
Politecnico di Torino

Master’s Degree in Cybersecurity
Academic Year 2024/2025

Graduation Session October 2025

Formal Security Verification of a
Standard Protocol for V2X

Communications

Supervisors:
Prof. Riccardo Sisto
Dr. Simone Bussa
Prof. Fulvio Valenza

Candidate:
Angelo Barbera





Abstract

Vehicle-to-Everything communications are technologies that enable message ex-
change between vehicles and other vehicles or infrastructure components. These
technologies are employed for the Intelligent Transportation Systems which enable
the implementation of safety-related applications such as electronic emergency
braking light, cooperative collision avoidance or traffic light announcements. The
messages exchanged between vehicles and other vehicles or infrastructure elements,
called Basic Safety Messages, contain sensitive information such as time, position,
and motion data. It is critical to protect this information to prevent users tracking
and attacks that could harm users’ safety.

To address the security issues, Crash Avoidance Metrics Partners LLC developed
the Security Credential Management System (SCMS) to support the establishment
of a Public Key Infrastructure for V2X security, which issues certificates to system
participants. The solution adopted to protect the users privacy is the use of
Pseudonym Certificates, which provide authentication while protecting user identity
and making tracking more difficult.

The objective of this thesis is to use formal verification methods to analyse the
protocol and verify its security properties. The formal analysis was performed
using the Tamarin prover. Each protocol step was formalized and sanity checks
were executed to verify the execution of the protocol. The work then focused on
the formal verification of security properties such as secrecy and authentication.



Acknowledgements

I would like to thank my supervisors, Prof. Riccardo Sisto and Prof. Fulvio Valenza,
for the opportunity to work on this thesis, and Dr. Simone Bussa for his assistance
during its development.

I am grateful to my family, especially my parents, for their support and for
making it possible to complete my studies in Turin.

I would also like to thank Giorgia, Alessandro, Paola, Davide, Alessandra, Alex,
Dalila, Davide, and Simone for their friendship and the wonderful times spent
together.

i





Table of Contents

List of Figures v

Acronyms vi

1 Introduction 1
1.1 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Vehicle-to-Everything Communications 3
2.1 Vehicle-to-Everything Model . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Security Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Asymmetric Cryptography Scheme . . . . . . . . . . . . . . . . . . 4

3 Formal Methods 6
3.1 Formal Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Security Protocol Verification . . . . . . . . . . . . . . . . . . . . . 7
3.3 Tamarin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3.1 Modeling with multiset rewriting rules . . . . . . . . . . . . 8
3.3.2 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.3 Functions and Equations . . . . . . . . . . . . . . . . . . . . 9
3.3.4 Rules and Lemmas . . . . . . . . . . . . . . . . . . . . . . . 10
3.3.5 Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.6 Observational Equivalence . . . . . . . . . . . . . . . . . . . 11
3.3.7 Partial Deconstruction . . . . . . . . . . . . . . . . . . . . . 11

4 Threat Modeling 12
4.1 Microsoft Threat Modeling Tool . . . . . . . . . . . . . . . . . . . . 12

5 Security Credential Management System 14
5.1 SCMS Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 SCMS Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3 Certificates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

iii



5.4 Butterfly Key Expansion . . . . . . . . . . . . . . . . . . . . . . . . 19
5.5 Linkage Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.6 SCMS Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.6.1 Device Bootstrapping . . . . . . . . . . . . . . . . . . . . . . 22
5.6.2 Certificate Provisioning . . . . . . . . . . . . . . . . . . . . . 23
5.6.3 Misbehavior Reporting . . . . . . . . . . . . . . . . . . . . . 25
5.6.4 Global Misbehavior Detection and Revocation . . . . . . . . 25

6 Security Credential Management System Tamarin Model 28
6.1 Builtins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2 Custom Function and Equations . . . . . . . . . . . . . . . . . . . . 29
6.3 Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.4 Preliminary Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.5 Device Bootstrapping Model . . . . . . . . . . . . . . . . . . . . . . 32
6.6 Certificate Provisioning Model . . . . . . . . . . . . . . . . . . . . . 34
6.7 Certificate Revocation Model . . . . . . . . . . . . . . . . . . . . . 38

7 Security Properties Analysis 43
7.1 SCMS Threat Modeling . . . . . . . . . . . . . . . . . . . . . . . . 43

7.1.1 Device Bootstrapping Threat Modeling . . . . . . . . . . . . 43
7.1.2 Certificate Provisioning Threat Model . . . . . . . . . . . . 45

7.2 Sanity Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2.1 Device Bootstrapping and Certificate Provisioning . . . . . . 46
7.2.2 Certificate Revocation . . . . . . . . . . . . . . . . . . . . . 48

7.3 Security Properties Verification . . . . . . . . . . . . . . . . . . . . 49
7.3.1 Secrecy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.3.2 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.3.3 Compromise of Authorities . . . . . . . . . . . . . . . . . . . 56
7.3.4 Compromise of a Vehicle . . . . . . . . . . . . . . . . . . . . 58
7.3.5 Pseudonymity . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8 Conclusions 61

Bibliography 62

iv



List of Figures

2.1 Vehicle-to-Everything model . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Tamarin scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.1 SCMS architecture scheme . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Butterfly Key Expansion scheme . . . . . . . . . . . . . . . . . . . 21
5.3 Device Bootstrapping scheme . . . . . . . . . . . . . . . . . . . . . 23
5.4 Certificate Provisioning scheme . . . . . . . . . . . . . . . . . . . . 25
5.5 Misbehavior Detection and Revocation Scheme . . . . . . . . . . . . 27

7.1 Device Bootstrapping Threat Model . . . . . . . . . . . . . . . . . . 44
7.2 Certificate Provisioning Threat Model . . . . . . . . . . . . . . . . . 46
7.3 Device Bootstrapping and Certificate Provisioning sanity checks proof 47
7.4 Certificate Revocation source lemmma . . . . . . . . . . . . . . . . 49
7.5 Certificate Revocation sanity checks proof . . . . . . . . . . . . . . 49
7.6 Secrecy property proof . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.7 Device-RA authentication proof . . . . . . . . . . . . . . . . . . . . 52
7.8 RA-PCA authentication proof . . . . . . . . . . . . . . . . . . . . . 52
7.9 PCA-Device authentication proof . . . . . . . . . . . . . . . . . . . 53
7.10 LA1-PCA authentication proof . . . . . . . . . . . . . . . . . . . . 53
7.11 LA2-PCA authentication proof . . . . . . . . . . . . . . . . . . . . 54
7.12 BSM authentication . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.13 RA-PCA authentication attack . . . . . . . . . . . . . . . . . . . . 55
7.14 PCA-Device authentication . . . . . . . . . . . . . . . . . . . . . . 56
7.15 PCA-Device authentication attack . . . . . . . . . . . . . . . . . . . 57
7.16 LA1-PCA authentication . . . . . . . . . . . . . . . . . . . . . . . . 57
7.17 LA2-PCA authentication . . . . . . . . . . . . . . . . . . . . . . . . 57
7.18 LA1-PCA authentication attack . . . . . . . . . . . . . . . . . . . . 58
7.19 LA2-PCA authentication attack . . . . . . . . . . . . . . . . . . . . 58
7.20 Attacker pseudonym certificate request . . . . . . . . . . . . . . . . 59

v



Acronyms

BSM
Broadcast Safety Message

CA
Certification Authority

CRL
Certificate Revocation List

CRLG
CRL Generator

CS
Certification Services

CSR
Certificate Signing Request

DCM
Device Configuration Manager

ECA
Enrollment Certification Authority

EE
End Entity

GCCF
Global Certificate Chain File

vi



GPF
Global Policy File

HSM
Hardware Security Module

ICA
Intermediate Certification Authority

ITS
Intelligent Transportation Systems

LA
Linkage Authority

LCI
Linkage Chain Identifier

LOP
Location Obscurer Proxy

MA
Misbehavior Authority

OBE
On-Board Equipment

PCA
Pseudonym CA

PG
Policy Generator

PKI
Public key infrastracture

PP
Pseudonym Provider

vii



RA
Registration Authority

RCA
Root Certificate Authority

RSE
Roadside Equipment

RSU
Roadside Unit

SCMS
Security Credential Management System

TLS
Transport Layer Security

V2I
Vehicle-to-Infrastracture

V2V
Vehicle-to-Vehicle

V2X
Vehicle-to-Everything

viii



Chapter 1

Introduction

This thesis explains the basics of Vehicle-to-Everything communications and their
security issues. It then introduces the asymmetric-cryptography scheme used to
achieve the pseudonymity security property, which is relevant in V2X communica-
tions.

It then outlines the importance of formal verification methods and introduces
the Tamarin prover, the tool used to prove the security properties of the Security
Credential Management System protocol.

The SCMS protocol steps and their Tamarin models are presented in detail, and
the system’s security properties are formally analysed using the Tamarin prover.

The goal of this thesis is to build a Tamarin model for each SCMS protocol
step, run preliminary checks to ensure the model’s correctness and the protocol’s
executability, and finally model and verify the main security properties the protocol
should satisfy, such as secrecy, authentication, and pseudonymity.

1.1 Thesis Structure
The structure of the thesis is the following:

• Chapter 1 - Introduction: This chapter describes the scope and the goal
of the thesis, and defines its structure.

• Chapter 2 - Vehicle-To-Everything Communications: This chapter
describes the Vehicle-To-Everything Communications, the related Security
Issues, and the Asymmetric Cryptography Scheme of the Security Credential
Management System.

• Chapter 3 - Formal Methods: This chapter introduces the Formal Verifica-
tion, the Security Protocol Verification, and outlines the main characteristics
of Tamarin.

1



Introduction

• Chapter 4 - Threat Modeling: This chapter describes the threat modeling
process and the Microsoft Threat Modeling Tool.

• Chapter 5 - Security Credential Management System: This chapter
defines the SCMS Structure, the SCMS Threat Model, the Certificates types
and requirements needed to the system, the Butterfly Key Expansion, the
Linkage Values, and the SCMS Steps.

• Chapter 6 - Security Credential Management System Tamarin Model:
This chapter introduces the Tamarin Model of the SCMS protocol.

• Chapter 7 - Security Properties Analysis: This chapter introduces the
SCMS Threat Modeling, the Tamarin Sanity Checks, and the verification of
the Security Properties.

• Chapter 8 - Conclusion: This chapter summarizes the results and propose
possible improvements.

2



Chapter 2

Vehicle-to-Everything
Communications

2.1 Vehicle-to-Everything Model

Vehicle-to-Everything (V2X) communications are technologies that enable data
exchange between vehicles and everything else. It includes Vehicle-to-Infrastructure
(V2I) and Vehicle-to-Vehicle (V2V) communications, which covers communications
between vehicles and other vehicles or infrastructure components such as Roadside
Units (RSU) [1].

These technologies are necessary to the development of Intelligent Transportation
Systems (ITS), especially for safety-related applications including local danger
warning, electronic emergency braking light and cooperative collision avoidance,
traffic light announcements, as well as service announcements and provisioning
such as internet access. These applications require On-Board Equipments (OBEs)
in the vehicles communicating with RSUs and others OBEs.

V2V communications are based on Broadcast Safety Messages (BSMs), which
include sender’s time, position, speed and other useful information. Each BSM is
digitally signed by the sender, the receiver verifies the signature then evaluates the
message and decides whether to display a warning to the driver.

