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Abstract

The continuous adoption of cloud-native architectures and the widespread
use of containerization have increased the demand for powerful, low-overhead
observability and monitoring tools. eBPF (extended Berkeley Packet Filter)
has emerged as a cornerstone technology in this domain, enabling the dy-
namic injection of user-defined programs into the Linux kernel to implement
high-performance networking, tracing and security functionalities. However,
executing code at kernel level inherently carries significant security risks and
enlarges the system attack surface: verifier bugs, misused helper functions,
map tampering, and interactions with pre-existing kernel vulnerabilities are
among the threats that may lead to privilege escalation, denial-of-service, and
container escapes.

This thesis investigates the security implications of eBPF with the goal
of analyzing critical vulnerabilities and developing systematic hardening
strategies. The first part provides a compact but comprehensive background,
including eBPF technology and its primitives, the Linux security architecture
(capabilities and the LSM framework), and an overview of monitoring and
hardening tools such as Tetragon and LKRG (Linux Kernel Runtime Guard).
Building on this foundation, the core of the work presents two in-depth case
studies of high-impact vulnerabilities, examining their root causes, exploitation
techniques, and reproducibility in a controlled environment, followed by the
design of practical mitigation strategies. Proposed countermeasures include
kernel and configuration recommendations, runtime detection policies for
Tetragon, integration with LKRG, and the development of custom LSM
BPF programs to enforce security policies directly within the kernel. Each
mitigation approach is evaluated in terms of security effectiveness, operational
practicality, and limitations.

The research concludes by outlining practical recommendations for reducing
the attack surface of eBPF-enabled systems and proposes a general framework
for strengthening defenses against future vulnerabilities, based on common
exploitation patterns identified in the case studies.
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Chapter 1

Introduction

The extended Berkeley Packet Filter (eBPF) emerged as an innovative kernel
mechanism that fundamentally transforms how programmability is achieved
within Linux systems. Born from the need to extend operating system capabil-
ities dynamically, eBPF addresses a perennial tension in kernel development:
while the kernel’s privileged position makes it optimal for implementing
networking, security, and observability features, the traditional approach of
modifying kernel code or deploying loadable modules presents significant chal-
lenges. Kernel evolution demands exceptional rigor due to stringent stability
requirements and security constraints, often creating bottlenecks that slow
innovation compared to user-space development.

eBPF resolves this dilemma through a sophisticated verification and exe-
cution framework. It permits applications running in user space to submit
bytecode programs for kernel-side execution, subjecting these programs to
rigorous static analysis that guarantees memory safety and termination. Once
verified, programs execute in a protected runtime environment, achieving
near-native performance through Just-In-Time compilation while maintaining
kernel integrity through sandboxing. This architecture unlocks capabilities
previously constrained by the traditional kernel development cycle, enabling
rapid deployment of advanced monitoring, packet processing, and security
enforcement logic without kernel recompilation or system restarts.

The impact has been transformative across cloud-native infrastructure.
Organizations operating container orchestration platforms, public cloud ser-
vices, and security monitoring solutions have embraced eBPF' as essential
infrastructure, leveraging its unique combination of safety, performance, and
flexibility to build next-generation observability and security tools that were
impractical with conventional approaches.
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Introduction

However, this increased functionality introduces significant security chal-
lenges. As eBPF programs execute with kernel privileges, vulnerabilities
within the eBPF subsystem, particularly in the verifier component, responsi-
ble for ensuring program safety, can lead to severe security breaches including
privilege escalation, kernel memory corruption, and complete system compro-
mise. In fact, several recent Common Vulnerabilities and Exposures (CVEs)
are discovered and published, demonstrating that even subtle flaws in the
eBPF verifier or map handling can be exploited to bypass fundamental kernel
security boundaries.

Modern eBPF implementations’ complexity, combined with continuous
subsystem evolution, creates ongoing challenges for maintaining security.
Traditional kernel hardening approaches often prove inadequate for address-
ing eBPF-specific attack vectors, requiring specialized defensive techniques
that understand unique characteristics of eBPF programs and their kernel
interaction patterns.

This thesis presents an in-depth security analysis of the eBPF ecosys-
tem, paired with practical kernel hardening strategies for the mitigation of
emerging threats. The research begins with a detailed vulnerability taxon-
omy based on comprehensive examination of CVE records, leading security
conference papers, and documented real-world attacks such as BPFDoor
and the TripleCross rootkit. This investigation classifies flaws across all
major eBPF components and analyzes operational constraints and container-
specific risks, establishing the theoretical foundation for subsequent defensive
implementations.

Building upon this systematic analysis, the thesis examines in detail two
specific security flaws recognized for their elevated Common Vulnerability
Scoring System (CVSS) scores and substantial potential consequences. The
first case focuses on a privilege-escalation vulnerability enabling non-privileged
users to obtain root permissions by leveraging defects in the eBPF verifier’s
pointer arithmetic handling. The second investigates vulnerabilities that
produce kernel crashes and denial-of-service conditions through out-of-bounds
memory operations in specific eBPF maps configurations.

Following characterization of these flaws and their context, open-source
proof-of-concepts were studied and reproduced. Targeted modifications were
introduced to improve observability, increase determinism, and provide clearer
evidence of the exploitation process. Controlled and isolated virtual machines
were established to evaluate and reproduce the attacks, using specific Linux
distributions and kernel releases known to be vulnerable, alongside instru-
mented environments for syscall tracing, kernel source review, and runtime
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debugging.

For each vulnerability scenario, comprehensive hardening plans were devel-
oped and evaluated. These plans begin with upstream patches that resolve
root causes and extend to supplementary mitigations that strengthen system
security posture. Existing security solutions were systematically assessed:
Linux Kernel Runtime Guard (LKRG) as a broad runtime integrity guard
particularly effective for credential anomalies, Tetragon as an eBPF-powered
observability tool for behavioral monitoring, and crucially, custom BPF LSM
programs as precise enforcement layers. These custom Linux Security Mod-
ule (LSM) implementations represent the principal defensive contribution of
this work: context-aware, in-kernel policies that align enforcement to actual
exploitation mechanics while preserving legitimate workloads.

This thesis is the result of a collaborative research effort conducted in
partnership with Rakuten Mobile Inc. and a fellow university colleague.
The comprehensive study encompasses four distinct eBPF vulnerability use
cases, with this thesis focusing on the scenarios described above, while the
remaining cases are addressed in the companion thesis. This collaborative
approach enables a broader and more systematic analysis of eBPF security
vulnerabilities across different attack vectors and exploitation techniques.

The work is organized as follows:

Chapter 2 establishes technical foundations by examining eBPF’s core com-
ponents including verifier, maps, helper functions, and Compile Once,
Run Everywhere (CO-RE) capabilities, with particular emphasis on
security-relevant aspects and inherent attack surfaces.

Chapter 3 presents the security research conducted on the literature, articles
and other sources regarding eBPF component-specific vulnerabilities,
operational challenges in security monitoring deployments, container-
related attack vectors, and malicious eBPF usage patterns.

Chapter 4 explores the broader security context within which eBPF operates,
covering the Linux privilege model, capabilities system, and the LSM
framework that provides the foundation for defensive implementations.

Chapter 5 surveys existing defensive technologies including LKRG (Linux
Kernel Runtime Guard) and Tetragon, describing their architectures and
operational principles.

Chapter 6 presents the core research contributions through the detailed
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Introduction

vulnerability case studies: CVE-2022-23222 demonstrating privilege esca-
lation via eBPF verifier bypass, and CVE-2024-56614/56615 illustrating
kernel panic and denial of service through integer confusion in eBPF
map operations. Each case includes comprehensive exploitation analysis,
custom hardening implementations using BPF LSM programs, Tetragon
monitoring policies, LKRG deployment, and comparative evaluation of
mitigation strategies.

Chapter 7 synthesizes the research findings and delivers operational direc-
tives for minimizing eBPF attack surfaces based on the studies performed
during the thesis. It concludes by proposing future research directions, in-
cluding systematic performance and overhead evaluation of the mitigation
solutions developed in this work, and the formulation of a comprehensive
defensive methodology framework that can be applied to emerging eBPF
threats beyond the specific vulnerabilities examined.

12



Chapter 2

eBPF Technology

2.1 Definition and Purposes

The extended Berkeley Packet Filter (eBPF) [2] is a revolutionary technology
in the Linux kernel that allows the execution of custom, user-defined programs
within kernel space. Originally introduced as an enhancement of the classic
Berkeley Packet Filter (¢cBPF), a mechanism designed in the early 1990s
to efficiently filter network packets in user space, eBPF has evolved into a
general-purpose execution engine closely integrated with the Linux kernel.

Unlike its predecessor, which was limited to packet filtering, eBPF provides
an in-kernel virtual machine capable of executing programs in response
to a wide range of kernel events, including system calls, network activity,
tracepoints, and security hooks. These programs are verified for safety by the
eBPF verifier before execution, ensuring that they cannot crash the kernel or
perform unsafe operations.

Traditionally, the kernel has served as a strategic location for implement-
ing features related to monitoring, security, and networking, thanks to its
comprehensive oversight and control of system resources. However, modifying
the kernel is challenging due to its critical functions and the necessity for
reliability and security.

eBPF addresses this challenge by extending the Linux kernel dynamically
without requiring modification of kernel source code or loading traditional
kernel modules. This capability enables developers and system administrators
to implement custom monitoring, tracing, networking, and security function-
ality at runtime, with minimal overhead and safety guarantees, by running
small sandboxed programs, the so called eBPF programs.

When an eBPF program is introduced into the Linux kernel, it must
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pass through a validation procedure to guarantee safety and security. The
eBPF verifier examines the program for potential vulnerabilities including
endless loops, unauthorized memory operations, and compliance with resource
constraints. Additional information regarding the validation procedure is
available in the corresponding subsection.

Upon successful validation, the program undergoes Just-in-Time (JIT)
compilation, converting the platform-independent bytecode into architecture-
specific machine instructions to enhance performance within the kernel envi-
ronment. This process ensures the eBPF program operates with maximum ef-
ficiency and is optimized for the particular system where it executes, achieving
performance comparable to natively compiled kernel code or kernel modules.

User space
Process
eBPF bytecode
A
bpf() syscall
with BPFF_PROG_LOAD
command
Kernel space
: Checks Architecture-specific code
- passed _ (xB6_64, AArchéd, etc.)
eBPF verifier » eBPF JIT Compiler ————»

Figure 2.1. eBPF Program Lifecycle

By deploying eBPF programs across kernel subsystems, Linux exposes
a programmable interface that supports advanced observability tools, fine-
grained security policies, and high-performance networking. This versatility
has made eBPF one of the most effective mechanisms for operating system
extensibility in modern computing.

14
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2.2 Key Components and Features

This chapter examines the fundamental architectural elements and operational
mechanisms that enable eBPF programs to execute successfully. The analysis
encompasses the eBPF virtual machine (VM) infrastructure, comprehensive
security validation performed by the verifier, performance optimizations
achieved through just-in-time compilation, and bidirectional communication
between user space and kernel space through eBPF maps and helper functions.

2.2.1 eBPF Virtual Machine

The eBPF virtual machine [3] differs fundamentally from conventional virtu-
alization technologies that emulate complete operating systems. Instead, it
constitutes a secure, lightweight runtime environment embedded within the
Linux kernel, specifically designed to execute eBPF programs safely.

Programs operating within this environment are dynamically loaded into
kernel space and activated in response to various system events, including
incoming network packets or system call invocations. The in-kernel execution
model eliminates performance penalties associated with system call overhead
and user-kernel space transitions, providing direct access to kernel resources.

The architecture implements a register-based design utilizing a specialized
64-bit Reduced Instruction Set Computer (RISC) instruction set. This
configuration supports Just-in-Time compilation of eBPF programs into
native machine code, enabling high-performance execution while maintaining
controlled access to kernel functions and memory regions. Importantly, this
implementation represents a complete virtual machine distinct from the
Kernel-based Virtual Machine (KVM), which serves as a hypervisor enabling
Linux to host other virtual machines.

Although kernel modules can technically accomplish the same operations
as eBPF programs, direct kernel code execution presents significant risks.
Unverified kernel code may cause system lockups, memory corruption, process
crashes, security breaches, and other critical failures. The eBPF virtual
machine addresses these concerns by providing a secure execution environment
that combines the performance benefits of JIT-compiled kernel code with
comprehensive safety guarantees.

The eBPF architecture deliberately incorporates limitations to ensure
program safety and system stability. Initially, loops were prohibited entirely,
though bounded loops were introduced in Linux 5.3 [4]. These constraints
guarantee program termination and prevent infinite execution. Additional
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safety measures include bounded memory access with comprehensive type
checking, elimination of null pointer dereferences, an instruction count limits
(typically 4096 instructions), and standardized function signatures requiring
a single context argument. These restrictions enable efficient static analysis
when programs are loaded, allowing the verifier to construct directed acyclic
graphs for comprehensive validation.

2.2.2 eBPF Verifier

The eBPF verifier [5] represents an essential element within the eBPF frame-
work, responsible for ensuring that eBPF programs can safely operate in the
kernel environment. Its core responsibility involves examining eBPF byte-
code prior to kernel loading, identifying potential vulnerabilities that could
threaten system stability or security. The verifier conducts static analysis,
inspecting the eBPF bytecode without executing it. The decision to examine
bytecode instead of source code arises from the fact that source code can
undergo different compilation processes, and bytecode represents the actual
format that gets interpreted during execution.

Verification Process

The verifier utilizes a comprehensive multi-stage methodology encompassing
parsing, control flow validation, type verification, and data flow examination
to systematically assess all potential execution paths.

During the initial parsing stage, the verifier examines the eBPF bytecode
structure, confirming adherence to expected formats and detecting syntactical
anomalies. Subsequently, the control flow validation stage generates a control
flow graph (CFG) that maps potential execution pathways within the program.
This graph ensures well-defined program control flow, preventing infinite loops
and unreachable code segments, thereby minimizing exploit chain risks. Due to
the verifier’s exhaustive path exploration, it may occasionally reject legitimate
programs when encountering state explosion scenarios.

The type verification stage confirms that program operations maintain
type safety, guaranteeing correct and consistent data type usage throughout
the program. This approach prevents type conflicts, invalid memory access
attempts, and buffer overflow conditions, ensuring proper operations within
designated data structures.

At the core of this process lies the concept of “safety.” The general principle
is that eBPF programs must never compromise kernel stability or violate the
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system’s security model. This implies strict restrictions on what programs
are allowed to do. They must always terminate within a reasonable amount
of time, which excludes infinite loops and infinite recursion. They cannot
arbitrarily read memory, since such access could lead to the disclosure of
sensitive information; exceptions exist for tracing programs, which may rely on
helpers to read memory in a controlled way, but these require root privileges
and therefore do not represent a security risk. Similarly, network programs are
restricted from accessing memory outside of packet bounds to avoid exposure
of adjacent memory regions. Programs must also avoid deadlocks by ensuring
that held spinlocks are released and that only one lock is held at any given
time, and they are prohibited from reading uninitialized memory, which could
otherwise leak confidential data.

The verifier also monitors register relationships, maintaining consistent
constraints when one register receives another’s value. Furthermore, the
verifier distinguishes between various data types, including numeric values,
pointers, and complex structures like map values, while validating memory
structure offsets and ensuring proper null checking before pointer dereferencing.
Importantly, pointer arithmetic operations should only be permitted when
pointers are confirmed as valid and non-null.

These restrictions are not uniform across all program types. Different
categories of eBPF programs are subject to distinct rules regarding accessible
helper functions and permissible context fields. Before bounded loops were
introduced, the verifier rejected any program containing loops, forcing com-
pilers to unroll them. While this approach ensured termination, it increased
program size and was not always feasible. Bounded loops now provide a more
flexible solution, as the verifier is able to confirm that the loop will always
terminate. However, this verification process is computationally expensive: a
loop with one hundred iterations, a body of twenty instructions, and multiple
branches can translate into several thousand instructions when the verifier
accounts for all possible permutations, thereby contributing significantly to
the program’s overall complexity.

Capability-Based Access Control

Furthermore, the verifier validates that the attaching process possesses the
necessary privileges for both the specific eBPF program type and the target
hook. As an example, connecting an eBPF program to networking-related
hooks typically requires the CAP_NET ADMIN privilege, whereas alternative

17



eBPF Technology

hooks may demand distinct authorization levels. This access control frame-
work guarantees that exclusively privileged processes can bind eBPF programs
to critical kernel operations, consequently strengthening the overall system
security posture. Additional details regarding Linux capabilities can be found
in the corresponding section.

2.2.3 Just-in-Time Compiler

Following successful verification and safety validation by the verifier, pro-
grams proceed to the Just-in-Time (JIT) compilation phase. The JIT compiler
performs bytecode transformation, converting platform-independent eBPF
instructions into native machine code tailored to the host processor’s instruc-
tion set architecture (ISA). This compilation process delivers substantial
performance improvements by eliminating interpretation overhead, thereby
reducing execution costs per instruction compared to runtime interpretation.

The translation mechanism frequently enables direct one-to-one mapping
between eBPF' instructions and corresponding native processor instructions,
resulting in compact executable code with reduced memory footprint. Specif-
ically, when targeting Complex Instruction Set Computing (CISC) architec-
tures like x86, JIT compilers employ optimization strategies focused on gen-
erating minimal opcode sequences for each instruction, effectively minimizing
the overall program size and enhancing cache efficiency during execution [6].

2.2.4 eBPF Maps

Maps represent data storage mechanisms that accommodate key-value pair
collections within eBPF programs. They enable eBPF programs to preserve
state information and facilitate data exchange among various program in-
stances operating in the kernel environment or between userspace and kernel
space [7, 8.

While maps are commonly defined within eBPF programs, they can alterna-
tively be instantiated and controlled from userspace through the bpf () system
call. The BPF_MAP_CREATE command exemplifies this capability, enabling
userspace applications to generate new maps with designated characteristics.
Among these characteristics, the map type stands as a critical attribute that
governs storage behavior and access methodology.

Multiple map types exist, each optimized and suitable for distinct applica-
tions. Two map types hold particular significance for this thesis:
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o BPF_MAP_TYPE DEVMAP: device maps that facilitate network device man-
agement and support advanced packet routing and forwarding operations.
These maps empower eBPF programs to communicate directly with
network interfaces, accommodating scenarios like load balancing, traffic
regulation, and specialized forwarding algorithms.

o BPF_MAP_TYPE_XSKMAP: eXpress Data Path (XDP) socket maps engi-
neered specifically for XDP program integration. XDP [9] constitutes
a high-efficiency packet processing architecture functioning at the net-
work stack’s foundational layer, delivering exceptionally rapid packet
handling capabilities. XSK maps facilitate seamless interaction between
XDP programs and userspace applications through shared data and state
mechanisms.

Additional essential and required parameters for map creation include:
o key_size: the size (in bytes) of keys utilized within the map.
« value_size: the size (in bytes) of values contained in the map.

e max_entries: the maximum number of entries the map can accommo-
date.

Maps, functioning as data structures, support content modification and
dynamic updates through various bpf () system call commands. The primary
operations include:

o BPF_MAP _UPDATE ELEM: modifies an existing map element or creates a
new element when absent.

o BPF_MAP_LOOKUP_ELEM: extracts an element from the map using its cor-
responding key:.

o BPF_MAP _DELETE_ELEM: locates and removes an element by key.

2.2.5 eBPF Helper Functions

eBPF programs can utilize numerous helper functions, which represent pre-
defined routines provided by the kernel that simplify operations and interac-
tions, functioning similarly to standard function calls.

These helper functions come with strong stability guarantees, as they are
part of the Userspace API (UAPI), ensuring consistent availability across
different kernel versions.

19



eBPF Technology

A significant consideration is that each program type supports only a
specific collection of helper functions. For instance, XDP programs access a
distinct helper function set compared to tracing programs.

These utilities cover an extensive array of functionalities [10], however,
within the scope of this thesis, the subsequent helper functions are of particular
importance:

bpf_get_current_pid_tgid: provides a 64-bit return value where the
current task’s Process ID (PID) occupies the lower 32 bits while the
TGID (thread group ID) fills the upper 32 bits. This utility enables
eBPF programs to determine process and thread group identity, proving
beneficial for monitoring individual threads or complete processes while
implementing thread-specific regulations.

bpf_map_lookup_elem: searches the map for an entry corresponding to
the specified key, returning either a pointer to the associated value or
NULL when the key remains absent. This function requires the map
definition pointer and key pointer as input parameters.

bpf_map_delete_elem: removes the map entry associated with the pro-
vided key, returning 0 upon successful completion or a negative error
code when operations fail. Input parameters include the map definition
pointer and key pointer.

bpf _map_update_elem: stores a value in the map using the corresponding
key, returning 0 for successful operations or a negative error code during
failures. Required parameters encompass the map definition pointer, key
pointer, value pointer, and update flags.

bpf_probe_read user: securely attempts to extract specified byte quan-
tities from userspace addresses, storing retrieved data in the designated
destination. Returns 0 upon success or negative error codes during
failures. Parameters include the destination buffer pointer, userspace
address, and data size specifications.

bpf_ringbuf output: transmits data to a ring buffer structure, return-
ing 0 for successful operations or negative error codes when failures occur.
Required parameters include the ring buffer pointer, data pointer, and
data size specifications.

bpf_ringbuf reserve: allocates space within a ring buffer, returning
either a pointer to the reserved area or NULL during allocation failures.
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Input parameters comprise the ring buffer pointer and size requirements
for space reservation.

o bpf_skb_load_bytes: loads a specified number of bytes from a packet
associated with a socket buffer (skb) into a destination buffer. This
helper copies len bytes from offset from the packet into the buffer pointed
by to. Returns 0 on success, or a negative error in case of failure. Input
parameters include the skb pointer, offset within the packet, destination
buffer pointer, and the number of bytes to copy.

