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Summary

Network telescopes, also known as darknets, are passive monitoring sensors widely
used by the security community to detect network-related security threats, scanning
attempts, and other malicious trends e.g., outbreak of botnet activities. A network
telescope consists of an unused range of public IP addresses that do not host
any services, so no legitimate traffic should target these addresses. Consequently,
the traffic observed to these addresses is by definition caused by unsolicited or
anomalous traffic.

Although a significant portion of this unsolicited traffic originates from clearly
malicious activities, such as attempts to identify active hosts, open ports, and
vulnerabilities, not all unsolicited traffic is inherently malicious. In fact, several
legitimate organisations conduct scanning of the entire IPv4 address space for
security reasons and for network measurements. Traditionally, organizations that
deploy their own custom network telescopes leverage unused ranges of their own
public IP address range, and the effectiveness of the telescope is closely related to (i)
the size of the organization address range used for host the telescope, (ii) whether
any services are hosted on those addresses in the past, and (iii) the geographical
location or the AS of the addresses.

In this work, we investigate whether the use of cloud-owned IP addresses can
enhance the telescope’s coverage respect to the use of traditional organisation-owned
IP addresses. This idea is based on the assumption that, since these addresses
are widely known to host a wide variety of services, they may be more attractive
targets for attackers.

First, we explored several cloud-based solutions for provisioning the resources
necessary to deploy the telescope. This step is crucial, as deploying a network
telescope can be costly due to the large number of public IPv4 addresses typically
required and the structural limitations imposed by cloud providers, such as hidden
firewalls that block unsolicited traffic by default or restrictions on the number of
IP addresses that can be purchased. In this step, we evaluated the possibility of
leasing cloud addresses from a third-party IP broker since it is the cheapest option.
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However, this option cannot be considered in our scenario, as the borrowing process
changes the autonomous system (AS) and the ownership of the IP, eliminating the
distinction of it being a cloud address. Consequently, we evaluated the offerings
of three major cloud providers and selected Microsoft Azure, which provided the
best balance between cost-effectiveness and ease of deployment, making it the
most appropriate choice for our implementation. We conducted tests to determine
the limitations imposed by Azure’s cloud infrastructure on incoming unsolicited
traffic, such as the presence of implicit firewalls or NAT devices that could filter or
alter such traffic. Our results revealed the presence of a stateful firewall and the
dropping of ICMP timestamp requests. However, this limitation does not affect
the telescope’s coverage, as the majority of incoming traffic consists of connection
attempts. Additionally, there is no filtering based on payload content, as even
simple malicious payloads are successfully received by the VM.

Once we set up the Azure environment, we deployed a cloud-based network
telescope consisting of 256 IP addresses and monitored it over a period of one
month to increase the coverage of our analysis. To gain deeper insights into the
activities of Internet scanners targeting the cloud telescope, we do not rely only
on passive monitoring but we configured different subnets to periodically host
fake services with varying level of interactivity, such as Layer 4 responders and
honeypots. These services respond to scanner connection attempts, allowing us to
observe and collect the subsequent actions taken by the scanners e.g., the sending
of malicious payload, and potentially attract more traffic. The Layer 4 responder
is a simple server listening on the entire TCP port range (1-65535), responding
to incoming traffic by completing the TCP handshake and then terminating the
connection. The honeypot simulated the behaviour of real services by emulating a
SSH honeypot i.e., Cowrie on port 22 and an Nginx web server on ports 80 and
443. All remaining subnets functioned as purely passive telescopes, providing no
response to incoming traffic. To enable a comparative analysis, we replicated the
same setup in a darknet hosted on our campus, leveraging campus-owned IP space.

After we collected the traffic, we performed a statistical analysis focused on
identifying differences between the traffic received by the cloud-based network
telescope and that targeting a traditional telescope. Specifically, we focused
on (i) the traffic volume, (ii), the timeseries of incoming traffic, (iii) the port
targeting amplification factor i.e., how much a port is targeted after the activation
of interactive responders, and (iv) the diversity of senders. We observed that
the cloud telescope captured nearly 2 times the traffic volume and exhibited a
higher amplification factor for the Layer 4 responder service, while the honeypot
showed more amplification in the traditional telescope. Both the campus and cloud
deployments receive traffic from a similar number of unique source IPs, with a
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significant overlap in common senders. However, the cloud telescope consistently
receives a higher volume of traffic from these shared sources and also attracts
a greater number of exclusive senders i.e., sources that contact only the cloud
telescope and not the campus deployment.

To delve deeper into the data we collected from both telescopes, we employed
data mining techniques to uncover common patterns in the traffic. We used FP-
Growth, a frequent pattern mining algorithm. We first compared patterns across
our different deployment types (darknets, Layer 4 responders, and honeypots).
The cloud telescope’s darknet revealed significantly more frequent pattern than
the traditional telescope, suggesting that attackers conduct more systematic and
consistent scans targeting cloud infrastructure. We also observed that interactive
services (Layer 4 responders and honeypots) triggered new scanning patterns,
revealing how attackers change their behaviour when they found an active host.

However, analyzing the whole telescope traffic produced patterns that were
too general due to the enormous diversity of sources and scanning techniques.
To address this, we refined our approach by investigating traffic coming from a
more restricted groups of hosts e.g., host belonging to the same organizations. We
focused on well-known scanning groups, including both malicious actors e.g Mirai
and legitimate security platforms e.g. Census. By analyzing each group separately,
we uncovered distinct scanning patterns. Some groups exhibited predominant
patterns characterized by consistent combinations of targeted ports, while others
displayed dynamic behaviors, such as sequential scanning. Additionally, some
scanners demonstrated memory-effect patterns, revisiting previously targeted ports
to check for changes in their status.

In conclusion, this work demonstrates that deploying a network telescope based
on cloud-owned IP addresses offers several advantages over traditional approaches
e.g, major volume of traffic, demostrating that these addresses are more exposed
than traditional organisation-owned IP.

Although applying data mining techniques to the entire traffic dataset revealed
only a few generic patterns, focusing on specific subsets of senders enables the
extraction of more precise insights, uncovering the distinct scanning behaviors
adopted by different sender groups.

All in all, these findings highlight the potential of cloud-based network telescopes
as a valuable resource for the research community in studying cybersecurity events
within Internet traffic.
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Chapter 1

Introduction

1.1 Context

The Internet is a vast network of interconnected devices worldwide, and the traffic
observed on it is not solely the result of legitimate connections between users and
services. A significant portion consists of unsolicited traffic generated without
any prior request or user interaction, commonly known as Internet Background
Radiation (IBR) [1]. IBR is pervasive and reaches any device with a public IP
address. One of its primary sources is network scans, which serves to identify active
hosts, open services, and potential vulnerabilities, making them valuable tools
for attackers. However, not all unsolicited traffic is malicious. Internet scanning
platforms also use network scanning to conduct security researches and map devices
present on the Internet.

Monitoring IBR is essential for understanding the techniques and patterns
employed by attackers, as well as for identifying trends and behaviors among
groups of hosts performing scans. Network telescopes are widely used systems
designed to monitor IBR. They observe traffic directed toward unused portions of
the IP address space, where no services are hosted, thus ensuring that all incoming
traffic results from unsolicited activity. Not all network telescope are the same.
Their effectiveness depends on several factors, including the size of the monitored
address space, its previous usage, and the associated Autonomous System (AS).

Network telescope are typically hosted within traditional network infrastructures,
such as university campus or research institutions. However, several works explore
their implementation within cloud environments. Cloud computing presents a
new frontier for network telescopes, as cloud providers manage vast IP address
spaces. Traffic directed toward these addresses may exhibit unique characteristics
compared to traditional network telescopes, offering new opportunities for analysis
and research.



Introduction

The large volume of data collected by network telescopes presents challenges in
extracting meaningful insights from IBR to identify patterns and scanner behaviors.
In this context, data mining techniques offer valuable tools. By identifying frequent
patterns, such as commonly targeted destination ports, these techniques enable
comprehensive characterization of both overall internet scanning activity and the
behavior of specific host groups.

1.2 Research questions

In this section we list the key questions to be addressed throughout the thesis:

o Can we deploy a network telescope in a cloud environment?

We investigated the possibility of mounting a network telescope within a
cloud environment to monitor IBR targeting cloud-owned IP addresses. This
involved addressing several sub-questions:

— What are the possible solutions?

We investigated the main strategies for obtaining a subnet address space
and associating it with a Virtual Machine (VM) to deploy the network
telescope. We evaluated the costs proposed by major cloud providers
(AWS, GCP, Azure) and analyzed the constraints imposed by each. Addi-
tionally, we explored the option of IP leasing by renting a subnet from an
IP broker. We present our findings in Chapter 3.

— Does the cloud environment bring limitation for hosting a net-
work telescope?

Given that the traffic is collected from a non-traditional environment, we
investigated whether the cloud provider’s infrastructure imposes any un-
declared restrictions on unsolicited traffic that could potentially limit the
observation of IBR. We performed several tests to evaluate the feasibility
of embedding a network telescope within a cloud environment, focusing
on identifying any restrictions imposed by the cloud provider’s infrastruc-
ture investigating the presence of any traffic filtering or transformation.
Chapter 4 presents the test results.

« Do we observe differences of traffic targeting a cloud telescope
compared to traffic targeting a traditional one?

We compared the traffic collected by the cloud telescope with that of a
traditional network telescope hosted on our campus IP space. We performed
a statistical analysis to address the following sub-questions:

2
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— How different is the traffic of a cloud telescope compared to a
traditional one? Does the cloud telescope attract more senders?

We compared the traffic collected by both telescopes over a one-month
period, focusing on traffic volume and the time series of incoming flows.
Additionally, we analyzed sender diversity by comparing the unique source
IPs contacting each telescope, examining flow distributions and identifying
common and exclusive senders. The results of this comparison are detailed
in Chapter 5.

How does the activity of IBR sources change when we interact
with them? Does the same behavior occur in a traditional
telescope?

We evaluated the impact of activating several interactive services, e.g.,
Layer 4 responder and honeypot, on predefined subnets within both the
cloud and traditional telescopes. We analyzed how this change affected
the volume and characteristics of incoming traffic, comparing the ampli-
fication effects observed on both telescopes under different interactivity
configurations. We present the results of this comparison in Chapter 5.

o Can data mining extract traffic patterns from traces of a cloud-based
network telescope?

We applied data mining techniques to extract patterns from the traffic collected
by both telescopes to address the following sub-questions:

— Is there any global common pattern? Do traffic patterns change
between cloud and traditional telescope?

We considered the traffic generated by the overall internet scanning activity
across different deployment types (e.g., darknets, Layer 4 responders,
and honeypots), extracting frequent patterns to identify general trends
and behaviors. We compared the patterns observed in the cloud-based
telescope with those from the traditional campus-based telescope. The
results of this analysis are presented in Chapter 6.

— How well-known sources of IBR conduct their activities?

We analyzed subsets of traffic generated by well-known groups of hosts,
including both malicious actors (e.g., Mirai) and legitimate scanning
platforms (e.g., Census). This analysis focused on uncovering their specific
scanning behaviors and identifying characteristic patterns. The results of
this analysis are presented in Chapter 6.

3
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1.3 Related Work

This section highlights the key previous works related to this thesis. The literature
includes numerous studies on the adoption of network telescopes, with some
focusing specifically on cloud-based telescopes. Additionally, several works explore
the analysis of scanning activities using data mining techniques.

1.3.1 Network Telescope in the Cloud

Several studies have investigated the deployment of network telescopes to monitor
IP addresses belonging to cloud providers, enabling comparisons with traditional
telescopes.

In [2], the authors proposed a geographically distributed, cloud-native network
telescope architecture that captured five months of traffic across twenty-six regions
worldwide. The design leveraged general-purpose virtual machines offered by AWS
under the spot pricing model, providing a cost-effective alternative to the on-demand
pricing model. However, spot instances are subject to interruptions by the Cloud
Service Provider (CSP) with a two-minute warning, either due to higher bids from
other clients or temporary shortages of spot instances. To address this, the authors
implemented an efficient replacement mechanism to ensure data preservation and
promptly replace interrupted instances with new ones. However, this results in a
new public IP address reassignment from the CSP address pool, thus contributing
to a wider diversity of observed addresses. The cloud telescope utilized an 1P
address range varying from as small as "one IP address per each of the 26 available
cloud regions" (26 IP addresses) to as large as "ten IP addresses per available cloud
region" (260 IP addresses). The results demonstrated a higher volume of network
packets per IP compared to traditional telescopes, with TCP traffic being the most
prevalent (80.18%), followed by ICMP (16.22%) and UDP (3.58%). Overall, the
authors highlighted the advantages of cloud-based telescopes, including their cost-
effectiveness, scalability, and extensive coverage. The global distribution of their
approach allowed for the collection of traffic targeting a diverse range of countries
and regions, offering the potential to uncover intriguing geopolitical patterns.

Another notable study is DSCOPE [3], which also utilized the spot instance
solution offered by AWS, similar to the previous work. Due to the random availabil-
ity of addresses and instances across regions, the authors normalized the collected
data by subsampling 750 unique IP addresses per region per day, with a total of
125 IP-hours of data collected per day. The analysis focused on comparing the
observed traffic with that of a traditional telescope. Notably, the results revealed
that cloud IP traffic is more variable than that of traditional network telescopes
and receives traffic from a significantly larger number of IP addresses. The number
of scanners varies by region, and the scans are predominantly untargeted.
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1.3.2 Characterizing internet activity with data mining

Data mining techniques present a useful tool for analyzing and getting insights
from large scale datasets. Several works leverage their application to characterize
the behaviour of malicious hosts performing scans.

In [4], the authors applied an association rule mining algorithm to uncover
patterns in the behavior of well-known malware families targeting Internet of
Things (IoT) devices. Their analysis focused on generating rules based on specific
indicators, such as destination port, TCP window size, and type of service, in traffic
generated by malware like Mirai and Hajime. They applied the algorithm to daily
datasets, grouped by source IP activity, and produced three sets of association
rules. Each set characterized the packets of a source IP according to the contacted
ports, the TCP window size, or the type of service used. To reliably identify hosts
infected by Mirai and Hajime, the authors relied on known fingerprints, which
allowed them to estimate with 90% probability whether a packet originated from an
infected host. This improved the accuracy of identifying infected machines within
the broader Internet Background Radiation. Figure 1.1 illustrates a timeline of
association rules derived for each of the three indicators for hosts affected by the
Mirai malware. Notably, the authors observed how the number of hosts matching
different rules evolved over time, particularly during the Mirai outbreak.
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Figure 1.1: Timeline of extracted association rules for destination ports, TCP
window size, and type of service from Mirai-infected hosts [4].
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1.4 Contributions

In this section, we list the main contributions of this thesis.

Exploration of cloud providers for hosting a network telescope.
We explored various solutions for acquiring the resources needed to deploy
a network telescope in a cloud environment. Our investigation included
evaluating the acquisition of IP address space from major cloud providers
and the option of leasing a subnet from an IP broker. For each solution, we
assessed the associated costs and constraints. Then, we evaluated whether the
provisioned cloud infrastructure allows complete observation of IBR without
interference from undeclared firewalls or NAT devices that could filter or
alter unsolicited traffic. To validate this, we put the cloud VM under several
scanning tests, monitoring for any packet loss or alteration in the network
traces.

Cloud IP deployment and interactive services implementation. To
accommodate the large IP address space required for our network telescope, we
developed a script to automate the deployment of IP addresses. Additionally,
as part of the interactive services deployed within specific subnets, we present
the implementation of a Layer 4 responder.

Comparison of cloud and traditional telescopes. We conducted a sta-
tistical analysis of the traffic targeting both a cloud-based and a traditional
network telescope. We made a comparison focused on traffic volumes, time-
series of incoming flows, diversity of senders, and the amplification effects
observed due to the activation of fake interactive services.

Impact of interactivity levels. We analyzed how traffic targeting a network
telescope changes when specific subnets are configured to host fake services
with varying interactivity levels, such as Layer 4 responders and honeypots.
We compared the amplification effects observed on both cloud-based and
traditional telescopes under different interactivity configurations, evaluating
these effects using the port amplification factor.

Data mining techniques to analyze scanning activities. We applied
frequent pattern mining to analyze scanner activity targeting both cloud
and traditional network telescopes. Our focus was on identifying general
trends and patterns of internet scanning across specific subnets with varying
levels of interactivity (e.g., Layer 4 responder and honeypot). Additionally, we
examined well-known host groups, both malicious (e.g., Mirai) and benign (e.g.,
legitimate scanning platforms), to uncover their distinct scanning behaviors
and characteristic patterns.
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1.5 Index

In Chapter 2, we introduce the concept of Internet Background Radiation (IBR),
explaining the role of network telescopes and the fundamentals of cloud computing.
We also provide an overview of data mining techniques useful for analyzing large-
scale datasets.

Chapter 3 explores various strategies and solutions for implementing a cloud-
based network telescope, focusing on approaches involving major cloud providers
(AWS, GCP, Azure) and the IP leasing market.

In Chapter 4, we detail the implementation of a cloud-based network telescope
within the Azure cloud environment. We begin by conducting tests to evaluate
potential restrictions imposed by the cloud infrastructure on observable traffic.
Next, we describe the deployment process of the cloud telescope, including the
allocation of interactive responders on specific subnets.

Chapter 5 presents the data collection campaign conducted on both traditional
and cloud-based network telescopes, followed by a statistical analysis of the collected
data to highlight differences in traffic targeting the two telescopes.

In Chapter 6, we apply frequent pattern mining techniques to identify overall
Internet scanning patterns and to characterize the behavior of specific groups of
hosts performing scans.

Finally, in Chapter 7, we summarize the main findings of this thesis.



