
Master of Science in Cybersecurity

Master Degree Thesis

A vulnerability model for software
supply chains

Supervisors
prof. Fulvio Valenza
prof. Daniele Bringhenti

prof. Riccardo Sisto

dott. Gianmarco Bachiorrini

Candidate

Giovanni Bloise

Academic Year 2024-2025

This work is subject to the Creative Commons Licence

Abstract

This thesis addresses the need to detect vulnerabilities in digital supply chains
(DSCs).
Modern supply chains rely on interconnected services such as software components,
cloud platforms and IoT devices. While this interconnection brings several advan-
tages, it also introduces new security challenges: the overall level of protection is
no longer determined only by strong internal defenses, but also depends on the
security level of each actor in the chain. Specifically ,each link in the DSC needs
a high level of security,which makes manual monitoring of the whole supply chain
not scalable.

To address this issue, this work starts from an existing threat analysis framework,
TAMELESS (Threat & Attack ModEL Smart System). TAMELESS is a tool that,
given as input the components of a system, their relationships, and properties, can
identify potential threats. This thesis proposes an updated version of the model,
specifically optimized for software-based environments. The new version integrates
Common Vulnerabilities and Exposures (CVEs) into the model’s entities, together
with new relations,rules and a patching mechanism. The goal is to extend the
framework so that it can support threat analysis of digital supply chains and ad-
dress the challenges arising from their complexity.

The model presented in this thesis makes it possible to analyze a software environ-
ment by considering its components, the threats that may target them, the known
vulnerabilities (CVEs) they are a!ected by, and the relationships that connect
them. In this way,it is possible to determine to which threats a specific software
component is exposed, which vulnerabilities compromise it, and how a potential
threat could propagate through the supply chain if that component were compro-
mised.

Finally, the graphical user interface (GUI) of the tool has been enhanced not only
to support the new version, but also to improve its usability and make it more
accessible for end users.

3

Acknowledgements

5

Contents

List of Figures 9

List of Tables 10

Listings 11

1 Introduction 13

2 Threat Modeling 15

2.1 Fundamentals of Threat Modeling 15

2.1.1 Definition . 15

2.1.2 Common Methodologies . 16

2.1.3 Benefits and Challenges . 18

2.2 Threat Modeling Process and Results 19

2.2.1 Process . 19

2.2.2 Example of a Threat Model Process 21

3 KillChain and CVE 26

3.1 Kill Chain . 26

3.1.1 Definition . 26

3.1.2 Attack Lifecycle . 27

3.2 Digital Supply Chain . 29

3.2.1 Introduction . 29

3.2.2 Risks in Digital Supply Chains 30

3.2.3 Empirical Evidence and Prevention Strategies 33

3.3 Common Vulnerabilities and Exposures (CVE) 34

3.3.1 Introduction . 34

3.3.2 CVE JSON Record Format 35

7

4 Thesis Objectives 38

4.1 Thesis Workflow . 38

5 Approach and Model 40

5.1 Introduction to TAMELESS . 40

5.2 Components and Security Properties 41

5.2.1 Components . 41

5.2.2 Security Properties . 41

5.3 Relations and High-Level Properties 43

5.3.1 Relations . 43

5.3.2 High-Level Properties . 45

5.4 Derivation Rules . 46

5.4.1 Rules for Vulnerabilities . 46

5.4.2 Rules for Compromise . 46

5.4.3 Rules for Malfunctions . 47

5.4.4 Rules for Threat Detection 48

5.4.5 Rules for Software Restoration 48

5.4.6 Rules for Fixes . 48

5.4.7 Rules for Patching . 49

6 Implementation and Validation 50

6.1 Implementation . 50

6.1.1 Prolog Implementation . 50

6.1.2 Graphical User Interface (GUI) Implementation 57

6.2 Validation . 66

6.2.1 First Use Case . 66

6.2.2 Second Use Case . 73

7 Conclusions 79

7.1 Limitations and Future Works . 79

Bibliography 82

8

List of Figures

2.1 STRIDE Threat Model [1] . 16

2.2 PASTA Threat Model [2] . 17

2.3 Threat model example - DFD . 23

3.1 SolarWinds attack [3] . 32

3.2 preparedness gap against cyber threats [4] 33

3.3 identification of the most vulnerable components in the SW supply
chain [4] . 33

6.1 Original home page . 62

6.2 New home page . 62

6.3 Try page . 63

6.4 Use case selection . 63

6.5 Original entities section . 64

6.6 Software section . 65

6.7 CVE section . 65

6.8 Graph example . 66

6.9 First use case schema . 67

6.10 canbeComp(backend,denialOfService) - no protection 70

6.11 canbeComp(backend,denialOfService) - no auth. Service 71

6.12 canbeComp(backend,denialOfService) - protected 72

6.13 canbeComp(database,privilegeEscalation) 73

6.14 Second use case schema . 74

6.15 canbeDet(gateway,AnomalousTra”c) 76

6.16 canbeComp(postgresSQL, sqlInjection) 77

6.17 canbeComp(authenticationService,toctou) 78

6.18 canbeComp(authenticationService,credentialStu”ng) 78

9

List of Tables

2.1 Threat model example - External Dependencies [5] 22

2.2 Threat model example - Trust Levels 22

2.3 Threat model example - Entry Points 23

2.4 Threat model example - Assets . 23

2.5 Threat model example - Threats 24

2.6 Threat model example - Countermeasures [5] 24

3.1 Attack techniques used to compromise the supply chain [3]. 30

3.2 Supplier assets targeted in supply chain attacks [3]. 31

3.3 Attack techniques used to compromise customers [3]. 31

3.4 Customer assets targeted in supply chain attacks [3]. 32

5.1 High level properties. 45

5.2 Derivation rule for vulnerabilities. 46

5.3 Derivation rules for compromised. 47

5.4 Derivation rules for malfunctioned. 48

5.5 Derivation rule for detecting threats. 48

5.6 Derivation rule for Restoring software. 48

5.7 Derivation rule for Fixing software. 48

5.8 Derivation rule for Patched. 49

10

Listings

6.1 Original high-Level properties . 51
6.2 New high-Level properties . 51
6.3 Original canbeVul . 52
6.4 New canbeVul . 53
6.5 canSpread . 53
6.6 Original canbeComp . 54
6.7 New canbeComp . 55
6.8 New canbePatch . 56
6.9 Original canbeDet . 56
6.10 New canbeDet . 56
6.11 Cve.js . 58
6.12 cve.route.js . 59
6.13 Old index.js . 60
6.14 New index.js . 60
6.15 Prolog useCase1 . 67
6.16 Prolog canbeComp(backend,denialOfService) 68
6.17 Prolog canbeComp(backend,denialOfService) - no auth. Service . . 70
6.18 Prolog canbeComp(backend,denialOfService) - protected 72
6.19 Prolog canbeComp(database,privilegeEscalation) 72
6.20 Prolog useCase2 . 74
6.21 Prolog canbeDet(gateway, AnomalousTra”c) 75
6.22 Prolog canbeComp(postgresSQL,sqlInjection) 76
6.23 Prolog canbeComp(authenticationService,toctou) 77
6.24 Prolog canbeComp(authenticationService,credentialStu”ng) 78

11

Chapter 1

Introduction

In an ever-evolving world, technology is one of the fastest changing dimensions.
This aspect has changed not only how companies operate internally (and so their
own organization as well), but also how they interact with their partners, through
(sometimes complex) supply chains.
In a general supply chain, the typical workflow is design the product, then procuring
materials and components, making the final product, estimating demand, deciding
how you will market the final product, taking orders, thinking about the logistics
,providing customers with visibility into their orders and finally deliver the goods.
However, companies started to digitalize each of these steps and so the concept
of Digital Supply Chain has become more and more important. A Digital Supply
Chain is a set of processes that uses advanced technologies (such as AI, Software,
Cloud etc..) to let actors make better decisions about the materials they need,
and all the aspects between the demand for their products and the final delivery,
making more clear and transparent all the chain.
However, since the Digital Supply Chain uses advanced technologies, it can intro-
duce new risks that can propagate through the supply chain network to (or from)
the customer due to the increased connectivity this digitization requires.[6]. It
becomes clear then that security is a crucial aspect to consider and this is where
threat modeling plays a critical role.
Threat modeling is the set of activities that aim to improve security by identify-
ing threats that may a!ect your system, application or business and then defying
countermeasures to prevent those threats or to mitigate their risk.[7] More precisely,
threat modeling is not only about identifying possible threats, but also trying to
identify the vulnerabilities that such threats could exploit to compromise your sys-
tem. In this context, the CVE program is proving to be very useful.
The Common Vulnerabilities and Exposures (CVE) is a database that contains pub-
licly disclosed computer security flaws. The MITRE Corporation,a U.S. Government-
funded research and development company, maintains the CVE list, but a security
flaw that becomes a CVE entry is often submitted by organizations and members of
the open source community. Now, there are di!erent ways to evaluate the severity
of a vulnerability; the most common one is the Common Vulnerability Scoring Sys-
tem (CVSS), a set of standards for assigning a number to a vulnerability to assess
its severity. Scores range from 0 to 10: higher is the value, higher is the impact of
the vulnerability (if exploited). [8]

13

Introduction

Today, there are many threat modeling frameworks (such as STRIDE or PASTA,
to name a few). While most of them are highly functional, they have some limita-
tions. Specifically, many of these frameworks have limited automation and cannot
identify all of a system’s dependencies. Indeed, with the increasing complexity of
Digital Supply Chains, it is not always easy or possible to fully describe the system
being analyzed, especially if that system is highly interconnected, and so it is not
always easy to identify many threats that could harm it, especially in multi-step
attacks where advanced techniques such as lateral movement are used.
The goal of this thesis work is to analyze the TAMELESS framework,modify and
optimize it to be more focused on software environments and includes vulnerabil-
ities from the CVE database. In this way, the framework can be used as a threat
modeling and analysis tool for highly interconnected systems such as Digital Supply
Chains.

14

Chapter 2

Threat Modeling

Threat modeling is a fundamental aspect of IT security. When performed e!ec-
tively, it helps identify weaknesses in the system, allowing us to anticipate or miti-
gate risks.
This chapter introduces the importance and the core concepts of threat model-
ing,highlights the main existing frameworks, the benefits and the challenges.

2.1 Fundamentals of Threat Modeling

2.1.1 Definition

Threat modeling is the practice of identifying, communicating and understanding
threats and their mitigations, with the goal of protecting something of value (one
or more assets). It can be applied to many domains: software and applications,
networks, systems and IoT.
Specifically, a Threat Model is a structured way of representing all factors that
impact the security of an application.
A well-defined one should always include:

A clear description of the system under analysis.

The assumptions being made, that must be revisited regularly since threats
evolve as new technologies arise.

The potential threats that may a!ect the system.

The possible mitigation actions for the threats identified.

A way for validating the model and verifying the e!ectiveness of the mitiga-
tions [7].

Furthermore, it is important to remember that having good security practices does
not mean being invulnerable because threats become more sophisticated day by
day. However, they play a key role in substantially reducing risks.

15

Threat Modeling

2.1.2 Common Methodologies

With numerous threat modeling methodologies available, companies must evaluate
and select the most appropriate to meet their needs. It is also important to note
that no single methodology fully satisfies all requirements; therefore, a methodology
suitable for company A may not necessarily meet the needs of company B.
The following are some of the most commonly adopted ones. [2]

STRIDE

The STRIDE model has been developed by Microsoft and is a widely adopted threat
modeling framework designed to help developers identify and classify potential
security threats during the design and development phases of a system. In the
acronym STRIDE,each letter corresponds to a specific class of security threat:

Spoofing identity: when an attacker impersonates someone else to gain
unauthorized access to data or resources.

Tampering with data: the malicious modification of data at rest, in transit,
or in use.

Repudiation: when an attacker performs malicious actions that cannot be
traced back to them.

Information disclosure: the unauthorized disclosure of sensitive data.

Denial of Service (DoS): overwhelming a system with excessive requests or
tra”c to disrupt its normal functionality, often resulting in costly downtime.

Elevation of privilege: exploiting vulnerabilities to bypass security mea-
sures and elevate access rights within a system.

Figure 2.1. STRIDE Threat Model [1]

In particular, the STRIDE process involves identifying inherent threats in the sys-
tem design and implementing security measures to close these gaps. A central

16

Threat Modeling

principle of the model is ensuring that software preserves the CIA triad (Confiden-
tiality, Integrity, and Availability).
Finally, the STRIDE model encourages developers to incorporate security consid-
erations into the design and development lifecycle of their software [9].

