
Master of Science in Cybersecurity

Master Degree Thesis

A Novel AI Based Algorithm for
Automatic Reordering of Firewall

Rules

Supervisors
prof. Fulvio Valenza
prof. Daniele Bringhenti

prof. Riccardo Sisto
dott. Gianmarco Bachiorrini

Candidate

Alessandro Mulassano

Academic Year 2024-2025

This work is subject to the Creative Commons Licence

Contents

List of Figures 6

List of Tables 8

Listings 9

1 Introduction 11

1.1 Thesis Structure . 12

2 Firewalls 13

2.1 Overall Functioning . 13

2.1.1 Rule Resolution Strategies 14

2.1.2 Denylist vs Allowlist . 14

2.2 Classification of Firewalls . 15

2.2.1 Packet Filtering Firewall . 15

2.2.2 Circuit Level Gateway . 16

2.2.3 Application Level Gateway 17

2.2.4 Stateful Inspection Firewall 18

2.3 Anomalies in Firewall Policies . 19

2.3.1 Conflict anomalies . 20

2.3.2 Sub-optimization anomalies 20

2.4 From Background to the Present Work 21

3 Artificial Intelligence and Machine Learning 22

3.1 Overview of Artificial Intelligence 22

3.1.1 Artificial Intelligence vs. Machine Learning vs. Deep Learning 22

3.1.2 The Role of Artificial Intelligence in Cybersecurity 23

3.2 Machine Learning Models . 24

3.2.1 Supervised Learning . 24

3

3.2.2 Unsupervised Learning . 26

3.3 Reinforcement Learning . 26

3.3.1 Fundamental Elements of Reinforcement Learning 26

3.3.2 Exploration vs Exploitation 28

3.3.3 Value-Based vs Policy-Based 28

3.3.4 Monte Carlo vs Temporal Difference Learning 29

3.3.5 Agent–Environment Loop 30

3.4 Main Reinforcement Learning Algorithms 30

3.4.1 k-armed Bandit . 30

3.4.2 SARSA and Expected SARSA 31

3.4.3 Q-Learning . 32

3.5 From Background to the Present Work 33

3.5.1 Reinforcement Learning vs. Listwise Learning 33

4 Thesis Objectives 35

5 Approach and Methodology 37

5.1 Smart Firewall . 37

5.1.1 Baseline Firewall (Stateless) 40

5.1.2 Firewall with State Representation 41

5.1.3 Digital Twin configuration 42

5.2 Rule Generator . 42

5.2.1 K-Means Clustering . 44

5.2.2 DBSCAN . 45

5.2.3 Hierarchical clustering . 47

5.2.4 K-Means Rule Generator . 48

5.2.5 Hierarchical Rule Generator 50

5.2.6 Comparison between the Two Rule Generators 53

6 Implementation and Validation 55

6.0.1 Reinforcement Learning Framework 55

6.1 Development of Baseline Firewall 56

6.1.1 Environment Design . 56

6.1.2 Action Selection Policy . 57

6.1.3 Q-Learning Algorithm . 58

6.2 Development of 3 States Firewall 59

4

6.2.1 Environment Design . 59

6.2.2 Action Selection Policy . 61

6.2.3 Q-Learning Algorithm . 62

6.3 Development of 9 states firewall . 63

6.3.1 Environment Design . 63

6.3.2 Action Selection Policy . 65

6.3.3 Q-Learning Algorithm . 66

6.4 Development of 27 states firewall 67

6.4.1 Environment Design . 67

6.4.2 Action Selection Policy . 69

6.4.3 Q-Learning Algorithm . 70

6.5 Development of the Digital Twin Configuration 71

6.5.1 General Architecture . 71

6.5.2 Enhanced Strategy . 73

6.6 Evaluation Protocol . 76

6.6.1 Single Smart Firewall Results 77

6.6.2 Digital Twin Results . 80

6.6.3 Head-to-Head: 27 states Smart Firewall vs 27 states Digital
Twin . 86

7 Conclusions 89

Bibliography 91

5

List of Figures

2.1 Example of a firewall rule table . 14

2.2 Example of a packet filtering firewall 15

2.3 Example of a circuit level gateway 16

2.4 Example of an application level gateway 17

2.5 Example of a stateful inspection firewall 18

3.1 AI vs. ML vs. DL . 23

3.2 Supervised Learning vs. Unsupervised Learning 24

3.3 Schematic of the agent–environment cycle in reinforcement learning 30

5.1 Digital twin architecture . 42

5.2 Distribution of packets per protocol 44

5.3 Examples of K-Means . 45

5.4 Examples of DBSCAN . 46

5.5 Examples of Hierarchical Clustering 47

6.1 Smart Firewall: Total Misses . 77

6.2 Smart Firewall: Total Time . 78

6.3 State-Aware Firewall: Total Misses with 200 rules 78

6.4 State-Aware Firewall: Total Time with 200 rules 79

6.5 State-Aware Firewall: Total Misses with 500 rules 79

6.6 State-Aware Firewall: Total Time with 500 rules 80

6.7 Comparation of total misses of RL agents in a digital twin configuration 81

6.8 Comparation of processing time of RL agents in a digital twin con-
figuration . 82

6.9 Comparation of update time misses of RL agents in a digital twin
configuration . 82

6.10 27 states Digital Twin: Total Misses with 200 rules 83

6.11 27 states Digital Twin: Total Misses with 500 rules 84

6

6.12 27 states Digital Twin: Processing Time with 200 rules 84

6.13 27 states Digital Twin: Processing Time with 500 rules 85

6.14 27 states Digital Twin: Update Time with 200 rules 85

6.15 27 states Digital Twin: Update Time with 500 rules 86

6.16 Smart Firewall vs. Digital Twin: Total Misses with 100 rules 87

6.17 Smart Firewall vs. Digital Twin: Total Time with 100 rules 87

6.18 Smart Firewall vs. Digital Twin: Total Misses with 500 rules 88

6.19 Smart Firewall vs. Digital Twin: Total Time with 500 rules 88

7

List of Tables

5.1 Initialization of Q values and rule usage state 38

5.2 Q-table after the first packet . 38

5.3 Q-table after the second packet . 39

5.4 Q-table after the third packet . 39

5.5 Q-table after the fourth packet . 39

5.6 Q-table after the fifth packet . 40

5.7 Q-value updates with decay applied (threshold: 5 packets of inactivity) 40

8

Listings

5.1 Extraction of 5-tuples from a SCADA/ICS PCAP file 54
6.1 Stateless firewall environment . 56
6.2 Action selection with ε-greedy strategy 57
6.3 Q-learning procedure for the stateless firewall 58
6.4 Three-state firewall environment (TCP/UDP/ICMP) 60
6.5 State-conditioned ε-greedy action selection 61
6.6 Q-learning for the three-state firewall 62
6.7 Nine-state firewall environment (protocol × source-port tier) 64
6.8 Q-learning for the nine-state firewall 66
6.9 Twenty-seven-state firewall environment (protocol × src-port tier ×

dst-port tier) . 67
6.10 Q-learning for the twenty-seven-state firewall 70
6.11 Traditional firewall with first-matching rule 71
6.12 Dual firewall coordinator . 72
6.13 Enhanced Baseline . 74

9

Chapter 1

Introduction

Firewalls represent a fundamental component of network security, as they filter
traffic based on predefined policies. Their operation relies on analyzing packets
in transit and comparing them against an ordered set of rules. However, as the
number of rules increases, processing speed tends to decline significantly, with direct
repercussions on the network’s overall performance.

In addition to this performance aspect, there is the complexity associated with
configuring security policies [1]. In corporate settings, firewall rules are often the
result of years of modifications, layering, and maintenance carried out by different
administrators. This not always coordinated evolution can give rise to anomalies in
filtering rules. Several studies have addressed this issue [2] [3]: the former proposes
a systematic and structured approach to identify and correct anomalies, whereas
the latter adopts a semi-automatic methodology that supports administrators in
the most complex phases of resolution.

In parallel, other research has explored the possibility of automating firewall con-
figuration, thereby reducing manual intervention and making systems more adap-
tive. For example, [4] analyses the challenges involved in managing distributed
firewalls in virtualized environments, where complexity renders traditional meth-
ods poorly scalable. The work in [5] introduces optimization criteria oriented to-
wards energy sustainability, while [6] and [7] focus on transition management and
update scheduling, with the aim of reducing the impact of frequent reconfigura-
tions. Finally, [8] proposes an autonomous model capable of reacting dynamically
to potential attacks by modifying rules without human intervention.

This work focuses on the specific aspect of policy reordering ; in this context
the Optimal Rule Ordering Problem [9] is one of the main challenges, as it requires
determining a sequence for rule evaluation that minimizes processing time and the
number of incorrectly handled packets.

Moreover it’s possible to divide the optimization in two broad approaches: the
static case, in which the order of rules is defined once and remains unchanged unless
manually modified by an administrator, making it poorly flexible with respect to
evolving traffic; by contrast the dynamic case updates the sequence periodically
or in real time, prioritizing the most frequently used rules and thereby reducing
processing time.

11

Introduction

In this thesis, we develop a dynamic and adaptive reordering mechanism, im-
plemented within a smart firewall capable of improving operational efficiency and
reducing misses. To this end, a Reinforcement Learning agent is adopted—an
approach particularly well-suited to variable contexts, in which the optimal strategy
is learned through continuous interaction with the environment.

In particular, we employ the Q-learning algorithm, which makes it possible
to learn an effective reordering policy for a packet filtering firewall, ensuring rule
correctness and optimizing overall performance. The reference context is that of a
packet filtering firewall, in which each rule is defined by 5 different fields: sourceIP,
destinationIP, sourcePort, destinationPort, protocol. The analysis focuses
on sub-optimization anomalies, excluding conflicting ones, and aims to demonstrate
how an artificial intelligence–based approach can significantly improve policy man-
agement.

1.1 Thesis Structure

The organization of the thesis is as follows:

• Chapter 2 - Firewalls: We introduce firewalls and their role in network
defense, outlining core concepts such as packet filtering and access control.
The chapter surveys the main families (stateless, stateful, application-aware)
and clarifies first-matching semantics and how rule ordering impacts latency.

• Chapter 3 - Artificial Intelligence and Machine Learning: We pro-
vide a concise background on AI/ML, then focus on reinforcement learning:
agents, environments, rewards, and exploration–exploitation. Particular at-
tention is given to tabular Q-learning, which forms the basis for the agents
used in this work.

• Chapter 4 - Thesis Objectives: We define the problem and goals of the
study, detailing what we aim to optimize and why.

• Chapter 5 - Approach and Methodology: We present the overall ap-
proach to the rule reordering problem and the proposed architectures. This
includes the smart firewall (stateless and state-based variants) and the digital
twin setup that couples a learning agent with a traditional firewall, along with
the experimental workflow.

• Chapter 6 - Implementation and Validation: We describe how each
agent and the traditional component are implemented, highlighting the key
design choices and interfaces. The chapter then reports the validation proce-
dure and results, including scalability across different rule set sizes and update
intervals.

• Chapter 7 - Conclusions: We summarize the main findings and their
implications for AI assisted firewalling. The chapter closes with avenues for
future work, such as dynamic state abstraction, drift-aware operation, larger-
scale validation, and distributed deployment.

12

Chapter 2

Firewalls

A firewall is a network device that functions as a filter between the protected
network and the outside world. Every inbound and outbound packet must traverse
this control point, where it is evaluated against the local security policy: only
permitted communications are allowed to pass, while all others are denied. The
device is engineered to resist compromise, thereby preserving the integrity of the
protected perimeter [10].

2.1 Overall Functioning

The core of a firewall is its security policy, an ordered sequence of filtering rules
that prescribes how to handle every ingress and egress packet. Each IP packet is
processed as follows [11]:

1. Packet inspection: the packet is parsed and evaluated against the entire
rule set. can be a single or a range of values and represents the possible values
of the corresponding field in actual packets which match this rule.

2. Conditions : set of attributes that represents the possible values such as
source and destination IP addresses, TCP/UDP ports, the transport protocol.

3. Actions : if the conditions of a rule are satisfied, one of the following action
is applied:

• ALLOW (or ACCEPT): the packet is forwarded to its destination.

• DENY (or DROP): the packet is blocked and discarded.

4. Default action: if a packet doesn’t match any rule, a fallback action is taken,
typically DENY for security, although ALLOW may be used in specific scenarios.

To make the notion of a policy more concrete, Figure 2.1 presents a repre-
sentative example of a firewall rule table, showing how conditions and actions are
arranged in sequence to manage network traffic.

13

Firewalls

Figure 2.1. Example of a firewall rule table

2.1.1 Rule Resolution Strategies

When a packet satisfies multiple rules simultaneously, the firewall applies a reso-
lution strategy to decide which action to impose among the potentially conflicting
ones [12]:

• First Matching Rule (FMR): examines the rules consecutively and ceases
at the initial match, executing the specified action of that rule.

• Allow Takes Precedence (ATP): when there is an ALLOW and DENY
conflict, the ALLOW prevails, reducing the risk of false positives.

• Deny Takes Precedence (DTP): in the presence of conflicts, DENY always
prevails, favoring a conservative security posture.

• Most Specific Takes Precedence (MSTP): between all applicable rules,
selects the most specific one.

• Least Specific Takes Precedence (LSTP): between all applicable rules,
selects the least specific one.

2.1.2 Denylist vs Allowlist

Denylist (Blacklist)

In a denylist (blacklist) configuration, the policy explicitly enumerates traffic that
must be blocked. Each rule encodes conditions that, when satisfied, result in a DENY
decision for the packet. In practice, the firewall evaluates incoming packets against
the denylist and discards any that match; non matching traffic is forwarded under
a default allow posture. This model performs well when malicious patterns are well
delineated and relatively stable, but it requires regular maintenance to keep pace
with newly discovered threats and vulnerabilities.

14

Firewalls

Allowlist (Whitelist)

An allowlist (or whitelist) adopts a more restrictive posture: only traffic that satis-
fies narrowly defined criteria is permitted, with all other traffic denied by default.
The firewall checks whether a packet matches an allowlist entry and forwards it
if so; any packet that does not match is automatically blocked, consistent with
a default-deny policy. While this strategy offers a high level of security by sub-
stantially reducing the risk of unauthorized access, it entails greater administrative
overhead, as legitimate communications must be specified in advance and the rules
updated promptly as requirements evolve.