V2I communications need authentication for broadcast messages sent by RSUs
and the establishment of a communication channel between OBE in the vehicle
and RSU [2]. A general scheme of V2X communication is shown in Fig. 2.1

3



Vehicle-to-Everything Communications

OBU OBUV2V

RSU Infrastructure

V2I

Figure 2.1: Vehicle-to-Everything model

2.2 Security Issues
Since V2X communications are also related to safety applications, it is important
to implement appropriate security measures. Other than protecting against attacks
which aim to compromise the integrity and the availability of the system, it is also
needed to address privacy issues.

The BSMs exchanged contain sensitive information (e.g., position, speed, vehicle
path) which can also be used to track the users of the vehicles. A solution to this
problem is to use pseudonyms, which can be used for authentication but do not
contain information that could reveal the real identity. A user can use different
pseudonyms to avoid linking between actions performed using the same pseudonym.
Moreover, the possibility to obtain the real identity of a pseudonym should be
reserved only to authorized authorities for specific reasons. To improve the privacy
of the users it is possible to design the system in order to require the cooperation
between multiple parties to resolve a pseudonym to the real identity.

2.3 Asymmetric Cryptography Scheme
There are different schemes to achieve pseudonymity, they differ in the cryptography
mechanism used. This section presents the asymmetric cryptography scheme, on
which the Security Credential Management System (SCMS) is based, which will be
presented later.
The vehicles can receive public key certificates and key pairs. The certificates are
used as pseudonyms, they do not contain identifying information. The secret keys
are used to sign the sent messages, the signature will be verified by the receiver
using the corresponding public key. The phases of this scheme are the following:

• Pseudonym Issuance: there is a hierarchy of Certification Authorities (CAs),
the CAs issue long-term identity certificates, while pseudonyms are issued by

4



Vehicle-to-Everything Communications

Pseudonym Providers (PPs). Each pseudonym is valid for a limited period of
time.

• Pseudonym Use: Pseudonyms are used to sign the sent messages, the public
and private keys are managed by a Hardware Security Module (HSM).

• Pseudonym Change: When a pseudonym expires the OBE loads a new
pseudonym from its store or requests a new one from the PP.

• Pseudonym Revocation: A pseudonym can be revoked, as well as the
long-term identity, preventing the acquisition of new pseudonyms.

5



Chapter 3

Formal Methods

3.1 Formal Verification
In the traditional development cycle the correctness is verified after the implemen-
tation, and the proper patches are then applied. This approach can lead to security
issues because not all the bugs can be detected during the test phase.

Formal verification is a method used to prove the correctness of a model based
on its specifications using a formal model of the system. This method provides
the assurance that the system satisfies the specifications in a rigorous way. One of
the challenges of formal verification is that a problem may be undecidable (it is
not possible to create an algorithm that can always solve the problem correctly),
and even if a problem is decidable it can be too complex to solve in a reasonable
amount of time or resources. Hence the tool may use approximation producing
false negatives or false positives and may require human interaction. Moreover, the
properties are verified against the model, not the real system, so the results of the
verification depends on the quality of the model. Lastly, formal verification tools
require an effort that it is not always feasible with limited resources. [3]

The mathematical abstraction of the system and its properties are specified using
a language that depends on what is needed to model, mainly a logical language is
used. The two possible approaches for verification are: model checking and theorem
proving.

A model checker takes as input a model and the property to verify. It returns
true if the property holds or it returns false and a counterexample if the model
does not satisfy the property.

A theorem prover takes as input a formal system and a property, it may also
works interactively with human assistance. It returns true and a proof if the
property can be proved, otherwise if the proof is not found it does not provide any
information.

6



Formal Methods

Both methods allow to verify if a property is true, the model checker provides a
proof of non-validity using a counterexample, while the theorem prover provides a
proof of validity. The big difference is that the theorem prover does not provide
any information if it is not able to find a proof.

3.2 Security Protocol Verification
Security protocols is a field of application of the formal methods, typically the
aim is proving security properties such as authentication, integrity, confidentiality
or other security properties that the protocol must satisfy. There are two main
approaches to model a security protocol: symbolic modeling and computational
modeling.

In a symbolic model the data are abstract data types, the cryptographic opera-
tions are modelled using algebraic operators with ideal properties. The attacker
can read, delete, modify, create messages and execute cryptographic operations,
but it cannot guess secrets. The goal is to prove that attacks are impossible with
these assumptions.

In a computational model the data are modelled as bitstrings, the cryptographic
algorithms are represented through algorithms, the cryptosystem flaws are modelled,
and the protocol runs are probabilistic. The attacker is any polynomial-time
algorithm. The goal is to prove that does not exist an attacker which is able to
reach a specific objective in a polynomial time with a non-negligible probability.

Computational models are more detailed than the symbolic models, however it
is needed more effort to formalise the protocol and to prove its properties.

3.3 Tamarin
The Tamarin prover is a tool for symbolic modeling and analysis of security
protocols. It takes as input a model of a system and the specifications of the
security properties. Tamarin is a constraint solver that finds system behaviours
that are consistent with the system model and the negation of the property, these
behaviours represent attacks. Tamarin may not always terminate, there are three
different possibilities:

• Tamarin terminates and finds an attack on the protocol.

• Tamarin produces a proof demonstrating that the protocol is secure and that
there are no possible attacks.

• Tamarin fails to terminate (e.g., it may run out of memory or require too
much time) and and no information about the presence of attacks is obtained.

7



Formal Methods

Tamarin allows user to inspect proofs and interact with the prover during proof
construction, which can enable termination or reduce the time required to reach a
result. [4] The Tamarin workflow is shown in Fig. 3.1.

Property P

System S

Constraint
from ¬P

Constraint
from S Constraint

solver

Solution exists

No solution exists

Run out of time or memory

Attack found

Proof

Interactive modeProvides hints
for the prover

Input
Tamarin prover

Figure 3.1: Tamarin scheme

Tamarin supports two modeling languages to model the protocol, the adversary,
and the properties.

The first one is based on multiset rewriting rules, it is Turing-complete, and
allows to define a transition system. The state of a transition system is a multiset
that represents the states of each protocol participant, the adversary and the
communication channels. The transitions model the state evolution. Moreover
Tamarin supports equations to specify cryptographic operators.

The second one is used to specify the properties of the protocol, it is based on
first-order logic and supports quantification over time. It is used to verify whether
a security property holds during the protocol execution.

Tamarin also supports another language for modeling through the SAPIC
(Stateful Applied PI-Calculus) module. A protocol can be modelled using rules or
as a process. The process is converted to rules according to the semantic of the
process calculus.

3.3.1 Modeling with multiset rewriting rules
Multiset rewriting rules are used to specify the transitions of the systems. As an
example, the following rule is used to model the registration of a public key in a
Public Key Infrastructure (PKI):

rule register_pk:
[ Fr(~ltk) ]

--[ pk_registration(pk(~ltk)) ]->
[ !Ltk($A, ~ltk), !Pk($A, pk(~ltk)), Out(pk(~ltk)) ]

8



Formal Methods

All rules have the form:

rule rule_name: [ L ] --[ A ]-> [ R ]

where L (left-hand side), A (action facts), and R (right-hand side) are multiset
of facts. It means that if the facts in L exist in the current state of the system,
we can make a transition replacing these facts with the facts in R. The facts in
A are used to specify the rules that express the properties of the protocol. When
the transition system’s initial state is empty only the rules with an empty set as
L apply. A fact with the ’!’ prefix is a persistent fact, meaning that it is never
consumed when a rule is applied. All the other facts are linear facts, meaning that
the fact are removed from the state when a transition occours. It is required that
all variables in A and R also occour in L, the only exception is for public variables.

Tamarin includes a special rule used to generate the Fr facts:

rule Fresh: [ ] --[ ]-> [ Fr(~x) ]

where the type of ~x is fresh, meaning that the value is random, unique and
unpredictable.

3.3.2 Terms
The rules are formed by terms, there are several basic terms:

• $x represents a public variable that can be instantiated with any public
constant, which is known by the adversary.

• ~x represents a fresh variable that can be instantiated with any fresh value,
representing randomly generated values.

• ’x’ represents a public constant.

• x represents a variable without type declaration.

3.3.3 Functions and Equations
Rules can also contain functions used to model algorithms or known functions.
They have a name, an arity (the number of arguments) specified in the function
declaration. The adversary can use all functions to build new terms except for
functions annotated with [private] after their declaration. The properties of
functions can be specified using equations, as shown in the following example:

functions: senc/2, sdec/2

equations: sdec(senc(m, k), k) = m

9



Formal Methods

A set of equations (with a set of terms) defines an equational theory, which
specifies when two terms can be considered equal. The = sign represents equality
with respect to the equational theory.

Without specifying an equational theory two terms are equal only if they are
syntactically identical. Tamarin has default built-in models for cryptographic
primitives such as hashing defines a hash function, asymmetric-encryption and
symmetric-encryption defines asymmetric and symmetric encryption respectively,
diffie-hellman defines Diffie-Hellman exponentiation.

3.3.4 Rules and Lemmas

A finite sequence of action facts represents a trace, a trace property represents a
specific protocol behaviour based on sequence of traces, and a trace property is
specified using a lemma. A lemmma is based on first-order logic formulas, the
occourrences of actions can be associated to a timepoint to express time constraints.
As an example, considering the following rules and lemma

rule send:
[ Fr(~x) ]

--[ Sent(~x) ]->
[ Out(~x) ]

rule receive:
[ In(~x) ]

--[ Received(~x) ]->
[ ]

lemma sent_before_received:
"All x #i. Received(x) @#i ==> Ex #j. Sent(x) @#j & #j < #i"

the rule send and receive model the sending and the receiving of a message,
while the lemma sent_before_received states that the action fact sent(x) must
occour before received(x). All is the universal qunatifier, Ex is the existential
qunatifier, ==> is the implication, & is the conjunction, #t represents a timepoint
and event @#t specifies that event happened at timepoint #t.

All lemmas are considered to be all-traces, meaning that the formula must hold
for all the protocol traces. It is possible to use the keyword exists-trace, after the
rule name and before the formula, to specify that the formula must hold for at
least one trace.

10



Formal Methods

3.3.5 Restrictions
Tamarin provides the restriction keyword to specify first-order logic formulas to
limt the set of traces to consider. Restrictions are trace properties, but unlike
lemmas they are not proved. The following is an example of restriction to model
the equality.

restriction Equality:
"All x y #i. Eq(x, y) @#i ==> x = y"

This restriction ensures that in any rule with Eq(x, y) action fact, x and y are
equal.

3.3.6 Observational Equivalence
Tamarin also supports the definition of a property, called observational equivalence,
over a set of traces. The prover verifies whether the attacker is able to distinguish
the behaviour of the two systems originating from the same input theory. These
two systems differ for the terms inside the diff(x, y) operator.

Tamarin explores all possible executions by replacing the operator with x or y
and checks whether each trace of one system can be mirrored int the other one. If
Tamarin cannot to find a mirror, this indicates either the presence of an attack or
that the tool failed to find a mirror. In observational equivalence mode Tamarin
uses an approximation of the observational equivalence, hence it may fail to prove
that the two systems are equivalent.