PASTA

The Process for Attack Simulation and Threat Analysis (PASTA) is a 7-step risk-
oriented threat modeling methodology. Unlike approaches that give equal weight
to all potential threats, PASTA focuses on those with the highest risk, allowing
organizations to allocate resources and time more e!ectively by prioritizing vul-
nerabilities with the highest impact. Moreover, PASTA gives a strong focus on
the business context, which is often less addressed in other methodologies such as
STRIDE.
PASTA is articulated into seven stages:

1. Identification of assets and definition of the application architec-
ture: define what must be protected and the structure of the application.

2. Definition of the application’s threat environment: analyze factors
that could harm the application.

3. Functional decomposition of the application: decompose the appli-
cation with the aim of identifying potential weaknesses that attackers may
exploit.

4. Identification of important attack scenarios.

5. Analysis of the identified attack scenarios: applying the STRIDE threat
framework.

6. Identification of potential threat agents: identify actors that could ex-
ploit the vulnerabilities.

7. Prioritization and mitigation of the identified threats: rank threats
based on their impact on the application and implement countermeasures [2].

Figure 2.2. PASTA Threat Model [2]

17

Threat Modeling

TAMELESS

The Threat & Attack ModEL Smart System (TAMELESS) is a threat modeling
framework designed to perform threat analysis on hybrid systems (where hybrid

means that it takes into account human,physical and cyber aspects).
Specifically, TAMELESS is a prolog-based tool that:

Represents the relations and security properties of the system’s components
by considering their cyber,physical and human aspects.

Introduces a threat analysis method based on a set of derivation rules that
allow to understand the overall security state.

Adopts a static analysis approach, meaning that when the system changes,
the analysis must be run again.

Relies on a deterministic evaluation, where relations and derived facts are
either true or false.

TAMELESS takes as input the system specification (i.e: components and threats),
the relations among components and between components and threats, and the
security assumptions. The user can then query TAMELESS to obtain a set of pre-
defined security properties of the system components. In conclusion, TAMELESS
enables the analysis of hybrid threats in smart systems, such as smart buildings,
smart homes or financial transactions [10].

2.1.3 Benefits and Challenges

Benefits

There are many benefits of Threat Modeling, including:

Enhanced security awareness: by participating in threat modeling ac-
tivities, organizations can educate teams on the potential threats they may
encounter and on the measures available to mitigate these risks.

Cost-e!ective security: identifying vulnerabilities early in the system life-
cycle significantly reduces the costs associated with security incidents and
data breaches.

Risk mitigation: by identifying potential threats before they are exploited,
organizations can adopt proactive measures to eliminate or reduce risks,
rather than relying on reactive responses after an incident has occurred.

Evaluation of emerging attack vectors: new threats and attack vectors
emerge every day. By continuously updating their threat models, organiza-
tions can address even the most recent risks.

18

Threat Modeling

Identify security requirements: threat modeling helps define the secu-
rity requirements necessary to protect assets, supporting a secure by design
approach.

Mapping of assets, threat agents, and controls: threat modeling helps
organizations understand what they need to protect, from whom and how
they can defend it. [11]

Challenges

The most commonly used Threat Modeling techniques (such as STRIDE or PASTA)
are mostly manual, so security personnel continue to face some of the following chal-
lenges: [12][13][14]

Scalability: according to the 2021 BSIMM survey, organizations lack the
resources needed to assign senior personnel to multi-day threat modeling ex-
ercises for each project or application.

Completeness and control implementation: manual threat modeling
usually focuses on a subset of threats, so security experts are required to
assist developers after the threat analysis to implement mitigations.

Consistency: people have di!erent ideas of what a threat is and how to rank
it based on its impact. This a!ects which threats development teams choose
to prioritize. Moreover, the lack of a standard leads to inconsistent results.

Complexity: with applications moving to the cloud, the evolution of the IT
systems and the need to introduce new features, today’s systems have become
highly dynamic. Under these conditions, manual threat models are no longer
e!ective. The literature presents several automated approaches that apply
mitigation strategies directly; however, they act only on known threats and
do not perform threat analysis. [15] [16] [17] [18]

2.2 Threat Modeling Process and Results

2.2.1 Process

Currently, there is no single standardized process for threat modeling, as it often
changes depending on the needs of each organization.
However, there are four key steps that should always be included in the process:

1. Scope your work.

2. Determine threats.

3. Determine countermeasures and mitigations.

4. Assess your work. [5]

19

Threat Modeling

Scope your work

The first step of the threat modeling process is to understand the system under
analysis. This may include activities such as:

Creating diagrams such as data flow diagrams (DFDs).

Identifying entry points where potential attackers could interact with the
application.

Identifying relevant assets.

Defining trust levels, which represent the access rights granted to external
entities.

Reading or creating a user story (sometimes extended to abuser stories, misuse
cases, etc.).

Data flow diagrams are particularly useful because they illustrate the di!erent paths
within the system and highlight privilege or trust boundaries.
This phase is often called decomposing the application. It is a method frequently
used by consultants when performing threat models or architectural reviews, pro-
ducing a Threat Model report.
The final step of this first phase often involves identifying assets, which may include
valuable elements to be protected, intermediate resources and targets of potential
attackers. Sometimes asset identification may fall outside the scope and become a
distraction, while in other cases assets may remain di”cult to define until attackers
themselves reveal them. [5]

Determine Threats

An important part of threat identification is the use of a threat categorization
methodology. In particular, as explained in the previous section ,STRIDE is com-
monly applied in threat modeling, while kill chains and MITRE ATT&CK are often
used for operational threat modeling.
The purpose of threat categorization is to facilitate the identification of threats.
The DFDs created in the first step are useful for highlighting possible targets such
as data sources, processes, data flows, and user interactions.
Once identified, these threats can be further organized through the use of threat
trees, with one tree associated with each threat goal. Moreover, common threat
lists with examples can make the identification process easier.
Finally, use and abuse cases can be used to show how existing protective measures
could be bypassed and/or where such measures are missing. [5]

Determine Countermeasures and Mitigation

A vulnerability can be mitigated through the implementation of a countermeasure.
These countermeasures are often identified using threat countermeasure mapping

20

Threat Modeling

lists; however, their prioritization is still a complex and open topic. Di!erent ap-
proaches exist, and each organization must choose the method that best meets its
needs. Common factors considered include the likelihood of an attack, the potential
damage it could cause, and the cost or complexity of the fix.
The risk mitigation strategy usually involves evaluating threats based on their po-
tential business impact. Once the impact is identified, di!erent options for address-
ing the risk are available:

Accept: decide that the impact is acceptable and document who has chosen
to accept the risk.

Eliminate: decide to eliminate the risk.

Mitigate: introduce features or controls to reduce either the impact or the
probability that the risk occurs.

Transfer: transfer the risk to another party such as a costumer. [5]

Assess your work

The last phase focuses on verifying the e!ectiveness of the work performed. Specif-
ically, it involves validating the model to assess whether it correctly identifies the
threats to the assets and whether it is able to suggest appropriate countermeasures.
In summary, this final phase is useful for determining whether the model functions
properly and achieve the defined goals.

2.2.2 Example of a Threat Model Process

The following example illustrates a simple threat model for an application. [5]

Scope the work

The goal of this phase is to understand the application under analysis, gather-
ing all the information considered useful for the entire process. Some important
information may include:

Application name.

Application version.

Description.

Threat modeling document owner.

Participants involved in the threat modeling process.

Reviewers of the threat model.

21

Threat Modeling

For example:

Application name: Library App
Version: 1.0
Description: library website
Document Owner: John X
Participants: Mary Y
Reviewer: Mike Z

During this phase, it is also important to identify and document the external de-
pendencies. In particular,the production environments and requirements should be
analyzed and reported with their ID and Description. Example:

ID Description
1 The website will run on a Linux server
2 The database server will be MySQL
3 The web server and the database will communicate through a private network
4 The web server is behind a firewall

Table 2.1. Threat model example - External Dependencies [5]

The next important aspect is the identification of entry points and assets. Entry
points determine how users (and therefore potential attackers) can interact with
the application i.e where data enters the system. Assets represent the information
or resources that need protection.
Both entry points and assets must be carefully documented as they are a funda-
mental part of the threat modeling. In particular,they can be reported with an ID,
a name and a trust level.
Trust levels specify the permissions that the application assigns to external entities.
Example [5]:

ID Name
1 Anonymous Web User
2 User with Valid Login Credentials
3 User with Invalid Login Credentials
4 Librarian
5 Database Server Administrator
6 Website Administrator
7 web server User Process
8 Database Read User
9 Database Read/Write User

Table 2.2. Threat model example - Trust Levels

22

Threat Modeling

ID Name Description Trust Level
1 HTTPS port all the pages are layered on this port (1),(2),(3),(4)
2 Login Page Used to log in to the website (1),(2),(3),(4)
3 Search Entry Page Used to enter a search query (2),(4)

Table 2.3. Threat model example - Entry Points

ID Name Description Trust Level
1 Library users

and Librarian
Assets relating to students and librar-
ians

(2),(4),(5),(6),
(7),(8),(9)

2 System Assets relating to the underlying sys-
tem

(5),(6),(7),(8),
(9)

3 Website Assets relating to the library website (2),(4),(5),(6)

Table 2.4. Threat model example - Assets

Finally, the gathered information makes it possible to model the application
through the use of the Data Flow Diagram (DFD) [5].

Figure 2.3. Threat model example - DFD

Determine Threats

Threat lists, such as those based on the STRIDE model, are useful for the identi-
fication of potential threats. Afterwards , a threat analysis can be performed.
Threat analysis focus on identifying possible threats to an application by exam-
ining the system. It consists of several steps: first, all threats relevant to each
component are considered; second, threats are analyzed by exploring the attack
paths, root causes and mitigation controls; finally, the identified threats can be
ranked based on their impact. Di!erent risk factors can be used to classify threats

23

Threat Modeling

as High, Medium or Low [5].
In our example, some of the main threats that have been identified1 , with their
respective ratings, are:

Threat Rating
SQL injection High

Spoofing High
Privilege Escalation High

XSS High
DoS Medium

Information Disclosure Medium
Outdated libraries Medium

Table 2.5. Threat model example - Threats

Determine Countermeasures and Mitigation

The goal of this phase is to determine whether protective measures exist for the
identified threats.
In our example, some possible countermeasures that can be adopted are:

Threat Countermeasures

SQL injection
1. Input validation

2. Parameterized queries

Spoofing
1. Appropriate authentication

2. Protect secret data
3. Don’t store secrets

Privilege Escalation 1. Run with least privilege

XSS
1. Sanitize user input

2. CSP

DoS

1. Appropriate authentication
2. Appropriate authorization

3. Filtering
4. Quality of service

Information Disclosure
1. Authorization
2. Encryption

3. Don’t store secrets

Outdated libraries
1. Remove unused packages

2. Regular patch cycle

Table 2.6. Threat model example - Countermeasures [5]

1The list of threats mentioned is not exhaustive and has been simplified for the purposes of
this example.

24

Threat Modeling

Finally, once the threats and their countermeasures have been identified, they
can be classified as follows:

Mitigated: countermeasures have been applied.

Partially mitigated: threats that are only partially mitigated by one or
more countermeasures.

Not mitigated: threats that do not have countermeasures in place. [5]

Conclusion

Threat modeling complements code review by identifying entry points and potential
threats early in the Software Development Lifecycle (SDLC), allowing reviewers to
focus on the most important areas. Moreover, for existing applications, it promotes
a depth-first approach that prioritizes the review of components associated with
higher-risk threats.

25

Chapter 3

KillChain and CVE

The previous chapter introduced the concept of Threat Modeling, highlighting the
importance of identifying potential threats and countermeasures to protect assets.
However, defending a system also requires an understanding of how an attack can
be carried out.

This chapter introduces the kill chain and the Common Vulnerabilities and Expo-
sures (CVE), two important concepts that help to understand the typical workflow
of an attack. In particular, the kill chain highlights the steps that an attacker
often follows when targeting a system, while CVE provides a standardized way to
describe and classify vulnerabilities.

3.1 Kill Chain

3.1.1 Definition

In military context, the term kill chain refers to the process of identifying and
destroying a specific target. In 2011, Lockheed Martin introduced the same concept
in the field of cybersecurity. Specifically, the company developed a cyber kill chain
to describe the steps of a cyber attack.
These steps are:

1. Reconnaissance.

2. Weaponization.

3. Delivery.

4. Exploitation.

5. Installation.

6. Command and Control (C2).

7. Actions and Objectives.

It is important to note that detecting a threat in the earlier stages of the chain
reduces potential damage compared to detection in the later stages [19].