2.2 Classification of Firewalls

Firewalls can be implemented as dedicated hardware appliances, as software solu-
tions, or in hybrid configurations that combine both. The goal is to provide the
highest possible level of protection and traffic control without unduly compromising
performance or forwarding throughput. Depending on security requirements and
the desired degree of visibility into traffic flows, several types of firewalls can be
distinguished [13] [14].

2.2.1 Packet Filtering Firewall

The packet filtering firewall (Figure 2.2) (also known as a Layer-3 network firewall)
is the most common and straightforward form of filtering. It inspects each packet
in isolation, comparing its headers against a predefined rule set. If a packet satisfies
the specified criteria, it is forwarded; otherwise, it is dropped.

Figure 2.2. Example of a packet filtering firewall

Typical matching criteria include:

• protocol type (IP, TCP, UDP, ICMP, etc.);

• source and destination IP addresses, for example, permitting only traffic from
192.168.1.1 to 192.168.1.100;

15

Firewalls

• source and destination ports, for instance, accepting only TCP packets des-
tined for port 25 (SMTP) and rejecting those for port 21 (FTP);

• traffic direction (ingress or egress).

Advantages

• It has a simple configuration.

• It is trasparent for the users, who perceive no change to the data flow.

• It has an high speed and low latency due to minimal checks.

Disadvantages

• It doesn’t have authentication or payload inspection, it’s unable to distinguish
harmful content encapsulated in otherwise legitimate packets.

• It is vulnerable to various attacks, such as denial of service (DOS), IP spoof-
ing, and tiny fragment attacks, because it relies on simple header matching.

2.2.2 Circuit Level Gateway

A circuit level gateway (Figure 2.3) operates at the session layer (OSI layer 5). It
monitors the TCP handshake (and the corresponding state for UDP) between the
local and remote host to determine whether the session being opened is legitimate.
Unlike packet filters, it does not inspect the content of individual packets; instead,
it focuses on connection establishment and termination.

Figure 2.3. Example of a circuit level gateway

When an internal host starts an outbound connection, the gateway checks that
the characteristics of the handshake (sequence numbers, the ports in use, TCP

16

Firewalls

flags) comply with the configured security policies. If the check succeeds, a “virtual
circuit” is established and subsequent packets are allowed to flow without further
inspection until the session closes.

Advantages

• It provides centralized oversight of active sessions and, compared with state-
less filters, narrows the attack surface.

• Because it avoids parsing the payload, its processing burden is lower than
that of proxies operating at the application layer.

Disadvantages

• It doesn’t inspect the packets, so there is no visibility of the application
content, and so cannot block malicious payloads embedded in otherwise le-
gitimate flows.

• After a session is established, packets are no longer inspected one by one,
which creates the possibility of abuse during the session.

2.2.3 Application Level Gateway

An application level gateway (Figure 2.4), also known as an application firewall or
proxy, operates at OSI layer 7. It acts as a dedicated intermediary for each service
(HTTP, FTP, SMTP, DNS, and so on). The internal client connects to the gateway,
which authenticates the request, examines it, and filters it by analyzing the message
content in detail (the payload). The gateway then opens a new connection to the
destination server only if the communication complies with the security policy.

Figure 2.4. Example of an application level gateway

17

Firewalls

Advantages

• It hides internal hosts by exposing only the proxy address to external net-
works.

• It supports the integration of authentication and access control mechanisms.

• It enables payload inspection.

• It gives a detailed recording and logs of the connections.

Disadvantages

• It has higher latency due to the need to analyze and reconstruct traffic.

• It has also a complex configuration, often requiring protocol specific proxies.

• It can become a potential bottleneck due to high traffic environments without
load balancing.

2.2.4 Stateful Inspection Firewall

A stateful inspection firewall (Figure 2.5) keeps a record of all active connections
(flows) that traverse it. This allows the device to classify each packet as the start of
a new connection, a part of an existing connection, or an invalid packet. When the
first packet of a new flow arrives (for example, a TCP SYN), the firewall checks it
against the configured rules and, if permitted, creates an entry in the state table. All
subsequent packets that belong to that connection are then accepted automatically
until the flow is closed.

Figure 2.5. Example of a stateful inspection firewall

18

Firewalls

Advantages

• Precise control over connections, with the ability to distinguish legitimate
traffic from malicious traffic.

• A sound balance between security and efficiency, since only the packets that
open a connection are examined in detail.

• Added protection against spoofing and fragmentation as a result of state
tracking.

Disadvantages

• Possible problems with slow or idle connections, which may be closed too
early.

• Vulnerable to denial of service when the state table becomes saturated.

2.3 Anomalies in Firewall Policies

When defining a firewall rule set, policy anomalies may arise, especially when rules
are authored or modified by multiple administrators at different times or when
the number of rules is large. An anomaly occurs when the interaction among
two or more rules leads to unintended behaviour or inefficiencies in network traffic
handling.

In particular it’s possible to distinguish:

• Intra-policy anomalies: anomalies among rules within the same firewall;

• Inter-policy anomalies: anomalies among rules belonging to different fire-
walls.

In this work we focus on Intra-policy anomalies, further divided into two
main categories [12]:

1. Conflict anomalies: rules that, when applied together, yield conflicting
actions or behaviours that depend on the evaluation order;

2. Sub-optimization anomalies: redundant or ineffective rules that degrade
performance or the clarity of the configuration.

19

Firewalls

2.3.1 Conflict anomalies

Conflict anomalies arise when two rules interfere in a way that leads to contra-
dictory behaviour. They generally cannot be resolved automatically without the
risk of altering the semantics of the security policy, and therefore require manual
intervention. Three main types are usually distinguished:

1. Contradiction
Two rules match the same conditions but prescribe opposite actions (for ex-
ample, one allows and the other denies the same traffic).

2. Shadowing Conflict
A higher priority rule overrides another rule that targets the same traffic but
prescribes a different action; consequently, the lower priority rule is never
reached during evaluation.

3. Correlation
Two rules partially overlap and specify different actions, so they apply dif-
ferent decisions to subsets of the traffic. Some packets are handled by both
rules, others by only one of them.

2.3.2 Sub-optimization anomalies

Sub-optimization anomalies are inefficiencies in the firewall policy. They do not
directly compromise security, but they lead to suboptimal use of resources and
greater administrative complexity. They are mainly divided into four cases:

1. Irrelevance
A rule is irrelevant if it can never be applied—for example, because the source
or destination addresses do not belong to networks protected by the firewall.
Removing it does not change behaviour, but it improves performance.

2. Duplication
Two rules are duplicates if they match exactly the same conditions and specify
the same action. In this case, the rule with lower priority can be removed
without side effects.

3. Shadowing Redundancy
A higher priority rule fully covers the same traffic and enforces the same
decision; the lower priority rule is therefore unreachable and never takes effect.

4. Unnecessary
A rule is unnecessary when the packets it would match are already covered
by a preceding rule with the same action and there is no rule with a priority
between them with different action that can match that packet.

20

Firewalls

2.4 From Background to the Present Work

In this work we consider a firewall that adopts a FMR (First Matching Rule)
resolution strategy, with the goal of optimizing the rule order while preserving the
coherence of the security policy. The firewall enforces an allowlist, that is, a set of
rules that explicitly specifies permitted traffic and implicitly blocks all other flows.

For simplicity and clarity, we focus on a packet filtering firewall, the simplest
model, which operates at the network and transport layers by examining packet
headers. Rules and packets are represented as:

(srcIP, dstIP, srcPort, dstPort,Protocol)

Finally, the rule set under study contains only sub-optimization anomalies;
conflict anomalies are excluded. This choice allows us to concentrate the analysis
and experiments on the automatic detection and removal of inefficiencies without
introducing semantic ambiguity among policies.

21

Chapter 3

Artificial Intelligence and
Machine Learning

3.1 Overview of Artificial Intelligence

Artificial Intelligence (AI) comprises techniques and methods that enable ma-
chines and computer systems to carry out tasks that have traditionally required
human cognitive abilities, such as reasoning, learning, perception, and decision
making. The aim of AI is not merely to automate actions, but to build systems
that can adapt, improve their performance, and make autonomous decisions on the
basis of available data.

3.1.1 Artificial Intelligence vs. Machine Learning vs. Deep
Learning

It is important to distinguish among several concepts that are often used inter-
changeably, but in fact stand in a hierarchical relationship:

• Artificial Intelligence (AI): the broad field that encompasses all techniques
that enable a computer to perform “intelligent” tasks.

• Machine Learning (ML): a branch of AI focused on algorithms that fit
models to data to make predictions or decisions and become more accurate
over time.

• Deep Learning (DL): a branch of ML that uses deep neural networks to
automatically extract complex features and representations.

This relationship can be viewed as nested sets:

AI ⊃ ML ⊃ DL

22

Artificial Intelligence and Machine Learning

Figure 3.1. AI vs. ML vs. DL

3.1.2 The Role of Artificial Intelligence in Cybersecurity

In recent years, Artificial Intelligence (AI) has taken on an increasingly promi-
nent role in cybersecurity, providing advanced tools for the detection, prevention,
and response to cyber attacks. The threat landscape is rapidly evolving and more
sophisticated, which has made it necessary to develop solutions that can analyse
large volumes of data in real time and uncover complex patterns that are difficult
to detect with traditional methods [15] [16].

The main applications of AI in this domain are several. First, it supports
anomaly detection, spotting unusual patterns in network traffic or resource usage
that can signal malicious activity. Then, it enables predictive analytics, where
models learn from historical traces to anticipate likely threats by uncovering recur-
ring patterns and correlations among events. Moreover, it drives the automation
of incident response, shortening reaction times by allowing systems to apply coun-
termeasures without human intervention when predefined conditions are met. It
contributes also to the optimisation of defence systems, refining firewall rule sets,
IDS and IPS configurations, and other security controls through learning algorithms
that improve decisions as more evidence accumulates.

The integration of AI strengthens detection and mitigation capabilities, reducing
false positives and accelerating threat analysis. Nevertheless, despite these clear
benefits, there are significant limitations and challenges that constrain adoption on
a large scale.

A first concern is limited transparency: models based on deep neural networks
often behave as opaque systems, which complicates the explanation of outcomes
and weakens the confidence of security analysts. A second issue is susceptibility

23

Artificial Intelligence and Machine Learning

to adversarial inputs, since carefully crafted examples can induce incorrect be-
haviour. Moreover, some attacks intentionally imitate legitimate traffic, which
makes it harder to separate benign activity from malicious activity. Fourth, many
deployments still experience a substantial rate of false positives, which generates su-
perfluous alerts, reduces operational efficiency, and undermines trust in automated
defences. Finally, the reliance on large volumes of sensitive data raises ethical and
privacy questions regarding governance, data protection, and regulatory compli-
ance.

A further concern is the dual use character of artificial intelligence: the same
techniques that support defence can also be repurposed for offensive objectives, en-
abling adversaries to create more sophisticated malware and design evasion strate-
gies that slip past detection.

In conclusion artificial intelligence has become a strategic pillar of modern cy-
bersecurity, strengthening both prevention and response. Its real impact, however,
depends on responsible adoption: automation should be balanced with human con-
trol, and model transparency should be aligned with security objectives, so that
the resulting solutions are robust, ethical, and sustainable over time.

3.2 Machine Learning Models

Machine Learning rests on an algorithm’s ability to improve its performance
through experience, that is, by analyzing and learning from historical data. Ma-
chine Learning models are primarily grouped into two categories: Supervised
Learning and Unsupervised Learning.

Figure 3.2. Supervised Learning vs. Unsupervised Learning

3.2.1 Supervised Learning

Supervised learning is a machine learning approach in which an algorithm learns
to make predictions or classifications from a dataset of labelled examples. Each

24

Artificial Intelligence and Machine Learning

training instance is paired with the correct answer, called the label.

For example, to build a system that recognises animals in images, the model is
trained on images already labelled with the animal’s name, such as “cat” or “dog”.
The algorithm analyses the features of these images and learns the relationship
between the content and the assigned label.

Once the mapping between inputs and targets has been learned, the model can
generalise to new cases it has not seen before. Training adjusts the parameters
to minimise a loss function that measures the gap between predictions and the
true labels in the data set; with labelled examples as feedback, accuracy typically
improves over successive iterations.

Supervised learning spans two main task families: classification, which as-
signs an input to a discrete category (for example, deciding whether an email is
spam), and regression, which estimates a continuous value (for instance, the price
of a house). In cybersecurity, these techniques support spam filtering, malware
identification, and the forecasting of network traffic patterns.

For firewall policy reordering, the problem can be framed in two ways:

1. Multi-label classification: each possible ordering of the rules is treated as
a class. The model learns to map a given traffic profile to the best ordering.
The main drawback is that the number of possible orderings grows factorially
with the number of rules (n!), which makes the approach poorly scalable.

2. Learning-to-Rank: policy reordering is cast as a ranking problem in which
the model assigns a score to each rule based on the likelihood that it should
be placed near the top. This approach scales well and adapts to dynamic
changes in the number of rules.

Learning-to-Rank Approaches

There are three main approaches:

• Pointwise learning: treats ranking as an independent classification or re-
gression task for each item. It is simple but ignores relationships among
items.

• Pairwise learning: produces a ranking by comparing pairs of items to decide
which is more relevant. It captures pairwise relations but not the structure
of the full list.

• Listwise learning: considers the entire list of items and directly optimises
the quality of the final ranking.

In our setting, the listwise approach is preferable because it optimizes the global
order and yields higher accuracy than the other two.

25

Artificial Intelligence and Machine Learning

3.2.2 Unsupervised Learning

Unsupervised learning refers to methods that learn directly from data without la-
bels or known answers, with the aim of discovering latent regularities, structures,
or relationships. In practice, these techniques are often used to cluster observa-
tions into coherent groups, such as users that exhibit similar behaviour, and to
perform dimensionality reduction, where the number of variables is reduced
while retaining the most informative structure of the data.

In cybersecurity, unsupervised learning is used to detect botnets and to iden-
tify anomalies in network traffic. For firewall policy reordering, it is not suitable
because it lacks an explicit optimization objective: it can reveal patterns, but it
does not directly improve firewall performance.

3.3 Reinforcement Learning

Reinforcement learning (RL) is a machine learning paradigm in which an agent
learns to make decisions by interacting with an environment, with the aim of max-
imising cumulative reward over time. Unlike supervised learning, where the algo-
rithm learns from labelled data provided by an external supervisor, in reinforcement
learning the agent does not receive explicit guidance about the correct action in
each situation. Learning instead proceeds through trial and error: the agent tries
different actions and receives a reward or a penalty according to the consequences
of its choices.