2.2.6 eBPF Programs

As previously mentioned, eBPF facilitates the runtime enhancement of kernel
functionalities. This capability is realized through eBPF programs, which are
compact code modules engineered to execute securely within the kernel space
while delivering targeted features.

These programs operate on an event-triggered basis, activating when the
kernel or applications encounter specific hooks. Pre-established hooks include
system calls, function entry and exit points, kernel tracepoints, network-
ing events, as well as numerous additional trigger mechanisms [11]. When
pre-existing hooks do not meet particular requirements, developers can es-
tablish custom hooks through kprobes and uprobes. Kprobes facilitate the
deployment of monitoring points within kernel functions, whereas uprobes
provide equivalent capabilities for user-space applications. There exist also
Kretprobes, a variant of kprobes, which are used to attach to the return point
of a kernel function, enabling the capture of function return values.

After identifying the suitable attachment point, developers can bind eBPF
programs to it, loading them into the kernel via the bpf () system call. When
eBPF programs are connected to system call hooks, system administrators
gain the ability to monitor, record, and modify the execution of these calls.
This functionality proves especially valuable for security oversight, system
auditing, and performance evaluation. For instance, an eBPF program can be
connected to the execve system call to track all file access operations, record-
ing information such as file names, user identifiers, and process identifiers.

Various eBPF program types exist, each optimized for particular applica-
tions and attachment mechanisms. The eBPF verifier may impose restrictions
or grant permissions for specific features based on the program type, de-
termined by its execution location within the kernel. Within this thesis
context, understanding BPF_PROG_TYPE SOCKET FILTER is essential. This
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program category focuses on filtering or altering packets passing through
sockets, excluding egress/outbound packet processing. The complete list of
eBPF program types is available in the eBPF documentation [12].

2.2.7 BPF CO-RE

BPF CO-RE represents an innovative framework implementing the "Compile
Once, Run Everywhere" paradigm. This technology tackles a fundamental
challenge within the eBPF ecosystem: enabling eBPF programs to execute
consistently across varying kernel versions without necessitating version-
specific recompilation.

eBPF programs frequently access kernel-originated data structures and
memory regions. Across different kernel releases, these structures undergo
modifications, including field offset changes, attribute renaming, or structural
additions. Traditionally, such changes would require developers to main-
tain distinct program versions for each kernel release, creating substantial
complexity and maintenance burdens. This challenge becomes particularly
pronounced considering the Linux kernel’s rapid development cycle and the
heterogeneous deployment environments where eBPF programs operate.

CO-RE solves this by relying on the BPF Type Format (BTF) meta-
data [13], the compiler, and the libbpf library [14]. The kernel exposes au-
thoritative BTF data, from which a header file, typically named vmlinux.h,
can be generated, providing a complete description of kernel types.

At runtime, libbpf leverages BTF information embedded in both the
compiled BPF program and the target kernel. It matches types and fields,
applies relocations, and adjusts offsets as needed to ensure the program logic
remains correct regardless of structural changes in the kernel.

In this way, BPF CO-RE eliminates much of the overhead traditionally
associated with eBPF development and enables developers to ship portable
BPF applications that run correctly across diverse kernels without code
modifications or runtime recompilation.

2.2.8 In-depth Analysis

This section delves into more advanced aspects of eBPF, which, although not
required for a high-level understanding, are particularly useful to understand
the security implications and use cases that will be discussed in later chapters.
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Verifier Internal: OR_ NULL pointers

Within its operation, the verifier performs detailed monitoring of register con-
tents, categorizing values into two primary classifications: pointers and scalars.
The verification system bears responsibility for validating pointer boundaries,
guaranteeing that stack memory reads occur only after corresponding writes
(this requirement exists because the BPF stack implementation does not ini-
tialize memory to zero, creating potential information leakage vulnerabilities),
and preventing pointer values from being stored within stack memory to avoid
unauthorized pointer exposure.

The eBPF framework employs multiple pointer classifications, several of
which include the OR_NULL identifier. This designation indicates operations
with uncertain outcomes that might successfully return valid pointer references
or encounter runtime failures that produce NULL results. Because the success
or failure of these operations cannot be determined during static analysis,
OR_NULL pointer classifications function as transitional states that facilitate
runtime validation against zero values.

During null validation procedures, the verifier establishes two distinct
execution paths: the first branch removes the OR_NULL designation from the
pointer type following successful non-null confirmation, while the second
branch treats the register as containing a scalar zero value. As an example,
PTR_TO_MEM_OR_NULL becomes PTR_TO_MEM once null validation succeeds.

Within the alternative execution branch where the register holds NULL,
arithmetic operations on pointers should be prevented. Nevertheless, as
demonstrated in the first use case, for same old kernel version this restriction
fails to apply consistently across various OR_NULL pointer classifications, creat-
ing opportunities to deceive the verifier into assuming no pointer manipulation
occurred while the actual value underwent modification.

Verifier Internal: ALU Sanitation

This security mechanism emerged as a response to numerous vulnerabili-
ties stemming from verifier implementation flaws. The fundamental concept
involves augmenting the verifier’s static boundary analysis with dynamic
validation of actual runtime values processed by programs. Remember that
pointer calculations are restricted to addition or subtraction operations in-
volving scalar values. When arithmetic operations combine pointer and scalar
registers (rather than immediate values), the system calculates an alu_limit
representing the maximum absolute value that can be safely added to or
subtracted from the pointer while maintaining acceptable bounds.

23



eBPF Technology

Given its protective nature, Arithmetic Logic Unit (ALU) sanitation serves
as a critical safeguard against malicious pointer arithmetic in BPF programs.
Consider this operational sequence:

1. establish a map with 4-byte values;

2. transfer a map value pointer into REG_1;

3. increment REG_1 by 4;

4. perform a write operation to the memory location referenced by REG_1.

ALU sanitation intervenes during this process by maintaining pointer bound-
ary awareness, recognizing the 4-byte allocation limit for the map, and
subsequently blocking the operation due to memory boundary violations, as
illustrated in the following listing.

access to map value, value_size=4 off=4 size=1
R1 min value is outside of the allowed memory range

R1 pointer arithmetic of map value goes out of range, prohibited for
lroot

Listing 2.1. ALU sanitation in action

A crucial aspect of ALU sanitation involves its behavior when encountering
arithmetic operations between pointer containing registers and scalar holding
registers where the verifier possesses knowledge of the scalar’s value. In such
cases, the system modifies the operation to preserve its intended effect while
eliminating dependency on the scalar register.

Internal Structure of eBPF Maps

From a kernel perspective, every eBPF map is represented by a struct
bpf_map, defined in include/linux/bpf.h. This object encapsulates meta-
data about the map, including information for memory management, and
pointers to auxiliary structures that govern map behavior. Importantly, the
bpf _map object does not only hold map contents; instead, the contents are
placed immediately after the main structure in memory, effectively making
the map a flexible container that hosts both control data and storage.
| struct bpf_map {
/* The first two cachelines with read-mostly members of

which some
* are also accessed in fast-path (e.g. ops, max_entries)
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*/
const struct bpf_map_ops *ops
struct bpf_map *inner_map_meta;
void *security;
enum bpf_map_type map_type;
u32 key_size;
u32 value_size;
u32 max_entries;
u32 map_flags;
int spin_lock_off; /* >=0 valid offset, <0 error x*/
u32 id;
int numa_node;
u32 btf_key_type_id;
u32 btf_value_type_id;
struct btf *xbtf;
/*x ... *x/

_cacheline_aligned;

Listing 2.2. Definition of bpf_map

A central member of struct bpf_map is the ops field. This field is a
pointer to a constant table of function pointers, formally described by struct
bpf_map_ops. Each supported map type (e.g., hash maps, array maps, Least
Recently Used maps, stacks, queues) provides its own implementation of
this table, which defines the behavior of fundamental operations such as
insertion, deletion, lookup, and key iteration. For instance, array maps
use the statically defined array_map_ops structure, located in the kernel’s
read-only data segment (.rodata).

Another relevant member of struct bpf_map is the btf pointer, which
can optionally reference a struct btf containing debug type information
(used for BPF Type Format metadata). In practice, this field is typically
unused and defaults to NULL. Its limited functional role and absence in normal
operation make it an appealing target for attackers: overwriting this pointer
is less likely to crash the system, while still providing a controlled kernel
memory pointer that can be subsequently dereferenced.

The kernel exposes partial visibility into struct bpf _map via the syscall
interface. In particular, the command BPF_0BJ GET INFO BY FD, invoked
through bpf _map_get_info_by_fd, retrieves metadata from the map struc-
ture. This includes fields such as map_type, max_entries, and, crucially,
information derived from the btf pointer.

Similarly, by redirecting map->ops to a crafted operations table placed
in attacker-controlled memory (e.g., within another map’s data region), it
becomes possible to hijack the function dispatch mechanism. Since the kernel
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assumes the ops table is immutable, it blindly dereferences these function
pointers whenever user-space triggers a map operation through bpf () syscalls
such as BPF_MAP_UPDATE_ELEM or BPF_MAP LOOKUP_ELEM.

The practical exploitation of these techniques will be examined in detail in
the first use case.
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Chapter 3

eBPF Security Risks and
Challenges

While eBPF provides powerful capabilities for in-kernel inspection, filtering,
and extensibility, its deep integration into the kernel significantly broadens
the attack surface. This chapter presents the results of a comprehensive
security analysis of the eBPF ecosystem conducted for this thesis, examining
the principal classes of vulnerabilities, illustrates them with representative
examples, and discusses operational pitfalls and recurring attack patterns.

The research was conducted using a combination of systematic CVE
database analysis, academic literature review, and industry security documen-
tation. Specifically, the study examined CVEs from the National Vulnerability
Database (NVD) to identify recurring vulnerability patterns and classify them
by affected eBPF component (verifier, JIT compiler, helper functions, maps).
Industry white papers and threat models, particularly the eBPF Security
Threat Model published by the Linux Foundation [15], were analyzed to
understand inherent security controls and design limitations. Academic pub-
lications from leading security conferences such as USENIX Security and
DEF CON [16, 17] were examined to document practical attack scenarios
and operational challenges. Technical reports and security advisories from cy-
bersecurity research firms and practitioners [18, 19] were reviewed to identify
real-world exploitation patterns and malicious usage. Documentation from
eBPF-based security tool vendors such as Tetragon [20] and Datadog [21] was
consulted to assess operational security challenges in production deployments.

This structured approach enabled systematic categorization of security
risks across different eBPF components and usage contexts.
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3.1 eBPF Component Vulnerabilities

The eBPF subsystem consists of several critical components, each responsible
for specific functionalities that enable its operation within the Linux kernel.
These components include eBPF maps for data sharing, helper functions
for kernel interactions, the verifier for program safety validation, and the
Just-In-Time compiler for performance optimization. More details are already
presented in the previous chapter. While each component is designed with
security considerations, the study identified that vulnerabilities can arise from
implementation flaws, design trade-offs, or the inherent complexity of their op-
erations. This section examines the security vulnerabilities discovered in each
major eBPF component, analyzing their root causes, high-level exploitation
mechanisms, and potential impacts on system security.

3.1.1 eBPF Maps

eBPF maps are shared kernel data structures that facilitate communication
between eBPF programs and user-space controllers, primarily for state and
configuration exchange. These maps are globally accessible through interfaces
such as the bpf_map_get_fd_by_id helper function, but they inherently lack
mechanisms for per-program isolation.

This design choice has significant security implications, particularly with
respect to map tampering. Any actor with sufficient privileges can modify
or delete map entries used by other programs, potentially disrupting control
flows or corrupting program state. The issue becomes especially critical for
eBPF-based security tools such as Tetragon [20] and Datadog [21], which
rely on maps to coordinate execution across multiple small programs. In
such cases, deletion or poisoning of map entries can paralyze the entire tool,
making them highly susceptible to targeted map manipulation attacks.

3.1.2 Helper Functions

BPF helper functions expose a wide range of interactions with both kernel
and user memory, including reading and writing user data, overriding return
values, and sending signals. Vulnerabilities often arise from insufficient
validation, ambiguous flag semantics, or misinterpretation of metadata passed
as arguments. The study identified critical security flaws that demonstrate the
risks associated with inadequate input validation and semantic ambiguities in
helper function interfaces.
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Out-of-bounds Writes via Metadata Parsing (CVE-2022-0500)

The vulnerability affects the BPF_BTF_LOAD operation, which handles the
loading of BPF Type Format data structures into kernel space [22]. BTF
metadata provides type information that enables advanced eBPF features
such as CO-RE (Compile Once, Run Everywhere) by describing the structure
layout and type definitions of kernel data structures.

The security flaw originates from the kernel’s failure to enforce appropriate
boundary validation when processing BTF data submitted by userspace
applications. An attacker with eBPF loading privileges can exploit this
weakness by submitting carefully crafted BTF metadata that triggers writes
beyond allocated memory boundaries. The consequences of this vulnerability
range from immediate system destabilization through kernel panics to more
severe scenarios where attackers leverage the memory corruption to modify
critical kernel data structures, potentially achieving arbitrary code execution
with kernel privileges. The vulnerability received a CVSS score of 7.8 (HIGH),
reflecting its serious impact on system security.

Memory-Buffer Semantic Ambiguities (CVE-2024-50164)

This vulnerability demonstrates how the evolution of kernel interfaces can
introduce subtle security weaknesses [23]. The MEM_UNINIT flag was initially
designed to signal that buffers passed to helper functions don’t need to contain
initialized data before use. As the eBPF subsystem evolved, developers
extended this flag’s semantics to additionally indicate write permission for the
referenced buffer, creating a dual-purpose flag with ambiguous interpretation
contexts.

The security issue manifests within check mem _size reg(), a verifier
function responsible for validating memory access patterns. When analyzing
memory operations with non-constant size offsets, the function deactivates
certain validation modes by nullifying the metadata tracking structure. This
implementation decision created an unintended consequence: essential write
permission checks were inadvertently disabled, allowing eBPF programs to
modify memory regions explicitly marked as immutable, including .rodata
sections that should remain constant throughout execution. This vulnera-
bility exemplifies how semantic drift in flag definitions can undermine the
verifier’s foundational security guarantees, enabling unauthorized modification
of protected kernel memory regions.
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3.1.3 eBPF Verifier

The verifier acts as the central safety mechanism for eBPF programs, per-
forming static analysis to ensure that loaded code cannot compromise kernel
integrity. However, the analysis identified that discrepancies between the
verifier’s computed value and the actual runtime ones, combined with inherent
constraints in tracking complex execution paths, enable sophisticated bypass
attacks. The following vulnerabilities illustrate how subtle implementation
flaws in verification logic can undermine the entire security model.

Register State Desynchronization in 32-bit Operations (CVE-2020-
8835)

This vulnerability affects the verifier’s handling of mixed 32-bit and 64-bit
arithmetic operations on 64-bit registers [24]. The core issue stems from
incomplete state propagation when 32-bit operations modify registers: while
the verifier correctly updates bounds information for the lower 32 bits, it fails
to recalculate constraints for the upper 32 bits, creating a divergence between
its internal representation and the actual register contents at runtime.

This desynchronization allows attackers to construct eBPF programs that
manipulate the verifier’s bounded range assumptions. By carefully orches-
trating sequences of 32-bit and 64-bit operations, an attacker can force the
verifier to conclude that a register holds a safe, bounded value when it actu-
ally contains an address pointing to arbitrary kernel memory regions. The
vulnerability was demonstrated at Pwn20wn 2020 by Manfred Paul [25], who
successfully leveraged this flaw to read and modify kernel memory structures,
ultimately achieving privilege escalation by overwriting process credential
structures to obtain root access.

Path Pruning Logic Errors in State Space Exploration (CVE-2023-
2163)

To manage the computational complexity of verifying programs with numerous
conditional branches, the verifier employs a path pruning optimization. When
the verifier determines that a particular program state has already been
proven safe through analysis of an equivalent state, it prunes the redundant
exploration path. This optimization relies on “precise tracking” to identify
which registers influence control-flow or memory safety decisions.

The vulnerability arises from incomplete propagation of precision markers
across register assignments [26]. Specifically, when a register’s precision
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depends on values from another register through intermediate operations,
the verifier may fail to mark all contributing registers as requiring precise
analysis. This causes the verifier to incorrectly classify distinct program states
as equivalent and prune execution paths that should have been analyzed.
The result is that certain code paths execute at runtime without ever being
subjected to verification checks. This vulnerability was discovered by Buzzer,
Google’s eBPF fuzzer, which generates large volumes of syntactically valid
programs to stress-test verification logic, as described in the blog post [27].
The exploit allows execution of pointer arithmetic operations with register
values that differ from those the verifier assumed during its analysis.

ALU32 Bitwise Operation Boundary Miscalculation (CVE-2021-
3490)

The verifier maintains value ranges representing the possible bounds each
register may contain. For bitwise operations on 32-bit ALU instructions
(AND, OR, XOR), the verifier must compute how these operations affect the
minimum and maximum bounds of the resulting value. The vulnerability
stems from imprecise boundary calculations for these operations: the verifier’s
approximation of output ranges was insufficiently conservative, allowing the
actual runtime values to exceed the assumed boundaries [28].

Exploiting this flaw enables attackers to establish unauthorized kernel
memory read capabilities, which can then be leveraged to leak critical kernel
addresses and locate essential kernel data structures. By carefully navigating
through kernel memory using the obtained addresses, attackers can identify
and modify process credential structures, ultimately setting their user and
group identifiers to zero to achieve root privilege escalation.

Sign-Extension Inconsistencies in Immediate Value Interpretation
(CVE-2017-16995)

This vulnerability exploits a semantic inconsistency in how the verifier and
runtime interpreter handle immediate constant values [29]. During verifica-
tion, 32-bit immediate values are interpreted as unsigned quantities, but at
runtime, these same immediates undergo sign-extension when loaded into
64-bit registers, producing different values than the verifier analyzed.

The exploit leverages this discrepancy by loading the immediate value
OxFFFFFFFF, which the verifier treats as the 64-bit value 0x00000000FFFFFFFF
but the runtime sign-extends to OxFFFFFFFFFFFFFFFF. A carefully constructed
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conditional comparison between a register and this immediate appears to
the verifier as always-true, causing it to skip analyzing the false branch.
However, at runtime, the sign-extended values differ, causing the comparison
to fail and the program to execute along the unverified path. This allows
arbitrary operations in the unanalyzed code segment, including stack frame
pointer manipulation to locate the thread info structure, traverse to the
task_struct, and ultimately modify the credentials structure to achieve
privilege escalation.

3.1.4 Just-In-Time Compiler

The JIT compiler translates verified BPF bytecode into native machine in-
structions specific to the target architecture, enabling near-native execution
performance. However, the complexity of this translation process, particularly
in managing instruction size estimation and control flow displacement calcu-
lations, introduces potential security vulnerabilities. Analysis revealed that
errors in these critical compilation phases can result in memory corruption or
execution of unintended instruction sequences.

Architecture-Specific Instruction Size Misprediction (CVE-2024-
50203)

This vulnerability manifests as a heap buffer overflow in the Linux kernel’s
BPF subsystem when executing on ARM64 architecture with tag-based Kernel
Address Sanitizer (KASAN) enabled [30]. The flaw resides within the BPF
trampoline mechanism, which generates optimized function call sequences at
runtime.

The root cause stems from inconsistent address usage across the com-
piler’s two-phase process: the size calculation phase uses stack addresses to
estimate code length, while the code generation phase operates with heap
addresses. When KASAN tags are applied to heap addresses on ARM64,
the emit_a64 mov_i64 () function may generate longer instruction sequences
than initially estimated, as the number of required instructions depends on
specific bit patterns in the immediate values. This size mismatch causes
buffer overflow when the pre-allocated space proves insufficient for the actual
generated code, potentially enabling privilege escalation attacks.
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Control Flow Displacement Calculation Errors (CVE-2021-29154)

This vulnerability affects the JIT compiler’s computation of branch displace-
ment values when translating conditional and unconditional jump instructions
from BPF bytecode to native machine code [31]. Branch instructions in com-
piled code require precise offset calculations to determine the target instruction
address relative to the current program counter.

The flaw occurs when the compiler incorrectly calculates these displacement
values, causing jump instructions to transfer control to unintended memory
locations within the compiled code. An attacker can exploit this miscalculation
by crafting BPF programs with specific branching patterns that trigger the
erroneous offset computation. When executed, these programs cause control
flow to deviate from the intended execution path, potentially landing in the
middle of instructions or executing instruction sequences that were never
validated by the verifier. This enables the execution of arbitrary instruction
sequences within kernel context, bypassing all safety guarantees provided
by the verification process and potentially leading to privilege escalation or
arbitrary kernel memory access.

3.2 Operational Pitfalls for Security Monitor-
ing

Although eBPF is extensively used for observability and security monitor-
ing, the research identified intrinsic limitations that complicate its reliable
deployment for security enforcement [18]. These operational constraints
stem from fundamental design decisions in the eBPF subsystem and reflect
trade-offs between performance, safety, and functionality. The following chal-
lenges illustrate how architectural limitations can undermine the reliability of
eBPF-based security monitoring systems.