26

KillChain and CVE

3.1.2 Attack Lifecycle

Reconnaissance

Reconnaissance is the first of the seven stages of the kill chain. During this initial
phase, the attacker tries to gather as much information as possible about the chosen
target.To achieve this, he may use di!erent tools as well as OSINT, which allows
him to collect valuable information from publicly available sources. This step is
very important, since based on the information he is able to collect, the next steps
may be more or less e!ective.
In particular, depending on his final goal, he needs to create di!erent types of links.
If he aims at destroying a system, a one way link may be established. However, if
the goal is to steal sensitive data, a two way link is required [19].
A practical example of this phase is the use of nmap to scan the target, which
provides information about the services and ports that are active and potentially
exploitable. Once such ports are identified, the attacker can try to establish com-
munication, such as through an authorized Telnet connection, which then serves as
a possible entry point for later stages of the kill chain.

Weaponization

Once the adversary collects all the information he needs and identifies possible
vulnerabilities, he uses them to prepare what to deliver and how. Specifically,
there are two types of payloads:

Malware that does not require communication with the adversary, such as
viruses and worms.

Malware that requires communication with the adversary, such as Remote
Access Trojan (RAT) [19].

For example, if during the Reconnaissance phase the attacker discovered that the
target company relies on PDF documents and emails, he can prepare a PDF that
contains a malware. It may appear to be a legitimate Threat Modeling report, but
once the victim opens it, the exploit is triggered.
It is important to note that in this phase the file is not yet delivered, but only
prepared for the next steps of the kill chain.

Delivery

In this phase, the malware that was prepared in the previous step is delivered and
it can be done in di!erent ways. For example, the attacker can send a phishing
email with the malicious PDF attached and ask the victim to download or open
it (user interaction is required). Another possibility is to deliver the payload by
exploiting software or hardware vulnerabilities (user interaction is not required).
This second method is generally more sophisticated and therefore more di”cult to
detect and block [19].

27

KillChain and CVE

Exploitation

Exploitation is the fourth stage of the kill chain. Once the malicious payload is
delivered, several conditions must be satisfied in order for the payload to be installed
on the target device:

The malware must have the minimum privileges required for the installation.

The target’s OS must be compatible with the malware (i.e: malware created
for Windows cannot be installed on a macOS).

The anti-malware defenses must not detect (and therefore block) the instal-
lation.

If any of these conditions are not met, the kill chain fails. Moreover, during this
phase the malware is not yet installed but rather prepared for the installation phase
[19].

Installation

At this stage, the infection of the target device begins. For malware to be installed
or executed, exploitable flaws must exist within the system. Many of these flaws
are listed in the Common Vulnerabilities and Exposure (CVE) database (discussed
later as a fundamental part of this work). After the installation, malware changes
the appearance of its files to avoid detection.
Moreover, malware can be classified as follows:

Polymorphic malware: the payload remains unchanged while the header
is modified, so the file appears normal in memory.

Metamorphic malware: it changes the pattern of the payload in memory.

This phase also ensures that the attacker can establish communication with the
target device, allowing the next stage to begin [19].

Command and Control

The adversary establishes a Command and Control channel to monitor and guide
the installed malware to fulfill its goal.One of the most challenging aspects of the
final two stages of the kill chain is to remain undetected, while from a defensive
perspective this phase is the last opportunity to block the malicious activity.
The channel created can then be used to steal data and/or to send instructions to
the malware, enabling lateral movement to discover other valuable assets.

28

KillChain and CVE

Actions on Objectives

In the final phase of the kill chain, the malware starts to carry out its functions.
Some of the most common actions include:

Data exfiltration: stealing data.

Ransomware: encrypting the victim’s data.

Cyber terrorism: erasing data.

If the adversary achieves its goal, the damage to the target can be catastrophic;
therefore, it is important to detect the attack as early as possible.
For this reason threat modeling plays an important role as it helps defenders identify
what data attackers might look, the possible attack vectors and the vulnerabilities
that may be exploited [19].

3.2 Digital Supply Chain

3.2.1 Introduction

A digital supply chain can be defined as a connected system of processes that
uses advanced technologies and shared data to improve decision-making capabili-
ties of all stakeholders across the chain. In traditional supply chains, information
moves step by step, and decisions are often made only after problems occur. By
contrast, digital supply chains use real-time data to give all participants better vis-
ibility and control. Sensors, monitors, and IoT gateways collect information during
production, transport, and distribution. This data is then aggregated and shared
among stakeholders, creating a collaborative environment in which each actor can
anticipate changes in demand, identify potential disruptions, and adjust operations
accordingly.

Benefits

Traditional supply chains rely mainly on people to interpret machine data and act
accordingly, which can take time and lead to mistakes. In digital supply chains,
much of the analysis is done automatically by systems that process the data and
suggest or even trigger actions. Humans remain in control, but the technology
helps them to act faster and more accurately. This reduces the need for long and
detailed planning and increases the ability to deal with unexpected changes.
Another key element is the level of collaboration; in digital supply chains, suppliers,
service providers and customers are connected through a shared flow of informa-
tion. For example, quality data from a supplier can immediately be used by a
manufacturer to adjust its production. This improves e”ciency and reduces waste
by ensuring that everyone has the same up to date information.
Finally, digital supply chains represent a strategic evolution in supply chain man-
agement. They use technology and data to create a more flexible, transparent, and

29

KillChain and CVE

resilient system. Instead of a linear chain where each step depends only on the
one before it, the digital supply chain is an interconnected network. This model is
better suited to today’s complex and global industrial environments, where speed,
adaptability, and collaboration are essential.[6].

3.2.2 Risks in Digital Supply Chains

In today’s interconnected world, organizations depend on a wide network of external
partners to deliver products and services. Although globalization and digitalization
o!er significant advantages, they also reduce the control that organizations have
over their supply ecosystems. As consequence, protecting only internal infrastruc-
tures is no longer enough [20].
A typical digital supply chain attack usually develops in two stages: first,the at-
tacker compromises the supplier, and then it uses this access to target the supplier’s
customers [21].
In recent years, cases such as SolarWinds and the MOVEit breaches have shown
that supply chain attacks can impact thousands of organizations at once. These
examples demonstrate that such risks are not limited to single companies, but rep-
resent systemic threats that can disrupt entire ecosystems.

Supplier attacks

Table 3.1 outlines common techniques used to infiltrate suppliers. These range
from technical exploits such as malware infections or brute force attacks, to human
approaches such as phishing and social engineering.

Technique Example
Social Engineering phishing, fake applications
Brute-Force Attack guessing a web login
Exploiting Software Vulner-
ability

SQL injection or bu!er overflow exploit in an
application

Exploiting Configuration
Vulnerability

taking advantage of a configuration problem

OSINT search online for credentials, usernames
Counterfeiting imitation of USB with malicious purposes

Table 3.1. Attack techniques used to compromise the supply chain [3].

Suppliers manage a wide range of critical assets, from software components to
sensitive customer data. Compromise these assets can provide attackers with an
e!ective entry point into downstream organizations. Table 3.2 summarizes the most
common targeted assets.

30

KillChain and CVE

Asset Example
Pre-existing Software web servers, applications, databases,

firmware.
Software Libraries third party libraries
Code software produced by the supplier
Configurations passwords, API keys, firewall rules
Data information about the supplier, certificates,

personal data of customers
Processes updates, backups, certificate signing
Hardware hardware produced by the supplier, chips
People targeted individuals with access to data, in-

frastructure, or other people

Table 3.2. Supplier assets targeted in supply chain attacks [3].

Customer attacks

Once a supplier is compromised, attackers often shift their focus to the supplier’s
customers. Customers may be deceived through social engineering or directly com-
promised via technical exploits. Table 3.3 presents typical techniques.
Certain attacks, such as malware infection or hardware tampering, are relevant
for both suppliers and customers. However, their impact di!ers: in suppliers they
provide a foothold for downstream attacks, while in customers they are often the
final step of the intrusion chain.

Technique Example
Trusted Relationship trust a certificate, trust an automatic update
Drive-by Compromise malicious scripts in a website to infect users

with malware
Phishing messages impersonating the supplier
Counterfeiting create a fake USB, modify a motherboard

Table 3.3. Attack techniques used to compromise customers [3].

Customers also manage assets, both technical and human. By compromising finan-
cial resources, software, or employees, attackers can inflict direct damage and use
the compromised environment to further propagate malicious activities. Table 3.4
lists the most commonly targeted assets.

31

KillChain and CVE

Asset Example
Data payment data, documents, emails, financial

data
Personal Data customer data, employee records
Software access to the customer product source code
Bandwidth use bandwidth for DDoS, mass infection
Financial hijack bank accounts, money transfers
People individuals targeted due their position

Table 3.4. Customer assets targeted in supply chain attacks [3].

Significant Incidents

Follow some of the most famous supply chain attacks:

In February 2021, ethical hacker Alex Birsan demonstrated the potential scale
of supply chain vulnerabilities by launching a “novel supply chain attack.”
His technique successfully infiltrated the network systems of more than 35
major technology companies, among them Microsoft, Apple, PayPal, Shopify,
Netflix, Tesla, and Uber [22].

SolarWinds, a major software provider, was the target of one of the most sig-
nificant supply chain attacks known. The intrusion began in September 2019,
when attackers first gained access to the company’s internal network. By
October, they were experimenting with injecting malicious code into Orion,
SolarWinds’ flagship software platform. After several months of testing, the
attackers succeeded in embedding a backdoor later named Sunburst. On
March 26 2020, SolarWinds unknowingly distributed Orion updates that con-
tained this malicious code. More than 18,000 customers installed the updates,
thereby spreading the malware. Once inside a victim’s system, the malware
granted attackers remote access, enabling them to deploy additional tools
and conduct extensive cyber espionage campaigns across multiple organiza-
tions [23].

Figure 3.1. SolarWinds attack [3]

32

KillChain and CVE

The MOVEit attack was a cyber attack that exploited a vulnerability in the
MOVEit managed file transfer service, a tool widely used by organizations
to securely exchange sensitive data. The attack began on May 27 2023, and
relied on a zero day vulnerability that allowed attackers to inject SQL com-
mands and gain unauthorized access to customer databases. The attack has
been attributed to the Cl0p ransomware group, which is known for extorting
victims and publishing stolen data on dedicated leak sites. Among the af-
fected organizations were the BBC, British Airways, Boots, and Aer Lingus,
whose employees’ personal information was potentially exposed [24].

3.2.3 Empirical Evidence and Prevention Strategies

According to Cisco’s Annual Cyber Security Report in 2018, 38% of the surveyed
organizations foresee a risk of cyber security attacks in their manufacturing supply
chains as they combine operational technologies with information technologies [22].
Moreover, according to the very recent Ivanti’s 2025 State of Cybersecurity Report
[4], just 1 out of 3 companies are ready to protect themselves 3.2 and half of them
still don’t have identified the most vulnerable components in their software supply
chain 3.3.

Figure 3.2. preparedness gap against cyber threats [4]

Figure 3.3. identification of the most vulnerable components in
the SW supply chain [4]

However, organizations are moving to prepare themselves and to identify the areas
where they may be most vulnerable. They are beginning to analyze which con-
nections, processes, or third-party dependencies represent the most critical entry

33

KillChain and CVE

points for potential attackers.
In this context, threat modeling helps. It provides a structured way to visualize the
entire digital supply chain, identify weak spots, and understand how those weak-
nesses could be exploited. By modeling possible attack paths, organizations can
anticipate which assets might be targeted, what kind of damage could occur if an
entry point is compromised, and how attacks could propagate across interconnected
systems.
This approach not only highlights where defenses need to be placed but also helps
prioritize resources, ensuring that the most valuable assets and the most fragile
links in the chain receive proper attention.

3.3 Common Vulnerabilities and Exposures (CVE)

3.3.1 Introduction

The Common Vulnerabilities and Exposures (CVE) system was introduced in 1999
by the MITRE Corporation. CVE provides a standardized method for reporting
and tracking security flaws, and CVE identifiers (CVE IDs) make it possible to
uniquely recognize vulnerabilities across systems, improving the coordination of se-
curity tools and mitigation strategies.
Although MITRE manages the CVE list, entries are often submitted by members
and organizations of the open source community. In this way, CVE helps IT pro-
fessionals to prioritize and address security flaws.
A flaw is assigned a CVE Id if it meets the following conditions:

Independence: the vulnerability can be fixed without requiring other vul-
nerabilities to be resolved first.

Acknowledgment: either the vendor confirms the bug and its security im-
pact or the reporter provides su”cient evidence of its e!ect on system security.

Scope: the flaw a!ects only a single codebase. If multiple products are
impacted, each one receives its own CVE Id unless they share unavoidable
vulnerable code. [8]

Moreover, vulnerabilities can be categorized as follows:

Software vulnerabilities: flaws in operating systems and software.

Network vulnerabilities: software vulnerabilities but exist in network de-
vices or protocols.

Embedded/Firmware/Hardware vulnerabilities: flaws in devices that
attackers primarily exploit to steal intellectual property or to counterfeit the
device [19].