A distinctive feature of RL is the handling of delayed reward: actions influence
not only the immediate payoff but also the future state of the environment and, as
a result, subsequent rewards. This creates the need to balance exploration (trying
new actions to discover better strategies) and exploitation (using known actions
that yield high rewards). The exploration versus exploitation tradeoff is a charac-
teristic challenge of reinforcement learning and is absent from the “pure” forms of
supervised and unsupervised learning.

From a theoretical standpoint, the RL problem can be formalized as the optimal
control of a Markov Decision Process (MDP), possibly under partial observability.
An agent perceives the state of the environment, selects actions that influence its
evolution, and pursues an objective defined in terms of reward. In this sense,
reinforcement learning is not only a sequential decision problem but also a research
area that studies both the underlying models and the practical algorithms used
to solve them, making it a paradigm that is distinct from, yet complementary to,
supervised and unsupervised learning [17].

In cybersecurity, RL is used for automated cyber defence and for modelling
adversarial attack and defence strategies.

3.3.1 Fundamental Elements of Reinforcement Learning

In reinforcement learning, learning does not rely on labelled examples but on a
continuous cycle of interaction between an agent and an environment, where the

26

Artificial Intelligence and Machine Learning

agent learns through trial and error. The main components of this paradigm are
[18]:

• Agent: the decision making entity that acts on the basis of information
received from the environment. It can be a robot that learns to navigate,
software that plays chess, or an autonomous driving system.

• Environment: the context with which the agent interacts. It provides the
agent with the current state and reacts to the agent’s actions by changing
that state.

• Action: the choice made by the agent in a given state. Actions determine
how the environment evolves and influence future rewards.

• Reward signal : a numerical signal issued by the environment after each action,
indicating the immediate benefit or cost of that choice. The reward defines
what is desirable in the short term and is the primary criterion for updating
the agent’s policy.

• Policy : the strategy that maps states to actions. It can be deterministic (the
same action for the same state) or stochastic (actions chosen with specified
probabilities). The policy is the core of the agent’s behaviour, since it entirely
determines how the agent acts.

• Value function: quantifies how good a state (or a state paired with a specific
action) is in terms of expected future reward. Unlike the reward, which
reflects only the immediate outcome, the value function estimates the return
over the long term under a given policy. It is a core component of most RL
methods, guiding decisions towards actions that maximise cumulative gain.

• Model of the environment : an internal representation used by the agent to
predict the environment’s evolution, that is, the next state and reward given
a state–action pair. Methods that use a model are called model based and can
plan by simulating future scenarios, whereas model free methods rely solely
on trial and error.

• RL decision loop: learning proceeds in a recurrent cycle

statet → actiont → rewardt+1, statet+1

which generates a sequence (s, a, r, s′). Through this sequence, the agent
learns to maximise the expected return, namely the discounted sum of future
rewards.

• Episodic and continuing tasks: RL problems may be episodic (with an
initial and a terminal state) or continuing (without a natural end).

27

Artificial Intelligence and Machine Learning

3.3.2 Exploration vs Exploitation

A central dilemma in reinforcement learning is the balance between exploration
and exploitation.

• Exploration: the agent tries new actions, even if they have not historically
yielded the highest rewards. The goal is to discover potentially better strate-
gies or more profitable states.

• Exploitation: the agent chooses actions that, given current knowledge,
promise the highest reward. This maximises short term gain but risks over-
looking superior alternatives.

An agent that explores too much may never fully leverage what it has already
learned; conversely, an agent that exploits too much may become stuck in a subop-
timal strategy. A common way to balance this trade off is the ϵ-greedy strategy,
in which:

a =

{︄
random action with probability ϵ,

argmaxaQ(s, a) with probability 1− ϵ.

State s
Exploitation

(argmaxQ(s, a))

Exploration
(Random action)

1− ϵ

ϵ

3.3.3 Value-Based vs Policy-Based

Reinforcement learning algorithms are commonly grouped into two families:

Value-Based

The learner estimates a value function V (s) or an action value function Q(s, a),
which approximates the expected cumulative reward from a state or a state–action
pair. The optimal policy π∗ is obtained by choosing the action with the highest
value:

π∗(s) = argmax
a

Q(s, a).

This class of methods is simple to implement and converges well in discrete spaces,
but it is poorly suited to continuous action spaces without appropriate function
approximation.

28

Artificial Intelligence and Machine Learning

Policy-Based

The learner optimizes a parameterized policy πθ(a | s) directly, using methods such
as the policy gradient:

∇θJ(θ) = Eπθ
[∇θ log πθ(a | s)Qπθ(s, a)] .

These methods naturally handle continuous action spaces and can represent stochas-
tic policies, but they typically exhibit slower convergence and higher variance.

3.3.4 Monte Carlo vs Temporal Difference Learning

An additional important distinction concerns how value estimates are updated and,
in particular, how bias and variance affect those estimates.

Monte Carlo (MC)

The Monte Carlo method updates values at the end of an episode using the observed
cumulative return:

V (s)← V (s) + α [Gt − V (s)] ,

where Gt =
∑︁T−t−1

k=0 γkRt+k+1. The target Gt is an unbiased estimate of vπ(s),
since by definition vπ(s) = E[Gt]. However, because Gt depends on the entire se-
quence of rewards up to the end of the episode, it can vary widely across trajectories.
This leads to high variance, which makes learning less stable.

Temporal Difference (TD)

The TD method updates estimates after each step, combining ideas from dynamic
programming and Monte Carlo:

V (s)← V (s) + α [Rt+1 + γV (st+1)− V (s)] .

The TD target uses Rt+1, which is sampled from the environment, and V (st+1),
which is only an estimate rather than the true value vπ(st+1). This introduces
bias, because the quality of the update depends on the current accuracy of the
value function. On the other hand, the variance is much lower than in MC, since
the update considers only the immediate reward and the next state, which reduces
uncertainty.

Monte Carlo
Uses full episodic returns

Temporal Difference
Updates step by step

using bootstrapped targets

Bias vs Variance

In summary, Monte Carlo methods provide unbiased but high variance esti-
mates, whereas TD methods yield lower variance but biased estimates. As the
value function improves, the bias in TD updates tends to diminish, balancing the
two effects and making TD particularly effective for incremental learning.

29

Artificial Intelligence and Machine Learning

3.3.5 Agent–Environment Loop

The operation of reinforcement learning can be summarised by the loop in Fig-
ure 3.3: the agent observes the state of the environment, selects an action, receives
a reward, and then observes the next state. This process repeats until the episode
terminates, or indefinitely in continuing environments.

Figure 3.3. Schematic of the agent–environment cycle in reinforcement learning

3.4 Main Reinforcement Learning Algorithms

In this section we examine three foundational algorithms: the k-armed bandit
problem, SARSA, and Q-Learning. The latter two belong to the family of value-
based methods, whereas the k-armed bandit offers a simplified model that intro-
duces core ideas such as the exploration–exploitation trade off.

3.4.1 k-armed Bandit

The k-armed bandit is a classical sequential learning problem that compactly
captures the exploration–exploitation trade off. The name comes from the
analogy with a slot machine (one-armed bandit) that has k levers, each associated
with a different reward distribution.

Problem Definition

• Action: at time step t, the agent selects an action At ∈ {1, . . . , k}.

• Reward: the agent receives a numerical payoff Rt drawn from a stationary
distribution that depends on the chosen action.

• Objective: maximise the expected sum of rewards over a horizon of T steps.

30

Artificial Intelligence and Machine Learning

The true value of an action a is

q∗(a)
.
= E[Rt | At = a],

while the agent maintains an estimate Qt(a) that is updated from experience.

Incremental Learning Update

A simple update rule for the action value estimate is:

Qt+1(At)← Qt(At) + αt

[︁
Rt −Qt(At)

]︁
,

where αt is the learning rate (for example, αt =
1

Nt(At)
, with Nt(a) the number of

times action a has been selected up to time t).

Basic Load Balancing Strategies in Reinforcement Learning

• ϵ-greedy: with probability ϵ select a random action (exploration), otherwise
choose the greedy action (exploitation).

• Pure greedy: always exploit; this can be suboptimal if the initial estimates
are inaccurate.

• Initial exploration: perform an initial phase of random choices, then switch
to pure exploitation.

Despite its simplicity, the k-armed bandit highlights a central challenge of re-
inforcement learning: deciding how much to explore and when in order to
improve current knowledge without sacrificing too much immediate reward.

3.4.2 SARSA and Expected SARSA

SARSA (State–Action–Reward–State–Action) is an on policy control algorithm
based on Temporal Difference learning. Unlike Q learning, SARSA updates the
estimate Q(s, a) using the action actually taken in the next state, thereby reflecting
the behaviour of the policy followed during learning.

Learning Update

The standard SARSA update is:

Q(st, at)← Q(st, at) + α [rt+1 + γ Q(st+1, at+1)−Q(st, at)] ,

where:

• at+1 is the action actually executed in state st+1 under the current policy
(e.g., ϵ greedy).

31

Artificial Intelligence and Machine Learning

• α is the learning rate, 0 < α ≤ 1.

• rt+1 is the immediate reward obtained when moving from st to st+1 after
taking at.

• γ is the discount factor that sets the importance of future rewards, 0 ≤ γ < 1.

• Q(st+1, at+1) is the estimated action value in the next state st+1 for the action
at+1 chosen by the current policy (e.g., ϵ greedy).

Main Features

• On policy: learns action values for the policy being followed, including the
effects of exploration.

• More conservative than Q learning in risky environments, since the boot-
strapped target does not always assume the maximum over actions.

• May be less performant in the long run if the policy explores heavily, but it
avoids risky behaviour.

Expected SARSA

Expected SARSA replaces Q(st+1, at+1) with the expectation under the action
distribution in state st+1:

Q(st, at)← Q(st, at) + α

[︄
rt+1 + γ

∑︂
a

π(a | st+1)Q(st+1, a)−Q(st, at)

]︄
.

• Reduces the variance of the update by removing the randomness due to a
single sampled action at+1.

• Often outperforms SARSA, especially with larger learning rates α.

• Can be used in both on policy and off policy settings, providing a bridge
between SARSA and Q learning.

3.4.3 Q-Learning

Q-learning is one of the most influential algorithms in reinforcement learning. It
is an off policy control method based on Temporal Difference (TD) learning.
Introduced by Watkins in 1989, it marked a turning point because it allows the
agent to estimate the optimal action value function q∗(s, a) directly, independently
of the behaviour policy followed during learning.

32

Artificial Intelligence and Machine Learning

Q-table

The main data structure in Q-learning is the Q-table, a matrix whose rows cor-
respond to states and whose columns correspond to available actions. Each entry
Q(s, a) is an estimate of the expected return obtained by taking action a in state s
and then following the optimal policy:

Q(s, a) = expected future return.

Learning Update

After each interaction, the agent updates the Q-table using the received reward
and the observed next state:

Q(st, at)← Q(st, at) + α
[︂
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]︂
,

where:

• Q(s, a): estimate of the value of the state–action pair.

• α: learning rate, 0 < α ≤ 1.

• rt+1: immediate reward obtained after taking at in state st.

• γ: discount factor, 0 ≤ γ < 1.

• maxaQ(st+1, a): best estimated value in the next state, maximised over all
actions.

Main Features

• Off policy: learns the value of the optimal policy even while following an
exploratory policy (for example, ϵ-greedy) to gather data.

• Convergence: proven to converge to q∗ with probability one [19], provided
that all state action pairs are visited infinitely often and the learning rates α
satisfy the standard stochastic approximation conditions.

• Simplicity: it does not require an explicit model of the environment.

3.5 From Background to the Present Work

3.5.1 Reinforcement Learning vs. Listwise Learning

Model selection must weigh the advantages and limitations of the two approaches.
Listwise learning trains on historical data to predict the optimal ordering of rules.
The model learns to rank the entire rule list so as to improve firewall efficiency.
It is often simpler to implement than reinforcement learning and produces results

33

Artificial Intelligence and Machine Learning

grounded in observed data. However, its effectiveness depends on the quality and
representativeness of the training set. In addition, it may not adapt quickly to
abrupt changes in network traffic, since it relies on patterns learned from past
data, which makes it less flexible and more static.
Reinforcement learning uses an agent that explores alternative orderings of the rules
and evaluates the effectiveness of each configuration. This process enables dynamic
adaptation to changes in network traffic, thereby improving firewall performance
over time. However, reinforcement learning can be complex to implement and re-
quires a training period during which the agent may not operate optimally.
In conclusion, given the initial objective of achieving dynamic reordering, reinforce-
ment learning is the more appropriate choice.

34

Chapter 4

Thesis Objectives

Firewalls constitute a primary line of defence for protecting networks, as they reg-
ulate communication flows by determining which packets may cross the perimeter
and which must be blocked. This function is realised through an ordered set of
filtering rules that are evaluated sequentially until a match is found.

Such mechanism can become very inefficient as the number of rules grows. In
those cases, the rise in complexity slows the packet checking and increases the
probability of poorly performing configurations. A firewall that does not manage
its policy correctly can introduce significant delays in traffic handling and, in the
worst cases, leave systems exposed to vulnerabilities that attackers may exploit.

With a rule configuration that is non optimal it’s possible to have a lot of misses,
namely packets that are not handled as intended because of inadequate ordering.
In complex networks with high traffic volumes, these issues undermine both overall
service reliability and the level of security provided by the protection system.
This scenario highlights the need for a more intelligent and adaptive approach to
firewall policy management.

Goal of the Solution

In this thesis we want to develop an intelligent firewall capable of dynamically
optimizing the ordering of filtering rules, overcoming the limitations of static ap-
proaches that typically rely on simple sorting techniques. The proposal is, in par-
ticular, to employ a Reinforcement Learning algorithm, which enables an agent
to learn from observed network traffic and to assign a distinct value to each rule.
In this way, the most relevant rules are brought to the top of the list, reducing
processing time and potential misses.

To realise this vision, the work designs a learning agent that interacts with
the firewall: it analyses incoming packets, updates rule evaluations on the fly,
and periodically supplies the traditional firewall with an optimised ordering of the
policy. Once the traffic pattern has been learned, the agent operates alongside the
firewall, ensuring continuous and adaptive reordering.
In summary, the system aims to:

• Reduce latency introduced by the filtering process;

35

Thesis Objectives

• Minimise misses due to ineffective orderings;

• Improve overall network reliability and security;

• Introduce a dynamic and adaptive approach that reacts to traffic changes in
real time.