Chapter 2

Background

2.1 Internet Background Radiation

Network traffic is constant and pervasive, but not all of it is legitimate or productive.
In 2004, Pang et al. [1] introduced the term 'Background Radiation" to describe
unsolicited and nonproductive traffic. This type of traffic is often directed at
nonexistent addresses, inactive servers, or servers that do not intend to receive it.
Broadly, the intent behind such traffic can be either malicious or benign. Literature
propose different types of classification for characterizing traffic constituting IBR
[5]. In general, three main categories exist:

o Network scanning. It is the process of identifying active hosts, open ports,
and other critical information within a network. It helps assess network
security, detect vulnerabilities, and maintain network health and performance.
Attackers often utilize automated tools to conduct scans with the aim of
uncovering vulnerable hosts or exposed services on the Internet, such as open
ports or outdated software versions.

o Backscatter. This refers to unsolicited traffic resulting from denial-of-service
(DoS) attacks, where attackers spoof the source IP address to obscure the
origin of the attack. By spoofing the source IP address, they cause the victim
to send responses to these forged addresses, leading to a flood of unsolicited
traffic [6].

o Misconfigurations. These originate from network errors or misconfigured
systems that unintentionally direct traffic to incorrect destination addresses,
causing hosts assigned to these addresses to receive unsolicited traffic.

8
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2.2 Network scanning

Network scanning is the process of discovering active hosts on the network and
gathering information about them, such as operating system, active ports, services,
and applications. The following techniques form the core of network scanning [7]:

e Host Discovery. This is the initial step in network scanning. It involves
sending messages to a host to elicit a response, which indicates the host is
active. However, host discovery methods are not always reliable. A lack of
response may suggest that the target is inactive, but it could also mean that
a router or firewall is blocking or dropping the packets.

e« Port and Service Scanning. This involves sending messages to a host
to determine which ports are open and which services are running on those
ports. Knowing the open ports and services helps attackers further investigate
vulnerabilities that can be possible entry points into the system. There are
many different types of port scanning techniques. Some of them are:

— TCP Connect Scan. A TCP Connect Scan is the simplest type of
port scan. It attempts to establish a full TCP three-way handshake with
the target port. If the port is open and not blocked by a firewall, the
target responds with a SYN/ACK packet. If the port is closed, the target
responds with a RST/ACK packet.

— Half-Open Scan. A half-open scan, also known as a SYN scan, is a
more stealthy scanning technique that does not complete the full TCP
three-way handshake. In this method, the scanner sends a SYN packet
to the target port. If the target responds with a SYN/ACK packet, it
indicates that the port is open. Instead of completing the handshake, the
scanner immediately terminates the connection by sending a RST packet.

— Stealth scan. Stealth scans use a variety of evasive techniques to evade
detection by firewalls and intrusion detection systems. These scans send
packets with unusual TCP flag combinations or fragmented packets to
probe ports without establishing a full connection or triggering alarms.
Common stealth scan types include: SYN/ ACK scan, FIN scan, ACK
scan, NULL scan, and XMAS (Christmas Tree) scan.

As with host discovery, routers and firewalls may represent a problem for port
scanning as they may block or drop packets.

e OS Detection. OS detection, also known as OS fingerprinting, involves
sending specially crafted messages to an active host to elicit specific responses
that reveal the type of operating system running on the host.
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Many network scanning tools exist, the most common is Nmap [8], an open
source tool for network exploration and security auditing.

2.2.1 Who is scanning?

Internet scanning has become a prevalent activity on the Internet. Griffioen et
al. [9] conducted a study on internet-wide scanning over a 10-year period (2015-
2024), revealing a 30-fold increase in scanning activity during this time. In general,
network scanning activities involve a wide range of actors and can result from
both malicious or legitimate purposes. While attackers use scanning to identify
and exploit vulnerable hosts, it also serves as a valuable tool for internet scanning
platforms to conduct security research and network measurements.

Mirai Botnet

Malicious scanning is often the result of coordinated activities by attackers or auto-
mated systems. Botnets, in particular represent one of the most common sources
of malicious scanning activity. A botnet is a network of compromised computers
or devices controlled by a central entity, often referred to as a "botmaster." The
botmaster leverages these compromised devices, known as "bots" or "zombies," to
execute various malicious activities, including distributed denial-of-service (DDoS)
attacks, spamming, phishing, and network scanning. Botnets are among the most
prevalent tools for cybercriminal activities. They perform network scans for multi-
ple purposes, such as identifying vulnerable machines to infect and recruit into the
botnet or probing networks for enumeration and penetration. A common scanning
technique employed by botnets is horizontal scanning, where they systematically
probe the same protocol port across large ranges of IP addresses, often targeting
random IP addresses [10].

A notable example of botnet is the Mirai botnet [11]. Mirai is a notorious malware
family that specifically targets Internet of Things (IoT) devices, incorporating them
into a powerful DDoS botnet. Mirai propagates by scanning random IPv4 addresses
on Telnet TCP ports 23 and 2323, attempting brute-force logins using a predefined
list of weak or default credentials. Once a device is successfully compromised, the
Mirai bot reports the victim’s IP address and credentials to a centralized report
server. A separate loader program then infects the device by downloading an
architecture-specific malware binary, completing the compromise process.

"MalwareMustDie," a white-hat security research group, first identified Mirai’s
activities in August 2016 [12]. The malware’s source code [13] was publicly released
in September 2016, which triggered the rapid emergence of numerous Mirai variants
[14]. Analysis of the released source code revealed that during the scanning
phase of Mirai’s workflow, bots send TCP SYN packets to random IP addresses.
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Notably, it also revealed a fingerprint: the TCP sequence number is set equal to
the destination IP address (i.e., TCP.seq == IP.dst), with the probability of this
occurring randomly being 1/232.

Internet Scanning Platforms

Network scanning is not always driven by malicious intent. Various organizations
and platforms perform internet-wide scans for purposes such as security research
and network measurements. Several scanning platforms exist and operate with
specific objectives. Examples include:

Censys. It is a public search engine i.e., a system that continuously scans the
Internet to discover and identify active devices connected to IP networks. Its
foremost goal is to maintain a comprehensive and up-to date map of Internet
devices, services, web properties (i.e., websites), and certificates. Censys
collects data on hosts and websites through periodical and horizontal scan of
the IPv4 address space [15].

Census. The Internet Census Group [16] analyzes trends and benchmarks
security performance across various industries. Their regular Internet scans
aim to identify outdated software and security vulnerabilities that attackers
could exploit.

Binaryedge. This is a distributed platform comprising of scanners and
honeypots sensors that continuously collect, classify and correlate different
types of data from the internet. They create reports of what is present on the
internet, and estimate what is an organization’s attack surface [17].

Hinet. Hinet.net [18] is a major Taiwanese internet service provider (ISP)
operated by Chunghwa Telecom, providing a variety of online services including
broadband internet access, web hosting, cloud solutions, and security offerings.
Though primarily known as an ISP, Hinet also offers security-related services
such as vulnerability assessments and DDoS protection that involve network
scanning to identify security weaknesses and protect infrastructure.

Stretchoid. Stretchoid’s activity is occasionally flagged as malicious by
security systems such as firewalls. However, the platform describes itself as
a benign service aimed at assisting organizations in identifying their online
services through internet-wide scanning [19].

Shadowserver. The Shadowserver Foundation [20], a non-profit organization,
performs daily scans of the entire IPv4 address space. Their mission is
to improve internet security by identifying vulnerabilities and threats and
providing detailed reports to their subscribers.
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2.3 DMonitoring Internet Background Radiation

Monitoring Internet background radiation enables researchers to characterize the
nature and volume of unsolicited traffic, as well as to analyze large-scale attacks
and other global events [21]. However, a basic issue when attempting to measure
IBR is how, across all observed traffic, to determine which is indeed unwanted.
Simply including all unsuccessful connection attempts, one can mix truly unwanted
traffic with traffic representing benign, transient failures, such as accesses to Web
servers that are usually running but happen to be off-line during the measurement
period. Instead, by measuring only incoming traffic targeting non-existent services,
IPv4 addresses that are unallocated or unused, we can filter out most forms of
benign failures and focus on traffic that is highly likely to represent unwanted
activity [1]. The security, operations, and research communities widely monitor
allocated, globally routable, but unused IPv4 address blocks to study various
Internet phenomena [22]. Since no active hosts exist in these unused blocks, any
packets sent to these IP addresses result from unsolicited activity.

Systems that monitor unused address spaces have a variety of names, including
darknets, network telescopes, blackhole monitors [23], network sinks [24], and
network motion sensors [25]. From now on, we will refer to these systems as
Network Telescopes.

2.3.1 Network Telescope

The term "Network Telescope' refers to a passive sensor system designed to collect
incoming IBR within a segment of unused IP address space [26]. The name draws
an analogy to astronomical telescopes, which observe the universe by capturing
photons through their apertures. Similarly, a network telescope captures packets
arriving at a portion of monitored address space. While astronomical telescopes
are useful for studying celestial objects and their properties, network telescopes
are adopted to analyze host behavior and characteristics, such as activity patterns,
intensity, or categorization (e.g., denial-of-service attacks or worm infections).

In essence, a network telescope consists of a device that combines hardware
and software components to receive traffic routed to it. The figure 2.1 illustrates
a basic network telescope topology. In this setup, the router directs productive
traffic through the firewall towards the Local Area Network where active addresses
exist, while it forwards the unused portion of the IP address range to the network
telescope [2]. To collect unsolicited traffic, the network telescope must perform a
capture of incoming packets. This requires a process with sufficient privileges to
bind to the raw packet capture interface provided by the operating system. tcpdump
[27] is a commonly used tool for traffic capture, which leverages the 1ibpcap library
to obtain copies of raw incoming traffic directed to the network interface connected
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to the Internet. The result is a file in the PCAP format containing network packets
with all their relevant fields (src_ip, dst_ip, src_port, dst_port, proto, etc.).

Unfiltered
Public IP addresses

or CIDR Block ﬁ Stcpdump > file
B peap peap peap
&

peap peap peap

5
S

Network Telescope

Firewall Local Area Network

Figure 2.1: Basic Network Telescope Topology [2]

The effectiveness of a network telescope largely depends on the size of the
monitored address space. The larger the address space, the higher the probability
of capturing specific events. We can express this probability as the ratio between
the size of the monitored address space and the total size of the IPv4 address space.
For instance, monitoring a /24 subnet (256 addresses) provides a probability of 53
of capturing a specific event, while monitoring a /8 subnet (16,777,216 addresses)
increases this probability to 2%

Many network telescope implementations exist. One of the most notable is the
CAIDA Network Telescope [28]. This telescope monitors traffic directed to a /9
and /10 IPv4 network, which represents approximately 1/256th of the entire IPv4
address space. The data collected by the CAIDA Network Telescope serves as a
valuable resource for the research community in characterizing IBR, contributing
to more than 300 publications.

Honeypot

Network telescopes are generally passive sensor systems that only receive traffic
without providing any response. However, other variants exist that involve some
level of interaction with incoming traffic. These sensors are often referred to as
honeypots. These can be classified based on their level of interactions [29]:

o Low interaction. These implement the general behaviour of a Layer 4
responder. A low-interaction system enables observation of data payloads in
the first TCP packet after completing the handshake. The system responds to
incoming TCP requests, completes the handshake, and drops the connection
after capturing the first data packet.
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o Medium interaction. These implement the behaviour of a general honeypot
system, implementing portions of selected application layer protocols, such
as HTTP’s GET method, or FTP’s list command, to obtain TCP payloads
beyond the first packet, to learn what exploiting actions attackers would take
upon successful connection to the target.

o High interaction. In this variant, the sensor expose a virtualised imple-
mentation of intentionally vulnerable services, with the objective to observe
the infection commands taking place beyond transport-layer handshake, i.e.
during protocol message exchange and data/payload transfer.

Distributed Network Telescope

Moore et al. [26] discussed some practical issues in the use of a network telescope
for detecting and measuring events on the Internet. One main limitation is that in
the reality attackers do not perform scanning in a uniform manner across the entire
address space. Instead, they may exclude specific address regions, scan certain
areas more heavily, or rely on flawed pseudo-random number generators (PRNGs)
that introduce bias into the scanning process. This non-uniform scanning behaviour
can lead to misrepresent the actual activity in the Internet, as some address ranges
may be over-represented while others are under-represented or not represented at
all.

To address these limitations, Moore et al. proposed the use of a distributed
network telescope. This includes the combination of multiple network telescopes,
each monitoring a different portion of network space of different subnetworks, to
create a larger telescope that observe a wider range of IP addresses. A distributed
telescope offers several advantages. By covering a larger portion of the address
space, it enhances detection time, duration, precision, and provides more reliable
estimates of targeting rates compared to individual telescopes. Monitoring diverse
and geographically spread address ranges help reveal and overcome targeting bias
in the event. Additionally, combining the resources of multiple telescopes increases
overall network capacity and monitoring capabilities, making it easier to manage
high traffic volumes during peak events.

2.4 Cloud Computing

The National Institute of Standard Technology (NIST) [30] defines cloud computing
as a model for enabling ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal
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management effort or service provider interaction. Some of the key characteristics
of cloud computing include:

e On-demand self-service. Users can automatically provision computing
capabilities, such as server time and network storage, without requiring human
interaction with each service provider.

e Broad network access. Capabilities are available over the network and can
be accessed through standard mechanisms that promote use across various
platforms (e.g., mobile phones, tablets, laptops, and workstations).

» Resource pooling. The provider’s computing resources are pooled to serve
multiple consumers using a multi-tenant model, with different physical and
virtual resources dynamically assigned and reassigned according to consumer
demand. This includes storage, processing, memory, and network bandwidth.

« Rapid elasticity. Capabilities can be elastically provisioned and released
to scale rapidly outward and inward commensurate with demand. To the
consumer, the capabilities available for provisioning often appear unlimited
and can be appropriated in any quantity at any time.

e Measured service. Cloud systems automatically control and optimize
resource use by leveraging a metering capability at some level of abstraction
appropriate to the type of service (e.g., storage, processing, bandwidth, and
active user accounts). Resource usage can be monitored, controlled, and
reported, providing transparency for both the provider and consumer of the
utilized service.

Many companies rely on cloud computing services due to their flexibility, scala-
bility, and cost-effectiveness. Major public cloud service providers, such as Amazon
Web Services (AWS) [31], Microsoft Azure [32], Google Cloud Platform (GCP) [33],
and IBM Cloud [34], offer a diverse range of services. These include virtualization
services, storage solutions, and networking capabilities.

For instance, cloud providers offer virtual computing instances, commonly
referred to as virtual machines (VMs), with varying levels of performance, memory,
and storage capacity. These VMs are hosted on servers distributed across different
geographic locations, known as regions or availability zones, and are accessible
remotely via an internet connection. Additionally, cloud computing platforms have
become a popular choice for provisioning network resources, such as individual
IP addresses or entire subnets. These resources can be allocated from the cloud
provider’s pool of public IP addresses and may belong to different regions worldwide.

Cloud providers can offer such services on the basis of different pricing model
solutions. Some of them include [35]:
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e On-demand Pricing. This pricing model, commonly referred to as the
pay-as-you-go model, allows customers to pay only for the resources they use.
It is ideal for applications that require high availability and cannot tolerate
interruptions.

e Spot pricing. This is an auction-based system where customers can bid for
resources at a lower price than the on-demand rate. However, the provider
has not commitment to users and can terminate resources at any time if the
spot price exceeds the user’s bid. Spot pricing offer a cost-effective option for
applications that can handle interruptions.

2.4.1 Cloud Telescope

Due to its characteristics, cloud computing has become a popular platform also
for deploying network telescopes. A cloud telescope is a network telescope that
is deployed in a cloud environment, leveraging the resources provided by cloud
providers to monitor IBR [2] [36].

Figure 2.2 illustrates the vendor-neutral cloud telescope architecture proposed
by [36]. The diagram shows the components and nodes that allow a sensor to
capture IBR within a specific cloud region. By default, according to RFC1918,
the cloud platform assigns the capture sensor, running as a virtualized instance,
a private internal IP address. However, to operate effectively within a capturing
platform, the sensor requires one or more public IPv4 addresses from the cloud
provider’s available pool. The Gateway node routes incoming traffic to the sensor,
passing it through a Security Group that acts as a firewall. To fully expose the
sensor to IBR, the configuration must explicitly allow all incoming traffic through
the Security Group.

Cloud Region

Virtual Private Cloud

* Subnet
Internet 3 $tcpdump > file >
Background ‘{\ Q |\~/\| pcap pcap peap

pcap peap peap
Radiation w

Gateway

Open Sensor Data Global
Security Group Bucket
Stockholm

Figure 2.2: Cloud Telescope Architecture [36]
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2.5 Data Mining

This section examines a data mining approach to extract insights from large
datasets, such as those collected by network telescopes that characterize IBR. By
its definition [37], data mining is the process of discovering insightful, interesting,
and novel patterns, as well as descriptive, understandable and predictive models
from large-scale data. Key data mining tasks include exploratory data analysis,
frequent pattern mining, clustering, and classification.

2.5.1 Frequent Pattern Mining

Frequent pattern mining is the process of identifying informative and meaningful
patterns within large and complex datasets. These patterns can include sets of
co-occurring attribute values, known as itemsets, or more intricate structures such
as sequences, which account for explicit positional or temporal relationships, and
graphs, which capture arbitrary relationships between data points. The primary
objective is to uncover hidden trends and behaviors within the data, providing
deeper insights into the interactions among attributes and data points. Below, we
describe the problem of finding frequent patterns.

Let I = {iy,i2,...0,} be the set of all M possible items, and let T =
{T1,Ts,...T,} be a set of N transactions, called database.

o Each transaction has a unique ID and contains a subset of the items in I.

« The support supp(X) of a set of item X, where X C I, is defined as the
number of transactions in 7" that contain X.

o An itemset X is considered frequent if its support is greater than or equal to
a user defined minimum support threshold.

