module
	Memory processing module
	Network processing module

	Creating the final report based on acquired evidence: final_report_generation.py

	Results Discussion and Evaluation
	Obtained reports and IoCs detected
	Disk Analysis
	Memory Analysis
	Network Analysis
	Forensic Summary & Verdict

	Prompt engeneering
	Observed effects in practice

	Why Local LLM: suspect privacy concerns in the forense investigation
	Evaluation of automation effectiveness
	Windows: Ludbaruma Infected Machine
	Windows: Conhoz Loader Infected Machine
	Windows: Not Infected Machine
	Linux: Prometei Infected Machine
	Linux: Gh0st RAT Infected Machine
	Linux: Not Infected Machine

	Evaluation for Local Models
	Setup of the test-bed via polito HPC
	Comparison with Gemini

	Summary overview

	Conclusions and Future Work
	Interpretation of Results
	Limitations
	Future Work
	Closing Remarks

	Appendices
	User Manual
	Guide for Polito HPC

	Programmer’s Guide
	Disk Module
	Memory Module
	Network Module
	AI Analysis and Report Generation
	Extensibility Guidelines

	Full Project Structure
	Forensic Agents Prompts
	Disk Agent Prompts
	Memory Agent Prompts
	Final Report Prompts
	Disk Agent for Local LLM Prompts

	Bibliography