36

Chapter 5

Approach and Methodology

5.1 Smart Firewall

As outlined in the previous chapters, the goal is to design an intelligent agent that
behaves as an adaptive firewall, able to select dynamically the most appropriate
rule to apply to each incoming packet. The agent learns through Reinforcement
Learning, in particular via theQ-Learning algorithm, and progressively improves
its decisions on the basis of accumulated experience. The idea is for the agent to
discover, through interaction, which rules are most effective given the observed
traffic.

In the Q-table, each state represents a packet to be classified, while actions
correspond to selecting one of the rules available in the firewall. Initially all rules
have value Q = 0.

When a packet arrives, the agent selects a rule with an ϵ-greedy policy. If the
selected rule matches the packet, it receives a positive reward and the value
of that rule is updated; otherwise, it incurs a penalty and proceeds to the next
candidate, choosing among the remaining rules the one with the highest current Q
value while excluding those already attempted.

The Q-table is updated using the standard Q-Learning update rule, in addition,
a time decay mechanism lowers the value of rules that are not used for a certain
number of consecutive packets, thereby modelling the gradual obsolescence of rules
over time.

This mechanism allows the agent to adjust its choices as it learns, improving
filtering effectiveness and keeping the decision policy in step with changing traffic
patterns.

Example

We consider three initial rules with Q = 0. Packets arrive sequentially and the
agent updates the Q-table according to the received rewards. We use reward r = 1
and penalty r = −1, with α = 0.5.

37

Approach and Methodology

Initial setup

• Firewall rules:

– Rule A

– Rule B

– Rule C

• Initial Q-table:

Rule Q-value Last used
Rule A 0 –
Rule B 0 –
Rule C 0 –

Table 5.1. Initialization of Q values and rule usage state

• Parameters:

– α = 0.5

– γ = 0

– ϵ = 0.2

– Reward: +1 if the selected rule is correct, −1 otherwise

– Decay: after every 5 packets of inactivity, Q← Q× 0.9

Evolution of the Q-table: Packets 1 to 5

Packet 1: associated with Rule B.
Rule A is selected (greedy) but is incorrect:

QA = 0 + 0.5 · (−1) = −0.5.

Then Rule B is selected and is correct:

QB = 0 + 0.5 · 1 = 0.5.

Rule Q-value
Rule A -0.5
Rule B 0.5
Rule C 0

Table 5.2. Q-table after the first packet

38

Approach and Methodology

Packet 2: again associated with Rule B.
Rule B is selected (exploitation) and is correct:

QB = 0.5 + 0.5 · (1− 0.5) = 0.75.

Rule Q-value
Rule A -0.5
Rule B 0.75
Rule C 0

Table 5.3. Q-table after the second packet

Packet 3: associated with Rule C.
Rule B is selected (exploitation) but is incorrect:

QB = 0.75 + 0.5 · (−1− 0.75) = −0.125.

Then Rule C is selected and is correct:

QC = 0 + 0.5 · 1 = 0.5.

Rule Q-value
Rule A -0.5
Rule B -0.125
Rule C 0.5

Table 5.4. Q-table after the third packet

Packet 4: again associated with Rule C.
Rule C is selected (exploitation) and is correct:

QC = 0.5 + 0.5 · (1− 0.5) = 0.75.

Rule Q-value
Rule A -0.5
Rule B -0.125
Rule C 0.75

Table 5.5. Q-table after the fourth packet

Packet 5: associated with Rule A.
Rule C is selected (exploitation) but is incorrect:

QC = 0.75 + 0.5 · (−1− 0.75) = −0.125.

39

Approach and Methodology

Then Rule A is selected and is correct:

QA = −0.5 + 0.5 ·
(︁
1− (−0.5)

)︁
= 0.25.

Rule Q-value
Rule A 0.25
Rule B -0.125
Rule C -0.125

Table 5.6. Q-table after the fifth packet

Packets 6 to 10 (summary)

Over packets 6 to 10, the agent observes the following ground truth sequence: B, B,
C, C, C. The choices yield the following updates (we report only the final values):

QA = 0.25, QB = −0.140625, QC = 0.859375.

The last used packets are: Rule A at packet 5, Rule B at packet 8, and Rule C at
packet 10.

Decay after Packet 10

From packet 11 onward, if a rule has not been used in the last 5 packets, its Q
value is reduced (times 0.9). Since Rule A was not used between packets 6 to 10,
it decays; Rule B and Rule C do not.

Rule Q before Last used Action
Rule A 0.25 5 Decays → 0.25× 0.9 = 0.225
Rule B -0.140625 8 No decay
Rule C 0.859375 10 No decay

Table 5.7. Q-value updates with decay applied (threshold: 5 packets of inactivity)

Configurations

The development of an intelligent firewall based on Reinforcement Learning pro-
ceeded through three main stages: an initial stateless model, the gradual introduc-
tion of state to characterize packets, and, finally, the design of a configuration with
a digital twin.

5.1.1 Baseline Firewall (Stateless)

The first implementation adopted a deliberately simple structure: an agent inter-
acting with an environment without state. At each packet arrival, the agent applies

40

Approach and Methodology

an ϵ-greedy policy to select one of the available actions. If the chosen action is in-
correct, the agent attempts another action, distinct from those already tried for
that specific packet, penalising incorrect choices and rewarding correct ones. This
approach produced a working prototype, but it suffers from significant limitations
due to the absence of a packet state representation.

5.1.2 Firewall with State Representation

To overcome the limitations of the previous model, we introduced the notion of
state into the decision process. Whereas the first firewall handled all packets in the
same way, here each packet is associated with a state based on its characteristics,
so that optimal actions can vary with the state under consideration. This increases
complexity: the Q-table is no longer a single row with n columns (where n is the
number of rules), but there are m rows, corresponding to the states, per n columns.
To limit table growth, we consider at most 27 states, focusing in particular on
configurations with 3, 9, and 27 states.

Firewall with 3 States

In this configuration, the state is determined solely by the packet’s protocol:

• TCP

• UDP

• other protocols

For example:

192.168.1.1 8.8.8.8 102 8080 TCP → state TCP

192.168.1.1 132.4.4.1 102 65000 UDP → state UDP

Firewall with 9 States

Here we extend the previous classification by combining the three protocols (TCP,
UDP, other) with a three-way split of the source port [20]:

• Well known ports (0–1023): reserved by the operating system or server
applications (e.g., FTP 21, SSH 22, SMTP 25, HTTP 80).

• Registered ports (1024–49151): used by user applications for communica-
tions that are specific.

• Dynamic ports (49152–65535): assigned to client applications dynamically.

Combining the two classifications yields 3× 3 = 9 distinct states.
For example:

192.168.1.1 8.8.8.8 102 8080 TCP → state TCP-W (source well known)

192.168.1.1 132.4.4.1 55000 65000 UDP → state UDP-D (source

dynamic)

41

Approach and Methodology

Firewall with 27 States

The final configuration further extends the model by also splitting the destination
port into three ranges. The state space thus becomes 3 (protocols) × 3 (source
ports) × 3 (destination ports), for a total of 27 states.
For example:

192.168.1.1 8.8.8.8 102 8080 TCP → state TCP-W-R (source well

known, destination registered)

192.168.1.1 132.4.4.1 55000 80 UDP → state UDP-D-W (source dynamic,

destination well known)

5.1.3 Digital Twin configuration

In the final configuration we adopt a hybrid approach that runs two distinct firewalls
in parallel on the same packet stream. The first is the smart firewall, described in
the previous sections, which can be implemented either in a stateless mode or with
explicit states, according to the administrator’s needs. The second is a traditional
firewall that applies the first matching rule resolution strategy.

The overall operation works in this way: each incoming packet is processed
in parallel by both firewalls. The smart firewall does not directly decide whether
to accept or drop the packet; instead, it learns from the traffic and updates the
rule list dynamically. Periodically, or after a specified volume of traffic, the smart
firewall produces a newly ordered rule set, optimized on the basis of the observed
patterns, and transfers it to the traditional firewall. The latter is responsible for
the final decision (ACCEPT/DENY) on packets, while benefiting from a policy that is
continuously updated and adapted to current traffic.

In this way, the traditional firewall preserves its established, reliable structure,
while the smart firewall acts as an optimization engine that reduces misses and
improves overall performance, particularly in terms of latency.

Incoming Traffic

Smart Firewall
(RL–Q-learning)

Traditional Firewall
(First-Match)

Decision:
ACCEPT / DENY

Rule list update

Figure 5.1. Digital twin architecture

5.2 Rule Generator

Before starting the implementation and validation phases of our intelligent firewall,
we precisely specified the required inputs to simulate system behaviour. In par-
ticular, we considered two fundamental elements: the network traffic, represented

42

Approach and Methodology

in the five tuple format (srcIP, dstIP, srcPort, dstPort, protocol), and a
rule set that is coherent with, and comprehensive of, that traffic.

As a first step we used ClassBench, a widely used tool for generating synthetic
IPv4 rule sets in the five tuple format. ClassBench can analyse an existing rule set
to extract a SEED, or generate a synthetic rule set from a given parameter file. In
our case, we used it to produce several rule sets with the following command:

./vendor/db_generator/db_generator -bc vendor/parameter_files/fw1_seed

100 2 -0.5 0.1 output.rules

The parameters have the following meaning:

• -b: enables scaling of IP prefixes to obtain a more realistic distribution.

• -c vendor/parameter files/fw1 seed: selects the parameter file that guides
the type of rules generated (in this case, firewall rules).

• 100: number of rules to generate.

• 2: smoothness parameter that controls structural variety in the rules.

• -0.5: address scope parameter that sets the specificity of IP prefixes (negative
values yield more specific prefixes).

• 0.1: port scope parameter, analogous to the above but for ports (positive
values yield wider ranges).

• output.rules: output file that will contain the generated rule set.

After obtaining the synthetic rules, we defined in Python a sampling scheme
for packet creation so as to generate artificial traffic consistent with the produced
rules.

To increase the robustness and validity of testing, we also selected a real world
dataset. Specifically, we used the SCADA/ICS Network Captures dataset,
which contains about 239,000 packets with TCP, UDP, and ICMP as the main
protocols (Figure 5.2).

43

Approach and Methodology

Figure 5.2. Distribution of packets per protocol

The use of a real world dataset made it necessary to develop a dedicated
rule generator able to take the observed packets as input and produce a rule
set that covers every packet at least once. To build this generator, we adopted an
unsupervised learning approach aimed at discovering recurrent patterns in the
traffic and translating them into filtering rules. In particular, we focused on three
clustering algorithms:

• k-means, which partitions packets into a predefined number of clusters.

• DBSCAN, which identifies clusters of arbitrary density and separates noise.

• Hierarchical clustering, which constructs a hierarchy of clusters and en-
ables multi level analysis of the rules.

5.2.1 K-Means Clustering

K-Means is one of the most widely used clustering algorithms in data science and
machine learning. It is a partitional clustering method that divides an unlabelled
dataset into K distinct, non-overlapping groups. Each group is represented by a
centroid, the mean of the points assigned to that cluster. The algorithm seeks to
minimize intra-cluster distance, so that items within the same group are as similar
as possible, while being as dissimilar as possible from items in other groups.
The method was first introduced by Hugo Steinhaus in 1956 and later formalised
by MacQueen in 1967, becoming a standard tool in statistical analysis and, more
recently, in machine learning.

44

Approach and Methodology

Operation

The algorithm proceeds through an iterative sequence of steps [21]:

1. Specify the desired number of clusters K.

2. Select K initial points at random as provisional centroids.

3. Assign each data point to the cluster whose centroid is closest (Figure 5.3),
using a distance metric—typically Euclidean distance, though alternatives
such as cosine similarity or correlation are possible.

4. Recompute each centroid as the mean of the points assigned to that cluster.

5. Repeat steps 3 and 4 until convergence, that is, until assignments no longer
change substantially or a maximum number of iterations is reached.

Figure 5.3. Examples of K-Means

The computational complexity is O(n ·K ·I ·d), where n is the number of points,
K the number of clusters, I the number of iterations, and d the data dimensionality.
In practice, most of the convergence typically occurs in the early iterations.

Among its strengths, K-Means is simple to understand and implement; on data
sets with high dimensional features it can be more efficient than hierarchical meth-
ods, and it produces partitions that are easy to interpret. However, it also has
notable limitations: the number of clusters K must be fixed in advance, the out-
come is sensitive to the initial centroids and to the order in which the data are
processed; performance is best when clusters are roughly spherical and of simi-
lar size, and degrades on data with more complex structure; and its sensitivity to
feature scaling makes data normalisation advisable before use.

5.2.2 DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a density-
based clustering algorithm designed to identify groups of points in high-density

45

Approach and Methodology

regions separated by low-density areas. Unlike centroid-based approaches such as
K-Means, DBSCAN does not require the number of clusters to be specified in ad-
vance and is particularly effective at discovering arbitrarily shaped structures while
identifying noise and outliers.

Operation

The algorithm relies on two main parameters [22]:

• ε (eps): the neighbourhood radius within which a point considers its neigh-
bours;

• MinPts: the minimum number of points required within the ε radius for a
region to be deemed sufficiently dense to form a cluster.

Given these parameters, DBSCAN distinguishes three types of points (Figure 5.4):

• Core points: points with at least MinPts neighbours within radius ε. They
lie in dense areas and form the core of clusters.

• Border points: points with fewer than MinPts neighbours that nevertheless
fall within the ε neighbourhood of a core point. They belong to the cluster
but lie on its boundary.

• Noise points: points that satisfy neither condition and therefore do not
belong to any cluster. These are typically treated as outliers or anomalies.

Figure 5.4. Examples of DBSCAN

The algorithm explores the dataset starting from a core point and progressively
includes all density reachable points, that is, points reachable through a chain
of sufficiently dense neighbours. In this way, DBSCAN can recover clusters of
arbitrary shape rather than being limited to spherical structures.

This method has several strengths: it does not require choosing the number of
clusters K in advance; it can discover clusters of arbitrary shape rather than only

46

Approach and Methodology

circular or elliptical groups, and it naturally flags outliers by assigning them to a
noise set. At the same time, its performance is highly dependent on the choice of
ε and MinPts—poor settings may yield too many noise points or merge distinct
groups into overly large clusters. It also struggles on data sets with widely varying
densities, where some clusters are very dense and others sparse, and its efficiency
can degrade in high dimensional spaces because meaningful distance measures are
harder to define.