For instance, let I = {A, B,C, D, E'} represent the set of all possible items, and
consider Table 2.1a as the set of transactions 71" in the database. Table 6.2b lists

the frequent itemsets, grouped by support value, that meet an absolute minsup
threshold of 3.
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Transaction ID Items

ABDE
BCE
ABDE
ABCE
ABCDE
BCD

ST W N

(a) Transaction database

Support Itemsets

6 B

5 E, BE

4 A, C, D, AB, AE, BC, BD, ABE

3 AD, CE, DE, ABD, ADE, BCE, BDE, ABDE

(b) Frequent itemsets (minsup = 3)

Table 2.1: Transaction database and frequent itemsets

When working with large datasets, the number of possible itemsets can become
extremely high, making it computationally expensive to analyze all frequent itemsets.
An alternative approach in frequent pattern mining is to focus on identifying a
condensed representation of the frequent itemsets, specifically the maximal frequent
itemsets. A frequent itemset X is considered maximal if it has no frequent superset,
meaning there is no other frequent itemset X’ such that X C X’. In the previous
example, the frequent itemset BF is not maximal because it has the frequent
supersets: ABE, BCFE, BDE, and ABDFE. Conversely, the frequent itemsets
ABDE and BCFE are maximal because they do not have any frequent itemsets
containing them.

2.5.2 Association Rules

An association rule is a logical expression of the form X — Y, where X and Y are
disjoint itemsets (X,Y C I and X NY = (). A rule indicates that the occurrence
of itemset X (antecedent) in a transaction suggests a strong likelihood of the
occurrence of itemset Y (consequent) within the same transaction. Important
metrics for evaluating association rules include:

e Support. The support of a rule represents the proportion of transactions in
the database that contain both X and Y. It measures how frequently the rule
occurs in the dataset.

o Confidence. The confidence of a rule is the conditional probability that a
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transaction contains Y given that it contains X. It indicates the reliability of
the rule.

o Lift. The lift measures the strength of a rule by comparing the observed
joint probability of X and Y to their expected joint probability if they were
statistically independent. A lift value close to 1 suggests that X and Y occur
together as expected under independence. Values significantly greater than 1
indicate a positive association (above expectation), while values significantly
less than 1 indicate a negative association (below expectation).

While frequent itemsets represent groups of items that occur with a certain frequency,
association rules provide insights into the relationships between these itemsets.
They indicate the likelihood that one itemset occurs alongside another within a
transaction. Support, Confidence an Lift serves as metrics to evaluate the strength
of such relationships.

To generate frequent and high-confidence association rules, the process begins
by identifying all frequent itemsets and computing their support values. Given a
database and a user-defined minimum support threshold (minsup), frequent itemset
mining aims to find all itemsets whose support values are greater than or equal to
minsup. After identifying these frequent itemsets, association rule mining derives
all strong rules that also meet a user-defined minimum confidence threshold.

For example, consider the frequent itemsets in Table 2.1b, obtained with a minsup
threshold of 3. We aim to find the association rules that meet a minimum confidence
threshold of 0.7. Below are two sample rules and their metric computations. While
the first rule meets the minimum confidence threshold of 0.7, the second rule does
not.

1. Rule: BC —- F

o Support: sup(BC — F) = sup(BCFE) =3

« Confidence: conf(BC — E) = % =3=075

2. Rule: B+ A

o Support: sup(B — A) = sup(AB) =4

. _ sup(AB) _ 4
« Confidence: conf(B — A) = ) — 6 ~ 0.67

Frequent pattern mining and association rule mining are widely used in various
domains. The most notable is market basket analysis where they help identifying
patterns in customer purchasing behaviour. Another application is network traffic
analysis. They are useful for identifying patterns of general network activity, as
well as common behaviours of groups of hosts. For example, we can use frequent
pattern mining for characterizing scans actors by detecting frequent combinations
of targeted ports.
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Chapter 3

Exploration of providers for
a cloud based telescope

In this chapter, we explore various strategies and solutions for obtaining the
essential resources needed to implement a cloud-based network telescope. The
key resources include networking components and one or more virtual machines
capable of being assigned multiple IP addresses. In Section (2.3.1), we discussed
the importance of network telescope size as a key factor for its effectiveness in
capturing a significant amount of unsolicited traffic. Based on this, we chose to
provision an IP address space equivalent to a /24 subnet (256 public IP addresses).
Additionally, we required these IP addresses to be contiguous in order to emulate
the setup of a traditional network telescope hosted on our campus IP space. This
contiguity also helps avoid potential bias in the collected data, as IPs located at the
edges of subnets are often more prone to receiving anomalous or less representative
traffic.

We propose two primary approaches: acquiring public IP addresses directly
from a cloud provider or leasing them from a third-party organization. In Section
(1.3.1), we discussed works that provision resources using spot pricing models, which
often result in instances being terminated and replaced frequently. Such instability
makes it unsuitable for monitoring a consistent set of IP addresses over an extended
period. Therefore, our goal is to provision static resources using the on-demand
pricing model, ensuring they remain consistent over a one-month period.

3.1 Cloud providers

In this section, we analyze the major cloud providers and their solutions for
obtaining public IP addresses. We consider the costs associated with provisioning
virtual machines and allocating a /24 subnet (256 public IP addresses) to them.
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We evaluated various approaches to achieve the objective in the most feasible
and cost-effective manner. This included, according to the provider’s capabilities,
comparing the costs of associating 256 IP addresses to a single virtual machine
versus provisioning multiple virtual machines, each with a smaller number of IP
addresses. In general, we do not need VMs with high-performance capacities, as
we do not require them to perform complex computations. Our main requirement
is the ability to associate the predefined set of IP addresses to one or more virtual
instances.

For each provider we present different solutions, including the price of the virtual
machines and costs related to network resources. Notably, the network capabilities
of an instance vary by provider and depend on the instance type. Additionally, due
to capability constraints, some provider solutions do not allow the allocation of
exactly 256 IP addresses. Instead, they enable the allocation of an approximation
of a /24 subnet by provisioning 240 IP addresses. The proposed solutions include
details such as the instance type, the number of virtual machines required to obtain
the desired number of IP addresses, the hourly cost of each instance (which increases
with its size and performance), and the total monthly cost. The monthly cost is
calculated based on the usage of all required instances for 730 hours. Then, we
provide details about network pricing, according to the specific provider capabilities.

3.1.1 Amazon Web Service (AWS)

Amazon Web Services (AWS) [31] offers a wide range of virtual machines, known as
Amazon EC2 instances. Table 3.1 provides a comparison of various AWS instance
types and their associated costs for monitoring a /24 subnet. AWS instances can
attach multiple network interfaces (NICs), each capable of hosting several IPv4
addresses. However, the limits on the number of NICs and IPs per NIC depend
on the instance type. For example, smaller instances like t4g.nano or t4g.micro
support up to 2 NICs with up 2 IPv4 addresses per NIC. In contrast, larger
instances such as m5.4xlarge and al.4xlarge support up to 8 NICs, each capable
of hosting up to 30 IPv4 addresses. Thus, it is not possible to allocate exactly 256
IP addresses, but we can approximate a /24 subnet by provisioning 240 addresses.
To do this, one would need to provision a minimum of 60 virtual machines using
smaller instance types like t4g.nano or t4g.micro, or a single virtual machine
using larger instance types like m5.4xlarge or al.4xlarge. Table 3.1 shows the
total price for each solution, demonstrating that acquiring 60 t4g.nano instances
is more cost-effective than using a single large instance. However, the minimum
number of instances required to achieve the goal is very high. This increases the
complexity of management and configuration. Therefore, we can consider the
al.4xlarge instance as a more feasible option, despite its higher cost.
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Instance Type vCPUs Memory (GiB) VMs required Price/VM-hour Total VM Price/month (730 h)

tdg.nano 2 0.50 60 $0.0042 $183.96
t4g.micro 2 1.00 60 $0.0084 $367.92
mb.4xlarge 16 64 1 $0.7680 $560.64
al.dxlarge 16 32 1 $0.4080 $297.84

Table 3.1: Comparison of selected AWS instance types

In AWS, public IP addresses are called elastic IPs. These are static IPv4
addresses designed for dynamic cloud computing, allowing users to remap them to
different instances in case of failure. Elastic IPs are allocated from AWS’s global
address pool, which does not guarantee contiguous addresses and therefore does
not support prefix allocation. The cost of Elastic IPs is $0.005 per hour. For 240
addresses, the cost is calculated as $0.005 x 240 = $1.2 per hour. Over 730 hours
in a month, this results in a total cost of $876, to add to the cost of the virtual
machines.

3.1.2 Google Cloud

Google Cloud Platform [33] proposes a diverse range of virtual machine types,
referred as Google Compute Engine instances. It allows assigning only one public
[Pv4 address per network interface, and the maximum number of virtual network
interfaces (VNICs) per VM depends on the number of virtual CPUs (vCPUs). For
example, an e2-highcpu-8 instance, equipped with 8 vCPUs, supports up to 8
network interfaces, allowing for the allocation of up to 8 public IP addresses per
instance. To allocate 256 public IP addresses, a minimum of 32 such instances
would be required. Table 3.2 compares the costs of different instance configurations,
demonstrating that using 32 instances of type e2-highcpu-8 is more cost-effective
than provisioning 128 instances of type e2-highcpu-2 or 256 instances of type
c4a-high-cpu-1.

Instance Type vCPUs Memory (GiB) VMs required Price/VM-hour Total VM Price/month (730 h)

cda-high-cpu-1 1 2 256 $0.03788 $7079.01
e2-highcpu-2 2 2 128 $0.04950 $4625.28
e2-highcpu-8 8 8 32 $0.19790 $4622.94

Table 3.2: Comparison of selected Google instance types

In Google Cloud, the cost of public IP addresses is $0.005 per hour. Therefore,
for 256 addresses, the cost is $0.005 x 256 = $1.28 per hour, which multiplied by
730 hours in a month results in $934.40 per month. As for AWS, Google Cloud
does not support the allocation of contiguous blocks of IP addresses.
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3.1.3 Microsoft Azure

Microsoft Azure [32] allows associating multiple public IP addresses to a single
virtual machine (VM) and multiple addresses to a single network interface (NIC).
Azure defines a theoretical limit of 256 public IP addresses per VM, and also 256
public IP addresses per NIC. For this reason, it is sufficient to consider a single
VM with minimal computational capabilities to achieve the goal of monitoring a
/24 subnet. However, smaller instances might not support such a high number
of IP addresses. Thus, we applied the same approach as with AWS and Google
Cloud, comparing the costs of provisioning a single large instance versus multiple
smaller instances. Table 3.3 compares the costs of different solutions. It shows
how using a single general purpose instance of type D2pldsv5 is more cost-effective
than provisioning 256 instances of type B1ls, which are the smallest and cheapest
instances available in Azure.

Instance Type Cores Memory (GiB) VMs required Price/VM-hour Total VM Price/month (730 h)

Blls 1 0.5 256 $0.0048 $897.02
D2plds vb 2 4.0 1 $0.0711 $51.90

Table 3.3: Comparison of selected Azure instance types

In Azure, the cost of a public IP address is $0.005 per hour. For 256 addresses,
this results in a cost of $0.005 x 256 = $1.28 per hour, which over 730 hours in a
month amounts to $934.40 per month.

Moreover, Azure supports the allocation of contiguous blocks of IP addresses.
The maximum size of an allocable subnet is /28, containing up to 16 IP addresses,
each costing $0.006 per hour. To obtain 256 IP addresses belonging to an IP prefix,
the cost is $0.006 x 256 = $1.536 per hour, which over 730 hours in a month totals
$1,121.28 per month.

3.2 IP Leasing

Acquiring an address space directly from a cloud provider can be expensive, espe-
cially when requiring a large number of public IP addresses such as a /24 subnet. An
alternative solution is IP leasing. This approach involves renting I[P addresses from
a third-party organization that provides the addresses without offering connectivity.
To make these IP addresses reachable on the Internet, they must be advertised
via BGP (Border Gateway Protocol). The lesse can either advertise the address
space themselves, or it can utilize BYOIP (Bring Your Own IP) services offered
by cloud providers that will act as originator of the advertised prefix. Figure 3.1
illustrates the key entities involved in the IP leasing business model, detailing the
entire process from the IP addresses acquisition to the advertisement process.
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o IP Holder: The entity that owns and manages the IP address space. This
could be an organization allocated IP addresses by a Regional Internet Registry
(RIR) or an entity that acquired them through other means.

o Lessee: The entity that temporarily rents the IP address space from the IP
holder.

o Facilitator: An intermediary that, facilitates the transaction between the IP
holder and the lessee. However, the leasing process does not always require a
facilitator.

e Originator: The entity responsible for advertising the leased IP address
space in BGP. This is typically the entity behind the origin AS (Autonomous
System) of the advertised prefix. The originator may also be the lessee if they
have their own routing infrastructure.
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Figure 3.1: IP Leasing Business Model [3§]

One of the most notable facilitators in the IP leasing market is IPXO [39], a
leading IP broker that specializes in IP leasing services. IPXO ranks among the
top three facilitators in the RIPE, ARIN, and APNIC regions. Table 3.4 provides
an overview of the costs associated with leasing IP address blocks from IPXO.

Subnet Mask Monthly Price

/24 (256 IPs) $91.86
/23 (512 IPs) $186.29

Table 3.4: IP leasing costs by subnet mask

After leasing the subnet, IPXO provides two options for advertising the IP
addresses: self-originate and BYOIP service. In both cases, advertisement consists
into announcing the leased IP prefixes via the Border Gateway Protocol (BGP),
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making them globally reachable on the Internet. In the first option, the lessee
advertises the leased IP addresses using their own Autonomous System Number
(ASN) or that of their Internet Service Provider (ISP). In the second option, after
verifying ownership of the IP addresses, the lessee delegates the advertisement
process to the cloud provider. The cloud provider then announces the leased
IP addresses through its own ASN using Bring Your Own IP (BYOIP) services.
AWS, Google Cloud, and Microsoft Azure propose a multi-step BYOIP process for
bringing IP address space within their infrastructure.

3.3 Final choice

This section summarizes the costs of various solutions and identifies the most
cost-effective and feasible option for implementing a cloud telescope.

Although IP leasing can be cost-effective, we excluded it for several reasons.
First, the self-originate option requires the lessee to perform BGP announcements
and associate the leased subnet with their own ASN, which increases the complexity
of both setup and management. Moreover, in this configuration the leased address
space appears as part of our organization rather than the cloud provider’s infras-
tructure, which is inconsistent with our objectives. The BYOIP option mitigates
this issue by allowing the cloud provider to advertise the leased subnet under
its own ASN, thereby integrating it into its infrastructure. While this approach
better aligns with our objectives, our study specifically focuses on analyzing traffic
directed to IP ranges already belonging to the cloud provider’s pools, since prior
usage of those addresses may influence observed activity. Ultimately, despite their
competitive pricing, both leasing options introduce complexity and administrative
overhead.

For these reasons, the focus shifted to solutions involving the acquisition of one
or more virtual machines from a cloud provider, along with a set of 256 public IP
addresses. Table 3.5 provides a detailed comparison of costs across the three main
cloud providers, including expenses for virtual machines, public IP addresses, and
additional costs such as outbound traffic and storage. The total cost accounts for
potential price fluctuations based on the region selected for the VM, along with
additional hours required for configuring the platform before making it operational.

Based on the cost analysis, the two most cost-effective solutions are AWS and
Microsoft Azure. However, AWS does not support allocating multiple public IP
addresses within the same subnet, which conflicts with the objectives of this thesis.
In contrast, Azure allows the allocation of contiguous blocks of IP addresses, with
a maximum block size of /28 (16 addresses per block). Therefore, we selected
Microsoft Azure and allocated 16 separate /28 subnets to achieve the required
address space of 256 IP addresses.
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VM +
. Virtual Number M P IPs for Total
Provider Machine of VMs Cost Cost 730h3 Extra (8$) ($)
s/m)  s/m) 7o

Amazon Web al.4xlarge 1 0.408 0.005 1174 1 TB Outbound 1320

Service Traffic + $92
Disk + $4

Google Cloud e2-highcpu-8 32 0.197 0.005 5557 1 TB Outbound 5700
Platform Traffic + $122

Microsoft Azure D2plds v5 1 0.077 0.006 1177 1 TB Outbound 1300
Traffic + $75

Table 3.5: Cost comparison of cloud providers for VM and IP allocation

3.4 Summary of findings

This chapter explored various strategies for acquiring the resources needed to
implement a cloud-based network telescope. The primary objective was to obtain
a /24 subnet (256 public IP addresses) and the virtual machines (VMs) required
to host these addresses. Table 3.6 provides a summary of the solutions considered,
evaluating them based on cost-effectiveness, support for contiguous IP address
allocation, and ease of setup. While the IP leasing option proved to be cost-effective,
we excluded it due to the significant administrative overhead and the complexity
involved in setup and ongoing management. Among the cloud providers, Microsoft
Azure emerged as the most suitable choice, offering a balance of affordability,
support for contiguous IP address allocation, and simplicity in deployment.

Solution Cost Effectiveness Address Contiguity Ease of Setup
IP Leasing v v X
Amazon Web Service (AWS) v X v
Google Cloud (GCP) X X X
Microsoft Azure v v v

Table 3.6: Summary of solutions

3For AWS and Google Cloud, the cost includes the acquisition of 240 public IP addresses. For
Azure, the cost includes 256 public IP addresses.
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Chapter 4

Azure testing and
implementation

This chapter details the implementation process of a network telescope using
Microsoft Azure’s cloud infrastructure. It begins with an overview of Azure’s
network architecture, followed by tests assessing whether the cloud infrastructure
imposes any limitations, such as undeclared network components that filter (e.g.,
firewalls) or modify (e.g., NAT devices) incoming traffic. Finally, we outline the
implementation steps, including IP space allocation and deployment of interactive
services such as Layer 4 responders and honeypots.

4.1 Azure network architecture overview

Before conducting the tests on the Azure cloud infrastructure, it is important to
first examine the key components of Azure’s network architecture. In Chapter 2,
we described a vendor-neutral cloud telescope architecture (2.4.1). In this section,
we define Azure’s architecture based on its terminology and components.

Figure 4.1 provides a high-level overview of the architecture [32], illustrating the
workflow of incoming traffic directed to a Virtual Machine (VM). The VM resides
in a virtual subnet within a Virtual Network (VNet). It is connected to a Network
Interface (NIC), which facilitates communication with other resources in the virtual
network and the internet. Each NIC is assigned a default I[P configuration, which
includes a private IP address and, optionally, a public IP address. The public IP
address is essential for enabling communication with the VM from the internet.