3.2.1 Probe Invocation Reliability Issues

While eBPF probes are theoretically designed to trigger consistently whenever
their associated kernel events occur, practical deployments reveal occasional
probe firing failures. This behavior, though infrequent and challenging to re-
produce, has been documented in bug reports from eBPF tooling projects [32].
Analysis of these reports identifies two primary causes for missed events.
First, the kernel enforces a hard limit on the maximum number of concurrent
kretprobes that can be active simultaneously. As of recent kernel versions, this
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threshold is set to 4,096 active kretprobes. Any attempt to register additional
kretprobes beyond this limit results in silent failures, causing events to go
unmonitored without explicit notification to user-space applications. This
limitation becomes particularly problematic in complex monitoring scenarios
involving numerous instrumentation points across multiple subsystems.

Second, subtle implementation differences exist between the callback mech-
anisms for kprobes and kretprobes. These differences can, under specific
circumstances, prevent a kprobe from correctly detecting or pairing with its
corresponding kretprobe, leading to event loss. Since eBPF was not originally
designed as a comprehensive security enforcement mechanism but rather
as a performance monitoring tool, there exists no guarantee that all probe
invocations will occur as expected, particularly under high system load or
when approaching architectural limits.

3.2.2 Concurrency and Event Management Limitations

eBPF programs execute in a restricted kernel environment that prohibits
access to traditional kernel synchronization primitives such as mutexes,
semaphores, or spinlocks. Furthermore, eBPF probes cannot block event-
producing kernel code paths, as doing so would introduce unacceptable latency
and potential deadlock scenarios. This architectural constraint creates several
operational challenges when event rates exceed processing capacity.

When attachment points experience high event volumes, multiple failure
modes can manifest. The kernel may cease invoking probes entirely once
internal buffers saturate, resulting in complete event loss for that monitoring
point. Alternatively, when storage structures such as eBPF maps or ring
buffers become full, new events overwrite older, unconsumed data before
user-space applications retrieve them. In scenarios involving complex data
structures spanning multiple map entries, partial overwrites can corrupt data
integrity, disrupting monitoring program operation. These issues become par-
ticularly acute during system state transitions such as container initialization
sequences or automated deployment scripts, which can generate unexpectedly
large event bursts.

3.2.3 Memory Access Constraints

The Linux kernel’s virtual memory subsystem can page out infrequently ac-
cessed memory regions to disk-backed storage (swap space or memory-mapped
files) to optimize physical memory utilization. Under normal circumstances,
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when paged-out memory is accessed, the kernel handles the resulting page
fault transparently by loading the required content back into physical memory.
However, eBPF programs execute with page fault handling explicitly disabled
due to the atomic execution context in which they operate.

This restriction means that any attempt by an eBPF program to dereference
a pointer to paged-out memory immediately fails without the possibility of
fault recovery. For security monitoring tools attempting to inspect process
memory, command-line arguments, or file contents, this limitation constrains
the set of reliably accessible data. While instrumentation points can be
strategically positioned immediately after the kernel copies data into memory
(before it has opportunity to be paged out), this approach provides no strict
guarantees given the absence of concurrency primitives to enforce memory
residency.

3.2.4 Time-of-Check to Time-of-Use Race Conditions

eBPF programs routinely execute concurrently across multiple CPU cores,
processing events in parallel. This concurrent execution, combined with the
inability to acquire kernel locks or employ synchronization mechanisms, creates
fundamental data race vulnerabilities. A particularly severe manifestation
involves time-of-check to time-of-use (TOCTOU) attacks on system call
parameters [17].

When an eBPF program inspects system call arguments at the syscall
entry tracepoint, it examines pointers to user-space memory buffers. However,
between the time of this inspection and the moment when the kernel copies
the data into kernel space for actual processing, malicious user-space code can
modify the buffer contents. This race window enables attackers to present
benign data for security checks while substituting malicious payloads for
actual kernel consumption, effectively bypassing eBPF-based security policies.
This limitation fundamentally undermines the reliability of eBPF for security
enforcement scenarios requiring tamper-proof parameter validation.

3.3 Container-Related Threats

Even in the absence of kernel-level vulnerabilities, the standard eBPF feature
set introduces significant attack vectors in containerized environments. A
fundamental design characteristic of eBPF tracing programs is their lack of
namespace awareness: unlike network-oriented eBPF features such as XDP
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and Traffic Control (which operate only within their container’s network
interfaces), tracing programs can monitor and manipulate processes system-
wide, transcending container boundaries to observe activities on the host or
within other containers.

Research presented at the 32nd USENIX Security Symposium demonstrates
the severity of these cross-container attack capabilities [16]. The analysis
reveals that while the CAP_SYS ADMIN capability requirement theoretically
restricts eBPF access, over 2.5% of container images in Docker Hub repositories
possess the necessary permissions for eBPF-based attacks. Once compromised,
these privileged containers become platforms for cross-boundary attacks that
can compromise entire Kubernetes clusters. Linux’s capability system proves
insufficient for mitigating these threats, as it can only enable or disable eBPF
functionality entirely, making selective restriction impractical for environments
where legitimate services require eBPF access. The main attack vectors are
the following:

o Hijacking host processes: Attackers can inject eBPF tracing pro-
grams at system call dispatch points using RAW Tracepoints, enabling
comprehensive monitoring of all system calls across namespace bound-
aries. By identifying privileged processes on the host system (such
as Bash shells running with elevated privileges), attackers can exploit
helper functions like bpf _probe write_ user to inject malicious com-
mands into shell script buffers during read operations. Combined with
bpf_override_return to manipulate system call return values, this tech-
nique ensures execution of injected payloads, achieving container escape
and arbitrary command execution with root privileges on the host system.

e Cross-container information theft: Helper function such as
bpf_probe_read_user enables eBPF programs to extract system call
arguments and read process memory across namespace boundaries. At-
tackers can leverage this capability to steal sensitive data from processes
running in other containers or on the host system, including file contents,
cryptographic keys, authentication tokens, and other confidential infor-
mation. Additionally, this primitive facilitates kernel address leakage,
providing attackers with information necessary for exploiting memory
corruption vulnerabilities or bypassing kernel address space layout ran-
domization (KASLR) protections.

e Denial-of-service and manipulation: eBPF tracing programs can
intercept system calls across all containers and the host, enabling various
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forms of denial-of-service attacks. Using bpf_probe_write_user, attack-
ers can corrupt system call arguments to trigger application crashes. The
bpf_override_return helper allows manipulation of system call return
codes, causing programs to perceive failures where none occurred. Most
critically, the bpf_send_signal helper enables arbitrary signal delivery
to target processes, allowing attackers to systematically terminate critical
system services such as systemd or dockerd, potentially rendering the
entire host system inoperable. These capabilities extend to eBPF map
tampering attacks, where globally accessible eBPF maps can be manipu-
lated via bpf_map_get_fd_by_id, disrupting the operation of security
monitoring tools like Tetragon that depend on map-based control flow
and data exchange mechanisms.

3.4 Malicious eBPF Usage

While eBPF is widely promoted as a tool for monitoring and performance
optimization, the research identified that its kernel-level power also makes
it attractive to attackers seeking persistence or stealth. Two notable cases
analyzed were BPFDoor and eBPF-based rootkits.

3.4.1 BPFDoor

BPFDoor [19] represents a sophisticated Linux backdoor that employs eBPF
for stealthy network monitoring and persistent access. The malware uses
raw sockets to monitor all network packets, which would normally cause
high CPU usage. eBPF solves this by providing efficient kernel-level filtering,
allowing the implant to ignore 99% of traffic and activate only on specific
magic packets.

Rather than creating obvious reverse shells, BPFDoor employs connection
hijacking. It performs an initial handshake with legitimate services, such as
nginx and sshd, then sends a magic packet to identify the attacker’s IP and
port. The implant temporarily reconfigures iptables to redirect traffic from the
attacker to a listening socket on an inconspicuous port (42391-43391). After
establishing the command channel, firewall rules are removed, but Linux’s
stateful connection tracking ensures continued traffic forwarding, providing
exceptional stealth.
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Figure 3.1. BPFDoor network flow.

3.4.2 eBPF-Based Rootkits

Rootkits represent stealthy tools that attackers employ to maintain persistent
access to compromised systems despite credential changes or vulnerability
patches. By integrating with the syscall table, these malicious programs
acquire comprehensive visibility and control, enabling attackers to monitor
network traffic, conceal files and processes, and spawn root-level processes
while remaining undetected.

Traditional kernel rootkits provide formidable stealth capabilities but
introduce significant risks. Minor bugs can cause catastrophic system failures,
and kernel updates may destabilize rootkit functionality.

eBPF offers a powerful alternative for developing rootkits that circumvent
traditional kernel-level risks. Malicious programs can leverage its hooks to
intercept syscalls, manipulate network traffic, and tamper with user-space
data while avoiding the risks of kernel modules. A notable example of this
threat is TripleCross [33], an eBPF-based rootkit that demonstrates the
practical exploitation of these capabilities in real-world attack scenarios.

Attackers employing eBPF-based rootkits can alter network packets before
they reach system firewalls, disguising external traffic as internal and evading
detection. They can attach to OpenSSL functions to intercept and modify
encrypted Transport Layer Security (TLS) data in real time, compromising
secure communications without leaving traces in traditional logs. By inter-
cepting syscalls such as open, read, or write, attackers can present falsified
data to applications and security tools, for instance bypassing Secure Shell
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(SSH) multi-factor authentication by forging reads from pam.d configuration
files. Additionally, they can supply fake /etc/passwd or /etc/shadow entries
to escalate privileges while keeping on-disk files intact, ensuring that file
integrity checks and security audits reveal no anomalies.

These manipulations are achieved using helpers like bpf _probe_write_user
and bpf_probe_read_user, allowing attackers to tamper with syscall buffers
under precise conditions such as specific process IDs or User IDs (UIDs).
Importantly, underlying files remain untouched, so standard forensic tools
display authentic data, leaving security auditors unaware of tampering.

Additional stealth techniques include using bpf _send_signal to terminate
inspection processes that might detect the rootkit’s presence and employing
fmod_ret programs to override kernel functions by returning fabricated results,
effectively creating a parallel reality where malicious activities remain invisible
to both users and security monitoring systems.
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Chapter 4

Linux Security
Architecture

The Linux operating system employs a multilayered security framework
that integrates conventional mechanisms with advanced capability-driven
access control and kernel extensibility frameworks. This chapter presents an
overview of the primary elements: user and process identity management, the
capabilities framework, and the Linux Security Module (LSM) architecture.

4.1 Identity and Privilege Model

Within Linux systems, access control decisions originate from the notion
of credentials, which establish the security context associated with users or
processes. Credentials dictate whether operations on system objects receive
authorization or face denial. Objects within Linux are system elements that
userspace programs can directly manipulate, including tasks, files/inodes,
sockets, message queues, shared memory segments, semaphores, and keys, all
carrying credentials as integral metadata components.

Access control within Linux encompasses the regulation of actions (op-
erations) that subjects (primarily processes) may execute on objects. This
regulation occurs through access policy definitions that specify operation
permissions and restrictions.

From a user control standpoint, two fundamental access control models
demonstrate relevance:

» Discretionary Access Control (DAC): Within this framework, re-
source owners determine access privileges and permissible actions for
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other entities. Traditional Unix file permissions (rwx bits) and ownership
mechanisms exemplify DAC implementations. Although flexible, DAC
relies on individual users to manage access appropriately.

o Mandatory Access Control (MAC): This restrictive framework
enforces access policies established by system administrators or security
specialists. Users cannot modify or override these regulations.

Within Linux environments, DAC and MAC operate concurrently: DAC
establishes baseline, user-controlled permissions, while MAC frameworks,
when activated, apply supplementary, system-enforced constraints to achieve
detailed and mandatory control.

Types of Credentials

The Linux kernel supports multiple credential types associated with tasks
and objects:

« Real User ID (UID) and Group ID (GID): These identifiers es-
tablish process ownership and represent the authentic identity of the
initiating user. They frequently serve as the objective contexrt for ac-
tions. Processes obtain their real user (group) ID through getuid(2)
(getgid(2)). During process creation via fork(2), children inherit copies
of their parent’s user and group identifiers.

» Effective User ID (EUID) and Effective Group ID (EGID): The
kernel utilizes these identifiers to determine process permissions when
accessing shared resources. They form the subjective context for tasks.
For instance, when executing a set-UID binary, the EUID may diverge
from the UID. Processes obtain their effective user (group) ID using
geteuid(2) (getegid(2)).

« Saved set-user-ID and saved set-group-ID: These identifiers func-
tion within set-user-ID and set-group-ID programs to preserve copies of
corresponding effective IDs established during program execution. Set-
user-ID programs can acquire and drop privileges by alternating their
effective user ID between real user ID and saved set-user-ID values. This
alternation occurs through seteuid(2), setreuid(2), or setresuid(2)
calls.

» Filesystem UID (FSUID) and GID (FSGID): These Linux-specific
identifiers determine file access permissions. When a process’s effective
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user (group) ID changes, the kernel automatically updates the filesystem
user (group) ID to match. Consequently, filesystem IDs typically mirror
corresponding effective IDs, maintaining file permission check semantics
consistent with other UNIX systems. Filesystem IDs can differ from
effective IDs through setfsuid(2) and setfsgid(2) calls.

e Supplementary groups: This represents additional group ID collec-
tions used for permission verification when accessing files and shared
resources.

Task Credentials and the struct cred

Each Linux task references its credentials through the task struct. The
task_struct instances reside in a linked list, with the global kernel variable
init_task indicating the initial entry.

Beyond linking data, the task_struct maintains a reference-counted struc-
ture named struct cred, which consolidates all task identity information,
encompassing UIDs, GIDs, group memberships, keyrings, and LSM-specific
security data. Specifically, it includes the IDs previously discussed as follows:

struct cred {

VA T Vi

kuid_t uid; /* real UID of the task x*/
kgid_t gid; /* real GID of the task */
kuid_t suid; /* saved UID of the task */
kgid_t sgid; /* saved GID of the task */
kuid_t euid; /* effective UID of the task x*/
kgid_t egid; /* effective GID of the task */
kuid_t fsuid; /* UID for VFS ops */

kgid_t fsgid; /* GID for VFS ops */

VA SR Vi

};

Listing 4.1. struct cred showing user and group IDs

To maintain consistency, once credential sets receive commitment to tasks
through functions including commit creds (), they become immutable. The
system permits only reference count modifications or associated keyring
changes. Credential modifications follow the copy and replace principle:

1. Current credential copies are generated using prepare_creds().

2. Modifications apply to the copy.
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3. New credentials receive atomic commitment through commit_creds().

This design guarantees that no task can directly modify another task’s creden-
tials, thereby enhancing process isolation. For instance, the capset () system
call restricts modifications to the current process’s credentials exclusively.

Accessing Credentials

Tasks can freely access their own credentials using functions including:
e current_uid() and current_gid() for real IDs,
e current_euid() and current_egid() for effective IDs,
o current_fsuid() and current_fsgid() for filesystem checks.

Accessing other task credentials requires special handling due to concur-
rency concerns. The kernel enforces Read-Copy Update (RCU) mechanisms
to ensure safe reads without race conditions. For persistent access, the
get_task_cred() function safely obtains references.

These identifiers establish the foundation for traditional discretionary
access control (DAC) models. Processes executing as root (EUID 0) possess
unrestricted system resource access, motivating the need for more detailed
privilege separation.

4.2 Linux Capabilities

To address the constraints of the omnipotent root account, Linux implemented
the capabilities framework [34], which segments superuser privileges into
discrete units that can be independently assigned to processes, threads, or
executables. This approach enables more precise control over the operations
that privileged tasks may execute.

Capability Sets

For capability implementation, the kernel structures them into distinct collec-
tions that govern capability acquisition, utilization, and inheritance:

| typedef struct __user_cap_data_struct {

2 __u32 effective;

__u32 permitted;
4 __u32 inheritable;
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5 } *cap_user_data_t;

Listing 4.2. struct __user_cap_data_struct defining capability sets

Each process maintains three primary capability sets that control privilege
acquisition and usage:

« Effective set (pE): Contains capabilities currently applied to privilege
checks. These represent the capabilities that are “active” and will be
used by the kernel when evaluating whether the process can perform
privileged operations.

o Permitted set (pP): Contains capabilities that the process may move
into its effective set via the capset(2) system call. The effective set is
never a superset of the permitted set. Once a capability is removed from
this set, it cannot be regained without executing a privileged program.

o Inheritable set (pI): Used in the calculation of capability sets at
file execution time. Unlike the other sets, the inheritable set remains
unchanged across execve(2) unless explicitly modified by the process
itself using capset(2).

When a new process is created via fork(2), its capability sets are identical
to its parent’s. The inheritance occurs at the moment of process creation,
establishing the initial privilege context for the child process.

File Capabilities

Since Linux 2.6.24, executable files can possess associated capability sets
stored within extended attributes. Files have three capability sets: inheritable
(fI), permitted (fP), and effective (fE). The file permitted set (fP) is also called
the forced set because capabilities in that set will be in the process’s new
permitted set regardless of whether the process previously had them. The file
inheritable set (fI) is sometimes referred to as the optional set because the
program will only acquire capabilities from it if the invoking process includes
them in its inheritable set.

During execve (2), new capability sets are calculated based on the interac-
tion between process and file capabilities. The process inheritable set remains
unchanged across execution. The new permitted set combines capabilities
from the file’s forced set (masked by the bounding set) with capabilities that
are present in both the process and file inheritable sets. The file effective
capability (fE) functions as a boolean flag rather than a set and when set, all
permitted capabilities become effective in the new process.
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Key Capabilities

Among the numerous available capabilities, several demonstrate particular
relevance for security and eBPF:

« CAP_SYS__ADMIN - Frequently regarded as the “new root” capa-
bility, providing extensive administrative operations.

o« CAP_NET__ADMIN - Permits network configuration including in-
terface settings, routing, or firewall rule management.

« CAP_BPF - Introduced in Linux 5.8 to separate BPF operations
previously permitted under CAP_SYS_ADMIN into a more secure model.
It enables basic operations including map creation, program loading,
and attachment to various hooks. Not all map types and program cat-
egories are permitted; for instance, creating the previously discussed
BPF_MAP_TYPE DEVMAP requires CAP_NET ADMIN or CAP_SYS_ADMIN. Ad-
ditional information is available here [35].

Unprivileged eBPF

Originally, specific BPF programs could be loaded without special privileges,
but following the identification of multiple vulnerabilities within the eBPF
infrastructure, unprivileged loading faced progressive restrictions. In contem-
porary Linux kernels, loading most eBPF programs requires CAP_BPF and
CAP_SYS ADMIN, demonstrating this mechanism’s sensitivity.

Unprivileged eBPF access operates under regulation by the kernel.unpri
vileged bpf_disabled sysctl parameter, which governs whether the bpf (2)
system call can be invoked without elevated privileges. This parameter accepts
the following values:

e 0: Unprivileged bpf (2) usage is permitted.

e 1: Unprivileged usage becomes permanently disabled for the running
kernel’s lifetime. Once configured to 1, the value cannot revert to 0, even
through administrator intervention. Any unprivileged bpf (2) invocation
will produce -EPERM errors.

e 2: Unprivileged usage is disabled, but the configuration remains modifi-
able during runtime. Administrators may subsequently write 0 or 1 to
reactivate or permanently disable it. This value was introduced in Linux

5.13.
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When the kernel is built with CONFIG_BPF_UNPRIV_DEFAULT_OFF, the param-
eter’s default value becomes 2 rather than 0, ensuring unprivileged usage is
disabled by default while maintaining administrative control. Without this
configuration option, the default remains 0.

This mechanism provides administrators with detailed control: either
permanently securing unprivileged eBPF usage, or temporarily disabling it
while preserving reactivation options when needed.

4.3 Linux Security Modules (LSM)

The Linux Security Modules (LSM) framework [36] was introduced to support
the implementation of flexible and fine-grained security policies inside the
kernel, without hardcoding a single access control model. Instead of embedding
complex security logic directly into the kernel, LSM provides a generic interface
that decouples mechanism from policy. This design enables different major
security models, such as SELinux [37], or AppArmor [38], to be implemented,
though typically only one major LSM can be active at a time.

The core of the framework consists of security hooks, which are callback
functions strategically placed throughout the kernel at points where sensitive
operations occur. Typical hook locations include file system operations
(open, mmap), process management (execve, ptrace), networking (socket
creation, packet transmission), and inter-process communication. When
a hook is triggered, the kernel invokes the registered security function of
the active module before completing the operation. The module can then
allow, deny, or alter the request according to its policy. For example, the
security_inode_permission() hook is called whenever a process attempts
to access a file, giving the LSM module the chance to enforce additional
checks beyond the standard DAC and capability-based mechanisms.

To maintain state across kernel objects and their lifetimes, the LSM
framework provides security blobs: opaque void* fields added to many core
structures (e.g., task_struct, inode, sock). These blobs are allocated,
initialized and freed by the active security module; the kernel itself treats
them as opaque pointers and does not interpret their contents. Security
modules therefore use the blob to attach module-specific metadata to objects.
When an LSM hook is invoked, the module dereferences the blob to obtain
the contextual information needed to evaluate a policy decision. Because the
framework offers only the storage slot, modules are responsible for lifecycle
management (allocation and cleanup), synchronization (RCU primitives or
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explicit locking when replacing or reading blobs), and memory accounting.
This design gives modules fast, persistent access to per-object policy state
while keeping the core kernel agnostic about the specific policy data structures.