34

KillChain and CVE

3.3.2 CVE JSON Record Format

A CVE record is structured in JSON format and contains several mandatory fields.
Specifically, each record must include:

dataType: specifies the type of data in the JSON record (”CVE RECORD”).

dataVersion: specifies the version of the CVE schema used to validate the
record.

cveMetadata: contains information about the CVE itself, including the
CVE ID, the organization that requested or assigned it, the request date and
the current state (i.e: PUBLISHED).

containers: stores the vulnerability details. Each record must include one
cna container that contains the vulnerability information provided by the
CNA that created the CVE entry. However,several adp containers may be
included allowing organizations in the CVE program to add additional details
related to the vulnerability [25].

To better clarify the structure, the following example presents a basic CVE record
showing how these fields are organized [26].

Example

{
"dataType": "CVE_RECORD",
"dataVersion": "5.1",
"cveMetadata": {

"cveId": "CVE-1900-1234",
"assignerOrgId": "b3476cb9-2e3d-41a6-98d0-0f47421a65b6",
"state": "PUBLISHED"

},
"containers": {

"cna": {
"providerMetadata": {

"orgId": "b3476cb9-2e3d-41a6-98d0-0f47421a65b6"
},
"title": "Buffer overflow in Example Enterprise allows Privilege Escalation.",
"datePublic": "2021-09-08T16:24:00.000Z",
"problemTypes": [

{
"descriptions": [

{
"lang": "en",
"cweId": "CWE-78",
"description": "CWE-78 OS Command Injection",
"type": "CWE"

35

KillChain and CVE

}
]

}
],
"impacts": [

{
"capecId": "CAPEC-233",
"descriptions": [

{
"lang": "en",
"value": "CAPEC-233 Privilege Escalation"

}
]

}
],
"affected": [

{
"vendor": "Example.org",
"product": "Example Enterprise",
"platforms": [

"Windows",
"MacOS",
"XT-4500"

],
"versions": [

{
"version": "1.0.0",
"status": "affected",
"lessThan": "1.0.6",
"versionType": "semver"

},
{

"version": "3.0.0",
"status": "unaffected",
"lessThan": "*",
"versionType": "semver"

}
],
"defaultStatus": "unaffected"

}
],
"descriptions": [

{
"lang": "en",
"value": "OS Command Injection vulnerability parseFilename function of example.php in the Web Management Interface of Example.org Example Enterprise on Windows, MacOS and XT-4500 allows remote unauthenticated attackers to escalate privileges.\n\nThis issue affects:\n * 1.0 versions before 1.0.6\n * 2.1 versions from 2.16 until 2.1.9."

}
],
"references": [

36

KillChain and CVE

{
"url": "https://example.org/ESA-22-11-CVE-1900-1234"

}
]

}
}

}

37

Chapter 4

Thesis Objectives

The previous chapters introduced threat modeling, digital supply chains, kill chains,
and CVEs showing how each of them plays a fundamental role in modern cyberse-
curity. In particular, Chapter 3 highlighted that the main issue with supply chains
lies in the fact that they are no longer just about the movement of goods (raw ma-
terials, products, etc..) but also about an interconnected digital network composed
of software, cloud services, partners, IoT devices and so on.
This leads to several consequences: even with very strong internal defenses (fire-
walls, segmentation, monitoring etc..) a company cannot consider itself secure as it
depends on the security level of other actors in the chain. A vulnerability in a sup-
plier or partner can become an entry point for an attacker, who exploits the digital
connection to access the company’s systems. As a result, visibility and control are
limited since it is not possible to monitor or manage all the infrastructures of the
supply chain, so there is never complete certainty of having a high security level.
In this context, threat modeling frameworks face some di”culties. They work very
well when applied to the internal perimeter (to systems that are known and under
the control of the organization). In digital supply chains, however, one is faced
with a network of external dependencies where it is not always clear how a supplier
develops its software, which libraries it uses or which security practices it follows.
For this reason, applying threat modeling to the entire chain remains a complex
task.

The goal of this thesis is to analyze an existing framework, TAMELESS, which
already provides strong support for threat modeling and analysis in hybrid envi-
ronments, and to propose an extension that integrates CVEs, optimizing its use in
predominantly software-based scenarios. The aim is to make it a functional frame-
work for threat analysis of digital supply chains in order to address the challenges
linked to their complexity.

4.1 Thesis Workflow

The thesis workflow can be described in three main steps:

38

Thesis Objectives

1. Analyze and adapt the TAMELESS model to make it more e!ective in software-
based environments and more suitable for addressing threats of digital supply
chains.

2. Integrate into the model the Common Vulnerabilities and Exposures (CVE),
with a focus on the Software category introduced in Chapter 3. An easy patch
management will also be included: if a software component is vulnerable to
a specific CVE, the model will provide information on the availability of a
fixed version (patch) that is not a!ected by the vulnerability.

3. Update and enhance the GUI so that it supports the new features and provides
a more user friendly interface.

The final result will be an extended and optimized framework, able to support
threat analysis more e!ectively in complex software scenarios and digital supply
chains. Finally, thanks to the integration of CVE and patch management, the
framework will be able to represent vulnerabilities and possible mitigations in a
more realistic way.

39

Chapter 5

Approach and Model

This chapter introduces and analyzes the TAMELESS framework in detail.
Specifically, it describes the components, their properties and the relationships
that connect them. It also explains the derivation rules and the modifications that
have been applied to the original model in order to make it suitable for software
environments.
A particular focus is given to the integration of the CVEs and patch management,
which are essential for the security and reliability of today’s systems.

5.1 Introduction to TAMELESS

As introduced in Chapter 2, the Threat & Attack ModEL Smart System (TAME-
LESS) is a threat analysis tool that provides users with a comprehensive view of
the system’s security across the human, physical, and cyber dimensions.
Specifically, TAMELESS provides a graphical view of the attack propagation,allowing
users to introduce new protection and monitoring components. The tool can then
be rerun with the updated information to generate the new threat model (the pro-
cess can be repeated until the resulting model is satisfactory).
In short, once system components, their properties and their relationships are de-
fined, TAMELESS automatically analyzes them and displays the resulting threats
and how they were derived.
TAMELESS also assists architects in identifying countermeasures by suggesting
entities that can protect, monitor, detect, restore, repair, or replicate [10].

The following sections describe the key aspects of the model and present the mod-
ifications introduced to achieve the goals defined in Chapter 4.

40

Approach and Model

5.2 Components and Security Properties

This section introduces the components of the model together with their security
properties.

5.2.1 Components

The original model was composed of two elements: entity and threat. However,
some modifications have been introduced.
Specifically, the current model is composed of three elements:

Software: a software element identified by its name and version, represented
in the format Sofware Version.
An Example: Express 4.17.
In some cases, the component can also be defined in a more generic way, such
as backend.

Threat: a malicious event that may a!ect the software.
Example: Denial of Service (DoS).

CVE: the Common Vulnerabilities and Exposures Identifier (CVE ID), rep-
resenting a known vulnerability.
Example: CVE-2025-7784.

In this revised model, the concept of entity (that previously included human,cyber
and physical components) has been replaced by software, in order to give a software
oriented perspective. Moreover, a third component cve has been introduced to
include documented vulnerabilities that may a!ect the considered software.

5.2.2 Security Properties

Security properties can either be assumed or derived through derivation rules.
Moreover, these properties are classified into two categories: basic and auxiliary.

Basic Properties

Basic properties describe the security aspects of the components.
In particular, we define three basic properties:

PB = {Comp, Malfun, Vul}
Specifically:

Comp(S,T): states that software S has been compromised by threat T. 1

1Comp(S) means that there exists at least one threat for which S is compromised

41

Approach and Model

Malfun(S): indicates that software S is malfunctioning (for example, a Fire-
wall misconfiguration).

Vul(S,T): states that software S is vulnerable to threat T.

These properties are inherited directly from the original model [10] without modi-
fication.

Auxiliary Properties

Auxiliary properties are used to describe either the state of a software component
after it has been compromised, or the status of specific vulnerabilities.
In particular, four auxiliary properties are defined:

PA = {Det, Rest, Fix, Avail}
Specifically:

Det(S,T): indicates that the compromise of software S by threat T has been
detected.

Rest(S): states that control over software S has been restored after a com-
promise.

Fix(S): states that malfunction of software S has been resolved.

Avail(C): indicates that a patch has been released for cve C.

In the original model , the set of auxiliary properties included just three elements.
The new model introduces the fourth property Avail that specifies whether a patch
has been released for a specific CVE.

Assumed and Derived Properties

Assumed properties are those that are explicitly stated as a part of the security
assumptions.
The original set of assumed properties has been extended with the property ωAvail
and is defined as follows:

Pω = {ωComp, ωMalfun, ωVul, ωAvail}

Derived properties, on the other hand, represent those properties that may be-
come true through the application of derivation rules:

Pε = {εComp, εMalfun, εVul, εDet, εRest, εFix}

42

Approach and Model

5.3 Relations and High-Level Properties

This section describes the relationships between components and introduces their
high level properties.

5.3.1 Relations

Relations are a fundamental concept in TAMELESS, as they provide a way to de-
scribe interconnected system and, in particular, the main aspects of digital supply
chains,where di!erent elements depend on each other and potential risks may prop-
agate through these dependencies.
Relations can be established:

between software

between software and CVEs

between CVEs and threats

between threats and software

This work extends the model by introducing relations related to CVEs, while the
other ones remain as defined in the original model [10].

Software–Software Relations

The set of relations between software components is derived from the original model
[10] and is defined as follows:

R = {Contain, Control, Connect, Depend, Check, Replicate}

Specifically:

Contain(S1,S2): indicates that software S1 contains software S2.

Control(S1,S2): indicates that software S1 controls software S2.

Connect(S1,S2,S3): indicates that software S1 connects software S2 with
software S3.2

Depend(S1,S2): indicates that the functionality of software S1 depends on
software S2.

Check(S1,S2): indicates that software S1 verifies the functionality of soft-
ware S2.

Replicate(S1,S2): indicates that software S1 replicates software S2.

2The connect relation is unidirectional

43

Approach and Model

Software–Threat Relations

These relations make it possible to identify whether software components can pro-
tect each other or spread a specific threat, which is important for the derivation
rules.
Similarly to the relations between software, the set of relations between software
and threat is taken from the original model [10] and is defined as follows:

R = {Protect, Monitor, Spread}

Specifically:

Protect(S1,S2,T): states that software S1 protects software S2 against
threat T.

Monitor(S1,S2,T): states that software S1 monitors software S2 for threat
T.

Spread(S,T): states that software S spreads threat T.

Software–CVE Relations

This model introduces a new set of relations between software and CVEs. In par-
ticular, this set contains only one element, defined as follow:

R = {a!ectedBy}

Specifically:

a!ectedBy(S,C): states that software S meets the conditions that make it
vulnerable to cve C.

Such conditions may include the software version, operating system (OS), and privi-
leges. This relation is fundamental because it allows mapping a software component
to a specific CVE.

Threat–CVE Relations

The final set of relations describes the connection between CVEs and threats.
As in the previous case, this set is newly introduced in the model and is defined as
follows:

R = {Exploit}

Specifically:

Exploit(C,T): indicates that cve C can be exploited by threat T.

44

Approach and Model

5.3.2 High-Level Properties

High level properties make it easier to represent the overall state of a software sys-
tem including its components, dependencies and connections.
This set of properties is derived from the original model [10] and is defined as follows:

PH = {Valid, Defended, Safe, Monitored, Replicated, Checked}

Specifically:

Valid(S): a software S is considered valid if it has not been compromised
and is not subject to malfunction.

Defended(S1,T): a software S1 is considered defended against a threat T
if there exists another software S2 that protects S1 against T and, S2 is valid.

Safe(S,T): a software S is considered safe from a threat T if it is either
defended against T or not vulnerable to T.

Monitored(S1,T): a software S1 is considered monitored with respect to
a threat T if there exists another software S2 that monitors S1 for T and S2
is valid.

Replicated(S1): a software S1 is considered replicated if there exists an-
other software S2 that replicates S1 and S2 is valid.

Checked(S1): a software S1 is considered checked if there exists another
software S2 that verifies the functionality of S1 and S2 is valid.

To make definitions clearer, the table 5.1 reports each property together with its
logical formulation.

Valid(S) := ¬Comp(S) → ¬Malfun(S)
Defended(S1,T) := ↑S2. P rotect(S2, S1, T) → V alid(S2)
Safe(S,T) := ¬V ul(S, T) ↓Defended(S, T)
Monitored(S1,T) := ↑S2. Monitor(S2, S1, T) → V alid(S2)
Checked(S1) := ↑S2. Check(S2, S1) → V alid(S2)
Replicated(S1) := ↑S2. Replicate(S2, S1) → V alid(S2)

Table 5.1. High level properties.