Incoming traffic first passes through a Network Address Translation (NAT)!

Tt refers to Azure’s default NAT functionality, not the NAT Gateway service.
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device, which handles the mapping between public and private IP addresses. It
then reaches a Network Security Group (NSG), which acts as a stateful packet
filtering firewall. The NSG allows or denies inbound and outbound network traffic
based on user defined security rules. It can be associated either to a subnet or a
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Figure 4.1: Azure Network Architecture

4.2 Does the cloud bring limitations for network
telescope?

In this section, we investigate if the cloud environment introduces some constraint
or limitation for the deployment of a network telescope. Specifically we aim to
determine whether the cloud infrastructure comprises of undeclared firewalls or
NAT devices that brings filtering or alteration of incoming traffic. Our goal is to
receive traffic from the entire IPv4 address space on all ports. To evaluate this, we
conducted a series of tests using an Azure Virtual Machine (VM), specifically a
Standard D2s v3 instance (2 vCPUs, 8 GiB memory), chosen for its cost-effectiveness.
We configured it with a single public IP address.

To conduct tests effectively, it is essential to establish a basic networking setup
for the Azure VM. We have observed in Section (2.4.1) and (4.1) that the VM,
where the network telescope sensor is located, resides within a Virtual Private Cloud
region, where incoming traffic flows through a Virtual Gateway and a Network
Security Group (NSG). The NSG acts as a virtual firewall, filtering incoming and
outgoing traffic based on user-defined rules. Table 4.1 provides an overview of
the NSG configuration set up directly in the Azure portal interface. It highlights
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the custom rules we implemented alongside the default rules provided by Azure.
The rules AllowAnyCustomAnyInbound and AllowAnyCustomAnyOutbound permit
all incoming and outgoing traffic, respectively, and have an higher priority (lower
number) than the default rules DenyAlllnbound and DenyAllOutbound, which
Microsoft sets to block all traffic by default. Notably, we use port 22 (SSH) for
connecting to the VM to perform tests and management operations.

Priority Name Port Protocol Source Destination Action
301 AllowAnyCustomAnyInbound Any Any Any Any Allow
65000 AllowVnetInBound Any Any VirtualNetwork VirtualNetwork Allow
65001 AllowAzureLoadBalancerInBound Any Any AzureLoadBalancer Any Allow
65500 DenyAllInBound Any Any Any Any Deny
311 AllowAnyCustomAnyOutbound Any Any Any Any Allow
65000 AllowVnetOutBound Any Any VirtualNetwork VirtualNetwork Allow
65001 AllowInternetOutBound Any Any Any Internet Allow
65500 DenyAllOutBound Any Any Any Any Deny

Table 4.1: Network Security Group (NSG) setup

4.2.1 Testing

In this section, we describe the tests conducted to evaluate whether the cloud
infrastructure includes any undeclared network components, such as firewalls or
NAT devices, that could filter or modify unsolicited traffic. First, we performed
tests to verify the effectiveness of basic nmap scans, and whether all packets
successfully reach the target machine. Next, we investigated whether the cloud
infrastructure performs payload inspection by sending packets containing either
benign or known malicious payloads. Finally, we perform a capture of unsolicited
traffic to verify whether the telescope can effectively collect scanning activity from
the entire IBR.

4.2.2 Nmap test

The primary goal of a network telescope is to capture scanning activities. To verify
whether the telescope can detect traces of scanning activities, such as sequences
of SYN packets, we conducted tests using the widely used scanning tool nmap [8].
These tests aimed to ensure that the scan results accurately reflect the current
state of the virtual machine i.e., ports status and host availability, and that all
packets sent from the scanning source successfully reach the target machine.

The tests involved scanning the first 1000 ports from an external host while
capturing the incoming traffic on the target machine using tcpdump [27]. We
performed two scans: a basic scan where all ports were closed except for port 22
(used for SSH connections), and a second scan where port 8080 was opened to host
a simple web service. Listings 4.1 and 4.2 present the results of these scans, which
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correctly identified the host as active and accurately reflected the state of the ports
on the target machine. All SYN packets successfully reached the destination, and
closed ports responded with RST packets, confirming their status. These results
demonstrate that performing a basic nmap on a cloud instance is effective and
accurately reflects the VM’s current state.

Nmap scan report for ${VM_PUBLIC IP_ ADDRESS}
Host is up (0.11s latency).
Not shown: 999 closed tcp ports (reset)

PORT STATE SERVICE
22/tcp open ssh
Nmap done: 1 IP address (1 host up) scanned in 3.51 seconds

Listing 4.1: Nmap basic scan

Nmap scan report for ${VM_PUBLIC IP_ADDRESS}
Host is up (0.11s latency).

Not shown: 998 closed tcp ports (reset)
PORT STATE SERVICE

22/tcp open ssh

8080/tcp open http—proxy

Nmap done: 1 IP address (1 host up) scanned in 3.04 seconds

Listing 4.2: Open service scan

To further validate the test, we performed a detailed inspection of packet traces
captured on both source and target machine after the basic nmap scan. The
source machine sent a total of 2009 packets, while the target machine received
2007 packets. Figures 4.2a and 4.2b explain the slight difference in the number of
packets observed. Figure 4.2a highlights two packets (no. 20 and no. 21) that did
not reach the target machine: an ACK packet directed to port 80 and an ICMP
timestamp request. Although a basic nmap scan is designed to send only SYN
packets, these two packets are default behaviors of nmap, used to determine if the
target host is alive when no specific host discovery options are provided [8].

Source Destination Protocol Length  Info

18 4.311306 192.168.0.68 20.169.159.227 ICcMP 42 Echo (ping) request id=ex46b4, seq=0/@, ttl=46 (reply in 22)
204.312871 192.168.0.68 20.169.159.227 TCP 54 36021 - 80 [ACK] Seq=1 Ack=1 Win=1024 Len=0

214.313582 192.168.0.68 20.169.159.227 ICMP 54 Timestamp request id=0x4e68, seq=0/0, ttl=46

22 4.427449 20.169.159.227 192.168.0.68 IcMP 60 Echo (ping) reply  id=0x46b4, seq=0/@, ttl=46 (request in 18)

(a) Source machine packet capture

Source Destination Protocol Length  Info
8 7.866435 101.56.150.161 10.0.0.5 ICMP 60 Echo (ping) request id=0x0751, seq=8/@, ttl=27 (reply in 9)
9 7.866478 10.0.0.5 101.56.150.161 ICMP 42 Echo (ping) reply id=0x0751, seq=0/0, ttl=64 (request in 8)

(b) Target machine packet capture

Figure 4.2: Capture comparison between source and target machines

In Section (4.1), we explained that the NSG functions as a stateful firewall,
meaning it tracks the state of flows and allows or denies packets based on their
connection state. In this case, the NSG dropped the ACK packet because it was
not part of any established handshake. On the other hand, Azure platform dropped
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the ICMP timestamp request packet due to the ICMP Timestamp Request Remote
Date Disclosure vulnerability (CVE-1999-0524) [40]. This vulnerability arises when
an attacker sends an ICMP timestamp request to a target system, which then
responds with its system’s timestamp information, potentially exposing the exact
time of the target system.

This test also raised an important considerations: the Azure Virtual Machine
resides in a Virtual Private Network, where it is assigned a private IP address
within the private subnet (Figure 4.1). The tcpdump operation captures traffic
arriving at the VM’s network interface, and the address 10.0.0.5 corresponds to
the VM'’s private IP address. As a result, the public IP address assigned to the
VM is not visible in the capture.

4.2.3 Sending payloads

In the previous section, we demonstrated that the cloud infrastructure does not
impose significant limitations on basic nmap scans, as all SYN packets successfully
reached the target destination, and the scan results accurately reflected the current
state of the ports.

In this section, we perform a capture comparison by sending packets with
specific payloads to the VM to determine whether the cloud infrastructure modifies
any application-level messages during transmission. We opened a service on the
target machine on port 8080 and sent a payload to the target machine using
the following command: echo $TEXTURE_PAYLOAD | ncat $TARGET_IP_ADDRESS
$TARGET_PORT. Figure 4.3 illustrates the handshake that source and destination
completed to transmit the packet containing the payload. Notably, it shows how
the general packet length (81 bytes) and the TCP payload length (27 bytes) remain
consistent between the source and target machine.

No. * Time Source Destination

Protocol _Length Info

145 13.715446 172.25.51.9 20.169.159.227 TCP 54 26427 - 8080 [ACK] Seq=1 Ack=1 Win=65280 Len=0

147 13.847097 172.25.51.9 20.169.159.227 TCP 81 26427 > 8080 [PSH, ACK] Seg=1 Ack=1 Win=65280 Len=27

I 152 13.944974  20.169.159.227 172.25.51.9 TCP 54 8080 - 26427 [ACK] Seg=1 Ack=28 Win=64256 Len=0

156 13.945129 172.25.51.9 20.169.159.227 TCP 54 26427 - 8080 [ACK] Seq=29 Ack=2 Win=65280 Len=0

(a) Source machine packet capture

Source Destination Protocol  Length Info

11 12.835033 130.192.232.232 60 10400 > 8080 [ACK] Seq=1 Ack=1 Win=65280 Len=@
12 12.964806 130.192.232.232 81 10400 > 8080 [PSH, ACK] Seq=1 Ack=1 Win=65280 Len=27

14 12.964864 130.192.232.2.. TCP 54 8080 - 10400 [ACK] Seq=1 Ack=28 Win=64256 Len=0

16 13.063921 130.192.232.232 10.0.0.5 TCP 60 10400 > 8080 [ACK] Seq=29 Ack=2 Win=65280 Len=0

(b) Target machine packet capture

Figure 4.3: Capture comparison between source and target machines with payload
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However, this test also revealed another important consideration. Figure 4.3
shows that the source ports of packets differed between the source and destination
machines because the source machine was behind a NAT that modified the source
port before the packets reached the destination. In a separate experiment, we
observed that packets sent from a source machine with a public IP address retained
their original source ports. This behavior indicates that the observed source port
changes are caused by the NAT device in front of the source machine, rather than
modifications by the cloud infrastructure.

We also tested whether the cloud infrastructure inspects packets for suspicious
content. To do this, we attempted to send known malicious payloads, such as:

o Malformed HTTP requests: it is a common technique used by attackers to
exploit vulnerabilities in web servers. We sent a request containing a null byte
(%00) to the target machine on port 80.

’ echo -ne "GET /%00 HTTP/1.1\r\nHost: $TARGET_IP\r\n\r\n" | nc -n -v -w 5 $TARGET_IP 80

o Malformed SSH packet: this is a crafted binary packet used to elicit parsing
errors, fingerprint behavior, or other responses from SSH servers. it is composed
of a sequence of null bytes followed by a specific byte sequence.

echo -ne "\x00\x00\x00\x05\x00\x00\x00\x00\x00" | nc -n -v -w 5 $TARGET_IP 22

« Telnet option negotiation: it is a sequence of bytes used in the Telnet protocol
to negotiate options between client and server [41]. Specifically, we sent
three sequence of bytes (0xFF 0xFD <opt>) determining the request for three
options code: x18 (Terminal Type), x20 (Terminal speed) and x23 (X Display
location). These commands are useful to elicit characteristics of the target
system.

’ echo -ne "\xff\xfd\x18\xff\xfd\x20\xff\xfd\x23" | nc -n -v -w 5 $TARGET_IP 23

In all cases, the payloads arrived unaltered at the destination, confirming that
the cloud infrastructure does not perform particular application-level inspections
during transmission.

4.2.4 Collecting unsolicited traffic

In the previous sections, we demonstrated that scanning activities can accurately
identify closed and open ports on our VM, and that almost all packets successfully
reach the target machine without alteration or filtering by the cloud infrastructure.
This section focuses on capturing incoming traffic using tcpdump [27] to verify
whether the internet scanners reach our VM.
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We performed a 7-hour capture, recording all traffic directed to the VM, collecting
64 MB of data across 231,350 packets. Within the captured traffic, we can clearly
identify examples of scanning activity. Figures 4.4a and 4.4b illustrate two of them.
The first figure shows a standard TCP scan, where multiple scanners send SYN
packets to various ports and receive RST responses from our VM for closed ports.
The second figure depicts a stealth scan, where a single scanner avoids completing
the TCP handshake by sending a SYN packet followed by an RST packet. However,
since all ports are closed, it consistently receives RST responses from our VM.

Time “ Source Destination Protocol Length Info

2389 67.771811  10.0.0.4 162.216.150.128  TCP 54 64227 - 53829 [RST, ACK] Seq=1 Ack=1 Win=@ Len=@

2429 72.963924 10.0.0.4 162.216.149.43 54 9405 - 55894 [RST, ACK] Seq=1 Ack=1 Win=@ Len=0

2432 74.290951 10.0.0.4 35.203.211.231 54 23917 - 53992 [RST; ACK] Seq=1 Ack=1 Win=0 Len=0

2468 74946164 10.0.0.4 147.185.133.12 5433013 > 50502 [RST, ACK] Seq=1 Ack=1
2476 79.039475  10.0.0.4 35.203.211.233 5447342 > 54480 [RST, ACK] Seg=1 Ack-1

2478 79.728420  10.0.0.4 35.203.211.22 54 9874 > 49777 [RST, ACK] Seg=1 Ack=1 Win=@ Len=e _

“ Source Protocol Length Info
15172 1267.859583  10.0.0.4 .63.197. TCP 54 65456 - 8080 [RST, ACK] Seq=1 Ack=1 Win=@ Len=0
15173 1267.958489 92.63.197.66 . . TCP 60 8080 > 65456 [RST] Seg=1 Win=1200 Len=0
22031 2112.706143 .0.0.4 92.63.197.66 TCP 54 65390 - 8é80 [RST, ACK] Seq=1 Ack=1 Win=0@ Len=0
22032 2112.799276 .63.197.66 10.0.0.4 TCP 60 8080 ~» 65390 [RST] Seq=1 Win=1200 Len=0

31558 2841.903836 .0.0.4 92.63.197.66 TCP 54 65099 - 8080 iRST, ACK] Seq=1 Ack=1 Win=@ Len=0
31559 2842.004924 10.0.0.4 TCP 60 8080 > 65099 [RST] Seq=1 Win=1200 Len=0
31769 2862.738875 .0. 92.63.197.66 TCP 54 65421 » 8080 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
31770 2862.835487 . . 10.0.0.4 60 8080 > 65421 [RST] Seq=1 Win=1200 Len=0

37382 3533.188256 92.63.197.66 54 65369 - 8080 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
37383 3533.287954 10. 60 8080 - 65369 [RST] Seq=1 Win=1200 Len=0

53673 5738.649951 .0, 92.63.197.66 TCI 54 65455 > 8080 [RST, ACK] Ack=1 Win=0 Len=0
53674 5738.753082 .63.197. 10.0.0.4 60 8080 > 65455 [RST] Seq=1 Win=1200 Len=0
66184 7394.075470 92.63.197.66 54 65092 > 8080 [RST, ACK] Seq=1 Ack=1 Win=e Len=e
66185 7394.176192 66 10.0.0.4 60 8080 > 65092 [RST] Seq=1 Win=1200 Len=0

1063996 11265.189033 .0.0.4 92.63.197.66 54 65067 -» 8080 ERST, ACK] Seq=1 Ack=1 Win=@ Len=0
103997 11265.290995 2. . 10.0.0.4 60 8080 > 65067 [RST] Seq=1 Win=1200

125163 13772.858429 92.63.197.66 54 65091 - 8080 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
125164 13772.962240 92.63.197.66 10.0.0.4 60 8080 > 65091 [RST] Seg=1 Win=1200 Len=0

(b) Stealth scan

Figure 4.4: Internet scanning capture

4.2.5 Final considerations of test results

The tests conducted revealed that the cloud infrastructure does not pose a significant
obstacle to collect unsolicited traffic using cloud-based network telescope, as the
majority of the traffic reaching the Virtual Machine remains unaltered and unfiltered.
However, we identified a few exceptions:

o The NSG, functioning as a stateful firewall, drops packets that do not belong
to an established connection (e.g., ACK packets not associated with a prior
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SYN). This behavior is expected and does not pose a significant limitation for
a network telescope, as most scanning activities involve initiating connections.

e The cloud infrastructure drops certain types of packets, such as ICMP times-
tamp requests, due to known vulnerabilities that can be exploited using these
packets. While this may limit the capture of specific traffic types, it does not
significantly affect the overall observable scanning activities, as such packets
represent only a negligible fraction of the total traffic.

e The Virtual Machine is located in a private subnet, and the public IP address
is mapped to a private IP address. As a result, the public IP address is not
visible in packet captures taken at the VM’s network interface. However, since
each public IP address is mapped to a corresponding private IP address, we
can maintain a record of the 1:1 association during the public IP configuration
phase.

o When the source machine is located behind a NAT device, the source port of
packets always change upon reaching the destination machine. This behavior
is not caused by the cloud infrastructure but rather by the NAT device in
front of the source machine. While this may affect certain types of analysis,
it cannot be considered a limitation of the cloud infrastructure itself, as it is
strictly related to the source network configuration.

4.3 Setup and implementation

In this section, we outline the steps taken to configure the Azure Virtual Machine
with a specific set of IP addresses to function as a network telescope, and detail the
deployment of interactive services on specific segments of the allocated IP space.

4.3.1 Network setup

In Section (4.2), we said that we make use of port 22 for SSH connection and
for management purposes. However, we want to ensure that management traffic
remains separated from darknet traffic during data capture. Initially, we considered
using two NICs: one dedicated to management traffic with its own IP address and
the other for the network telescope. After some experiments, we determined that
the primary NIC always functions as default gateway, requiring us to listen on
both interfaces. To simplify the collection process, we opted to use a single NIC
assigning a dedicated IP address for management purposes, while the remaining IP
addresses allocated for the network telescope.
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IP address space allocation

Creating an IP address can be done manually through the Azure portal interface.
However, when managing a large number of [P addresses, the process of allocating
and associating them with different IP prefixes becomes time-consuming and error-
prone. To avoid this labor-intensive manual task, we developed a script to automate
the entire process of IP address space allocation. First, we deploy the desired VM
along with its associated NIC via the Azure portal. Then, we execute the script.
Algorithm 1 presents the pseudocode for the script, which performs two main tasks:
it first creates the required set of IP prefixes, and then allocates the desired number
of TP addresses from these prefixes.