All hooks are organized into the global security_operations table, a
structure grouping related function pointers by kernel object category (e.g.,
task, inode, file, or networking). When the kernel executes a sensitive opera-
tion, the corresponding hook is invoked through this table. This mechanism
makes it possible to implement system-wide security enforcement in a modular
fashion, with the base kernel providing only the infrastructure while the actual
policies are defined by the loaded security module.

From a policy perspective, LSM was designed to be policy-neutral: the
framework itself does not impose a particular model of access control, but
rather provides the mechanism upon which diverse policies can be built. For
example, SELinux implements mandatory access control (MAC) based on
Type Enforcement, and AppArmor enforces pathname-based confinement.
The flexibility offered by LSM enables experimentation with novel security
paradigms, while simultaneously allowing administrators to select a model
that best fits their operational requirements. This separation of mechanism
and policy was emphasized in the original design rationale [39].

Traditionally, the major LSMs are mutually exclusive, only one can be
active at boot time as the primary security module. However, the framework
does support limited stacking: certain “minor” LSMs (such as Yama, LoadPin,
or SafeSetID) can operate alongside a major LSM, and more recently, BPF-
LSM has been designed to be fully stackable with existing security modules.

The LSM framework’s operational model emphasizes kernel-resident, syn-
chronous decision making. Hooks are placed at critical kernel locations so
that each security decision is processed immediately and atomically within the
kernel context when the associated system call or kernel operation executes.
By handling decisions in-kernel via lightweight callbacks, LSM minimizes
latency and avoids the risk that enforcement can be bypassed by delays
or failures in external components, such as TOCTOU. In practice, major
LSM implementations (for instance, SELinux or AppArmor) perform policy
evaluation entirely in kernel context: they read attributes attached to kernel
objects (security blobs on inodes, tasks, etc.) and quickly decide whether an
operation complies with the loaded policy.

Interaction with user space is intentionally minimized in the standard LSM
model. The kernel-user interface is primarily used for configuration and
monitoring (for example, exposing policy state and audit data through /proc,
/sys, or netlink to user-space daemons such as auditd). This asynchronous,
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indirect channel avoids per-decision round trips to user space and preserves the
determinism and performance characteristics required for robust enforcement.

LSM hooks are intended solely for making rapid, in-kernel decisions. The
framework’s focus on minimal overhead and a compact interface has allowed
it to support a wide array of security modules without forcing a single unified
policy model. This modularity permits systems to be hardened through
complementary policies (for instance, combining a base MAC system with
additional auditing or logging mechanisms), while leaving composition and
more complex decision logic to the individual modules themselves.

4.3.1 BPF LSM

Historically, security modules were compiled into the kernel as substantial,
monolithic extensions. Although powerful, this approach necessitated kernel
rebuilding or patching to introduce or alter security policies. Prior to BPF
emergence, users possessed fundamentally two alternatives: configure existing
LSMs including AppArmor or SELinux, or develop custom kernel modules.
Both methodologies proved effective yet lacked adaptability, as policies re-
mained static and could only undergo modification through recompilation or
module reloading.

Starting from Linux 5.7, BPF LSM became available. This feature enables
security professionals to design custom policies that are injected into the
kernel and activated through LSM hooks. Leveraging eBPF programs [40],
administrators can implement detailed security policies that support runtime
modification, eliminating kernel module requirements, which may introduce
bugs or system instability. These programs undergo verification during
loading and may utilize BPF maps and helper functions to enforce systemwide
mandatory access control (MAC) and auditing policies.

BPF LSM development received substantial motivation from the Kernel
Runtime Security Instrumentation (KRSI) project, presented by KP Singh
at the Linux Security Summit North America 2019 [41]. KRSI investigated
how eBPF could integrate signal concepts (suspicious events, including bi-
nary execution with unusual environment variables) and mitigation strategies
(policy actions, including mount blocking or binary blacklisting) within a
unified runtime mechanism. The prototype demonstrated that eBPF attach-
ment to LSM hooks could deliver low overhead, precise, and context aware
enforcement, with this vision ultimately integrated as BPF LSM in Linux 5.7.

Moreover, BPF LSM is designed with stackability in mind. Traditional
LSMs are often mutually exclusive due to how they are integrated into the
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kernel’s security framework. In contrast, BPF LSM can run alongside these
modules, enabling administrators to layer dynamic policies on top of a base
LSM. This is particularly useful in scenarios where, for example, SELinux
enforces a fixed mandatory access control policy, and additional filtering or
logging is needed without modifying the core SELinux policy.

While traditional eBPF mechanisms (e.g., probes, tracepoints, syscall
filters) provide powerful monitoring, they lack the structured semantics and
enforcement guarantees provided by LSM hooks. LSM hooks are tightly
integrated into the kernel’s security model and deliver contextual arguments
about the process and operation being performed; this enables eBPF programs
attached to these hooks to implement context-aware, fine-grained decisions.

This design provides several advantages:

o Granular enforcement: Hooks such as inode_permission apply to all
file operations (read, write, execute), ensuring consistent policy coverage
beyond simple syscall interception.

« Context-aware policies: Enforcement can depend on the full kernel
context, process identity, credentials, and existing LSM labels (e.g.,
SELinux), rather than on a single intercepted event.

o Kernel integration: Because decisions remain kernel-resident and are
made atomically at hook points, BPF LSM preserves the speed, deter-
minism, and security properties expected of traditional LSM enforcement
while providing enhanced programmability.

Naturally, this flexibility involves tradeoffs. Expanding programmability
increases potential attack surfaces, and runtime loading, verification, and
dynamic eBPF program execution introduces performance and complexity
overhead compared to carefully tuned static modules. Nevertheless, BPF
LSM represents a pragmatic middle ground: it retains kernel enforcement
semantics of LSM while enabling rapid policy evolution and experimentation.

Writing BPF LSM Programs

Prior to developing or attaching BPF LSM programs, verifying kernel support
and feature enablement becomes essential. This verification involves checking
the kernel configuration to confirm that BPF LSM support was compiled
into the kernel, typically indicated by the CONFIG_BPF_LSM=y setting in the
kernel configuration file. Additionally, administrators must verify that BPF
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LSM appears in the active LSM list within the /sys/kernel/security/lsm
file, which displays currently enabled security modules.

When BPF LSM does not appear in the active security modules list, manual
activation becomes necessary through kernel command line modification. For
Ubuntu systems, this process involves editing the GRand Unified Bootloader
(GRUB) configuration file /etc/default/grub to incorporate BPF LSM into
the LSM parameter list alongside existing modules.

Multiple approaches exist for BPF program development, encompassing
C with libbpf, higher-level languages such as Go with eBPF bindings, or
direct BPF assembly utilization. Throughout this thesis, all programs employ
C using the libbpf library, which delivers userspace assistance for loading,
verifying, and attaching eBPF programs to kernel hooks.

Complete LSM hook definitions reside within the Linux kernel source tree
under the header file 1sm_hooks.h [42]. Comprehensive comments within
that file describe individual hook semantics and intended applications. A
corresponding file, 1sm_hook_defs.h [43], presents hook definitions using the
following format:

LSM_HOOK (<return_type>, <default_value>, <hook name>, args...)

Most hooks return integer values, while others return void (indicating result
ignored). Standard return codes for LSM hooks include:

e 0: Authorization granted.

e ENOMEM: Denial due to memory allocation failure.

e EACCES: Access explicitly denied by security policy.
o EPERM: Operation requires permission not granted.

BPF LSM programs are implemented as specialized eBPF program types,
annotated using the keyword SEC("1sm/<hook>"), where <hook> represents
the targeted LSM hook name (e.g., inode_permission, task_alloc). The
general structure follows:

#include "vmlinux.h"
#include <bpf/bpf_helpers.h>

3 #include <bpf/bpf_tracing.h>

1

5
6

#include <errno.h>

char LICENSE[] SEC("license") = "GPL";
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SEC("1lsm/bpf™")
int BPF_PROG(lsm_bpf, int cmd, union bpf_attr *attr, unsigned
int size, int ret)

{
// ret is the return value from the previous BPF program
or O if it’s the first hook.
if (ret != 0)
return ret;
bpf_printk ("LSM: block bpf() worked");
return -EPERM;
}

Listing 4.3. Example of a BPF LSM program

Within this example, the BPF program intercepts the bpf hook, which triggers
during process invocation of the bpf (2) system call. The program examines
return values from previously attached BPF LSM programs (or 0 for initial
execution) and, when no prior program has denied the operation, logs a
message and returns ~EPERM to block the call.

From userspace perspectives, such programs typically undergo compilation
with clang and kernel loading via 1ibbpf. Attachment occurs through the
helper bpf _program__attach_lsm(), which binds programs to selected hooks.
Links can subsequently be removed using bpf_link _destroy(), ensuring
safe cleanup.

Complete BPF LSM programs typically encompass the following components:

e Program definition: One or multiple functions annotated with
SEC("1lsm/..."), corresponding to LSM hooks.

o Helper functions and maps: Utilized for state storage, counter sharing,
or userspace communication.

o Userspace loader: A compact application that loads BPF object files
into the kernel, attaches programs, and manages lifecycle (using 1ibbpf
or bpftool).

This section has provided an overview of the Linux Security Modules frame-
work, emphasizing its modular design, kernel integration, and the innovative
BPF LSM extension that enables dynamic, programmable security policies.
These techniques are deeply used in the subsequent chapters to implement
advanced security monitoring and enforcement mechanisms.
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Chapter 5

Kernel Security and
Monitoring Tools

The Linux kernel presents powerful yet fragile execution environments where
a single compromise can destroy the entire system. This reality drove devel-
opment of rich security and monitoring mechanism ecosystems protecting
kernel integrity, enforcing policies, and observing runtime behavior.

This chapter examines two technology families: Loadable Kernel Modules
(LKMs) and eBPF-based tools, which represent different kernel security and ob-
servability approaches. LKMs like Linux Kernel Runtime Guard (LKRG) [44]
offer deep kernel integration and can enforce strong invariants, though at
complexity and risk costs. eBPF-based systems such as Tetragon [20] use
safer, more dynamic instrumentation models that minimize kernel exposure
while enabling rich monitoring and enforcement capabilities.

Together, these mechanisms show Linux kernel security evolution: from
static, privileged modules with complete kernel access toward safer, dynamic,
fine-grained instrumentation that eBPF enables. This chapter analyzes these
tools thoroughly, beginning with LKRG as representative kernel module
defense, then examining Tetragon as eBPF-based monitoring and enforcement
system.

5.1 Loadable Kernel Modules and LKRG

Loadable Kernel Modules (LKMs) represent Linux’s standard mechanism
for adding or removing kernel functionality during runtime. LKMs are
binary objects linked against running kernels that can register new device
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drivers, filesystem code, networking features, or security and observability
logic. Userspace tools like insmod, modprobe and rmmod typically insert and
remove modules, which interact with kernels through well-defined module
APIs and exported symbols.

Security and monitoring perspectives reveal several attractive LKM prop-
erties. These modules provide complete kernel context by executing in kernel
space, which enables kernel state observation and manipulation with minimal
mediation. LKMs also offer extensive Application Programming Interface
(API) surfaces through their ability to register hooks, intercept kernel events,
and export user space interfaces via procfs, sysfs, character devices, netlink,
and other mechanisms. Additionally, their flexibility and performance advan-
tages stem from in-kernel implementations that avoid user/kernel transitions
for many operations, thereby enabling low-latency monitoring and rapid
enforcement capabilities.

However, LKMs also create significant risks and operational burdens that
must be carefully considered. These modules present stability and compati-
bility challenges because they must match kernel ABI (Application Binary
Interface) and data layout expectations; buggy or mismatched modules can
crash systems or cause subtle corruption that may be difficult to detect. The
security surface expands considerably since modules run with complete kernel
privileges, meaning vulnerabilities in module code may prove as damaging
as core kernel bugs. Research by Haizhi Xu et al. demonstrated this risk by
showing that malicious or buggy LKMs can compromise system integrity by
executing exploit code in kernel space [45].

Deployment complexity adds another layer of difficulty, as shipping, signing,
and maintaining modules across kernel upgrades demands careful operational
processes including module signing, distribution, and extensive testing. Fur-
thermore, the similarities between legitimate LKMs and rootkit behavior
create trust issues, since malicious rootkits frequently use LKMs for persis-
tence and stealth. This similarity means that deploying third-party modules
often requires additional trust and verification steps that can complicate
system administration.

Modern deployments balance in-kernel capability needs with safer alterna-
tives because of these trade-offs. Nevertheless, LKMs remain essential where
direct kernel internal access or maximum performance is required. Complex
device drivers, some high-assurance monitoring solutions, and specialized
security primitives still depend on the deep kernel integration that only LKMs
can provide, making them an indispensable part of the Linux kernel ecosystem
despite their inherent risks.
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5.1.1 Linux Kernel Runtime Guard (LKRG)

Linux Kernel Runtime Guard (LKRG) [44] represents a loadable kernel module
developed by Openwall project that performs runtime integrity checking of
Linux kernels and security violation detection. Unlike traditional intrusion
detection systems operating in user space, LKRG resides within kernels
themselves and continuously monitors critical kernel object and control flow
integrity. Its main goal involves detecting kernel exploits and rootkits real-
time and, depending on configuration, either logging incidents or taking
immediate countermeasures.

LKRG’s architecture comprises several interconnected building blocks
that work together to provide comprehensive kernel protection. The core
component is an integrity verification engine that computes kernel code and
critical data structure checksums at load time, continuously verifying them
during operation. This engine protects kernel .text and .rodata regions
including syscall tables, procedures and functions, and exported symbols,
while also monitoring dynamically loaded modules and their internal structure
order, plus global system variables that represent critical protected objects.

Beyond static integrity checking, LKRG incorporates sophisticated exploit
detection mechanisms that monitor kernel runtime state to identify privilege
escalation indicators, hidden processes, or kernel credential and task structure
tampering. These mechanisms work in conjunction with a configurable
enforcement layer that responds to detected anomalies through various actions:
logging only, blocking offending actions, killing compromised processes, or
triggering kernel panics. This flexibility allows administrators to balance
availability and security requirements according to their specific operational
needs.

To ensure its own survival against sophisticated attacks, LKRG implements
comprehensive self-protection measures that resist tampering attempts. These
protections include shielding its code from being unloaded, restricting write
access to its memory regions, and validating its own control flow to prevent
attackers from disabling or corrupting the monitoring system itself. This
multi-layered approach creates a robust defense mechanism that operates
entirely within the kernel space while maintaining continuous vigilance against
various forms of compromise.

Runtime Flow

Typical LKRG operation proceeds as follows:
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1. Module Initialization: During module_init, LKRG sets up internal
data structures, computes baseline kernel code and module hashes, and
registers its periodic checker.

2. Monitoring: LKRG operates using both event-driven and periodic
mechanisms:

o Periodic integrity scans verify kernel text and loaded modules remain
unchanged.

o Runtime hooks monitor kernel events like process credential changes,
module loading, or suspicious control flow modifications.

3. Detection: Whenever mismatches or suspicious activity appear (e.g.,
altered kernel text, hidden modules, unexpected privilege escalation),
LKRG flags them as potential compromises.

4. Reaction: Depending on configuration, LKRG logs events, terminates
offending processes, or in high-assurance deployments, panics kernels to
halt further exploitation.

5. Cleanup: On module_exit, LKRG unregisters its checks and frees
memory; however, it may be configured preventing unloading entirely to
ensure continuous protection.

Use Cases and Limitations

LKRG’s primary goal involves detecting kernel exploitation attempts by mon-
itoring corruption signs in critical kernel data and execution state. It observes
both processes and kernel attributes identifying patterns typically correspond-
ing to exploitation or privilege escalation. The system demonstrates particular
effectiveness in detecting illegal privilege escalation attempts, including efforts
to swap tokens or pointers, unauthorized commit creds() invocations, or
tampering with cred structures that could grant unauthorized access.
Beyond privilege escalation, LKRG excels at identifying sandbox and con-
tainer escape attempts through detection of seccomp configuration or rule
corruption, namespace isolation flaw exploitation, or container breakout at-
tempts in environments like Docker or Kubernetes. The system also monitors
CPU state manipulation, catching unauthorized changes to critical control
registers or flags such as Supervisor Mode Execution Protection (SMEP) and
Supervisor Mode Access Prevention (SMAP), that attackers commonly abuse
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to disable hardware-enforced protections. Additionally, LKRG maintains vigi-
lance over kernel code and module integrity, detecting modifications to kernel
text regions or loaded modules that break established integrity baselines.

Perhaps most importantly, LKRG identifies control-flow violations where
kernel code executes from non-.text pages, dynamically generated executable
memory, or even user-space pages. These patterns typically indicate sophisti-
cated attacks like Return-Oriented Programming (ROP) or stack-pivoting
aimed at bypassing SMEP protections.

While LKRG raises the bar significantly for attackers, it has inherent
limitations and isn’t immune to bypass attempts. Operating within the same
trust boundary as kernels themselves, sophisticated adversaries can attempt
evading detection or disabling LKRG directly. Attackers might modify kernel
metadata not currently protected by LKRG, or race against its periodic
checks to avoid detection windows. More advanced approaches could target
LKRG's internal synchronization or data structures to corrupt its monitoring
database or disable active checks entirely. Some attackers leverage kernel
vulnerabilities to attack user space directly without triggering the invariants
LKRG monitors.

These limitations highlight that LKRG shouldn’t be considered complete
defense in isolation. Rather, it proves most effective when deployed as part of
layered security strategies, complementing other kernel hardening mechanisms
and user-space monitoring tools. This approach creates multiple defensive
barriers that significantly increase the complexity and resources required for
successful system compromise.

57



Kernel Security and Monitoring Tools

5.2 Tetragon

Tetragon [20] represents an open-source runtime security observability and
enforcement platform constructed on top of eBPF. Developed by Isovalent
within the Cilium ecosystem, it provides fine-grained, low-overhead visibility
into process execution, file access, and network activity without requiring
kernel modules. This architecture supports both monitoring and active secu-
rity policy enforcement directly inside kernels, making Tetragon especially
suited for cloud-native and containerized environments. A notable charac-
teristic involves its Kubernetes-awareness: Tetragon natively understands
workloads through Kubernetes namespaces, pods, and identities, enabling
policy enforcement at individual container and service granularity.

Embedding filtering, policy enforcement, and event processing directly
within kernels through eBPF programs allows Tetragon to drastically reduce
overhead typically caused by frequent kernel /user space transitions. Rather
than forwarding all kernel events indiscriminately, it uses fine-grained in-
kernel filters based on various parameters including file paths, socket addresses,
process names, namespaces, and capabilities. This selective forwarding ensures
only relevant events reach user-space agents for further processing.

Unlike conventional syscall-based tracing that can suffer from argument
inconsistencies and manipulation, Tetragon hooks into kernel functions and
data structures that user processes cannot easily alter. This deep kernel in-
strumentation bypasses common pitfalls associated with user/kernel boundary
interactions, including incorrect argument capture or page faults.

5.2.1 Policy Architecture and Specification

The TracingPolicy abstraction serves as Tetragon’s primary interface for
defining monitoring and enforcement behaviors. Each policy encapsulates
three fundamental components working together:

e hook points that define kernel attachment locations;
 selectors that implement in-kernel filtering logic;
e optional matchActions that specify enforcement responses.

This architecture’s flexibility allows users to craft highly specific policies
tailored to particular threat models while maintaining system performance.

Hook points determine where eBPF programs attach within kernel ex-
ecution flows, and several options exist depending on specific monitoring

o8



5.2 — Tetragon

requirements and portability needs. When maximum flexibility is needed,
kprobes provide dynamic instrumentation capabilities for arbitrary kernel
functions, though this flexibility comes at the cost of kernel version dependency.
For more stable implementations, tracepoints offer a better alternative since
they represent statically defined instrumentation interfaces that maintain
stability across kernel versions, making them the preferred choice for portable
policy implementations. Monitoring extends beyond kernel space through
uprobes, which bring observability capabilities to functions in user-space bi-
naries or libraries, thereby enabling comprehensive observability across entire
system stacks. Additionally, LSM BPF Programs create another important
avenue by enabling hooks on Linux Security Module interfaces, which proves
essential for implementing system-wide Mandatory Access Control and audit
policies.

Once hook points are determined, selector mechanisms implement core
filtering logic determining event relevance and policy matching. Selectors
operate on function arguments, process metadata, file system objects, network
endpoints, and capability sets, among other kernel data structures. Eval-
uation logic supports boolean expressions, enabling filtering scenarios that
reduce false positives while maintaining detection efficacy. Critically, selector
evaluation occurs entirely within kernel space, ensuring filtering decisions get
made with minimal performance impact. As a drawback, Tetragon’s filtering
capabilities face inherent constraints from eBPF verifier safety restrictions,
preventing operations like pointer dereference or direct access to struct mem-
bers passed as function arguments. These limitations will be demonstrated
practically in the second use case.

When selectors match specified criteria, Tetragon can execute matchActions,
enabling both observational and enforcement capabilities. The action frame-
work supports comprehensive response ranges operating either directly within
kernels or through coordinated user-space operations. Process termination
actions include the Sigkill action, which synchronously terminates offending
processes from within kernels, and the more flexible Signal action allowing
arbitrary signal sending to processes. The Override action provides function-
level enforcement by modifying intercepted call return values, effectively
preventing original operations from completing while returning specified error
codes to callers.

The enforcement model operates on synchronous policy evaluation and
response principles. When monitored kernel functions get invoked, attached
eBPF programs evaluate configured selectors against current execution con-
texts. Upon detecting matches, specified actions execute immediately within
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the same kernel contexts, ensuring policy violations get addressed with mini-
mal latency.

