
Master Degree course in Cybersecurity

Master Degree Thesis

A holistic approach for formal
adaptive firewall rule management

Supervisors
Prof. Riccardo Sisto
Prof. Fulvio Valenza
Prof. Daniele Bringhenti
Prof. Luca Durante

Candidate
Giovanni de Maria

Academic Year 2024-2025

This work is subject to the Creative Commons Licence

Summary

Modern network infrastructures require high speeds for multiple services at once and
a robust defence against cyber threats. Among these, Denial-of-Service (DoS) attack
is a major risk because it consists of flooding systems to make them unavailable. The
security provided by conventional firewalls using static rules becomes insufficient
when networks experience this type of attack. To address this limitation, this
thesis develops a framework that combines verified static configurations with flexible
runtime rule distribution.

The system integrates VEREFOO (Verified Refinement and Optimized Orches-
trator) which generates optimized and formally verified firewall policies at design
time with REDIAL (RulE DIstribution ALgorithm) which operates at runtime to
distribute rules between cascaded firewalls. This system is evaluated through testing
on various hardware systems and in simulated attack environments with the aim to
demonstrate the effectiveness of the framework.

The test-bed replicated an enterprise border network using heterogeneous hard-
ware. Network namespaces were used to separate the functions of routing and
filtering. The control-plane automation used SSH-based scripts while experimental
data collection occurred on RAM disks to mitigate packet drops when rates reached
high levels. The system handled network traffic by running tests that emulated
real-world network operations. Attack traffic consisted of ICMP floods of different
payload sizes. The experiments included baseline measurements without a firewall
and static configuration followed by deployment of VEREFOO–REDIAL in an
integrated system to track throughput, packet loss and retransmission.

The baseline measurements showed that unprotected networks became unstable
when ICMP floods occurred: small-packet floods broke TCP flows but UDP flows
operated at a reduced level. In the final demo, the system integrating the VEREFOO-
REDIAL framework proved to be more resistant to attacks. The results show that
design-time optimization provides effective configurations when combined with
runtime adaptation.

There are three primary limitations: (i) hardware differences that make per-
formance evaluation challenging; (ii) the thesis focuses only on ICMP floods; (iii)
the use of iptables-legacy instead of modern packet filtering systems. Future work
should evaluate the framework against various attack methods and use contemporary

3

packet filtering systems and assess the automated policy update capabilities of the
REACT-VEREFOO framework. Furthermore, experiments should be conducted on
more homogeneous and powerful hardware.

4

Acknowledgements

I thank all my supervisors. In particular, I am grateful to Prof. Luca Durante for
his time and clear guidance. Thanks to my family – especially my parents – my
friends and everyone who accompanied me through my university years.

5

Contents

List of Figures 8

List of Tables 10

Listings 11

1 Introduction 13

2 Background 15
2.1 iptables . 15
2.2 The Rule Distribution Algorithm 18
2.3 VEREFOO . 25
2.4 Performance measurement techniques and tools 27

3 Thesis objectives 29
3.1 Integration objective . 29
3.2 Performance evaluation objective 30
3.3 Mitigation demonstration objective 30

4 Experimental test-bed setup 31
4.1 Scenario model . 31
4.2 Implementation . 33
4.3 Out-of-band control network and remote access 37
4.4 Limitations and reproducibility considerations 39

5 Experiments and demos 40
5.1 Preliminary measurements with iPerf3 40
5.2 Baseline measurements with custom scripts 50
5.3 Final demo . 58

6 Conclusions 64

6

A Appendix 65
A.1 Central router setup script . 65
A.2 iPerf3 campaigns . 67
A.3 VEREFOO input/output and translation in iptables rules 75

7

List of Figures

2.1 The Linux packet processing pipeline (it contains all major iptables
chains), source: [7] . 17

2.2 Example of rule redistribution using REDIAL 20
2.3 Topology for the REDIAL clarifying example 25
2.4 VEREFOO Architecture, source: [11] 26
2.5 Schematic representation of Hardware Timestamping using Raw PHC 27

3.1 Operational workflow of the integrated VEREFOO–REDIAL system 30

4.1 Abstract enterprise perimeter model used in the experiments 32
4.2 Physical laboratory setup . 35
4.3 Implementation topology of the experimental test-bed 36
4.4 Control plane . 37

5.1 Topology for the experiments related to the baseline measurements
with iPerf3 . 42

5.2 Traffic metrics (PPS, throughput and LEN) over time in the no-
firewall baseline with UDP and 0 B ICMP payload, across the three
experimental phases (before, during and after) 45

5.3 Traffic metrics (PPS, throughput and LEN) over time in the no-
firewall baseline with TCP and 0 B ICMP payload, across the three
experimental phases (before, during and after) 46

5.4 Traffic metrics (PPS, throughput and LEN) over time in the no-
firewall baseline with UDP and 1400 B ICMP payload, across the
three experimental phases (before, during and after) 48

5.5 Traffic metrics (PPS, throughput and LEN) over time in the no-
firewall baseline with TCP and 1400 B ICMP payload, across the
three experimental phases (before, during and after) 49

5.6 Topology for baseline measurements with custom scripts and for the
final demo . 51

5.7 UDP Packet loss vs Payload size during ICMP flood attack 53
5.8 Received UDP Requests vs ICMP Payload size 54
5.9 Average RTT vs ICMP Payload size during the second phase 55

8

5.10 TCP Retransmissions vs ICMP Payload size during the second phase 55
5.11 Received TCP Requests vs ICMP Payload size 58
5.12 Real deployment and its corresponding VEREFOO representation . 62
5.13 Experimental demo campaign: TCP results 63
5.14 Experimental demo campaign: UDP results 63

9

List of Tables

2.1 Notation used in REDIAL . 21
2.2 Upstream fw1 rules before REDIAL (filter/FORWARD) 23
2.3 Upstream fw1 rules after REDIAL (filter/FORWARD) 24
2.4 Downstream fw2,1 rules after REDIAL (filter/FORWARD) 24
2.5 Downstream fw2,2 rules after REDIAL (filter/FORWARD) 24

4.1 Mapping between abstract model roles and physical implementation. 34
4.2 Devices connected to the control network (192.168.20.0/24) . . . 38

5.1 No-firewall baseline configurations: legitimate L4 protocol × attacker
ICMP payload size . 43

5.2 Mean and variance of UDP traffic metrics (with 0 B ICMP) across
the three phases (before, during and after) 44

5.3 Mean and variance of TCP metrics under 0 B ICMP flood 46
5.4 Mean and variance of UDP traffic metrics (with 1400 B ICMP) across

the three phases (before, during and after) 47
5.5 Mean and variance of TCP traffic metrics (with 1400 B ICMP) across

the three phases (before, during and after) 49
5.6 Observed thresholds summary . 52
5.7 UDP requests/responses per phase and host 53
5.8 TCP Packet Statistics . 56
5.9 TCP requests/responses per phase and host 57
5.10 TCP requests per phase and host with/without REDIAL 60
5.11 UDP requests per phase and host with/without REDIAL 61

A.1 Per-second UDP throughput (iPerf3) during a 0-Byte ICMP-payload
flood . 67

A.2 Per-second TCP throughput (iPerf3) during a 0-Byte ICMP-payload
flood . 69

A.3 Per-second UDP throughput (iPerf3) during a 1400-Byte ICMP-
payload flood . 71

A.4 Per-second TCP throughput (iPerf3) during a 1400-Byte ICMP-
payload flood . 73

10

Listings

2.1 Timestamping parameters with ethtool 28
5.1 RAM disk for high-rate captures (tmpfs 10 GiB). 41
A.1 Central-router setup script . 65
A.2 XML provided as input to VEREFOO 75
A.3 XML result produced by VEREFOO 76
A.4 iptables translation . 83

11

Chapter 1

Introduction

Modern computer network infrastructures operate at high capacity and provide
multiple services of different types. The ability to operate in different environments
enhances operational flexibility but creates substantial security challenges. One
of the most severe is the Denial-of-Service (DoS) attack: it is a serious threat
because attackers flood networks and devices by sending large volumes of useless
packets. The systems become overloaded under such conditions and then firewalls
are required to process traffic in real time.

Firewall rule management is complex. Static configurations provide a first line
of defence but they lack adaptability when network traffic patterns change as in the
case of a DoS attack. The expanding number of rules in systems leads to system
misconfiguration and performance degradation. To improve the defence capabilities
of these systems, methods should ensure both correctness and flexibility.

This thesis investigates an integrated solution which unites VEREFOO (Verified
Refinement and Optimized Orchestrator) [1] with REDIAL (RulE DIstribution
ALgorithm) [2]. VEREFOO is used at design-time to automatically generate firewall
rules that are optimized and formally verified. REDIAL operates at runtime to
distribute rules across multiple firewalls which helps balance the load from overloaded
nodes and preserves system performance during attacks.

The main goals of this work are:

• Integration – VEREFOO and REDIAL form a single pipeline: VEREFOO
optimizes the policy at design-time and REDIAL adapts it at runtime.

• Evaluation – For this purpose, a realistic test-bed is realized with standard
hardware equipment and Linux network namespaces.

• Demonstration – The VEREFOO-REDIAL framework effectiveness is vali-
dated through a demonstrator.

The thesis is structured as follows. Chapter 2 contains information about the
algorithms and tools which are employed. The objectives of the work are presented

13

Introduction

in chapter 3. The experimental test-bed is described in chapter 4. The experiments
together with their results are presented in chapter 5. Chapter 6 contains conclusions
together with suggestions for future work.

14

Chapter 2

Background

This chapter outlines the main elements that form the basis of the thesis. It first
introduces iptables [3] as the underlying firewall technology. Then it presents
REDIAL [2], a formally verified rule distribution algorithm for cascaded firewalls
and VEREFOO [1], [4], a framework for formally verified configurations. It then
describes the measurement tools employed. These elements provide the necessary
background for understanding the design, implementation and evaluation of the
proposed integrated system.

2.1 iptables
iptables is the primary firewall utility for Linux systems and operates in close
integration with the Linux kernel. It inspects each network packet against the
configured rule set, applying the first matching rule.

A set of rules is grouped into what is known as a chain and during packet
processing control can be transferred between chains. The most common actions
performed by the Linux kernel are ACCEPT or DROP the packet.

By default, iptables has five independent tables (in practice which tables are
present in the configuration depends on the kernel configuration options and the
modules installed). Tables are containers of chains.

• Filter: the default and most used table, responsible for deciding whether
packets are allowed or blocked. It includes INPUT, FORWARD and OUTPUT chains
to control traffic to, through and from the system.

• Nat: used for address translation when new connections are established (e.g.,
SNAT, DNAT, masquerading). Includes PREROUTING, INPUT, OUTPUT and
POSTROUTING chains.

• Mangle: handles specialized packet modifications, such as changing Type of
Service or marking packets. It has five chains: PREROUTING, INPUT, FORWARD,

15

Background

OUTPUT and POSTROUTING.

• Raw: used to mark packets for exclusion from connection tracking. Contains
only PREROUTING and OUTPUT chains and is evaluated before other tables.

• Security: applies Mandatory Access Control rules after filter rules. Includes
INPUT, FORWARD and OUTPUT chains for applying security labels.

The Linux packet processing pipeline is shown in figure 2.1, including all major
iptables chains. In this thesis the focus is on the forward path [2].

The default front-end of iptables on current Debian based systems targets the
nf_tables backend through the iptables-nft compatibility layer. The nf_tables
framework and its translator may apply kernel-side optimizations and encourage
stateful constructs beyond simple first-match chains. These could be appropriate in
some circumstances, but these behaviours are out of scope for this work and risk
altering the effective structure and ordering of the evaluated rule set. To preserve a
1:1 mapping between declared rules and installed rules with deterministic first-match
semantics in the classic iptables version, the iptables command is pinned to the
legacy backend. Since IPv6 is out of scope for the evaluation, ip6tables remains
unchanged.

The iptables package provides also two standard tools: iptables-save [5] and
iptables-restore [6]. The first is used to export the current firewall config-
uration into a plain-text format (typically redirected to a file). In contrast,
iptables-restore reads such a file and re-applies the rule set in a single operation.

This thesis employs iptables because REDIAL relies on rule-based packet filtering
with deterministic first-match semantics. Specifically, rules must be redistributed
within the FORWARD chains of the filter and mangle tables, which inspect packets
traversing the firewall from one interface to another (see figure 2.1). This choice
matches the operational model of REDIAL and the design assumptions of VERE-
FOO, both of which concern distributed firewalls. Chains related to traffic directed
to or originating from the firewall host itself (INPUT, OUTPUT) are therefore excluded.

Having justified the use of iptables and the FORWARD chain, the discussion now
turns to REDIAL.

16

Background

F
ig

ur
e

2.
1:

T
he

Li
nu

x
pa

ck
et

pr
oc

es
si

ng
pi

pe
lin

e
(i

t
co

nt
ai

ns
al

lm
aj

or
ip

ta
bl

es
ch

ai
ns

),
so

ur
ce

:
[7

]

17

Background

2.2 The Rule Distribution Algorithm
REDIAL operates at the operational level and does not require architectural changes.
This makes it suitable for industrial networks, since it requires no changes to packet
formats or routing paths, and it guarantees that the overall network security policy
is maintained after firewalls are reconfigured.

For the purposes of this work, a simplified version of REDIAL [2] is adopted, as
defined in algorithm 1.

Figure 2.2 illustrates its operation, while a detailed description of the redistribu-
tion process is discussed later in this chapter. It uses a color scheme to represent
the relative load of each firewall: red corresponds to nodes experiencing high stress,
orange to those involved in the redistribution process and green to nodes functioning
under normal conditions.

Operational constraints of the Rule Distribution Algorithm

To apply REDIAL on real Linux firewalls, a set of operational restrictions must be
enforced on the iptables configurations. These restrictions mirror those assumed by
VEREFOO and remain fully compatible with its model. In particular:

• Restriction to FORWARD path: only rules placed in the FORWARD chains of
the mangle and filter tables are considered. Other chains, such as INPUT or
OUTPUT, are excluded since they apply to traffic destined to or originating from
the firewall itself and thus fall outside the redistribution scope. As highlighted
in figure 2.1, these FORWARD chains are part of the forwarding path of Netfilter.

• No use of connection tracking or marks: rules that depend on con-
nection state (conntrack), marks or related extensions are not supported in
redistributed chains.

• No interface-bound matches: rules must not contain requirements about
input or output interfaces, since their semantics cannot be preserved once
moved elsewhere.

• No SNAT rules for inbound traffic: source NAT operations in the
POSTROUTING chain of the nat table are not compatible with redistribution
and are therefore not allowed.

These assumptions define the subset of iptables configurations to which REDIAL
can be correctly applied. They are consistent with the reference model used in
the formalization and justify using the legacy iptables backend’s deterministic
first-match behaviour.

18

Background

Algorithm 1: REDIAL (RulE DIstribution ALgorithm)

Input: FW = [fwmf
1 , fwff

1], DK
1 and DN

K+1 from all d2,i
Output: Updated chains of the lightened firewall ˆ︃FW = [ˆ︂fwmf

1 , ˆ︂fwff

1]

custom chains of downstream firewalls ˆ︂fw2,i,∀i ∈ [1, N]

1 Initialize ˆ︂fws, fws as empty;
2 Set flag ← FALSE;
3 c ranges over the chains in FW ;
4 i ranges over the rules of fw1;
5 j ∈ [1, K] ranges over the destination sets d2,1, . . . , d2,K ;
6 h ranges over the rules of fw1;
7 k1, . . . , kK range respectively over the rules of fw2,1, . . . , fw2,K ;
8 All these indices are initially set to 1.
9 for c← 1 to |FW | do

10 fw1 ← FW [c];
11 while i ≤ |fw1| do
12 while j ≤ K do
13 if fw1.ri.C[dip] ∩ d2,j /= ∅ then
14 Add fw1.ri to fw2,j as rkj ;
15 kj ← kj + 1;
16 if flag = FALSE then
17 flag ← TRUE;
18 Add ⟨any, DK

1 , any, any, any, accept⟩ to fw1 as rh;
19 h← h+ 1;

20 j ← j + 1;

21 if fw1.ri.C[dip] ∩DN
K+1 /= ∅ then

22 Add fw1.ri to fw1 as rh;
23 h← h+ 1;

24 i← i+ 1;

25 ˆ︃FW [c]← fw1;

26 for i← 1 to K do
27 ˆ︂fw2,i.r1 ← ⟨any\d0, any, any, any, any, return⟩;
28 for j ← 2 to |fw2,i|+ 1 do
29 ˆ︂fw2,i,rj

← fw2,i,rj−1
;

19

Background

(a) Initial configuration before applying
REDIAL

(b) Final configuration after applying RE-
DIAL

Figure 2.2: Example of rule redistribution using REDIAL

Detailed description of the Rule Distribution Algorithm

Algorithm 1 is defined within a hierarchical topology which is formally termed
reference stream topology (RST) of which figure 2.2 represents a specific instance.
The notation employed throughout is summarised in table 2.1, which is introduced
here at the outset for clarity. The flows originate from a designated source domain
d0 and propagate through one or more intermediate firewalls before reaching the
destination domains d2,i. The RST address sets are assumed to be pairwise disjoint
and non-interleaved: d0 ∩ d2,i = ∅ and d2,i ∩ d2,j = ∅ for i /= j.

For each routing device d1, the address set equals the union of its children,
that is d1 =

⋃︁
i d2,i. The upstream firewall FW = [fwmf

1 , fwff
1] is composed of

the FORWARD chain of the mangle table fwmf
1 and the FORWARD chain of the filter

table fwff
1 . Each downstream domain is associated with a set of IP addresses

d2,i, protected by its corresponding firewall fw2,i. When an overload condition is
detected at fw1, the rules that define the handling of traffic from d0 to a subset of
domains are replicated (transferred or duplicated as needed) to the downstream
firewalls that directly protect those domains.

Alongside this replication, fw1 is extended with a single ACCEPT rule for DK
1 ,

preventing any further inspection of that traffic. Packets from d0 to the delegated
domains bypass inspection at fw1; instead filtering is handled by the appropriate
downstream firewalls. Rules for all other destinations DN

K+1 remain in fw1.
Formally, each rule in fw1 is examined in turn. If the destination matches one

20

Background

of the domains d2,j, the rule is inserted into the configuration of the respective
downstream firewall fw2,j. Once the first match occurs, the upstream firewall is
extended with the global ACCEPT rule for DK

1 . Rules applying to destinations outside
this set are retained upstream. To ensure correctness, each downstream firewall is
also provided with a preliminary rule whose source condition corresponds to any\d0,
thereby ensuring that only packets originating from the root domain are considered
and preventing interference with unrelated traffic. The resulting configurations

ˆ︃FW = [ˆ︂fwmf

1 , ˆ︂fwff

1], ˆ︂fw2,1, . . . ,
ˆ︂fw2,K

remain semantically equivalent to the original rule set, preserving the same ac-
ceptance and rejection behaviour for every packet while distributing the filtering
workload more evenly. The formal proof can be found in [2].