5.2.3 Hierarchical clustering

Hierarchical Clustering is a clustering technique that builds a hierarchy of clus-
ters, typically represented as a tree (a dendrogram). Unlike partitional algorithms
such as K-Means, it does not require the number of clusters to be specified in ad-
vance, since the hierarchical structure allows groupings to be inspected at different
levels of granularity [23].
There are two main approaches (Figure 5.5):

• Agglomerative (bottom up): each data point starts as a single cluster; at
each iteration, the most similar clusters are merged until a single cluster
containing all points is formed.

• Divisive (top down): the entire dataset is initially treated as one cluster,
which is then progressively split into subclusters down to elementary groups.

Figure 5.5. Examples of Hierarchical Clustering

Operation

The hierarchical process relies on a similarity measure (e.g., Euclidean distance,
cosine, or correlation) and on a linkage strategy that defines how distances between
clusters are computed [24]:

• Single linkage: minimum distance between two points belonging to different
clusters.

47

Approach and Methodology

• Complete linkage: maximum distance between points belonging to different
clusters.

• Ward’s method: merges clusters to minimize the increase in within-cluster
variance.

The final output is a dendrogram that shows the sequence of merges (or splits)
and allows the desired number of clusters to be chosen by cutting the tree at a
selected height.

Hierarchical clustering is appealing in exploratory work because it does not
require fixing the number of clusters in advance; the structure emerges from the
data. It also yields a dendrogram that analysts can read to examine groupings at
different levels of detail. On the downside, the method is sensitive to outliers, which
can skew the hierarchy, and decisions taken early in the process, such as merges or
splits, cannot be reversed, so early mistakes may propagate and lead to suboptimal
partitions.

In light of the foregoing considerations, we decided to exclude DBSCAN. The
goal of the rule generator is to ensure that every packet is assigned to at least one
cluster and, consequently, to a corresponding rule. However, DBSCAN may label
some packets as noise points, which leaves them outside the main clusters.

An initial strategy considered merging all noise points into a single cluster and
deriving a generic rule from it. This approach would produce an overly broad rule
with no meaningful common characteristics among the aggregated packets, thereby
undermining the effectiveness and granularity of the clustering process.

For these reasons, the final choice was to implement two distinct generators:
one based on K-Means and the other on hierarchical clustering, which can
guarantee complete coverage of packets without introducing inefficiencies due to
rules that are too general.

5.2.4 K-Means Rule Generator

This section describes the operation of the first rule generator, which is based on
the K-Means clustering algorithm.

Preprocessing and feature engineering

Preprocessing was required to handle the heterogeneous nature of network traffic.
In this phase, we performed feature engineering on both IP addresses and ports.
For each protocol we estimate IP diversity (the number of unique srcIP,dstIP

pairs and the cardinality of individual sources and destinations). Based on this
measure, the generator automatically selects one of the following representations:

• Original (8 features): normalised srcIP/dstIP and low granularity hierar-
chical encodings (/24, /16, /8). Recommended in low diversity settings, it
reduces the risk of overfitting.

48

Approach and Methodology

• Hybrid (22 features): intermediate subnet granularity (/32–/4) with de-
creasing weights, augmented with relational features (same subnet, IP prox-
imity). Suitable for medium diversity scenarios.

• Hierarchical (68 features): a multi level representation of the IP address that
includes all subnets from /32 down to /1. Each level is weighted hierarchically
and enriched with relational features so as to capture complex patterns and
relationships at multiple granularities. This configuration is preferred in high
diversity contexts where maximum separability is required.

For TCP/UDP we add further port related features:

• normalised values: srcPort/65535, dstPort/65535;

• one hot encoding of IANA categories (well known, registered, dynamic) for
source and destination;

• relational features: same category (binary) and proximity computed as

1− |src−dst|
65535

.

All features are then standardised with StandardScaler (µ = 0, σ = 1) before
clustering. This prevents any variable from dominating the Euclidean distance due
to scale differences, a problem to which K-Means is particularly sensitive.

Per-protocol clustering

Clustering is applied separately for each protocol through the following steps:

1. Determining the number of clusters: the target number of rules assigned
to each protocol is proportional to its traffic share. For example, if the overall
goal is to generate 100 clusters and TCP traffic accounts for 20% of the total,
TCP is assigned 20 clusters. From this value, we subtract a quota reserved
for generating rules with partial overlap and full overlap, which yields the
effective number of clusters to create. The final value is also bounded by the
number of unique samples available.

2. Learning: K-Means is applied with n init=10 and random state=42. Using
multiple initialisations reduces the risk of converging to suboptimal solutions
due to poor centroid initialisation.

3. Internal evaluation: where applicable, partition quality is estimated with
the silhouette score.

The proportional allocation avoids bias among protocols, while introducing con-
trolled overlaps produces more realistic rule sets that are useful during validation.

49

Approach and Methodology

Rule synthesis from clusters

Given the clusters, firewall rules are synthesized as follows:

1. IP ranges: compute the minimum and maximum of srcIP int and dstIP int.
For the destination, compute the smallest CIDR network that covers both
endpoints (calculate cidr network). Apply the same logic to the source.

2. Port ranges: for TCP/UDP, use the minimum and maximum of srcPort
and dstPort (formatted as a range or a single value). For protocols without
ports, set the range to 0–65535.

3. Base rule: generate a rule (srcIP, dstIP, srcPort, dstPort, protocol)

and attach the number of covered packets as a statistical weight.

Controlled overlaps

For a predefined percentage of clusters, two distinct rules are generated:

• Partial overlap: one nontrivial ranged field (srcIP, dstIP, srcPort, or
dstPort) is split into two subranges with a 60%/40% split. The two resulting
rules share the remaining fields and partially overlap.

• Full overlap: create a “small” rule (50% subrange) and a “full” rule (entire
range), so the former is fully contained in the latter.

This choice allows us to simulate redundancy and shadowing phenomena commonly
found in real firewall configurations. In our experiments the parameters are set to
20% of rules with partial overlap and 10% with full overlap, though they can be
disabled entirely to obtain anomaly-free rule sets.

Advantages of the approach

The approach brings several advantages. It is adaptive, with an automatic se-
lection of features, informed by the diversity of the data, allows the system to
adjust to new contexts while remaining robust. It scales well because clustering is
carried out per protocol, which accommodates heterogeneous data sets from small
collections to large enterprise networks. It also increases realism, in fact the rule
generator introduces controlled overlaps so that the resulting policy reproduces
dynamics commonly seen in practice. Finally, it improves efficiency, so running
K-Means with multiple initializations lowers the risk of poor local optima and yields
more stable partitions.

5.2.5 Hierarchical Rule Generator

This section analyses the second configuration of the rule generator, based on a
top down hierarchical approach. Unlike a purely partitional method, the pipeline
adopts multi phase hierarchical clustering organized as follows:

50

Approach and Methodology

1. grouping of IP pairs (srcIP, dstIP);

2. optional subdivision by port pairs (srcPort, dstPort) within the IP clus-
ters;

3. a post adjustment phase to align the number of clusters (and thus rules)
with the desired target exactly ;

4. synthesis of the firewall rules (CIDR plus port ranges), with the option to
introduce controlled overlaps (partial and full).

As in the K-Means approach, the process is conducted per protocol (TCP, UDP,
other), ensuring semantic and statistical consistency across the data.

Preprocessing and feature engineering

Preprocessing follows the same adaptive logic as in the first generator. For IP
addresses we use hierarchical representations (for example, subnets /24, /16, . . .),
while for ports we consider numerical distance and the IANA semantics (well known,
registered, dynamic). All features are standardised with StandardScaler so as to
mitigate the effect of differing numeric scales on the Euclidean distances used during
clustering.

Cluster creation process

For each protocol, the target number of rules is proportional to its share of pack-
ets. A percentage is reserved for generating rules with controlled overlaps, and
the remainder determines the number of clusters that are actually “needed”. The
target is also bounded by the number of unique samples available, to avoid over
partitioning.

Phase 1: Clustering of IP pairs
We extract unique (srcIP, dstIP) pairs and apply an adaptive K-Means on the
selected IP features (Original/Hybrid/Hierarchical). The initial number of clusters
is set to about 75% of the final target, limited by the number of available pairs.
We explore a neighbourhood around the requested cluster count and select the
configuration with the best silhouette score, adjusted with a penalty for deviations
from the target (“adjusted silhouette”).

Phase 2: Subdivision by port pairs (TCP/UDP)
For port based protocols, each IP cluster can be further split into port pair clusters
by applying K-Means to the (srcPort, dstPort) features. The decision to split
depends on a split priority measure, computed as a weighted combination of three
main factors:

• Spread: measures the dispersion of port pairs using the average Euclidean
distance among them.

51

Approach and Methodology

– Low spread example: [(80,443), (81,444), (82,445)]. The ports
are consecutive, with a normalised average distance of ≈ 0.1. The cluster
is homogeneous and does not require further splitting.

– High spread example: [(22,22), (443,443), (8080,8080),

(65000,65000)]. The pairs span very distant intervals, with spread
≈ 0.8. The cluster is heterogeneous and benefits from a split.

• Range span: captures the overall span of source and destination ports.

– Low range span example: [(80,443), (8080,8443)]. The combined
interval covers about 12% of the port space, indicating a relatively com-
pact cluster (standard HTTP and variants).

– High range span example: [(22,22), (443,443), (3389,3389),

(65000,65000)]. The interval covers almost the entire port space (nor-
malised value ≈ 1.0). The cluster is very diverse and should be priori-
tised for splitting.

• Consecutiveness: evaluates how consecutive the port pairs are.

– Low consecutiveness example: [(22,22), (443,443),

(8080,8080), (65000,65000)]. No pair is consecutive, so consecutive-
ness is 0. The cluster is highly heterogeneous and a good candidate for
further division.

– High consecutiveness example: [(80,80), (81,81), (82,82),

(83,83), (90,90)]. Three out of four adjacent steps are consecutive,
with consecutiveness = 0.75. The cluster is homogeneous and may not
need a split.

The final priority is computed as:

P = 0.3·Spread+0.3·RangeSpan+0.2·(1−Consecutiveness)+0.2·min

(︃
1,

numPairs

10

)︃
,

where higher values indicate more heterogeneous clusters that are therefore better
candidates for subdivision.

Phase 3: Post adjustment toward the exact target
Finally, a post adjustment step enforces the exact target number of clusters. If
there are too few clusters, we split those with the highest split priority; if there are
too many, we merge clusters with the lowest priority. The result is a final set that
respects the predefined rule budget.

Rule synthesis from clusters

Rule generation proceeds in the same way as in the K-Means generator: for each
cluster we compute IP and port ranges and produce rules of the form (srcIP,

dstIP, srcPort, dstPort, protocol). Likewise, controlled overlaps can be
introduced and configured by percentage (20% partial and 10% full in our case).

In this approach, deduplication is more critical than in K-Means because:

52

Approach and Methodology

• hierarchical clustering can yield convergent clusters,

• the post adjustment step may produce similar sets,

• multiple subdivisions can lead to identical IP/port combinations,

• the overlaps themselves can introduce duplicates.

Duplicate rules (the same logical five tuple) are therefore merged by summing
their packet count, reducing cardinality without loss of information.

Advantages of the Hierarchical Top Down approach

This strategy provides precise control over granularity, reaching an exact target
number of rules by splitting only those clusters that display genuine heterogene-
ity. It is computationally efficient, since a divide and conquer procedure lowers
complexity and scales more effectively than flat clustering on large data sets. It is
also highly interpretable: the hierarchy reflects networking semantics (for example,
IP subnets and port groupings), and the split criteria have a clear meaning that
preserves traceability of the resulting rules.

5.2.6 Comparison between the Two Rule Generators

The two approaches, K-Means Rule Generator and Hierarchical Top-Down
Rule Generator, share the same logic of adaptive feature engineering on IP ad-
dresses and ports, but they differ substantially in clustering strategy and in how
granularity is controlled.

The first approach (K-Means) performs direct partitional clustering, apply-
ing K-Means in a single step to IP+port features. It is characterised by simplicity,
speed, and lower computational overhead. However, the resulting number of clus-
ters is only approximate relative to the desired target, typically deviating by a few
units, and quality depends on dimensionality and initialisation.

The second approach (Hierarchical Top-Down) implements divisive hierar-
chical clustering in three phases (IP→ Ports→ Post adjustment). It guarantees
an exact match to the target number of rules and introduces fine grained control
via split metrics (spread, range span, consecutiveness). This precision comes at the
cost of greater implementation complexity and higher computational overhead.

In terms of application scenarios:

• The K-Means Generator is suitable for small to medium datasets, con-
texts with tight performance requirements, or cases in which an approximate
number of rules is acceptable.

• The Hierarchical Top-Down Generator is preferable for large datasets
and when thousands of rules are needed, or when a selected target of rules is
strictly required.

53

Approach and Methodology

In conclusion, the two generators should be viewed as complementary: the
first prioritises efficiency and simplicity, whereas the second guarantees precision
and the ability to adapt to complex scenarios. The choice between them thus
depends on performance constraints and accuracy requirements in the deployment
context. In our work, given a medium-small dataset (about 239,000 packets), we
adopted the first generator to create the rule set.

It is important to emphasise that both generators require packets in the five tu-
ple format (srcIP, dstIP, srcPort, dstPort, protocol). To this end, from
the SCADA/ICS Network Captures dataset we extracted a .pcap file, which was
then transformed into the desired format by a Python function implemented with
the Scapy library:

Listing 5.1. Extraction of 5-tuples from a SCADA/ICS PCAP file

from scapy.all import rdpcap, IP, TCP, UDP, ICMP

import csv

pcap_file = "4SICS-GeekLounge-151020.pcap"

packets = rdpcap(pcap_file)

with open("five_tuple_full.csv", "w", newline=’’) as csvfile:

fieldnames = [’srcIP’, ’dstIP’, ’srcPort’, ’dstPort’, ’protocol’]

writer = csv.DictWriter(csvfile, fieldnames=fieldnames, delimiter=’;’)

writer.writeheader()

for pkt in packets:

if IP in pkt:

src_ip, dst_ip, proto = pkt[IP].src, pkt[IP].dst, pkt[IP].proto

if TCP in pkt:

writer.writerow({’srcIP’: src_ip, ’dstIP’: dst_ip,

’srcPort’: pkt[TCP].sport, ’dstPort’:

pkt[TCP].dport,

’protocol’: ’TCP’})

elif UDP in pkt:

writer.writerow({’srcIP’: src_ip, ’dstIP’: dst_ip,

’srcPort’: pkt[UDP].sport, ’dstPort’:

pkt[UDP].dport,

’protocol’: ’UDP’})

elif ICMP in pkt:

writer.writerow({’srcIP’: src_ip, ’dstIP’: dst_ip,

’srcPort’: ’’, ’dstPort’: ’’, ’protocol’:

’ICMP’})

else:

writer.writerow({’srcIP’: src_ip, ’dstIP’: dst_ip,

’srcPort’: ’’, ’dstPort’: ’’, ’protocol’:

proto})

The result is a CSV file containing the entire traffic converted into the five tuple
format.