3.3.7 Partial Deconstruction
Tamarin searches for the sources of each protocol and KU fact. A source is a
partial execution that generates a fact. To generate these sources, Tamarin builds
a constraint system containing a constraint that requires the presence of these facts
and runs a constraint solver. If a chain constraint cannot be resolved, it remains
unsolved, generating a partial deconstruction. A partial deconstruction may cause
non-termination. There are two approaches to solve partial deconstruction: source
lemmas and auto-sources.

A source lemma is marked by the annotation [sources] placed after its name.
This type of lemma restricts the sources of a fact, preventing partial deconstructions.

Tamarin can be executed with the -–auto-sources flag, in this case the prover
tries to automatically generate source lemmas. However this process may gen-
erate source lemmas that cannot be proved, or it may fail to solve all partial
deconstructions.

11



Chapter 4

Threat Modeling

Threat modeling is a structured process for collecting and analysing of all informa-
tion needed to evaluate the security of a system. The result of this process is the
threat model, a list of the potential threats, and the countermeasures to apply to
mitigate or prevent the threats. [5]

The main threat modeling steps are:

1. Assessment Scope: Analyse the target system of the threat modeling process
and build the threat model.

2. Threat Identification: Analyse the model to identify the potential threats.

3. Countermeasures Identification: Identify the countermeasures to mitigate
or avoid the identified threats.

4. Final Assessment: Verify the consistency of the threat modeling process.

There are several tools that support threat modeling, such as OWASP Threat
Dragon or Microsoft Threat Modeling Tool.

4.1 Microsoft Threat Modeling Tool
Microsoft Threat Modeling Tool is a software that allows to build a threat model
of the analysed system and to automatically identifies potential threats [6]. The
threat model is constructed from basic elements, each element can be customized
by specifying specific properties to make the analysis more accurate:

• Process: An element that contains specific logic or performs computations.

• External Interactor: An actor outside the system boundary that interacts
with it.

12



Threat Modeling

• Data Store: A persistent storage for data.

• Data Flow: Movement of data between processes, data stores, and external
interactors.

• Trust Boundary: A line that separates areas with different trust levels.

The threat analysis is based on the STRIDE model:

• Spoofing: Pretending to be another entity.

• Tampering: Unauthorized modification of data at rest or messages in transit.

• Repudiation: Denying having performed an action.

• Information Disclosure: Information exposed to unauthorized parties.

• Denial of Service: Making a system or a service unavailable.

• Elevation of Privilege: Gaining higher privilege than intended.

For each threat, the tool returns the STRIDE category, a description, and a
priority (High, Medium, Low).

13



Chapter 5

Security Credential
Management System

The Security Credential Management System (SCMS) [2] implements a PKI with
specific characteristics to support the V2X features. The most important aspects
are its size, since it has to support about 300 billion certificates per year, and the
balance between security and privacy.

The SCMS supports several V2I applications category, such as infrastracture
originating broadcast messages and service announcement and provisioning.

5.1 SCMS Structure
A SCMS component is intrinsically-central if it has exactly one distinct instance
overall, and central if it has exactly one distinct instance in the specific instantiation
of the system. Different instances of components have different identifiers and
cryptographic materials. The components that are not central can have multiple
instances. The only intrinsically-central components are the Misbehavior Authority
(MA), the Policy Generator (PG) and the SCMS Manager.

The overview of the SCMS architecture is shown in Fig. 5.1. The solid lines
represent the communications between the components, the dashed lines represent
the chain of trust, while the dotted lines indicate secure out-of-band communication.

The connections with the Location Obscurer Proxy (LOP) are anonymized, with
all location information removed from messages.

The components marked V/I provide separate V2V and V2I functionality, while
the components marked X provide general functionality for the V2X system. All
the components communicate using protected and reliable communication channel
such as Transport Layer Security (TLS).

14



Security Credential Management System

Figure 5.1: SCMS architecture scheme

The components that constitute the SCMS are:

• SCMS manager: Ensures the SCMS runs efficiently and fairly by setting
policies and procedures for handling misbehavior reports and revocation
requests in an accurate way.

• Certification Services (CS): Defines the certification process and identifies
the types of devices eligible to receive digital certificates.

• CRL store: Stores and distributes CRLs.

• CRL broadcast: Broadcasts the CRLs.

15



Security Credential Management System

• Device: An End Entity (EE) that sends or receives messages (e.g., a RSU or
a OBE).

• Device Configuration Manager (DCM): Confirms to the ECA that a
device qualifies for enrollment certificate, and provides the necessary configu-
ration settings and certificates during bootstrapping.

• Enrollment Certification Authority (ECA): Issues enrollment certificates.

• Intermediate Certification Authority (ICA): Acts as a secondary CA
to protect the RCA from traffic and attacks. The RCA issues the ICA’s
certificate.

• Linkage Authority (LA): Generates pre-linkage values, which are used to
support certificate revocation.

• Location Obscurer Proxy (LOP): Changes source addresses to hide the
requesting device’s location, preventing network addresses from being tied to
physical locations.

• Misbehavior Authority (MA): Processes reports of device misbehavior,
flags devices that are malfunctioning or acting maliciously, and adds them
to the CRL to revoke their access. Additionally, it starts the procedure to
associate a certificate identifier with the matching enrollment certificates and
record them in the RA’s internal blacklist. The MA contains the Global
Misbehavior Detection used to identify the misbehaving devices and the CRL
Generator (CRLG) which generates and distributes the CRL.

• Registration Authority (RA): Validates and processes device requests,
creating individual certificate requests to the PCA from each validated device
request. Additionally, the RA supplies devices with authenticated information
about SCMS configuration changes.

• Pseudonym CA (PCA): Issues pseudonym, identification, and application
certificates.

• Policy Generator (PG): Manages the Global Policy File (GPF) containing
global configuration information, and the Global Certificate Chain File (GCCF)
containing the trust chains of the SCMS.

• Root Certificate Authority (RCA) : It is the root of the certificate chain.
It issues the certificates for the ICA and SCMS components. It holds a self-
signed certificate, and a ballot in which a quorum of electors votes establishes
trust in the RCA.

16



Security Credential Management System

• Electors: Sign ballots to endorse or revoke a RCA or an elector. Electors
have self-signed certificates, all the entities of the system trust the initial set
of electors.

5.2 SCMS Threat Model
The threat model is based on an unpublished risk assessment, considering only
V2V applications for driver notification, not for control or traffic management. A
V2V safety application is designed to notify the driver in case of danger but it is
not able to control the vehicle.

The main risk is that a users disable the safety system because of too many false
warning originating from malicious users. If too many users disable the system, it
will fail because it is depends on the collaborative participation of most vehicles.

Moreover, the are privacy risks resulting from insider and outsider attacks on
the SCMS.

In conclusion, the SCMS must be protected against attacks on users’ privacy
and against misbehaving messages that cause false warnings.

The SCMS is designed assuming the actual cryptographic algorithms are secure,
but at the same tame it is modular and flexible, allowing the cryptographic
algorithms to be upgraded if they are broken by quantum computers.

Privacy by Design and Misbehavior Detection and Revocation are the two
elements used to protect the SCMS from the risks mentioned above:

• Privacy by Design: The system must be designed to make it difficult
to track the vehicle (and thus its owner) using the transmitted data. For
this purpose the applications using unicast and multicast messages should
employ encryption and identity protection mechanisms, and these applications
should be opt-in, giving participants the freedom to choose whether to use
the service after evaluating privacy risks and benefits. Applications that
use broadcast messages must prevent an attacker from determining whether
BSMs transmitted in two different locations originate from the same device.
To protect against insider attackers (who have access to BSMs and other
information), the SCMS is divided into components managed by different
organizations, requiring that at least two components must cooperate to gain
enough information to track a device. To protect against outsider attackers
(who have access only to BSMs), the EE devices use a large number of
certificates that are rotated frequently (e.g., every 5 minutes).

• Misbehavior Detection and Revocation: A CRL is periodically dis-
tributed. The devices use the CRL to reject messages originating from revoked
devices. Moreover, the SCMS stores a list of revoked devices to deny any

17



Security Credential Management System

certificate requests from them. Misbehavior detection is the process used to
identity misbehaving devices. It includes local misbehavior detection performed
by vehicles to detect malfunctions and send misbehavior reports to the SCMS,
and a global misbehavior detection to analyse the misbehavior reports and
decide whether to revoke a device.

5.3 Certificates
Given the security risks of the SCMS, certificates must satisfy the following require-
ments:

• Privacy, size and connectivity: Certificates should have a limited validity
period to protect user privacy, but devices cannot store a large number of
certificates due to memory and cost limitations. Moreover, vehicles cannot
continuously connect to the SCMS to obtain new certificates.

• CRL size: Instead of including all revoked certificates in a CRL, a mechanism
is used to revoke certificates without revealing those used by the device prior
to revocation.

• Certificate waste and Sybil attack: Periodically changing certificates
for privacy reasons results in a large number of unused certificates. Another
solution is to use certificates that remain valid simultaneously for a long period
of time, however this enables spoofing attacks such as the Sybil attack if a
single device is compromised.

The proposed model uses certificates with a validity period of 1 week and a
minimum of 20 certificates valid simultaneously, these parameters balance privacy
and storage requirements. Moreover, devices do not need to request new certificates,
since the SCMS will continue generating them until a device stops collecting them
for an extended period of time. The devices can download the certificates in batches
provided by the RA.

The SCMS supports different application types, hence, it is designed to work
with different certificate types:

• RSE enrollment certificates: Provided during the bootstrap phase, they
are used to request signing and encryption certificates for RSEs and provide
pseudonymity.

• RSE application certificates: Used by RSEs to sign broadcast and service
announcement messages, and to provide an encryption key to OBEs to send
encrypted data.

18



Security Credential Management System

• OBE enrollment certificates: Provided during the bootstrap phase, they
are used to request signing and encryption certificates for OBEs.

• OBE pseudonym certificates: They provide pseudonymity, unlinkability
and efficient revocation using shuffling, linkage values, butterfly key expansion
and encryption of certificates by the PCA to OBE. They are used to sign the
BSMs broadcasted by OBEs and for authorization purposes.

• OBE identification certificates: Used for OBE identification, they do not
provide pseudonymity or unlinkability. They may employ shuffling, encryption
by the PCA to OBEs and butterfly key expansion.

The properties a certificate may satisfy, depending on its type, are:

• Unlinkability: A device using different certificates, and therefore different
identities, cannot be traced.

• Pseudonymity: The certificate does not contain real-word identifiers.

• Butterfly Key Expansion: A mechanism for efficiently generating crypto-
graphic keys for certificates.

• Shuffling: Performed by the RA, when combined with butterfly key expansion
does not allow the PCA to identify the certificates assigned to a specific device.

• Linkage values: They are values contained in the certificates allowing efficient
revocation.

5.4 Butterfly Key Expansion
The standard process for requesting a certificate requires generating a key pair on
the device and sending the Certificate Signing Request (CSR) to the PKI. Then,
the CA signs the certificate and returns it to the requester. This approach requires
generating a large number of cryptographic key pairs on the device.

Butterfly Keys allow an OBE to request certificates that use different signing
keys, and to have those certificates encrypted under different encryption keys,
all with a single request that contains a signing public key seed, an encryption
public key seed and two expansion functions. The PCA encrypts the certificates for
delivery to the OBE, preventing the RA from associating the certificate contents
with a specific OBE. A scheme of butterfly key expansion is shown in Fig. 5.2.