Table 2.1: Notation used in REDIAL

Symbol Meaning

FW = [fwmf
1 , fwff

1] Configuration of the upstream firewall considered by RE-
DIAL, consisting of the mangle table fwmf

1 and the filter
table fwff

1 .
d2,i Set of destination IP addresses belonging to the i-th down-

stream domain protected by firewall fw2,i.

DK
1 =

K⋃︂
i=1

d2,i Union of destination sets for the K downstream domains
that participate in redistribution.

DN
K+1 =

N⋃︂
i=K+1

d2,i Union of destination sets for downstream domains not af-
fected by redistribution.ˆ︃FW = [ˆ︂fwmf

1 , ˆ︂fwff

1] “Lightened” upstream configuration obtained by removing
rules targeting DK

1 ; it retains only rules applicable to DN
K+1.

fw2,i Custom rule chain(s) installed on downstream firewall fw2,i

to enforce rules matching d2,i.
fw1.ri The i-th rule of the upstream firewall fw1.
fw1.ri.C Match condition of rule ri (e.g., source/destination ad-

dresses, ports, protocol).
fw1.ri.C[dip] Destination-address component of the match condition for

rule ri.

Continues on the next page

21

Background

Symbol Meaning

⟨ src, dst, sport,
dport, proto, action ⟩

Tuple representation of a firewall rule, with fields for
source/destination addresses, source/destination ports, pro-
tocol and action (e.g., ACCEPT, DROP).

any \ d0 Set of all source addresses excluding those in domain d0.
FW [c] The c-th table in the upstream firewall configuration (either

fwmf
1 or fwff

1).

22

Background

Clarifying example

The following example illustrates how REDIAL works on a simple network shown
in figure 2.3. The source domain is defined as d0 = 10.0.0.0/8. Table 2.2 shows
the original FORWARD chain of fw1, which contains explicit rules for each subnet
(d2,1 = 192.168.1.0/24, d2,2 = 192.168.2.0/24, d2,3 = 192.168.3.0/24) and one broad
rule on TCP/443 covering the whole d2,1 ∪ d2,2 ∪ d2,3 = 192.168.0.0/16 range. In
this initial state, the upstream firewall must evaluate both fine-grained rules (e.g.,
specific hosts or ports) and generic rules (such as HTTPS to the entire /16 network).

After applying REDIAL, table 2.3 shows three distinct outcomes. In the dele-
gation case, fw1 replaces the d2,1 and d2,2 rules with pass-through entries. These
rules match any traffic for those subnets and forward it to the respective downstream
firewalls, which then enforce the detailed policies. This shows how REDIAL adds
a delegation rule that stops inspection upstream and avoids repeating the same
checks.

In the duplication case, the HTTPS rule on TCP/443 is marked as duplicated,
since its address space overlaps both delegated (D2

1 = d2,1 ∪ d2,2) and non-delegated
(D3

3 = d2,3) domains. In this case, the rule is kept at the upstream level and replicated
downstream to maintain consistent policy application across both delegated and
non-delegated domains.

Finally, in the retention case, the rule for d2,3 remains on fw1 because this
subnet is not delegated; the redistribution is not needed and the rule must be
retained upstream.

After redistribution, as shown in table 2.3, the rules for d2,1 and d2,2 are replaced
by generic delegation rules: packets matching those destinations are no longer
inspected upstream, but forwarded to the respective downstream firewalls. The
mixed HTTPS (Proto: TCP, Port: 443) rule is marked as duplicated, since it
matches both delegated D2

1 = d2,1 ∪ d2,2 and non-delegated D3
3 = d2,3 sets. Rules

for d2,3 remain at the upstream device because it belongs to the non-delegated set.
The resulting downstream configurations are reported in tables 2.4 and 2.5.

Table 2.2: Upstream fw1 rules before REDIAL (filter/FORWARD)

Source Destination Proto Port(s) Action

1 10.0.0.1 192.168.2.1 TCP 25 ACCEPT
2 10.0.0.0/8 192.168.1.0/24 TCP 22 ACCEPT
3 10.0.0.0/8 192.168.2.0/24 UDP 53 ACCEPT
4 10.0.0.0/8 192.168.3.0/24 ICMP echo-req ACCEPT
5 10.0.0.0/8 192.168.0.0/16 TCP 443 ACCEPT
6 any any any – DROP

23

Background

Table 2.3: Upstream fw1 rules after REDIAL (filter/FORWARD)

Source Destination Proto Port(s) Action

1 10.0.0.0/8 192.168.1.0/24 any – ACCEPT (delegated)
2 10.0.0.0/8 192.168.2.0/24 any – ACCEPT (delegated)
3 10.0.0.0/8 192.168.3.0/24 ICMP echo-req ACCEPT (retained)
4 10.0.0.0/8 192.168.0.0/16 TCP 443 ACCEPT (duplicated)
5 any any any – DROP

Table 2.4: Downstream fw2,1 rules after REDIAL (filter/FORWARD)

Source Destination Proto Port(s) Action

1 10.0.0.0/8 192.168.1.0/24 UDP 53 ACCEPT
2 10.0.0.0/8 192.168.0.0/16 TCP 443 ACCEPT
3 any any any – DROP

Table 2.5: Downstream fw2,2 rules after REDIAL (filter/FORWARD)

Source Destination Proto Port(s) Action

1 10.0.0.1 192.168.2.1 TCP 25 ACCEPT
2 10.0.0.0/8 192.168.2.0/24 TCP 22 ACCEPT
3 10.0.0.0/8 192.168.0.0/16 TCP 443 ACCEPT
4 any any any – DROP

24

Background

Figure 2.3: Topology for the REDIAL clarifying example

2.3 VEREFOO

The VEREFOO framework is used for configuring distributed firewalls. It takes high-
level security requirements (intents) and computes an optimal firewall deployment
and rule set that satisfies all policies. VEREFOO combines automation, formal
verification and optimization to produce minimal, correct configurations. The
firewall configuration problem is expressed as a MaxSMT (Maximum Satisfiability
Modulo Theories) optimization (more specifically, VEREFOO relies on the Z3
theorem prover [8], [9]), ensuring the minimal number of rules while meeting all
reachability/isolation requirements.

Existing literature [10] explains that manual firewall configuration is error-prone
and does not scale with network complexity; however automating this process
through tools like VEREFOO improves security and reduces rule complexity.

Bringhenti et al. describe VEREFOO’s approach to optimal firewall orchestration
in virtualized networks [4] and a recent journal paper explains the automated firewall
configuration using formal methods [11].

VEREFOO models the network as a Service Graph (it abstracts the topology

25

Background

of the infrastructure and identifies the allocation places where firewalls may be
deployed) and accepts a set of Network Security Requirements that include both
reachability and isolation constraints between endpoints.

The constraints relevant in the context of VEREFOO are the following:

• Hard constraints: traffic flows that must be allowed or denied.

• Soft constraints: minimizing the number of deployed firewalls and reducing
the complexity of the rule sets.

Z3 enforces all hard constraints and minimizes a weighted objective over the soft
constraints.

VEREFOO can apply two traffic abstraction models:

• Atomic Predicates (AP): This model partitions the space of traffic predi-
cates (e.g., "source IP in X and destination port equals Y") into a finite set of
non-overlapping classes.

• Maximal Flows (MF): In contrast, in this other model, similar traffic flows
are treated uniformly.

When a valid solution is found, VEREFOO provides the translation of the model
into deployable firewall rules. This includes:

• Firewall placements: it is specified which nodes in the Service Graph (also
called “Allocation Places”) host firewall instances.

• Rule logic generation: the allow or deny policies are set depending on the
policies specified as input and the default action is also included.

These outputs are first serialized into a high-level XML format and then trans-
lated into low-level platform-specific configuration scripts (iptables, Open vSwitch
or IpFirewall). The outputs of VEREFOO are then deployed on iptables-based
firewalls. The workflow of VEREFOO is illustrated in figure 2.4.

Figure 2.4: VEREFOO Architecture, source: [11]

26

Background

2.4 Performance measurement techniques and tools

This section outlines the methods and tools used to evaluate firewall performance,
ranging from standard benchmarking utilities to custom traffic generators and packet-
level inspection frameworks. Together, these provide both aggregate throughput
measurements and detailed timing analysis, which were subsequently processed in
Python notebooks using standard statistical and visualization libraries (NumPy,
Pandas, Matplotlib and tshark).

iPerf3

iPerf3 [12], [13] is a widely used tool for network performance assessment tasks.
In this work, iPerf3 was used in the initial benchmark phase to establish baseline
performance in the absence of firewall filtering. It operates in a standard client-server
model: the server must be started on one host and the client connects to it to
initiate the test. Both TCP and UDP protocols are supported: in TCP mode,
the bandwidth availability is assessed under congestion control and flow control
mechanisms, while in UDP mode, fixed data rates are set for measuring packet loss
and throughput.

iPerf3 is useful for measuring throughput, but its bursty traffic patterns make
it less suitable for precise packet-level analysis; this limitation motivated the de-
velopment of custom Python scripts able to reproduce controlled request–response
sequences at high packet rates.

Hardware timestamping (IEEE 1588)

The experimental campaign relies on hardware timestamping with a PTP-capable
NIC (IEEE 1588 [14]) by using tcpdump [15] and tshark [16]. Both tools sit atop
the libpcap [17] library. A schematic overview is shown in figure 2.5.

Figure 2.5: Schematic representation of Hardware Timestamping using Raw PHC

Linux systems expose PTP-capable NICs through PHC (PTP Hardware Clock)
devices that can be accessed via /dev/ptpX. The PHC must be synchronized with
the system clock through phc2sys and NTP/chrony services need to be disabled
during measurements to prevent clock conflicts. The Linux timestamping API
transfers NIC-generated timestamps from packets to user space using sk_buff and
other data [18]. The Intel X550 NIC enables hardware timestamping operations for

27

Background

both received and transmitted packets. Listing 2.1 shows the output of the ethtool
-T command; the lines 5,7,10 and 11 confirm the timestamping capabilities of the
Intel X550 NIC.

1 guest@ThinkStation-P360-main-rtr:~$ ethtool -T enp1s0f1
2

3 Time stamping parameters for enp1s0f1:
4 Capabilities:
5 hardware-transmit
6 software-transmit
7 hardware-receive
8 software-receive
9 software-system-clock

10 hardware-raw-clock
11 PTP Hardware Clock: 1
12 Hardware Transmit Timestamp Modes:
13 off
14 on
15 Hardware Receive Filter Modes:
16 none
17 all

Listing 2.1: Timestamping parameters with ethtool

The field PTP Hardware Clock: 1 indicates that the enp1s0f1 interface is
associated with the device /dev/ptp1 (it exposes the NIC’s internal hardware
clock).

At the kernel level, Linux provides packet timestamping through the socket
option SO_TIMESTAMPING. Once enabled, the kernel attaches timestamp metadata
to packets and makes it available to user space as ancillary data obtained with
recvmsg(). For incoming packets, the timestamps are delivered together with the
payload in user space, whereas for outgoing packets, they are queued in the kernel’s
error queue and retrieved from user space using the MSG_ERRQUEUE flag [19], [20].

hping3 as an ICMP flood generator

hping3 [21], [22] functions as a packet generation tool for network testing and
security auditing. The primary use of the tool involves crafting packets to test
firewalls and intrusion detection systems and it can generate high-rate ICMP traffic,
which is useful for experimental studies of network resistance to flooding attacks.

The ICMP flood attack consists of sending an unending sequence of ICMP Echo
Request packets to a specific target network or host. Each packet requires minimal
per-packet processing cost along with minimal bandwidth from the victim system.
The combination of many such packets creates network link saturation or system
resource exhaustion.

The tool offers precise control by allowing the adjustment of several parameters
(e.g., packet size, transmission speed and source address). It uses raw sockets,
thereby bypassing the standard protocol stack. This feature of the tool enables
higher transmission speeds than the built-in ping utility and allows delays between
packets with a resolution in the order of microseconds.

28

Chapter 3

Thesis objectives

The core purpose of this thesis is to design and evaluate an integrated firewall
management system that combines static, formally verified configuration with
dynamic rule redistribution. Modern network infrastructures employing distributed
firewalls face a dual challenge: the need to establish an initial configuration that
is both efficient and compliant with security requirements and the necessity to
adapt automatically to unexpected traffic patterns without manual intervention.
This work combines VEREFOO (Verified Refinement and Optimized Orchestrator),
a framework for formal rule generation and optimization, with REDIAL (RulE
DIstribution ALgorithm), which operates at runtime to redistribute filtering rules
and balance processing loads. VEREFOO operates during the modelling phase. It
uses a MaxSMT formulation to translate high-level security policies into optimal
rule sets, which are then processed by the Z3 solver. All hard constraints are
preserved, while rule complexity is minimized. The resulting policy is translated
into platform-specific commands—in this case, iptables rules targeting the FORWARD
chain. In contrast, REDIAL functions during the runtime phase. When REDIAL is
triggered by an abnormal event it transfers the load to downstream devices located
closest to the target network segments. This redistribution reduces per-packet
processing overhead, helping to maintain responsiveness and throughput during
high-load conditions, while preserving the original security semantics.

3.1 Integration objective
The first objective is to integrate VEREFOO’s design-time optimization with
REDIAL’s runtime flexibility in a unified workflow:

1. During the modelling phase, VEREFOO computes an optimized configuration
from the stated policy intents.

2. During the runtime phase, REDIAL performs the redistribution of rules to
address traffic imbalances without requiring a complete policy re-computation.

29

Thesis objectives

This integration safeguards the formal assurance provided at design-time and adds
the flexibility needed to manage network variability in real environments. Figure
3.1 shows the operational workflow of the integrated VEREFOO–REDIAL system.
VEREFOO compiles initial security policies into an optimized rule set. When an
attack occurs, REDIAL performs runtime redistribution of rules to mitigate the
effects and updates are fed back into the policy configuration.

Figure 3.1: Operational workflow of the integrated VEREFOO–REDIAL system

3.2 Performance evaluation objective
The second objective is to assess the behaviour of the framework under realistic
conditions – including both normal operation (without firewalls) and attack scenarios.
The testing environment emulates a small enterprise border network featuring:

• Legitimate external client traffic to public services, in compliance with estab-
lished policies.

• The attacks are ICMP floods that exhaust the servers’ processing capacity.

The evaluation will focus on:

• Throughput of legitimate connections.

• Packet loss across the network with attention to legitimate flows.

3.3 Mitigation demonstration objective
This objective is to demonstrate the practical advantages of runtime reconfiguration.
The purpose is to show that REDIAL can reduce load on the most stressed firewalls.
The thesis aims to obtain both policy correctness (achieved at design-time) and the
resilience of the systems (provided by real-time adaptation) to deliver a network
defence system that is both robust and responsive.

30

Chapter 4

Experimental test-bed setup

This chapter describes the environment used for the experiments. The test-bed
emulates the perimeter of an enterprise network with Internet-facing services, internal
server domains and distributed security elements.

The scenario model (logical zones and roles) is treated separately from the
implementation (physical devices and namespaces in the laboratory).

The implementation relies on mainstream hardware and Linux operating systems.
Isolation is provided by Linux network namespaces; reproducibility is supported by
fixed addressing, scripted configuration and packet capture on wired links.

A separate management network provides remote access and out-of-band control,
ensuring that experimental traffic remains isolated.

4.1 Scenario model

The environment mirrors an authentic enterprise perimeter, which includes Internet-
facing services including internal server segments and distributed filtering elements.
The following design goals guided the model:

• Realism: the model includes external clients, attackers, internal servers and
border firewalls as found in real deployments.

• Isolation: functional roles (routing, filtering and endpoints) are separated.

• Reproducibility: the addressing plans and roles are fixed, so the experiments
can be repeated.

Logical segmentation

As shown in figure 4.1, the modelled environment is divided into four areas:

31

Experimental test-bed setup

• Internal server zone: application servers, which are shielded by two internal
firewalls.

• Secondary internal zone: internal hosts reachable only from within the
corporate network.

• External zone: public Internet segment outside the network, one legitimate
client and two distinct attackers.

• Border router: a single element implementing both routing and packet
filtering.

Figure 4.1: Abstract enterprise perimeter model used in the experiments

32

Experimental test-bed setup

4.2 Implementation

Hardware inventory and Operating Systems

The physical devices range from Raspberry Pis to workstation-grade machines:

• Three Raspberry Pi 5 Model B boards, each equipped with a 1 Gbps Ethernet
interface, running Ubuntu 25.04.

• Two Raspberry Pi 3 Model B with a 100 Mbps Ethernet interface and running
Raspbian 12 Bookworm.

• One Raspberry Pi 2 Model B with a 100 Mbps Ethernet interface, running
Raspbian 12 Bookworm (32-bit version).

• One Lenovo ThinkStation P5 (model 30GA000NIX) as the attack genera-
tor, equipped with two Edimax EN-9260TX-E (1 Gbps) NICs and running
Ubuntu 24.04.2 LTS.

• One Lenovo ThinkStation P360 Tower (model 30FMS1EK00) with two Intel
X550 NICs (two ports each, up to 5 Gbps per port) and one Edimax EN-
9260TX-E (1 Gbps) NIC, running Ubuntu 24.04.2 LTS.

Each node’s role varies depending on the experiment. All experimental links use
wired Ethernet (Wi-Fi is not used) to maximize the stability and precision of the
measurements. Wi-Fi is used only on the parallel control network; see section 4.3.

Model-to-implementation mapping

Each modelled role is realised in the laboratory by assigning it to a namespace
on a specific physical device. Figure 4.3 shows the implementation topology, with
coloured boxes indicating devices that host multiple logical functions (separate
Linux namespaces) and unboxed icons corresponding to single-namespace hosts.
Interface IP addresses and namespace names are shown directly in the figure, while
table 4.1 summarises how these roles are implemented. Figure 4.2 depicts the
physical test-bed configuration.

33

Experimental test-bed setup

Table 4.1: Mapping between abstract model roles and physical implementation.