45

Approach and Model

5.4 Derivation Rules

This section describes the derivation rules,which represent a fundamental concept
in TAMELESS. They allow us to determine whether a software component can be
compromised, malfunctioning, vulnerable, restorable, fixed or patched.

5.4.1 Rules for Vulnerabilities

If there exists a cve C that a threat T can exploit, and a software S satisfies the
conditions specified by C, then S can be vulnerable to T:

Exploit(C,T) → a!ectedBy(S,C) ↔ εVul(S,T)

Table 5.2. Derivation rule for vulnerabilities.

This rule allows us to determine whether a software S can be vulnerable to a specific
threat T. In this model, the rule di!ers from the original formulation as it has been
adapted to include the CVE system.
Finally, the rule potentiallyVul which was part of the original model has been
removed.

5.4.2 Rules for Compromise

In this model, four derivation rules are defined for the compromised state:

1. A software S can be compromised by a threat T if S is vulnerable to T and is

not defended against T.

2. If there exists a software S2 that controls a software S1, S2 can spread a

specific threat T, S1 is not defended against T and S2 can be compromised

(by any threat, regardless of which one), then software S1 can be compromised

by threat T.

3. If a software S1 contains (or is contained in) a software S2, S2 can spread a

specific threat T, S1 is not defended against T and S2 can be compromised (by

any threat, regardless of which one), then software S1 can be compromised by

threat T.

4. If there exists a software S3 that connects a software S2 to a software S1,

S2 can spread a specific threat T, S1 is not defended against T, S2 can be

compromised (by any threat, regardless of which one) and either S3 can be

compromised (by any threat) or S3 is not defended against T, then S1 can be

compromised by threat T.

46

Approach and Model

Table 5.3 reports the rules in logical expressions:

εVul(S,T) → ¬Def(S,T) ↔ εComp(S,T)

Control(S2,S1) →
εComp(S2) → ¬Defended(S1,T) → Spread(S2,T) ↔ εComp(S1,T)

(Contain(S1,S2) ↓ Contain(S2,S1)) →
εComp(S2) → ¬Defended(S1,T) → Spread(S2,T) ↔ εComp(S1,T)

Connect(S3,S2,S1) → εComp(S2) → Spread(S2,T) →
¬Defended(S1,T) → (εComp(S3) ↓ ¬Defended(S3,T)) ↔ εComp(S1,T)

Table 5.3. Derivation rules for compromised.

These rules allow us to determine and analyze how threats can propagate across
systems and how software components can compromise each other.
In particular, the rules make it possible to better identify the weaknesses in the
digital supply chain.
To ensure compatibility with the CVE system, some modifications have been in-
troduced compared to the original model :

The first rule has been introduced to define whether a software can be com-
promised independently of its relationships with other software. In particular,
it states that the software must not only be vulnerable to a specific threat
but also lack any external protection against it.

In all rules, the condition safe has been replaced by the condition defended
in order to avoid inconsistencies in dependency relations. For example, if a
software A has full control over a software B, and A is compromised by a
threat T, then T directly compromises B as well, regardless of whether exists
a vulnerability that can be exploited in B.

5.4.3 Rules for Malfunctions

There are two derivation rules for malfunctioned state:

1. A compromised software S can malfunction.

2. If a software S1 depends on a software S2 and S2 malfunctions, then S1 can

also malfunction.

Table 5.4 reports the rules in logical expressions:

47

Approach and Model

εComp(S,T) ↔ εMalfun(S)

Depend(S1,S2) → εMalfun(S2) ↔ εMalfun(S1)

Table 5.4. Derivation rules for malfunctioned.

These rules are inherited from the original model [10] without modifications.

5.4.4 Rules for Threat Detection

When a software S can be compromised by a threat T and S is monitored for threat
T by some uncompromised software, then T can be detected for S:

εComp(S,T) → Monitored(S,T) ↔ εDet(S)

Table 5.5. Derivation rule for detecting threats.

This rule is taken from the original model [10] without modifications.

5.4.5 Rules for Software Restoration

When a threat T can be detected for the software S and S has been replicated, then
S can be restored:

εDet(S,T) → Replicated(S) ↔ εRest(S)

Table 5.6. Derivation rule for Restoring software.

This rule is inherited from the original model [10] without modifications.

5.4.6 Rules for Fixes

When a software S malfunctions and this malfunction can be detected (i.e: S is
checked), then S can be fixed:

εMalfun(S) → Checked(S) ↔ εFix(S)

Table 5.7. Derivation rule for Fixing software.

This rule is adopted from the original model [10] without modifications.

48

Approach and Model

5.4.7 Rules for Patching

If a software S is a!ected by the cve C , and a patch for that cve has been released,
then software S can be patched (i.e: updated to a more recent version not a!ected
by C):

a!ectedBy(S,C) → Avail(C) ↔ εPatch(S,C)

Table 5.8. Derivation rule for Patched.

This rule has been introduced with this work.

49

Chapter 6

Implementation and Validation

The previous chapter discussed the TAMELESS model in detail, together with the
modifications introduced to achieve part of the objectives outlined in Chapter 4.
This chapter focuses on the implementation and describes the changes made both
in Prolog and in the graphical user interface (GUI).
Finally, two use cases are presented, followed by the validation of the model on these
scenarios, in order to provide a practical demonstration in contexts that resemble
real-world situations.

6.1 Implementation

In this section, the attention moves from the theoretical aspects of the model to its
actual implementation.
The discussion is divided into two main parts:

1. The first part concerns the modifications made to the Prolog side.

2. The second part focuses on the GUI, where the goal was to implement the
new features and to improve the usability.

6.1.1 Prolog Implementation

For the implementation of the model in Prolog, the knowledge base1 has been
divided into two separate files:

1. The first contains the high level properties and the derivation rules.

2. The second defines the specific relations and properties of the system under
analysis.

The first file, named rule.p, implements the general rules and is the main focus of
this subsection.

1In Prolog, the knowledge base consists of facts and rules

50

Implementation and Validation

High-Level Properties

At the beginning of the file, we find the high level properties.

In the original implementation of the model, the high level properties were de-
fined as follows:

%%Usable
usable(A):-

e(A),(\+canbeComp(A,_T),\+canbeMalfun(A)).

%%Protected
protected(A,T):-

protect(B,A,T), usable(B).

%%Safe
notSafe(A,T):-

e(A), t(T), (\+protected(A,T), canbeVul(A,T)).

%%Monitored
monitored(A,T):-

monitor(B,A,T), usable(B).

%%Replicate
replicated(A):-

replica(B,A), usable(B).

%%Checked
checked(A):-

check(B,A), usable(B).

Listing 6.1. Original high-Level properties

However, this was not fully consistent with the original model , where the proper-
ties where defined with di!erent names.

The new implementation address this issue and redefines the high level proper-
ties as follows:

%%Valid
valid(S):-

software(S),(\+canbeComp(S,_T), \+canbeMalfun(S)).

%%Defended
defended(S1,T):-

protect(S2,S1,T), valid(S2),
write("\n -> ("),

51

Implementation and Validation

write(S2), write(") protect ("), write(S1),
write(") against threat ("), write(T),
write(")\n").

%%Safe
safe(S,T):-

software(S), threat(T),
(defended(S,T) ; \+canbeVul(S,T)).

%%Monitored
monitored(S1,T):-

monitor(S2,S1,T), valid(S2),
write("\n -> ("),
write(S2), write(") monitor ("), write(S1),
write(") for threat ("), write(T),
write(")\n").

%%Replicated
replicated(S1):-

replicate(S2,S1), valid(S2).

%%Checked
checked(S1):-

check(S2,S1), valid(S2).

Listing 6.2. New high-Level properties

The main modifications are listed below:

The property names have been aligned with the terminology used in the
Chapter 5.

The monitored property now includes print statements.

The property safe replaces the previous notSafe.

Derivation Rules

Immediately after the high level properties we find the derivation rules.

In the original implementation, canbeVul was defined as follows:

canbeVul(A,T):- potentiallyVul(A,T), canbeMalfun4Dep(A).

Listing 6.3. Original canbeVul

With the introduction of CVEs, the rule has been completely revised. Its new im-
plementation is the following:

52

Implementation and Validation

canbeVul(S,T):-
exploit(CVE,T),
affectedBy(S,CVE),
write(’\n-> (’),
write(S),
write(") meet conditions for ("),
write(CVE),
write(") exploitable by ("),
write(T),
write(")\n"),
(

avail(CVE) ->
write("\n -> ("),
write(CVE),
write(") patch ("),
write("is available"),
write(")\n")
;
write("\n -> ("),
write(CVE),
write(") patch ("),
write("is NOT available"),
write(")\n")

).

Listing 6.4. New canbeVul

Specifically,the changes introduced are:

Removal of potentiallyVul and canbeMalfun4Dep.

Introduction of exploit and a!ectedBy to integrate the CVE system.

Addition of print statements providing information about the CVE a!ecting
a given software component S, and whether a patch for that CVE has been
released. This not only improves the readability of the output, but also
provides useful input for the graph generated by the GUI.

A new rule has been added concerning the spread. This addition has just an im-
plementative purpose, aimed at producing well structured output. The logical
semantics remain unchanged, since the only condition is the spread itself:

canSpread(S,T):-
spread(S,T),
write(’\n-> (’), write(S),
write(’) can spread (’), write(T),
write(’)\n’).

Listing 6.5. canSpread

53

Implementation and Validation

The set of derivation rules concerning compromise has also been revised. The orig-
inal implementation was as follows:

canbeComp(A,T2):-
control(B,A),
canbeComp(B,_T1),
spread(B,T2),
notSafe(A,T2),
write(’\n-> (’),
write(A),
write(’) can be compromises through (’),
write(B),
write(’) by (’),
write(T2),
write(’)’).

canbeComp(A,T2):-
connect(C,B,A),
canbeComp(B,_T1),
spread(B,T2),
notSafe(A,T2),
(canbeComp(C,_T3); \+protected(C,T2)),
write(’\n-> (’),
write(A),
write(’) can be compromises through (’),
write(B),
write(’) by (’),
write(T2),
write(’)’).

canbeComp(A,T2):-
(contain(A,B); isContained(A,B)),
canbeComp(B,_T1),
spread(B,T2),
notSafe(A,T2),
write(’\n-> (’),
write(B),
write(’) compromises (’),
write(A),
write(’) by (’),
write(T2),
write(’)’).

Listing 6.6. Original canbeComp

The implementation in the new model is:

54

Implementation and Validation

canbeComp(S1,T):-
(contain(S1,S2); isContained(S1,S2)),
canSpread(S2,T),
\+defended(S1,T),
canbeComp(S2,_T2),
write(’\n-> (’),
write(S2),
write(’) compromises (’),
write(S1),
write(’) by (’),
write(T),
write(’)\n’).

canbeComp(S1,T):-
control(S2,S1),
canSpread(S2,T),
\+defended(S1,T),
canbeComp(S2,_T),
write(’\n-> (’),
write(S1),
write(’) can be compromised through (’),
write(S2),
write(’) by (’),
write(T),
write(’)\n’).

canbeComp(S1,T1):-
connect(S3,S2,S1),
canSpread(S2,T1),
\+defended(S1,T1),
canbeComp(S2,_T2),
(canbeComp(S3,_T3); \+defended(S3,T1)),
write(’\n-> (’),
write(S1),
write(’) can be compromised through (’),
write(S2),
write(’) by (’),
write(T1),
write(’)’).

canbeComp(S,T):-
\+defended(S,T),
canbeVul(S,T),
write(’\n-> (’),
write(S),
write(") can be compromised by ("),
write(T),

55

Implementation and Validation

write(")\n").

Listing 6.7. New canbeComp

The main modifications introduced are the following:

Introduction of a fourth rule, which allow us to verify whether a software
component S can be compromised by a threat T without considering its re-
lationships with other software.

Replacement of notSafe with notDefended, as discussed in Chapter 5.

Replacement of spread with the rule canSpread , which handles the generation
of the corresponding output messages.

A new derivation rule has been introduced in order to determine whether a software
component S is a!ected by a specific vulnerability CVE and whether an update is
available. If both conditions hold, the software can be patched and the output
message indicates this possibility. The rule is defined as follows:

canbePatch(S,CVE):-
affectedBy(S,CVE), avail(CVE),
write(’\n-> (’),
write(S),
write(’) can be patched for vulnerability (’),
write(CVE),
write(’)\n’).