The butterfly key expansion is based on elliptic cryptography. Given P and
A = aP , it is hard to compute a. The parties agree on a base point G of order l.
The caterpillar keypair is an integer a and a point A = aG. The value A and the

19



Security Credential Management System

signing expansion function fk(l) are provided to the RA by the certificate requester.
The expansion function is a pseudo-permutation on the integers mod l, it is used
to generate points on the NIST curve NISTp256, and it is defined as follows:

fk(l) = f int
k (l) mod l

where f int
k (l) is the big-endian integer representation of

DMk(x + 1) ∥ DMk(x + 2) ∥ DMk(x + 3)

where DMk(m) = AESk(m) ⊕ m is the AES encryption of m using key k in
Davies-Meyer mode, x + 1, x + 2 and x + 3 are computed incrementing x by 1 each
time.

The 128 bit input x for AES is obtained from the counter l = (i, j), iterated by
the RA, as (032 ∥ i ∥ j ∥ 032). i is a value which may represent a week index, j is
a counter within i representing the number of certificates per i. These values are
set by the SCMS Manager. The expansion function for encryption keys is defined
analogously, except x is derived as (132 ∥ i ∥ j ∥ 032).

The RA generates up to 2128 cocoon public keys as:

Bl = A + fk(l) ∗ G

The corresponding private keys, known only to the OBE are:

bl = a + fk(l)

The RA includes the cocoon public keys in the certificate request sent to the
PCA. However, these public keys are not directly used by the PCA, because the
RA could recognize the public keys in the certificates and track the OBE, knowing
which public keys originate from each request. For each cocoon public key Bl, the
PCA generates a random value cl and computes:

Cl = clG

The butterfly public key included in the certificates is:

Bl + Cl

The PCA returns to the RA the certificate and the private key reconstruction
value c, encrypted to the OBE. The private keys are updated by the OBE as:

b
′

l = bl + cl

20



Security Credential Management System

To prevent the PCA from matching the certificates with a specific OBE, each
certificate is encrypted using a different encryption key.

The encryption keys are generated using the butterfly mechanism. The OBE
generates a caterpillar encryption public key:

H = hG

The RA expands it to generate the cocoon public encryption keys, which the
PCA will use to encrypt the responses:

Jl = H + fe(l)G

Device

Private key b1

Private key b2

Private key bn

.

.

.

Cocoon public key B1

SCMS
RA

Cocoon public key B2.
.
.

Cocoon public key Bn

PCA

Butterfly public key B1 + c1 * G

Butterfly public key B2 + c2 * G

Butterfly public key Bn + cn * G

.

.

.
Shuffling

Patch private keys bl
' = bl + cl

Public key and reconstruction value

Figure 5.2: Butterfly Key Expansion scheme

5.5 Linkage Values
For each set of pseudonym certificates issued to a device, the SCMS inserts the
linkage values to support revocation of certificates with validity greater than or
equal to the time period i.

The linkage values are computed by the PCA by XORing the linkage values
provided by LA1 and LA2. Each LA is assigned a 32-bit identity string, denoted
la_id1 and la_id2. For a certificate set, each LA chooses a random 128-bit
string called the initial linkage seed, denoted ls1(0) and ls2(0). The linkage chain
identifiers (LCIs) are the initial linkage seeds. For each time period i > 0, each LA
computes the linkage seed as follows:

ls1 = Hu(la_id1 ∥ ls1(i − 1)), ls2 = Hu(la_id2 ∥ ls2(i − 1))

21



Security Credential Management System

where Hu(m) denotes the u (suggested value: 16) most significant bytes of the
SHA-256 hash of m. Each LA encrypts the linkage seeds and uses the result to
compute pre-linkage values:

plv1(i, j) = [E(ls1(i), (la_id1 ∥ j)) ⊕ (la_id1 ∥ j)]v

plv2(i, j) = [E(ls2(i), (la_id2 ∥ j)) ⊕ (la_id2 ∥ j)]v
where E(k, m) denotes AES encryption of m using the key k, and [a]v denotes

the v (suggested value: 9) significant bytes of a.
The LAs encrypt the pre-linkage values for the PCA, and forward them to

the RA. The PCA XORs the pre-linkage values to compute the linkage value
lv = plv1 ⊕ plv2.

5.6 SCMS Steps
The SCMS supports four main functionalities:

• Device Bootstrapping: The device receives all the information needed to
join the SCMS.

• Certificate Provisioning: The device receives all the certificates needed to
participate in the SCMS.

• Misbehavior Reporting: Process used to report misbehaving devices to the
SCMS.

• Global Misbehavior Detection and Revocation: Process to detect
misbehavior and, when necessary, revoke certificates of misbehaving devices.

5.6.1 Device Bootstrapping
The device bootstrapping phase provides the device with all the information
required to communicate with all SCMS components. This process requires the
participation of the device, the DCM, the ECA, and the CS components. The
DCM communicates with the device over an out-of-band secure channel. A scheme
of device bootstrapping process is shown in Fig. 5.3. The bootstrapping process is
divided into two steps:

1. Initialization: The device receives the certificates needed to verify and trust
received messages. The device also receives the certificates of all electors, all
root CAs, the ICAs, the PCAs, the MA, the PG, and the CRLG.

22



Security Credential Management System

2. Enrollment: The device receives the enrollment certificate used to sign
outgoing messages. The device also receives the certificates of the ECA and
the RA. During enrollment, the CS provide the DCM with information about
eligible devices.

Figure 5.3: Device Bootstrapping scheme

5.6.2 Certificate Provisioning
The certificate provisioning phase provides the device with the certificates needed
to participate in the SCMS. A scheme of this process is shown in Fig. 5.4. The
pseudonym certificate provisioning explained in this section requires specific pro-
cesses to protect user privacy and reduce the computational effort required by
devices:

• Provisioning: The SCMS is designed such that the RA, which delivers
pseudonym certificates to devices, cannot read certificate contents because the
certificates are encrypted for the devices by the PCA. The PCA generates the
pseudonym certificates but is not aware of their recipients, since the certificate
requests are shuffled by the RA before being sent to the PCA.

23



Security Credential Management System

• Revocation: The PCA inserts linkage values generated by the LAs into the
certificates. The MA unmasks the linkage values by publishing a secret linkage
seed pair on the CRL for certificate revocation. However, to track or revoke a
device, the LAs, the PCA, and the RA must collaborate.

• Obscuring Physical Location: The LOP obscures the physical location of
the device from the RA and the MA.

• Butterfly Key Expansion: This mechanism prevents correlating the public
key seeds in the certificate requests with the generated certificates.

The certificate provisioning process is devided in 6 steps:

1. Device Certificate Request: The device creates a certificate request gener-
ating the butterfly key seeds and signs it using its enrollment certificate. The
device sends the request and the enrollment certificate encrypted to the RA
via the LOP.

2. RA handles request: The RA decrypt the request, verifies the device’s
enrollment certificate signature and that it is not revoked, and checks if the
only request by the device. If all checks succeed the RA performs the butterfly
key expansion. The RA collects several requests, the linkage values received
by the LAs, and shuffles them.

3. RA sends certificates requests: The RA sends the pseudonym certificate
requests to the PCA. Each request contains a to-be-signed certificate, the
response encryption public key, the pre-linkage values plv1(i, j) and plv2(i, j),
and the hash of the pseudonym certificate request itself.

4. PCA generates certificate: The PCA decrypts the pre-linkage values and
computes the linkage value lv(i, j) = plv1(i, j) ⊕ plv2(i, j). It adds the linkage
values to the certificate and signs it. Then the PCA generates a private key
reconstruction value, and encrypts that value and the pseudonym certificate
using the response encryption public key.

5. PCA sends certificates to the RA: The PCA signs the message created
in step 4 and sends it to the RA.

6. RA bundles certificates: The RA receives the responses from the PCA and
bundles them into batches per device for download.

24



Security Credential Management System

Figure 5.4: Certificate Provisioning scheme

5.6.3 Misbehavior Reporting
Misbehavior reporting aims to report the intentional or unintentional misbehaving
devices to the SCMS. The misbehavior detection algorithms can be executed on
the devices or within the SCMS. In the second case the SCMS informs participants
about the certificates that are no longer trustworthy.

Misbehavior reports are sent by devices to the RA, which shuffles the reports to
prevent reporter tacking and then forwards them to the MA. A report includes the
potentially bogus BSMs, the corresponding pseudonym certificates, the misbehavior
type, and the reporter’s pseudonym certificate. The report is signed, encrypted,
and sent to the MA.

5.6.4 Global Misbehavior Detection and Revocation
Global Misbehavior Detection aims to detect system misbehaviors, investigate them,
and, if necessary, revoke the certificates of those devices. This process is executed
by the MA. Fig. 5.5 illustrates this process. The following steps explain the phases

25



Security Credential Management System

of the process. Step 1 is Misbehavior Reporting, Step 2 is Global Misbehavior
Detection, and Steps 3-4 cover Misbehavior Investigation.

• Step 1: The MA receives misbehavior reports containing the reported
pseudonym certificate.

• Step 2: The MA runs the global misbehavior detection algorithms to identify
the device to investigate.

• Step 3: The MA requests that PCA maps linkage values contained in the
pseudonym certificate to the corresponding encrypted pre-linkage values. The
PCA returns the encrypted pre-linkage values to the MA.

• Step 4: The MA requests to the LAs to find the set of encrypted pre-linkage
values that correspond to the same device.

If the Misbehavior Investigation discovers that a device has misbehaved, the
following steps are executed to revoke the device’s certificates. Steps 3-4 relate to
Misbehavior Investigation.

• Step 3: The MA requests to the PCA to map the linkage value of the target
pseudonym certificate to the corresponding hash value of the RA-to-PCA
pseudonym certificate request. The PCA returns the requested information.

• Step 4: The MA sends the hash of the pseudonym certificate request to the
RA which is able to map it to the corresponding enrollment certificate to
add it in its blacklist. The MA also receives the hostnames of the LAs that
participated in the issuance of the pseudonym certificates linkage values, and
their LCIs.

• Step 5: The MA requests to the LAs to map the LCIs, lci1 and lci2 to
the linkage seeds ls1(i) and ls2(i), where i is a time period. The LAs also
returns to the MA their LA IDs, la_id1 and la_id2. A linkage seed and the
corresponding LA ID only allow to compute the forward linkage seeds (for
j ≥ i ), providing backward privacy.

• Step 6: The MA adds the linkage seeds ls1(i) and ls2(i) and the LA IDs
la_id1 and la_id2 to the CRL. Finally the CRLG signs and publishes the
CRL.

26



Security Credential Management System

Figure 5.5: Misbehavior Detection and Revocation Scheme

27



Chapter 6

Security Credential
Management System
Tamarin Model

In the following sections, the Tamarin model of the SCMS for the Device Boot-
strapping, Certificate Provisioning, and Certificate-Revocation protocol steps is
presented.

6.1 Builtins
The built-in models used are signing, asymmetric-encryption, and hashing.

builtins: signing, asymmetric-encryption, hashing

Signing
This model adds the following functions:

• true/0: Denotes the output value returned by a successful signature verifica-
tion.

• pk/1: Denotes the algorithm to compute a public key from a private key.

• sign/2: Represents a signature algorithm. It takes as input a message and a
private key.

• verify/3: Represents a signature verification algorithm. It takes as input
the signature, the message and a public key. The output is equal to true if
the signature is verified successfully.