Physical Device Namespace(s) Role(s) in Model IP(s)

ThinkStation P360 fw, rtr Border router: fw for packet
filtering, rtr for routing

10.0.2.254,
10.0.3.254,
9.0.0.254,
9.0.1.254,
9.0.2.254

ThinkStation P5 att1, att2 External attackers (two
distinct namespaces
emulate separate sources)

9.0.0.1,
9.0.2.1

Raspberry Pi 5 (i) fw, edp Internal firewall (i) in fw;
application server (i) in edp

10.0.3.1,
10.0.3.11

Raspberry Pi 5 (ii) fw, edp Internal firewall (ii) in fw;
application server (ii) in
edp

10.0.3.2,
10.0.3.21

Raspberry Pi 3 edp Unprotected host in the
server zone, emulated in
edp

10.0.3.3

Raspberry Pi 2 edp Secondary internal hosts
emulated in edp

10.0.2.1–3

Address blocks are chosen to disambiguate functional roles across the test-bed:

• 10.0.3.0/24: internal server zone and internal firewalls. A simple Layer-
2 switch interconnects the two internal firewalls and the unprotected host
(10.0.3.3). The application servers, 10.0.3.11 and 10.0.3.21, are instead pro-
tected by firewalls and are not directly attached to the switch.

• 10.0.2.0/24: secondary internal network with multiple logical IPs assigned
to the same interface.

• 9.0.0.0/24, 9.0.1.0/24, 9.0.2.0/24: external Internet zones housing attack-
ers and the legitimate client.

Interface names are those assigned by the operating system.
Linux network namespaces [23] permit multiple logical nodes in the same physical

device and allow reproducibility. As explained in section 2.1, the main purpose of
this design choice is to meet the functional requirements of VEREFOO and REDIAL
which both operate on the FORWARD chain. The use of separate namespaces allows
to have better control plane and test network separation, which results in improved
isolation and management during experiments.

34

Experimental test-bed setup

Namespaces are interconnected at Layer 2 through Virtual Ethernet pairs (veth).
One end is assigned to the fw namespace and the other one to rtr or to edp
depending on the device that is considered.

The namespaces labelled fw, corresponding to the two internal firewalls, are
implemented as Linux bridges that attach the physical NIC and the virtual Ethernet
pair; the namespace IP address is therefore assigned to the bridge device.

Figure 4.2: Physical laboratory setup

To make the logical split explicit, the full setup script used on the central router
is reported in appendix A.1. The script requires root privileges to run and accepts
commands for creating or clearing the network while it establishes the fw and rtr
namespaces through a dedicated veth /30 network and moves physical NICs to their
respective namespaces before assigning IPv4 addresses and enabling L3 forwarding.
The NIC names (e.g., enp2s0, enp1s0f0) are specific to the ThinkStation P360
hardware and need to be adjusted on other hosts. This listing is provided solely as
an example; analogous scripts (not shown) configure the attacker, client and server
nodes with the same pattern of namespace creation, addressing and routing.

35

Experimental test-bed setup

Figure 4.3: Implementation topology of the experimental test-bed

36

Experimental test-bed setup

4.3 Out-of-band control network and remote access

To guarantee remote access for configuration and monitoring without interfering
with experimental traffic, a dedicated management plane is configured in parallel
with the test-bed. It is realised as 192.168.20.0/24, anchored by a TP-Link device
acting as switch, router, wireless AP and DHCP server. All the nodes are reachable
via SSH from a bastion host, which has a public IP address. Authentication uses an
SSH private key (no password-based authentication is used on the bastion host).
After connecting to the bastion, it is possible to reach the internal nodes over the
control network without exposing the laboratory machines to the Internet. The
DHCP server of the TP-Link device pins 192.168.20.x subnet to device MAC
addresses dedicated to control functions to ensure stable addressing across reboots.
This approach simplifies orchestration and makes automation through scripts easier.
The overall layout is illustrated in figure 4.4 and the specific devices connected to
the control plane are listed in table 4.2.

Figure 4.4: Control plane

37

Experimental test-bed setup

Table 4.2: Devices connected to the control network (192.168.20.0/24)

Device IP (control) Control interface

Router/Switch/AP TP-Link 192.168.20.1 Ethernet & Wi-Fi
Lenovo ThinkStation P360 Tower 192.168.20.130 Wi-Fi
Raspberry Pi 2 Model B 192.168.20.131 Ethernet
Raspberry Pi 5 Model B 192.168.20.132 Wi-Fi
Raspberry Pi 3 Model B 192.168.20.133 Wi-Fi
Raspberry Pi 3 Model B 192.168.20.134 Wi-Fi
Raspberry Pi 5 Model B 192.168.20.135 Wi-Fi
Raspberry Pi 5 Model B 192.168.20.136 Wi-Fi
Lenovo ThinkStation P5 192.168.20.137 Ethernet

Remote-access workflow

The bastion node exposes three wired interfaces:

• One interface with a public IP (i.e., connected directly to the Internet).

• One interface toward the TP-Link router. The bastion provides access to Inter-
net to 192.168.20.0/24 via iptables MASQUERADE (NAT) on the POSTROUTING
chain of the nat table:

1 Chain POSTROUTING (policy ACCEPT 163 packets, 13035 bytes)
2 pkts bytes target prot opt in out source destination
3 31017 11M MASQUERADE all -- * enp0s31f6 0.0.0.0/0 0.0.0.0/0

• One point-to-point link with the Lenovo ThinkStation P360 over 192.168.101.0/30,
where the bastion is 192.168.101.1 and the P360 is 192.168.101.2.

To access a device on the control network:

1. From a remote machine, connect to the bastion: ssh guest@130.192.36.20

2. From the bastion, connect to the P360: ssh 192.168.101.2

3. From the P360, hop to the target: e.g., ssh 192.168.20.132

38

Experimental test-bed setup

4.4 Limitations and reproducibility considerations
The server-zone subnet 10.0.3.0/24 allows direct observation of delivery performance,
latency and packet loss that affects applications. For this reason, all experiments
employ a capture point on the central router, specifically on the interface assigned
the address 10.0.3.254. This location was chosen because it aggregates both ingress
traffic destined for the servers and egress responses leaving the zone, thereby yielding
a unified perspective on end-to-end service delivery.

The process of creating namespaces and assigning interfaces, configuring routes
and installing iptables policies runs through various scripts that establish a clean,
identical starting point for each run.

Some limitations remain: the test-bed combines single-board computers and
workstation-grade hardware, so CPU and NIC performance differ significantly among
the devices; this is a key aspect that must be considered during the experiments.

39

Chapter 5

Experiments and demos

Chapter 4 describes the setup of the experimental test-bed; the following one
concentrates on the actual measurement process. The experiments start with iPerf3
baseline tests, which only verify the proper functioning of the infrastructure under
TCP and UDP traffic conditions. The first set of tests confirms network size
and reachability, but the iPerf3 bursty flows do not match real application traffic
behaviour.

To obtain more representative traffic, the baseline is then repeated with cus-
tom Python scripts. The systems perform basic client-server operations through
pre-programmed fixed-length request transmissions, which produce standard com-
munication patterns. The method produces network traffic patterns that duplicate
real-world systems.

Once the infrastructure is validated under realistic traffic, the firewalls are
activated and rules are deployed. Each experiment was conducted twice: once
with a static distribution of rules and again after applying the REDIAL algorithm,
already introduced in chapter 2. The comparison method enables to determine the
performance benefits.

In the baseline experiments, there is a well-defined sequence of phases: normal
traffic begins at t = 0 s, an ICMP flood is introduced between t = 15–45 s and
all flows terminate at t = 60 s. When the firewalls are activated, the same three
phases are stretched by a factor of ten: normal traffic from t = 0–150 s, ICMP flood
from t = 150–450 s and termination at t = 600 s. The three observation windows
– before, during and after the attack – allow system behaviour monitoring under
normal operating conditions, high stress and recovery states.

5.1 Preliminary measurements with iPerf3

Before fulfilling the thesis demo objective, the network behaviour is monitored with
iPerf3 while the firewalls act as pass-through devices. (i.e., all the chains of the

40

Experiments and demos

filter table of iptables have as default policy ACCEPT and there are no rules). The
baseline represents the maximum performance potential the hardware and topology
can deliver and it serves as a reference to measure firewall effects.

This section aims to show, through four experiments, how ICMP packets affect
legitimate TCP and UDP flows. It serves only as a preliminary introduction
and these experiments are explored in greater depth in later sections of the chapter
using more precise methodologies because iPerf3 has automatic mechanisms that do
not allow the manipulation of some packet parameters, such as packet length and
sending frequency.

Experimental setup

Figure 5.1 illustrates the topology used for the baseline measurements: the rounded
nodes are the endpoints (senders and receivers). Coloured links indicate three
traffic types: red represents adversarial traffic, green represents legitimate traffic
and orange represents mixed flows. The arrow directions represent the flows from
clients to servers. The black links exist in the topology but remain inactive during
these experiments. The firewalls indicated are pass-through devices in these baseline
measurements.

The risk that the NICs drop packets under high PPS conditions (and particularly
during small-ICMP scenarios) is minimized by writing capture files to a tmpfs [24]
filesystem. Listing 5.1 shows the preparation of a 10 GiB RAM disk for high-rate
captures.

1 sudo mkdir /mnt/ramdisk
2 sudo mount -t tmpfs -o size=10G tmpfs /mnt/ramdisk

Listing 5.1: RAM disk for high-rate captures (tmpfs 10 GiB).

Traffic scenarios and timing

The legitimate traffic is produced by running iPerf3 between 10.0.2.1 and 10.0.3.21
using either UDP or TCP. The ICMP flood attack originates from the attacker node
9.0.0.1 that sends its traffic to 10.0.3.21. In this experimental campaign, ICMP
Echo traffic – transmitted by the attacker at the maximum achievable rate in every
trial – used two payload sizes:

• 0 B ICMP payload: the IP total length is 28 B. Ethernet therefore pads
the payload to 46 B, then the frame size is 64 B (14 B L2 header + 46 B
payload + 4 B FCS). Wireshark typically reports about 42 B (14 B L2 + 28 B
IP) because padding and the FCS are not provided to the capture stack. In
addition, the physical overhead must be added (8 B preamble/SFD + 12 B
IFG), so the wire-time per frame is 84 B.

41

Experiments and demos

Figure 5.1: Topology for the experiments related to the baseline measurements with
iPerf3

42

Experiments and demos

• 1400 B ICMP payload: the IP total length is 1428 B. The corresponding
Ethernet frame is 1446 B (14 B L2 + 1428 B + 4 B FCS). The wire-time
length is 1466 B (Ethernet frame 1446 B + preamble/SFD 8 B + IFG 12 B)

The "LEN" keyword indicates the packet size (ip.len field in Wireshark).
Only four measurements were taken, as the goal here was to observe how ICMP
payload size roughly affects legitimate traffic flows. Specifically, it is analysed a 2×2
design pairing the transport protocol (TCP and UDP) with the attacker’s ICMP
payload size (small and large). Table 5.1 summarises the four no-firewall baseline
configurations (protocol × ICMP size). All graphs presented are obtained using the
Pandas filter
df[(df[’ip.src’].isin([’10.0.2.1’, ’10.0.3.21’])) &
(df[’ip.dst’].isin([’10.0.2.1’, ’10.0.3.21’]))], so they include only the
legitimate traffic.

Table 5.1: No-firewall baseline configurations: legitimate L4 protocol × attacker
ICMP payload size

UDP (iPerf3) TCP (iPerf3)

ICMP 0 B ICMP 0 B + UDP ICMP 0 B + TCP
ICMP 1400 B ICMP 1400 B + UDP ICMP 1400 B + TCP

Each experiment lasts 60 seconds and has three phases: Before (15 seconds)
with only iPerf3 traffic, During (30 seconds) with the ICMP flood added and After
(15 seconds) when the flood stops and only iPerf3 traffic continues.

43

Experiments and demos

Results by configuration

0 B ICMP payload with UDP (iPerf3)

The analysis, whose results are summarized in table 5.2, indicates that the packets
per second (PPS) remain stable across all three observation phases. Similarly, the
throughput metric shows no significant variation during the entire measurement.
This overall stability is considered an empirical observation that points to a consistent
pattern in the generation and transmission of UDP traffic, largely unaffected by the
presence of concurrent ICMP activity.

The flood traffic and the legitimate UDP flow enter the router through different
ingress interfaces. This configuration may, in principle, trigger the kernel’s load-
balancing mechanisms: Receive Packet Steering (RPS), Receive Flow Steering
(RFS), Transmit Packet Steering (XPS), multiqueue drivers and queuing disciplines
(qdisc) can affect how packets are distributed across cores and thus alter processing
latency. In this setup, however, such parameters were left at their default values and
not explicitly audited, so the measurements reflect the behaviour of an unmodified
kernel configuration.

Table 5.2 reports the mean and variance of PPS, throughput and packet length
for the three phases. The complete iPerf3 output is provided in table A.1 and
figure 5.2 illustrates the evolution of these metrics over time.

Table 5.2: Mean and variance of UDP traffic metrics (with 0 B ICMP) across the
three phases (before, during and after)

Metric Before (mean/var) During (mean/var) After (mean/var)

PPS [kPPS] 77.68/15.96 77.69/16.03 77.68/13.76
Thput [Mbit/s] 917.18/2245.35 917.41/2235.09 917.26 /1935.40
LEN [Bytes] 1475.69/413.29 1476.00/0.00 1475.81/255.30

44

Experiments and demos

Figure 5.2: Traffic metrics (PPS, throughput and LEN) over time in the no-firewall
baseline with UDP and 0 B ICMP payload, across the three experimental phases
(before, during and after)

0 B ICMP payload with TCP (iPerf3)

In this case, a complete connection outage is initially observed (there is a simultane-
ous collapse of all traffic metrics), but after a short period, the communication is
restored; however, performance remains severely degraded due to a high number
of retransmissions. Figure 5.3 shows PPS, throughput and LEN across the three
phases under the 0 B ICMP flood, while table 5.3 reports mean/variance for TCP
metrics under the 0 B ICMP flood across phases. The complete iPerf3 results are
provided in table A.2.

The PPS panel of figure 5.3 shows that the baseline rate stabilizes near 100 kPPS
but collapses to close to zero at attack onset; the throughput curve also falls from
>950 Mbit/s to below <100 Mbit/s and displays high variance in the third phase.
During the attack phase, the LEN metric indicates that the legitimate packets sent
by iPerf3 are smaller on average, with the mean size falling by more than 50% and
the variance exploding, consistently with frequent retransmissions. Overall, the
data indicate that small ICMP packets cause degradation to TCP communication
by triggering excessive retransmissions and reducing the average packet size.

The ICMP flood in this experiment relies on very small ICMP packets; so the
victim must handle an extremely high packet rate and the resulting per-packet costs
overhead dominates system performance. Each small-sized packet requires header

45

Experiments and demos

parsing at L3/L4, hardware interrupt handling and context switches, processing
through of the OS networking stack and CPU work for protocol processing. As these
operations accumulate, interrupt handling and software resources processing become
saturated, not the raw link capacity. The system reaches the limits of its packet
processing capabilities, leading to the TCP stack into timeouts and retransmission.
In the third phase of the experiment (the one where the flood traffic ceases), the
system rapidly returns to normal operation, with throughput, packet rate and
average packet size recovering to baseline values.

Table 5.3: Mean and variance of TCP metrics under 0 B ICMP flood

Metric Before (mean/var) During (mean/var) After (mean/var)

PPS [kPPS] 98.80/13.38 9.37/180.34 98.92/12.92
Thput [Mbit/s] 977.38/1134.20 93.99/19361.64 977.07/1140.92
LEN [Bytes] 1236.60/711.53 574.23/384046.72 1234.94/513.73

Figure 5.3: Traffic metrics (PPS, throughput and LEN) over time in the no-firewall
baseline with TCP and 0 B ICMP payload, across the three experimental phases
(before, during and after)

46

Experiments and demos

1400 B ICMP payload with UDP (iPerf3)

In this scenario – UDP traffic generated by iPerf3 is influenced by a stream of
1400 B ICMP payload packets – the connection is not interrupted but experiences
partial degradation during the attack period. Figure 5.4 depicts the evolution
of PPS, throughput and LEN with a 1400 B ICMP flood; while table 5.4 shows
mean/variance for UDP metrics. The full iPerf3 output is shown in table A.3.

During the attack, a reduction in PPS and throughput metrics is observed and
the average packet size remains constant and its variance drops to zero, resulting
in an overall loss of approximately 48%, as can be seen in table A.3. The graphs
indicate that both PPS and throughput stabilize at lower values for the entire attack
interval and the average length curve remains perfectly flat; this indicates that UDP
traffic continues to be transmitted uniformly (even if at a lower rate).

Transmission is rate-limited rather than interrupted. Packet length remains
constant, consistent with an unchanged iPerf3 sending pattern under stress. The
flow continues, but PPS and throughput fall substantially. The ICMP flood creates
contention; after it stops PPS and throughput immediately revert to baseline, as
can be observed in figure 5.4.

Table 5.4: Mean and variance of UDP traffic metrics (with 1400 B ICMP) across
the three phases (before, during and after)

Metric Before (mean/var) During (mean/var) After (mean/var)

PPS [kPPS] 77.68/18.00 41.95/13.72 77.93/17.12
Thput [Mbit/s] 917.24/2528.17 495.38/1913.24 920.22/2404.85
LEN [Bytes] 1475.80/252.60 1476.00/0.00 1475.81/264.67

47

Experiments and demos

Figure 5.4: Traffic metrics (PPS, throughput and LEN) over time in the no-firewall
baseline with UDP and 1400 B ICMP payload, across the three experimental phases
(before, during and after)

1400 B ICMP payload with TCP (iPerf3)

In this scenario, the TCP traffic generated by iPerf3 is present with a stream of
large packets that have 1400 B ICMP payload (1466 B on-wire). The attack does
not cause an immediate connection outage; but it results in an anomalous TCP
behaviour: the traffic shows instability and performance degradation. Figure 5.5
reports PPS, throughput and LEN during the 1400 B ICMP flood, while table 5.5
summarises TCP metrics across the three phases.

The attack phase shows an increase in packet rate (PPS) with a marked drop
in throughput and a substantial reduction in average packet size. The variance
is high in all the metrics (particularly in throughput and packet length). This
behaviour indicates a highly unstable TCP traffic that is probably caused by the
retransmissions and network congestion triggered by the ICMP attack, similarly to
the previously discussed case of the 0 B ICMP payload attack with TCP legitimate
traffic.

Table A.4 lists the detailed iPerf3 output for this experiment.

48

Experiments and demos

Table 5.5: Mean and variance of TCP traffic metrics (with 1400 B ICMP) across
the three phases (before, during and after)

Metric Before (mean/var) During (mean/var) After (mean/var)

PPS [kPPS] 98.84/13.10 123.44/361.86 104.00/200.47
Thput [Mbit/s] 977.29/1080.72 779.11/29839.89 971.22/4703.70
LEN [Bytes] 1235.97/888.77 782.45/11472.97 1180.89/17132.54

Figure 5.5: Traffic metrics (PPS, throughput and LEN) over time in the no-firewall
baseline with TCP and 1400 B ICMP payload, across the three experimental phases
(before, during and after)

Results summary

The attack impact depended on both the L4 protocol and the size of the attacker
packets. The router’s load-balancing mechanism mitigated the small attacker
packets (0 B ICMP payload) when combined with the UDP traffic, but it degraded
TCP performance. The large attacker packets (1400 B ICMP payload) caused
UDP throughput reduction but not a connection disruption; however with TCP
experienced significant instability.