54

Chapter 6

Implementation and Validation

In this section, we present the implementation and validation of our firewall models,
focusing in particular on the stateless firewall, the state-based firewalls with 3,
9, and 27 states, and the final digital twin configuration. The implementation
was carried out in Python, a language widely adopted in the research community
due to its readability, extensive ecosystem of scientific libraries, and strong sup-
port for machine learning and reinforcement learning. Python is particularly well
suited to this work. First, it enables rapid prototyping: its readable, high level
syntax supports fast experimentation and iteration. Second, it offers native sup-
port for reinforcement learning through libraries such as Gymnasium (a maintained
fork of OpenAI Gym), which provide standard interfaces for building, training, and
evaluating RL environments.

6.0.1 Reinforcement Learning Framework

We developed a reinforcement learning component using the Gymnasium library,
because it offers a standard API for defining environments and agents, along with
a diverse collection of reference environments. In particular a key feature of this
framework is the use of wrappers, which enable the modification of existing en-
vironments without altering the underlying implementation. Wrappers simplify
code maintenance, encourage modularity, and can be chained to combine multiple
modifications.

The design of our smart firewall followed this paradigm: for each firewall type
(stateless, state based, and digital twin), a custom wrapper was implemented, from
which the actual RL environment was created. This modular approach allowed us
to maintain a consistent structure across different configurations while adapting the
environment to the specific requirements of each firewall type. In this way, every
firewall variant can be described as a specialization of the same general framework,
differing only in the way state information is represented.

55

Implementation and Validation

6.1 Development of Baseline Firewall

The first implementation, referred to as the baseline firewall, introduces the
stateless configuration of our system. The core environment is represented by the
class FirewallEnv, which inherits from gym.Env. This class models the interaction
between the agent (the smart firewall) and a stream of incoming packets, guided
by a set of predefined filtering rules. The environment tracks the current packet,
the actions attempted by the agent, and returns feedback in the form of rewards
and penalties.

6.1.1 Environment Design

The environment is implemented as a wrapper around gym.Env. It exposes a single
observation that reflects the stateless design, an action space that enumerates the
firewall rules, and a reward signal that indicates whether the selected rule matches
the current packet.

Formally:

• States: the observation is always 0, i.e. no contextual information is pro-
vided.

• Actions: A = {0, . . . , |R| − 1}, where R is the set of available rules.

• Reward:

rt =

⎧⎪⎨⎪⎩
0.77 if match(pt, ra) = True,

0 if t < 30 and no match,

−0.045 otherwise.

• Transition: when a match occurs, the environment advances to the next
packet; otherwise it remains on the same packet.

Listing 6.1. Stateless firewall environment

import gym

from gym import spaces

class FirewallEnv(gym.Env):

def __init__(self, packets, rules, match_fn,

neg_cost_after=30):

super().__init__()

self.packets = packets

self.rules = rules

self.match_fn = match_fn

self.neg_cost_after = neg_cost_after

self.current = 0

self.observation_space = spaces.Discrete(1)

self.action_space = spaces.Discrete(len(rules))

56

Implementation and Validation

def reset(self):

self.current = 0

return 0

def step(self, action):

if self.current >= len(self.packets):

return 0, 0.0, True, {"miss": 0}

packet = self.packets[self.current]

rule = self.rules[action]

is_match = self.match_fn(packet, rule)

cast = 0.0 if self.current < self.neg_cost_after else

-0.045

reward = 0.77 if is_match else cast

info = {"miss": 0 if is_match else 1}

if is_match:

self.current += 1

done = (self.current >= len(self.packets))

else:

done = False

return 0, reward, done, info

6.1.2 Action Selection Policy

The agent follows an ε-greedy policy. With probability ε, a random rule is chosen
among those not yet attempted for the current packet (exploration). Otherwise,
the agent selects the rule with the highest Q-value (exploitation).

Listing 6.2. Action selection with ε-greedy strategy

import numpy as np, random

def select_action(tried, q_table, epsilon, n_rules):

available = [i for i in range(n_rules) if i not in tried]

if not available:

available = list(range(n_rules))

if random.uniform(0, 1) < epsilon:

return random.choice(available) # exploration

else:

q_vals = q_table[0, available]

return available[np.argmax(q_vals)] # exploitation

57

Implementation and Validation

6.1.3 Q-Learning Algorithm

The Q-learning update rule in this setting is simplified because there is only one
state:

Q(a)← Q(a) + α (r −Q(a)) ,

which corresponds to a bandit problem with learning rate α and no discount factor
(γ = 0).

The algorithm iterates over the packets, selecting actions until a match is found,
at the end the total number of misses and the execution time are recorded and
showed as performance metrics.

Listing 6.3. Q-learning procedure for the stateless firewall

import time

import numpy as np

def Q_learning(env, alpha, epsilon):

n_rules = env.action_space.n

q_table = np.zeros((1, n_rules))

skip_counts = np.zeros(n_rules, dtype=int)

miss_total = 0

start = time.time()

obs = env.reset()

while env.current < len(env.packets):

tried = []

correct = False

while not correct:

action = select_action(tried, q_table, epsilon,

n_rules)

tried.append(action)

_, reward, done, info = env.step(action)

miss_total += info[’miss’]

Q-learning update

q_table[0, action] += alpha * (reward - q_table[0,

action])

Penalization for unused actions

for i in range(n_rules):

if i == action:

skip_counts[i] = 0

else:

skip_counts[i] += 1

if skip_counts[i] >= 200:

q_table[0, i] -= 0.05 * abs(q_table[0, i])

58

Implementation and Validation

skip_counts[i] = 0

correct = reward > 0

end = time.time()

return miss_total, end - start

This baseline firewall demonstrates how reinforcement learning can be applied
even in a stateless configuration. Despite its simplicity, the approach allows the
agent to gradually learn an ordering of the rules that reduces the number of misses.
However, the absence of state information limits the model’s ability to capture con-
textual dependencies between packets. For this reason, subsequent versions intro-
duce explicit states (3, 9, and 27), enabling more sophisticated learning strategies.

6.2 Development of 3 States Firewall

The second configuration extends the baseline by introducing an explicit state
space with three discrete states that encode the transport protocol of the cur-
rent packet: TCP, UDP, and ICMP. By conditioning the action-value function
on protocol-specific states, the agent can learn different rule orderings for different
classes of traffic. This richer representation improves the agent’s ability to minimize
misses and processing latency compared to the stateless baseline.

6.2.1 Environment Design

The environment takes from gym.Env and exposes:

• State space: S = {0,1,2}, in which 0→TCP, 1→UDP, 2→ ICMP.

• Action space: A = {0, . . . , |R| − 1}, where R is the rule set.

• Reward: a positive base reward on a match and a negative base reward on
a no-match, plus a small penalty proportional to the number of attempts on
the same packet, to explicitly discourage the long search chains.

Formally, at time t the agent observes st ∈ {0,1,2} and selects at ∈ A. Let
match(pt, rat) ∈ {True,False}. The immediate reward is

rt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1.0 + (−0.02)nt⏞ ⏟⏟ ⏞

attempt penalty

if match,

−0.1 + (−0.02)nt⏞ ⏟⏟ ⏞
attempt penalty

otherwise,

where nt denotes the number of actions already attempted on the current packet
before at. If a match occurs, the environment advances with the next packet (and
thus to a new state consistent with its protocol); otherwise, the state remains
unchanged.

59

Implementation and Validation

Listing 6.4. Three-state firewall environment (TCP/UDP/ICMP)

import gym

from gym import spaces

class MultiStateFirewallEnv(gym.Env):

def __init__(self, packets, rules, match_fn):

super().__init__()

self.packets = packets

self.rules = rules

self.match_fn = match_fn

self.current = 0

self.tried_actions = set()

self.match_cache = {}

3 states: 0=TCP, 1=UDP, 2=ICMP

self.observation_space = spaces.Discrete(3)

self.action_space = spaces.Discrete(len(rules))

self.protocol_to_state = {’TCP’: 0, ’UDP’: 1, ’ICMP’: 2}

def get_state(self, packet):

protocol = packet.get("protocol", "TCP").upper()

return self.protocol_to_state.get(protocol, 0)

def reset(self, seed=None):

super().reset(seed=seed)

self.current = 0

self.tried_actions = set()

self.match_cache = {}

if len(self.packets) > 0:

return self.get_state(self.packets[0]), {}

return 0, {}

def step(self, action):

if self.current >= len(self.packets):

return None, 0.0, True, {’miss’: 0, ’attempts’: 0,

’packet_id’: self.current,

’state’: None}

packet = self.packets[self.current]

rule = self.rules[action]

cache_key = (self.current, action)

if cache_key in self.match_cache:

is_match = self.match_cache[cache_key]

else:

60

Implementation and Validation

is_match = self.match_fn(packet, rule)

self.match_cache[cache_key] = is_match

base reward + penalty for multiple attemps on the

packet

penalty = -0.02 * len(self.tried_actions) if

self.tried_actions else 0.0

base_reward = 1.0 if is_match else -0.1

reward = base_reward + penalty

info = {

’miss’: 0 if is_match else 1,

’attempts’: len(self.tried_actions) + 1,

’packet_id’: self.current,

’state’: self.get_state(packet)

}

if is_match:

self.current += 1

self.tried_actions = set()

if self.current >= len(self.packets):

return None, reward, True, info

next_state = self.get_state(self.packets[self.current])

return next_state, reward, False, info

else:

self.tried_actions.add(action)

next_state = self.get_state(packet)

return next_state, reward, False, info

6.2.2 Action Selection Policy

We employ an ε-greedy policy conditioned on the current state. The agent explores
with probability ε among actions not yet tried for the current packet; otherwise, it
exploits the action with maximum state-specific Q-value.

Listing 6.5. State-conditioned ε-greedy action selection

import numpy as np, random

def select_action_multistate(tried_actions, q_table, state,

n_rules, epsilon):

available = [i for i in range(n_rules) if i not in

tried_actions]

if not available: # fallback

return random.randint(0, n_rules - 1)

if random.random() < epsilon: # exploration

return random.choice(available)

61

Implementation and Validation

else: # exploitation

q_vals = [q_table[state][a] for a in available]

return available[int(np.argmax(q_vals))]

6.2.3 Q-Learning Algorithm

With multiple states, the agent learns a separate action-value function for each
protocol state. We use the standard tabular Q-learning update

Q(st, at)← Q(st, at) + α
[︂
rt + γmax

a′
Q(st+1, a

′)−Q(st, at)
]︂
,

with learning rate α, discount factor γ = 0.9, and a multiplicative decay on ε to
anneal exploration. We also keep per-state statistics (packets, misses) for monitor-
ing.

Listing 6.6. Q-learning for the three-state firewall

import time

import numpy as np

def Q_learning_multistate(env, alpha=0.01, epsilon=0.1,

decay_rate=0.995, gamma=0.9, verbose=False):

n_rules = env.action_space.n

q_table = np.zeros((env.observation_space.n, n_rules),

dtype=float)

miss_total = 0

state_stats = {0: {’name’: ’TCP’, ’packets’: 0, ’misses’: 0},

1: {’name’: ’UDP’, ’packets’: 0, ’misses’: 0},

2: {’name’: ’ICMP’, ’packets’: 0, ’misses’: 0}}

start = time.time()

state, _ = env.reset()

while env.current < len(env.packets):

packet = env.packets[env.current]

s = env.get_state(packet)

state_stats[s][’packets’] += 1

correct = False

while not correct:

a = select_action_multistate(env.tried_actions,

q_table, s, n_rules, epsilon)

old_q = q_table[s, a]

next_state, reward, done, info = env.step(a)

if next_state is not None:

62

Implementation and Validation

max_next_q = np.max(q_table[next_state])

else:

max_next_q = 0.0

q_table[s, a] = old_q + alpha * (reward + gamma *

max_next_q - old_q)

miss_total += info[’miss’]

if info[’miss’] == 1:

state_stats[s][’misses’] += 1

correct = (reward > 0.0)

epsilon = max(0.001, epsilon * decay_rate)

elapsed = time.time() - start

return miss_total, elapsed, q_table, state_stats

Compared to the stateless baseline, the 3 states model leverages protocol-aware
conditioning to learn distinct orderings of rules per traffic class. The attempt
penalty explicitly favors faster matches, thereby reducing per-packet search depth.
Empirically, this results in fewer misses and lower latency, while preserving a com-
pact tabular representation and a simple training loop. This design also serves as a
stepping stone toward higher-cardinality state spaces (e.g., 9 and 27 states), where
additional contextual features are encoded.

6.3 Development of 9 states firewall

In this configuration the state representation is composed by combining transport
protocol (TCP/UDP/ICMP) with the source port category (system, user, dy-
namic). This result in a 3× 3 grid that yields a discrete state space with nine
elements. Thanks to this configuration the agent can specialize rule orderings for
finer grained traffic patterns, improving match efficiency and latency.

6.3.1 Environment Design

The environment exposes:

• State space: S = {0, . . . ,8} obtained via

s(p) = base(protocol)⏞ ⏟⏟ ⏞
∈{0,1,2}

·3 + bucket(srcPort)⏞ ⏟⏟ ⏞
∈{0,1,2}

,

where base(·) maps TCP/UDP/ICMP to {0,1,2}, and bucket(·) bins the
source port into

[0,1023]→0, [1024,49151]→1, [49152,65535]→2.

63

Implementation and Validation

• Action space: A = {0, . . . , |R| − 1}, index of firewall rules.

• Reward: same as the 3 states one.