Listing 6.8. New canbePatch

The last modification concerns the canbeDet derivation rule:

canbeDet(A,T):- canbeComp(A,T), monitored(A,T)

Listing 6.9. Original canbeDet

In the revised model, print statements have been added in order to display when a
detection of a given threat is possible:

canbeDet(S,T):-
canbeComp(S,T), monitored(S,T),

56

Implementation and Validation

write(’\n-> (’),
write(S),
write(’) can be detected if compromised by threat (’),
write(T),
write(’)\n’).

Listing 6.10. New canbeDet

6.1.2 Graphical User Interface (GUI) Implementation

This section describes the most relevant changes made to the Tameless GUI in order
to integrate the new version of the model and to make the interface itself easier to
use.

Backend

The backend is responsible for handling communication with the database and ex-
posing the APIs required by the frontend. Its structure is organized into several
directories, each containing files dedicated to specific functionalities. In particular,
the backend of TAMELESS is implemented in Node.js, while MongoDB is used as
the database.

The first important directory is controllers as each file within it defines how re-
quests are processed and how responses are generated.
In particular, a new file cve.controller.js containing four controllers has been
added:

createCveHandler: controller for inserting a new CVE.

getAllCveHandler: controller for retrieving all CVEs.

updateCveHandler: controller for updating a CVE.

deleteCveHandler: controller for deleting a CVE.

Moreover, the file entities.controller.js and all the controllers it contains have
been renamed, since the model no longer includes a generic entity, but instead uses
the concept of software. Therefore, the file has been renamed to software.controller.js
and the controllers have been renamed accordingly to createSoftwareHandler, getAll-
SoftwareHandler, updateSoftwareHandler and deleteSoftwareHandler.

The directory db/models contains the files that define the schemas for the Mon-
goDB database.
A new file Cve.js has been added to define the schema for the CVEs:

57

Implementation and Validation

import mongoose from "mongoose";

const CveSchema = mongoose.Schema(
{

name: {
type: String,
require: true,
maxLength: 50

},
description: {

type: String,
require: false,
maxLength: 1000

},
},
{

toJSON: {
virtuals: true,
transform: (doc, ret) => {

ret.id = ret._id; //Map id to id
delete ret._id; //Remove original _id field
delete ret.__v; //Remove Mongoose’s versioning key

},
},

}
);

export default mongoose.model("Cve", CveSchema, ’cve’);

Listing 6.11. Cve.js

Moreover, the file Entity.js has been renamed to Software.js and the type field
of the entity schema has been removed. This field was previously used to specify
whether an entity was physical, human or cyber. However, since the new model
focuses on a software-based environment, this information is no longer needed. Fi-
nally, EntitySchema has been renamed to SoftwareSchema.

The directory json schemas contains the JSON schemas used to validate the struc-
ture of the data and to ensure that the information stored in or retrieved from the
database respects the expected format. The file cve schema.json has been added,
while the other files have been modified to align with the decision to remove the
entity type and to rename the entity to software.

The directory routes contains the files that define the API routes. Each route

58

Implementation and Validation

specifies an endpoint and associates it with the corresponding controller. A new
file cve.route.js has been added to handle the routes related to CVEs:

import express from ’express’;
import { validate, cveSchema } from ’../utils/validator.js’;
import { createCveHandler, getAllCveHandler, updateCveHandler,

deleteCveHandler } from ’../controllers/cve.controller.js’;

const router = express.Router();

/**Add a new cve */
router.post(’/cve’, validate({ body: cveSchema }),

createCveHandler);

/**Get all present cve */
router.get(’/cve’, getAllCveHandler);

/**Update the selected cve */
router.put(’/cve/:cveId’, validate({ body: cveSchema }),

updateCveHandler);

/**Route to delete an cve */
router.delete(’/cve/:cveId’, deleteCveHandler);

export default router; //To import and use

Listing 6.12. cve.route.js

Moreover, the entities.route.js file and its routes have been renamed to align
with the new software-based model.

The directory service contains the files responsible for managing services. Ser-
vices perform the operations of saving, updating, deleting or retrieving data from
the database. A new file cve.service.js has been added to define services related
to CVEs:

createCve: to save a new CVE.

getAllCve: to retrieve all CVEs.

updateCve: to update a CVE.

deleteCve: to delete a CVE.

Similarly to the previous directories, the file entity.service.js has been renamed
to software.service.js and the services it contains have been updated to cre-

ateSoftware , getAllSoftware, updateSoftware and deleteSoftware.

59

Implementation and Validation

The last directory utils contains two files:

validator.js: defines the JSON validator middleware.

prolog function.js: provides functions to run Prolog scripts and prepare
the JSON responses.

The file validator.js has been updated to include the CVE validators and to
rename the entitySchema as softwareSchema.

The file prolog functions.js has also been modified.
Originally,it contained functions to execute Prolog queries and process their results,
generating a separate graph for each response statement. However, in large-scale
environments this approach is not e”cient since a single query may return many
results, producing 100-200 (or even more) separate graphs, often with duplicates.
In the new implementation, only one graph is generated for each query. This graph
aggregates all possible results without duplicates, providing a complete view from
the beginning.
To achieve this, the original preparePrologResponse function has been refactored
and replaced by the new preparePrologResponseGlobal function.

Finally, the last important file is index.js. In the original implementation, this file
was responsible for starting the server and immediately establishing the database
connection. The connection to MongoDB was initiated within the app.listen call-
back, meaning that a preliminary script had to be executed to load the DB before
launching the server and the client:

// activate the server
app.listen(configuration.SRV_PORT, async () => {

await connectMongoDB();
console.log(Server listening at ...);

});

Listing 6.13. Old index.js

In the revised implementation, this mechanism has been modified. The DB con-
nection is no longer initiated at server startup; instead, it is triggered through a
specific API. This endpoint executes a shell script that optionally receives the name
of a use case, allowing the user either to load a predefined scenario or to start with
an empty database. Only after the script has finished, the system establishes the
connection to MongoDB:

app.post("/api/db", (req, res) => {
const { caseName } = req.body; //case or empty

60

Implementation and Validation

console.log(caseName);
const scriptPath = process.cwd() + "/../db/dump/runInsert.sh";

const cmd = caseName ?
bash scriptPath caseName :
bash scriptPath;

exec(cmd, async (error, stdout, stderr) => {
console.log("STDOUT:", stdout);
console.log("STDERR:", stderr)
if (error) {

console.error("Errore script:", error);
return res.status(500).json(
{ error: "Errore esecuzione script" }
);

}

try {
await connectMongoDB();
res.json({ ok: true });

} catch (err) {
res.status(500).json(
{ error: "Connessione al DB fallita" }
);

}
});

});

Listing 6.14. New index.js

This design change has two important implications:

1. The database can now be initialized directly from the graphical interface,
giving the user the control over whether and what data should be loaded.

2. It enables switching between di!erent use cases without restarting the server,
which makes navigation more flexible and easier.

Frontend

The client of TAMELESS has been developed using React. As in the backend, the
frontend is organized into directories:

APIs: contains the files for handling API calls.

components: contains the React components.

contexts: contains the files for managing contexts.

61

Implementation and Validation

models: contains the files that define the di!erent models (Cve, Threat
etc..).

routes: contains the files for handling routing.

Similarly to the backend, all files, functions and variables related to entities have
been renamed in order to align with the updated model, which no longer relies on
the concept of entity but on that of software. Moreover, the necessary changes have
been applied to remove the type field from the software model.
The first modification concerns the home page. The previous interface was as
follows:

Figure 6.1. Original home page

In the new interface,a Try it now button has been added to guide the user on how
to test the GUI. This button redirects to the use case selection page. Finally, the
page title has also been redesigned, with a blue color and improved style:

Figure 6.2. New home page

62

Implementation and Validation

The updated GUI also introduces a dedicated page that allows the user to select
a use case and upload its data, simplifying the overall workflow.
This functionality is implemented in the TryPage.jsx file located in the /src/com-

ponents/Mng directory.
Once the desired use case is selected, the client triggers a server-side API that ex-
ecutes a script to create the necessary collections and populate them, establishes
the database connection and then the client sets dbReady state to True and fetches
the data.
Finally a green button Home has been added, allowing user to return to the home
page and thus improving navigation.
Figures 6.3 and 6.4 provide a visual representation of this page.

Figure 6.3. Try page

Figure 6.4. Use case selection

63

Implementation and Validation

The configuration page has also been revised to improve both usability and vi-
sual consistency. In addition to the green Home button, an orange CaseSelection

button has been introduced. This button allows the user to return to the use case
case selection page (TryPage) and load a di!erent scenario. The implementation of
these buttons is contained in the MyButtons.jsx file, located in src/components/-

General.
Regarding the software management section, as anticipated in the description of
server-side modifications, the Type field has been removed.
Moreover, a styling issue a!ecting the lower part of the interface has been fixed:
when scrolling down, the DeleteSelected, Cancel and Add buttons previously dis-
played a background that was partially black and partially white due to inconsistent
page styiling (see Figure 6.5).
The problem has been solved by enforcing a uniform background color for the entire
application through the following rule added in src/style/App.css :

body, html, #root {
background-color: white !important;

}

Finally, the Cve section is provided by the Cve.jsx component in the src/compo-

nents/Mng directory.
To better highlight the modifications, Figure 6.5 illustrates the previous interface,
while Figures 6.6 and 6.7 show the updated implementation.

Figure 6.5. Original entities section

64

Implementation and Validation

Figure 6.6. Software section

Figure 6.7. CVE section

The last relevant modification concerns the graph component.
As described in the section related to the server-side changes, the previous im-
plementation generated a separate graph for each row of the query results. This
approach could produce 100-200 graphs (or even more in large environments), with
many duplicates. The updated implementation provides a single graph that imme-
diately o!ers a comprehensive view of all results returned by the query.
However, there was an issue regarding edge labels: if n relationship existed between
two nodes, the system would render n distinct edges. To address this issue, a cus-
tom edge component has been developed, implemented in the EdgeCustom.jsx file

65

Implementation and Validation

located in src/components/Result/Graph. With this solution, even if multiple rela-
tionships with di!erent labels exist between two nodes, the visualization displays a
single edge containing all the labels, separated.
An example of a single graph with multiple relationships is shown in Figure 6.8.

Figure 6.8. Graph example

6.2 Validation

This section describes two use cases, followed by the validation of the model on
them.

6.2.1 First Use Case

Description

The first use case models a web application composed of several interconnected
components: a frontend, a gateway, a backend, an authentication service, a
data access service, and a database.
Some of these components relies on specific software packages. In particular:

the frontend is built with React 18.2.

the backend includes Express 4.17 together with the libraries Multer 1.4.4
and Bodyparser 1.20.2.

the authentication service is based on Keycloak 20.0.

the database relies on Postgres 13.8.

the data access service uses an ORM 6.0 to interact with the database.

66

Implementation and Validation

protection and monitoring mechanisms are provided by Snort 3.1, Prometheus
2.37, and a firewall.

The model incorporates several relevant threats, including DoS, SQL Injection,
Privilege Escalation, Cross-Site Scripting (XSS), and Unauthenticated Access. It
also considers known vulnerabilities (CVEs) a!ecting specific components and high-
lights the possibility of threat propagation across the system. This illustrates how
the exploitation of a single vulnerability may trigger cascading e!ects on the entire
application.
Figure 6.9 shows the complete structure of the system.

Figure 6.9. First use case schema

Finally, the following extract represents the core part of the Prolog file that
implements the use case:

affectedBy("multer_1.4.4","cve-2025-7338").
affectedBy("bodyparser_1.20.2","cve-2024-45590").
affectedBy("keycloak_20.0","cve-2024-11734").
affectedBy("postgres_13.8","cve-2022-2625").
affectedBy("express_4.17","cve-2024-43796").
affectedBy("keycloak_20.0","cve-2025-7784")

contain("frontend","react_18.2").
contain("backend","express_4.17").
contain("backend","multer_1.4.4").
contain("express_4.17","bodyparser_1.20.2").
contain("authentication_service","keycloak_20.0").
contain("database","postgres_13.8").
contain("data_access_service","orm_6.0").

67

Implementation and Validation

control("api_gateway", "backend").
control("authentication_service", "backend").

connect("api_gateway","frontend","backend").
connect("data_access_service","backend","database").

monitor("snort_3.1","authentication_service",
"privilegeEscalation").
monitor("snort_3.1","database","sqlInjection").
monitor("prometheus_2.37","backend","denialOfService").

protect("firewall","backend","denialOfService").
protect("api_gateway","backend","unauthenticatedAccess").
protect("api_gateway","database","sqlInjection").

exploit("cve-2025-7338","denialOfService").
exploit("cve-2024-45590","denialOfService").
exploit("cve-2024-11734","denialOfService").
exploit("cve-2022-2625","sqlInjection").
exploit("cve-2022-2625","privilegeEscalation").
exploit("cve-2024-43796","xss").
exploit("cve-2025-7784","privilegeEscalation").

spread("backend", "denialOfService").
spread("backend", "sqlInjection").
spread("database", "privilegeEscalation").
spread("frontend", "xss").
spread("express_4.17","denialOfService").
spread("bodyparser_1.20.2","denialOfService").
spread("multer_1.4.4","denialOfService").
spread("keycloak_20.0","denialOfService").
spread("authentication_service","denialOfService").
spread("postgres_13.8","privilegeEscalation").
spread("postgres_13.8","sqlInjection").
spread("keycloak_20.0","privilegeEscalation").
spread("authentication_service","privilegeEscalation").
assMalfun(firewall).