49

Experiments and demos

5.2 Baseline measurements with custom scripts
The first set of experiments takes place in a clean condition because no filtering rules
are applied: all intermediate devices forward packets transparently. The test-bed
measures two aspects: it defines the thresholds at which the network becomes
unstable and it demonstrates how unprotected systems become vulnerable to ICMP
flooding attacks, which VEREFOO and REDIAL will later protect against.

The experiments reuse the test-bed described in chapter 4. Instead of iPerf3,
Python scripts generate application traffic: this change was made because iPerf3
includes automatic mechanisms that adjust its behaviour (e.g., packet length or
sending frequency—based on network conditions), resulting in a bursty traffic
pattern. Two clients establish legitimate flows with two Raspberry Pi servers
(10.0.3.11 and 10.0.3.21) through TCP and UDP protocols at specified sizes and
intervals. Adversarial traffic is sent by two attacker namespaces: 9.0.0.1 floods
10.0.3.11, while 9.0.2.1 floods 10.0.3.21.

The legitimate traffic is represented by the two connections established via a
Python script: one between 9.0.1.1 and 10.0.3.21 and the other between 9.0.1.1 and
10.0.3.11. Each segment (TCP) or datagram (UDP) has a fixed size payload of
500 B. The traffic is sent at a constant rate of 20 requests per second (or less if the
network is congested. For each request, the client script waits either for a response
or until a timeout expires before sending the next request).

As in the previous experiments of the section 5.1, all traffic is captured on the
central router on the interface with IP 10.0.3.254 with hardware timestamping
and buffered on a RAM-disk to minimize overhead. Also, regarding the timing of
the experiment, the phases are the same as the baseline experiments with iPerf3
illustrated in section 5.1.

Figure 5.6 illustrates the topology used in these measurements. As in the
section 5.1, the rounded nodes are the endpoints (senders and receivers). Coloured
links indicate three traffic types: red represents adversarial traffic, green represents
legitimate traffic and orange represents mixed flows. The arrow directions represent
the flows from clients to servers. The black links exist in the topology but remain
inactive during these experiments. The firewalls indicated are pass-through devices
in these baseline measurements.

50

Experiments and demos

Figure 5.6: Topology for baseline measurements with custom scripts and for the
final demo

51

Experiments and demos

Results

To analyse the effect of ICMP flooding on legitimate traffic, the results are presented
in terms of two key values:

• The degradation threshold represents the largest packet size which an
attacker can send to make the victim traffic experience major performance
degradation. For UDP, this is the packet size at which loss falls below 10%;
for TCP, it is the size at which retransmissions remain fewer than 200.

• The safe threshold is the ICMP size above which no significant slowdowns
are noticeable. For UDP, this is the packet size at which loss falls below 2%;
for TCP, it is the size at which retransmissions remain fewer than 50.

By expressing the results in this way, it becomes possible to compare UDP and
TCP behaviour directly and to identify the attacker traffic characteristics that most
endanger system stability. The thresholds are shown in the table 5.6.

Table 5.6: Observed thresholds summary

Protocol Degradation threshold Safe threshold

UDP < 150 B > 270 B
TCP < 130 B > 200 B

UDP

As shown in Figure 5.7, UDP traffic is highly vulnerable to ICMP flooding when
the attack payload size is small (e.g., 0–100 B), with loss percentages exceeding
40%. But starting from approximately 150 Bytes, a marked reduction in loss can be
observed (it drops below 10%). Above 270 Bytes, the disruption becomes negligible
or completely absent.

These two thresholds can help us to delineate two zones: a critical zone below 150
Bytes where UDP flows suffer heavy degradation and a safe zone beyond 270 Bytes
where the legitimate traffic is unaffected. These results can serve as a reference point
for further analysis of firewall configurations. Table 5.7 lists UDP requests/responses
by phase and host for each payload level.

52

Experiments and demos

Figure 5.7: UDP Packet loss vs Payload size during ICMP flood attack

Table 5.7: UDP requests/responses per phase and host

Level Payload (B) Host Before During After

Requests Responses Requests Responses Requests Responses

1 50 10.0.3.11 306 306 50 23 269 268
1 50 10.0.3.21 306 306 41 14 279 278
2 100 10.0.3.11 300 300 57 31 286 285
2 100 10.0.3.21 300 300 72 46 269 268
4 160 10.0.3.11 301 301 206 188 280 279
4 160 10.0.3.21 301 301 217 199 269 268
5 170 10.0.3.11 300 300 297 284 280 279
5 170 10.0.3.21 300 300 335 324 278 277
6 180 10.0.3.11 300 300 419 412 269 268
6 180 10.0.3.21 300 300 403 395 288 288
7 190 10.0.3.11 301 301 459 454 288 288
7 190 10.0.3.21 301 301 440 434 269 268
8 200 10.0.3.11 301 301 425 418 269 268
8 200 10.0.3.21 301 301 427 420 269 268
9 250 10.0.3.11 300 300 502 499 288 288
9 250 10.0.3.21 300 300 502 499 269 268
10 260 10.0.3.11 301 301 504 501 288 288
10 260 10.0.3.21 301 301 540 539 288 288
11 270 10.0.3.11 300 300 557 557 288 288
11 270 10.0.3.21 300 300 505 502 289 289
12 280 10.0.3.11 301 301 505 502 288 288
12 280 10.0.3.21 301 301 525 523 269 268
13 290 10.0.3.11 300 300 541 540 288 288
13 290 10.0.3.21 300 300 562 562 268 267
14 300 10.0.3.11 300 300 560 560 269 268
14 300 10.0.3.21 300 300 562 562 270 269

53

Experiments and demos

Figure 5.8 shows the number of UDP requests received during the attack as
a function of the ICMP packet size. The total number of received UDP pack-
ets—aggregated across hosts 10.0.3.11 and 10.0.3.21—increases sharply with larger
ICMP payloads.

Figure 5.8: Received UDP Requests vs ICMP Payload size

TCP

The TCP case shows two main metrics, which include the average Round-Trip
Time (RTT) and the number of TCP retransmissions. These data are
extracted using tshark filters tcp.analysis.ack_rtt and
tcp.analysis.retransmission. Figure 5.9 illustrates that the average RTT during
the attack decreases as the ICMP packet size increases. For packets smaller than
approximately 130 Bytes the RTT values rise sharply: this is an indication of a
severe degradation of network responsiveness. Between 130 and 200 Bytes, the RTT
values during the attack gradually decrease. The RTT remains stable at below
10 ms in both phases when the ICMP packet size exceeds 200 Bytes.

54

Experiments and demos

Figure 5.9: Average RTT vs ICMP Payload size during the second phase

Figure 5.10 shows the number of TCP retransmissions during the attack. Re-
transmissions induce the most severe disruption in the range of 115–130 Bytes.
When the packet size exceeds 200 Bytes, the network shows a clear recovery in
terms of retransmission behaviour.

Figure 5.10: TCP Retransmissions vs ICMP Payload size during the second phase

Table 5.8 shows the TCP statistics with the number of retransmissions, DupACK
(tcp.analysis.duplicate_ack tshark filter), loss (tcp.analysis.lost_segment
tshark filter) and other data obtained with Python and tshark used together to

55

Experiments and demos

analyse the PCAP files. The levels from 1 to 4 are not visualized because of the
significant packet loss, which makes measurements in those cases unreliable.

Table 5.8: TCP Packet Statistics

Level TCP Retrans DupACK Loss % Avg RTT (ms) ICMP Size

1 – – – – – 50 B
2 – – – – – 100 B
3 – – – – – 105 B
4 – – – – – 110 B
5 4898 219 34 4.47 16.68 115 B
6 4866 176 21 3.62 16.35 120 B
7 5063 212 30 4.19 15.76 125 B
8 5165 212 28 4.1 15.09 130 B
9 5136 199 38 3.87 14.69 135 B
10 5433 198 39 3.64 12.78 140 B
11 5425 158 19 2.91 12.44 145 B
12 5506 169 27 3.07 11.96 150 B
13 4672 120 24 2.57 13.33 160 B
14 4763 48 15 1.01 8.86 180 B
15 4711 51 12 1.08 6.38 200 B
16 4693 37 14 0.79 4.78 256 B

Table 5.9 shows instead the requests sent and received by the client. The data
from this table is obtained through the logs of the client script. It is noticeable that
the loss is 0 because TCP is a reliable protocol, so to measure the actual data loss,
the study relies on the PCAP data that shows the actual retransmissions. These
results are visualised in figure 5.11.

56

Experiments and demos

Table 5.9: TCP requests/responses per phase and host

Level Payload (B) Host Before During After

Requests Responses Requests Responses Requests Responses

1 50 10.0.3.11 311 311 15 15 5 5
1 50 10.0.3.21 311 311 61 61 241 241
2 100 10.0.3.11 311 311 147 147 286 286
2 100 10.0.3.21 311 311 15 15 286 286
5 110 10.0.3.11 311 311 166 166 286 286
5 110 10.0.3.21 311 311 208 208 276 276
6 120 10.0.3.11 311 311 235 235 285 285
6 120 10.0.3.21 311 311 143 143 289 289
7 125 10.0.3.11 310 310 230 230 270 270
7 125 10.0.3.21 310 310 227 227 279 279
8 130 10.0.3.11 311 311 233 233 283 283
8 130 10.0.3.21 311 311 235 235 286 286
9 135 10.0.3.11 311 311 222 222 289 289
9 135 10.0.3.21 311 311 230 230 289 289
10 140 10.0.3.11 311 311 251 251 289 289
10 140 10.0.3.21 311 311 296 296 285 285
11 145 10.0.3.11 311 311 268 268 290 290
11 145 10.0.3.21 311 311 294 294 286 286
12 150 10.0.3.11 310 310 307 307 285 285
12 150 10.0.3.21 310 310 282 282 289 289
13 160 10.0.3.11 306 306 342 342 294 294
13 160 10.0.3.21 306 306 412 412 290 290
14 180 10.0.3.11 306 306 425 425 293 293
14 180 10.0.3.21 306 306 487 487 290 290
15 200 10.0.3.11 306 306 499 499 291 291
15 200 10.0.3.21 306 306 544 544 287 287
16 256 10.0.3.11 307 307 550 550 293 293
16 256 10.0.3.21 307 307 550 550 290 290

57

Experiments and demos

Figure 5.11: Received TCP Requests vs ICMP Payload size

5.3 Final demo
The final demonstration deploys the integrated VEREFOO–REDIAL system. The
procedure follows five steps:

1. The Service Graph and the security policies are defined and provided as input
to the VEREFOO framework (listing A.2).

2. VEREFOO solves the MaxSMT instance and generates the rule set for the
upstream firewall (listing A.3). Since firewalls are stateless, each permitted
flow is expressed as a pair of FORWARD rules.

3. The resulting rules are loaded, after which the measurement campaigns are
executed.

4. REDIAL is then activated, redistributing the rules among the cascaded firewalls
and a second campaign is carried out under identical conditions.

5. Finally, the results of the two campaigns are compared.

The methodology with which the experiments are done is the same as the section
5.2, where the firewalls were pass-through elements: same scripts and same setup.
There are two main changes: (i) the timing is a 10× longer (2.5 min / 5 min / 2.5
min); (ii) The legitimate traffic has a different bitrate which varies slightly across
measurements but is typically around 100–110 Mbps (corresponding to about 10%
of a 1 Gbps link) and has a L4 payload (TCP or UDP) of 1400 Bytes.

58

Experiments and demos

VEREFOO input and output

The first step consists of creating an XML file that defines the Service Graph and
the corresponding security policies, which is provided as input to the VEREFOO
framework.

When VEREFOO has solved the MaxSMT problem instance using the AP
algorithm, VEREFOO continues its execution by mapping each element with a pair
of FORWARD rules: one for the request path and one for the response path. This is
important because the firewalls considered in this thesis are stateless.

Figure 5.12 compares the real test-bed and its VEREFOO model.

The listing A.2 shows the XML file provided as input to VEREFOO. Reachability
properties encode flows that must be allowed (e.g., HTTP, HTTPS, SSH, DB and
custom ports); isolation properties encode flows that must be denied (e.g., TCP
ports below specific thresholds and ICMP).

The corresponding output is reported in listing A.3, which shows the configuration
generated for the upstream firewall 100.0.0.1 with the DENY default action plus a
rule set of the smallest possible size.

Each VEREFOO element ⟨src, dst, protocol, src_port, dst_port⟩ is translated
into an iptables entry of the form -A FORWARD -p <proto> -s <src> -d <dst>
–sport <src_port> –dport <dst_port> -j ACCEPT. Since the firewalls are state-
less, the corresponding reply rule must also be included: -A FORWARD -p <proto>
-s <dst> -d <src> –sport <dst_port> –dport <src_port> -j ACCEPT. This trans-
lation is shown in listing A.4.

Measurement campaigns with/without REDIAL

After applying the rules to the upstream firewall, a new measurement campaign is
carried out. In the table 5.10 are reported the results for the TCP protocol, while
for the UDP protocol, the data are presented in the table 5.11. The distinction
between sent or received packets is not important because there is a 0% packet loss.

Bash scripts automate the rule deployment over SSH and SCP from the con-
troller. They export the current rules with iptables-save and apply updates with
iptables-restore. For the REDIAL algorithm runs (see section 2.2), a Python
tool reads the iptables-save file of the upstream firewall and then the program
generates one specific rule set for each firewall (upstream and downstream). The au-
tomation scripts transfer and restore each iptables configuration file to the respective
nodes.

59

Experiments and demos

Table 5.10: TCP requests per phase and host with/without REDIAL

Level ICMP Size (B) Host Before During After

No redial Redial No redial Redial No redial Redial

0 0 10.0.3.11 356217 354216 720149 725959 351421 351808
0 0 10.0.3.21 355540 354407 720553 727133 350364 352769
1 50 10.0.3.11 355458 355556 715189 721107 350205 354681
1 50 10.0.3.21 355022 356226 715862 721557 351226 354780
2 100 10.0.3.11 353382 355188 713297 725007 349453 351047
2 100 10.0.3.21 354823 355602 715927 726036 351630 350804
3 105 10.0.3.11 350485 353719 711863 716070 349814 344335
3 105 10.0.3.21 352095 354799 714729 721218 351919 353289
4 110 10.0.3.11 351551 353145 717091 719928 347579 352106
4 110 10.0.3.21 352871 354033 718918 719099 349154 353501
5 115 10.0.3.11 351003 351524 723165 723522 350993 354530
5 115 10.0.3.21 350587 353097 723177 725066 351604 355099
6 120 10.0.3.11 352296 354823 715497 724152 348843 353170
6 120 10.0.3.21 352179 355765 715745 724521 349992 353710
7 125 10.0.3.11 356511 352063 716632 723196 351945 350775
7 125 10.0.3.21 354896 353016 714884 723958 349907 351511
8 130 10.0.3.11 356523 353901 720847 719785 350487 351530
8 130 10.0.3.21 357429 355712 719874 721337 350705 352351
9 135 10.0.3.11 353909 354218 722788 716959 353138 352612
9 135 10.0.3.21 354528 355398 722032 719713 354293 353394
10 140 10.0.3.11 353100 352046 721637 714909 353034 350964
10 140 10.0.3.21 354138 352924 724040 716503 354164 351413
11 145 10.0.3.11 352417 352046 722621 718498 353004 346197
11 145 10.0.3.21 353248 352924 723661 722624 353969 345929
12 150 10.0.3.11 354093 352017 721947 718899 352184 348846
12 150 10.0.3.21 354235 353783 723539 720786 353436 350952
13 160 10.0.3.11 349120 351058 723482 712164 355451 346024
13 160 10.0.3.21 350792 353120 724394 713599 356802 348140
14 180 10.0.3.11 352313 353967 724469 719809 352494 353394
14 180 10.0.3.21 353310 351741 725570 717708 353115 350491
15 200 10.0.3.11 355762 353996 720802 719237 351910 352016
15 200 10.0.3.21 355713 352128 721884 716688 352689 349863
16 256 10.0.3.11 355182 354181 724254 713439 352541 351936
16 256 10.0.3.21 355263 352882 725799 719825 352722 350864

60

Experiments and demos

Table 5.11: UDP requests per phase and host with/without REDIAL

Level ICMP Size (B) Host Before During After

No redial Redial No redial Redial No redial Redial

0 0 10.0.3.11 338268 331719 673598 675308 327717 328468
0 0 10.0.3.21 338193 331799 673456 675260 327682 328630
1 50 10.0.3.11 330541 329914 669321 677863 327200 328641
1 50 10.0.3.21 330272 330025 668460 677455 326791 328676
2 100 10.0.3.11 329360 329914 670252 677059 327292 328432
2 100 10.0.3.21 329028 330025 669570 676825 326796 328670
3 150 10.0.3.11 329669 331530 672062 675846 327197 328864
3 150 10.0.3.21 329301 331680 671387 675515 326656 329041
4 160 10.0.3.11 332400 331616 674106 676500 327099 326721
4 160 10.0.3.21 331926 331972 673439 676290 326751 326879
5 170 10.0.3.11 324234 331091 670624 676251 320589 329221
5 170 10.0.3.21 324369 331181 671649 676006 320653 329541
6 180 10.0.3.11 329809 331654 671704 675608 327280 328668
6 180 10.0.3.21 329503 332031 671210 675334 326980 328839
7 190 10.0.3.11 330200 331927 671098 677746 325309 328548
7 190 10.0.3.21 329912 332299 670579 677402 325119 328577
8 200 10.0.3.11 330266 331794 672461 677165 327126 327690
8 200 10.0.3.21 330037 332128 671891 676726 326657 327819
9 250 10.0.3.11 331160 324101 672125 655031 326335 321130
9 250 10.0.3.21 330781 324100 671043 655187 325939 321157
10 260 10.0.3.11 328557 327011 672075 663175 328424 325152
10 260 10.0.3.21 328317 327019 671194 663369 328028 325136
11 270 10.0.3.11 330293 322496 671036 653659 327030 321340
11 270 10.0.3.21 329774 322545 670264 653739 326568 321383
12 280 10.0.3.11 330429 321894 673148 646623 327164 322220
12 280 10.0.3.21 330112 321926 672618 646647 326903 322183
13 290 10.0.3.11 329688 327362 671888 662533 326371 322678
13 290 10.0.3.21 329170 327485 671383 662694 326030 322674
14 300 10.0.3.11 329363 324349 670034 654489 327751 320183
14 300 10.0.3.21 328972 324139 669441 654563 327429 320161

The figures 5.13 and 5.14 represent respectively results for the TCP and UDP
protocols during the second phase, where the attack is launched. Results indicate
that in both cases the effects of the REDIAL algorithm are consistent under the 8th

level (<130 B for TCP and <200 B for UDP). Therefore, REDIAL is effective for
the small packets and this is particularly relevant since the attackers usually rely on
small packets to flood their targets, as explained by Zhou et al. [25]. It should be
noted that in the demo, a response is always awaited before issuing the next request
(or until the request times out), so delays accumulated across the various network
nodes affect the results. Future work should address this issue to produce cleaner
measurements.