Listing 6.7. Nine-state firewall environment (protocol × source-port tier)

import gym

from gym import spaces

class MultiStateFirewallEnv9(gym.Env):

def __init__(self, packets, rules, match_fn):

super().__init__()

self.packets = packets

self.rules = rules

self.match_fn = match_fn

self.current = 0

self.tried_actions = set()

self.match_cache = {}

9 states: 3 protocols x 3 port tiers

self.observation_space = spaces.Discrete(9)

self.action_space = spaces.Discrete(len(rules))

self.protocol_to_base = {’TCP’: 0, ’UDP’: 1, ’ICMP’: 2}

self.port_ranges = [(0,1023), (1024,49151), (49152,65535)]

def get_port_category(self, port):

for i, (lo, hi) in enumerate(self.port_ranges):

if lo <= port <= hi:

return i

return 1 # default: user/registered

def get_state(self, packet):

protocol = packet.get("protocol", "TCP").upper()

src_port = packet.get("srcPort", 1024)

base = self.protocol_to_base.get(protocol, 0)

tier = self.get_port_category(src_port)

return base * 3 + tier # in [0..8]

def get_state_name(self, state_id):

prot = [’TCP’,’UDP’,’ICMP’][state_id // 3]

tier = [’System’,’User’,’Dynamic’][state_id % 3]

return f"{prot}-{tier}"

def reset(self, seed=None):

super().reset(seed=seed)

self.current = 0

self.tried_actions = set()

64

Implementation and Validation

self.match_cache = {}

if self.packets:

return self.get_state(self.packets[0]), {}

return 0, {}

def step(self, action):

if self.current >= len(self.packets):

return None, 0.0, True, {’miss’: 0, ’attempts’: 0,

’packet_id’: self.current,

’state’: None}

packet = self.packets[self.current]

rule = self.rules[action]

key = (self.current, action)

if key in self.match_cache:

is_match = self.match_cache[key]

else:

is_match = self.match_fn(packet, rule)

self.match_cache[key] = is_match

penalty = -0.02 * len(self.tried_actions) if

self.tried_actions else 0.0

reward = (1.0 if is_match else -0.1) + penalty

info = {’miss’: 0 if is_match else 1,

’attempts’: len(self.tried_actions) + 1,

’packet_id’: self.current,

’state’: self.get_state(packet)}

if is_match:

self.current += 1

self.tried_actions = set()

if self.current >= len(self.packets):

return None, reward, True, info

next_state = self.get_state(self.packets[self.current])

return next_state, reward, False, info

else:

self.tried_actions.add(action)

next_state = self.get_state(packet) # unchanged

return next_state, reward, False, info

6.3.2 Action Selection Policy

We reuse the state-conditioned ε-greedy policy introduced before (Listing 6.5).
The action-selection function is equal as before, but it’s applied with the 9 states
observation space.

65

Implementation and Validation

6.3.3 Q-Learning Algorithm

We learn a tabular action-value function with shape 9 × |R| using the standard
update:

Q(st, at)← Q(st, at) + α
[︂
rt + γmax

a′
Q(st+1, a

′)−Q(st, at)
]︂

It contains a learning rate α,a discount factor γ = 0.9, and a multiplicative decay of
ε to anneal exploration. Moreover we keep the count for packets misses to analyze
the performances.

Listing 6.8. Q-learning for the nine-state firewall

import time

import numpy as np

def Q_learning_multistate9(env, alpha=0.01, epsilon=0.1,

decay_rate=0.995, gamma=0.9, verbose=False):

n_states = env.observation_space.n # 9

n_rules = env.action_space.n

q_table = np.zeros((n_states, n_rules), dtype=float)

miss_total = 0

state_stats = {i: {’name’: env.get_state_name(i), ’packets’:

0, ’misses’: 0}

for i in range(n_states)}

start = time.time()

state, _ = env.reset()

while env.current < len(env.packets):

packet = env.packets[env.current]

s = env.get_state(packet)

state_stats[s][’packets’] += 1

correct = False

while not correct:

a = select_action_multistate(env.tried_actions,

q_table, s, n_rules, epsilon)

old_q = q_table[s, a]

next_state, reward, done, info = env.step(a)

max_next_q = 0.0 if next_state is None else

float(np.max(q_table[next_state]))

q_table[s, a] = old_q + alpha * (reward + gamma *

max_next_q - old_q)

miss_total += info[’miss’]

66

Implementation and Validation

if info[’miss’] == 1:

state_stats[s][’misses’] += 1

correct = (reward > 0.0)

epsilon = max(0.001, epsilon * decay_rate)

elapsed = time.time() - start

return miss_total, elapsed, q_table, state_stats

Against the 3 states model, the 9 states representation offers a more nuanced condi-
tioning by incorporating port tiers, which are often indicative of service classes and
traffic behavior. The attempt penalty continues to steer the agent toward shallow
match paths. While the larger state space increases fragmentation of experience,
the tabular setting remains tractable, and the per-state statistics provide visibility
into which protocol/port combinations benefit most from specialized rule orderings.

6.4 Development of 27 states firewall

This configuration further enriches the state representation by combining trans-
port protocol (TCP/UDP/ICMP) with both the source and destination port
tiers (system, user, dynamic). The resulting grid 3× 3× 3 yields a discrete state
space with 27 elements, enabling the agent to specialize rule orderings for specific
protocol/port patterns and to shorten match chains.

6.4.1 Environment Design

The environment exposes:

• State space: S = {0, . . . ,26} computed as

s(p) = base(protocol)⏞ ⏟⏟ ⏞
∈{0,1,2}

·9 + bucket(srcPort)⏞ ⏟⏟ ⏞
∈{0,1,2}

·3 + bucket(dstPort)⏞ ⏟⏟ ⏞
∈{0,1,2}

,

where bucket(·) maps port ranges [0,1023]→0, [1024,49151]→1, [49152,65535]→
2.

• Action space: A = {0, . . . , |R| − 1}, the rule indices.

• Reward: same as the 3 states one.

Listing 6.9. Twenty-seven-state firewall environment (protocol × src-
port tier × dst-port tier)

import gym

from gym import spaces

67

Implementation and Validation

class MultiStateFirewallEnv27(gym.Env):

def __init__(self, packets, rules, match_fn):

super().__init__()

self.packets = packets

self.rules = rules

self.match_fn = match_fn

self.current = 0

self.tried_actions = set()

self.match_cache = {}

27 states: 3 (protocol) x 3 (src tier) x 3 (dst tier)

self.observation_space = spaces.Discrete(27)

self.action_space = spaces.Discrete(len(rules))

self.protocol_to_base = {’TCP’: 0, ’UDP’: 1, ’ICMP’: 2}

self.port_ranges = [(0,1023), (1024,49151), (49152,65535)]

self.port_names = [’System’, ’User’, ’Dynamic’]

def get_port_category(self, port):

for i, (lo, hi) in enumerate(self.port_ranges):

if lo <= port <= hi:

return i

return 1 # default: user/registered

def get_state(self, packet):

protocol = packet.get("protocol", "TCP").upper()

src_port = packet.get("srcPort", 1024)

dst_port = packet.get("dstPort", 80)

P = self.protocol_to_base.get(protocol, 0)

S = self.get_port_category(src_port)

D = self.get_port_category(dst_port)

return P * 9 + S * 3 + D # in [0..26]

def get_state_name(self, state_id):

prot = [’TCP’,’UDP’,’ICMP’][state_id // 9]

rem = state_id % 9

s_t = rem // 3

d_t = rem % 3

return f"{prot}-Src{self.port_names[s_t]}" +

f"-Dst{self.port_names[d_t]}"

def reset(self, seed=None):

super().reset(seed=seed)

self.current = 0

self.tried_actions = set()

self.match_cache = {}

68

Implementation and Validation

if self.packets:

return self.get_state(self.packets[0]), {}

return 0, {}

def step(self, action):

if self.current >= len(self.packets):

return None, 0.0, True, {’miss’: 0, ’attempts’: 0,

’packet_id’: self.current,

’state’: None}

packet = self.packets[self.current]

rule = self.rules[action]

key = (self.current, action)

if key in self.match_cache:

is_match = self.match_cache[key]

else:

is_match = self.match_fn(packet, rule)

self.match_cache[key] = is_match

penalty = -0.02 * len(self.tried_actions) if

self.tried_actions else 0.0

reward = (1.0 if is_match else -0.1) + penalty

info = {’miss’: 0 if is_match else 1,

’attempts’: len(self.tried_actions) + 1,

’packet_id’: self.current,

’state’: self.get_state(packet)}

if is_match:

self.current += 1

self.tried_actions = set()

if self.current >= len(self.packets):

return None, reward, True, info

next_state = self.get_state(self.packets[self.current])

return next_state, reward, False, info

else:

self.tried_actions.add(action)

next_state = self.get_state(packet)

return next_state, reward, False, info

6.4.2 Action Selection Policy

We reuse the state-conditioned ε-greedy policy introduced before (Listing 6.5).
The action-selection function is equal as before, but it’s applied with the 27 states
observation space.

69

Implementation and Validation

6.4.3 Q-Learning Algorithm

We learn a tabular action-value function with shape 27 × |R| using the standard
update:

Q(st, at)← Q(st, at) + α
[︂
rt + γmax

a′
Q(st+1, a

′)−Q(st, at)
]︂

It contains a learning rate α,a discount factor γ = 0.9, and a multiplicative decay of
ε to anneal exploration. Moreover we keep the count for packets misses to analyze
the performances.

Listing 6.10. Q-learning for the twenty-seven-state firewall

import time

import numpy as np

def Q_learning_multistate27(env, alpha=0.01, epsilon=0.1,

decay_rate=0.995, gamma=0.9, verbose=False):

n_states = env.observation_space.n # 27

n_rules = env.action_space.n

q_table = np.zeros((n_states, n_rules), dtype=float)

miss_total = 0

state_stats = {i: {’name’: env.get_state_name(i), ’packets’:

0, ’misses’: 0}

for i in range(n_states)}

start = time.time()

state, _ = env.reset()

while env.current < len(env.packets):

packet = env.packets[env.current]

s = env.get_state(packet)

state_stats[s][’packets’] += 1

correct = False

while not correct:

a = select_action_multistate(env.tried_actions,

q_table, s, n_rules, epsilon)

old_q = q_table[s, a]

next_state, reward, done, info = env.step(a)

max_next_q = 0.0 if next_state is None else

float(np.max(q_table[next_state]))

q_table[s, a] = old_q + alpha * (reward + gamma *

max_next_q - old_q)

miss_total += info[’miss’]

70

Implementation and Validation

if info[’miss’] == 1:

state_stats[s][’misses’] += 1

correct = (reward > 0.0)

epsilon = max(0.001, epsilon * decay_rate)

elapsed = time.time() - start

return miss_total, elapsed, q_table, state_stats

The 27 states representation captures both endpoints service tiers in addition
to the protocol, allowing the agent to specialize rule orderings for bidirectional
traffic profiles. The attempt penalty continues to bias toward shallow search paths,
reducing latency. While the larger state space increases data fragmentation and may
slow convergence, the tabular approach remains tractable for the evaluated rule set
sizes, and per-state statistics provide actionable diagnostics on where specialization
yields the largest gains.

6.5 Development of the Digital Twin Configura-

tion

We introduce a digital twin (two-stage) architecture that combines a Traditional
Firewall with an RL agent. We experimented with three agent variants:

1. Baseline Simple Configuration (stateless, fixed hyperparameters);

2. Enhanced Simple Configuration (stateless, adaptive hyperparameters);

3. State-Aware Configuration (27 states).

The first and the third correspond to the smart firewall agents described pre-
viously. The traditional firewall performs a first matching rule policy with a rule
order that is periodically updated from the agent’s learned Q-values. In particular,
the two components process the same traffic in parallel, the same packet is passed
to both components; the rule table is updated by swapping an ordered view.

6.5.1 General Architecture

The traditional firewall maintains a rule list and applies first-match semantics.
The method update rule order consumes the agent’s Q-table to sort the rules in
descending utility, while process packet evaluates the current ordered list.

Listing 6.11. Traditional firewall with first-matching rule

import time

71

Implementation and Validation

class TraditionalFirewall:

def __init__(self, rules):

self.rules = rules

self.ordered_rules = list(range(len(rules)))

self.packet_count = 0

self.total_misses = 0

self.processing_time = 0.0

def update_rule_order(self, q_table):

"""Sort rules by descending Q-value produced by the

agent."""

q_values = q_table[0]

self.ordered_rules = sorted(

range(len(self.rules)),

key=lambda i: q_values[i],

reverse=True

)

def process_packet(self, packet):

"""Apply first-matching rule on the current ordered

list."""

start = time.perf_counter()

self.packet_count += 1

misses = 0

for idx in self.ordered_rules:

rule = self.rules[idx]

if match(packet, rule):

break

misses += 1

self.processing_time += (time.perf_counter() - start)

self.total_misses += misses

return misses

The DualFirewallSystem wires the agent and the traditional component. The
agent exposes a Q-table and an update(packet) routine (training step on the fly).
The coordinator feeds both components the same packet stream and periodically
refreshes the traditional ordering.

Listing 6.12. Dual firewall coordinator

class DualFirewallSystem:

def __init__(self, packets, rules, agent,

update_interval=20000):

"""

packets: iterable of packets

rules: rule set shared by both components

agent: exposes agent.q_table and agent.update(packet)

72

Implementation and Validation

"""

self.packets = packets

self.traditional_fw = TraditionalFirewall(rules)

self.agent = agent

self.update_interval = update_interval

Initial ordering from the (possibly warm-started) agent

self.traditional_fw.update_rule_order(self.agent.q_table)

def run(self):

"""

Sequential coordination (evaluation-friendly).

"""

for i, pkt in enumerate(self.packets, start=1):

Agent learns/refreshes Q-values on the fly

self.agent.update(pkt)

Traditional FW evaluates with current ordering

self.traditional_fw.process_packet(pkt)

Periodically refresh ordering from the agent’s

Q-table

if i % self.update_interval == 0:

self.traditional_fw.

update_rule_order(self.agent.q_table)

The listing adopts a sequential loop to make the control flow explicit. In a
parallel deployment, the agent updates its Q-table on a shadow copy while the
traditional firewall keeps processing; at each update interval, the coordinator
performs an atomic swap of the ordered view. This realizes the digital-twin be-
havior: wall-clock time is dominated by the slower of the two tasks (processing vs.
update), while maintaining first-match semantics with an agent-driven, continually
refreshed rule order.

6.5.2 Enhanced Strategy

The Enhanced Baseline augments the stateless tabular Q-learning agent with richer
reward shaping, adaptive exploration and learning rates, and lateral credit assign-
ment across related rules, complemented by lightweight per-rule telemetry to guide
online learning. The objective is to shorten match chains, prioritize consistently
effective rules, and remain responsive when performance deteriorates.