In our implementation, we allocated 256 IP addresses across 16 prefixes, each
with a size of /28. We used the default IP configuration with the private address
10.1.0.4 for management purposes. For the remaining IP addresses, we associated
the 16 public IP addresses of each prefix with a corresponding set of private IP
addresses in the range 10.1.p.1 to 10.1.p.16, where p represents the prefix number
(ranging from 1 to 16). Table 4.2a shows a sample of the allocated public IP
addresses and their corresponding private IP addresses. For example, the IP
addresses in the prefix 48.217.46.224/16 map to the private IP prefix 10.1.0.1/16.
This mapping directly addresses the limitation discussed in Section (4.2), where
the public IP address does not appear in the packet capture.

Algorithm 1 TP Prefix Creation and Address Assignment
1: Input: TOTAL_PREFIXES < 16, PREFIX_SIZE < 28

2: Create IP Prefixes:

3: for p + 1 to TOTAL_PREFIXES do

4: PREFIX_NAME < "prefix-' + p

5: Create public IP prefix PREFIX_NAME with size /PREFIX_SIZE
6: end for

7

8

: Allocate Private/Public IPs:
: for p < 1 to TOTAL_PREFIXES do

9: for i < 1 to 16 do > each /28 has 16 addresses
10: PRIVATE_IP < 10.1.p.i

11: PUBLIC_IP_NAME + "myPublicIP-" 4 p 4 "-" 4

12: PUBLIC_IP < allocate next public IP from the prefix p

13: Bind PRIVATE_IP to PUBLIC_IP via PUBLIC_IP_NAME

14: end for

15: end for

16: Output: Mapping (PRIVATE_IP,PUBLIC_IP) for all allocated addresses

This iterative process ensured that the 16 contiguous public IP addresses within
each prefix were consistently mapped to their corresponding private IP addresses in
the specified range. Table 4.2b summarizes the allocated IP prefixes. We carefully
chose prefixes to be as close as possible to one another, effectively simulating the
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allocation of a /24 subnet of contiguous IP addresses.

Name Private IP  Public IP Prefix Network
myPublicIP-1-1 10.1.1.1 48.217.46.233 1 48.217.46.224/28
myPublicIP-1-2 10.1.1.2 48.217.46.227 2 48.217.46.240/28
myPublicIP-1-3 10.1.1.3 48.217.46.237 3 48.217.46.160/28
myPublicIP-1-4 10.1.1.4 48.217.46.231 4 48.217.46.192/28
myPublicIP-1-5 10.1.1.5 48.217.46.224 5 48.217.46.112/28
myPublicIP-1-6 10.1.1.6 48.217.46.228 6 48.217.46.64/28
myPublicIP-1-7 10.1.1.7 48.217.46.229 7 172.210.53.176/28
myPublicIP-1-8 10.1.1.8 48.217.46.238 8 48.217.46.96/28
myPublicIP-1-9 10.1.1.9 48.217.46.235 9 48.217.46.144/28
myPublicIP-1-10  10.1.1.10 48.217.46.225 10 172.172.155.64/28
myPublicIP-1-11  10.1.1.11 48.217.46.230 11 48.217.47.0/28
myPublicIP-1-12  10.1.1.12 48.217.46.234 12 74.235.93.32/28
myPublicIP-1-13  10.1.1.13 48.217.46.239 13 48.217.46.80/28
myPublicIP-1-14  10.1.1.14 48.217.46.232 14 48.217.46.128/28
myPublicIP-1-15  10.1.1.15 48.217.46.226 15 48.217.46.208/28
myPublicIP-1-16  10.1.1.16 48.217.46.236 16 48.217.46.176/28

(a) Private/Public IP Mapping (Prefix 1)

(b) IP Prefix Allocation

Table 4.2: Private/Public IP mapping and prefix allocation

4.3.2 Interactive deployments

Monitoring internet traffic collected by network telescopes is typically limited to
observing connection attempts, such as TCP SYN packets or ICMP echo requests.
However, by deploying interactive services on specific subnets, we respond to such
connection attempts, allowing us to observe the subsequent actions of the scanner.
This interaction enables us to gain deeper insights into the behavior of internet
scanners and potentially attract more traffic. In Section (2.3.1), we discussed
the different variants of a network telescope and their corresponding levels of
interactivity. Here, we detail the deployment types used for specific subnets across
the allocated IP space.

o Darknet. This deployment is a simple network telescope, where all addresses
remain inactive, with no responses provided to incoming traffic.

o Layer-4 responder. In this deployment type, we respond to incoming traffic
completing the TCP handshake and sending a TCP RST packet to terminate
the connection either (i) after the first packet sent by the sender or (ii) after
an idle timeout. This service is active on all the range of ports (1-65535).

« Honeypot. In this deployment, we emulate the presence of a Cowrie honeypot
[42], and a nginx web server [43]. The former is a medium-interaction SSH
and Telnet honeypot and is active on port 22. The latter is a low-interaction
HTTP and HTTPS honeypot, active on ports 80 and 443.

36



Azure testing and implementation

In addition to such deployments, we propose some variants. Specifically, we created
duplicate versions where we announce the subnet via DNS and public certificate
emissions. The objective is to assess whether these features enhance the visibility
of the subnets, thereby attracting more traffic.

Table 4.3 provides an overview of different subnets and their corresponding
deployment type. In Section (4.3.1) we defined the set of allocated prefixes for
the Azure cloud-based network telescope. Table 4.3a presents such allocated
prefixes, along with their corresponding deployment types. We replicated the
same configuration on our campus IP space, except for the variants with DNS
announcements and public certificate emissions. The campus network telescope
utilized a /24 subnet within the range 130.192.166.0/24. Table 4.3b outlines the
deployment assignments for different segments of the campus subnet.

Prefix ID Network Deployment

7 172.210.53.176/28  Darknet_ DNS_ Cert

10 172.172.155.64/28  L4Responder Pure

11 48.217.47.0/28 L4Responder_ DNS_ Cert
12 74.235.93.32/28 Honeypot_ DNS_ Cert
Others 48.217.46.x/28 Darknet  Pure

(a) Cloud Deployment Assignment

Network Deployment
From 130.192.166.101 to 130.192.166.116  Honeypot
130.192.166.16/28 L4Responder
All other IPs Darknet

(b) Campus Deployment Assignment

Table 4.3: Deployment Assignments for Cloud and Campus IP spaces

Layer 4 responder

In the previous section we introduced the Layer 4 responder as one of the interactive
deployment types we mount on our address range. Here, we present a description
of its implementation and distribution process.

The Layer 4 responder is a powerful tool for obtaining deeper insights into the
behavior of internet scanners. Hiesgen et al. introduced Spoki [44], a reactive
network component specifically designed to capture the activity of so called two-
phase scanners, also known as stateless TCP scanners. These scanners not only
identify open ports during the first phase of scanning but also initiate a second
scan phase of further interactions with targeted hosts. While traditional network
telescopes effectively capture the first phase of scanning, they fail to observe
the second phase due to their passive nature and lack of response to incoming
packets. Spoki, instead, aims to respond to incoming TCP SYN packets in real
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time, establishing TCP connections, and thereby triggering the second phase of
scanning activity. This approach enables the collection of deeper insights into the
behaviour of two-phase scanners, that otherwise would remain undetected. The
study conducted by Hiesgen et al. demonstrated that stateless TCP scanners
contribute more than two-thirds of all TCP SYN traffic, and that their activity is
significantly more targeted than one-phase scanners.

Implementing a Layer 4 responder requires setting up a system capable of
listening for incoming TCP connections on all ports. However, opening all 65,535
ports on a system is both impractical and resource-intensive. To overcome this
limitation, we use iptables rules to redirect all incoming TCP traffic to a single
listening port where the Layer 4 responder operates. To automate this process, we
developed a bash script that configures the necessary iptables rules. Algorithm
2 provides an overview of the steps performed by the script. The script takes
into account: the network interface, the private IP address mapped to the public
IP, the listening port of the Layer 4 responder, and the range of ports to be
redirected (1-65535). It begins by flushing any existing NAT rules to ensure a clean
configuration and enabling IP forwarding to allow traffic redirection. Then, it uses
the multiport module to add a DNAT rule that redirects incoming TCP traffic on
the ports in PORT_LIST to the LISTEN PORT of the Layer 4 responder.

Algorithm 2 iptables Setup for L4Responder

Require: NIC, PRIVATE_IP, LISTEN_PORT, PORT_LIST

1: NIC > Network interface
2: PRIVATE_IP > Private IP address bound to NIC
3: LISTEN_PORT > Port where L4Responder listens
4: PORT_LIST > List or range of ports to redirect
5: function ADDDNATRULES(NIC7 PRIVATE_IP, PORT_LIST, LISTEN_PDRT)

6: Execute:

iptables -t nat -A PREROUTING -d PRIVATE_IP -i NIC -p tcp -m multiport \
—-dports PORT_LIST -j DNAT -to-destination PRIVATE_IP:LISTEN_PORT
7: end function

8: procedure SETUP_ IPTABLES

9: Flush existing NAT rules

10: Enable IP forwarding

11: ADDDNATRULES(NIC, PRIVATE_IP, PORT_LIST, LISTEN_PORT)
12: end procedure

After setting up the iptables rules, we developed a Python script to implement
the Layer 4 responder functionality. Algorithm 3 provides a high level overview of its
main logic. We initiate the responder by starting a TCP server on port LISTEN PORT.
However, due to the iptables redirection, all incoming TCP traffic appear to
have the same destination port, which is the LISTEN_PORT, thus losing the original
destination port information. To address this, we utilize the SO_ORIGINAL_DST
socket option to retrieve the original destination IP and port of the incoming
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packets. This allows us to know which port the scanner was actually targeting.
The responder continuously listens for incoming TCP packets. Upon receiving a
packet, it extracts the original destination information and processes the packet
based on its type [44]. If the packet is a TCP SYN, the responder sends back
a TCP SYN-ACK response, effectively completing the initial handshake. If the
packet is a TCP ACK, indicating that the scanner is attempting to establish a
connection, the responder sends a TCP RST response to terminate it. If no further
packets are received within a predefined timeout period, the responder also sends a
TCP RST to close the connection. All other types of packets are ignored.

Algorithm 3 L4Responder with connection timeout handling
Require: PRIVATE_IP, LISTEN_PORT, TIMEOUT

PRIVATE_IP > Private IP address
LISTEN_PORT > Port where L4Responder is active
TIMEOUT > Maximum inactivity duration before closing connection

procedure START__L4RESPONDER
Start TCP server on PRIVATE_IP:LISTEN_PORT
while True do
Wait for incoming TCP connection
original_dst ¢ Extract original destination using SO_ORIGINAL_DST
Handle connection with REPLY RULES(connection, original dst)
end while
. end procedure

— =
Coownous wos

12: procedure REPLY__RULES(connection, original _dst)
13: if received TCP SYN then

14: Send TCP SYN-ACK response

15: else if no packets received for TIMEOUT seconds then
16: Send TCP RST and close connection

17: else if received TCP ACK then

18: Send TCP RST response

19: else

20: Ignore packet

21: end if

22: end procedure

To streamline the deployment process, we containerized the Layer 4 responder
application using Docker. The Docker image includes the Python script, all
necessary dependencies, and the bash script for configuring iptables rules. The
Docker container runs in privileged mode with host network access, allowing it
to directly modify iptables rules on the host system.
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Chapter 5
Data Collection and Analysis

In this chapter, we analyze the traffic volumes and characteristics observed in
a cloud-based network telescope and compare them with those of a traditional
telescope hosted on our campus IP space. We begin by presenting the data collection
campaign, detailing different time windows with specific configurations, including
the deployment of subnets hosting fake services with varying levels of interactivity,
such as Layer 4 responders and honeypots. Next, we perform a comprehensive
statistical analysis of the collected data, highlighting the differences between the
two telescopes. Our analysis focuses on traffic volumes, timeseries of incoming
traffic, impact of interactive services, and the behavior of senders targeting each
deployment.

5.1 Data collection campaign

For this study, we collected one month of traffic from two network telescopes: one
hosted in the Azure cloud environment and the other on our campus IP space.
In Section (4.3.2), we discussed the adoption of various interactive deployments
designed to enhance the visibility of the telescopes and provided details about
their subnet allocation. In this section, we outline the timeline of our data col-
lection campaign, highlighting the distinct time windows and specific deployment
configurations used during each phase.

5.1.1 Timeline data collection

In this section, we outline the timeline of our data collection campaign, detailing
the overall period and the specific subperiods during which different interactive
deployments operated. Figure 5.1 illustrates the timeline, which we divided into
four distinct phases.
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o Phase 1: (July 25 - August 5). During this initial phase, all deployments
were inactive, resulting in a full darknet configuration on both the campus
and cloud telescopes. This phase serves as a baseline for observing unsolicited
traffic in the absence of interactive services.

« Phase 2: (August 5 - August 15). In this phase, we activated the
predefined Layer 4 responder and honeypot deployments, enabling them
to respond to incoming traffic. Additionally, we configured specific cloud
subnets with DNS announcements and public certificate emissions, for enhance
their visibility. This phase allows us to evaluate the impact of interactive
deployments on observed traffic, as well as the effect of DNS announcements
and public certificate emissions with respect to similar deployments.

« Phase 3: (August 15 - August 15). In this phase, we deactivated all inter-
active deployments, reverting to a full darknet configuration. However, DNS
announcements and public certificate emissions remained enabled throughout
the entire campaign to evaluate their residual impact. Also, we kept ICMP
responses active only on cloud telescope to assess how this influences incoming
traffic. This phase allows us to evaluate whether active deployments had
any lasting effect on the traffic observed when both telescopes reverted to a
darknet configuration.

o Phase 4: (August 25 - September 2). Following these three phases, we
continued data collection until budget expiration on September 2. During
this extended period, we reactivated the services on to observe whether any
significant changes occurred compared to the initial activation phase.

07/25 08/05 08/15 08/25 09/02
TIMELINE | 10 days L 10 days L 10 day L 8 days——L>
Darknet + dns + cert: >
3 3y
‘g >
L4Responder + dns + cert———p1 + - r et dns+certt e ——L4Responder + dns + cert—»>
Honeypot + dns + cert———p1 = === oo dns+cert "t Honeypot + dns + cert—>
CLOUD ! Darknet: Darknet’ Darknet Darknet——————>»
> >
3 3y
Honeypot Y g Honeypot >
CAMPUS ! Darknet Darknet Darknet Darknet—————>
L J J A J
i R Rl Rl
1° PHASE 2° PHASE 3° PHASE 4° PHASE

Figure 5.1: Data collection timeline

This structured timeline enables a comparative analysis of the cloud and campus
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telescopes under different configurations. In the following sections, we focus on the
first two phases to analyze traffic volumes, examining both passive and interactive
deployments and the impact of interactive services. Additionally, we evaluate
the subsequent phases to assess the lasting effects of interactive services and the
emergence of new senders.

5.2 Statistical analysis

In this section, we present a statistical analysis of the collected data to identify
differences between the cloud-based telescope and the traditional campus telescope.
We begin by analyzing the traffic volumes observed in both passive and interactive
deployments. Then, we examine the impact of activating responders on both
telescopes by visualizing the time series of traffic volumes and focusing on the
amplification effects introduced by these responders. We then analyze the lasting
impact of interactive deployments after their deactivation, assessing whether their
influence persists over time. Finally, we conduct a sender analysis for both the
cloud and campus deployments, exploring the distribution of source IPs, identifying
unique and common sources, and evaluating whether interactive deployments
attract new sources of traffic or amplify the activity of already present ones.

Due to the interactive deployments, the collected traffic consists of both incoming
and outgoing packets. To facilitate analysis, we segment the traffic into flows. A
flow is defined as a bidirectional 5-tuple consisting of the source and destination IP
addresses, source and destination ports, and the transport-layer protocol. Packets
sharing the same 5-tuple are grouped into the same flow, provided the idle time
between packets does not exceed 5 minutes. If two packets with the same 5-tuple
arrive more than 5 minutes apart, they are treated as separate flows.

5.2.1 Traffic volume

In this section, we analyze the differences in traffic volumes collected by the two
telescopes, considering both passive and active deployments. Specifically, for passive
deployments, we compare the traffic volumes observed on darknet subnets in the
first phase time window (July 25 - August 5th), where all deployments were inactive.
For active deployments, we compare the traffic volumes observed on interactive
deployments (Layer 4 responder and Honeypot) in the second phase time window
(August 5 - August 15th), when these services were active. Figure 5.2 shows the
results. The x-axis represents the specific subnet deployment, while the y-axis
shows the average number of flows received by each address in the subnet.
Figure 5.2a reveals that the cloud darknet receives nearly twice the number
of flows per IP compared to the campus darknet. However, the campus darknet
exhibits some outliers with significantly high traffic volumes. This anomaly is
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likely due to the campus IP space previously hosting active services, which may
have attracted more targeted traffic. Figure 5.2b shows a similar trend with cloud
deployments receiving more flows than campus counterpart. While the difference

is more marginal for Honeypots deployments, it is more pronounced for Layer 4
responder deployments.
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Figure 5.2: Traffic volumes comparison

Thus, the results revealed that the cloud telescope consistently attract more
traffic than the campus telescope, regardless of the deployment type. Now, we aim

to analyze the effects on traffic volume brought by the activation of interactive
services on both telescopes.
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5.2.2 Timeseries

In Section (5.1.1), we outlined the different phases of our data collection campaign,
each with specific deployments configuration. In this section, we evaluate the
impact of interactive deployments on the overall traffic volumes observed by both
telescopes, focusing on the traffic received during the first and second phase time
windows. Figure 5.3 illustrates the time series of traffic volumes observed across the
different subnet deployments within the campus and cloud IP space. The x-axis
represents the day of the month, while the y-axis shows the average number of
flows received by each address in the subnet deployment, aggregated over 4-hour
intervals. The shaded areas indicate the minimum and maximum values observed
within each interval, while the vertical dashed line marks the transition between
the first phase (darknet configuration) and the second phase (activation of Layer 4
responder and honeypot).