61

Experiments and demos

(a
)

R
ea

li
m

pl
em

en
ta

ti
on

(b
)

V
E

R
E

FO
O

m
od

el
lin

g

F
ig

ur
e

5.
12

:
R

ea
ld

ep
lo

ym
en

t
an

d
it

s
co

rr
es

po
nd

in
g

V
E

R
E

FO
O

re
pr

es
en

ta
ti

on

62

Experiments and demos

Figure 5.13: Experimental demo campaign: TCP results

Figure 5.14: Experimental demo campaign: UDP results

63

Chapter 6

Conclusions

This thesis combined two complementary approaches: VEREFOO, which outputs
optimized and formally verified firewall configuration at design-time and REDIAL,
which performs rule redistribution at runtime to minimize system overload during
unusual traffic pattern such as attacks.

The experiments on the test-bed showed that the integration works in practice.
VEREFOO was able to generate valid iptables configurations and REDIAL reduced
the load on the upstream firewall at runtime. The results show that this integration
improves resilience.

However, there are some limitations: the test-bed hardware is composed of
different components that affect system performance and the attack scenarios
were limited to ICMP flood attacks. In this work, the system operates with
iptables-legacy; but most contemporary Linux platforms also implement nftables
or eBPF.

Future work could evolve in the following ways: the experiments could be
conducted with different attacks and protocols, the integrated VEREFOO-REDIAL
approach could be tested on more homogeneous and powerful hardware, modern
packet filtering frameworks could be used and it could be explored whether to use
REACT-VEREFOO [26], [27] for automated firewall reconfiguration.

In conclusion, this thesis shows that it is possible to join design-time verification
solutions with runtime flexibility in a single holistic system. Security technologists
are no longer forced to choose between assurance and agility: this integration
demonstrates that they can pursue both at once.

64

Appendix A

Appendix

A.1 Central router setup script

1 #!/bin/bash
2

3 user=$(id -u)
4

5 if ["$user" -ne 0]; then
6 echo "Must be root to run this script."
7 exit 1
8 fi
9

10 if [$# -ne 1]; then
11 echo "Usage: setup [create|clear]"
12 exit 1
13 fi
14

15 if ["$1" = "create"]; then
16 echo "[INFO] Starting setup: CREATE"
17

18 echo "[1/10] Creating network namespaces ’fw’ and ’rtr’..."
19 ip netns add fw
20 ip netns add rtr
21

22 echo "[2/10] Creating veth pair ’veth-fw’ <-> ’veth-rtr’..."
23 ip link add veth-fw type veth peer name veth-rtr
24 ip link set veth-fw netns fw
25 ip link set veth-rtr netns rtr
26

27 echo "[3/10] Moving physical interfaces to namespaces..."
28 echo " Moving enp2s0 and enp4s0 to ’fw’..."
29 ip link set enp2s0 netns fw
30 ip link set enp4s0 netns fw
31 ip link set eno2 netns fw
32

33 echo " Moving enp1s0f0 and enp1s0f1 to ’rtr’..."
34 ip link set enp1s0f0 netns rtr
35 ip link set enp1s0f1 netns rtr
36

37 echo "[4/10] Assigning IP addresses to interfaces..."
38 echo " In ’rtr’ namespace:"
39 ip netns exec rtr ip addr add 10.0.2.254/24 dev enp1s0f0
40 ip netns exec rtr ip addr add 10.0.3.254/24 dev enp1s0f1

65

Appendix

41 ip netns exec rtr ip addr add 192.168.100.2/30 dev veth-rtr
42

43 echo " In ’fw’ namespace:"
44 ip netns exec fw ip addr add 9.0.0.254/24 dev enp2s0
45 ip netns exec fw ip addr add 9.0.1.254/24 dev enp4s0
46 ip netns exec fw ip addr add 9.0.2.254/24 dev eno2
47 ip netns exec fw ip addr add 192.168.100.1/30 dev veth-fw
48

49 echo "[5/10] Bringing up interfaces in ’rtr’..."
50 ip netns exec rtr ip link set enp1s0f0 up
51 ip netns exec rtr ip link set enp1s0f1 up
52 ip netns exec rtr ip link set veth-rtr up
53 ip netns exec rtr ip link set lo up
54

55 echo "[6/10] Bringing up interfaces in ’fw’..."
56 ip netns exec fw ip link set enp2s0 up
57 ip netns exec fw ip link set enp4s0 up
58 ip netns exec fw ip link set eno2 up
59 ip netns exec fw ip link set veth-fw up
60 ip netns exec fw ip link set lo up
61

62 echo "[7/10] Enabling IP forwarding..."
63 ip netns exec rtr sysctl -w net.ipv4.ip_forward=1
64 ip netns exec fw sysctl -w net.ipv4.ip_forward=1
65

66 echo "[8/10] Adding routes in ’rtr’ to reach 9.0.0.0/24 and 9.0.1.0/24..."
67 ip netns exec rtr ip route add 9.0.0.0/24 via 192.168.100.1 dev veth-rtr
68 ip netns exec rtr ip route add 9.0.1.0/24 via 192.168.100.1 dev veth-rtr
69 ip netns exec rtr ip route add 9.0.2.0/24 via 192.168.100.1 dev veth-rtr
70

71

72 echo "[9/10] Adding routes in ’fw’ to reach 10.0.2.0/24 and 10.0.3.0/24..."
73 ip netns exec fw ip route add 10.0.2.0/24 via 192.168.100.2 dev veth-fw
74 ip netns exec fw ip route add 10.0.3.0/24 via 192.168.100.2 dev veth-fw
75

76 echo "[10/10] Setup complete."
77 exit 0
78 fi
79

80 if ["$1" = "clear"]; then
81 echo "[INFO] Clearing network namespaces..."
82

83 # Cleanup fw namespace
84 if ip netns list | grep -q fw; then
85 echo "[1/4] Deleting veth-fw from ’fw’..."
86 ip netns exec fw ip link set veth-fw down 2>/dev/null
87 ip netns exec fw ip link delete veth-fw 2>/dev/null
88

89 echo "[2/4] Moving physical interfaces from ’fw’ back to root..."
90 ip netns exec fw ip link set enp2s0 down 2>/dev/null
91 ip netns exec fw ip link set enp4s0 down 2>/dev/null
92 ip netns exec fw ip link set eno2 down 2>/dev/null
93 ip netns exec fw ip link set enp2s0 netns 1 2>/dev/null
94 ip netns exec fw ip link set enp4s0 netns 1 2>/dev/null
95 ip netns exec fw ip link set eno2 netns 1 2>/dev/null
96

97 ip netns del fw
98 else
99 echo "[WARN] Namespace ’fw’ does not exist, skipping..."

100 fi
101

102 # Cleanup rtr namespace
103 if ip netns list | grep -q rtr; then

66

Appendix

104 echo "[3/4] Deleting veth-rtr from ’rtr’..."
105 ip netns exec rtr ip link set veth-rtr down 2>/dev/null
106 ip netns exec rtr ip link delete veth-rtr 2>/dev/null
107

108 echo " Moving physical interfaces from ’rtr’ back to root..."
109 ip netns exec rtr ip link set enp1s0f0 down 2>/dev/null
110 ip netns exec rtr ip link set enp1s0f1 down 2>/dev/null
111 ip netns exec rtr ip link set enp1s0f0 netns 1 2>/dev/null
112 ip netns exec rtr ip link set enp1s0f1 netns 1 2>/dev/null
113

114 ip netns del rtr
115 else
116 echo "[WARN] Namespace ’rtr’ does not exist, skipping..."
117 fi
118

119 echo "[4/4] Cleanup complete. veth interfaces deleted, physical interfaces restored to root
namespace."

120 exit 0
121 fi
122

123 echo "Invalid argument. Use ’create’ or ’clear’."
124 exit 1

Listing A.1: Central-router setup script

A.2 iPerf3 campaigns

Table A.1: Per-second UDP throughput (iPerf3) during a 0-Byte ICMP-payload
flood

Interval [s] Transfer [MB] Bitrate [Mbit/s] Jitter Lost/Total (Loss %)

0.00–1.00 107 MBytes 899 Mbits/s 0.015 ms 0/77726 (0%)
1.00–2.00 107 MBytes 900 Mbits/s 0.014 ms 0/77695 (0%)
2.00–3.00 107 MBytes 900 Mbits/s 0.014 ms 0/77690 (0%)
3.00–4.00 107 MBytes 900 Mbits/s 0.011 ms 0/77697 (0%)
4.00–5.00 107 MBytes 900 Mbits/s 0.014 ms 0/77690 (0%)
5.00–6.00 107 MBytes 900 Mbits/s 0.016 ms 0/77629 (0%)
6.00–7.00 107 MBytes 900 Mbits/s 0.013 ms 0/77755 (0%)
7.00–8.00 107 MBytes 900 Mbits/s 0.016 ms 0/77697 (0%)
8.00–9.00 107 MBytes 900 Mbits/s 0.015 ms 0/77692 (0%)

9.00–10.00 107 MBytes 900 Mbits/s 0.016 ms 0/77627 (0%)
10.00–11.00 107 MBytes 900 Mbits/s 0.016 ms 0/77760 (0%)
11.00–12.00 107 MBytes 900 Mbits/s 0.013 ms 0/77692 (0%)
12.00–13.00 107 MBytes 900 Mbits/s 0.015 ms 0/77697 (0%)

Continued on next page

67

Appendix

Interval [s] Transfer [MB] Bitrate [Mbit/s] Jitter Lost/Total (Loss %)

13.00–14.00 107 MBytes 900 Mbits/s 0.015 ms 0/77692 (0%)
14.00–15.00 107 MBytes 900 Mbits/s 0.015 ms 0/77690 (0%)
15.00–16.00 107 MBytes 900 Mbits/s 0.015 ms 0/77695 (0%)
16.00–17.00 107 MBytes 900 Mbits/s 0.015 ms 0/77628 (0%)
17.00–18.00 107 MBytes 896 Mbits/s 0.013 ms 114/77511 (0.15%)
18.00–19.00 107 MBytes 900 Mbits/s 0.013 ms 0/77694 (0%)
19.00–20.00 107 MBytes 900 Mbits/s 0.013 ms 0/77698 (0%)
20.00–21.00 107 MBytes 900 Mbits/s 0.014 ms 0/77720 (0%)
21.00–22.00 107 MBytes 900 Mbits/s 0.014 ms 0/77696 (0%)
22.00–23.00 107 MBytes 900 Mbits/s 0.014 ms 0/77685 (0%)
23.00–24.00 107 MBytes 900 Mbits/s 0.016 ms 0/77701 (0%)
24.00–25.00 107 MBytes 900 Mbits/s 0.016 ms 0/77680 (0%)
25.00–26.00 107 MBytes 900 Mbits/s 0.021 ms 0/77701 (0%)
26.00–27.00 107 MBytes 900 Mbits/s 0.015 ms 0/77700 (0%)
27.00–28.00 107 MBytes 901 Mbits/s 0.017 ms 0/77804 (0%)
28.00–29.00 107 MBytes 900 Mbits/s 0.017 ms 0/77692 (0%)
29.00–30.00 107 MBytes 898 Mbits/s 0.018 ms 147/77694 (0.19%)
30.00–31.00 104 MBytes 871 Mbits/s 0.017 ms 2496/77693 (3.2%)
31.00–32.00 107 MBytes 900 Mbits/s 0.016 ms 0/77628 (0%)
32.00–33.00 104 MBytes 869 Mbits/s 0.018 ms 2639/77758 (3.4%)
33.00–34.00 107 MBytes 900 Mbits/s 0.019 ms 0/77695 (0%)
34.00–35.00 107 MBytes 900 Mbits/s 0.019 ms 0/77693 (0%)
35.00–36.00 107 MBytes 898 Mbits/s 0.018 ms 155/77694 (0.2%)
36.00–37.00 107 MBytes 897 Mbits/s 0.018 ms 275/77627 (0.35%)
37.00–38.00 107 MBytes 896 Mbits/s 0.017 ms 305/77759 (0.39%)
38.00–39.00 106 MBytes 886 Mbits/s 0.016 ms 1221/77691 (1.6%)
39.00–40.00 107 MBytes 900 Mbits/s 0.017 ms 0/77695 (0%)
40.00–41.00 107 MBytes 900 Mbits/s 0.016 ms 0/77693 (0%)
41.00–42.00 107 MBytes 900 Mbits/s 0.016 ms 0/77628 (0%)
42.00–43.00 107 MBytes 899 Mbits/s 0.014 ms 62/77760 (0.08%)
43.00–44.00 107 MBytes 900 Mbits/s 0.013 ms 0/77687 (0%)
44.00–45.00 107 MBytes 900 Mbits/s 0.016 ms 0/77633 (0%)
45.00–46.00 107 MBytes 900 Mbits/s 0.015 ms 0/77759 (0%)
46.00–47.00 107 MBytes 897 Mbits/s 0.017 ms 289/77694 (0.37%)

Continued on next page

68

Appendix

Interval [s] Transfer [MB] Bitrate [Mbit/s] Jitter Lost/Total (Loss %)

47.00–48.00 107 MBytes 901 Mbits/s 0.017 ms 0/77797 (0%)
48.00–49.00 107 MBytes 900 Mbits/s 0.017 ms 0/77693 (0%)
49.00–50.00 107 MBytes 900 Mbits/s 0.013 ms 0/77629 (0%)
50.00–51.00 107 MBytes 900 Mbits/s 0.017 ms 0/77758 (0%)
51.00–52.00 107 MBytes 900 Mbits/s 0.020 ms 0/77693 (0%)
52.00–53.00 107 MBytes 900 Mbits/s 0.015 ms 0/77694 (0%)
53.00–54.00 107 MBytes 900 Mbits/s 0.015 ms 0/77690 (0%)
54.00–55.00 107 MBytes 900 Mbits/s 0.016 ms 0/77698 (0%)
55.00–56.00 107 MBytes 900 Mbits/s 0.013 ms 0/77694 (0%)
56.00–57.00 107 MBytes 900 Mbits/s 0.015 ms 0/77692 (0%)
57.00–58.00 107 MBytes 900 Mbits/s 0.014 ms 0/77694 (0%)
58.00–59.00 107 MBytes 900 Mbits/s 0.015 ms 0/77694 (0%)
59.00–60.00 107 MBytes 900 Mbits/s 0.014 ms 0/77690 (0%)
60.00–60.00 65.0 KBytes 606 Mbits/s 0.016 ms 0/46 (0%)

Table A.2: Per-second TCP throughput (iPerf3) during a 0-Byte ICMP-payload
flood

Interval [s] Transfer [MB] Bitrate [Mbit/s] Retr Cwnd [KB]

0.00–1.00 113 949 13 373
1.00–2.00 112 937 2 373
2.00–3.00 112 935 5 373
3.00–4.00 112 937 3 373
4.00–5.00 112 938 3 373
5.00–6.00 111 934 0 373
6.00–7.00 112 938 0 373
7.00–8.00 111 932 0 373
8.00–9.00 112 940 0 373

9.00–10.00 112 940 0 431
10.00–11.00 111 934 0 431
11.00–12.00 111 934 0 431
12.00–13.00 112 943 0 431
13.00–14.00 111 934 0 431
14.00–15.00 112 935 0 431

Continued on next page

69

Appendix

Interval [s] Transfer [MB] Bitrate [Mbit/s] Retr Cwnd [KB]

15.00–16.00 112 936 0 431
16.00–17.00 37.9 318 989 2.83
17.00–18.00 0.00 0.00 13 1.41
18.00–19.00 0.00 0.00 1 1.41
19.00–20.00 0.00 0.00 0 1.41
20.00–21.00 0.00 0.00 1 1.41
21.00–22.00 0.00 0.00 0 1.41
22.00–23.00 0.00 0.00 0 1.41
23.00–24.00 0.00 0.00 2 12.7
24.00–25.00 12.4 104 40 72.1
25.00–26.00 15.1 127 36 72.1
26.00–27.00 16.4 137 46 73.5
27.00–28.00 15.1 127 45 72.1
28.00–29.00 15.0 126 64 52.3
29.00–30.00 16.8 141 40 82.0
30.00–31.00 13.6 114 41 72.1
31.00–32.00 15.1 127 45 60.8
32.00–33.00 15.0 126 47 73.5
33.00–34.00 15.1 127 55 69.3
34.00–35.00 15.1 127 54 82.0
35.00–36.00 15.1 127 66 41.0
36.00–37.00 15.0 126 16 73.5
37.00–38.00 13.8 115 56 66.5
38.00–39.00 13.6 114 44 45.2
39.00–40.00 12.4 104 45 52.3
40.00–41.00 13.6 114 58 49.5
41.00–42.00 12.2 103 66 72.1
42.00–43.00 12.4 104 59 52.3
43.00–44.00 12.4 104 50 69.3
44.00–45.00 12.4 104 65 41.0
45.00–46.00 13.6 114 54 48.1
46.00–47.00 41.2 346 60 235
47.00–48.00 112 940 0 369
48.00–49.00 112 940 0 370

Continued on next page

70

Appendix

Interval [s] Transfer [MB] Bitrate [Mbit/s] Retr Cwnd [KB]

49.00–50.00 112 940 0 370
50.00–51.00 112 937 0 372
51.00–52.00 111 929 0 372
52.00–53.00 112 938 0 397
53.00–54.00 111 933 0 406
54.00–55.00 112 940 0 406
55.00–56.00 112 941 0 406
56.00–57.00 111 930 0 406
57.00–58.00 112 940 0 406
58.00–59.00 112 942 0 406
59.00–60.00 111 929 0 406

Table A.3: Per-second UDP throughput (iPerf3) during a 1400-Byte ICMP-payload
flood

Interval [s] Transfer [MB] Bitrate [Mbit/s] Jitter Lost/Total (Loss %)