Listing 6.15. Prolog useCase1

Validation

The first query executed is canbeComp(backend,denialOfService),in order to
determine whether the backend can be compromised by a DoS. The Prolog output
is the following:

-> (express_4.17) can spread (denialOfService)
-> (bodyparser_1.20.2) can spread (denialOfService)

68

Implementation and Validation

-> (bodyparser_1.20.2) meet conditions for (cve-2024-45590)
exploitable by (denialOfService)

-> (cve-2024-45590) patch (is NOT available)
-> (bodyparser_1.20.2) can be compromised by (denialOfService)
-> (bodyparser_1.20.2) compromises (express_4.17) by

(denialOfService)
-> (express_4.17) compromises (backend) by (denialOfService)
true;

-> (express_4.17) meet conditions for (cve-2024-43796)
exploitable by (xss)

-> (cve-2024-43796) patch (is NOT available)
-> (express_4.17) can be compromised by (xss)
-> (express_4.17) compromises (backend) by (denialOfService)
true ;

-> (multer_1.4.4) can spread (denialOfService)
-> (multer_1.4.4) meet conditions for (cve-2025-7338)

exploitable by (denialOfService)
-> (cve-2025-7338) patch (is NOT available)

-> (multer_1.4.4) can be compromised by (denialOfService)
-> (multer_1.4.4) compromises (backend) by (denialOfService)
true ;

-> (authentication_service) can spread (denialOfService)
-> (keycloak_20.0) can spread (denialOfService)
-> (keycloak_20.0) meet conditions for (cve-2024-11734)

exploitable by (denialOfService)
-> (cve-2024-11734) patch (is NOT available)

-> (keycloak_20.0) can be compromised by (denialOfService)
-> (keycloak_20.0) compromises (authentication_service) by

(denialOfService)
-> (backend) can be compromises through (authentication_service)

by (denialOfService)
true ;

-> (keycloak_20.0) meet conditions for (cve-2025-7784)
exploitable by (privilegeEscalation)

-> (cve-2025-7784) patch (is NOT available)
-> (keycloak_20.0) can be compromised by (privilegeEscalation)
-> (keycloak_20.0) compromises (authentication_service) by

(denialOfService)
-> (backend) can be compromises through (authentication_service)

by (denialOfService)
true ;

-> (keycloak_20.0) can spread (privilegeEscalation)

69

Implementation and Validation

-> (keycloak_20.0) meet conditions for (cve-2024-11734)
exploitable by (denialOfService)

-> (cve-2024-11734) patch (is NOT available)
-> (keycloak_20.0) can be compromised by (denialOfService)
-> (keycloak_20.0) compromises (authentication_service) by

(privilegeEscalation)
-> (backend) can be compromises through (authentication_service)

by (denialOfService)
true ;

-> (keycloak_20.0) meet conditions for (cve-2025-7784)
exploitable by (privilegeEscalation)

-> (cve-2025-7784) patch (is NOT available)
-> (keycloak_20.0) can be compromised by (privilegeEscalation)
-> (keycloak_20.0) compromises (authentication_service) by

(privilegeEscalation)
-> (backend) can be compromises through (authentication_service)

by (denialOfService)
true.

Listing 6.16. Prolog canbeComp(backend,denialOfService)

This result matches the expected behavior, since there is the firewall that pro-
tects backend from DoS, but it has been modeled as malfunctioning. Although
express 4.17 (and the authentication service) are not directly subject to DoS,
they are able to spread the threat, so if they are compromised they can cause the
backend to be compromised according to the model’s derivation rules. Figure 6.10
shows the graph corresponding to the output of the query just executed and reflects
the same conclusions.

Figure 6.10. canbeComp(backend,denialOfService) - no protection

Now, if we assume that the authentication service can’t spread DoS, the Prolog
output becomes (Figure 6.11 displays the corresponding graph):

-> (express_4.17) can spread (denialOfService)

70

Implementation and Validation

-> (bodyparser_1.20.2) can spread (denialOfService)
-> (bodyparser_1.20.2) meet conditions for (cve-2024-45590)

exploitable by (denialOfService)
-> (cve-2024-45590) patch (is NOT available)

-> (bodyparser_1.20.2) can be compromised by (denialOfService)
-> (bodyparser_1.20.2) compromises (express_4.17) by

(denialOfService)
-> (express_4.17) compromises (backend) by (denialOfService)
true;
-> (express_4.17) meet conditions for (cve-2024-43796)

exploitable by (xss)
-> (cve-2024-43796) patch (is NOT available)

-> (express_4.17) can be compromised by (xss)
-> (express_4.17) compromises (backend) by (denialOfService)
true ;

-> (multer_1.4.4) can spread (denialOfService)
-> (multer_1.4.4) meet conditions for (cve-2025-7338)

exploitable by (denialOfService)
-> (cve-2025-7338) patch (is NOT available)

-> (multer_1.4.4) can be compromised by (denialOfService)
-> (multer_1.4.4) compromises (backend) by (denialOfService)
true ;

Listing 6.17. Prolog canbeComp(backend,denialOfService) - no auth. Service

Figure 6.11. canbeComp(backend,denialOfService) - no auth. Service

71

Implementation and Validation

Finally, if the firewall is modeled as functioning, the backend is protected from DoS
(Figure 6.12):

-> (express_4.17) can spread (denialOfService)
-> (firewall) protect (backend) against threat (denialOfService)

-> (multer_1.4.4) can spread (denialOfService)
-> (firewall) protect (backend) against threat (denialOfService)

-> (authentication_service) can spread (denialOfService)
-> (firewall) protect (backend) against threat (denialOfService)
-> (firewall) protect (backend) against threat (denialOfService)

false.

Listing 6.18. Prolog canbeComp(backend,denialOfService) - protected

Figure 6.12. canbeComp(backend,denialOfService) - protected

Assume now that a patch for CVE-2022-2625 has been released and execute the
query canbeComp(database,privilegeEscalation).
The output is:

-> (postgres_13.8) can spread (privilegeEscalation)
-> (postgres_13.8) meet conditions for (cve-2022-2625)

exploitable by (sqlInjection)
-> (cve-2022-2625) patch (is available)

-> (postgres_13.8) can be compromised by (sqlInjection)
-> (postgres_13.8) compromises (database) by

(privilegeEscalation)
true ;

-> (postgres_13.8) meet conditions for (cve-2022-2625)
exploitable by (privilegeEscalation)

-> (cve-2022-2625) patch (is available)

72

Implementation and Validation

-> (postgres_13.8) can be compromised by (privilegeEscalation)
-> (postgres_13.8) compromises (database) by

(privilegeEscalation)
true

Listing 6.19. Prolog canbeComp(database,privilegeEscalation)

The graphical representation of the output is shown in Figure 6.13.

Figure 6.13. canbeComp(database,privilegeEscalation)

6.2.2 Second Use Case

The second use case focuses on an e-commerce system. These kinds of applications
are among the most attractive targets for attackers because they process sensitive
data and must guarantee service availability and continuity.
The system considered in this use case is composed of several interconnected soft-
ware components, with their own dependencies. In particular, the architecture
includes:

an application built with NextJs 13.4.4,NodeJs 18.16.0 and pg 3.10.1.

a gateway based on Nginx 1.24.0.

an authentication service, implemented with Spring 5.3.16 and Tomcat
9.0.56, responsible for identity management and access control.

a payment service, depending on the external provider Stripe 18.5.0.

a database PostgreSQL 16.0, supporting data persistence and transaction
management.

73

Implementation and Validation

protection and monitoring mechanisms, such as the WAF ModSecurity
3.0.12 and the intrusion detection system Suricata 7.0.5 used to mitigate
or detect known threats.

Figure 6.14 presents a diagram of the architecture, showing the main components
and their interconnections.

Figure 6.14. Second use case schema

The architecture is then formalized using Prolog, and the following extract repre-
sents the core part of the file:

contain("app","nextJs_13.4.4").
contain("app","nodeJs_18.16.0").
contain("app","pg_3.10.1").
contain("gateway","nginx_1.24.0").
contain("authenticationService","spring_5.3.16").
contain("authenticationService","tomcat_9.0.56").

connect("gateway","app","authenticationService").
connect("gateway","app","paymentService").
connect("pg_3.10.1","app","postgresSQL_16.0").

control("gateway","app").

74

Implementation and Validation

depend("paymentService","stripe_18.5.0").
depend("app","postgreSQL_16.0").

monitor("IDSsuricata_7.0.5","gateway","AnomalousTraffic").
monitor("IDSsuricata_7.0.5","authenticationService",
"BruteForceAttack").
protect("WAFModSecurity_3.0.12","gateway","xss").
protect("WAFModSecurity_3.0.12","authenticationService",
"credentialStuffing").

spread("gateway","xss").
spread("gateway","denialOfService").
spread("nginx_1.24.0","xss").
spread("nginx_1.24.0","denialOfService").
spread("nginx_1.24.0","AnomalousTraffic").
spread("nextJs_13.4.4","denialOfService").
spread("app","denialOfService").
spread("spring_5.3.16","remoteCodeExecution").
spread("tomcat_9.0.56","toctou").
spread("tomcat_9.0.56","credentialStuffing").
spread("tomcat_9.0.56","BruteForceAttack").
spread("nextJs_13.4.4","AuthorizationBypass").
spread("authenticationService","AuthorizationBypass").
spread("app","sqlInjection").

affectedBy("nginx_1.24.0","cve-2023-44487").
affectedBy("nextJs_13.4.4","cve-2023-46298").
affectedBy("nextJs_13.4.4","cve-2025-29927").
affectedBy("spring_5.3.16","cve-2022-22965").
affectedBy("tomcat_9.0.56","cve-2022-23181").
exploit("cve-2023-44487","denialOfService").
exploit("cve-2023-46298","denialOfService").
exploit("cve-2025-29927","AuthorizationBypass").
exploit("cve-2022-22965","remoteCodeExecution").
exploit("cve-2022-23181","toctou").

Listing 6.20. Prolog useCase2

Validation

To validate the model, we first execute the query canbeDet(gateway, Anoma-

lousTra”c). The expected result is that the threat can be detected, since the
IDS monitors the gateway for anomalous tra”c.
The prolog output is reported below, while the corresponding graph is shown in
Figure 6.15:

-> (nginx_1.24.0) can spread (AnomalousTraffic)

75

Implementation and Validation

-> (nginx_1.24.0) meet conditions for (cve-2023-44487)
exploitable by (denialOfService)

-> (cve-2023-44487) patch (is available)
-> (nginx_1.24.0) can be compromised by (denialOfService)
-> (nginx_1.24.0) compromises (gateway) by (AnomalousTraffic)
-> (IDSsuricata_7.0.5) monitor (gateway) for threat

(AnomalousTraffic)
-> (gateway) can be detected if compromised by threat

(AnomalousTraffic)
true.

Listing 6.21. Prolog canbeDet(gateway, AnomalousTra!c)

Figure 6.15. canbeDet(gateway,AnomalousTra!c)

To reduce complexity and avoid irrelevant paths,thus simplifying the analysis, we
make now the following assumptions:

nextJs cannot spread AuthorizationBypass,

nginx cannot spread AnomalousTraffic,

the gateway (and its components) cannot spread xss.