To illustrate practical application of these concepts, consider a policy
designed to monitor and potentially restrict eBPF program loading operations:

apiVersion: cilium .io/vlalphal
kind: TracingPolicy

3 metadata:

©o 0o ~ o

V] — (=]

WO N NN NN NN NN R e
=] NeJ Q0 -~ =) t I w o

name: "monitor -bpf-syscall"

5 spec:
kprobes:
- call: "sys_bpf"
message: "Generic sys_bpf call with command

BPF_PROG_LOAD"
syscall: true

args:
- index: 0

type: "int"
- index: 1

type: "bpf_attr"
selectors:

- matchArgs:

- index: 0
operator: "Equal"
values:

U # BPF_PROG_LOAD command
matchCapabilities:

- type: "Effective"
operator: "NotIn"
values:

"CAP_SYS_ADMIN"
"CAP_BPF"
matchActions:

- action: "Override"
argError: —1

- action: "Sigkill"
Listing 5.1. Tetragon TracingPolicy Example

This policy demonstrates several key concepts in Tetragon’s design philosophy.
The hook point attaches to the sys_bpf kernel function, which handles all
eBPF-related system calls. Selector logic filters for program loading operations
(command value equals to 5) while examining process effective capability
sets. When processes attempt loading eBPF programs without appropriate
capabilities (CAP__SYS ADMIN or CAP_ BPF), the policy triggers both
enforcement mechanisms: overriding system call return values with error
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codes and delivering SIGKILL signals to terminate offending processes.

This approach’s efficiency lies in completely eliminating user-space involve-
ment in enforcement decisions. eBPF programs evaluate policy conditions,
make enforcement decisions, and apply configured actions entirely within
kernel execution contexts.
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Chapter 6

Analysis, Exploitation and
Hardening of eBPF
Vulnerabilities

This chapter presents the fundamental research conducted for this thesis,
encompassing the examination of two distinct scenarios centered on severe
security flaws, the exploitation of these weaknesses, and the deployment of
security reinforcement methods to address them.

The security flaws chosen for this examination have been recognized as
possessing elevated CVSS score [46], demonstrating substantial potential
consequences for system security. Specifically, two of these have been selected
for comprehensive examination, from which two use cases were developed.
The initial scenario concentrates on an elevation of privileges vulnerability
(CVE-2022-23222) that enables non-privileged users to obtain root permissions
by leveraging defects in the eBPF verifier’s pointer arithmetic management.
The subsequent use case investigates two connected vulnerabilities (CVE-
2024-56614 and CVE-2024-56615) that result in kernel crashes and service
disruption conditions through out-of-bounds memory operations in particular
eBPF map configurations.

Following the examination of these vulnerabilities’ characteristics and com-
prehending the complete context surrounding them, the investigation proceeds
with discovering publicly available and open-source exploitation methodolo-
gies. For both scenarios, public demonstration exploits exist; however, certain
modifications were implemented to the original implementations to provide
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enhanced capabilities and superior evidence of the exploitation process. Ad-
ditionally, thorough investigation is necessary to completely comprehend the
exploitation methodologies and understand the restrictions and limitations of
the exploits, while also establishing the foundation for developing mitigation
approaches. Subsequently, a controlled and secure testing environment is
established to evaluate and reproduce the exploits. This requires construct-
ing virtual machines with particular Linux distributions and kernel releases
known to be vulnerable to the defect. The testing environment is meticulously
configured to ensure seamless exploit execution while enabling comprehensive
monitoring and examination of system behavior throughout and following
the exploitation process. This configuration permits examination of system
calls, kernel source analysis, and runtime debugging to obtain insights into
the vulnerabilities and their exploitation methods.

Ultimately, for each scenario, an hardening plan is recommended. This
begins with the patch that resolves the particular vulnerability, then extends
further by suggesting supplementary mitigation approaches to strengthen
the system’s overall security posture. This encompasses utilizing available
security solutions, including LKRG (Linux Kernel Runtime Guard) for the
initial scenario, and Tetragon for the subsequent scenario. In addition, the
thesis introduces custom BPF LSM programs as an alternative enforcement
layer. These policies complement existing tools, provide gains in precision
and timeliness, and at the same time involve clear limitations and scope
constraints.

The recommended solutions were designed to be as broadly applicable as
feasible; nevertheless, identifying universal solutions applicable to any Linux
distribution and kernel release that can address various vulnerabilities remains
extremely challenging.

6.1 Use Case 1 — Privilege Escalation

6.1.1 Vulnerability Description

The first use case is founded on CVE-2022-23222 [47], representing an input
validation flaw within the Linux kernel’s eBPF verifier that enables unsafe
pointer arithmetic operations on particular OR_NULL pointer categories.

As detailed in Section 2.2.8, the verifier creates two execution branches
when an OR_NULL pointer undergoes NULL validation. In the NULL branch,
pointer arithmetic operations should be explicitly forbidden since no valid
pointer exists.
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The vulnerability exploits an incomplete enforcement of this restriction
in certain kernel versions. When an OR_NULL pointer type is in its NULL
branch, the verifier incorrectly permits arithmetic operations that should
be blocked entirely. This creates a type confusion scenario: the verifier’s
internal tracking believes it is managing an OR_NULL pointer type progressing
through standard null-check validation logic, but the actual register content
is a scalar zero value that can be manipulated through operations intended
exclusively for pointer arithmetic. This discrepancy allows an attacker to
construct arbitrary scalar values within a register that the verifier incorrectly
assumes contains only NULL or bounded pointer offsets.

By exploiting this primitive, an attacker can craft arbitrary memory
addresses, enabling out-of-bounds kernel memory read and write capabil-
ities. These capabilities can then be leveraged to modify critical kernel data
structures, including process credentials within the task_struct, ultimately
achieving privilege escalation to root.

The security flaw obtained a CVSS v3.1 base rating of 7.8, classified as
HIGH severity, and impacts the following Linux kernel releases:

« from 5.8.0 (inclusive) through 5.15.37 (exclusive)

o from 5.16.0 (inclusive) through 5.16.11 (exclusive)

6.1.2 Exploitation Process

The exploitation approach leverages a maliciously designed eBPF program
that misleads the verifier into accepting a manipulated register value as a
secure register. The procedural steps are outlined as follows:

1. The helper function bpf_ringbuf reserve is employed to create a
PTR_TO_MEM OR_NULL stored within a register, designated as REG_O,
whose actual runtime value equals NULL.

2. The value contained in REG_O is transferred to an additional register,
named EXP_REG.

3. An offset of z — 1, where z represents the adversary’s target arbitrary
value, is added to EXP_REG. Due to the vulnerability, the verifier permits
this arithmetic operation and continues to incorrectly track both REG_0
and EXP_REG as containing equal values, despite EXP_REG now holding
the scalar x — 1.
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4. A conditional branch evaluates whether REG_0 equals NULL. Within
the branch where REG_0 equals NULL, the verifier incorrectly considers
EXP_REG as NULL as well, despite containing the scalar x — 1. In the
alternative branch, the program is configured to terminate.

5. Subsequently, 1 is added to EXP_REG, yielding EXP_REG containing the
arbitrary value x, despite the verifier’s incorrect presumption that it
maintains a secure pointer.

Following this manipulation, the verifier is deceived into permitting EXP_REG
to be utilized for arbitrary kernel memory operations. However, direct pointer
arithmetic using the invalid register would still be blocked by ALU sanitation.
As explained in Section 2.2.8, when the verifier detects arithmetic operations
between a pointer and a scalar register whose value is known, it patches the
instruction to replace the scalar register with an immediate value, rendering
the invalid register useless.

To bypass ALU sanitation, the adversary must leverage eBPF helper
functions that accept the invalid register as a size or length parameter rather
than using it in direct pointer arithmetic. These helpers have runtime-
determined behavior opaque to static analysis: the verifier cannot predict
their execution paths or apply ALU sanitation because no direct pointer
arithmetic operation appears in the bytecode. Instead, the invalid register is
passed as a function argument, and the memory operations occur within the
helper’s internal implementation.

However, the available helper functions are constrained by the eBPF
program type being loaded. Each program type supports a distinct sub-
set of helpers, and this selection is further restricted by capability requirements.
When unprivileged eBPF is enabled (kernel.unprivileged_bpf_disabled=0),
only BPF_PROG_TYPE SOCKET FILTER and BPF_PROG_TYPE CGROUP_SKB pro-
grams can be loaded by non-privileged users. The exploit targets
BPF_PROG_TYPE SOCKET FILTER, which provides access to these two specific
helpers capable of achieving the required out-of-bounds memory operations
while circumventing the sanitation mechanism:

e bpf_skb_load_bytes, which retrieves data from a socket buffer into
memory. By providing EXP_REG as the length parameter, the program
instructs the helper to copy an attacker-controlled number of bytes. Since
this occurs within the helper’s internal implementation and not through
visible pointer arithmetic in the BPF program, ALU sanitation cannot
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intervene. This enables out-of-bounds writes by copying more data than
the allocated buffer can contain.

e bpf_ringbuf output, which transfers data to a ring buffer accessible
from user space. Utilizing EXP_REG as the size parameter instructs the
helper to read an attacker-controlled amount of data. Similarly, because
the actual memory read operation happens inside the helper function’s
implementation, ALU sanitation mechanisms designed to validate pointer
arithmetic at the BPF instruction level are completely bypassed. This
achieves out-of-bounds reads by extracting data beyond the intended
boundaries.

At this stage, the exploit has achieved out-of-bounds read and write capa-
bilities. However, to gain fully arbitrary kernel memory read and write, the
adversary must identify a suitable memory structure whose manipulation can
elevate these primitives into unrestricted kernel access. BPF maps and their
corresponding bpf map structure serve as an ideal target for this purpose,
as they contain memory pointers and internal fields that, when strategically
modified, enable broader kernel memory access.

Specifically, by overwriting the btf pointer member and leveraging the
helper bpf_map_get_btf_id (which internally calls the bpf syscall with the
BPF_0OBJ_GET_INFO_BY_ID command), the adversary can retrieve arbitrary
kernel memory locations, establishing the arbitrary read primitive.

Achieving arbitrary write, however, requires a more sophisticated approach.
The adversary cannot directly invoke kernel functions with arbitrary parame-
ters, as the syscall interface enforces strict validation. The solution exploits
map_get_next_key, a function that writes key values to a user-supplied buffer
pointer as part of its normal operation. To redirect this write capability to
arbitrary kernel addresses, the adversary hijacks the map_ops function pointer
table within the bpf_map structure. Using the arbitrary read primitive,
the attacker duplicates this table, replaces the map_push_elem pointer with
map_get_next_key, and updates the original map_ops pointer to reference the
corrupted table. When bpf _map_update_elem is subsequently invoked from
user space, the kernel executes map_get _next_key with attacker-controlled
parameters, enabling 32-bit writes to arbitrary writable kernel memory ad-
dresses.

With both arbitrary read and write primitives established, the final priv-
ilege escalation step becomes straightforward. The adversary locates the
task_struct of the executing process using kernel symbols, retrieves the
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cred pointer to the credentials structure, and overwrites essential fields in-
cluding uid, gid, euid, and egid with zero. This grants the process root
privileges, completing the privilege escalation attack.

The proof of concept exploit implementation is accessible on GitHub [48]
and is specifically validated with appropriate symbols for Ubuntu 20.04 with
kernel version 5.13.0-27-generic. The exploit implements other techniques
to bypass additional checks and kernel protections, such as freelist random-
ization, but they are out of scope for this discussion. The complete analysis
can be found in the original technical report [49].

Modifications were implemented to the original implementation to provide
enhanced functionalities, including:

o Complete privilege escalation attack, configuring all credential 1Ds
(uid, gid, euid, egid, suid, sgid, fsuid, fsgid) to zero.

« Privilege restoration attack, which involves configuring only the
saved IDs (suid, sgid) to zero. This approach is regarded as stealthy,
since the user maintains the appearance of a normal non-privileged user,
but possesses the ability to obtain full root privileges by executing the
seteuid (0) system call.

» File access attack, configuring file system IDs (fsuid, fsgid) to zero,
providing access to root-protected files including /etc/shadow or similar.

« Process termination attack, configuring effective IDs (euid, egid) to
zero, enabling termination of any process, including those owned by root.

To properly execute the exploit, CAP_BPF is necessary, unless unprivileged
BPF is enabled within the kernel configuration. In the Appendix A.1, the
execution of the exploit is demonstrated with screenshots, showcasing the
successful privilege escalation to root.

6.1.3 Hardening plan

Various defensive approaches are recommended to address the security flaw
exploited in CVE-2022-23222.

Primarily, it remains essential to ensure that the system operates with
a kernel release that has been updated to resolve this particular security
issue. The remediation for CVE-2022-23222 was published in kernel releases
5.15.37 and 5.16.11, therefore upgrading to a minimum of these releases is
fundamental. Alternatively, when kernel upgrading proves unfeasible, it is
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advisable to apply the remediation manually and subsequently recompile the
kernel.

An additional effective defensive approach involves restricting eBPF pro-
gram utilization to authorized users exclusively. This objective can be accom-
plished by constraining the capabilities necessary to load eBPF programs to a
designated group of users, including system administrators. This configuration
can be achieved by configuring the kernel.unprivileged bpf disabled
sysctl parameter to 1.

When the previously mentioned measures prove impractical, it becomes
necessary to deploy supplementary security mechanisms. One such mechanism
involves utilizing LKRG (Linux Kernel Runtime Guard), which provides
runtime integrity verification for the kernel. It can identify and prevent
numerous attack types, and specifically, LKRG monitors modifications to
the credential structure and can identify unauthorized alterations that might
indicate a privilege escalation attempt, preventing the exploit’s success.

An additional compelling approach to address the security flaw, represent-
ing the central contribution of this thesis, involves implementing a BPF LSM
program. This program utilizes the eBPF infrastructure to enforce detailed
security policies directly via the Linux Security Module (LSM) framework.
By implementing this approach, it enables the operating system to restrict
or mediate the loading and execution of eBPF programs according to cus-
tomizable policies, thereby addressing attack categories similar to the one
exploited in CVE-2022-23222.

BPF LSM Program Implementation

The deployed BPF LSM program delivers a multi-layered security mechanism
utilizing eBPF to enforce comprehensive policy controls within the Linux
Security Module framework. The fundamental concept behind its architecture
involves monitoring and controlling exclusively those processes that invoke
BPF syscalls, as these represent the processes relevant to the security flaw
exploited in CVE-2022-23222.

Fundamentally, an eBPF map named tracked_processes is utilized to
maintain a snapshot of the initial credentials of each monitored process. This
map accommodates up to 1024 entries, where each entry encompasses multiple
user and group identifiers including UID, EUID, GID, FSUID, FSGID, SUID,
and SGID. These data are retrieved directly from the kernel task’s credential
structure utilizing CO-RE (Compile Once - Run Everywhere) safe operations,
enabling the program to function reliably across different kernel versions
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without recompilation.

The selection of LSM hooks represents the central element of the program’s
effectiveness and is founded on the Linux kernel’s extensive hook infrastructure,
as specified in 1sm_hooks.h. These hooks deliver interception points at critical
kernel security decision junctures, enabling the BPF LSM program to enforce
its policy in real time.

The initial hook, 1sm/bpf, functions as the program’s entry point: it
intercepts every BPF syscall issued by any process. When activated, this
hook verifies if the issuing process is already monitored. If not, it retrieves the
current credentials from the kernel’s task structure utilizing bpf _core_read()
and stores them in the tracked_processes map. This ensures that every
process utilizing eBPF features is monitored from the moment it interacts
with the BPF subsystem.

Subsequently, the 1sm/task_alloc hook intercepts process creation events.
When the kernel allocates a new task (i.e., a new process), this hook verifies
if the parent process is monitored. If so, it duplicates the parent’s credential
snapshot to the child process, ensuring that the monitoring state is inherited
across typical process control flows including fork() or clone(). This
mechanism prevents adversaries from bypassing controls by spawning new
processes.

To identify unauthorized modifications in process privileges, the
1sm/cred_prepare hook is employed. This hook executes whenever the kernel
prepares new credentials for a process, commonly during system calls including
setuid() or setgid(), or during execve transitions. The program retrieves
again the current credentials from the kernel and compares them against
the stored baseline for the monitored process. Any discrepancy indicates a
potential privilege escalation attempt. In such instances, the operation is
logged and blocked immediately by returning -EPERM, halting the escalation
early.

Additional protection is delivered by the 1sm/inode_permission hook,
which is invoked before accessing an inode in the filesystem. This hook enables
verification that the monitored process has not gained unauthorized privileges
allowing it to perform file operations it was not permitted initially. It retrieves
the current process credentials and compares them against the stored snapshot,
denying permission if a mismatch is identified. This ensures that monitored
processes cannot exploit privilege escalations to access sensitive filesystem
resources.

The 1sm/task_kill hook monitors signaling operations where one process
sends a signal to another. Sending signals to another process generally requires
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appropriate privileges, so the hook verifies whether a monitored BPF process
attempting to send a signal maintains the original authorized credentials.
Any unauthorized modification results in denial of the signal send operation.
This prevents misuse of signaling to interfere with other processes or escalate
privileges.

Finally, the 1sm/task_free hook manages cleanup by removing entries
from the tracked_processes map when a process terminates. This prevents
resource leaks and maintains the monitoring map consistent with the current
active process set.

In summary, this BPF LSM program implements a fail-secure design layered
deeply into the kernel’s security infrastructure. By selectively monitoring only
BPF-related processes, it minimizes performance overhead while ensuring
that any attempt to illegitimately modify credentials or misuse privileges is
promptly identified and blocked. The pervasive logging via bpf_printk()
facilitates auditing and forensic analysis of security-relevant events. This
approach effectively addresses exploits similar to CVE-2022-23222, adding a
strong, kernel-integrated defense layer to protect the system.

To validate the BPF LSM program, a test environment was established
using a virtual machine configured with Ubuntu 20.04 and kernel version
5.13.0-27-generic, which is vulnerable to CVE-2022-23222. The kernel
was compiled with CONFIG_BPF_LSM enabled, and the bpf LSM was activated
by adding it to the 1sm kernel parameter at boot time.

The BPF LSM program was loaded using a custom C loader that invokes the
bpf syscall to load the program and attach it to the appropriate LSM hooks.
Upon executing the exploit, the BPF LSM program successfully detected and
blocked the privilege escalation attempt in real time. The enforcement action
was confirmed through log messages generated by bpf_printk().

The complete C implementation of both the BPF LSM program and its
loader, along with screenshots demonstrating the exploit being blocked and
the corresponding kernel log entries, are provided in Appendix A.2.

6.1.4 Comparison and Evaluation of Mitigation Strate-
gies

While upgrading the kernel to a patched release represents the most straight-
forward and effective solution to address CVE-2022-23222, it may not always
be practical due to compatibility or stability concerns. In such instances,
implementing the patch manually and recompiling the kernel represents a
viable alternative, though it requires technical expertise, maintainability, and
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sometimes downtime that may not be acceptable in production environments.
Also disabling unprivileged BPF utilization represents a strong mitigation, but
it can restrict the functionality of applications relying on eBPF, potentially
impacting performance and features.

To provide supplementary security layers, runtime integrity verification
tools including LKRG can be employed. LKRG attempts to identify and
promptly respond to unauthorized modifications in the running Linux kernel
and process credentials. Specifically, while it performs post-detection for
kernel integrity violations (i.e., reacting after unauthorized changes occur),
LKRG acts in a proactive manner when it comes to process credentials: it
attempts to identify exploits and intervene before the kernel grants access
based on unauthorized credentials (such as opening files).

Empirical studies, including the Master’s Thesis of Juho Junnila [50], iden-
tify LKRG as the most effective rootkit detector among solutions evaluated.
LKRG defeats many pre-existing exploits of Linux kernel vulnerabilities, and
will likely defeat many future exploits (including of yet unknown vulnerabili-
ties) that do not specifically attempt to bypass LKRG. While LKRG can be
bypassed by design, such bypasses tend to require more complicated and less
reliable exploits.

An additional relevant property of LKRG involves providing security
through diversity, much like running an uncommon Operating System (OS)
kernel would, yet without the usability drawbacks of actually running a less-
supported operating system. Nevertheless, if LKRG becomes popular and
begins to be deliberately bypassed by adversaries, developers may introduce
new versions as a means both to increase diversity and to sustain the project,
offering specialized features and potentially distribution-specific builds.

However, LKRG is not free from constraints. Like any additional kernel
component, it may introduce bugs or vulnerabilities of its own. Being an
out-of-tree module, it inevitably carries some risk of incompatibility with
particular kernel builds. Although the developers test LKRG against a
wide range of kernel releases, changes in future versions may require extra
maintenance effort. This creates a trade-off: administrators need to weigh
the benefit of additional protection against the potential for instability and
higher operational overhead, especially in contexts where live patching or
scheduled reboots are challenging. Finally, as an experimental project, LKRG
still suffers from occasional false positives, particularly on kernel versions or
configurations not explicitly targeted during testing.

As a complementary approach, BPF LSM programs deliver a highly flexible
framework for implementing security policies within the kernel. Leveraging
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eBPF, these modules enable administrators to monitor and control fine-grained
operations in a proactive fashion, intervening before the corresponding actions
are executed. The CO-RE (Compile Once — Run Everywhere) approach further
minimizes maintenance complexity by enabling the same code to operate
across multiple kernel versions without modification. Since eBPF represents
an established component of the Linux kernel, its long-term availability is
practically guaranteed, making this approach sustainable.