0.00–1.00 107 MBytes 900 Mbits/s 0.015 ms 0/77732 (0%)
1.00–2.00 107 MBytes 900 Mbits/s 0.016 ms 0/77694 (0%)
2.00–3.00 107 MBytes 900 Mbits/s 0.016 ms 0/77697 (0%)
3.00–4.00 107 MBytes 900 Mbits/s 0.013 ms 0/77692 (0%)
4.00–5.00 107 MBytes 900 Mbits/s 0.015 ms 0/77691 (0%)
5.00–6.00 107 MBytes 900 Mbits/s 0.016 ms 0/77691 (0%)
6.00–7.00 107 MBytes 900 Mbits/s 0.014 ms 0/77695 (0%)
7.00–8.00 107 MBytes 900 Mbits/s 0.014 ms 0/77698 (0%)
8.00–9.00 107 MBytes 900 Mbits/s 0.015 ms 0/77689 (0%)

9.00–10.00 107 MBytes 900 Mbits/s 0.015 ms 0/77694 (0%)
10.00–11.00 107 MBytes 900 Mbits/s 0.015 ms 0/77694 (0%)
11.00–12.00 107 MBytes 900 Mbits/s 0.015 ms 0/77696 (0%)
12.00–13.00 107 MBytes 900 Mbits/s 0.014 ms 0/77691 (0%)
13.00–14.00 107 MBytes 900 Mbits/s 0.014 ms 0/77694 (0%)
14.00–15.00 107 MBytes 900 Mbits/s 0.016 ms 0/77693 (0%)
15.00–16.00 107 MBytes 900 Mbits/s 0.014 ms 0/77694 (0%)
16.00–17.00 75.8 MBytes 636 Mbits/s 0.032 ms 12427/67334 (18%)
17.00–18.00 57.9 MBytes 486 Mbits/s 0.070 ms 35798/77747 (46%)

Continued on next page

71

Appendix

Interval [s] Transfer [MB] Bitrate [Mbit/s] Jitter Lost/Total (Loss %)

18.00–19.00 57.9 MBytes 486 Mbits/s 0.047 ms 35733/77684 (46%)
19.00–20.00 57.9 MBytes 486 Mbits/s 0.025 ms 35729/77682 (46%)
20.00–21.00 57.9 MBytes 486 Mbits/s 0.025 ms 35726/77673 (46%)
21.00–22.00 57.9 MBytes 486 Mbits/s 0.023 ms 35731/77676 (46%)
22.00–23.00 57.9 MBytes 486 Mbits/s 0.022 ms 35731/77682 (46%)
23.00–24.00 57.9 MBytes 486 Mbits/s 0.042 ms 35794/77744 (46%)
24.00–25.00 57.9 MBytes 486 Mbits/s 0.026 ms 35732/77679 (46%)
25.00–26.00 57.9 MBytes 486 Mbits/s 0.022 ms 35731/77680 (46%)
26.00–27.00 57.9 MBytes 486 Mbits/s 0.021 ms 35732/77679 (46%)
27.00–28.00 57.9 MBytes 486 Mbits/s 0.027 ms 35788/77737 (46%)
28.00–29.00 57.9 MBytes 486 Mbits/s 0.031 ms 35744/77690 (46%)
29.00–30.00 57.9 MBytes 486 Mbits/s 0.033 ms 35754/77703 (46%)
30.00–31.00 57.9 MBytes 486 Mbits/s 0.024 ms 35699/77646 (46%)
31.00–32.00 57.9 MBytes 486 Mbits/s 0.022 ms 35762/77713 (46%)
32.00–33.00 57.9 MBytes 486 Mbits/s 0.025 ms 35752/77699 (46%)
33.00–34.00 57.9 MBytes 486 Mbits/s 0.023 ms 35738/77687 (46%)
34.00–35.00 57.9 MBytes 486 Mbits/s 0.035 ms 35776/77726 (46%)
35.00–36.00 57.9 MBytes 486 Mbits/s 0.073 ms 35751/77698 (46%)
36.00–37.00 57.9 MBytes 486 Mbits/s 0.024 ms 35712/77663 (46%)
37.00–38.00 57.9 MBytes 486 Mbits/s 0.026 ms 35736/77683 (46%)
38.00–39.00 57.9 MBytes 486 Mbits/s 0.022 ms 35759/77703 (46%)
39.00–40.00 57.9 MBytes 486 Mbits/s 0.033 ms 35764/77711 (46%)
40.00–41.00 57.9 MBytes 486 Mbits/s 0.026 ms 35716/77663 (46%)
41.00–42.00 57.9 MBytes 486 Mbits/s 0.024 ms 35726/77672 (46%)
42.00–43.00 57.9 MBytes 486 Mbits/s 0.030 ms 35788/77735 (46%)
43.00–44.00 57.9 MBytes 486 Mbits/s 0.024 ms 35715/77661 (46%)
44.00–45.00 57.9 MBytes 486 Mbits/s 0.033 ms 35789/77733 (46%)
45.00–46.00 63.5 MBytes 533 Mbits/s 0.014 ms 33183/79186 (42%)
46.00–47.00 112 MBytes 937 Mbits/s 0.017 ms 5666/86528 (6.5%)
47.00–48.00 107 MBytes 900 Mbits/s 0.013 ms 0/77696 (0%)
48.00–49.00 107 MBytes 900 Mbits/s 0.015 ms 0/77692 (0%)
49.00–50.00 107 MBytes 900 Mbits/s 0.019 ms 0/77690 (0%)
50.00–51.00 107 MBytes 900 Mbits/s 0.013 ms 0/77695 (0%)
51.00–52.00 107 MBytes 900 Mbits/s 0.013 ms 0/77692 (0%)

Continued on next page

72

Appendix

Interval [s] Transfer [MB] Bitrate [Mbit/s] Jitter Lost/Total (Loss %)

52.00–53.00 107 MBytes 900 Mbits/s 0.013 ms 0/77696 (0%)
53.00–54.00 107 MBytes 900 Mbits/s 0.012 ms 0/77693 (0%)
54.00–55.00 107 MBytes 900 Mbits/s 0.014 ms 0/77695 (0%)
55.00–56.00 107 MBytes 900 Mbits/s 0.014 ms 0/77691 (0%)
56.00–57.00 107 MBytes 900 Mbits/s 0.016 ms 0/77695 (0%)
57.00–58.00 107 MBytes 900 Mbits/s 0.014 ms 0/77697 (0%)
58.00–59.00 107 MBytes 900 Mbits/s 0.014 ms 0/77688 (0%)
59.00–60.00 107 MBytes 900 Mbits/s 0.018 ms 0/77696 (0%)
60.00–60.00 45.2 KBytes 510 Mbits/s 0.014 ms 0/32 (0%)

Table A.4: Per-second TCP throughput (iPerf3) during a 1400-Byte ICMP-payload
flood

Interval [s] Transfer [MB] Bitrate [Mbit/s] Retr Cwnd [KB]

0.00–1.00 114 951 8 382
1.00–2.00 112 938 0 387
2.00–3.00 112 935 3 387
3.00–4.00 112 935 3 387
4.00–5.00 112 935 0 387
5.00–6.00 112 935 0 387
6.00–7.00 112 935 0 387
7.00–8.00 112 942 0 387
8.00–9.00 112 935 0 387

9.00–10.00 112 935 0 387
10.00–11.00 111 934 0 387
11.00–12.00 112 935 0 387
12.00–13.00 112 936 0 387
13.00–14.00 112 940 1 407
14.00–15.00 111 934 0 407
15.00–16.00 112 937 0 407
16.00–17.00 102 856 707 331
17.00–18.00 80.5 675 567 304

Continued on next page

73

Appendix

Interval [s] Transfer [MB] Bitrate [Mbit/s] Retr Cwnd [KB]

18.00–19.00 82.6 693 550 317
19.00–20.00 86.0 721 763 324
20.00–21.00 85.5 717 992 324
21.00–22.00 81.6 685 1349 325
22.00–23.00 84.0 705 258 303
23.00–24.00 84.5 709 468 230
24.00–25.00 84.2 707 820 310
25.00–26.00 84.5 709 606 317
26.00–27.00 85.8 719 907 226
27.00–28.00 85.6 718 921 324
28.00–29.00 84.1 706 324 313
29.00–30.00 84.5 709 852 313
30.00–31.00 83.5 700 663 283
31.00–32.00 84.4 708 501 308
32.00–33.00 84.6 710 677 321
33.00–34.00 85.2 715 1257 321
34.00–35.00 85.0 713 988 321
35.00–36.00 85.9 720 658 321
36.00–37.00 83.5 700 990 263
37.00–38.00 83.9 704 270 293
38.00–39.00 84.9 712 387 310
39.00–40.00 84.2 707 857 226
40.00–41.00 85.4 716 1257 331
41.00–42.00 82.9 695 1230 339
42.00–43.00 84.5 709 1767 339
43.00–44.00 82.0 688 868 301
44.00–45.00 82.9 695 838 320
45.00–46.00 82.2 690 882 262
46.00–47.00 99.0 830 53 437
47.00–48.00 112 937 0 469
48.00–49.00 112 938 0 475
49.00–50.00 112 941 0 475

Continued on next page

74

Appendix

Interval [s] Transfer [MB] Bitrate [Mbit/s] Retr Cwnd [KB]

50.00–51.00 111 931 0 505
51.00–52.00 112 936 0 509
52.00–53.00 112 936 0 518
53.00–54.00 112 940 0 518
54.00–55.00 112 940 0 518
55.00–56.00 111 930 0 518
56.00–57.00 112 940 0 518
57.00–58.00 112 940 0 518
58.00–59.00 111 930 0 518
59.00–60.00 112 939 0 518

A.3 VEREFOO input/output and translation in
iptables rules

1 <?xml version="1.0" encoding="UTF-8"?>
2 <NFV
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../../xsd/

nfvSchema.xsd">
4 <graphs>
5 <graph id="0">
6 <!-- APs -->
7 <node id="1" name="100.0.0.1">
8 <!-- AP1 -->
9 <neighbour name="10.0.3.254" />

10 <neighbour name="9.0.0.1" />
11 <neighbour name="9.0.1.1" />
12 <neighbour name="9.0.2.1" />
13 </node>
14 <node id="2" name="100.0.0.2">
15 <!-- AP2 -->
16 <neighbour name="10.0.3.254" />
17 <neighbour name="10.0.3.11" />
18 </node>
19 <node id="3" name="100.0.0.3">
20 <!-- AP3 -->
21 <neighbour name="10.0.3.254" />
22 <neighbour name="10.0.3.21" />
23 </node>
24 <!-- FORWARDERs -->
25 <node id="4" functional_type="FORWARDER" name="10.0.3.254">
26 <neighbour name="100.0.0.1" />
27 <neighbour name="100.0.0.2" />
28 <neighbour name="100.0.0.3" />
29 <neighbour name="10.0.3.3" />
30 </node>
31 <!-- WEBCLIENTs -->
32 <node id="5" functional_type="WEBCLIENT" name="10.0.3.11">
33 <neighbour name="100.0.0.2" />

75

Appendix

34 </node>
35 <node id="6" functional_type="WEBCLIENT" name="10.0.3.21">
36 <neighbour name="100.0.0.3" />
37 </node>
38 <node id="7" functional_type="WEBCLIENT" name="10.0.3.3">
39 <neighbour name="10.0.3.254" />
40 </node>
41 <node id="8" functional_type="WEBCLIENT" name="9.0.0.1">
42 <neighbour name="100.0.0.1" />
43 </node>
44 <node id="9" functional_type="WEBCLIENT" name="9.0.1.1">
45 <neighbour name="100.0.0.1" />
46 </node>
47 <node id="10" functional_type="WEBCLIENT" name="9.0.2.1">
48 <neighbour name="100.0.0.1" />
49 </node>
50 </graph>
51 </graphs>
52 <Constraints>
53 <NodeConstraints />
54 <LinkConstraints />
55 </Constraints>
56 <PropertyDefinition>
57 <!-- rules for avoiding a pass-through in the upstream firewall -->
58 <Property graph="0" name="IsolationProperty" src="9.0.-1.-1" dst="10.0.3.3" lv4proto="TCP"

dst_port="0-79" />
59 <Property graph="0" name="IsolationProperty" src="9.0.-1.-1" dst="10.0.3.11" lv4proto="TCP"

dst_port="0-21" />
60 <Property graph="0" name="IsolationProperty" src="9.0.-1.-1" dst="10.0.3.21" lv4proto="TCP"

dst_port="0-21" />
61 <!-- 10.0.3.11 -->
62 <Property graph="0" name="ReachabilityProperty" src="9.0.-1.-1" dst="10.0.3.-1" lv4proto="TCP"

dst_port="80" />
63 <Property graph="0" name="ReachabilityProperty" src="9.0.-1.-1" dst="10.0.3.-1" lv4proto="TCP"

dst_port="443" />
64 <Property graph="0" name="ReachabilityProperty" src="9.0.-1.-1" dst="10.0.3.11" lv4proto="TCP"

dst_port="22" />
65 <Property graph="0" name="ReachabilityProperty" src="9.0.-1.-1" dst="10.0.3.11" lv4proto="TCP"

dst_port="5432" />
66 <!-- 10.0.3.21 -->
67 <Property graph="0" name="ReachabilityProperty" src="9.0.-1.-1" dst="10.0.3.21" lv4proto="TCP"

dst_port="22" />
68 <Property graph="0" name="ReachabilityProperty" src="9.0.-1.-1" dst="10.0.3.21" lv4proto="TCP"

dst_port="5432" />
69 <!-- 10.0.3.3 -->
70 <Property graph="0" name="IsolationProperty" src="9.0.-1.-1" dst="10.0.3.3" lv4proto="TCP"

dst_port="5432" />
71 <!-- custom script -->
72 <Property graph="0" name="ReachabilityProperty" src="9.0.-1.-1" dst="10.0.3.-1" lv4proto="TCP"

dst_port="5301" />
73 <Property graph="0" name="ReachabilityProperty" src="9.0.-1.-1" dst="10.0.3.-1" lv4proto="UDP"

dst_port="5301" />
74 <!-- Block ICMP -->
75 <Property graph="0" name="IsolationProperty" src="9.0.-1.-1" dst="10.0.3.-1" lv4proto="OTHER"

/>
76 </PropertyDefinition>
77 </NFV>

Listing A.2: XML provided as input to VEREFOO

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <NFV xsi:noNamespaceSchemaLocation="./xsd/nfvSchema.xsd"
3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

76

Appendix

4 <graphs>
5 <graph id="0">
6 <node id="1" name="100.0.0.1" functional_type="FIREWALL">
7 <neighbour name="10.0.3.254"/>
8 <neighbour name="9.0.0.1"/>
9 <neighbour name="9.0.1.1"/>

10 <neighbour name="9.0.2.1"/>
11 <configuration name="AutoConf">
12 <firewall defaultAction="DENY">
13 <elements>
14 <source>9.0.0.1</source>
15 <destination>10.0.3.21</destination>
16 <protocol>TCP</protocol>
17 <src_port>0-65535</src_port>
18 <dst_port>5301</dst_port>
19 </elements>
20 <elements>
21 <source>9.0.0.1</source>
22 <destination>10.0.3.21</destination>
23 <protocol>TCP</protocol>
24 <src_port>0-65535</src_port>
25 <dst_port>443</dst_port>
26 </elements>
27 <elements>
28 <source>9.0.0.1</source>
29 <destination>10.0.3.21</destination>
30 <protocol>TCP</protocol>
31 <src_port>0-65535</src_port>
32 <dst_port>80</dst_port>
33 </elements>
34 <elements>
35 <source>9.0.2.1</source>
36 <destination>10.0.3.11</destination>
37 <protocol>TCP</protocol>
38 <src_port>0-65535</src_port>
39 <dst_port>80</dst_port>
40 </elements>
41 <elements>
42 <source>9.0.1.1</source>
43 <destination>10.0.3.21</destination>
44 <protocol>TCP</protocol>
45 <src_port>0-65535</src_port>
46 <dst_port>5301</dst_port>
47 </elements>
48 <elements>
49 <source>9.0.1.1</source>
50 <destination>10.0.3.11</destination>
51 <protocol>TCP</protocol>
52 <src_port>0-65535</src_port>
53 <dst_port>5301</dst_port>
54 </elements>
55 <elements>
56 <source>9.0.0.1</source>
57 <destination>10.0.3.21</destination>
58 <protocol>TCP</protocol>
59 <src_port>0-65535</src_port>
60 <dst_port>22</dst_port>
61 </elements>
62 <elements>
63 <source>9.0.2.1</source>
64 <destination>10.0.3.3</destination>
65 <protocol>UDP</protocol>
66 <src_port>0-65535</src_port>

77

Appendix

67 <dst_port>5301</dst_port>
68 </elements>
69 <elements>
70 <source>9.0.0.1</source>
71 <destination>10.0.3.3</destination>
72 <protocol>UDP</protocol>
73 <src_port>0-65535</src_port>
74 <dst_port>5301</dst_port>
75 </elements>
76 <elements>
77 <source>9.0.2.1</source>
78 <destination>10.0.3.3</destination>
79 <protocol>TCP</protocol>
80 <src_port>0-65535</src_port>
81 <dst_port>5301</dst_port>
82 </elements>
83 <elements>
84 <source>9.0.1.1</source>
85 <destination>10.0.3.21</destination>
86 <protocol>UDP</protocol>
87 <src_port>0-65535</src_port>
88 <dst_port>5301</dst_port>
89 </elements>
90 <elements>
91 <source>9.0.1.1</source>
92 <destination>10.0.3.3</destination>
93 <protocol>TCP</protocol>
94 <src_port>0-65535</src_port>
95 <dst_port>80</dst_port>
96 </elements>
97 <elements>
98 <source>9.0.2.1</source>
99 <destination>10.0.3.11</destination>

100 <protocol>TCP</protocol>
101 <src_port>0-65535</src_port>
102 <dst_port>22</dst_port>
103 </elements>
104 <elements>
105 <source>9.0.0.1</source>
106 <destination>10.0.3.11</destination>
107 <protocol>TCP</protocol>
108 <src_port>0-65535</src_port>
109 <dst_port>5432</dst_port>
110 </elements>
111 <elements>
112 <source>9.0.0.1</source>
113 <destination>10.0.3.11</destination>
114 <protocol>TCP</protocol>
115 <src_port>0-65535</src_port>
116 <dst_port>80</dst_port>
117 </elements>
118 <elements>
119 <source>9.0.2.1</source>
120 <destination>10.0.3.21</destination>
121 <protocol>TCP</protocol>
122 <src_port>0-65535</src_port>
123 <dst_port>80</dst_port>
124 </elements>
125 <elements>
126 <source>9.0.2.1</source>
127 <destination>10.0.3.3</destination>
128 <protocol>TCP</protocol>
129 <src_port>0-65535</src_port>