During the first phase, when all subnets operate in a darknet configuration,
the number of received flows is relatively similar across deployments on both the
campus (Figure 5.3a) and cloud (Figure 5.3b) networks. On the campus network,
the average traffic volume is approximately 1.5 x 10 flows per 4-hour interval,
whereas on the cloud network, it is nearly double, reaching around 3 x 10® flows
per time bin. Notable peaks occurred on July 31st and August 1st on the campus
network (Figure 5.3a). While the peak on July 31st affected all subnets, the peak
on August 1st primarily targeted the darknet deployment. This likely reflects the
outliers observed in Figure 5.2a.

On August 5th, we activated the responders on both networks. While the
darknet deployments maintained traffic levels similar to those observed in the first
phase, with the exception of occasional peaks, the impact of this change became
immediately evident in the Layer 4 responders. Notably, signs of increased activity
on the campus network appeared on August 4th, as the activation process started
on this day and reached full activation by August 5th. While in the first phase, the
Layer 4 responder exhibited traffic levels comparable to other deployments, in the
second phase, it consistently receives significantly more incoming flows, increasing
to 7 x 10® on the campus and 9 x 10% on the cloud. Interestingly, on both networks,
we observe a further increase in the number of flows targeting the Layer 4 responder
starting from August 11-12th. This trend suggests that the Layer 4 responder
continued to attract increasing attention from scanners, further widening the gap
between its traffic volume and that of other deployments over time.

In contrast, the honeypot deployment shows a more modest increase in traffic
compared to the Layer 4 responder. This behavior is expected, as the Honeypot
service is only active on ports 22, 80, and 443, whereas the Layer 4 responder
operates on all ports (1-65535). During the first phase, the traffic volumes for the
Honeypot and Darknet deployments are nearly identical. However, in the second
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phase, the Honeypot consistently receives more traffic than the Darknet, indicating
a slight increase in visibility.
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Figure 5.3: Traffic volume over time for deployments (flows/4 hours)

By the August 5th, we also enabled DNS announcements and public certificate
emissions for specific subnets in the cloud telescope. Figure 5.3b allows us to assess,
between similar deployments, how this factor influences the visibility of the subnet.
The two Layer 4 responders show a similar trend until the August 11-12th, when the
L4Responder Pure starts to receive more traffic than the L4Responder  DNS Cert.
This behavior would suggest that the DNS announcements and public certificate
emissions do not bring significant advantage for receiving more traffic. However,
it is important to note that the two Layer 4 responders reside in different IP
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ranges (see Table 4.3a), as we were unable to achieve full /24 subnet contiguity
due to cloud provider constraints. Therefore, this effect might be the result of
the different intrinsic nature of the two range locations. On the other hand,
the two darknets (Darknet Pure and Darknet  DNS Cert), exhibit a different
behavior. The Darknet_ DNS_Cert consistently receives slightly more traffic than
the Darknet_ Pure. However, we can note this difference already during the first
phase, when none of the two darknets had DNS announcements or public certificate
emissions active. For this reason, as the previous case, we cannot attribute any
significant benefit to the presence of DNS announcements and public certificate
emissions.

On the cloud network, during the first phase time window, we observe noticeable
drops in traffic occurring in the middle of each day. Figure 5.4 provides a clearer
view of this phenomenon. It shows the activity of the top 500 source IPs generating
traffic for a sample /28 subnet of the cloud darknet deployment during the first
phase time window. These top 500 IPs account for more than 50% of the traffic
within that subnet. Each row represents the activity of a source IP, segmented
into 4-hour time bins. The graph reveals that these traffic drops are caused by a
significant group of senders that consistently cease their activity during the same
hours in the middle of each day, exhibiting a distinct and synchronized pattern.
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Figure 5.4: Activity of the top 500 source IPs for a sample /28 Cloud Darknet
deployment (flows per 4-hour interval)

On campus network, we observe visible peaks involving honeypot and darknet
deployments on August 10-11th. Figure 5.5 highlights the top 25 source IPs
contributing to the traffic for darknet and honeypot deployment during the same
period. Each row represents the activity of a source IP, segmented into 4-hour time
bins. The color intensity indicates the average number of flows sent by a source IP
to each address in the subnet deployment within the time bin.
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Specifically, we observe a high intensity of flows originating from the source IP
address "5.182.209.19" on August 10-11th. This sender is likely responsible for both
the peaks observed for darknet and honeypot subnets. This observation underscores
an important consideration: due to the contiguity of the campus subnet, some
scanners may have scanned the adjacent Darknet deployment after identifying
open ports in the Honeypot deployment. As a result, even though the Darknet
deployment is inactive, it may experience a side effect caused by the proximity of
the active services. Figure 5.5b also depicts the activity of the IP "196.251.83.216",
responsible for a peak observed on August 13-14th in the honeypot subnet.
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Figure 5.5: Top 25 source IPs activity for Campus Darknet, Campus Honeypot
and Cloud Honeypot deployments (flows/4 hours)
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Lasting effects

In the previous section, we analyzed the impact brought by the activation of
interactive services on the traffic volumes observed by both telescopes. Now, we
aim to evaluate whether these effects persist even after deactivating such services.
In this section, we analyze the period following the first two phases of the data
collection campaign. In Section (5.1.1), we defined that the third phase of the
campaign involved turning off all interactive deployments. However, we kept certain
factors active for the cloud deployments, including DNS announcements, public
certificate emissions, and ICMP responses.

In Figure 5.3, we observed the time series of traffic volumes observed across the
different subnet deployments within the campus and cloud IP space, respectively,
across the first and second phase time windows. Figure 5.6 extends this analysis to
include the subsequent period until September 2nd. This consists of a third phase
(August 15-25th), and an additional fourth phase (August 25 - September 2nd)
where we reactivated the interactive deployments.

Figure 5.6a shows that, after deactivating the interactive deployments, the traffic
volumes on all campus subnets return to levels comparable to those observed during
the first phase. Notably, while in the first phase the Layer 4 responder, honeypot,
and darknet exhibited nearly overlapping traffic volumes (see Figure 5.3a), the
third phase reveals a marked difference. Specifically, the Layer 4 responder receives
the highest volume of traffic, followed by the honeypot and then the darknet.
This observation suggests that, despite the deactivation of interactive deployments,
scanners may have retained knowledge of the previously active services, leading
them to continue targeting the subnets that hosted these services. We, interestingly
note that during the time interval from August 21st to August 24th, a significant
increase in received flows across all campus subnet deployments occurs.

On the cloud side, the number of flows reaching each deployment remains con-
sistent despite the deactivation of interactive services (Figure 5.6b). It is important
to note that the cloud deployments continued to have DNS announcements, public
certificate emissions, and ICMP responses active during this period. While we
can reasonably exclude the influence of DNS announcements and public certificate
emissions, as these factors did not demonstrate a significant impact during the
second phase, it is plausible that the ICMP responses played a role in maintaining
the visibility of the cloud deployments. These represent signals that the subnet are
actually up, thus leading scanners to continue targeting them.

On the campus telescope, as we observed during the second phase, reactivating
the interactive deployments on August 25th resulted in an immediate surge in
traffic with levels comparable to those observed during the initial activation phase.
Additionally, we observe the gap between the honeypot and darknet deployments to
be widening progressively over time. In contrast, on the cloud telescope, reactivating
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the interactive deployments did not result in any significant change in traffic volumes

with respect to the third phase time window. This is normal as the traffic volumes

remained consistent even during the third phase.
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Figure 5.6: Time series of traffic volumes during 3° and 4° phase (flows/4 hours)

5.2.3 Port amplification factor

In the previous section, we observed that activating services leads to receive more
traffic. Now, we want to quantify the amplification effect brought by the activation
of such services. The amplification factor is defined as the ratio between the
number of flows targeting a specific port during the second phase (when interactive
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deployments are active) and the number of flows targeting the same port during
the first phase (when the same deployments are in darknet configuration). This
metric allows us to quantify how much more traffic a specific port receives when
it is associated with an active service compared to when it is inactive. Figure 5.7
shows the cumulative distribution function (CDF) of port amplification factors for
both Layer 4 responder (Figure 5.7a) and Honeypot deployments (Figure 5.7b) on
campus and cloud IP spaces. The x-axis represents the port amplification factor,
while the y-axis indicates the cumulative fraction of destination ports.
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Figure 5.7: Cumulative Distribution Function (CDF) of Amplification Factors by
Destination Ports for Layer 4 Responder and Honeypot Deployments
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Figure 5.7a shows that the curve for the cloud Layer 4 responder consistently
lies to the right of its campus counterpart, indicating a stronger amplification effect.
Specifically, 85% of the destination ports on the cloud responder experience an
amplification, compared to 60% on the campus responder. In contrast, Figure
5.7b reveals a different trend. While the cloud honeypot exhibits a higher peak
amplification in the upper 5 percentiles, the campus honeypot demonstrates a
generally stronger amplification effect overall. Approximately 97% of the destination
ports on the campus honeypot experience amplification, whereas this percentage
drops to around 76% for the cloud honeypot.

These results indicate that the amplification effect introduced by activating
interactive services varies depending on the type of deployment. For the Layer 4
responder, the cloud shows a stronger overall amplification effect compared to the
campus counterpart. On the contrary, for the honeypot deployment, the campus
demonstrates a more pronounced amplification effect across the wide range of ports.

To further analyze the port amplification factor between cloud and campus
deployments, we compute the amplification factor for each destination port and
visualize the results using scatter plots for both the Layer 4 responder (Figure
5.8a) and Honeypot (Figure 5.8b). The x-axis represents the destination port
number, while the y-axis indicates the observed amplification factor for that port.
This visualization allows us to identify what is the general amplification effect on
different port ranges, and to compare the behavior between cloud and campus
deployments.

The cloud Layer 4 responder demonstrates a relatively homogeneous amplifi-
cation factor across the entire range of ports, where similar ports exhibit similar
amplification. In contrast, the campus Layer 4 responder exhibits a more heteroge-
neous behavior, where certain port ranges contain ports with amplification factors
both above and below one. The cloud Layer 4 responder generally shows positive
amplification factors for most port ranges, with highest amplification observed in
the ranges [0-20,000], [33,000-48,000], and [60,000-65,535]. Notably, it exhibits
amplification factors below one in the ranges [20,000-33,000], thus indicating a
reduction in traffic attraction for these ports. While this might seem to be a
counterintuitive result, this is not unusual. We observed something similar in [45]
where the authors found the senders of Layer 4 responder to skip ports around port
30,000. This behavior is likely a consequence of enabling all ports, which causes
scanners to focus on certain ports while neglecting others, possibly biasing their
activity.

For honeypot deployments (Figure 5.8b), instead, the cloud and campus exhibit
a generally similar trend across most port ranges. Both show amplification factors
around the order of 3 x 10 for most of the ports. However, a difference emerge
in the [50,000-60,000] port range, where the campus honeypot demonstrates a
stronger amplification effect, while the cloud honeypot shows amplification factors
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below one. Conversely, for the first 8,000 ports, the cloud honeypot exhibits a more
pronounced amplification effect compared to the campus honeypot.
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Figure 5.8: Port amplification factor for L4Responder and Honeypot deployments

5.2.4 Sender analysis

In this section, we focus on understanding which senders are responsible for this
unsolicited traffic. We analyze the distribution of source IPs contacting the two
telescopes, the presence of unique and common senders, and whether interactive
deployments attract new sources of traffic or amplify the activity of already existing
ones.
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Source IP distribution

In this section, we compare the flows distribution of source IPs contacting the two
telescopes, analyzing both passive and interactive deployments. For the passive
deployments, we focus on senders targeting darknet subnets in the first time window,
while for the interactive ones, we consider senders targeting interactive subnets
on the second time window. Figure 5.9 shows the cumulative fraction of flows
by source IP for both the cloud and campus deployments. Table 5.1 provides
the number of unique source IPs observed in each deployment, along with the
breakdown of senders that contact both the campus and cloud telescopes, referred
to as "common" senders, and those that target only one of them, referred to as
"exclusive' senders.

Phase Deployment Type Unique Source IPs Common IPs Exclusive IPs
. Campus Darknet (sample /28) 53,701 28,977
First Phase Cloud Darknet (sample /28) 54,912 24,724 30,188
Campus L4Responder 69,167 39621 36,546
Second Phase Cloud L4Responder 78,056 45,435
Campus Honeypot 54,177 98.204 25,973
Cloud Honeypot 63,208 ’ 35,004

Table 5.1: Unique Source IPs per Deployment and Phase

It is important to note that, due to the subdivision of deployments (Table
4.3a, 4.3b), the cloud darknet encompasses 192 TP addresses, while the campus
darknet includes 224. To ensure a fair comparison, we normalize the number of
IP addresses by sampling a /28 subnet from both darknet deployments. The two
deployments show a difference of 1,211 unique source IPs, with the cloud darknet
observing 54,912 unique source IPs and the campus darknet observing 53,701.
This result is noteworthy, especially when compared to the findings of [3], where
the authors reported that the cloud darknet received traffic from 73% more IP
addresses than the traditional darknet. The CDF reveals a similar distribution
among the top-ranked source IPs targeting campus and cloud darknets, with the
top 20 IPs contributing roughly 20% of the total traffic in both cases. However,
the distributions begin to diverge significantly after the top 1,000 IPs, where cloud
darknet is more influenced by a group of highly active source IPs.

While the two darknet deployments receive traffic from a similar number of
unique source IPs, with interactive deployments a difference emerge with cloud
telescope receiving traffic from more then 10,000 additional unique source IPs (see
Table 5.1). Figure 5.9b reveals that Campus deployments are more influenced
by a small group of highly active source IPs. This is particularly evident for the
Honeypot deployment, where top 3 IPs contribute to the 50% of the total traffic.
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Figure 5.9: Cumulative fraction of flows by source IP (Campus vs Cloud)

Cloud honeypot requires 200 IPs to reach the same percentage. On the other hand,
the two Layer-4 responders show a more similar distribution, with the campus
deployment being slightly more influenced by highly active IPs. However, the
difference is not as pronounced as in the Honeypot case.

Common vs exclusive senders

In this section, we evaluate the contributions of "common" and "exclusive" sender
categories to overall traffic and compare how this distribution differs between
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cloud and campus deployments. Table 5.1 shows that, for most deployments,
the majority of unique source IPs are exclusive to each telescope, with the cloud
telescope consistently observing a higher number of exclusive senders. Table 5.2
presents the fraction of flows generated by each sender category. For darknet
and Layer 4 responder deployments, most traffic originates from common senders,
whereas for honeypot deployments, exclusive senders contribute more significantly.
Therefore, although most unique senders across deployments are exclusive to each
telescope, common senders have a larger share of overall traffic. Notably, across
all deployments, common senders consistently generate more flows to the cloud
telescope compared to the campus counterpart.

Deployment Total Flows By common sender By exclusive sender
Campus Darknet 1,521,477 1,104,554 (72.6%) 416,923 (27.4%)
Cloud Darknet 3,055,385 1,880,230 (61.5%) 1,175,155 (38.5%)
Campus L4Responder 6,920,754 5,078,767 (73.4%) 1,841,987 (26.6%)
Cloud L4Responder 11,596,348 7,951,212 (68.6% ) 3,645,136 (31.4%)
Campus Honeypot 3,593,698 1,242,780 (34.6%) 2,350,918 (65.4%)
Cloud Honeypot 4,494,583 1,988,958 (44.3%) 2,505,625 (55.7%)

Table 5.2: Traffic Contribution by Common and Exclusive Senders
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Figure 5.10: Darknet common sender flows comparison

Figure 5.10 further investigates the behavior of common senders. It shows the
number of flows sent by common source IPs to the campus and cloud darknet
deployments, ranked by number of total flows. We observe that among the common
senders with the highest activity, large part of them target the cloud telescopes
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with more traffic than the campus counterpart. However, as we move down the
ranking, we observe a more balanced distribution, with some senders being more
active on the campus darknet.

New senders arrival

In this section, we analyze whether the interactive services attract new source IPs
or amplify the activity of existing ones. Figure 5.11 visualizes the activity of the
most active senders contributing to 50% of the total TCP flows for each specific
deployment on the campus and cloud networks over the entire observation period
(July 25th - September 2nd). Each row in the graph represents the activity of a
single sender, with a point marking the specific hour when the sender was active.
The graph sorts the senders by their time of first appearance, enabling us to observe
the emergence of new groups of senders and track their activity over time.

Figures 5.11a and 5.11b illustrate the activity of source IPs targeting the campus
and cloud darknets, respectively. On the cloud darknet, many senders remain active
throughout the observation period, with notable surges of new senders appearing on
July 31st and August 15th. In contrast, the campus darknet shows a more sporadic
activity pattern, with senders appearing intermittently over time. A significant
group of senders becomes active between August 21st and August 24th, coinciding
with the traffic spike observed in Figure 5.6a. We notice a similar event in the other
two campus deployments (Figures 5.11c and 5.11e), suggesting that this surge in
activity was a widespread event affecting the entire campus network.

The Layer 4 responder deployments highlight the impact of enabling interactive
services. Both campus and cloud deployments experience significant increases in
the number of active senders during the two activation phases (August 5-15th
and August 25-September 2nd). These increases result both from the arrival of
new senders and from intensified activity from existing senders. Notably, on both
deployments, the same new senders that appeared during the first activation phase
reemerge during the second activation phase, while reducing their activity during
the deactivation period (August 15-25th). On the cloud Layer 4 responder (Figure
5.11d), a large influx of new senders occurs on August 11th-12th, coinciding with
the traffic increase observed in Figure 5.3b, where the L4Responder Pure begins to
receive more traffic than the L4Responder DNS_ Cert. Additionally, both campus
and cloud Layer 4 responder deployments observe the arrival of new senders around
August 26th, exhibiting similar time patterns. This similarity suggests that these
senders may be targeting both telescopes.