However, the effectiveness of BPF LSM depends critically on the complete-
ness and frequent updating of the underlying policy. For instance, the current
implementation effectively blocks privilege escalation attempts but still fails
to prevent socket creation or the loading of additional eBPF programs unless
explicitly addressed by new policy hooks. Moreover, BPF LSM requires a
kernel compiled with CONFIG_BPF_LSM support and the activation of the bpf
option in the 1sm kernel parameter at boot time. Availability is also limited to
Linux 5.7 and newer. In this particular scenario, the affected kernel versions
(all greater than 5.8) are compatible with BPF LSM, yet this requirement
should be considered for the mitigation of future vulnerabilities.

In summary, LKRG and BPF LSM represent two complementary ap-
proaches: while LKRG offers broad and generic protection against entire
categories of exploits, even unforeseen ones, at the cost of potential instability
and compatibility issues, BPF LSM delivers a highly customizable and policy-
based mechanism that enables fine-grained control but whose effectiveness
ultimately depends on the completeness and continuous maintenance of the
defined policies. A combined deployment of both solutions can therefore de-
liver a more comprehensive defense strategy, achieving the principle of security
in depth by layering generic exploit mitigation with tailored, policy-driven
protections.
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6.2 Use Case 2 — Kernel Panic and Denial of
Service

6.2.1 Vulnerability Description

The second case study focuses on two distinct security flaws: CVE-2024-56614
and CVE-2024-56615. These affect AF XDP (Address Family eXpress Data
Path) socket implementation alongside DEVMAP (device maps) functionality.

Specifically, the xsk_map_delete_elem function within AF_XDP socket
maps (XSK maps) suffers from CVE-2024-56614, while CVE-2024-56615 tar-
gets the dev_map_delete_elem function in device maps. Identical root causes
plague both vulnerabilities: implicit type conversion problems occur when
user-controlled signed integer indices face comparison with unsigned integers
representing maximum map_entries. Negative indices get misinterpreted as
large positive values through this flaw, causing out-of-bounds memory access
that potentially triggers denial of service and kernel panics.

Both flaws earned CVSS v3.1 base scores of 7.8 (HIGH severity classifica-
tion), yet they impact different Linux kernel versions:

o CVE-2024-56614:

— From (including) 4.18 up to (excluding) 5.15.174
5.16 up to (excluding) 6.1.120

6.2 up to (excluding) 6.6.66

(

— From (including

— From (including
(

)
)
)
— From (including) 6.7 up to (excluding) 6.12.5

« CVE-2024-56615:
— From (including) 4.14 up to (excluding) 5.4.287
— From (including) 5.5 up to (excluding) 5.10.231
— From (including) 5.11 up to (excluding) 5.15.174

( )
( )
( )
— From (including) 5.16 up to (excluding) 6.1.120
— From (including) 6.2 up to (excluding) 6.6.66

( )

— From (including) 6.7 up to (excluding) 6.12.5
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6.2.2 Exploitation Process

The exploitation of CVE-2024-56614 and CVE-2024-56615 involves crafting
eBPF programs that interact with the vulnerable map types (XSK maps
for CVE-2024-56614 and DEVMAPs for CVE-2024-56615) in a way that
triggers the out-of-bounds write condition. Both flawed implementations
of xsk_map_delete_elem and dev_map_delete_elem share the same root
cause, which can be illustrated through the vulnerable code snippet for the
DEVMAP implementation:

1 static int dev_map_delete_elem(struct bpf_map *map, void x*key

)
2 {
3 struct bpf_dtab *dtab = container_of (map, struct bpf_dtab

, map) ;
struct bpf_dtab_netdev *old_dev;
int k = *(u32 *)key; // Unsigned-to-signed assignment

7 if (k >= map->max_entries) // Vulnerable comparison
8 return -EINVAL;

10 old_dev = unrcu_pointer (xchg(&dtab->netdev_map[k], NULL))

I if (old_dev) {

2 call_rcu(&old_dev->rcu, __dev_map_entry_free);
3 atomic_dec ((atomic_t *)&dtab->items) ;
4 }

return O;

Listing 6.1. Defective dev_map_ delete_elem function, Linux kernel v5.13 [1]

This signed /unsigned integer confusion manifests through multi-stage ex-
ploitation where user-supplied map keys start as 32-bit unsigned integers
(u32 *key), then get assigned to signed integer variable k via int k = *(u32
*)key. Values exceeding 0x80000000 (2,147,483,648) become negative in
the signed k variable due to two’s complement representation. The subse-
quent bounds checking if (k >= map->max_entries) becomes vulnerable
through C language implicit type conversion rules, where signed-to-unsigned
comparison requires promoting signed values to unsigned before compari-
son. Consequently, negative k values convert to large positive values during
comparison, with a k value of -1 becoming OxFFFFFFFF (4,294,967,295)
when promoted, potentially passing or failing bounds checks depending on
max_entries configuration.

Successfully bypassing bounds checking allows negative k values as direct
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array indices in dtab->netdev_map [k], accessing memory locations preceding
the allocated array in kernel memory space. This creates powerful primitives
for arbitrary kernel memory access at predictable negative offsets from map
base addresses, enabling writes to kernel data structures located before map
arrays in memory.

Attackers orchestrate exploitation through carefully sequenced opera-
tions, initially creating DEVMAP or XSK maps with max_entries values
strategically exceeding 0x80000000 to ensure certain negative indices bypass
bounds checking while remaining valid during unsigned comparison phases.
Malicious keys within range [0x80000000, 0x80000000 + (max_entries -
0x80000000)] are selected, which become negative values when assigned
to signed integer k, yet pass unsigned comparisons through integer promo-
tion rules. BPF syscalls with BPF_MAP_DELETE_ELEM commands then trigger
vulnerable delete functions using these carefully constructed keys, with subse-
quent xchg operations accessing memory at negative offsets from map arrays
and modifying critical kernel data structures located in those memory regions.

Publicly available proof-of-concept exploits demonstrate both CVE-2024-
56614 and CVE-2024-56615, proving practical feasibility of triggering out-
of-bounds access conditions [51, 52]. These create XSKMAP/DEVMAP
with max_entries set to 0x80000000 + 2, using malicious key values of
0x80000000 + 1 which, when interpreted as signed integers, translates to
-2147483647, successfully bypassing bounds checking and triggering out-of-
bounds memory access.

Exploitation typically requires CAP_NET_ADMIN capabilities, granting privi-
leges for creating and managing BPF maps related to network devices. This
capability is required instead of CAP_BPF because these types are classified as
networking resources that directly interact with network device structures
(struct net_device) and control packet redirection between interfaces, thus
falling under network administration privileges rather than general BPF
program management.

Despite providing out-of-bounds memory access primitives, practical ex-
ploitation faces significant constraints as attackers cannot directly control
kernel objects residing at negative offsets from map arrays. Reliable exploita-
tion heavily depends on kernel memory layouts, SLAB allocator behavior,
and Address Space Layout Randomization (ASLR) configurations, where
unpredictable kernel memory organization means most exploitation attempts
result in kernel panics rather than controlled modifications. Sophisticated
attackers possessing deep kernel internals knowledge might achieve arbitrary
code execution by targeting specific kernel data structures like credential
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objects or function pointers located in accessible memory regions, though such
exploitation requires extensive reconnaissance and memory layout analysis.
More commonly, after successfully triggering out-of-bounds writes, kernel pan-
ics leading to Denial of Service (DoS) conditions represent the most frequent
outcome, as achieved and tested under kernel version 5.13.0-27 generic.

Another significant limitation is that target systems require at least 18 gi-
gabytes of Random Access Memory (RAM) for creating vulnerable maps with
sufficiently large max_entries values, potentially limiting attack applicability
in resource-constrained environments. In the Appendix B.1, the execution
of the exploit is demonstrated with screenshots, showcasing the successful
privilege escalation to root.

6.2.3 Hardening Plan

Multiple approaches exist for addressing vulnerabilities CVE-2024-56614 and
CVE-2024-56615, each offering different levels of system protection enhance-
ment.

Like the previous case, kernel updates remain the most direct solution.
These particular flaws got patches in versions 5.15.174, 5.4.287, 5.10.231,
6.1.120, 6.6.66, and 6.12.5. Systems should be upgraded to these versions at
minimum. When upgrades aren’t possible, manual patch application with
kernel recompilation works as backup.

Unlike the first use case, restricting eBPF access through the
kernel.unprivileged_bpf_disabled sysctl parameter provides no protec-
tion against these vulnerabilities. This parameter only controls BPF access
for unprivileged users, but both CVE-2024-56614 and CVE-2024-56615 ex-
ploitation requires CAP_NET ADMIN capabilities for creating XSKMAP and
DEVMAP respectively. Since unprivileged bpf_disabled does not restrict
operations performed by users possessing CAP_NET ADMIN, attackers with the
necessary privileges can exploit these vulnerabilities regardless of this setting.

When basic measures prove insufficient, advanced security mechanisms
become necessary. LKRG focuses on kernel structure modification detection
but doesn’t specifically target these CVE types. Tetragon policies offer a
more targeted approach instead. Hook selection matters enormously for
effective vulnerability detection, requiring careful attack surface analysis for
these specific CVEs. The designed policy targets three strategic hook points
providing comprehensive vulnerable code path coverage.

Map allocation functions xsk_map_alloc and dev_map_alloc form the
first hook set. These create XSK and DEVMAP maps respectively and
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represent critical chokepoints since attackers must create vulnerable map
types with specific configurations for exploitation success. Monitoring these
allocation functions logs all XSK and DEVMAP creation events, providing
visibility into potentially vulnerable map type allocations.

dev_map_alloc and xsk_map_alloc selection proves strategically sound
because these functions trigger exclusively during vulnerable map type cre-
ation. This ensures high specificity with minimal false positives. Unlike
generic BPF allocation functions called for various map types, these special-
ized allocators provide precise attack vector targeting.

The third hook attaches to generic sys_bpf system calls, recording ev-
ery BPF_MAP DELETE ELEM command invocation. This hook captures exact
delete element operation execution moments, corresponding to vulnerable
dev_map_delete_elem and xsk_map_delete_elem function entry.

These three hooks form comprehensive monitoring frameworks spanning
complete attack lifecycles from initial map creation through exploitation at-
tempts. Allocation hooks provide early warnings about potentially vulnerable
configurations. Syscall hooks detect actual exploitation attempts. However,
significant filtering capability limitations exist, as documented in the following
section. Consequently, more sophisticated context-aware hardening solutions
become necessary for effectively mitigating these vulnerability risks. BPF
LSM programs represent the preferred approach and core thesis contribution,
providing finer-grained context-sensitive security enforcement.

BPF LSM Program Implementation

The BPF LSM program combines LSM hooks and tracepoints to monitor
and enforce policy on DEVMAP and XSKMAP operations. The base idea of
the program is to track only the vulnerable maps, that is eBPF maps of type
BPF_MAP TYPE XSKMAP or BPF_MAP_TYPE DEVMAP created with max entries
> 0280000000. Then, if a delete element is called on one of the suspicious
maps, it is a good indicator of potential exploitation, and so the program
logs and blocks the operation. To achieve this, two BPF hash maps are
required: suspicious_map_fds tracks map file descriptors (FDs) with their
related large max_entries value, and pending map_creation temporarily
holds creation parameters (max_entries, timestamp and map type) with
their associated process ids (PIDs).

First of all, the 1sm/bpf hook is used. This hook is invoked at the start of
every bpf (2) syscall, before any kernel-side allocation or setup is performed.
When a BPF_MAP_CREATE command is detected in the syscall arguments, the
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hook retrieves the map type and max_entries fields from the bpf _attr union
using CO-RE helper macros. If max_entries exceeds 0x80000000, an alert
is logged, indicating a suspicious map that will require later monitoring. The
hook then records the creation parameters in pending map_creation under
the current PID so they can be correlated once the syscall returns.

Because the map FD is not available until the syscall completes, a trace-
point on sys_exit_bpf, the kernel tracepoint for syscalls:sys_exit_bpf,
is employed to perform the correlation. This tracepoint fires when the bpf (2)
syscall returns from kernel space back to user space. The handler checks if
the return value is a nonnegative FD (indicating an error), then looks up
the pending map_creation map for the current PID. If an entry is found,
the program updates suspicious_map_fds map with the new FD and its
max_entries.

Once suspicious map FDs are registered, enforcement occurs via the same
1sm/bpf LSM hook. When the BPF_MAP DELETE_ELEM command is issued,
the hook is again invoked at syscall entry. At this point, the hook reads the
map FD and the user-space pointer to the key. It then uses an eBPF probe-
read helper to copy the key into kernel space. If the key is > 0280000000
and the FD exists in suspicious_map_fds, the hook computes the precise
exploitable key range from the stored max_entries. Keys within this range
result in an immediate return of ~-EPERM, blocking the operation, instead keys
outside the range are allowed to proceed.

To handle lifecycle cleanup, an 1sm/task_free hook on the LSM hook
point for task termination is installed. This hook triggers whenever a process
is freed, ensuring that any pending creation records keyed by PID are deleted.
In parallel, a tracepoint on sys_enter_close fires at syscall entry for the
close(2) syscall. This handler checks if the FD being closed exists in
suspicious_map_fds and removes it if present, preventing stale entries after
file descriptors are released.

All hooks leverage CO-RE for safe structure field reading across kernel ver-
sions, emitting diagnostic messages via bpf_printk() for real-time auditing.
This multi-stage instrumentation yields precise, context-aware enforcement
mechanisms that only deny operations when signed /unsigned confusion exploit
conditions truly exist.

The complete C implementation of both the BPF LSM program and its
loader, along with screenshots demonstrating the exploit being blocked and
the corresponding kernel log entries, are provided in Appendix B.2.
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6.2.4 Comparison and Evaluation of Mitigation Strate-
gies

Basic mitigation approaches for CVE-2024-56614 and CVE-2024-56615 closely
resemble CVE-2022-23222 proposals, with primary recommendations focusing
on kernel updates incorporating necessary patches or direct patch application.
Remember that kernel updating isn’t always practical due to compatibil-
ity concerns, system stability issues, or operational downtime, and manual
patching demands advanced technical skills plus careful management.

This use case benefits from Tetragon alternative, a tool offering eBPF-based
observability through declarative Yet Another Markup Language (YAML)
policy languages. Compared to BPF LSM programs, Tetragon policy develop-
ment proves generally more accessible, requiring less deep kernel knowledge.
Moreover, Tetragon supports kernels from version 4.19 onward, covering large
portions of deployed systems. Some vulnerable kernel versions remain uncov-
ered though, like version 4.18. However, utility in this specific context stays
limited. Tetragon logs generic creation events for BPF_MAP_TYPE XSKMAP and
BPF_MAP_TYPE DEVMAP maps but lacks crucial parameter filtering abilities
like max_entries. Similarly, it records all BPF_MAP DELETE_ELEM command
invocations but can’t filter based on map type, deletion keys or associated
map file descriptors.

These limitations stem from Tetragon’s inability to dereference pointers
or inspect complex data structures like unions or nested structs composing
BPF syscall arguments. It only filters primitive argument types such as
integers or strings, as happens with command arguments in bpf (2) syscalls.
This produces high logged data volumes including numerous false positives
potentially overwhelming monitoring systems, obscuring actual incidents, and
prohibiting rapid incident response without extensive manual analysis or
external tool integration.

BPF LSM program deployment addresses these shortcomings. This solution
offers significantly more granular context-sensitive enforcement mechanisms
by integrating both LSM hooks and kernel tracepoints. It enables targeted
monitoring of kernel functions and syscalls associated with DEVMAP and
XSKMAP object lifecycles. Thanks to CO-RE, programs maintain compat-
ibility across various kernel versions, simplifying maintenance. Crucially,
BPF LSM approaches allow immediate intervention by blocking suspicious
operations real-time, rather than restricting themselves to passive logging.
This proactive enforcement substantially improves system security postures.

Nevertheless, recognize that BPF LSM usage requires kernels compiled with
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CONFIG_BPF_LSM enabled and bpf options set in kernel LSM boot parameters.
Additionally, BPF LSM availability starts with Linux kernel version 5.7.
Consequently, several vulnerable kernels, particularly those older than 5.7,
remain unsupported by this mitigation strategy.
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Chapter 7

Conclusions and Future
Works

This research explored the security landscape of eBPF through comprehensive
vulnerability analysis and the development of practical defensive mechanisms.
Two representative vulnerabilities exemplified distinct attack vectors within
the eBPF ecosystem: CVE-2022-23222 exploits verifier logic flaws to ma-
nipulate credential structures, achieving complete privilege escalation from
unprivileged contexts, while CVE-2024-56614/56615 leverage integer overflow
in map operations to trigger kernel panics through out-of-bounds memory
access. The examination of these vulnerabilities in Chapter 6 underscored
the necessity for context-aware, vulnerability-specific hardening approaches
rather than generic security solutions.

The comparative evaluation of defensive strategies revealed distinct trade-
offs between protection effectiveness, operational feasibility, and implementa-
tion complexity. Kernel patches provide definitive remediation but require
system downtime and face deployment challenges in production environments
where continuous availability is critical. LKRG offers broad kernel integrity
protection yet operates as an out-of-tree module with potential compatibil-
ity limitations and may not specifically target eBPF-centric attack vectors
with sufficient granularity. Tetragon presents an accessible YAML-based
monitoring framework with observability capabilities, though its enforcement
mechanisms suffer from limited filtering precision and elevated false positive
rates due to constraints in inspecting complex kernel data structures. In
contrast, BPF LSM implementations demonstrated superior precision through
programmatic access to kernel internals, enabling context-aware filtering that
distinguishes malicious exploitation from legitimate system operations, as
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demonstrated in Appendix ??. However, this precision comes at the cost
of increased technical complexity, requiring kernel-specific configuration and
deeper eBPF programming expertise.

Future research should investigate the performance implications and over-
head characteristics of deploying these hardening solutions, particularly when
multiple concurrent eBPF-based security mechanisms coexist within a sin-
gle system. Understanding the interaction dynamics between layered eBPF
security tools, their cumulative resource consumption, and potential con-
flicts or synergies would inform best practices for designing defense-in-depth
architectures.

Based on the findings emerged from the comprehensive analysis and re-
search conducted with the fellow university colleague, different best practices
emerge for securing eBPF-enabled environments. Organizations should imple-
ment comprehensive verification procedures for every loaded eBPF program,
ensuring programs are trusted and limiting their access to only necessary
maps and resources. Proper management of Linux capabilities, particularly
CAP_BPF, represents a fundamental security control that should be strictly
enforced through principle of least privilege, granting eBPF permissions only
to processes that explicitly require them. Given the security risks demon-
strated in the analyzed vulnerabilities, disabling unprivileged eBPF by design
(sysctl parameter kernel.unprivileged_bpf_disabled=1) should be con-
sidered standard practice in production environments, as unprivileged access
significantly expands the attack surface by allowing non-root users to load
potentially malicious programs. Continuous monitoring of eBPF map creation
and usage patterns enables detection of anomalous behavior, including unusu-
ally large map configurations or suspicious key ranges that could facilitate
exploitation. Deploying solutions that track credential identifiers of processes
utilizing eBPF capabilities provides essential visibility for detecting privilege
escalation attempts across various vulnerability categories, with particular
attention to capability transitions that might indicate unauthorized privilege
acquisition. Finally, staying informed about emerging CVEs and evolving
attack methods, particularly those threats that new Linux kernel features
might introduce, since this knowledge remains fundamental for proactive
security management.

These patterns provide a foundation for developing proactive detection
mechanisms that can identify suspicious eBPF operations before exploitation
occurs. This research has identified promising directions for future work. One
particularly compelling approach involves analyzing eBPF program instruc-
tions at load time using kprobe-based LSM BPF programs to identify known
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attack patterns or track register values for anomalous behavior. This pre-
execution analysis could provide an additional security layer by intercepting

malicious programs before they gain kernel-level access.
385613: bpf_trace_printk: BPF syscall cmd

1 <...>=77036 [001] d... 6201.
=5, size=120
<...>=77036 [001] 4... 6201.