Under these assumptions, we run the query canbeComp(postgresSQL 16.0,

sqlInjection).
The relevant part of the Prolog output is the following (Figure 6.16):

-> (app) can spread (sqlInjection)
-> (nextJs_13.4.4) can spread (denialOfService)
-> (nextJs_13.4.4) meet conditions for (cve-2023-46298)

exploitable by (denialOfService)
-> (cve-2023-46298) patch (is NOT available)

-> (nextJs_13.4.4) can be compromised by (denialOfService)
-> (nextJs_13.4.4) compromises (app) by (denialOfService)
-> (postgresSQL_16.0) can be compromises through (app) by

(sqlInjection)

76

Implementation and Validation

true ;

-> (nextJs_13.4.4) meet conditions for (cve-2025-29927)
exploitable by (AuthorizationBypass)

-> (cve-2025-29927) patch (is NOT available)
-> (nextJs_13.4.4) can be compromised by (AuthorizationBypass)
-> (nextJs_13.4.4) compromises (app) by (denialOfService)
-> (postgresSQL_16.0) can be compromises through (app) by

(sqlInjection)
true ;

-> (gateway) can spread (denialOfService)
-> (nginx_1.24.0) can spread (denialOfService)
-> (nginx_1.24.0) meet conditions for (cve-2023-44487)

exploitable by (denialOfService)
-> (cve-2023-44487) patch (is available)

-> (nginx_1.24.0) can be compromised by (denialOfService)
-> (nginx_1.24.0) compromises (gateway) by (denialOfService)
-> (app) can be compromises through (gateway) by

(denialOfService)
-> (postgresSQL_16.0) can be compromises through (app) by

(sqlInjection)
true ;

Listing 6.22. Prolog canbeComp(postgresSQL,sqlInjection)

Figure 6.16. canbeComp(postgresSQL, sqlInjection)

The third query executed is canbeComp(authenticationService,toctou).
The Prolog output is reported below (see Figure 6.17 for the corresponding graph):

-> (tomcat_9.0.56) can spread (toctou)
-> (tomcat_9.0.56) meet conditions for (cve-2022-23181)

exploitable by (toctou)

77

Implementation and Validation

-> (cve-2022-23181) patch (is available)
-> (tomcat_9.0.56) can be compromised by (toctou)
-> (tomcat_9.0.56) compromises (authenticationService) by

(toctou)
true ;

Listing 6.23. Prolog canbeComp(authenticationService,toctou)

Figure 6.17. canbeComp(authenticationService,toctou)

Finally, theWAF is tested by running the query canbeComp(authenticationService,

credentialStu”ng). As expected, the attack is blocked (Figure 6.18):

-> (tomcat_9.0.56) can spread (credentialStuffing)
-> (WAFModSecurity_3.0.12) protect (authenticationService)

against threat (credentialStuffing)
false.

Listing 6.24. Prolog canbeComp(authenticationService,credentialStu!ng)

Figure 6.18. canbeComp(authenticationService,credentialStu!ng)

78

Chapter 7

Conclusions

In this thesis, several improvements have been introduced to the threat analysis
framework TAMELESS, with the goal of making it more e!ective and versatile.The
work started with the optimization of the framework for software environments and
was then extended with the inclusion of CVE and a patch management mechanism.
Thanks to these developments, it is now possible to describe a system, map the
CVEs associated with it and perform threat analysis that not only identifies vul-
nerabilities but also studies the propagation of threats across the entire system.This
is particularly useful in the context of digital supply chains, where third-party prod-
ucts and software (the weakest links) often represent potential entry points for at-
tackers. The ability to detect vulnerabilities in advance helps prevent consequences
that could have a significant impact. Another important improvement concerns the
GUI of the framework. Not only the new version of the model has been integrated,
but several features, including navigation, have been enhanced. The application
is now easier and more intuitive to use. The graph creation and visualization sys-
tem have also been redesigned: instead of producing multiple and often duplicated
graphs, the framework now generates a single graph for each executed query. This
provides an immediate, complete, and consistent representation, free of redundant
edges, making the results easier to interpret. To evaluate the e!ectiveness of the
new features, the framework has been tested on two use cases. The results and
graphical representations obtained through the GUI have been reported, showing
how TAMELESS can highlight the propagation of threats within a system, indicat-
ing which components compromise others, which CVEs are exploited, and whether
patches have been released for them.

7.1 Limitations and Future Works

Despite the improvements, the model still has some limitations. In particular,
the use of the framework requires a manual description of the analyzed system,
including software components, possible threats, and known vulnerabilities. This
process may lead to errors, especially in complex and dynamic systems. Moreover,
the integration of CVEs is not yet automated, as a continuous update mechanism

79

Conclusions

is still missing.
Future works could focus on:

introducing automation mechanisms for system description, also with the help
of AI.

integrating automatic updates of CVEs, so that the framework always stays
aligned with the most recent known vulnerabilities.

exploring predictive models, able to estimate the probability that new vul-
nerabilities could be exploited.

improving the scalability of the framework by optimizing graph management.
While a single graph provides a complete view, it may become di”cult to
interpret in very large environments. Therefore, an alternative approach could
be the use of multiple graphs, where each graph represents a result (instead
of just a part of a result, as in the original model).

further improving the GUI, not only by showing the graph but also by in-
cluding the Prolog output and making the application more interactive.

In conclusion, the improvements introduced in this thesis have made TAMELESS
a more complete and practical tool for threat analysis in complex environments
such as digital supply chains, providing a solid foundation for the development of
additional future features.

80

Bibliography

[1] C. Klein, “Stride threat model: A complete guide,” https://www.jit.
io/resources/app-security/stride-threat-model-a-complete-guide, published:
28/04/2025, Accessed: 11/09/2025.

[2] M. Thevarmannil, “10 types of threat modeling method-
ology to use in 2025,” https://www.practical-devsecops.
com/types-of-threat-modeling-methodology/?srsltid=
AfmBOoos0vQU9x5KSVBkcNlSSDeGNxFE658nu9wnvFOe9HDK0Uim24 W,
published: 06/02/2023, Accessed: 11/09/2025.

[3] E. U. A. for Cybersecurity, I. Lella, M. Theocharidou, E. Tsekmezoglou, and
A. Malatras, ENISA threat landscape 2021 – April 2020 to mid-July 2021,
I. Lella, M. Theocharidou, E. Tsekmezoglou, and A. Malatras, Eds., 2021.

[4] Ivanti, “2025 state of cybersecurity report: Paradigm shift,” https:
//www.ivanti.com/resources/research-reports/state-of-cybersecurity-report,
published: 18/03/2025, Accessed: 11/09/2025.

[5] L. Conklin, “Threat modeling process,” https://owasp.org/www-community/
Threat Modeling Process, accessed: 11/09/2025.

[6] A. Jenkins, “Digital supply chain explained,” https://www.netsuite.
com/portal/resource/articles/erp/digital-supply-chain.shtml, 2022, published:
24/08/2022, Accessed: 11/09/2025.

[7] V. Drake, “Threat modeling,” https://owasp.org/www-community/Threat
Modeling, accessed: 11/09/2025.

[8] “What is a cve?” https://www.redhat.com/en/topics/security/what-is-cve#
overview, published: 04/09/2024, Accessed: 11/09/2025.

[9] M. Thevarmannil, “What is the stride threat model? beginner’s guide
– 2025,” https://www.practical-devsecops.com/what-is-stride-threat-model/,
published: 07/12/2022, Accessed: 11/09/2025.

[10] F. Valenza, E. Karafili, R. V. Steiner, and E. C. Lupu, “A hybrid threat model
for smart systems,” IEEE Transactions on Dependable and Secure Computing,
vol. 20, no. 5, pp. 4403–4417, 2023.

[11] C. Gonzalez, “Threat modeling: 5 steps, 7 techniques, and
tips for success,” https://www.exabeam.com/blog/infosec-trends/
top-8-threat-modeling-methodologies-and-techniques/, published:
06/06/2023, Accessed: 11/09/2025.

[12] D. Bringhenti, S. Bussa, R. Sisto, and F. Valenza, “Atomizing firewall policies
for anomaly analysis and resolution,” IEEE Transactions on Dependable and

Secure Computing, 2024.

82

https://www.jit.io/resources/app-security/stride-threat-model-a-complete-guide
https://www.jit.io/resources/app-security/stride-threat-model-a-complete-guide
https://www.practical-devsecops.com/types-of-threat-modeling-methodology/?srsltid=AfmBOoos0vQU9x5KSVBkcNlSSDeGNxFE658nu9wnvFOe9HDK0Uim24_W
https://www.practical-devsecops.com/types-of-threat-modeling-methodology/?srsltid=AfmBOoos0vQU9x5KSVBkcNlSSDeGNxFE658nu9wnvFOe9HDK0Uim24_W
https://www.practical-devsecops.com/types-of-threat-modeling-methodology/?srsltid=AfmBOoos0vQU9x5KSVBkcNlSSDeGNxFE658nu9wnvFOe9HDK0Uim24_W
https://www.ivanti.com/resources/research-reports/state-of-cybersecurity-report
https://www.ivanti.com/resources/research-reports/state-of-cybersecurity-report
https://owasp.org/www-community/Threat_Modeling_Process
https://owasp.org/www-community/Threat_Modeling_Process
https://www.netsuite.com/portal/resource/articles/erp/digital-supply-chain.shtml
https://www.netsuite.com/portal/resource/articles/erp/digital-supply-chain.shtml
https://owasp.org/www-community/Threat_Modeling
https://owasp.org/www-community/Threat_Modeling
https://www.redhat.com/en/topics/security/what-is-cve#overview
https://www.redhat.com/en/topics/security/what-is-cve#overview
https://www.practical-devsecops.com/what-is-stride-threat-model/
https://www.exabeam.com/blog/infosec-trends/top-8-threat-modeling-methodologies-and-techniques/
https://www.exabeam.com/blog/infosec-trends/top-8-threat-modeling-methodologies-and-techniques/

Bibliography

[13] D. Bringhenti, G. Marchetto, R. Sisto, and F. Valenza, “Automation for net-
work security configuration: State of the art and research trends,” ACM Com-

puting Surveys, vol. 56, no. 3, pp. 1–37, 2023.
[14] D. Bringhenti, L. Seno, and F. Valenza, “An optimized approach for assisted

firewall anomaly resolution,” IEEE Access, vol. 11, pp. 119 693–119 710, 2023.
[15] “Why traditional threat modeling fails and how to get

it right,” https://www.securitycompass.com/whitepapers/
why-traditional-threat-modeling-fails-and-how-to-get-it-right/, accessed:
11/09/2025.

[16] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov, “Au-
tomated firewall configuration in virtual networks,” IEEE Transactions on

Dependable and Secure Computing, vol. 20, no. 2, pp. 1559–1576, 2022.
[17] D. Bringhenti, S. Bussa, R. Sisto, and F. Valenza, “A two-fold tra”c flow

model for network security management,” IEEE Transactions on Network and

Service Management, vol. 21, no. 4, pp. 3740–3758, 2024.
[18] D. Bringhenti and F. Valenza, “Greenshield: Optimizing firewall configura-

tion for sustainable networks,” IEEE Transactions on Network and Service

Management, 2024.
[19] G. Francia, L. Ertaul, L. H. Encinas, and E. El-Sheikh, Computer and network

security essentials. Springer, 2017.
[20] B. Hammi, S. Zeadally, and J. Nebhen, “Security threats, countermeasures,

and challenges of digital supply chains,” ACM Computing Surveys, vol. 55, no.
14s, pp. 1–40, 2023.

[21] A. R. Nyg̊ard, A. Sharma, and S. Katsikas, “Reverse engineering for thwarting
digital supply chain attacks in critical infrastructures: Ethical considerations,”
2022.

[22] S. Boyson, T. M. Corsi, and J.-P. Paraskevas, “Defending digital supply
chains: Evidence from a decade-long research program,” Technovation, vol.
118, p. 102380, 2022. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0166497221001619

[23] “Solar winds cyber attack,” https://www.fortinet.com/resources/
cyberglossary/solarwinds-cyber-attack, accessed: 11/09/2025.

[24] P. Robinson, “The moveit attack explained,” https://www.lepide.com/blog/
the-moveit-attack-explained/, published: 07/01/2025, Accessed: 11/09/2025.

[25] “Cve json record format,” https://cveproject.github.io/cve-schema/schema/
docs/#collapseDescription root, accessed: 11/09/2025.

[26] “Full-record basic example (cve schema),” https://github.com/cveproject/
cve-schema/blob/main/schema/docs/full-record-basic-example.json, ac-
cessed: 11/09/2025.

83

https://www.securitycompass.com/whitepapers/why-traditional-threat-modeling-fails-and-how-to-get-it-right/
https://www.securitycompass.com/whitepapers/why-traditional-threat-modeling-fails-and-how-to-get-it-right/
https://www.sciencedirect.com/science/article/pii/S0166497221001619
https://www.sciencedirect.com/science/article/pii/S0166497221001619
https://www.fortinet.com/resources/cyberglossary/solarwinds-cyber-attack
https://www.fortinet.com/resources/cyberglossary/solarwinds-cyber-attack
https://www.lepide.com/blog/the-moveit-attack-explained/
https://www.lepide.com/blog/the-moveit-attack-explained/
https://cveproject.github.io/cve-schema/schema/docs/#collapseDescription_root
https://cveproject.github.io/cve-schema/schema/docs/#collapseDescription_root
https://github.com/cveproject/cve-schema/blob/main/schema/docs/full-record-basic-example.json
https://github.com/cveproject/cve-schema/blob/main/schema/docs/full-record-basic-example.json