78

Appendix

130 <dst_port>80</dst_port>
131 </elements>
132 <elements>
133 <source>9.0.1.1</source>
134 <destination>10.0.3.11</destination>
135 <protocol>TCP</protocol>
136 <src_port>0-65535</src_port>
137 <dst_port>80</dst_port>
138 </elements>
139 <elements>
140 <source>9.0.0.1</source>
141 <destination>10.0.3.3</destination>
142 <protocol>TCP</protocol>
143 <src_port>0-65535</src_port>
144 <dst_port>5301</dst_port>
145 </elements>
146 <elements>
147 <source>9.0.1.1</source>
148 <destination>10.0.3.3</destination>
149 <protocol>TCP</protocol>
150 <src_port>0-65535</src_port>
151 <dst_port>5301</dst_port>
152 </elements>
153 <elements>
154 <source>9.0.1.1</source>
155 <destination>10.0.3.11</destination>
156 <protocol>TCP</protocol>
157 <src_port>0-65535</src_port>
158 <dst_port>5432</dst_port>
159 </elements>
160 <elements>
161 <source>9.0.2.1</source>
162 <destination>10.0.3.21</destination>
163 <protocol>TCP</protocol>
164 <src_port>0-65535</src_port>
165 <dst_port>22</dst_port>
166 </elements>
167 <elements>
168 <source>9.0.0.1</source>
169 <destination>10.0.3.3</destination>
170 <protocol>TCP</protocol>
171 <src_port>0-65535</src_port>
172 <dst_port>443</dst_port>
173 </elements>
174 <elements>
175 <source>9.0.1.1</source>
176 <destination>10.0.3.21</destination>
177 <protocol>TCP</protocol>
178 <src_port>0-65535</src_port>
179 <dst_port>5432</dst_port>
180 </elements>
181 <elements>
182 <source>9.0.2.1</source>
183 <destination>10.0.3.21</destination>
184 <protocol>UDP</protocol>
185 <src_port>0-65535</src_port>
186 <dst_port>5301</dst_port>
187 </elements>
188 <elements>
189 <source>9.0.1.1</source>
190 <destination>10.0.3.21</destination>
191 <protocol>TCP</protocol>
192 <src_port>0-65535</src_port>

79

Appendix

193 <dst_port>443</dst_port>
194 </elements>
195 <elements>
196 <source>9.0.1.1</source>
197 <destination>10.0.3.11</destination>
198 <protocol>TCP</protocol>
199 <src_port>0-65535</src_port>
200 <dst_port>443</dst_port>
201 </elements>
202 <elements>
203 <source>9.0.0.1</source>
204 <destination>10.0.3.11</destination>
205 <protocol>TCP</protocol>
206 <src_port>0-65535</src_port>
207 <dst_port>5301</dst_port>
208 </elements>
209 <elements>
210 <source>9.0.2.1</source>
211 <destination>10.0.3.21</destination>
212 <protocol>TCP</protocol>
213 <src_port>0-65535</src_port>
214 <dst_port>5301</dst_port>
215 </elements>
216 <elements>
217 <source>9.0.0.1</source>
218 <destination>10.0.3.11</destination>
219 <protocol>TCP</protocol>
220 <src_port>0-65535</src_port>
221 <dst_port>443</dst_port>
222 </elements>
223 <elements>
224 <source>9.0.1.1</source>
225 <destination>10.0.3.3</destination>
226 <protocol>UDP</protocol>
227 <src_port>0-65535</src_port>
228 <dst_port>5301</dst_port>
229 </elements>
230 <elements>
231 <source>9.0.2.1</source>
232 <destination>10.0.3.11</destination>
233 <protocol>TCP</protocol>
234 <src_port>0-65535</src_port>
235 <dst_port>5432</dst_port>
236 </elements>
237 <elements>
238 <source>9.0.2.1</source>
239 <destination>10.0.3.3</destination>
240 <protocol>TCP</protocol>
241 <src_port>0-65535</src_port>
242 <dst_port>443</dst_port>
243 </elements>
244 <elements>
245 <source>9.0.2.1</source>
246 <destination>10.0.3.21</destination>
247 <protocol>TCP</protocol>
248 <src_port>0-65535</src_port>
249 <dst_port>5432</dst_port>
250 </elements>
251 <elements>
252 <source>9.0.0.1</source>
253 <destination>10.0.3.3</destination>
254 <protocol>TCP</protocol>
255 <src_port>0-65535</src_port>

80

Appendix

256 <dst_port>80</dst_port>
257 </elements>
258 <elements>
259 <source>9.0.0.1</source>
260 <destination>10.0.3.11</destination>
261 <protocol>UDP</protocol>
262 <src_port>0-65535</src_port>
263 <dst_port>5301</dst_port>
264 </elements>
265 <elements>
266 <source>9.0.1.1</source>
267 <destination>10.0.3.21</destination>
268 <protocol>TCP</protocol>
269 <src_port>0-65535</src_port>
270 <dst_port>80</dst_port>
271 </elements>
272 <elements>
273 <source>9.0.2.1</source>
274 <destination>10.0.3.11</destination>
275 <protocol>TCP</protocol>
276 <src_port>0-65535</src_port>
277 <dst_port>5301</dst_port>
278 </elements>
279 <elements>
280 <source>9.0.1.1</source>
281 <destination>10.0.3.11</destination>
282 <protocol>TCP</protocol>
283 <src_port>0-65535</src_port>
284 <dst_port>22</dst_port>
285 </elements>
286 <elements>
287 <source>9.0.1.1</source>
288 <destination>10.0.3.21</destination>
289 <protocol>TCP</protocol>
290 <src_port>0-65535</src_port>
291 <dst_port>22</dst_port>
292 </elements>
293 <elements>
294 <source>9.0.2.1</source>
295 <destination>10.0.3.11</destination>
296 <protocol>UDP</protocol>
297 <src_port>0-65535</src_port>
298 <dst_port>5301</dst_port>
299 </elements>
300 <elements>
301 <source>9.0.0.1</source>
302 <destination>10.0.3.11</destination>
303 <protocol>TCP</protocol>
304 <src_port>0-65535</src_port>
305 <dst_port>22</dst_port>
306 </elements>
307 <elements>
308 <source>9.0.1.1</source>
309 <destination>10.0.3.3</destination>
310 <protocol>TCP</protocol>
311 <src_port>0-65535</src_port>
312 <dst_port>443</dst_port>
313 </elements>
314 <elements>
315 <source>9.0.2.1</source>
316 <destination>10.0.3.21</destination>
317 <protocol>TCP</protocol>
318 <src_port>0-65535</src_port>

81

Appendix

319 <dst_port>443</dst_port>
320 </elements>
321 <elements>
322 <source>9.0.2.1</source>
323 <destination>10.0.3.11</destination>
324 <protocol>TCP</protocol>
325 <src_port>0-65535</src_port>
326 <dst_port>443</dst_port>
327 </elements>
328 <elements>
329 <source>9.0.1.1</source>
330 <destination>10.0.3.11</destination>
331 <protocol>UDP</protocol>
332 <src_port>0-65535</src_port>
333 <dst_port>5301</dst_port>
334 </elements>
335 <elements>
336 <source>9.0.0.1</source>
337 <destination>10.0.3.21</destination>
338 <protocol>UDP</protocol>
339 <src_port>0-65535</src_port>
340 <dst_port>5301</dst_port>
341 </elements>
342 <elements>
343 <source>9.0.0.1</source>
344 <destination>10.0.3.21</destination>
345 <protocol>TCP</protocol>
346 <src_port>0-65535</src_port>
347 <dst_port>5432</dst_port>
348 </elements>
349 </firewall>
350 </configuration>
351 </node>
352 <node id="2" name="100.0.0.2" functional_type="FORWARDER">
353 <neighbour name="10.0.3.254"/>
354 <neighbour name="10.0.3.11"/>
355 <configuration name="ForwardConf">
356 <forwarder>
357 <name>Forwarder</name>
358 </forwarder>
359 </configuration>
360 </node>
361 <node id="3" name="100.0.0.3" functional_type="FORWARDER">
362 <neighbour name="10.0.3.254"/>
363 <neighbour name="10.0.3.21"/>
364 <configuration name="ForwardConf">
365 <forwarder>
366 <name>Forwarder</name>
367 </forwarder>
368 </configuration>
369 </node>
370 <node id="4" name="10.0.3.254" functional_type="FORWARDER">
371 <neighbour name="100.0.0.1"/>
372 <neighbour name="100.0.0.2"/>
373 <neighbour name="100.0.0.3"/>
374 <neighbour name="10.0.3.3"/>
375 </node>
376 <node id="5" name="10.0.3.11" functional_type="WEBCLIENT">
377 <neighbour name="100.0.0.2"/>
378 </node>
379 <node id="6" name="10.0.3.21" functional_type="WEBCLIENT">
380 <neighbour name="100.0.0.3"/>
381 </node>

82

Appendix

382 <node id="7" name="10.0.3.3" functional_type="WEBCLIENT">
383 <neighbour name="10.0.3.254"/>
384 </node>
385 <node id="8" name="9.0.0.1" functional_type="WEBCLIENT">
386 <neighbour name="100.0.0.1"/>
387 </node>
388 <node id="9" name="9.0.1.1" functional_type="WEBCLIENT">
389 <neighbour name="100.0.0.1"/>
390 </node>
391 <node id="10" name="9.0.2.1" functional_type="WEBCLIENT">
392 <neighbour name="100.0.0.1"/>
393 </node>
394 </graph>
395 </graphs>
396 <Constraints>
397 <NodeConstraints/>
398 <LinkConstraints/>
399 </Constraints>
400 <PropertyDefinition>
401 ...
402 </PropertyDefinition>
403

404 </NFV>

Listing A.3: XML result produced by VEREFOO

1 #!/bin/sh
2 cmd="sudo ip netns exec fw iptables"
3 ${cmd} -F
4 ${cmd} -P INPUT DROP
5 ${cmd} -P FORWARD DROP
6 ${cmd} -P OUTPUT DROP
7 ${cmd} -A FORWARD -p tcp -s 9.0.0.1/32 -d 10.0.3.21/32 --sport 0:65535 --dport 5301 -j ACCEPT
8 ${cmd} -A FORWARD -p tcp -s 10.0.3.21/32 -d 9.0.0.1/32 --sport 5301 --dport 0:65535 -j ACCEPT
9 ${cmd} -A FORWARD -p tcp -s 9.0.0.1/32 -d 10.0.3.21/32 --sport 0:65535 --dport 443 -j ACCEPT

10 ${cmd} -A FORWARD -p tcp -s 10.0.3.21/32 -d 9.0.0.1/32 --sport 443 --dport 0:65535 -j ACCEPT
11 ${cmd} -A FORWARD -p tcp -s 9.0.0.1/32 -d 10.0.3.21/32 --sport 0:65535 --dport 80 -j ACCEPT
12 ${cmd} -A FORWARD -p tcp -s 10.0.3.21/32 -d 9.0.0.1/32 --sport 80 --dport 0:65535 -j ACCEPT
13 ${cmd} -A FORWARD -p tcp -s 9.0.2.1/32 -d 10.0.3.11/32 --sport 0:65535 --dport 80 -j ACCEPT
14 ${cmd} -A FORWARD -p tcp -s 10.0.3.11/32 -d 9.0.2.1/32 --sport 80 --dport 0:65535 -j ACCEPT
15 ${cmd} -A FORWARD -p tcp -s 9.0.1.1/32 -d 10.0.3.21/32 --sport 0:65535 --dport 5301 -j ACCEPT
16 ${cmd} -A FORWARD -p tcp -s 10.0.3.21/32 -d 9.0.1.1/32 --sport 5301 --dport 0:65535 -j ACCEPT
17 ${cmd} -A FORWARD -p tcp -s 9.0.1.1/32 -d 10.0.3.11/32 --sport 0:65535 --dport 5301 -j ACCEPT
18 ${cmd} -A FORWARD -p tcp -s 10.0.3.11/32 -d 9.0.1.1/32 --sport 5301 --dport 0:65535 -j ACCEPT
19 ${cmd} -A FORWARD -p tcp -s 9.0.0.1/32 -d 10.0.3.21/32 --sport 0:65535 --dport 22 -j ACCEPT
20 ${cmd} -A FORWARD -p tcp -s 10.0.3.21/32 -d 9.0.0.1/32 --sport 22 --dport 0:65535 -j ACCEPT
21 ${cmd} -A FORWARD -p udp -s 9.0.2.1/32 -d 10.0.3.3/32 --sport 0:65535 --dport 5301 -j ACCEPT
22 ${cmd} -A FORWARD -p udp -s 10.0.3.3/32 -d 9.0.2.1/32 --sport 5301 --dport 0:65535 -j ACCEPT
23 ${cmd} -A FORWARD -p udp -s 9.0.0.1/32 -d 10.0.3.3/32 --sport 0:65535 --dport 5301 -j ACCEPT
24 ${cmd} -A FORWARD -p udp -s 10.0.3.3/32 -d 9.0.0.1/32 --sport 5301 --dport 0:65535 -j ACCEPT
25 ${cmd} -A FORWARD -p tcp -s 9.0.2.1/32 -d 10.0.3.3/32 --sport 0:65535 --dport 5301 -j ACCEPT
26 ${cmd} -A FORWARD -p tcp -s 10.0.3.3/32 -d 9.0.2.1/32 --sport 5301 --dport 0:65535 -j ACCEPT
27 ${cmd} -A FORWARD -p udp -s 9.0.1.1/32 -d 10.0.3.21/32 --sport 0:65535 --dport 5301 -j ACCEPT
28 ${cmd} -A FORWARD -p udp -s 10.0.3.21/32 -d 9.0.1.1/32 --sport 5301 --dport 0:65535 -j ACCEPT
29 ${cmd} -A FORWARD -p tcp -s 9.0.1.1/32 -d 10.0.3.3/32 --sport 0:65535 --dport 80 -j ACCEPT
30 ${cmd} -A FORWARD -p tcp -s 10.0.3.3/32 -d 9.0.1.1/32 --sport 80 --dport 0:65535 -j ACCEPT
31 ${cmd} -A FORWARD -p tcp -s 9.0.2.1/32 -d 10.0.3.11/32 --sport 0:65535 --dport 22 -j ACCEPT
32 ${cmd} -A FORWARD -p tcp -s 10.0.3.11/32 -d 9.0.2.1/32 --sport 22 --dport 0:65535 -j ACCEPT
33 ${cmd} -A FORWARD -p tcp -s 9.0.0.1/32 -d 10.0.3.11/32 --sport 0:65535 --dport 5432 -j ACCEPT
34 ${cmd} -A FORWARD -p tcp -s 10.0.3.11/32 -d 9.0.0.1/32 --sport 5432 --dport 0:65535 -j ACCEPT
35 ${cmd} -A FORWARD -p tcp -s 9.0.0.1/32 -d 10.0.3.11/32 --sport 0:65535 --dport 80 -j ACCEPT
36 ${cmd} -A FORWARD -p tcp -s 10.0.3.11/32 -d 9.0.0.1/32 --sport 80 --dport 0:65535 -j ACCEPT
37 ${cmd} -A FORWARD -p tcp -s 9.0.2.1/32 -d 10.0.3.21/32 --sport 0:65535 --dport 80 -j ACCEPT