2

insn_ptr=000000000045cel

..>=77036 [001] d... 6201.
insns
..>=77036 [001] d... 6201.
..>=77036 [001] d... 6201.
dst_reg=0, src_reg=0
..>=77036 [001] d... 6201.
..>=77036 [001] d... 6201.
dst_reg=10, src_reg=0
..>=77036 [001] d... 6201.
=-4
..>=77036 [001] d... 6201.
dst_reg=2, src_reg=10
..>=77036 [001] d... 6201.
..>=77036 [001] d... 6201.
dst_reg=2, src_reg=0
..>=77036 [001] d... 6201.
=0
..>=77036 [001] d... 6201.
dst_reg=1, src_reg=1
..>=77036 [001] d... 6201.
..>=77036 [001] d... 6201.
dst_reg=0, src_reg=0
..>=77036 [001] d... 6201.
..>=77036 [001] d... 6201.
dst_reg=0, src_reg=0
..>=77036 [001] d... 6201.
..>=77036 [001] d... 6201.
dst_reg=0, src_reg=0
..>=77036 [001] d... 6201.
..>=77036 [001] d... 6201.

dst_reg=0, src_reg=0

385628:

385629:

385629:
385630:
385630:
385630:

385630:

385631 :
385631:
385631 :

385631:

385632:
385632:
385632:
385632:
385632:
385632:
385633:
385633:

385633:
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bpf_trace_printk:

bpf_trace_printk:

bpf_trace_printk:
bpf_trace_printk:
bpf_trace_printk:
bpf_trace_printk:

bpf_trace_printk:

bpf_trace_printk:
bpf_trace_printk:
bpf_trace_printk:

bpf_trace_printk:

bpf_trace_printk:
bpf_trace_printk:
bpf_trace_printk:
bpf_trace_printk:
bpf_trace_printk:
bpf_trace_printk:
bpf_trace_printk:
bpf_trace_printk:

bpf_trace_printk:

insn_cnt=37,

Total read: 37

Chunks read: 2
Insn: code=b7,

imm=0, offset=0
Insn: code=63,

imm=0, offset

Insn: code=bf,
imm=0, offset=0
Insn: code=7,

imm=-4, offset

Insn: code=18,
imm=3, offset=0
Insn: code=0,
imm=0, offset=0
Insn: code=85,
imm=1, offset=0
Insn: code=55,
imm=0, offset=1

Insn: code=95,
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33 <...>=77036 [001] d... 6201.385633: bpf_trace_printk: imm=0, offset=0
Listing 7.1. Real-time eBPF instruction analysis

The listing 7.1 demonstrates a prototype implementation of this concept,
showing real-time eBPF instruction analysis captured via bpf_trace_printk.
The output displays detailed instruction-level information including operation
codes, register assignments, immediate values, and memory offsets for each
eBPF instruction as it is processed during program loading. This granular
visibility into program structure enables pattern matching against known
exploit signatures, detection of suspicious register manipulation sequences,
and identification of potentially malicious memory access patterns that could
indicate privilege escalation or out-of-bounds operations.

Such an approach would complement existing verifier checks, offering the
possibility of implementing policy-based program inspection that goes beyond
traditional safety verification.

Extending this approach further, ongoing artificial intelligence technology
evolution creates substantial opportunities for enhancing these eBPF secu-
rity analysis capabilities. Al-assisted analysis might significantly improve
instruction-level program inspection accuracy and scope, potentially spotting
novel attack patterns and zero-day exploitation techniques through behavioral
analysis and pattern recognition approaches. Machine learning models trained
on known eBPF vulnerabilities and attack signatures could deliver real-time
threat assessment capabilities, enabling dynamic security policies that adapt
to emerging threats. This technological advancement represents a natural
evolution from the static pattern matching described above toward more
sophisticated, adaptive security mechanisms.

This research shows that while eBPF vulnerabilities create substantial
security challenges, focused hardening strategies can effectively counter these
threats when properly designed and deployed. The combination of systematic
vulnerability analysis, practical defensive implementations, and collaborative
research approaches delivers solid foundations for advancing eBPF security
research and establishing more secure kernel programmability frameworks for
future systems.
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Appendix A

Use Case 1 — Privilege
Escalation

A.1 Exploit Execution

The exploit for CVE-2022-23222 was executed in a controlled environment
to validate its privilege escalation capabilities. As described in Section 6.1,
the exploit implementation includes enhanced functionalities beyond the
original proof-of-concept, enabling multiple attack variants targeting different
credential manipulation strategies.

The following screenshots demonstrate the exploit’s effectiveness when exe-
cuted by a non-privileged user. Figure A.1 shows the successful escalation to a
root shell, with all credential identifiers modified to zero, granting unrestricted
system access. Figure A.2 demonstrates an alternative attack variant that
modifies only the filesystem credential identifiers (FSUID, FSGID), enabling
unauthorized access to privileged files such as /etc/shadow while maintaining
the appearance of running as a regular user. These demonstrations confirm
that the vulnerability can be reliably exploited to achieve complete privilege
escalation from an unprivileged user context.

A.2 BPF LSM Program Implementation

This appendix presents the complete implementation of the BPF LSM-based
hardening solution for CVE-2022-23222, consisting of three components: the
kernel-space BPF program that enforces security policies, the userspace loader
responsible for program deployment, and the automated build script that
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Figure A.1. Exploit execution resulting in a root shell.
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Figure A.2. Exploit execution resulting in reading the /etc/shadow file.
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orchestrates the compilation and execution workflow.

A.2.1 Kernel-Space BPF LSM Program

The BPF LSM program implements the core security enforcement logic by
attaching to multiple LSM hooks within the Linux kernel.

I #include "vmlinux.h"

2 #include <bpf/bpf_helpers.h>

3 #include <bpf/bpf_tracing.h>

| #include <bpf/bpf_core_read.h>

6 char LICENSE[] SEC("license") = "GPL";

8 #define EPERM 1
#define MAX_TRACKED_PROCESSES 1024

11 struct {

12 __uint (type, BPF_MAP_TYPE_HASH);

13 __uint(max_entries, MAX_TRACKED_PROCESSES) ;
14 __type(key, __u32);

15 __type(value, struct tracked_entry) ;

16 } tracked_processes SEC(".maps");

18 struct tracked_entry {
19 __u32 uid;

__u32 gid;

1 __u32 euid;

__u32 fsuid;

__u32 fsgid;

__u32 suid;

__u32 sgid;

A W N

1

i

-~

00

/* Hook for BPF syscalls to track processes using BPF */

SEC("1sm/bpf")

int BPF_PROG(bpf_syscall, int cmd, union bpf_attr *attr, unsigned int size)
{

NN NNNNNLN

N

pid_t pid = bpf_get_current_pid_tgid() >> 32;

~

// Track any process that uses BPF syscalls
struct tracked_entry *entry = bpf_map_lookup_elem(&tracked_processes, &pid);
if (entry) {

// Already tracking this process

return O;

ot

|

oo

}

oW

// Get current task credentials
struct task_struct xtask = (struct task_struct *)bpf_get_current_task();
if (!task)

return 0; // Don’t block, just don’t track

e e
Y Ul A W N =

const struct cred *cred = NULL;

17 bpf_core_read(&cred, sizeof(cred), &task->cred);
18 if (!cred)

19 return 0; // Don’t block, just don’t track

51 u32 uid_val = 0, euid_val = 0, gid_val = 0, fsuid_val = 0, fsgid_val = 0, suid_val

=0, sgid_val =0;

52 bpf_core_read(&uid_val, sizeof(uid_val), &cred->uid.val);
53 bpf_core_read(&euid_val, sizeof (euid_val), &cred->euid.val);
54 bpf_core_read(&gid_val, sizeof(gid_val), &cred->gid.val);
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55 bpf_core_read(&fsuid_val, sizeof(fsuid_val), &cred->fsuid.val);
56 bpf_core_read(&fsgid_val, sizeof(fsgid_val), &cred->fsgid.val);
57 bpf_core_read(&suid_val, sizeof(suid_val), &cred->suid.val);
58 bpf_core_read(&sgid_val, sizeof(sgid_val), &cred->sgid.val);

60 struct tracked_entry new_entry = {

61 .uid = uid_val,

62 .euid = euid_val,

63 .gid = gid_val,

64 .fsuid = fsuid_val,

65 .fsgid = fsgid_val,

66 .suid = suid_val,

67 .sgid = sgid_val

68 s

69

70 bpf_printk("BPF syscall tracking process %d (cmd=/d)\n", pid, cmd);

71 bpf_printk("Initial credentials uid=Yd, euid=%d, gid=%d\n", uid_val, euid_val,
gid_val);

bpf_printk("Initial credentials fsuid=/d, fsgid=/d\n", fsuid_val, fsgid_val);

)

int ret = bpf_map_update_elem(&tracked_processes, &pid, &new_entry, BPF_ANY);
if (ret < 0) {
76 bpf_printk("Failed to track BPF process %d\n", pid);

RN BN |

77 } else {

78 bpf_printk("Successfully tracking BPF process %d\n", pid);
79

80

81 return O;

82 }

84 SEC("lsm/task_alloc")

85 int BPF_PROG(task_alloc, struct task_struct *task, unsigned long clone_flags)

86 {

87 pid_t parent_pid = bpf_get_current_pid_tgid() >> 32;

88 pid_t child_pid;

89

90 // Read the child process PID

91 int ret = bpf_probe_read_kernel(&child_pid, sizeof(child_pid), &task->pid);

92 if (ret < 0) {

93 return 0; // Don’t block on read failure

94 }

95

96 // Check if parent is tracked

97 struct tracked_entry *parent_entry = bpf_map_lookup_elem(&tracked_processes, &
parent_pid);

98 if (parent_entry) {

99 // Inherit tracking from parent

100 struct tracked_entry child_entry = {
101 .uid = parent_entry->uid,

102 .euid = parent_entry->euid,

103 .gid = parent_entry->gid,

104 .fsuid = parent_entry->fsuid,

105 .fsgid = parent_entry->fsgid,

106 .suid = parent_entry->suid,

107 .sgid = parent_entry->sgid

108 };

109

110 ret = bpf_map_update_elem(&tracked_processes, &child_pid, &child_entry, BPF_ANY);

111 if (ret == 0) {

112 bpf_printk("Inherited tracking: child %d from parent %d\n", child_pid,
parent_pid) ;

113

114 }

115
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116 return O;

117 }

118

119

120 SEC("1lsm/cred_prepare")

121 int BPF_PROG(cred_prepare, struct cred *new, const struct cred *old, gfp_t gfp)
122 {

123 pid_t pid = bpf_get_current_pid_tgid() >> 32;

124 // Check if this process is tracked (BPF-related)

125 struct tracked_entry *entry = bpf_map_lookup_elem(&tracked_processes, &pid);
126 if (lentry) {

127 // Not tracked - allow privilege escalation (sudo, etc.)

128 return 0;

129 ¥

// Read new credentials

__u32 new_uid = 0, new_euid = 0, new_gid = 0, new_fsuid = 0, new_fsgid = 0, new_sgid
=0, new_suid = 0;

133 bpf_core_read(&new_uid, sizeof(new_uid), &new->uid.val);

134 bpf_core_read(&new_euid, sizeof (new_euid), &new->euid.val);

135 bpf_core_read(&new_gid, sizeof(new_gid), &new->gid.val);

136 bpf_core_read(&new_fsuid, sizeof(new_fsuid), &new->fsuid.val);

137 bpf_core_read(&new_fsgid, sizeof (new_fsgid), &new->fsgid.val);

138 bpf_core_read(&new_suid, sizeof (new_suid), &new->suid.val);

139 bpf_core_read(&new_sgid, sizeof (new_sgid), &new->sgid.val);

140

141 bpf_printk("LSM cred_prepare: tracked BPF pid=Jd\n", pid);

142 bpf_printk("Expected uid=}d, euid=%d, gid=Jd\n", entry->uid, entry->euid, entry->gid)

143 bpf_printk("Expected fsuid=}%d, fsgid=%d\n", entry->fsuid, entry->fsgid);

144 bpf_printk("New cred uid=)d, euid=Yd, gid=d\n", new_uid, new_euid, new_gid);
145 bpf_printk("New cred fsuid=)d, fsgid=/d\n", new_fsuid, new_fsgid);

146

147

148 // Only block privilege escalation to root for BPF-related processes

149 if ((new_uid != entry->uid ) ||
150 (new_euid != entry->euid) ||
151 (new_gid !'= entry->gid) ||
152 (new_fsuid !'= entry->fsuid )
153 (new_fsgid != entry->fsgid )
154 (new_sgid != entry->sgid ) |
155 (new_suid != entry->suid )
156 )

157 bpf_printk("[!LSM ALERT] BPF process privilege escalation in cred_prepare!\n");
158 bpf_printk("[!LSM ALERT] UID: %d->%d\n", entry->uid, new_uid);

159 bpf_printk("[!LSM ALERT] EUID: %d->%d\n", entry->euid, new_euid);

160 bpf_printk("[!LSM ALERT] GID: %d->%d\n", entry->gid, new_gid);

161 bpf_printk("[!LSM ALERT] FSUID: %d->%d\n", entry->fsuid, new_fsuid);

162 bpf_printk("[!LSM ALERT] FSGID: %d->%d\n", entry->fsgid, new_fsgid);

163 return -EPERM;

164 }

165

166 return O;

167 }

168

169 SEC("1lsm/inode_permission")

170 int BPF_PROG(inode_permission, struct inode *inode, int mask){

171

172 pid_t pid = bpf_get_current_pid_tgid() >> 32;
173 // Check if this process is tracked (BPF-related)
174 struct tracked_entry *entry = bpf_map_lookup_elem(&tracked_processes, &pid);

175 if (lentry) {
176 // Not tracked - allow legitimate privilege escalation (sudo, etc.)
177 return O;
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178 }

179

180

181 struct task_struct xtask = (struct task_struct *)bpf_get_current_task();

182

183 const struct cred *cred = NULL;

184 bpf_core_read(&cred, sizeof(cred), &task->cred);

185 if (!cred)

186 return -EPERM;

187

188 __u32 new_uid = 0, new_euid = 0, new_gid = 0, new_fsuid = 0, new_fsgid = 0, new_suid
=0, new_sgid=0;

189 bpf_core_read(&new_uid, sizeof(new_uid), &cred->uid.val);

190 bpf_core_read(&new_euid, sizeof (new_euid), &cred->euid.val);
191 bpf_core_read(&new_gid, sizeof(new_gid), &cred->gid.val);

192 bpf_core_read(&new_fsuid, sizeof (new_fsuid), &cred->fsuid.val);
193 bpf_core_read(&new_fsgid, sizeof (new_fsgid), &cred->fsgid.val);
194 bpf_core_read(&new_suid, sizeof (new_suid), &cred->suid.val);

195 bpf_core_read(&new_sgid, sizeof (new_sgid), &cred->sgid.val);

197 bpf_printk("LSM inode_permission: tracked BPF pid=Yd\n", pid);

198 bpf_printk("Expected uid=jd, euid=)d, gid=/d\n", entry->uid, entry->euid, entry->gid)

199 bpf_printk("Expected fsuid=}%d, fsgid=}%d\n", entry->fsuid, entry->fsgid);

200 bpf_printk("New cred uid=Jd, euid=Yd, gid=/d\n", new_uid, new_euid, new_gid);

201 bpf_printk("New cred fsuid=)d, fsgid=/d\n", new_fsuid, new_fsgid);

202 // Only block privilege escalation to root for BPF-related processes

203

204 if ((new_uid != entry->uid ) ||

205 (new_euid != entry->euid) ||

206 (new_gid != entry->gid) ||

207 (new_fsuid != entry->fsuid ) ||

208 (new_fsgid != entry->fsgid ) ||

209 (new_sgid != entry->sgid ) ||

210 (new_suid != entry->suid )

211 ){

212 bpf_printk("[!LSM ALERT] BPF process privilege escalation in inode_permission!\n"
E

213 bpf_printk("[!LSM ALERT] UID: %d->%d\n", entry->uid, new_uid);

214 bpf_printk("[!LSM ALERT] EUID: %d->%d\n", entry->euid, new_euid);

215 bpf_printk("[!LSM ALERT] GID: %d->%d\n", entry->gid, new_gid);

216 bpf_printk("[!LSM ALERT] FSUID: %d->%d\n", entry->fsuid, new_fsuid);

217 bpf_printk("[!LSM ALERT] FSGID: %d->/d\n", entry->fsgid, new_fsgid);

218

219 return -EPERM;

220 }

221

222 return O;

223 }

SEC("1lsm/task_kill")
int BPF_PROG(task_kill, struct task_struct *p, struct kernel_siginfo *info,
int sig, const struct cred *cred)

NN N

3

{

NN NN NN
S % R O

pid_t pid = bpf_get_current_pid_tgid() >> 32;
// Check if this process is tracked (BPF-related)
struct tracked_entry *entry = bpf_map_lookup_elem(&tracked_processes, &pid);
if (lentry) {
// Not tracked - allow legitimate privilege escalation (sudo, etc.)
return O;

W N = O

SN
-}

NN NN NN NN

W W W W wwww

=~

__u32 new_uid = 0, new_euid = 0, new_gid = 0, new_fsuid = 0, new_fsgid = 0, new_suid
=0, new_sgid=0;
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238 bpf_core_read(&new_uid, sizeof(new_uid), &cred->uid.val);

239 bpf_core_read(&new_euid, sizeof (new_euid), &cred->euid.val);

240 bpf_core_read(&new_gid, sizeof(new_gid), &cred->gid.val);

241 bpf_core_read(&new_fsuid, sizeof(new_fsuid), &cred->fsuid.val);

242 bpf_core_read(&new_fsgid, sizeof(new_fsgid), &cred->fsgid.val);

243 bpf_core_read(&new_suid, sizeof (new_suid), &cred->suid.val);

244 bpf_core_read(&new_sgid, sizeof (new_sgid), &cred->sgid.val);

245

246 bpf_printk("LSM task_kill: tracked BPF pid=%d\n", pid);

247 bpf_printk("Expected uid=jd, euid=)d, gid=jd\n", entry->uid, entry->euid, entry->gid)
248 bpf_printk("New cred uid=)d, euid=Yd, gid=/d\n", new_uid, new_euid, new_gid);
249

250 // Only block privilege escalation to root for BPF-related processes

51 if ((new_uid != entry->uid ) ||

52 (new_euid != entry->euid) ||

53 (new_gid != entry->gid) ||

54 (new_fsuid != entry->fsuid

)
5 (new_fsgid !'= entry->fsgid )
6 (new_sgid != entry->sgid ) |
57 (new_suid != entry->suid )
58 M

59 bpf_printk("[!LSM ALERT] BPF process privilege escalation in task_kill!\n");
60 bpf_printk("[!LSM ALERT] UID: %d->%d\n", entry->uid, new_uid);

61 bpf_printk("[!LSM ALERT] EUID: %d->%d\n", entry->euid, new_euid);

62 bpf_printk("[!LSM ALERT] GID: %d->%d\n", entry->gid, new_gid);

63 bpf_printk("[!LSM ALERT] FSUID: %d->%d\n", entry->fsuid, new_fsuid);
264 bpf_printk("[!LSM ALERT] FSGID: %d->%d\n", entry->fsgid, new_fsgid);
265

266 return -EPERM;

267 }

268

269 return O;

270 }

271

272 SEC("lsm/task_free")
273 int BPF_PROG(task_free, struct task_struct *task)

274 {

275 pid_t pid;

276 int ret = 0;

277 ret = bpf_probe_read_kernel (&pid, sizeof(pid), &task->pid);

278

279 if (ret<0){

280 bpf_printk("LSM failed to read pid of dying process\n");

281 return 0; // Don’t block, just return

282 }

283

284 // Check if this process is actually tracked before trying to remove it
285 struct tracked_entry *entry = bpf_map_lookup_elem(&tracked_processes, &pid);
286 if (lentry) {

287 // Process not tracked, nothing to do

288 return 0;

289 }

290

291 // Process is tracked, remove it from the map

292 ret = bpf_map_delete_elem(&tracked_processes, &pid);

293 if (ret == 0) {

294 bpf_printk("Removed tracked entry for BPF process pid=Yd\n", pid);
295 } else {

296 bpf_printk("Failed to remove tracked entry for pid=J/d, ret=/d\n", pid, ret);
297

298 return O;

209 }

Listing A.1. BPF LSM program implementation
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A.2.2 Userspace Loader Program

The userspace loader serves as the deployment mechanism for the BPF
LSM program, utilizing the libbpf library to interface with the kernel’s BPF
subsystem. It handles the complete lifecycle of BPF program management:
opening and loading the compiled BPF object through the auto-generated
skeleton interface, attaching the program to the appropriate LSM hooks, and
maintaining execution until explicitly terminated. The loader implements
signal handling for graceful shutdown and provides runtime feedback through
libbpf’s diagnostic callbacks.

I #include <stdio.h>

2 #include <unistd.h>

3 #include <sys/resource.h>

4 #include <bpf/libbpf.h>

5 #include <signal.h>

6 #include "lsm_hardening.skel.h"

8 /* Notice: Ensure your kernel version is 5.7 or higher, BTF (BPF Type Format) is enabled,
9 * and the file ’/sys/kernel/security/lsm’ includes ’bpf’.
10 */

12 static int libbpf_print_fn(enum libbpf_print_level level, const char *format, va_list
args)

— =
~ W

return vfprintf(stderr, format, args);

}

ot

16

=~

static volatile bool exiting = false;

©

static void handle_signal(int sig)
{
exiting = true;

}

NN NN
W N = O

N

int main(int argc, char **argv)
{
struct lsm_hardening bpf *skel;
int err=0;
/* Set up libbpf errors and debug info callback */
libbpf_set_print(libbpf_print_fn);
signal (SIGINT, handle_signal);
signal (SIGTERM, handle_signal);

W W W W N NN NN
W N~ O © o ;i

/* Open, load, and verify BPF application */
skel = 1sm_hardening_ bpf__open_and_load();
if (!skel) {
fprintf (stderr, "Failed to open and load\n");
return 1;

I3 & e

}

w w
©

/* Attach lsm handler */

err = 1lsm_hardening bpf__attach(skel);

if (err) {

13 fprintf (stderr, "Failed to attach BPF skeleton\n");
14 goto cleanup;

45 }

N = O

47  printf ("Successfully started! Please run ‘sudo cat /sys/kernel/debug/tracing/trace_pipe
(4 n
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A8 "to see output of the BPF programs.\n");

50 for (;lexiting;) {
51 /* trigger our BPF program */
52 fprintf (stderr, ".");
53 sleep(1);
}

55  printf("Exiting...\n");

56 cleanup:

57 1sm_hardening bpf__destroy(skel);
58  return -err;

59 }
Listing A.2. BPF LSM loader implementation

A.2.3 Automated Build and Deployment Script

The build script orchestrates the complete compilation and deployment
pipeline for the BPF LSM solution. It begins by conditionally generat-
ing the vmlinux.h header containing BTF type information extracted from
the running kernel, which is essential for CO-RE (Compile Once — Run Every-
where) functionality. The script then compiles the BPF program to bytecode
using Clang’s BPF target, generates a skeleton header that provides type-safe
userspace access to BPF maps and programs, compiles the userspace loader
with appropriate library linkage, and finally executes the loader with elevated
privileges. This automated workflow eliminates manual compilation steps
and ensures consistent deployment across different development and testing

environments.