28



Security Credential Management System Tamarin Model

and defines the following equation:
verify(sign(m, k), m, pk(k)) = true.

Asymmetric-encryption
This model adds the following functions:

• aenc/2: Represents an asymmetric encryption algorithm. It takes as input a
message and a public key.

• adec/2: Represents an asymmetric decryption algorithm. It takes as input
an encrypted message and a private key.

and defines the following equation:
adec(aenc(m, pk(k)), k) = m.

Hashing
This model adds the function h/1 to model a hash function that takes a message
as input.

6.2 Custom Function and Equations
In addition to the functions and rules provided by the built-in Tamarin models, we
define custom functions specifically to model the butterfly-key expansion.

functions: bksum/2, bksign/2, bkverify/3, bpk/1, bkaenc/2, bkadec/2,
myxor/2

• bksum/2: Models the sum operation.

• bksign/2: Represents a signature algorithm. It takes as input a message and
a butterfly generated private key.

• bkverify/3: Represents a signature verification algorithm. It takes as input
the signature, the message and a butterfly public key.

• bpk/1: Denotes the algorithm to generate a public key from a private key.

• bkaenc/2: Models an asymmetric encryption algorithm. It takes as input a
message and a butterfly public key.

• bkadec/2: Models an asymmetric decryption algorithm. It takes as input an
encrypted message and a butterfly private key.

• myxor/2: Models a simple XOR operation.

29



Security Credential Management System Tamarin Model

The defined equations are the following:

equations:
bkadec(bkaenc(message,bksum(bpk(enc_sk_seed),bpk(enc_expansion_fun))),
bksum(enc_sk_seed,enc_expansion_fun)) = message

bkverify(bksign(message,bksum(bksum(sign_sk_seed, sign_expansion_fun),
rec_value)),m,bksum(bksum(bpk(sign_sk_seed),bpk(sign_expansion_fun)),
bpk(rec_value))) = true

6.3 Restrictions
Two restrictions are needed to model the protocol: equality and onlyonce. The
equality restriction ensures that, in any rule with an Eq(x,y) action, x and y are
equal. The onlyonce restriction is used to specify that an action occours at most
once in a trace.

restriction equality:
"All x y #i. Eq(x, y) @#i ==> x = y"

restriction onlyonce:
"All x #i #j. OnlyOnce(x) @#i & OnlyOnce(x) @#j ==> #i = #j"

6.4 Preliminary Rules
The following section explains the rules common to all protocol steps.

Public Key Registration
This rule models the registration of a public key in a PKI infrastructure. The
premise contains the generation of a secret long term key (∼ltk), while in the
conclusion the public key (pk(∼ltk)) is transmitted over the public output channel.

rule register_pk:
[ Fr(~ltk) ]

--[ Secret(~ltk) ]->
[ !Ltk($A, ~ltk),

!Pk($A, pk(~ltk)),
Out(pk(~ltk)) ]

Authorities Initialization
These rules model the initalization of the RCA, the MA, the ICA, the PCA, the
ECA, the RA, the LA1, and the LA2. The OnlyOnce fact used in these rules is
needed to ensure that each authority is initialized only once.

30



Security Credential Management System Tamarin Model

rule rca_initialization:
[ !Ltk($RCA, ~ltk_rca) ]

--[ OnlyOnce(’RCA_initialization’),
OnlyOnce($RCA),
RCA_Initialization($RCA) ]->

[ !RCA_Initialized($RCA, ~ltk_rca, pk(~ltk_rca)) ]

rule ma_initialization:
[ !Ltk($MA, ~ltk_ma) ]

--[ OnlyOnce(’MA_initialization’),
OnlyOnce($MA),
MA_Initialization($MA) ]->

[ !MA_Initialized($MA, ~ltk_ma, pk(~ltk_ma)) ]

rule ica_initialization:
[ !Ltk($ICA, ~ltk_ica) ]

--[ OnlyOnce(’ICA_initialization’),
OnlyOnce($ICA),
ICA_Initialization($ICA) ]->

[ !ICA_Initialized($ICA, ~ltk_ica, pk(~ltk_ica)) ]

rule pca_initialization:
[ !Ltk($PCA, ~ltk_pca) ]

--[ OnlyOnce(’PCA_initialization’),
OnlyOnce($PCA),
PCA_Initialization($PCA) ]->

[ !PCA_Initialized($PCA, ~ltk_pca, pk(~ltk_pca)) ]

rule eca_initialization:
[ !Ltk($ECA, ~ltk_eca) ]

--[ OnlyOnce(’ECA_initialization’),
OnlyOnce($ECA),
ECA_Initialization($ECA) ]->

[ !ECA_Initialized($ECA, ~ltk_eca, pk(~ltk_eca)) ]

rule ra_initialization:
[ !Ltk($RA, ~ltk_ra) ]

--[ OnlyOnce(’RA_initialization’),
OnlyOnce($RA),
RA_Initialization($RA) ]->

[ !RA_Initialized($RA, ~ltk_ra, pk(~ltk_ra)) ]

rule la1_initialization:
[ !Ltk($LA1, ~ltk_la1) ]

--[ OnlyOnce(’LA1_initialization’),

31



Security Credential Management System Tamarin Model

OnlyOnce($LA1),
LA1_Initialization($LA1) ]->

[ !LA1_Initialized($LA1, ~ltk_la1, pk(~ltk_la1)) ]

rule la2_initialization:
[ !Ltk($LA2, ~ltk_la2) ]

--[ OnlyOnce(’LA2_initialization’),
OnlyOnce($LA2),
LA2_Initialization($LA2) ]->

[ !LA2_Initialized($LA2, ~ltk_la2, pk(~ltk_la2)) ]

Secure Channel
The following rules model a secure channel that provides confidentiality and
authenticity. The Out_s rule is used by a sender A to send a message x to a receiver
B. The In_s rule is used by a receiver B to receive a message x from a sneder B. The
adversary cannot obtain the message contents or modify the sender or the receiver,
but it can reply messages since the conclusion of the output rule is a persistent
fact.

rule Out_S:
[ Out_S($A, $B, x) ]

--[ Send_S($A, $B, x) ]->
[ !Sec($A, $B, x) ]

rule In_S:
[ !Sec($A, $B, x) ]

--[ Recv_S($A, $B, x) ]->
[ In_S($A, $B, x) ]

6.5 Device Bootstrapping Model
In this phase, the device receives the enrollment certificate and all the other certifi-
cates required to participate in the SCMS. The secure environment described by
the protocol is modelled using the secure-channel rules introduced above.

In the device_initialization rule, the device is initialized generating an
identifier (∼id), and obtaining the secret long term key (∼ltk). The OnlyOnce
fact ensures that the device can be initialized only once.

rule device_initialization:
[ Fr(~id),

!Ltk($Device, ~ltk_device)
]

32



Security Credential Management System Tamarin Model

--[ Device_Initialization($Device, ~id),
OnlyOnce(<’Device_Initialization’, ~ltk_device>)

]->
[ Device_Initialized($Device, ~id, ~ltk_device) ]

In the device_requests_enrollment_certificate rule, the device sends the
enrollment certificate request to the ECA. For simplification, the request is modelled
as being sent directly to the ECA rather than to the DCM, which would normally
forward it to the ECA. Also, the device type certification check is omitted for the
same reason.

rule device_requests_enrollment_certificate:
let

request = <$Device, ~id, pk(~ltk_device)>
in
[ Device_Initialized($Device, ~id, ~ltk_device) ]

--[ Bootstrapping_St_1($Device, ~id) ]->
[ Device_Requested_Enrollment_Certificate($Device, ~id, ~ltk_device),

Out_S($Device, $ECA, request) ]

In the eca_issues_enrollment_certificate rule, the ECA receives the en-
rollment certificate request from the device, generates a certificate signing the
device’s public key, and sends the certificate to the device. The ECA also sends to
the device the certificates of the RCA, the ICA, the PCA, the ECA, and the RA.

rule eca_issues_enrollment_certificate:
let

enrollment_certificate = <pk_device, sign(pk_device, ~ltk_eca)>
rca_certificate = <pk(~ltk_rca), sign(pk_rca, ~ltk_rca)>
ica_certificate = <pk(~ltk_ica), sign(pk_ica, ~ltk_rca)>
pca_certificate = <pk(~ltk_pca), sign(pk_pca, ~ltk_ica)>
eca_certificate = <pk(~ltk_eca), sign(pk_eca, ~ltk_ica)>
ra_certificate = <pk(~ltk_ra), sign(pk_ra, ~ltk_pca)>

in
[ In_S($Device, $ECA, <$Device, ~id, pk_device>),

!RCA_Initialized($RCA, ~ltk_rca, pk_rca),
!ICA_Initialized($ICA, ~ltk_ica, pk_ica),
!PCA_Initialized($PCA, ~ltk_pca, pk_pca),
!ECA_Initialized($ECA, ~ltk_eca, pk_eca),
!RA_Initialized($RA, ~ltk_ra, pk_ra)

]
--[ Bootstrapping_St_2($Device, ~id),

Enrollment_Certificate_Issued($Device, $ECA, <$Device, ~id,
pk_device>),
OnlyOnce(<’Enrollment_Certificate_Issuance’, $Device, $ECA,

33



Security Credential Management System Tamarin Model

<$Device, ~id, pk_device>>)
]->
[ Out_S($ECA, $Device, <enrollment_certificate, rca_certificate,

ica_certificate, pca_certificate, eca_certificate, ra_certificate>) ]

The device_receives_enrollment_certificate rule is the final step of the
device bootstrapping phase, where the device receives the enrollment certificate
sent by the ECA.

rule device_receives_enrollment_certificate:
let

pk_device = fst(enrollment_certificate)
in
[ In_S($ECA, $Device, <enrollment_certificate, rca_certificate,

ica_certificate, pca_certificate, eca_certificate, ra_certificate>),
Device_Requested_Enrollment_Certificate($Device, ~id, ~ltk_device)

]
--[ Bootstrapping_St_3($Device, ~id),

Eq(pk_device, pk(~ltk_device))
]->
[ Device_Bootstrapping_Complete($Device, ~id, ~ltk_device,

enrollment_certificate) ]

6.6 Certificate Provisioning Model
In this phase, the device requests and receives the pseudonym certificate used
to sign the BSMs it sends. To simplify the model, the LOP and the databases
described in the protocol are not modelled.