Finally, the honeypot deployments (Figures 5.11e and 5.11f) show a gradual
arrival of new senders over time. On the campus honeypot, we observe a group of
senders becoming active on August 5th and remaining consistently active until the
end of the observation period. We observe similar things on the cloud counterpart.
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Figure 5.11: Senders activity on Campus and Cloud deployments

5.3 Summary of results

In this section, we summarize the key findings from our comparative analysis of
campus and cloud telescopes, focusing on traffic volumes, the effects of different
interactive deployments, and sender characteristics.

Our analysis revealed that a cloud-based network telescope receive barely double
the amount of flows compared to a traditional campus-based telescope. We,
then investigated the effects of enabling interactive deployments. After having
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observed the timeline of traffic flows targeting each deployment, we evaluated the
amplification effect. We determined that the cloud telescope exhibit an higher
amplification effect on the Layer 4 responder, while the campus telescope shows a
stronger amplification effect on the honeypot deployment. We also noticed that
deactivating interactive services does not completely eliminate their effects, as on
campus telescope, while exhibiting a generally lower traffic, the Layer 4 responder
continues to receive more traffic followed by the honeypot and then the darknet
deployment. On the cloud telescope, instead, we kept certain factors active, such as
DNS announcements, public certificate emissions, and ICMP responses. While the
former did not represent a significant factor, the ICMP responses likely contributed
to maintaining the visibility of the cloud deployments, maintaining the level of
traffic consistent with the previous phase.

Finally, we evaluated the diversity of sources contacting the two telescopes.
Both the campus and cloud deployments receive traffic from a similar number of
unique source IPs and share a significant portion of common senders. However,
the cloud telescope consistently receives more traffic from these common senders
and attracts a larger number of exclusive senders i.e., sources that contact only the
cloud telescope and not the campus one.
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Chapter 6

Frequent pattern mining for
traffic analysis

In this chapter, we examine the use of data mining techniques to uncover patterns
within network traffic data. We detail our approach for effectively applying frequent
pattern mining algorithms. First, we provide an overall characterization of internet
scanning activities targeting specific subnet deployments, followed by an analysis
of the behavior of well-known host groups.

6.1 Setup and basis for the analysis

In this section, we outline the approach used to prepare the data for frequent
pattern mining. We start by introducing the libraries and algorithms considered
for the analysis. Next, we discuss the fundamental elements of frequent pattern
mining, including transaction types and mining techniques. Then, we evaluate
these two aspects to determine the most suitable approach for our analysis. Finally,
we describe the steps involved in data preprocessing, transaction construction, and
the execution of the selected algorithm.

6.1.1 Algorithms and libraries

Network telescopes collect vast amounts of data, making it essential to use scalable
and efficient algorithms to extract results that are both meaningful and computa-
tionally feasible. In this section, we outline the libraries and algorithms employed
in our analysis.

We used FP-Growth [46], a well-known algorithm for mining frequent itemsets
and association rules. This is widely regarded as the state-of-the-art baseline
in frequent pattern mining, and is noted for its efficiency and scalability. We

59



Frequent pattern mining for traffic analysis

implemented the algorithm using the Pyfim library [47], which provides an efficient
implementation of FP-Growth and is capable of handling large datasets effectively.

6.1.2 Techniques approach

To apply frequent pattern mining algorithms, it is necessary to transform the
network traffic data into a suitable format. These algorithms require the data to
be organized into transactions, where each transaction is represented as a set of
items. The composition of such transactions defines the scope of the analysis, as
it determines the set of items that the algorithm will evaluate to extract frequent
patterns. In this study, we explored two different approaches for composing
transactions. Table 6.1 provides examples of both.

e Row transactions. In this approach, each transaction corresponds to a single
row in the dataset, representing an individual network packet. The items in
the transaction include attributes such as the source IP, destination IP, source
port, destination port, protocol, and other relevant features. This method
enables the extraction of patterns related to how senders construct individual
packets, such as the protocols they use, typical packet lengths, and commonly
targeted ports.

e Value transactions. In this approach, each transaction represents the set of
values observed for a specific attribute across multiple packets sent by a single
host. For instance, we can create a transaction for each source IP address,
containing the set of destination ports it has targeted across all its packets in a
day or month. This method allows the algorithm to identify values frequently
targeted together by the same host. For example, it can uncover groups of
ports that are commonly contacted together during the scanning activity of a
source IP.

Type of transaction Example

Row transaction T1: [src_IP: x, dst_IP: y, src_port: 12345, dst_ port: 80, protocol: TCP]
T2: [src_IP: a, dst_IP: b, src_ port: 54321, dst_ port: 443, protocol: UDP]
Value transaction T1: [80, 443, 8080]
T2: [22, 25, 110, 80]

Table 6.1: Examples of Row and Value Transactions

After defining the transaction shapes, we can apply frequent pattern mining
techniques to extract meaningful patterns from the network traffic data. In Section
(2.5.1) we introduced two main techniques: frequent itemset mining and association
rule mining. While the former focuses on identifying sets of items frequently
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occurring together, tha latter adds directional relationships between items, providing
an additional layer of insight. Table 6.2 presents examples of both association
rules and frequent itemsets extracted from our dataset using the transaction types
described above.

Rules Support (%) Confidence Lift

On row transactions

Antecedent: tos=164, tt1=243, tcp_win=1025, tcp_len=6, pkt_len=44
Consequent: src_hostname=62.162.214.35.bc.googleusercontent.com 2.13 100.00 46.13

Antecedent: ttl=49, tcp_win=42340, tos=8, tcp_len=10, pkt_len=60
Consequent: src_hostname=unused-space.coop.net 2.18 99.96 38.18

Antecedent: tcp_win=42340, tos=8, tcp_len=10, pkt_len=60
Consequent: ttl=49 2.18 99.79 28.47

On value transactions

Antecedent: port=22, port=8443, port=8080, port=8888, port=3389, port=443
Consequent: port=44818 0.81 80.64 74.66

Antecedent: port=22, port=993, port=8443, port=3389, port=8000, port=443
Consequent: port=44818 0.82 80.53 74.55

Antecedent: port=22, port=8443, port=8080, port=9000, port=3389, port=443
Consequent: port=44818 0.81 80.35 74.39

(a) Association Rules

Frequent Itemset Support (%)

On value transactions

port=23, port=80 2.99
port=80, port=443 2.72
port=8080, port=80 2.60
port=8443, port=443 2.54
port=8080, port=23 2.41

On row transactions

tt1=242, tcp_len=6, pkt_len=44, tcp_win=65535 17.88
ttl=241, tcp_len=6, pkt_len=44, tcp_win=65535 8.60
src_hostname=recyber.net, tt1=239, tcp_win=1024, pkt_len=40, 5.48
tcp_len=5

tcp_win=42340, tcp_len=10, pkt_len=60 4.76
tcp_len=8, pkt_len=52, tcp_win=65535 4.20

(b) Frequent Itemsets

Table 6.2: Examples of (a) Association Rules and (b) Frequent Itemsets

6.1.3 Choosing the best approach

In the previous section we discussed about the fundamentals of frequent pattern
mining such as the types of transactions and the mining techniques. To proceed
with the analysis, we evaluated the combination of transaction types and mining
techniques to determine the most suitable approach for our objectives. Our primary
goal is to identify patterns of co-occurring items that indicate the presence of
frequent types of activity. Then, we aim to track the evolution of these patterns
over time. In the following sections, we present our implementation choices and
the rationale behind them.
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Row transactions vs value transactions

Row transactions can uncover the activity of specific hosts based on the charac-
teristics of the packets they send. However, they are often biased by individual
hosts that generate large volumes of traffic, which skews the results. Figure 6.2a
demonstrates this issue, showing rules with very high confidence that involve items
specific to individual hosts. Additionally, treating numerical features such as des-
tination port, packet length, and TCP window size as categorical variables leads
to an explosion in the number of unique items, complicating the analysis. Our
experiments showed that row transactions often produced results that were either
too generic or overly specific to individual hosts. Moreover, we might have rules
without the presence of sources/destinations in the antecedent or in the consequent,
creating uninformative results.

For this reasons, we excluded the use of row transactions, and shifter our
attentions to value transactions. Specifically, we chose destination ports as their
primary attribute. This decision is motivated by the fact that destination ports
are a key indicator of the services being targeted in network traffic, particularly in
the context of scanning activities. As such, they represent the primary focus for
uncovering meaningful patterns.

Frequent itemsets vs association rules

After determining the type of transactions to use, we evaluated the frequent pattern
mining technique that best suited our analysis.

Association rules and frequent itemsets share the common goal of identifying
sets of items that frequently occur together in transactions. However, association
rules go a step further by providing information about the directional relationships
between items, showing how the presence of certain items (the antecedent) implies
the presence of others (the consequent). While this additional information can be
useful in some contexts, we determined it was not necessary for our analysis. Our
primary objective is to identify sets of destination ports that are frequently targeted
together, without requiring the directional relationships provided by association
rules.

Frequent itemsets are better suited for our analysis, as they reveal groups of
ports commonly scanned together in a simpler and more direct manner. Moreover,
unlike association rules, frequent itemsets avoid redundancy issues, where multiple
rules can represent the same underlying pattern with items appearing in both
the antecedent and consequent. This simplicity makes frequent itemsets easier to
interpret and analyze, providing a clear and concise representation of co-occurring
items without the added complexity of rule directionality.

Even frequent itemsets can pose challenges, particularly when working with
large datasets. The number of frequent itemsets can become overwhelming, even
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when using reasonable support thresholds. This redundancy often arises because
frequent itemsets can be subsets of larger frequent itemsets. To address this issue,
we focused on maximal frequent itemsets. Maximal frequent itemsets represent the
largest itemsets that are not subsets of any other frequent itemset. By focusing
on these, we significantly reduce the number of itemsets to analyze while still
capturing the most meaningful and comprehensive patterns in the data. From now
on, for simplicity, we will continue to refer to maximal frequent itemsets simply as
frequent itemsets.

6.1.4 Towards analysis

In the previous sections, we outlined the algorithms, techniques, and the scope
of our analysis. Now, we present our approach for managing data and extracting
frequent itemsets from network traffic.

Time resolution

A key consideration in this process is the time resolution used to construct trans-
actions. Using long time periods, such as weeks or months, can produce overly
dispersed results, as the transactions would include ports contacted over an ex-
tended time span. This approach risks correlating events that are not necessarily
related. Conversely, using shorter time bins, such as hours or days, is more likely to
capture events that are temporally related. Ideally, a transaction would represent
the set of ports contacted by a host during a single scanning activity, which might
last one or more hours. However, using very short time bins would result in a
large number of transactions, significantly increasing computational complexity. To
balance these considerations, we chose to construct transactions on a daily basis.

Fine-tuning parameters

Network traffic data captures activity traces from a diverse range of hosts. While
some hosts are highly active, sending thousands of packets, others exhibit minimal
activity, sending only a few packets. Including hosts with very low activity can
introduce noise into the analysis, as these hosts may not provide sufficient data
to contribute meaningfully to the identification of frequent itemsets. Additionally,
they can increase variability in the transactions, biasing the results and making it
harder to identify consistent patterns.

To address this issue, we applied several filtering measures to exclude irrelevant
or noisy traffic before composing transactions and executing the algorithm. First,
we excluded all ICMP traffic, as it does not involve destination ports and is therefore
not applicable to our analysis. Second, we filtered out sources with fewer than 10
flows in the entire dataset, as their activity is not significant enough to impact the
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results. Finally, during transaction construction, we optionally applied a filter to
exclude ports contacted fewer than a specified number of times (e.g., 2, with 1 as
default) by a sender. This additional filter further reduces noise by excluding ports
that do not represent the typical behavior of a sender.

When applying frequent pattern mining algorithms, it is essential to set appro-
priate parameters to ensure meaningful results. Among these, the most critical
parameter for generating frequent itemsets is the minsup (minimum support)
threshold. Fine-tuning this threshold is crucial, as it directly influences the number
of itemsets generated. A low minsup value may result in an overwhelming number
of itemsets, many of which may be irrelevant. Conversely, a high minsup value
may produce too few itemsets, potentially failing to capture meaningful patterns.
The optimal minsup value might depend on the total number of transactions
and the heterogeneity of the dataset, which refers to the diversity of observed
patterns and the variability in source behavior. For highly heterogeneous datasets,
a lower minsup value is often necessary to capture meaningful patterns, while more
homogeneous datasets may allow for a higher minsup value.

In our study, we constructed transactions on a daily basis, requiring the algorithm
to be executed separately for each day. This approach introduces variability in the
number of transactions and the heterogeneity of traffic across different days. While
dynamically adjusting the minsup value for each day might seem ideal, we opted
to use a fixed minsup value across all days. This decision ensures consistency in
the analysis and allows for straightforward comparisons of results across different
days. We carefully selected the minsup value to ensure that, whenever possible,
each day produces at least one frequent itemset, balancing the need for meaningful
patterns with computational efficiency.

Daily frequent itemset mining

At this point, we show in Algorithm 4 how we construct daily transactions and
apply the FP-Growth algorithm to extract frequent itemsets.

We preprocess the dataset by removing ICMP flows and sources with fewer than
10 flows. Next, we divide the data into daily transactions, where each transaction
represents the set of destination ports contacted by a source IP on that day.
Optionally, we filter out ports contacted fewer than a specified number of times
(e.g., 2). Finally, we apply the FP-Growth algorithm with a fixed minsup value
across all days, generating a list of frequent itemsets with their support values. We
also compute the number of hosts matching each itemset by multiplying the support
value by the total number of transactions for that day. Finally, we concatenate
the results from all days into a single output table, which includes all day itemsets,
their support, and the corresponding day with the number of matching hosts.
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Algorithm 4 Daily Frequent Itemset Mining using FP-Growth

Require: Dataset, min_sup, min_count
1: function CREATETRANSACTIONS(Daily flows D, min_count)

2: Ts < [ ] > Initialize empty list of all transactions
3: for each src_IP in D do

4: port list < ports contacted by src_IP

5: port list < Exclude ports with fewer than min_count occurrences > Optionally 1 or 2
6: Tsrc_1p < port list avoiding duplicates > Single transaction for current source IP
7 Append Tsyc_1p to Ts

8: end for

9: return Tg > List of all transactions for the day
10: end function

11: function MINEDAILYITEMSETS(T, min_sup)

12: I(itemsets, supp) < FP-Growth(T, min_sup) > Get pairs of (itemset, support)
13: for each (itemset, supp) € I do

14: matching_hosts < len(T) X supp

15: Append matching_hosts to (itemset, supp)

16: end for

17: return I(itemsets, supp, matching_hosts)

18: end function

19: Step 1: Setup

20: Remove ICMP flows (destination port = NULL)

21: Exclude sources with fewer than 10 flows

22: Divide the dataset on a daily basis

23: Initialize empty list R + [ ] to collect daily itemsets

24: Step 2: Construct transactions and mine itemsets

25: for each day d in Dataset do

26: Dg < flows for current day d > Daily dataset
27: Tq < CREATETRANSACTIONS(Dg4, min_count) > Daily transaction per IP
28: I4 + MINEDAILYITEMSETS(T4, min_sup) > Get mazimal frequent itemsets
29: Append all rows of I5 to R > Concatenate all daily itemsets
30: end for

31: Step 3: Output

32: Output: R(Itemset, Support,matching_hosts, Day)

6.2 Frequent itemsets analysis

In this section, we present the results of applying the frequent itemset mining
approach outlined in the previous section to analyze network traffic data. Using the
output of Algorithm 4, we extracted a comprehensive list of frequent itemsets from
daily transactions, along with their support values and the number of matching
hosts for each day. We present the results as heatmaps, where the x-axis represents
the days of the observation period, and the y-axis lists the unique frequent itemsets
identified over the entire period. The color intensity of each cell indicates the
number of hosts matching the corresponding itemset on a specific day. To enhance
readability, we sorted the itemsets on the y-axis based on their order of appearance.
This visualization enables us to observe when specific patterns emerge, how long
they persist, and their relative prevalence over time. However, it is important to
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note that when generating an high number of frequent itemsets, the y-axis may
not display ticks for all itemsets due to space constraints. This, however, does not
affect the analysis for determining the presence and frequency of patterns over
time.

We divide the analysis into two parts: first, we highlight general trends and
patterns from overall internet scanning activity. Second, we conduct a focused
analysis of specific groups of hosts to uncover insights into their behavior.

6.2.1 Overall internet scanning characterization

In this section, we provide a characterization of internet scanning activity by
analyzing the frequent itemsets extracted from the network traffic data. We focus
the analysis on the specific targeted deployments: Darknet, Layer 4 responder, and
Honeypot. This approach allows us to highlight the unique patterns and trends
associated with each deployment type. The analysis covers the entire observation
period, enabling to observe how pattern emerges over time and their relative
prevalence. As we discussed in Section (6.1.4), selecting an appropriate minsup
threshold is essential for producing meaningful results, and this choice depends
on the heterogeneity of the dataset. Given that we derive transactions from the
diverse sources available on the internet, extracting frequent itemsets using a high
minsup value can be challenging. To ensure that we capture a sufficient number of
frequent itemsets for each day and deployment, we have set the minsup threshold
to 0.5% uniformly across all deployments.

Darknet frequent itemsets

We examine the frequent itemsets extracted from both the campus and cloud
darknets. As we did in Section (5.2), we consider sample of /28 subnets from each
deployment to ensure a fair comparison.

Figures 6.1a and 6.1b present the heatmaps of frequent itemsets extracted from
the campus and cloud darknets, respectively. Under the same minsup condition
and with a comparable number of transactions per day, the cloud darknet exhibits
a significantly higher number of frequent itemsets compared to the campus darknet.
Over the entire observation period, the campus darknet reveals only 4 frequent
itemsets, while the cloud darknet identifies up to 185. This discrepancy suggests
that senders targeting the cloud darknet exhibit more consistent and structured
patterns of activity compared to those targeting the campus darknet.