83

Appendix

38 ${cmd} -A FORWARD -p tcp -s 10.0.3.21/32 -d 9.0.2.1/32 --sport 80 --dport 0:65535 -j ACCEPT
39 ${cmd} -A FORWARD -p tcp -s 9.0.2.1/32 -d 10.0.3.3/32 --sport 0:65535 --dport 80 -j ACCEPT
40 ${cmd} -A FORWARD -p tcp -s 10.0.3.3/32 -d 9.0.2.1/32 --sport 80 --dport 0:65535 -j ACCEPT
41 ${cmd} -A FORWARD -p tcp -s 9.0.1.1/32 -d 10.0.3.11/32 --sport 0:65535 --dport 80 -j ACCEPT
42 ${cmd} -A FORWARD -p tcp -s 10.0.3.11/32 -d 9.0.1.1/32 --sport 80 --dport 0:65535 -j ACCEPT
43 ${cmd} -A FORWARD -p tcp -s 9.0.0.1/32 -d 10.0.3.3/32 --sport 0:65535 --dport 5301 -j ACCEPT
44 ${cmd} -A FORWARD -p tcp -s 10.0.3.3/32 -d 9.0.0.1/32 --sport 5301 --dport 0:65535 -j ACCEPT
45 ${cmd} -A FORWARD -p tcp -s 9.0.1.1/32 -d 10.0.3.3/32 --sport 0:65535 --dport 5301 -j ACCEPT
46 ${cmd} -A FORWARD -p tcp -s 10.0.3.3/32 -d 9.0.1.1/32 --sport 5301 --dport 0:65535 -j ACCEPT
47 ${cmd} -A FORWARD -p tcp -s 9.0.1.1/32 -d 10.0.3.11/32 --sport 0:65535 --dport 5432 -j ACCEPT
48 ${cmd} -A FORWARD -p tcp -s 10.0.3.11/32 -d 9.0.1.1/32 --sport 5432 --dport 0:65535 -j ACCEPT
49 ${cmd} -A FORWARD -p tcp -s 9.0.2.1/32 -d 10.0.3.21/32 --sport 0:65535 --dport 22 -j ACCEPT
50 ${cmd} -A FORWARD -p tcp -s 10.0.3.21/32 -d 9.0.2.1/32 --sport 22 --dport 0:65535 -j ACCEPT
51 ${cmd} -A FORWARD -p tcp -s 9.0.0.1/32 -d 10.0.3.3/32 --sport 0:65535 --dport 443 -j ACCEPT
52 ${cmd} -A FORWARD -p tcp -s 10.0.3.3/32 -d 9.0.0.1/32 --sport 443 --dport 0:65535 -j ACCEPT
53 ${cmd} -A FORWARD -p tcp -s 9.0.1.1/32 -d 10.0.3.21/32 --sport 0:65535 --dport 5432 -j ACCEPT
54 ${cmd} -A FORWARD -p tcp -s 10.0.3.21/32 -d 9.0.1.1/32 --sport 5432 --dport 0:65535 -j ACCEPT
55 ${cmd} -A FORWARD -p udp -s 9.0.2.1/32 -d 10.0.3.21/32 --sport 0:65535 --dport 5301 -j ACCEPT
56 ${cmd} -A FORWARD -p udp -s 10.0.3.21/32 -d 9.0.2.1/32 --sport 5301 --dport 0:65535 -j ACCEPT
57 ${cmd} -A FORWARD -p tcp -s 9.0.1.1/32 -d 10.0.3.21/32 --sport 0:65535 --dport 443 -j ACCEPT
58 ${cmd} -A FORWARD -p tcp -s 10.0.3.21/32 -d 9.0.1.1/32 --sport 443 --dport 0:65535 -j ACCEPT
59 ${cmd} -A FORWARD -p tcp -s 9.0.1.1/32 -d 10.0.3.11/32 --sport 0:65535 --dport 443 -j ACCEPT
60 ${cmd} -A FORWARD -p tcp -s 10.0.3.11/32 -d 9.0.1.1/32 --sport 443 --dport 0:65535 -j ACCEPT
61 ${cmd} -A FORWARD -p tcp -s 9.0.0.1/32 -d 10.0.3.11/32 --sport 0:65535 --dport 5301 -j ACCEPT
62 ${cmd} -A FORWARD -p tcp -s 10.0.3.11/32 -d 9.0.0.1/32 --sport 5301 --dport 0:65535 -j ACCEPT
63 ${cmd} -A FORWARD -p tcp -s 9.0.2.1/32 -d 10.0.3.21/32 --sport 0:65535 --dport 5301 -j ACCEPT
64 ${cmd} -A FORWARD -p tcp -s 10.0.3.21/32 -d 9.0.2.1/32 --sport 5301 --dport 0:65535 -j ACCEPT
65 ${cmd} -A FORWARD -p tcp -s 9.0.0.1/32 -d 10.0.3.11/32 --sport 0:65535 --dport 443 -j ACCEPT
66 ${cmd} -A FORWARD -p tcp -s 10.0.3.11/32 -d 9.0.0.1/32 --sport 443 --dport 0:65535 -j ACCEPT
67 ${cmd} -A FORWARD -p udp -s 9.0.1.1/32 -d 10.0.3.3/32 --sport 0:65535 --dport 5301 -j ACCEPT
68 ${cmd} -A FORWARD -p udp -s 10.0.3.3/32 -d 9.0.1.1/32 --sport 5301 --dport 0:65535 -j ACCEPT
69 ${cmd} -A FORWARD -p tcp -s 9.0.2.1/32 -d 10.0.3.11/32 --sport 0:65535 --dport 5432 -j ACCEPT
70 ${cmd} -A FORWARD -p tcp -s 10.0.3.11/32 -d 9.0.2.1/32 --sport 5432 --dport 0:65535 -j ACCEPT
71 ${cmd} -A FORWARD -p tcp -s 9.0.2.1/32 -d 10.0.3.3/32 --sport 0:65535 --dport 443 -j ACCEPT
72 ${cmd} -A FORWARD -p tcp -s 10.0.3.3/32 -d 9.0.2.1/32 --sport 443 --dport 0:65535 -j ACCEPT
73 ${cmd} -A FORWARD -p tcp -s 9.0.2.1/32 -d 10.0.3.21/32 --sport 0:65535 --dport 5432 -j ACCEPT
74 ${cmd} -A FORWARD -p tcp -s 10.0.3.21/32 -d 9.0.2.1/32 --sport 5432 --dport 0:65535 -j ACCEPT
75 ${cmd} -A FORWARD -p tcp -s 9.0.0.1/32 -d 10.0.3.3/32 --sport 0:65535 --dport 80 -j ACCEPT
76 ${cmd} -A FORWARD -p tcp -s 10.0.3.3/32 -d 9.0.0.1/32 --sport 80 --dport 0:65535 -j ACCEPT
77 ${cmd} -A FORWARD -p udp -s 9.0.0.1/32 -d 10.0.3.11/32 --sport 0:65535 --dport 5301 -j ACCEPT
78 ${cmd} -A FORWARD -p udp -s 10.0.3.11/32 -d 9.0.0.1/32 --sport 5301 --dport 0:65535 -j ACCEPT
79 ${cmd} -A FORWARD -p tcp -s 9.0.1.1/32 -d 10.0.3.21/32 --sport 0:65535 --dport 80 -j ACCEPT
80 ${cmd} -A FORWARD -p tcp -s 10.0.3.21/32 -d 9.0.1.1/32 --sport 80 --dport 0:65535 -j ACCEPT
81 ${cmd} -A FORWARD -p tcp -s 9.0.2.1/32 -d 10.0.3.11/32 --sport 0:65535 --dport 5301 -j ACCEPT
82 ${cmd} -A FORWARD -p tcp -s 10.0.3.11/32 -d 9.0.2.1/32 --sport 5301 --dport 0:65535 -j ACCEPT
83 ${cmd} -A FORWARD -p tcp -s 9.0.1.1/32 -d 10.0.3.11/32 --sport 0:65535 --dport 22 -j ACCEPT
84 ${cmd} -A FORWARD -p tcp -s 10.0.3.11/32 -d 9.0.1.1/32 --sport 22 --dport 0:65535 -j ACCEPT
85 ${cmd} -A FORWARD -p tcp -s 9.0.1.1/32 -d 10.0.3.21/32 --sport 0:65535 --dport 22 -j ACCEPT
86 ${cmd} -A FORWARD -p tcp -s 10.0.3.21/32 -d 9.0.1.1/32 --sport 22 --dport 0:65535 -j ACCEPT
87 ${cmd} -A FORWARD -p udp -s 9.0.2.1/32 -d 10.0.3.11/32 --sport 0:65535 --dport 5301 -j ACCEPT
88 ${cmd} -A FORWARD -p udp -s 10.0.3.11/32 -d 9.0.2.1/32 --sport 5301 --dport 0:65535 -j ACCEPT
89 ${cmd} -A FORWARD -p tcp -s 9.0.0.1/32 -d 10.0.3.11/32 --sport 0:65535 --dport 22 -j ACCEPT
90 ${cmd} -A FORWARD -p tcp -s 10.0.3.11/32 -d 9.0.0.1/32 --sport 22 --dport 0:65535 -j ACCEPT
91 ${cmd} -A FORWARD -p tcp -s 9.0.1.1/32 -d 10.0.3.3/32 --sport 0:65535 --dport 443 -j ACCEPT
92 ${cmd} -A FORWARD -p tcp -s 10.0.3.3/32 -d 9.0.1.1/32 --sport 443 --dport 0:65535 -j ACCEPT
93 ${cmd} -A FORWARD -p tcp -s 9.0.2.1/32 -d 10.0.3.21/32 --sport 0:65535 --dport 443 -j ACCEPT
94 ${cmd} -A FORWARD -p tcp -s 10.0.3.21/32 -d 9.0.2.1/32 --sport 443 --dport 0:65535 -j ACCEPT
95 ${cmd} -A FORWARD -p tcp -s 9.0.2.1/32 -d 10.0.3.11/32 --sport 0:65535 --dport 443 -j ACCEPT
96 ${cmd} -A FORWARD -p tcp -s 10.0.3.11/32 -d 9.0.2.1/32 --sport 443 --dport 0:65535 -j ACCEPT
97 ${cmd} -A FORWARD -p udp -s 9.0.1.1/32 -d 10.0.3.11/32 --sport 0:65535 --dport 5301 -j ACCEPT
98 ${cmd} -A FORWARD -p udp -s 10.0.3.11/32 -d 9.0.1.1/32 --sport 5301 --dport 0:65535 -j ACCEPT
99 ${cmd} -A FORWARD -p udp -s 9.0.0.1/32 -d 10.0.3.21/32 --sport 0:65535 --dport 5301 -j ACCEPT

100 ${cmd} -A FORWARD -p udp -s 10.0.3.21/32 -d 9.0.0.1/32 --sport 5301 --dport 0:65535 -j ACCEPT

84

Appendix

101 ${cmd} -A FORWARD -p tcp -s 9.0.0.1/32 -d 10.0.3.21/32 --sport 0:65535 --dport 5432 -j ACCEPT
102 ${cmd} -A FORWARD -p tcp -s 10.0.3.21/32 -d 9.0.0.1/32 --sport 5432 --dport 0:65535 -j ACCEPT

Listing A.4: iptables translation

85

Bibliography

[1] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov, “Automated
Firewall Configuration in Virtual Networks”, IEEE Transactions on Dependable
and Secure Computing, vol. 20, no. 2, pp. 1559–1576, Mar. 2023, issn: 1545-
5971, 1941-0018, 2160-9209. doi: 10.1109/TDSC.2022.3160293. [Online].
Available: https://ieeexplore.ieee.org/document/9737389/ (visited on
08/02/2025).

[2] L. Durante, L. Seno, and A. Valenzano, “A Formal Model and Technique
to Redistribute the Packet Filtering Load in Multiple Firewall Networks”,
IEEE Transactions on Information Forensics and Security, vol. 16, pp. 2637–
2651, 2021, issn: 1556-6013, 1556-6021. doi: 10.1109/TIFS.2021.3057552.
[Online]. Available: https://ieeexplore.ieee.org/document/9350284/
(visited on 08/02/2025).

[3] Iptables(8) - Linux manual page. [Online]. Available: https://man7.org/
linux/man-pages/man8/iptables.8.html (visited on 08/03/2025).

[4] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov, “Auto-
mated optimal firewall orchestration and configuration in virtualized networks”,
in NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management
Symposium, Budapest, Hungary: IEEE, Apr. 2020, pp. 1–7, isbn: 978-1-7281-
4973-8. doi: 10.1109/NOMS47738.2020.9110402. [Online]. Available: https:
//ieeexplore.ieee.org/document/9110402/ (visited on 08/02/2025).

[5] Iptables-save(8) - Linux manual page. [Online]. Available: https://man7.org/
linux/man-pages/man8/iptables-save.8.html (visited on 08/06/2025).

[6] Iptables-restore(8) - Linux manual page. [Online]. Available: https://man7.
org / linux / man - pages / man8 / iptables - restore . 8 . html (visited on
08/06/2025).

[7] J. Engelhardt, Schematic for the packet flow paths through Linux networking
and Xtables, May 2019. [Online]. Available: https://commons.wikimedia.
org/w/index.php?curid=8575254 (visited on 08/07/2025).

86

https://doi.org/10.1109/TDSC.2022.3160293
https://ieeexplore.ieee.org/document/9737389/
https://doi.org/10.1109/TIFS.2021.3057552
https://ieeexplore.ieee.org/document/9350284/
https://man7.org/linux/man-pages/man8/iptables.8.html
https://man7.org/linux/man-pages/man8/iptables.8.html
https://doi.org/10.1109/NOMS47738.2020.9110402
https://ieeexplore.ieee.org/document/9110402/
https://ieeexplore.ieee.org/document/9110402/
https://man7.org/linux/man-pages/man8/iptables-save.8.html
https://man7.org/linux/man-pages/man8/iptables-save.8.html
https://man7.org/linux/man-pages/man8/iptables-restore.8.html
https://man7.org/linux/man-pages/man8/iptables-restore.8.html
https://commons.wikimedia.org/w/index.php?curid=8575254
https://commons.wikimedia.org/w/index.php?curid=8575254

BIBLIOGRAPHY

[8] L. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver”, en, in Tools and
Algorithms for the Construction and Analysis of Systems, C. R. Ramakrishnan
and J. Rehof, Eds., Berlin, Heidelberg: Springer, 2008, pp. 337–340, isbn:
978-3-540-78800-3. doi: 10.1007/978-3-540-78800-3_24.

[9] Z3Prover/z3, original-date: 2015-03-26T18:16:07Z, Aug. 2025. [Online]. Avail-
able: https://github.com/Z3Prover/z3 (visited on 08/02/2025).

[10] S. Singh, Y.-S. Jeong, and J. H. Park, “A survey on cloud computing se-
curity: Issues, threats, and solutions”, en, Journal of Network and Com-
puter Applications, vol. 75, pp. 200–222, Nov. 2016, issn: 10848045. doi:
10.1016/j.jnca.2016.09.002. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S1084804516301990 (visited on 08/14/2025).

[11] D. Bringhenti, R. Sisto, and F. Valenza, “A demonstration of VEREFOO:
An automated framework for virtual firewall configuration”, in 2023 IEEE
9th International Conference on Network Softwarization (NetSoft), Madrid,
Spain: IEEE, Jun. 2023, pp. 293–295, isbn: 979-8-3503-9980-6. doi: 10.1109/
NetSoft57336.2023.10175442. [Online]. Available: https://ieeexplore.
ieee.org/document/10175442/ (visited on 08/03/2025).

[12] iPerf - iPerf3 and iPerf2 user documentation. [Online]. Available: https:
//iperf.fr/iperf-doc.php#3doc (visited on 08/06/2025).

[13] Iperf(1): Perform network throughput tests - Linux man page. [Online]. Avail-
able: https://linux.die.net/man/1/iperf (visited on 08/03/2025).

[14] “IEEE Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems”, IEEE Std 1588-2019 (Revision ofIEEE
Std 1588-2008), pp. 1–499, Jun. 2020. doi: 10.1109/IEEESTD.2020.9120376.
[Online]. Available: https://ieeexplore.ieee.org/document/9120376
(visited on 08/11/2025).

[15] Tcpdump(1) man page | TCPDUMP & LIBPCAP. [Online]. Available: https:
//www.tcpdump.org/manpages/tcpdump.1.html (visited on 08/03/2025).

[16] Tshark(1). [Online]. Available: https://www.wireshark.org/docs/man-
pages/tshark.html (visited on 08/07/2025).

[17] Pcap-tstamp(7) — Arch manual pages. [Online]. Available: https://man.
archlinux.org/man/pcap-tstamp.7.en (visited on 08/11/2025).

[18] Struct sk_buff — The Linux Kernel documentation. [Online]. Available: https:
//docs.kernel.org/networking/skbuff.html (visited on 08/11/2025).

[19] Timestamping — The Linux Kernel documentation. [Online]. Available: https:
//docs.kernel.org/networking/timestamping.html (visited on 08/11/2025).

87

https://doi.org/10.1007/978-3-540-78800-3_24
https://github.com/Z3Prover/z3
https://doi.org/10.1016/j.jnca.2016.09.002
https://linkinghub.elsevier.com/retrieve/pii/S1084804516301990
https://linkinghub.elsevier.com/retrieve/pii/S1084804516301990
https://doi.org/10.1109/NetSoft57336.2023.10175442
https://doi.org/10.1109/NetSoft57336.2023.10175442
https://ieeexplore.ieee.org/document/10175442/
https://ieeexplore.ieee.org/document/10175442/
https://iperf.fr/iperf-doc.php#3doc
https://iperf.fr/iperf-doc.php#3doc
https://linux.die.net/man/1/iperf
https://doi.org/10.1109/IEEESTD.2020.9120376
https://ieeexplore.ieee.org/document/9120376
https://www.tcpdump.org/manpages/tcpdump.1.html
https://www.tcpdump.org/manpages/tcpdump.1.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://man.archlinux.org/man/pcap-tstamp.7.en
https://man.archlinux.org/man/pcap-tstamp.7.en
https://docs.kernel.org/networking/skbuff.html
https://docs.kernel.org/networking/skbuff.html
https://docs.kernel.org/networking/timestamping.html
https://docs.kernel.org/networking/timestamping.html

BIBLIOGRAPHY

[20] Kernel.org/doc/Documentation/networking/timestamping.txt. [Online]. Avail-
able: https://www.kernel.org/doc/Documentation/networking/timestamping.
txt (visited on 08/11/2025).

[21] Hping3 | Kali Linux Tools, English. [Online]. Available: https://www.kali.
org/tools/hping3/ (visited on 08/03/2025).

[22] Hping3(8) - Linux man page. [Online]. Available: https://linux.die.net/
man/8/hping3 (visited on 08/03/2025).

[23] Ip-netns(8) - Linux manual page. [Online]. Available: https://man7.org/
linux/man-pages/man8/ip-netns.8.html (visited on 08/11/2025).

[24] Tmpfs, en, Page Version ID: 1281546210, Mar. 2025. [Online]. Available: https:
//en.wikipedia.org/w/index.php?title=Tmpfs&oldid=1281546210
(visited on 08/03/2025).

[25] L. Zhou, M. Liao, C. Yuan, and H. Zhang, “Low-Rate DDoS Attack Detection
Using Expectation of Packet Size”, en, Security and Communication Networks,
vol. 2017, pp. 1–14, 2017, issn: 1939-0114, 1939-0122. doi: 10.1155/2017/
3691629. [Online]. Available: https://www.hindawi.com/journals/scn/
2017/3691629/ (visited on 09/02/2025).

[26] F. Pizzato, D. Bringhenti, R. Sisto, and F. Valenza, “Automatic and optimized
firewall reconfiguration”, in NOMS 2024-2024 IEEE Network Operations and
Management Symposium, Seoul, Korea, Republic of: IEEE, May 2024, pp. 1–9,
isbn: 979-8-3503-2793-9. doi: 10.1109/NOMS59830.2024.10575212. [Online].
Available: https://ieeexplore.ieee.org/document/10575212/ (visited on
08/02/2025).

[27] D. Bringhenti, F. Pizzato, R. Sisto, and F. Valenza, “A Looping Process for Cy-
berattack Mitigation”, in 2024 IEEE International Conference on Cyber Secu-
rity and Resilience (CSR), London, United Kingdom: IEEE, Sep. 2024, pp. 276–
281, isbn: 979-8-3503-7536-7. doi: 10.1109/CSR61664.2024.10679501. [On-
line]. Available: https : / / ieeexplore . ieee . org / document / 10679501/
(visited on 08/02/2025).

88

https://www.kernel.org/doc/Documentation/networking/timestamping.txt
https://www.kernel.org/doc/Documentation/networking/timestamping.txt
https://www.kali.org/tools/hping3/
https://www.kali.org/tools/hping3/
https://linux.die.net/man/8/hping3
https://linux.die.net/man/8/hping3
https://man7.org/linux/man-pages/man8/ip-netns.8.html
https://man7.org/linux/man-pages/man8/ip-netns.8.html
https://en.wikipedia.org/w/index.php?title=Tmpfs&oldid=1281546210
https://en.wikipedia.org/w/index.php?title=Tmpfs&oldid=1281546210
https://doi.org/10.1155/2017/3691629
https://doi.org/10.1155/2017/3691629
https://www.hindawi.com/journals/scn/2017/3691629/
https://www.hindawi.com/journals/scn/2017/3691629/
https://doi.org/10.1109/NOMS59830.2024.10575212
https://ieeexplore.ieee.org/document/10575212/
https://doi.org/10.1109/CSR61664.2024.10679501
https://ieeexplore.ieee.org/document/10679501/

	List of Figures
	List of Tables
	Listings
	Introduction
	Background
	iptables
	The Rule Distribution Algorithm
	VEREFOO
	Performance measurement techniques and tools

	Thesis objectives
	Integration objective
	Performance evaluation objective
	Mitigation demonstration objective

	Experimental test-bed setup
	Scenario model
	Implementation
	Out-of-band control network and remote access
	Limitations and reproducibility considerations

	Experiments and demos
	Preliminary measurements with iPerf3
	Baseline measurements with custom scripts
	Final demo

	Conclusions
	Appendix
	Central router setup script
	iPerf3 campaigns
	VEREFOO input/output and translation in iptables rules