In the device_pseudonym_certificate_request rule, the device generates
the public elements AA (for the signing key) and HH (for the encryption key) to
include in the certificate request, that will be used by the RA to performs the
butterfly key expansion and to generate the cocoon public keys. Then it sends
the pseudonym certificate request, containing also the expansion functions, on the
public output channel to the RA.

rule device_pseudonym_certificate_request:
let

AA = bpk(~aa) // AA = aa * G
HH = bpk(~hh) // HH = hh * G
request = <AA, HH, ~fk, ~fe>
signed_request = sign(request, ~ltk_device)
message = <request, signed_request, enrollment_certificate>

34



Security Credential Management System Tamarin Model

encrypted_message = aenc(message, pk_ra)
in
[ !RA_Initialized($RA, ~ltk_ra, pk_ra),

Device_Bootstrapping_Complete($Device, ~id, ~ltk_device,
enrollment_certificate),
Fr(~aa), // signing private key seed
Fr(~hh), // encryption private key seed
Fr(~fk), // expansion function for signing keys
Fr(~fe) // expansion function for encryption keys

]
--[ Pseudonym_Certificate_Provisioning_St_1($Device, ~id, request),

Pseudonym_Certificate_Request_Sending(~ltk_device, ~ltk_ra,
encrypted_message),
Secret(~aa),
Secret(~hh)

]->
[ Pseudonym_Certificate_Request_Sent($Device, ~ltk_device,

encrypted_message),
Device_Private_Keys_Generated($Device, ~id, ~aa, ~hh, ~fk, ~fe),
Out(encrypted_message) ]

The la1_sends_plv and la2_sends_plv rules, model the sending of the linkage
values by LA1 and LA2 to the PCA via the public channel. The linkage values are
signed by the LAs, and encrypted with the PCA’s public key.

rule la1_sends_plv:
let

signed_plv1 = sign(~plv1, ~ltk_la1)
encrypted_plv1 = aenc(~plv1, pk_pca)

in
[ !LA1_Initialized($LA1, ~ltk_la1, pk_la1),

!Ltk($LA1, ~ltk_la1),
!PCA_Initialized($PCA, ~ltk_pca, pk_pca),
Fr(~plv1)

]
--[ Plv1_Sending(~ltk_la1, ~ltk_pca, <~plv1, signed_plv1>) ]->

[ Out(<encrypted_plv1, signed_plv1>) ]

rule la2_sends_plv:
let

signed_plv2 = sign(~plv2, ~ltk_la2)
encrypted_plv2 = aenc(~plv2, pk_pca)

in
[ !LA2_Initialized($LA2, ~ltk_la2, pk_la2),

!Ltk($LA2, ~ltk_la2),

35



Security Credential Management System Tamarin Model

!PCA_Initialized($PCA, ~ltk_pca, pk_pca),
Fr(~plv2)

]
--[ Plv2_Sending(~ltk_la2, ~ltk_pca, <~plv2, signed_plv2>) ]->

[ Out(<encrypted_plv2, signed_plv2>) ]

In the ra_handle_request rule, the RA receives the pseudonym certificate
request from the device and the linkage values from the LAs. The RA verifies the
device’s enrollment certificate signature and the signature on the request, then
performs the butterfly-key expansion to generate cocoon public keys for signing (B)
and encryption (J). Finally, the RA creates a certificate request that includes the
hash of the original request, encrypts it with the PCA’s public key, and sends it on
the public channel to the PCA.

rule ra_handle_request:
let

message = adec(encrypted_message, ~ltk_ra)
request = fst(message)
request_signature = fst(snd(message))
enrollment_certificate = snd(snd(message))
enrollment_certificate_key = fst(enrollment_certificate)
enrollment_certificate_signature = snd(enrollment_certificate)
AA = fst(request)
HH = fst(snd(request))
fk = fst(snd(snd(request)))
fe = snd(snd(snd(request)))
B = bksum(AA, bpk(fk)) // B = AA + (fk * G)
J = bksum(HH, bpk(fe)) // J = HH + (fe * G)
new_request = <B, J, encrypted_plv1, signed_plv1,
encrypted_plv2, signed_plv2>
new_message = <new_request, h(new_request)>
new_encrypted_message = aenc(new_message, pk_pca)

in
[ !RA_Initialized($RA, ~ltk_ra, pk_ra),

!ECA_Initialized($ECA, ~ltk_eca, pk_eca),
!PCA_Initialized($PCA, ~ltk_pca, pk_pca),
Pseudonym_Certificate_Request_Sent($Device, ~ltk_device,
encrypted_message),
In(encrypted_message),
In(<encrypted_plv1, signed_plv1>),
In(<encrypted_plv2, signed_plv2>)

]
--[ Eq(verify(enrollment_certificate_signature,

enrollment_certificate_key, pk_eca), true),
Eq(verify(request_signature, request, enrollment_certificate_key),

36



Security Credential Management System Tamarin Model

true),
Pseudonym_Certificate_Provisioning_St_2(request),
Pseudonym_Certificate_Request_Receiving(~ltk_device, ~ltk_ra,
encrypted_message),
RA_Handling_Request(~ltk_ra, ~ltk_pca, new_encrypted_message)

]->
[ Out(new_encrypted_message) ]

In the pca_handle_request rule, the PCA decrypts the message from the RA,
verifies the signatures of the linkage values, and checks the hash included in the
message. Then the PCA generates the private keys reconstruction value and the
device’s public key. Finally the PCA creates the pseudonym certificate, signs it,
encrypts it for the device, and sends the encrypted message on the public channel.

rule pca_handle_request:
let

message = adec(new_encrypted_message, ~ltk_pca)
new_request = fst(message)
request_hash = snd(message)
computed_hash = h(new_request)
B = fst(new_request)
J = fst(snd(new_request))
Bc = bksum(B, bpk(~c)) // B + c * G
plv1 = adec(fst(snd(snd(new_request))), ~ltk_pca)
plv2 = adec(fst(snd(snd(snd(snd(new_request))))), ~ltk_pca)
signed_plv1 = fst(snd(snd(snd(new_request))))
signed_plv2 = snd(snd(snd(snd(snd(new_request)))))
lv = myxor(plv1, plv2)
tbs_certificate = <Bc, lv>
certificate_signature = sign(tbs_certificate, ~ltk_pca)
certificate = <tbs_certificate, certificate_signature>
encrypted_response = bkaenc(<certificate, ~c>, J)
signed_encrypted_response = sign(encrypted_response, ~ltk_pca)

in
[ !RA_Initialized($RA, ~ltk_ra, pk_ra),

!PCA_Initialized($PCA, ~ltk_pca, pk_pca),
!LA1_Initialized($LA1, ~ltk_la1, pk_la1),
!LA2_Initialized($LA2, ~ltk_la2, pk_la2),
In(new_encrypted_message),
Fr(~c) // private keys reconstruction value

]
--[ Eq(verify(signed_plv1, plv1, pk_la1), true),

Eq(verify(signed_plv2, plv2, pk_la2), true),
Eq(request_hash, computed_hash),
Pseudonym_Certificate_Provisioning_St_3(encrypted_response),

37



Security Credential Management System Tamarin Model

Plv1_receiving(~ltk_la1, ~ltk_pca, <plv1, signed_plv1>),
Plv2_receiving(~ltk_la2, ~ltk_pca, <plv2, signed_plv2>),
PCA_Handling_Request(~ltk_ra, ~ltk_pca, new_encrypted_message),
PCA_Sending_Pseudonym_Certificate(~ltk_pca, <encrypted_response,
signed_encrypted_response>)

]->
[ Out(<encrypted_response, signed_encrypted_response>) ]

The device_receives_pseudonym_certificate rule, is the final step of the
certificate provisioning process. For simplicity, the model assumes the device
receives certificates directly rather than routing them through the RA. The device
decrypts the received message, verifies the signatures of the certificate and on the
message, and generates its signature private keys using the reconstruction value
provided by the PCA.

rule device_receives_pseudonym_certificate:
let

j = bksum(~hh, ~fe) // encryption private key
response = bkadec(encrypted_response, j)
certificate = fst(response)
tbs_certificate = fst(certificate)
certificate_signature = snd(certificate)
c = snd(response)
b = bksum(bksum(~aa, ~fk), c) // signature private key

in
[ !PCA_Initialized($PCA, ~ltk_pca, pk_pca),

Device_Private_Keys_Generated($Device, ~id, ~aa, ~hh, ~fk, ~fe),
In(<encrypted_response, signed_encrypted_response>)

]
--[ Eq(verify(signed_encrypted_response, encrypted_response, pk_pca),

true),
Eq(verify(certificate_signature, tbs_certificate, pk_pca), true),
Pseudonym_Certificate_Provisioning_St_4($Device, ~id),
Device_Receiving_Pseudonym_Certificate(~ltk_pca,<encrypted_response,
signed_encrypted_response>)

]->
[ Pseudonym_Certificate_Created($Device, ~id, certificate, b, j) ]

6.7 Certificate Revocation Model
In this phase, a device which receives a bogus BSM may send a misbehavior report
to the MA. If the MA estabilish that the reported device is misbehaving, it starts
the process to revoke its certificate.

38



Security Credential Management System Tamarin Model

The device_revocation_initialization rule, models the state in which the
device is initialized, enrolled and already received a pseudonym certificate from the
PCA.

rule device_revocation_initialization:
let

tbs_certificate = <pk(~ltk_device), ~lv>
certificate_signature = sign(tbs_certificate, ~ltk_pca)
pseudonym_certificate = <tbs_certificate, certificate_signature>

in
[ !Ltk($Device, ~ltk_device),

!PCA_Initialized($PCA, ~ltk_pca, pk(~ltk_pca)),
Fr(~lv) // likage values

]
--[ Device_Initialization($Device, pseudonym_certificate),

OnlyOnce(<’Device_Initialization’, ~ltk_device>),
OnlyOnce($Device)

]->
[ Device_Initialized($Device, ~ltk_device, pseudonym_certificate) ]

The device_sends_message rule, represents a device that sends a BSM on the
public channel, cotaining also its pseudonym certificate and the BSM signature.

rule device_sends_message:
let

bsm_signature = sign(bsm, ~ltk_device)
message = <bsm, bsm_signature, pseudonym_certificate>

in
[ Device_Initialized($Device, ~ltk_device, pseudonym_certificate),

Fr(bsm) // basic safety message
]

--[ BSM_Sending(pseudonym_certificate, bsm),
Device_Sending_Message($Device, bsm)

]->
[ Out(message) ]

In the device_reports_misbehavior rule, the device receives a BSM from the
public channel and sends a misbehavior report encrypted to the MA containing its
own pseudonym certificate and the BSM sender’s pseudonym certificate.

rule device_reports_misbehavior:
let

bsm = fst(message)
bsm_signature = fst(snd(message))
sender_pseudonym_certificate = snd(snd(message))

39



Security Credential Management System Tamarin Model

sender_pseudonym_certificate_signature =
snd(sender_pseudonym_certificate)
tbs_certificate = fst(sender_pseudonym_certificate)
sender_pk = fst(fst(sender_pseudonym_certificate))
misbehavior_report = <sender_pseudonym_certificate,
pseudonym_certificate>
misbehavior_report_signature = sign(misbehavior_report,
~ltk_device)
report_message = aenc(<misbehavior_report,
misbehavior_report_signature>,
pk(~ltk_ma))

in
[ Device_Initialized($Device, ~ltk_device, pseudonym_certificate),

!MA_Initialized($MA, ~ltk_ma, pk(~ltk_ma)),
!PCA_Initialized($PCA, ~ltk_pca, pk(~ltk_pca)),
In(message)

]
--[ BSM_Receiving(sender_pseudonym_certificate, bsm),

Eq(verify(bsm_signature, bsm, sender_pk),true),
Eq(verify(sender_pseudonym_certificate_signature, tbs_certificate,
pk(~ltk_pca)), true),
Certificate_Revocation_St_1($Device, pseudonym_certificate,
report_message)

]->
[ Misbehavior_Report_Sent($Device, ~ltk_device, report_message),

Out(report_message) ]

In the ma_handles_revocation_request rule, the MA receives the misbehavior
report, extracts the linkage values from the pseudonym certificate of the misbehaving
device, and sends them encrypted to the PCA.