The frequent itemsets observed in the campus darknet primarily consist of
commonly targeted ports, such as {80, 443}, {2000, 5060}, {22, 2222}, and {80,
8080}, with the first two appearing consistently from the first day of observation.
The number of hosts matching these patterns fluctuates between 80 and 120 per
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day, indicating relatively stable but limited activity. Other patterns, such as {22,
2222} and 80, 8080, emerge after 15 and 20 days, respectively, but with a lower
number of matching hosts.
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Figure 6.1: Frequent itemsets from campus and cloud darknets
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The cloud darknet, instead, demonstrates a broader range of frequent itemsets
from the first day of observation. Similar to the campus darknet, the most frequently
observed itemsets include {80, 443}, but with a significantly higher number of
matching hosts, ranging from 125 to 180 per day. Notably, while certain groups of
ports are contacted persistently over time, many others appear with periodicity.

Layer 4 responder frequent itemsets

Now, we analyze the frequent itemsets extracted from the Layer 4 responder
deployments. Figures 6.2a and 6.2b show the heatmaps of frequent itemsets for
the campus and cloud Layer 4 responders, respectively.

While the darknet deployments in Figure 6.1 show a consistent presence of
certain itemsets over time, the Layer 4 responder deployments exhibit a more
dynamic pattern due to their interaction with incoming traffic during specific time
windows. From Figure 6.2b, we observe that the general pattern of activity in the
first phase time window is similar to what we observe in Figure 6.1b. However, as
we transition into the second phase time window (July 5th - July 15th), a significant
number of new frequent itemsets emerge, accompanied by an increase in the number
of matching hosts. Notably, many of these new frequent itemsets emerge during the
initial days of the second phase but gradually disappear over time. This behavior
suggests that scanning actors initially explore the newly opened ports but later
shift their focus to other targets upon realizing that the Layer 4 responder does not
expose additional access points or vulnerabilities. Interestingly, during the third
phase time window (July 25 - August 25), when the Layer 4 responder is disabled,
the same frequent itemsets observed in the cloud darknet reappear with a similar
frequency as before. This observation highlights how scanning actors heavily base
their scanning patterns on the type of deployment they target. When they realize
to be interacting with a Layer 4 responder, they unlock new scanning patterns.

During the fourth phase (August 25 - September 2), when the Layer 4 responder
is re-enabled, frequent itemsets from the second phase reappear alongside new
itemsets. These new itemsets feature a larger number of ports per set, indicating
broader scanning activity, observed in both campus and cloud deployments.

Honeypot frequent itemsets

Finally, we analyze the frequent itemsets extracted from the Honeypot deployment.
By design, honeypot deployments are the most similar to darknet deployments in
terms of the number of exposed ports.

As a result, we expect similar patterns of activity, primarily focusing on the
ports that the honeypot is configured to respond to (22, 80, 443). However, to
identify patterns that are more specific to honeypot deployments, we applied the
mining algorithm to transactions constructed by filtering out ports contacted fewer
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(b) Frequent itemsets from cloud Layer 4 responder
Frequent itemsets from campus and cloud Layer 4 responders

Figure 6.2

than two times by the same sender. This filtering step effectively reduces noise from
darknet-like activity, which was particularly evident in the cloud darknet (Figure

6.1b). For consistency, we applied the same filter

cloud deployments.

Figures 6.3a and 6.3b present the heatmaps of frequent itemsets extracted from
the campus and cloud honeypots, respectively. In both cases, the most common

frequent itemsets observed until July 5th (the start of the second phase) are those
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(b) Frequent itemsets from cloud Honeypot

Figure 6.3: Frequent itemsets from campus and cloud Honeypots

already encountered in Section (6.2.1), such as {80, 443}, {22, 2222}, and {2000,
5060}. Interestingly, during the interaction phases, scanners generate new itemsets
that involve ports 22, 80, and 443, the ports the honeypot responds to. These
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patterns disappear when the honeypot is turned off but reappear when it is re-
enabled. However, on the cloud honeypot, these patterns persist even during the
deactivation phase. This behavior can be attributed to the cloud configuration,
where certain factors such as DNS announcements, certificate emissions, and ICMP
responses remained active (see Section 5.1).

6.2.2 Hosts patterns characterization

In the previous section, we characterized overall internet scanning activity by
analyzing frequent itemsets extracted from traffic targeting various deployment
types. Due to the high variability and heterogeneity of the traffic, we focused on
identifying general trends and patterns, using a relatively small minsup threshold
of 0.5%. In this section, we shift our focus to extracting patterns from a more
homogeneous subset of traffic by analyzing specific well known groups of hosts. By
isolating and examining the behavior of hosts that share similar characteristics
and are expected to exhibit comparable activity patterns, we can apply a higher
mansup threshold. This targeted approach allows us to uncover more representative
and meaningful patterns of activity, providing insights into the behavior of such
specific groups.

The following analysis highlights the distinct scanning patterns exhibited by
homogeneous groups of hosts, targeting the entire subnet deployments (i.e., campus
and cloud). For instance, we identified the activity of well-known botnets, such
as Mirai [11], by detecting hosts that match a specific fingerprint (see Section
2.2.1) in their scanning activity. Beyond Mirai, we also analyzed the behavior of
hosts associated with prominent scanning platforms, including Census, BinaryEdge,
HiNet, Stretchoid, and Shadowserver. To classify these hosts, we performed DNS
reverse lookups on their source IP addresses to resolve their hostnames, enabling
us to associate their activity with specific platforms.

We group the identified hosts based on their exhibited patterns. First, we analyze
cases where a single, predominant frequent itemset characterizes the activity of a
group of hosts over time. Next, we explore scenarios where diverse frequent itemsets
emerge in parallel each day. Then, we examine hosts that frequently change their
scanning behavior. Finally, we analyze a case where a group of hosts demonstrates
memory of past scanning activity.

Predominant patterns

In this section, we provide an example of a group of hosts exhibiting predominant
patterns over time. Figures 6.4a and 6.4b present the frequent itemsets extracted
from Mirai-like hosts in the campus and cloud deployments, respectively. In both
cases, the most prevalent frequent itemset consists of ports {23, 2323}, which are
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the primary targets of Mirai for propagation.
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(b) Cloud Mirai Frequent Itemsets

Figure 6.4: Frequent itemsets from Mirai botnet activity

From August 12th to August 24th, we observe an intensification of activity in
both the campus and cloud networks. This increase is reflected in a higher number
of transactions per day and a greater number of matching hosts. Interestingly,
both deployments also exhibit the emergence of a new frequent itemset, {80, 8080},
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around August 22nd. Notably, we use a minsup threshold of 0.5%. On days
with peak activity, this approach allows us to characterize over 200 hosts out of
approximately 3,500 active hosts per day, accounting for around 5% of the total
traffic. The low threshold ensures that we can capture meaningful patterns even
on less active days, providing a consistent analysis across varying traffic volumes.

Another interesting case is the activity of HiNet hosts. Figure 6.5 shows the
related pattern extracted from cloud deployment, using the same minsup threshold
as Mirai. While HiNet exhibits the same dominant frequent itemset, [23, 2323], the
strength of this pattern is notably weaker when analyzing the number of matching
hosts and transactions per day. Similar to Mirai, we observe an intensification in
the number of matching hosts between August 12th and August 24th. However, in
the case of HiNet, we are able to characterize at most 25 hosts out of approximately
1,200 transactions per day, accounting for only 2% of the total traffic. This
suggests that while HiNet hosts exhibit similar scanning behavior, their overall
contribution to the traffic is significantly smaller compared to Mirai-like hosts. We
omit presenting the campus deployment, as the pattern observed is similar to the
cloud one.
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Figure 6.5: Frequent itemsets from HiNet (on Cloud)

Diverse patterns

In this section, we provide an example of a group of hosts exhibiting multiple
frequent itemsets each day over time. Specifically, we focus on the activity of
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sources from Census project.
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Figure 6.6: Frequent itemsets from Census project activity

Figures 6.6a and 6.6b present the frequent itemsets extracted from

Census

project activity in the campus and cloud deployments, respectively. As for darknet
deployment, from cloud we extract a higher number of frequent itemsets compared
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to the campus, using an equal minsup of 20% and a comparable number of
transactions per day. Contrary to what we observed in the previous section, where
a single dominant frequent itemset characterized the activity of the entire period,
the Census project exhibits a more diverse set of frequent itemsets. Specifically,
on both campus and cloud networks, we observe the presence of a large presence
of different frequent itemsets of ports on August 9-10th and August 27-28-29th.
Specifically, we can appreciate several itemsets including ports 80, 443, 8443 and
161.

Dynamic patterns

In the previous sections we showed examples of groups of hosts exhibiting more
or less the same frequent itemsets over the entire observation period, with little
variation. Now, we presents examples of hosts whose frequent itemsets change
day by day. Specifically, we focus on the activity of sources from Stretchoid
and Binaryedge. For this analysis, we omit presenting both campus and cloud
deployments, as the patterns observed are similar in both cases.

Figure 6.7 presents the frequent itemsets extracted from Stretchoid hosts’ activity
targeting the cloud network with a minsup threshold of 10%. The heatmap reveals
that Stretchoid hosts consistently contact different sets of ports almost every day.
This behavior suggests that these hosts perform scanning activities targeting a wide
range of ports rather than focusing on a specific subset. We observe that each day,
a new set of frequent itemsets emerges, while only a portion of the previous day’s
itemsets persist. Notably, as a new itemset emerges on a specific day, a significant
number of hosts shift their activity to the new itemsets in the following days, rather
than continuing to contact the same set of ports.

On the other hand, Figure 6.8 presents the frequent itemsets extracted from
Binaryedge hosts’ activity targeting the campus IP space, with a minsup threshold
of 10% . Similar to Stretchoid, Binaryedge hosts also exhibit a pattern of frequently
changing itemsets. However, unlike Stretchoid, where old itemsets still persist
to some extent, Binaryedge hosts tend to completely abandon previous itemsets
in favor of new ones. Specifically, focusing on the y-axis representing the set of
frequent itemsets over time, we observe how the ports number increase as new
frequent itemsets appear. This suggests how Binaryedge hosts perform sequential
scans, progressively moving from lower to higher port numbers over time. From
the figure, we estimate that BinaryEdge hosts take approximately 10 days to
sequentially scan the first 10,000 ports. Additionally, we note an increase in the
number of matching hosts starting in early August, driven by the higher number of
transactions per day during this period.
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and cloud deployments, as the patterns observed are similar in both cases.

Figure 6.9 presents the frequent itemsets extracted from Shadowserver hosts’
activity in the campus network, with a minsup threshold of . The heatmap reveals
that a significant portion of the involved hosts maintains a baseline of frequent
itemsets, consisting of ports they contact consistently every day. These include,
among others: {22, 80}, {80, 4080}, {80, 8090}, {22, 9060}, {22, 8123}, and {22,
1337}. In addition to this baseline behavior, we observe a dynamic pattern similar
to what we described in Section (6.2.2), where new itemsets emerge almost daily,
while older ones tend to disappear. This pattern persists until August 5th, the
time of the first activation of interactive deployments. At this point, not only
does a large number of new itemsets appear, but previously observed itemsets also
reappear and persist over time.
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Figure 6.9: Frequent itemsets from Shadowserver (on Campus)

This behavior suggests that Shadowserver hosts systematically scan different
sets of ports each day in search of open services. If no active service is detected,
they shift their focus to a new set of ports the following day. However, when they
identify an active host, their behavior changes significantly. They not only expand
their scans to include a broader range of new itemsets but also revisit previously
scanned itemsets, likely to verify whether the status of the previously closed ports
has changed. Ports that they initially found as closed may now be open due to the
activation of services on the targeted host, prompting the Shadowserver hosts to
re-evaluate their findings.
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Interestingly, the same pattern repeats in the period since the services deactiva-
tion. As for the first phase, in the third phase time window (July 25 - August 25),
Shadowserver hosts return to scanning different sets of ports each day, abandoning
large part of the itemset introduced in the interactive phase time window, still
maintaining only a few of them. Then, in the fourth phase time window (August
25 - September 2), when the interactive deployments are re-enabled, we observe
the reappearance of the same phenomenon seen in the second phase, with the
reappearance of previously observed itemsets along with new ones.

6.3 Summary of results

In this chapter, we presented a comprehensive analysis of network traffic data using
frequent itemset mining techniques. We began by outlining our approach to data
preparation, including the construction of daily transactions and the application
of the FP-Growth algorithm to extract frequent itemsets. We emphasized the
importance of selecting appropriate parameters, particularly the minsup threshold,
to ensure meaningful results. We then delved into the analysis of the extracted
frequent itemsets, presenting our findings through heatmaps that illustrate the
temporal dynamics of scanning activity.

Finding

Description

Higher frequency of itemsets in
cloud darknets

New patterns unlocked by in-
teractive deployments

Cloud darknets exhibit significantly more frequent itemsets than campus
darknets (185 vs. 4), reflecting more consistent and structured scanning
activity.

Interactive setups, such as Layer 4 responders and honeypots, trigger scanners
to reveal many new frequent itemsets. Layer 4 responders generate itemsets
involving a wide range of ports, while honeypot itemsets are primarily
concentrated on the active ports it responds to (22, 80, 443).

Host with consistent predom-
inant patterns (e.g., Mirai,
HiNet)

Host with diverse scanning pat-
tern (e.g., Census)

Dynamic scanning behavior
(e.g., Stretchoid, Shadowserver)
Scanners revisiting past targets
(e.g., Shadowserver)

Mirai botnet maintains stable frequent itemsets over time, primarily targeting
specific propagation ports (23, 2323). Similarly, HiNet exhibits consistent
patterns but with lower activity levels.

Platforms like Census show broad scanning behavior with a wide range of
frequent itemsets across many ports.

Some scanners, including Stretchoid and Binaryedge, frequently shift their
targets; Binaryedge appears to scan sequentially from lower to higher ports.
Groups such as Shadowserver revisit previously scanned ports upon detecting
new services, indicating memory of past activity.

Table 6.3: Summary of key findings from frequent itemset analysis

Table 6.3 summarizes the key findings derived from our analysis. In a first
approach, we characterized overall internet scanning activity by examining patterns
observed across different deployment types, including darknets, layer 4 responders,
and honeypots. However, the high variability and heterogeneity of the traffic
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limited our ability to extract detailed insights. Therefore, we focused on more
homogeneous groups of hosts, such as well-known botnets and scanning platforms,
allowing us to uncover more specific and representative patterns of activity.
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Chapter 7

Conclusions and Future
Works

In this thesis, we explored the implementation of a network telescope hosted in a
cloud environment, as done in several related works. While traditional network
telescopes are typically deployed within university campus networks or research
institutions, cloud-based telescopes monitor a set of IP addresses owned by a
cloud provider. This offers several potential advantages e.g., major traffic volumes.
We deployed a cloud-based network telescope using the Microsoft Azure cloud
environment, and configured it with specific subnet deployments hosting fake
interactive services, such as a Layer 4 responder and honeypot. We emulated
a similar setup on a traditional network telescope hosted within our university
campus network, and conducted a comparative analysis of the traffic received by
both telescopes.

We did a statistical analysis focused on identifying differences between the traffic
received by the cloud-based network telescope and that targeting a traditional
telescope. We observed that the cloud-based telescope received nearly twice the
volume of traffic compared to the traditional one. We then assessed the impact of
deploying interactive responders, such as a Layer 4 responder and honeypot, on
the volume of traffic received within specific subnets, using the port amplification
factor as a quantitative measure. Our results showed that the cloud telescope
experienced a higher amplification effect from the Layer 4 responder, whereas the
honeypot induced a stronger amplification on the traditional telescope. Finally,
we analyzed the diversity of source IP addresses contacting both telescopes. Both
the campus and cloud deployments attracted a similar number of unique sources
and shared many common senders. However, the cloud telescope received a higher
volume of traffic from these common senders and attracted a larger number of
exclusive senders—sources that contacted only the cloud telescope.
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In the second part of our analysis, we applied data mining techniques to uncover
patterns within the large volume of collected traffic. Using frequent pattern mining
methods, we identified common patterns involving frequently contacted ports across
different subnet deployments with varying levels of interactivity (Darknet, Layer 4
responder, and Honeypot). We found that traffic targeting the cloud telescope’s
darknet deployment exhibited a much higher number of frequent itemsets compared
to the traditional telescope, indicating more consistent scanning activity aimed
at the cloud network. We also examined how activating interactive responders
influenced traffic patterns, uncovering new frequent itemsets particularly associated
with the Layer 4 responder. The honeypot revealed frequent itemsets centered on
the ports where it was active (22, 80, 443). Finally, we analyzed specific subsets of
traffic generated by well-known scanning groups, including both malicious actors
(e.g., Mirai) and legitimate platforms e.g., Census. Certain groups displayed
predominant patterns with consistent combinations of targeted ports, while others
exhibited dynamic behaviors, such as sequential scanning. Additionally, some
scanners showed memory-effect behaviors, revisiting previously targeted ports to
verify changes in their status.

7.1 Future Works

In this section, we list some of the possible future works.

In this work, we acquired IP addresses directly owned by the cloud provider.
As a potential future direction, it would be valuable to explore IP leasing options,
as discussed in Chapter 3, which typically offer more competitive pricing. After
obtaining leased IP addresses, these could be advertised through the Bring Your
Own IP (BYOIP) service offered by a cloud provider, integrating them into the their
address pool. Future research could examine how traffic patterns differ between
leased IP addresses and those natively owned by the cloud provider.

Another promising direction for future work is enhancing the extraction of
meaningful patterns from the large volume of collected data. In our study, we
applied data mining techniques—specifically frequent pattern mining—to reveal
general trends and high-level behaviors of scanning groups. Building on this,
exploring additional machine learning methods such as clustering and classification
could provide deeper insights into the behaviors of scanning actors and help identify
more specific patterns within the data.
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