1 #!/bin/bash
2 set -e

4 # Configuration

5 BPF_PROG="1sm_hardening"

6 BPF_SOURCE="${BPF_PROG}.bpf.c"

7 BPF_OBJECT="${BPF_PROG}.bpf.o"

8 SKEL_HEADER="${BPF_PROG}.skel.h"
9 LOADER_SOURCE="${BPF_PROG}.c"

10 LOADER_BINARY="1lsm_loader"

11 VMLINUX_HEADER="vmlinux.h"

13 # Generate BTF header from running kernel (if not exists)

14 if [ ! -f "${VMLINUX_HEADER}" 1; then

15 echo "[1/5] Generating BTF type informatiomn..."

16 bpftool btf dump file /sys/kernel/btf/vmlinux format c > ${VMLINUX_HEADER}
17 else

18 echo "[1/5] BTF header already exists, skipping generation"

19 fi

21 # Compile BPF program to object file
22 echo "[2/5] Compiling BPF program..."
23 clang -02 -Wall -target bpf -g -c ${BPF_SOURCE} -o ${BPF_OBJECT}
2

25 # Generate BPF skeleton header

2
26 echo "[3/5] Generating BPF skeleton..."
27 bpftool gen skeleton ${BPF_OBJECT} > ${SKEL_HEADER}
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29 # Compile userspace loader

30 echo "[4/5] Compiling loader program..."

31 gcc -g -02 -Wall -I. -I/usr/include/bpf \

32 -o ${LOADER_BINARY} ${LOADER_SOURCE} ${SKEL_HEADER} \
33 -1lbpf -lelf -1z

35 # Run loader with elevated privileges

36 echo "[5/5] Running BPF LSM loader..."
37 sudo ./${LOADER_BINARY}

Listing A.3. Build script for BPF LSM program and loader

A.3 BPF LSM program Validation

To validate the BPF LSM program’s effectiveness against CVE-2022-23222
exploit variants were executed with active enforcement. Figures A.3 and A.4
show exploit attempts under BPF LSM enforcement. Each screenshot’s upper
half displays the loader confirming successful attachment, while the lower half
shows the exploit execution.

: kind <byte_off> (0), spec is [152] struct cre

5: matching candidate #0 [856] struct cred d.

: relo #6: patched insn #62 (ALU/ALUG4) imm 16 -> 16

is [18] struct task
struct tas

N #0 (ALU/A
kernel/d

sudo) ,30(dip),46(p

NOCcE

Figure A.3. Complete privilege escalation attempt blocked by BPF LSM
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: kind <byte_off> (0), spec is [152]

: matching candidate #0 [856] struct crec

insn #62 (ALU/ALUG4) imm 16 -> 16
d 1 CO-RE rel |
: kind <byte_off> (0), spec is [18] struct task

0: matching candids [174] struct tas

N #0

erne

output o

OxFFFFF £
F_MAP_TYPE_S

sk_struct list to find out process

ation not permitted

Figure A.4. Privileged file access attempt blocked by BPF LSM
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Figure A.3 shows the exploit completing without visible errors, yet the
BPF LSM successfully blocks privilege escalation. This occurs because the
exploit does not verify credential modification success, it simply attempts
memory manipulation and spawns a shell. The BPF LSM intercepts credential
changes, preventing them from taking effect. In fact, the spawned shell
retains unprivileged credentials, as confirmed by subsequent id and whoami
commands showing unchanged UIDs and GIDs.

In addition, figures A.5 and A.6 present diagnostic logs from
/sys/kernel/debug/tracing/trace_pipe, confirming the blocking of the
exploit attempts.

: bpf_trace_printk: New cred uid
: bpf_trace_printk: New cred fsu

bpf_trace_printk: SM ALERT]

BPF proc e

exploit-2147 d... 2608.080645: bpf_trace_printk: SM ALERT]
UID: 1000->0

exploit-2147 [003] d... 2608.080647: bpf_trace_printk: SH ALERT]
EUID: 1000->0

exploit-2147 [003] d... 2608.080648: bpf_trace_printk: S ALERT)
GID: 1000->0

exploit-2147 [003] d... 260 650: bpf_trace_printk: [ILSM ALERT]
FSUID: 1000->0

exploit-2147 [003] d... 2608 ) bpf_trace_printk: SH ALERT]
FSGID: 1000->0

ksoftirgd 2 s. 2608. 952: bpf_trace_printk: Removed trac
ked entry for

Figure A.5. BPF LSM logs showing blocked privilege escalation
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BPF pr ation in in

exploit-2159 [001] d... ¢ bpf_ : [ILSM ALERT]
UID: 1000->1000

exploit-2159 [001] d... : bp re D : [ILSM ALERT]
EUID: 1000->1000

exploit-2159 [0o1] d... hpf_tre ; . [ILSM ALERT]
GID: 1000->1000

exploit-2159 [0o01] d... : bpf_tre rintk: [!LSM ALERT]
FSUID: 1000->0

exploit-2159 d... S: hpf_trz . : [ILSM ALERT]
FSGID: 1000->0

idle>-0 0 d.s. : bpf_tre H d trac
ked entry for

Figure A.6. BPF LSM logs showing blocked file access
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Appendix B

Use Case 2 — Kernel Panic
and Denial of Service

B.1 Exploit Execution

The exploit for CVE-2024-56614/56615 was executed in a controlled environ-
ment to validate its denial-of-service capabilities.

Figure B.1 shows the exploit’s output immediately before kernel crash,
displaying the successful creation of a DEVMAP with malicious parameters and
the identification of two exploitable keys that trigger arbitrary memory access
at calculated netdev_map array indices. Figure B.2 captures the resulting
kernel panic triggered by the exploit out-of-bounds access.

vc@ebpf-svt2:~/cve_2024_56615% ./cve_2024-56615
=== CVE-2024-56615 ===

[+] Creating DEVMAP with max_entries=0x80000002

[+] Created DEVMAP with fd=3

[+] Range of arbitrary memory access (2 exploitable keys):
Key 0x80000000 —> array index -2147483648: SUCCESS - Accessed memory at netdev_map[-2147483648]
Key 0x80000001 —> array index -2147483647: SUCCESS - Accessed memory at netdev_map[-2147483647]

Figure B.1. Exploit output showing successful DEVMAP creation and
arbitrary memory access
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Figure B.2. Kernel panic triggered by out-of-bounds memory access
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B.2 BPF LSM Program Implementation

This appendix presents the complete implementation of the BPF LSM-based
hardening solution for CVE-2024-56614 and CVE-2024-56615, consisting of:
the kernel-space BPF program that enforces security policies, the userspace
loader responsible for program deployment, and the automated build script
that orchestrates the compilation and execution workflow.

B.2.1 Kernel-Space BPF LSM Program

The BPF LSM program implements the core security enforcement logic by
attaching to multiple LSM hooks within the Linux kernel.

1 #include "vmlinux.h"

2 #include <bpf/bpf_helpers.h>

3 #include <bpf/bpf_tracing.h>

i #include <bpf/bpf_core_read.h>

6 #define EPERM 1

7 #define BPF_MAP_TYPE_DEVMAP 14
8 #define BPF_MAP_TYPE_XSKMAP 17
o #define MAX_TRACKED_MAPS 1024

11 // For syscalls:sys_enter_close

12 struct sys_enter_close_args {

13 u64 __unused; // common fields handled by BTF
14 long __syscall_nr;

15 long fd;

16 };

18 // For syscalls:sys_exit_bpf

19 struct sys_exit_bpf_args {

20 u64 __unused;

1 long __syscall_nr;

22 long ret; // return value of bpf(2)

23 };

25 // Track specific suspicious DEVMAPs/XSKMAPs by their file descriptor

26 struct {

27 __uint (type, BPF_MAP_TYPE_HASH);

28 __uint(max_entries, MAX_TRACKED_MAPS);
29 __type(key, u32); // map_fd

30 __type(value, u32); // max_entries of the suspicious DEVMAP/XSKMAP
31 } suspicious_map_fds SEC(".maps");

33 // Track map creation by PID to correlate with map_fd later
34 struct pending_info {

35 u32 max_entries;

36 u64 timestamp;

37 u32 map_type;

38 };

39

10 struct {

11 __uint(type, BPF_MAP_TYPE_HASH);

42 __uint(max_entries, MAX_TRACKED_MAPS);
43 __type(key, u32); // PID

44 __type(value, struct pending_info);

45 } pending_map_creation SEC(".maps");
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1€

47 // --- 1) Correlate pending creation -> map_fd on bpf() return ---
18 SEC("tracepoint/syscalls/sys_exit_bpf")

19 int on_sys_exit_bpf (struct sys_exit_bpf_args *ctx)

50 {

51 long ret = ctx->ret;

52 if (ret < 0)

53 return 0; // bpf() failed; no fd returned

54

55 u32 pid = bpf_get_current_pid_tgid() >> 32;

56

57 // Do we have a pending DEVMAP/XSKMAP creation recorded by the LSM hook?

58 struct pending_info *pending = bpf_map_lookup_elem(&pending map_creation, &pid);

59 if (!pending)

60 return O;

61

62 // ret is the newly created object fd (map fd here)

63 u32 map_fd = (u32)ret;

64

65 // IMMEDIATE correlation - store ONLY suspicious DEVMAPs/XSKMAPs

66 if ((pending->map_type == BPF_MAP_TYPE _DEVMAP || pending->map_type ==
BPF_MAP_TYPE_XSKMAP) &&

67 pending->max_entries > 0x80000000) {

68 bpf_map_update_elem(&suspicious_map_fds, &map_fd, &pending->max_entries, BPF_ANY)

69 bpf_printk (" [LSM+TP] tracked %s fd=%d max_entries=0x%x\n",

70 pending->map_type == BPF_MAP_TYPE_DEVMAP ? "DEVMAP" : "XSKMAP",

71 map_fd, pending->max_entries);

72 }

73

74 // Always clear pending (we’ve processed this create)

75 bpf_map_delete_elem(&pending_map_creation, &pid);

76 return O;

77 }

78

79 // --- 2) Drop tracking when the fd is closed ---

SEC("tracepoint/syscalls/sys_enter_close")
81 int on_sys_enter_close(struct sys_enter_close_args *ctx)

g2 {

83 int fd = (int)ctx->£d;

84 if (£d < 0)

85 return O;

86

87 // 1f we tracked this fd as suspicious, remove it now

88 u32 key = (u32)fd;

89 int err = bpf_map_delete_elem(&suspicious_map_fds, &key);
90 if (err == 0) {

91 bpf_printk(" [LSM+TP] cleanup: fd=%d removed from suspicious_map_fds", fd);
92

93 return O;

94 }

95

96 SEC("1sm/bpf")

97 int BPF_PROG(bpf_security_check, int cmd, union bpf_attr *attr, unsigned int size)
98 o

99 if (lattr) {

100 return 0;

101 3

102

103 u32 pid = bpf_get_current_pid_tgid() >> 32;
104

105 // Track DEVMAP/XSKMAP creation

)
106 if (cmd == BPF_MAP_CREATE) {
107 u32 map_type = BPF_CORE_READ(attr, map_type);
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131
132
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134
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137
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140
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if (map_type == BPF_MAP_TYPE_DEVMAP || map_type == BPF_MAP_TYPE_XSKMAP) {
u32 max_entries = BPF_CORE_READ(attr, max_entries);
bpf_printk("[LSM] %s creation: max_entries=0x%x",

map_type == BPF_MAP_TYPE_DEVMAP ? "DEVMAP" : "XSKMAP", max_entries
)5
// Always store creation info for correlation
struct pending_info info = {
.max_entries = max_entries,
.timestamp = bpf_ktime_get_ns(),
.map_type = map_type
bpf_map_update_elem(&pending_map_creation, &pid, &info, BPF_ANY);
// Alert for suspicious creation but ALWAYS allow
if (max_entries > 0x80000000) {
u32 exploitable_keys = max_entries - 0x80000000;
bpf_printk("[LSM] ALERT: SUSPICIOUS %s CREATION!",
map_type == BPF_MAP_TYPE_DEVMAP ? "DEVMAP" : "XSKMAP");
bpf_printk("[LSM] max_entries=0x%x enables %u exploitable keys",
max_entries, exploitable_keys);
bpf_printk("[LSM] This %s will be monitored for exploitation attempts\n",
map_type == BPF_MAP_TYPE_DEVMAP ? "DEVMAP" : "XSKMAP");
}
} else {
// Clean up any stale pending creation to avoid false correlation
bpf_map_delete_elem(&pending_map_creation, &pid);
return O;
}

// Handle MAP_DELETE_ELEM operations

if (cmd == BPF_MAP_DELETE_ELEM) {
u32 map_fd = BPF_CORE_READ(attr, map_£fd);
ub4 key_ptr = BPF_CORE_READ(attr, key);

if (map_fd == 0 || key_ptr == 0) {
return 0;

}

u32 user_key;
int ret = bpf_probe_read_user(&user_key, sizeof(user_key), (void *)key_ptr);
if (ret !'= 0) {

return O;

}
bpf_printk(" [LSM] DELETE_ELEM: map_fd=)d, key=0x%x", map_fd, user_key);

// Only check large keys that could be exploitable
if (user_key >= 0x80000000) {
// Check if this map_fd is a known suspicious DEVMAP/XSKMAP
u32 *stored_max_entries = bpf_map_lookup_elem(&suspicious_map_fds, &map_fd);
if (stored_max_entries) {
u32 max_entries = *stored_max_entries;

// Calculate exact exploitable range like the exploit does
u32 exploitable_keys = max_entries - 0x80000000;
u32 max_exploitable_key = 0x80000000 + exploitable_keys - 1;

bpf_printk(" [LSM] Checking suspicious DEVMAP/XSKMAP fd=/d, max_entries=0x
%x", map_fd, max_entries);
bpf_printk("[LSM] Exploitable range: [0x80000000, 0x%x] (%u keys)",
max_exploitable_key, exploitable_keys);
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170 // Block only keys in the exact exploitable range

171 if (user_key >= 0x80000000 && user_key <= max_exploitable_key) {

172 bpf_printk("[LSM] BLOCKED: Key Ox%x is in exploitable range!",
user_key) ;

73 return -EPERM;

] } else {
75 bpf_printk("[LSM] Key Ox%x outside exploitable range, allowed",
user_key) ;

177 } else {

178 // Not a tracked suspicious DEVMAP/XSKMAP - allow

179 bpf_printk(" [LSM] Large key Ox%x allowed (not on suspicious DEVMAP/XSKMAP
)", user_key);

181 }

183 return O;
184 }

186 return O;

187 }

189 SEC("1lsm/task_free")
190 int BPF_PROG(task_free_security_check, struct task_struct *task)

191 {
192 if (!task)
193 return O;
194
195 u32 pid = BPF_CORE_READ(task, pid);
196
197 // Clean up any pending creation for this process
198 int res = bpf_map_delete_elem(&pending_map_creation, &pid);
199 if (res == 0) {
200 bpf_printk(" [LSM] Cleaned up pending creation for exiting PID %u", pid);
01
)2
)3 return O;

4}
)6 char _license[] SEC("license") = "GPL";

Listing B.1. BPF LSM program implementation

B.2.2 Userspace Loader Program

The userspace loader serves as the deployment mechanism for the BPF
LSM program, utilizing the libbpf library to interface with the kernel’s BPF
subsystem. It handles the complete lifecycle of BPF program management:
opening and loading the compiled BPF object through the auto-generated
skeleton interface, attaching the program to the appropriate LSM hooks, and
maintaining execution until explicitly terminated. The loader implements
signal handling for graceful shutdown and provides runtime feedback through
libbpf’s diagnostic callbacks. It’s possible to use the same userspace loader
program A.2 used for the previous use case, with the only difference being
the BPF program and skeleton header filenames.
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B.2.3 Automated Build and Deployment Script

As an alternative to the bash script presented in the previous use case, a
Makefile-based build system provides a more robust and efficient compilation
workflow. Unlike the sequential bash script, the Makefile leverages dependency
tracking to perform incremental builds, recompiling only components that
have changed or whose dependencies have been modified. This approach

significantly reduces rebuild times during iterative development cycles.

1 # Name of your program (without extensions)
2 prog_name := lsm

1 # Compiler and flags
5 CLANG := clang

6 CC := gcc

7 CFLAGS := -g -02 -Wall

8 BPF_CFLAGS := -02 -Wall -target bpf -g -D__TARGET_ARCH_x86
9

10 # Includes

11 INCLUDES := -I. -I/usr/include/bpf
12 # Libraries

13 LIBS := -1lbpf -lelf -1z

14

15 # Files

16 BPF_SRC := $(prog_name).bpf.c

7 BPF_OBJ := $(prog_name) .bpf.o

18 SKEL_HDR := $(prog_name).skel.h

19 USER_SRC := $(prog_name).c

>0 USER_BIN := $(prog_name)

.PHONY: all clean

all: $(USER_BIN)

# Generate vmlinux.h if not present
vmlinux.h:
bpftool btf dump file /sys/kernel/btf/vmlinux format c > vmlinux.h

NN NN NN NN N
O © W = C W J

# Compile the BPF program and generate skeleton
$ (SKEL_HDR) : $(BPF_0BJ)
bpftool gen skeleton $< > $0

W =

$(BPF_OBJ): $(BPF_SRC) vmlinux.h
$ (CLANG) $(BPF_CFLAGS) -c $< -o $@

Ot

-~

# Build user-space binary
38 $(USER_BIN): $(USER_SRC) $(SKEL_HDR)
39 $(CC) $(CFLAGS) $(INCLUDES) -o $@ $(USER_SRC) $(LIBS)

11 clean:
12 rm -f $(BPF_OBJ) $(SKEL_HDR) $(USER_BIN)

Listing B.2. Makefile for BPF LSM program and loader

In this case, once the Makefile is executed, the resulting binary can be run
with elevated privileges to load and attach the BPF LSM program running:

sudo ./$(USER_BIN)
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B.3 BPF LSM program Validation

To validate the BPF LSM program’s effectiveness against CVE-2024-56614
and CVE-2024-56615, the exploits were executed with active enforcement.
The validation demonstrates the program’s ability to prevent denial-of-service
attacks while maintaining system stability.

Figure B.3 shows the exploit execution under BPF LSM enforcement. The
exploit successfully creates the malicious DEVMAP, however, when attempt-
ing to trigger the out-of-bounds memory access, the BPF LSM intercepts the
operation at the bpf _map_delete_elem hook and blocks it with “Operation
not permitted”, preventing the kernel panic.

vc@ebpf-svt2:~/cve_2024 56615$ ./cve_2024-56615
=== CVE-2024-56615 ===

[+] Creating DEVMAP with max_entries=0x80000002
[+] Created DEVMAP with fd=3
[+] Range of arbitrary memory access (2 exploitable keys):
Key 0x80000000 —> array index —-2147483648: BLOCKED - Operation not permitted

Figure B.3. Denial-of-service attempt blocked by BPF LSM

Figure B.4 presents the diagnostic logs from
/sys/kernel/debug/tracing/trace_pipe. The logs show the complete en-
forcement cycle: detection of suspicious DEVMAP creation with
max_entries=0x80000002, identification of the exploitable key range, track-
ing of the suspicious map in the monitoring system, and ultimately the
blocking of delete operations with [LSM] BLOCKED messages.

...>-1498918

...>=-1498918

...>-1498918

...>-1498918
ts

cve_2024-56615-1498918

cve_2024-56615-1498918
cve_2024-56615-1498918
x80000002
cve_2024-56615-1498918
cve_2024-56615-1498918
cve_2024-56615-1498918

[008] ..
[o08] ..
[008] ..
[o08] ..

[o08] ..

[o08] ..
[oe8] ..

[o08] ..
[008] ..
[008] ..

.11 3715877.215670:
.11 3715877.215729:
.11 3715877.215732:
.11 3715877.215734:

.21 3715902.301564:

.11 3715902.301674:
.11 3715902.301675:

.11 3715902.301676:
.11 3715902.301676:
.21 3715902.301713:

bpf_trace_printk:
bpf_trace_printk:
bpf_trace_printk:
bpf_trace_printk:

bpf_trace_printk:

bpf_trace_printk:
bpf_trace_printk:

bpf_trace_printk:
bpf_trace_printk:
bpf_trace_printk:

[LSM]
[LSM]
[LSM]
[LSM]

DEVMAP creation: max_entries=0x80000002

ALERT: SUSPICIOUS DEVMAP CREATION!
max_entries=0x80000002 enables 2 exploitable keys
This DEVMAP will be monitored for exploitation attemp

[LSM+TP] tracked DEVMAP fd=3 max_entries=0x80000002

[LSM] DELETE_ELEM: map_fd=3, key=0x80000000
[LSM] Checking suspicious DEVMAP/XSKMAP fd=3, max_entries=0|

[LSM] Exploitable range:

[0x80000000, 0x80000001] (2 keys)
[LSM] BLOCKED: Key ©0x80000000 is in exploitable range!
[LSM+TP] cleanup: fd=3 removed from suspicious_map_fds

Figure B.4. BPF LSM logs showing blocked denial-of-service attempts
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