rule ma_handles_revocation_request:
let

misbehavior_message = adec(encrypted_misbehavior_message,~ltk_ma)
misbehavior_report = fst(misbehavior_message)
misbehavior_report_signature = snd(misbehavior_message)
bsm_sender_pseudonym_certificate = fst(misbehavior_report)
reporter_pseudonym_certificate = snd(misbehavior_report)
lv = snd(fst(bsm_sender_pseudonym_certificate))
signed_lv = sign(lv, ~ltk_ma)
reporter_pk = fst(fst(reporter_pseudonym_certificate))
reporter_pseudonym_certificate_signature =
snd(reporter_pseudonym_certificate)
bsm_sender_pseudonym_certificate_signature =
snd(bsm_sender_pseudonym_certificate)

40



Security Credential Management System Tamarin Model

request = aenc(<lv, signed_lv>, pk(~ltk_pca))
in
[ !MA_Initialized($MA, ~ltk_ma, pk(~ltk_ma)),

!PCA_Initialized($PCA, ~ltk_pca, pk(~ltk_pca)),
Misbehavior_Report_Sent($Device, ~ltk_device,
encrypted_misbehavior_message),
In(encrypted_misbehavior_message)

]
--[ Eq(verify(reporter_pseudonym_certificate_signature,

fst(reporter_pseudonym_certificate), pk(~ltk_pca)), true),
Eq(verify(bsm_sender_pseudonym_certificate_signature,
fst(bsm_sender_pseudonym_certificate), pk(~ltk_pca)), true),
Eq(verify(misbehavior_report_signature, misbehavior_report,
reporter_pk), true),
Certificate_Revocation_St_2(request)

]->
[ Out(request) ]

In the pca_handles_revocation_request rule, the PCA sends the encrypted
hash of the RA-to-PCA pseudonym certificate request to the MA.

rule pca_handles_revocation_request:
let

request = adec(encrypted_request, ~ltk_pca)
lv = fst(request)
signed_lv = snd(request)
signed_hash = sign(~ra_to_pca_hash, ~ltk_pca)
response = <~ra_to_pca_hash, signed_hash>
encrypted_response = aenc(response, pk(~ltk_ma))

in
[ !MA_Initialized($MA, ~ltk_ma, pk(~ltk_ma)),

!PCA_Initialized($PCA, ~ltk_pca, pk(~ltk_pca)),
In(encrypted_request),
Fr(~ra_to_pca_hash)

]
--[ Eq(verify(signed_lv, lv, pk(~ltk_ma)), true),

Certificate_Revocation_St_3(encrypted_request)
]->
[ Out(encrypted_response) ]

In the ma_sends_hash rule, the MA sends the RA-to-PCA pseudonym certificate
request to the RA.

rule ma_sends_hash:
let

41



Security Credential Management System Tamarin Model

response = adec(encrypted_response, ~ltk_ma)
ra_to_pca_hash = fst(response)
signed_hash = snd(response)
message = <ra_to_pca_hash, signed_hash>
message_signature = sign(message, ~ltk_ma)
encrypted_message = aenc(<message,message_signature>,pk(~ltk_ra))

in
[ !MA_Initialized($MA, ~ltk_ma, pk(~ltk_ma)),

!PCA_Initialized($PCA, ~ltk_pca, pk(~ltk_pca)),
!RA_Initialized($RA, ~ltk_ra, pk(~ltk_ra)),
In(encrypted_response)

]
--[ Eq(verify(signed_hash, ra_to_pca_hash, pk(~ltk_pca)), true),

Certificate_Revocation_St_4(message)
]->
[ Out(encrypted_message) ]

The ra_revokes_certificate rule, is the last step of this phase. The RA
finally reovkes the certificate of the misbehaving device.

rule ra_revokes_certificate:
let

decrypted_message = adec(encrypted_message, ~ltk_ra)
message = fst(decrypted_message)
message_signature = snd(decrypted_message)
ra_to_pca_hash = fst(message)
signed_hash = snd(message)

in
[ !MA_Initialized($MA, ~ltk_ma, pk(~ltk_ma)),

!PCA_Initialized($PCA, ~ltk_pca, pk(~ltk_pca)),
!RA_Initialized($RA, ~ltk_ra, pk(~ltk_ra)),
In(encrypted_message)

]
--[ Eq(verify(message_signature, message, pk(~ltk_ma)), true),

Eq(verify(signed_hash, ra_to_pca_hash, pk(~ltk_pca)), true),
Certificate_Revocation_St_5(message)

]->
[ ]

42



Chapter 7

Security Properties Analysis

7.1 SCMS Threat Modeling
This section analyses the security properties for the Device Bootstrapping and
Certificate Provisioning steps of the SCMS protocol.

7.1.1 Device Bootstrapping Threat Modeling
The threat model for the Device Bootstrapping steps is shown in Fig. 7.1. The
involved entities are:

• ECA: Interacts with the DCM to request and receive the Device enrollment
certificate.

• Certification Services: Interacts with the DCM to provide the information
about the eligible device models.

• Device: Interacts with the DCM to request and receive all the bootstrapping
information.

The ECA, the DCM and the Certification Services are modelled as processes,
the Device is modelled as an external interactor. All communications between
entities are modelled using HTTPS secure channels.

The tool reported 44 high priority threats belonging to the following STRIDE
categories:

• Spoofing: An attacker may spoof the ECA, the Device, the DCM, or the
Certification Services.

• Repudiation: The ECA, the Device, the DCM or the Certification Services
may repudiate the sent data.

43



Security Properties Analysis

• Denial of Service: The ECA, the DCM, the Certification Services may
be targeted by DoS attack or the data flows between the entities may be
interrupted.

• Elevation of Privilege: The ECA, the DCM or the Certification Services
may be subject of attacks to obtain higher privileges using impersonation,
remote code execution, or changing the execution flow.

The Elevation of Privilege and the Denial of Service threats cannot be modelled
using Tamarin. The Spoofing and Repudiation threats can be modelled using
Tamarin and can be mitigated by signing messages with the sender’s private key.

Figure 7.1: Device Bootstrapping Threat Model

44



Security Properties Analysis

7.1.2 Certificate Provisioning Threat Model
The threat model for the Certificate Provisioning step is shown in Fig. 7.2. The
involved entities are:

• Device: Interacts with the RA to request and receive the certificates.

• PCA: Interacts with the RA to generate the device certificates.

• RA: Interacts with all the other entities to support the certificate provisioning
process.

• LAs: Interact with the RA to provide the pre-linkage values.

• Database: Used by the PCA, the LAs, and the RA as data store.

The PCA, the RA, and the LAs are modelled as processes, the Device is modelled
as an external interactor, and the Database as a data store. All communications
between entities are modelled using HTTPS secure channels.

The tool reported 71 high priority threats belonging to the following STRIDE
categories:

• Spoofing: An attacker may spoof the RA, thePCA, the LAs, the Device, or
the destination database.

• Tampering: An attacker may corrupt data sored in the database.

• Repudiation: The RA, the PCA, the Device may repudiate sent data. The
database may deny that data was written.

• Denial of Service: The RA, the PCA, or the data store may be targeted by
DoS attacks, and the data flows between the entities may be interrupted.

• Elevation of Privilege: The RA and the PCA may be targeted by attacks
that obtain higher privileges via impersonation, remote code execution, or
changing the execution flow.

The Elevation of Privilege, the Tampering and the Denial of Service threats
cannot be modelled using Tamarin. The Spoofing and Repudiation threats can be
modelled and can be mitigated by signing messages with the sender’s private key.

45



Security Properties Analysis

Figure 7.2: Certificate Provisioning Threat Model

7.2 Sanity Checks
Sanity checks are used to verify that the protocol model is constructed correctly
and to detect potential modelling errors. The following sections show the sanity
check results for the Device Bootstrapping, Certificate Provisioning, and Certificate
Revocation phases. These checks are performed by proving a lemma that specifies
a particular execution order of the protocol steps. If Tamarin manages to prove
the lemma, the check is successful.

7.2.1 Device Bootstrapping and Certificate Provisioning
The lemma used for the sanity checks is the following:

lemma sanity_checks:
exists-trace

"
Ex Device Id Request Encrypted_Response
#i1 #i2 #i3 #i4 #i5 #i6 #i7 #i8 .
Device_Initialization(Device, Id) @#i1 &

46



Security Properties Analysis

Bootstrapping_St_1(Device, Id) @#i2 &
Bootstrapping_St_2(Device, Id) @#i3 &
Bootstrapping_St_3(Device, Id) @#i4 &
Pseudonym_Certificate_Provisioning_St_1(Device,Id,Request) @#i5 &
Pseudonym_Certificate_Provisioning_St_2(Request) @#i6 &
Pseudonym_Certificate_Provisioning_St_3(Encrypted_Response) @#i7 &
Pseudonym_Certificate_Provisioning_St_4(Device, Id) @#i8 &
#i1 < #i2 & #i2 < #i3 & #i3 < #i4 &
#i4 < #i5 & #i5 < #i6 & #i6 < #i7 & #i7 < #i8

"

The protocol steps for the Device Bootstrapping and Certificate Provisioning
are:

1. The Device completes the initialization process.

2. The Device sends an enrollment certificate request.

3. The The ECA issues the enrollment certificate and sends it to the Device.

4. The Device receives the enrollment certificate.

5. The Device sends the pseudonym certificate request.

6. The RA handles the device’s pseudonym-certificate request.

7. The PCA issues the pseudonym certificate.

8. The Device receives the pseudonym certificate.
Tamarin correctly proved the sanity checks lemma, as shown in Fig. 7.3.

Figure 7.3: Device Bootstrapping and Certificate Provisioning sanity checks proof

47



Security Properties Analysis

7.2.2 Certificate Revocation
The lemma used for sanity checks is the following:

lemma sanity_checks:
exists-trace

"
Ex Device1 Device2 Cert1 Cert2 BSM Report Request Message
#i1 #i2 #i3 #i4 #i5 #i6 #i7 #i8.
Device_Initialization(Device1, Cert1) @ #i1 &
Device_Initialization(Device2, Cert2) @ #i2 &
Device_Sending_Message(Device1, BSM) @ #i3 &
Certificate_Revocation_St_1(Device2, Cert2, Report) @ #i4 &
Certificate_Revocation_St_2(Request) @ #i5 &
Certificate_Revocation_St_3(Request) @ #i6 &
Certificate_Revocation_St_4(Message) @ #i7 &
Certificate_Revocation_St_5(Message) @ #i8 &
#i1 < #i3 & #i1 < #i4 & #i3 < #i4 & #i4 < #i5 & #i5 < #i6 &
#i6 < #i7 & #i7 < #i8

"

The protocol steps are the following:

1. Device1 and Device2 complete the initialization process.

2. Device1 sends a BSM via the public channel.

3. Device2 sends the misbehavior report to the MA

4. The MA sent a requesto to the PCA, starting the revocation process.

5. The PCA handles the received request from the MA.

6. The MA sends the RA-to-PCA pseudonym certificate request hash to the RA.

7. The RA revokes the Device1 certificate.

In this case, Tamarin was executed using the -–auto-sources flag because
of the presence of partial deconstructions. Tamarin generated the source lemma
shown in Fig. 7.4, which Tamain proved successfully.

The sanity checks lemma described above was correctly proved by Tamarin, as
shown in Fig. 7.5

48



Security Properties Analysis

Figure 7.4: Certificate Revocation source lemmma

Figure 7.5: Certificate Revocation sanity checks proof

7.3 Security Properties Verification
The following sections present the models for the secrecy, authentication, and
pseudonymity security properties.

7.3.1 Secrecy
The secrecy property ensures that confidential data or information are known only
to authorized parties and that an attacker cannot obtain this information. The
lemma used to prove the secrecy property is:

49



Security Properties Analysis

lemma private_key_secrecy:
"

All x #i .
Secret(x) @ #i ==> (not (Ex #j . K(x) @ #j))

"

This lemma states that if x is secret, then there is no action K(x) (representing
the adversary’s knowledge) in any trace.

The secret(x) action is used in the register_pk rule (Secret(∼ltk)) for the
device’s long-term key, and in the device_pseudonym_certificate_request rule
(Secret(∼aa), Secret(∼hh)) for the signing and encryption butterfly key seeds.
As shown in Fig. 7.6, Tamarin successfully proved the lemma.

Figure 7.6: Secrecy property proof

50



Security Properties Analysis

7.3.2 Authentication
The authentication property ensures that messages are sent and received by the
intended parties, preventing an attacker from forging a message that impersonates
another entity. The lemmas used to prove this property are:

lemma device_ra_authentication:
"

All A B m #i . Pseudonym_Certificate_Request_Receiving(A,B,m) @ #i ==>
(Ex #j . Pseudonym_Certificate_Request_Sending(A,B,m) @ #j & #j < #i)

"

lemma ra_pca_authentication:
"

All A B m #i . PCA_Handling_Request(A, B, m) @ #i ==>
(Ex #j . RA_Handling_Request(A, B, m) @ #j & #j < #i)

"

lemma pca_device_authentication:
"

All A m #i . Device_Receiving_Pseudonym_Certificate(A, m) @ #i ==>
(Ex #j . PCA_Sending_Pseudonym_Certificate(A, m) @ #j & #j < #i)

"

lemma la1_pca_authentication:
"

All A B m #i . Plv1_receiving(A, B, m) @ #i ==>
(Ex #j . Plv1_Sending(A, B, m) @ #j & #j < #i)

"

lemma la2_pca_authentication:
"

All A B m #i . Plv2_receiving(A, B, m) @ #i ==>
(Ex #j . Plv2_Sending(A, B, m) @ #j & #j < #i)

"
lemma bsm_authentication:
"

All A m #i1 . BSM_Receiving(A, m) @ #i1 ==>
(Ex #j . BSM_Sending(A, m) @ #j & #j < #i1)

"

Each lemma targets the messages sent and received by the protocol parties, and
requires that whenever a Receiving fact exists, there also exists a corresponding
Sending fact with the same parameters, thereby ensuring message authenticity.
Figures 7.7, 7.9, 7.10, 7.11, and 7.12 show that the authentication property is

51



Security Properties Analysis

successfully proved. Figure 7.8 shows that the authentication property does not
hold, because the messages between the RA and the PCA are not signed, allowing
the attacker to send forged messages to the PCA, as illustrated in Fig. 7.13.

Figure 7.7: Device-RA authentication proof

Figure 7.8: RA-PCA authentication proof

52



Security Properties Analysis

Figure 7.9: PCA-Device authentication proof

Figure 7.10: LA1-PCA authentication proof

53



Security Properties Analysis

Figure 7.11: LA2-PCA authentication proof

54



Security Properties Analysis

Figure 7.12: BSM authentication

Figure 7.13: RA-PCA authentication attack

55



Security Properties Analysis

7.3.3 Compromise of Authorities

If an authority’s long-term key is compromised, the authentication property may
no longer hold because an attacker could forge a message and sign it with the
compromised key.

If the PCA is compromised, the pca_device_authentication lemma cannot
be proved, as shown in Fig. 7.14. Tamarin found an attack illustrated in Fig. 7.15.

If LA1 or LA2 is compromised, the la1_pca_authentication and the
la2_pca_authentication lemmas cannot be proved as shown in Fig. 7.16 and
Fig. 7.17. Tamarin found attacks illustrated in Fig. 7.18 and Fig. 7.19.

If the RA is compromised, there is no difference because the messages exchanged
between the RA and the PCA are not signed by the RA.

Figure 7.14: PCA-Device authentication

56



Security Properties Analysis

Figure 7.15: PCA-Device authentication attack

Figure 7.16: LA1-PCA authentica-
tion

Figure 7.17: LA2-PCA authentication

57



Security Properties Analysis

Figure 7.18: LA1-PCA authentication attack

Figure 7.19: LA2-PCA authentication attack

7.3.4 Compromise of a Vehicle
If an attacker compromises a vehicle, security properties may be affected, therefore
it is worthwhile to consider this case. This scenario is modelled with the following
rule:

rule attacker_receives_enrollment_certificate:
let

enrollment_certificate = <pk(~ltk_device_attacker),
sign(pk(~ltk_device_attacker), ~ltk_eca)>

in

58



Security Properties Analysis

[ !Ltk($Device_attacker, ~ltk_device_attacker),
!ECA_Initialized($ECA, ~ltk_eca, pk_eca) ,
Fr(~id)

]
--[ ]->

[ Device_Bootstrapping_Complete($Device, ~id, ~ltk_device_attacker,
enrollment_certificate) ]

The rule models the state in which an attacker obtains control of a vehicle
that possesses a valid enrollment certificate signed by the ECA. All authentication
lemmas mentioned in the authentication section section have been successfully
proved by Tamarin. Figure 7.20 shows that the attacker can request a pseudonym
certificate as a legitimate user.

Figure 7.20: Attacker pseudonym certificate request

7.3.5 Pseudonymity
Another property that can be verified using the Tamarin prover is pseudonymity.
This property ensures that the certificates used in the SCMS do not contain real-
world identifiers, preventing users from bing tracked. To model this scenario, we
used the observational equivalence in the following rule:

rule device_pseudonym_certificate_request:
let

59



Security Properties Analysis

AA = bpk(~aa) // AA = aa * G
HH = bpk(~hh) // HH = hh * G
request = <AA, HH, ~fk, ~fe>
signed_request = sign(request, diff(~ltk_device, ~new_ltk))
message = <request, signed_request, enrollment_certificate>
encrypted_message = aenc(message, pk_ra)

in
[ !RA_Initialized($RA, ~ltk_ra, pk_ra),

Device_Bootstrapping_Complete($Device, ~id, ~ltk_device,
enrollment_certificate),
Fr(~aa), // signing private key seed
Fr(~hh), // encryption private key seed
Fr(~fk), // expansion function for signing keys
Fr(~fe), // expansion function for encryption keys
Fr(~new_ltk)

]
--[ Pseudonym_Certificate_Provisioning_St_1($Device, ~id, request),

Pseudonym_Certificate_Request_Sending(~ltk_device, ~ltk_ra,
encrypted_message),
Secret(~aa),
Secret(~hh)

]->
[ Pseudonym_Certificate_Request_Sent($Device, ~ltk_device,

encrypted_message),
Device_Private_Keys_Generated($Device, ~id, ~aa, ~hh, ~fk, ~fe),
Out(encrypted_message) ]

Unfortunately, the property could not be verified because Tamarin failed to
execute the protocol due to insufficient memory on our available devices.

60



Chapter 8

Conclusions

This thesis examined the Security Credential Management System used in V2X
communications through threat modelling and formal verification with the Tamarin
prover.

We constructed detailed Tamarin models of the SCMS protocol steps and suc-
cessfully proved secrecy and authentication properties for the exchanged messages.
We could not complete a formal proof of pseudonymity, an essential property for
protecting user privacy in V2X, because Tamarin exhausted the computational
resources available to us as a result of the model’s complexity.

The possible improvements to this work could be: reduce Tamarin model com-
plexity by removing some details; allocate more computational resources to allow
Tamarin to complete the verification of the pseudonymity property; explore alter-
native formal verification tool or techniques, that may be less resource intensive.

61



Bibliography

[1] Jonathan Petit, Florian Schaub, Michael Feiri, and Frank Kargl. «Pseudonym
Schemes in Vehicular Networks: A Survey». In: IEEE Communications Surveys
& Tutorials 17.1 (2015), pp. 228–255. doi: 10.1109/COMST.2014.2345420
(cit. on p. 3).

[2] Benedikt Brecht, Dean Therriault, André Weimerskirch, William Whyte, Viren-
dra Kumar, Thorsten Hehn, and Roy Goudy. «A Security Credential Manage-
ment System for V2X Communications». In: IEEE Transactions on Intelligent
Transportation Systems 19.12 (2018), pp. 3850–3871. doi: 10.1109/TITS.2018.
2797529 (cit. on pp. 3, 14).

[3] David Basin. Formal Methods for Security Knowledge Area Version 1.0.0. 2021
(cit. on p. 6).

[4] David Basin, Cas Cremers, Jannik Dreier, and Ralf Sasse. Modeling and
Analyzing Security Protocols with Tamarin: A Comprehensive Guide. 2025
(cit. on p. 8).

[5] OWASP Threat Modeling Project. https://owasp.org/www- community/
Threat_Modeling. OWASP Foundation, Inc (cit. on p. 12).

[6] Microsoft Threat Modeling Tool. https://learn.microsoft.com/en-us/
azure/security/develop/threat-modeling-tool. Microsoft (cit. on p. 12).

[7] Tamarin-Prover Examples. https://github.com/tamarin-prover/tamarin-
prover/tree/develop/examples.

62

https://doi.org/10.1109/COMST.2014.2345420
https://doi.org/10.1109/TITS.2018.2797529
https://doi.org/10.1109/TITS.2018.2797529
https://owasp.org/www-community/Threat_Modeling
https://owasp.org/www-community/Threat_Modeling
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://github.com/tamarin-prover/tamarin-prover/tree/develop/examples
https://github.com/tamarin-prover/tamarin-prover/tree/develop/examples

	List of Figures
	Acronyms
	Introduction
	Thesis Structure

	Vehicle-to-Everything Communications
	Vehicle-to-Everything Model
	Security Issues
	Asymmetric Cryptography Scheme

	Formal Methods
	Formal Verification
	Security Protocol Verification
	Tamarin
	Modeling with multiset rewriting rules
	Terms
	Functions and Equations
	Rules and Lemmas
	Restrictions
	Observational Equivalence
	Partial Deconstruction


	Threat Modeling
	Microsoft Threat Modeling Tool

	Security Credential Management System
	SCMS Structure
	SCMS Threat Model
	Certificates
	Butterfly Key Expansion
	Linkage Values
	SCMS Steps
	Device Bootstrapping
	Certificate Provisioning
	Misbehavior Reporting
	Global Misbehavior Detection and Revocation


	Security Credential Management System Tamarin Model
	Builtins
	Custom Function and Equations
	Restrictions
	Preliminary Rules
	Device Bootstrapping Model
	Certificate Provisioning Model
	Certificate Revocation Model

	Security Properties Analysis
	SCMS Threat Modeling
	Device Bootstrapping Threat Modeling
	Certificate Provisioning Threat Model

	Sanity Checks
	Device Bootstrapping and Certificate Provisioning
	Certificate Revocation

	Security Properties Verification
	Secrecy
	Authentication
	Compromise of Authorities
	Compromise of a Vehicle
	Pseudonymity


	Conclusions
	Bibliography