Implementation Design

The agent has a single row Q-table, corresponding to a single symbolic observation.
For each packet selects an action using an adaptive ε, computes an adaptive reward
that reflects both the number of attempts and the rank of the eventual match,

73

Implementation and Validation

updates the selected Q-value with the learning rate α, and diffuses a small bonus
to rules considered similar (approximated here by adjacent indices).

Listing 6.13. Enhanced Baseline

from collections import deque

import numpy as np

import random

class ImprovedQLearningFirewall:

def __init__(self, dataset_packets, rules):

self.dataset_packets = dataset_packets

self.rules = rules

self.q_table = np.zeros((1, len(rules)))

Per-rule telemetry (drives adaptivity)

self.rule_stats = {

’success_count’: np.zeros(len(rules)),

’attempt_count’: np.zeros(len(rules)),

’avg_position’: np.zeros(len(rules)), # average rank

when successful

’recent_success_rate’:np.zeros(len(rules))

}

self.recent_performance = deque(maxlen=1000) # last-N

packets (tries, etc.)

def select_action(self, tried, epsilon):

avail = [i for i in range(len(self.rules)) if i not in

tried] or list(range(len(self.rules)))

if random.random() < epsilon:

return random.choice(avail)

q_vals = self.q_table[0, avail]

return avail[int(np.argmax(q_vals))]

def get_adaptive_epsilon(self, base_epsilon):

"""Exploration adapts to recent average tries (worse ->

explore more)."""

if len(self.recent_performance) < 100:

return base_epsilon

recent_avg_tries = np.mean([p[’tries’] for p in

list(self.recent_performance)[-100:]])

return min(0.3, base_epsilon * 1.5) if recent_avg_tries >

3 else max(0.01, base_epsilon * 0.7)

def get_adaptive_alpha(self, action):

"""Per-action learning rate: higher when the rule is less

explored."""

attempts = self.rule_stats[’attempt_count’][action]

if attempts < 50: return 0.15

74

Implementation and Validation

if attempts < 200: return 0.12

return 0.08

def calculate_adaptive_reward(self, action, is_match,

position_in_tries, tried_actions):

"""

Reward shaping:

- incremental penalty per attempt on the same packet

- positive floor for matches

- speed bonus for early matches

- failure penalty proportional to the rule’s historical

failure rate

"""

penalty = -0.002 * max(0, len(tried_actions)) # attempt

cost

base = 1.1 if is_match else -0.38

if is_match:

reward = max(0.1, base + penalty) # positive floor

speed_bonus = max(0.0, 0.2 - 0.05 * position_in_tries)

earlier is better

reward += speed_bonus

else:

reward = base + penalty

fail_rate = 1.0 - (

self.rule_stats[’success_count’][action] /

max(1, self.rule_stats[’attempt_count’][action]))

reward += -0.1 * fail_rate # penalize unreliable rules

return reward

def update_similar_rules(self, successful_action,

bonus_reward):

for i in range(max(0, successful_action - 2),

min(len(self.rules), successful_action + 3)):

if i != successful_action:

self.q_table[0, i] += 0.01 * bonus_reward

def process_and_update(self, packet, base_epsilon=0.1):

tried, position, correct = [], 0, False

while not correct:

position += 1

eps = self.get_adaptive_epsilon(base_epsilon)

action = self.select_action(tried, eps)

tried.append(action)

environment check (omitted here): is_match =

match(packet, self.rules[action])

is_match = match(packet, self.rules[action])

75

Implementation and Validation

self.update_rule_statistics(action, is_match, position)

reward = self.calculate_adaptive_reward(action,

is_match, position, tried)

alpha = self.get_adaptive_alpha(action)

self.q_table[0, action] += alpha * (reward -

self.q_table[0, action])

if is_match:

self.update_similar_rules(action, 0.1 * reward)

correct = is_match

self.recent_performance.append({’tries’: position})

Comparison with the Baseline Simple agent

Compared with a simple stateless agent that keeps ε and α fixed, assigns a constant
reward to correct matches, and applies penalties that rise in steps, the enhanced
design introduces four coordinated changes that shorten decision paths and improve
data efficiency. First, the reward is reshaped: each additional attempt carries an
extra cost, successful outcomes receive a guaranteed minimum positive return, and
an additional speed bonus is granted that diminishes as the successful rule appears
later in the attempt sequence. Second, exploration adapts to recent performance:
the rate ε is raised when the average number of attempts per packet worsens and
lowered when it improves, producing a balance between exploration and exploita-
tion that adjusts itself. Third, the learning rate α follows a coarse schedule that
accelerates learning in the initial phase and stabilises updates thereafter, without
the need for per rule counters. Finally, credit is propagated laterally: a small por-
tion of the reward diffuses to neighbouring rules as a stand in for rule similarity,
which increases sample efficiency when adjacent rules share structure, for example
along protocol or port ranges.

These modifications preserve the simplicity of tabular Q-learning while providing
meaningful inductive biases (short match chains, responsiveness to drift, and mild
correlation sharing). In practice, the enhanced agent converges to high-quality
orderings faster than the baseline and maintains stable performance under varying
traffic mixes.

6.6 Evaluation Protocol

All experiments were executed on Google Colab, a hosted Jupyter environment
that requires no local setup and offers on-demand CPU runtimes (with optional
GPU/TPU accelerators, not used here). In our CPU only sessions the typical profile
exposed about 2 virtual CPUs and 12–13GB of RAM (occasionally a high-RAM
profile of ∼25GB). As Colab resources are ephemeral and not guaranteed, with
session timeouts and possible hardware variability, we structured each experiment

76

Implementation and Validation

as a self contained run and fixed random seeds to preserve reproducibility across
sessions.

As introduced in Chapter 5, we used the SCADA/ICS Network Captures dataset.
Via the rule generator we derived three rule sets with 100, 200, and 500 rules,
which were used for validation. To emulate recurring traffic, we adopted a two
phase procedure: first, a pre–training of 3 epochs over the ∼239k packet cor-
pus (≈ 717k packets in total), then a validation on 1,000,000 packets obtained
by repeating the dataset. We first assess the behavior of the single smart firewalls
(across agent variants) and, in parallel, evaluate a digital twin configuration; finally,
we compare the two paradigms on the same protocol and metrics to characterize
their respective trade offs.

6.6.1 Single Smart Firewall Results

In this section we evaluate the single smart firewall by focusing on two primary
metrics: the total number of misses, defined as the cumulative count of rule
checks that fail before the first matching rule is found (first match policy); and the
processing time, measured as the wall–clock time required to process the entire
validation stream on a CPU only runtime.

Stateless vs State-Aware: comparative results

We compare the stateless baseline against state-aware agents with 3, 9, and 27
states (Figure 6.1 and 6.2), using 100 rules. Results clearly indicate that introducing
state information substantially improves both accuracy and latency. The stateless
model attains 8,690,541 total misses and 417.19 s of validation time. Moving to
3 and 9 states reduces misses by roughly 86–87% (to 1,147,403 and 1,093,380,
respectively), and halves the processing time (207.60 s and 204.04 s). The 27
states configuration yields the best performance, with 486,965 total misses (94.4%
fewer than baseline) and 149.13,s total time (64.3% lower than baseline).

Figure 6.1. Smart Firewall: Total Misses

77

Implementation and Validation

Figure 6.2. Smart Firewall: Total Time

These trends confirm that coarse grained protocol/port context enables the
learner to concentrate probability mass on effective rules earlier in the sequence,
shortening match chains and lowering wall clock time.

In light of these results, we discard the stateless baseline: its accuracy and
latency are markedly inferior. We therefore concentrate on the three state-aware
agents and study their scalability as the rule set grows.

Scalability with Larger Rule Sets

We now assess how state-aware agents scale as the rule set grows, focusing on total
misses and total validation time. The analysis considers two larger configurations
and contrasts 3, 9, and 27 state models.

Figure 6.3. State-Aware Firewall: Total Misses with 200 rules

78

Implementation and Validation

Figure 6.4. State-Aware Firewall: Total Time with 200 rules

With 200 rules (Figure 6.3 and 6.4), the 27 states agent achieves the best trade-
off, with 1,145,273 total misses and 298.47 s total time, outperforming both the
3 states (1,806,587 misses; 347.81 s) and the 9 states model (4,713,721 misses;
708.25 s). Relative to 3 states, the 27 state configuration reduces misses by ap-
proximately 36.6% and time by 14.2%; versus 9 states, the reductions are about
75.7% (misses) and 57.9% (time). The 9 states variant underperforms, suggest-
ing that the intermediate partitioning may dilute learning signal across state–action
pairs without delivering enough contextual gain.

Figure 6.5. State-Aware Firewall: Total Misses with 500 rules

79

Implementation and Validation

Figure 6.6. State-Aware Firewall: Total Time with 500 rules

At 500 rules, the gaps widen (Figure 6.5 and 6.6). The 27 states agent records
3,815,158 misses and 1,157.93 s, while the 3 states and 9 states models reach
13,295,127 / 2,921.83 s and 19,104,934 / 5,432.13 s, respectively. Against
3 states, the 27 states model cuts misses by roughly 71.3% and time by 60.3%;
against 9 states, improvements are about 80.0% (misses) and 78.7% (time). These
results indicate that finer-grained state information becomes increasingly beneficial
as the rule space expands.

Across both scales, the 27 states agent consistently dominates, with substantial
gains in accuracy (fewer misses) and latency (lower total time). The 3 state model
remains competitive at moderate sizes but loses ground as complexity grows. The
9 states configuration is consistently inferior on this dataset, likely due to over-
partitioning that weakens value estimates. Overall, richer state representations
yield more efficient rule ordering under first-match semantics, and their advantage
compounds with larger rule sets.

6.6.2 Digital Twin Results

We now assess the RL agents from Chapter 5 in a digital twin configuration. The
evaluation targets three quantities: the total number of misses (first-match
policy on the traditional firewall), the processing time of the traditional fire-
wall over the validation stream, and the agent-side update time, i.e., the time
the learning agent spends processing the same packets and updating the rule or-
der. Although these timings are recorded separately for verification and analy-
sis, in deployment the two components operate in parallel ; consequently, the ef-
fective wall-clock per update window is dominated by the critical path, approxi-
mately max{Tproc, Tagent}. We also study the impact of the update interval, the

80

Implementation and Validation

number of packets between consecutive reorderings of the rule table, considering
{1000, 5000, 10000, 20000, 50000} packets. This setup allows us to observe how
accuracy (misses) and latency (processing vs. update time) co-evolve as the refresh
frequency changes.

From the total misses plot (Figure 6.7) we observe a clear monotonic trend: the
number of misses increases as the update interval grows. The reason is struc-
tural: between two reorderings the traditional firewall operates with a fixed rule
table (first–match policy). When traffic characteristics drift, a large interval leaves
the table stale for longer, so packets are evaluated against a suboptimal ordering,
lengthening the search chain and yielding more misses. The ranking is stable across
all intervals: State-Aware (27 states) attains the fewest misses, Enhanced is in-
termediate, and the Baseline is worst. Concretely, at 1,000 packets the 27 states
model records ∼2.0M misses versus ∼3.3M (Enhanced) and ∼3.9M (Baseline),
i.e., a reduction of about 39% and 49%, respectively. At 50,000 packets, the 27
states model reaches ∼17.2M misses, still below Enhanced (∼19.7M) and well be-
low Baseline (∼27.0M), corresponding to improvements of approximately 13% (vs
Enhanced) and 36% (vs Baseline). Overall, richer state information consistently
mitigates staleness by concentrating probability mass on effective rules earlier in
the sequence.

Figure 6.7. Comparation of total misses of RL agents in a digital twin configuration

The processing time exhibits the same monotonic trend (Figure 6.8): it in-
creases with the update interval. This is consistent with the miss dynamics
under first–match semantics; more misses imply longer rule chains per packet and
therefore higher wall–clock time. The relative ranking mirrors the accuracy plot:
State-Aware (27 states) is fastest, Enhanced is close behind, and Baseline is
the slowest. Concretely, at 1,000 packets we measure ∼59.3 s (Baseline), ∼51.8 s

81

Implementation and Validation

(Enhanced), and ∼50.2 s (27 states), i.e., about 15% faster than Baseline for the 27
states model. At 10,000 packets the gap widens: ∼275.0 s vs ∼216.9 s vs ∼203.5 s,
with the 27 states agent 26% faster than Baseline and 6% faster than Enhanced. At
50,000 packets the trend persists (∼309.6 s vs ∼246.3 s vs ∼234.9 s), correspond-
ing to 24% and 4.6% improvements over Baseline and Enhanced, respectively. In
short, reductions in miss chains translate directly into lower processing latency. The
update time measured on the learning side is essentially flat with respect to the up-
date interval (Figure 6.9): each agent shows small fluctuations only, attributable
to stochastic action choices.

Figure 6.8. Comparation of processing time of RL agents in a digital
twin configuration

Figure 6.9. Comparation of update time misses of RL agents in a digital
twin configuration

82

Implementation and Validation

The State-Aware (27 states) agent exhibits the lowest overhead, the Base-
line is intermediate, and the Enhanced agent is the most expensive. For reference,
at 1,000 packets we observe ∼100.6 s (27 states) vs ∼150.3 s (Baseline) vs ∼359.6 s
(Enhanced), i.e., the 27 states agent is about 33% faster than Baseline and 72%
faster than Enhanced. At 50,000 packets the pattern remains (∼116.4 s vs ∼161.3 s
vs ∼360.6 s), corresponding to improvements of 28% (vs Baseline) and 68% (vs En-
hanced). This behavior is consistent with the algorithmic load: the 27 states agent
typically requires fewer attempts per packet (fewer Q-updates), whereas the En-
hanced variant adds per-attempt computations (adaptive ε, adaptive α, reward
shaping), which increase its update overhead despite being stateless.

Across all update intervals, the 27 states agent delivers the best performance in
the digital twin setting: fewer misses, lower processing time, and the smallest agent-
side update overhead, consistently outperforming the stateless baselines. Moreover,
the 1,000 packets update interval yields the most favorable timings, as more
frequent reorderings limit table staleness and reduce both misses and end-to-end
latency (critical path).

Scaling of the best agent (27 states)

We now focus on the 27 states agent and study how it scales as the rule set
grows from 200 to 500 entries, keeping the same update intervals (from 1000 to
50000 packets). For a fixed interval, moving from 200 to 500 rules substantially in-
creases the total number of misses (Figure 6.10 and 6.11). At 1,000 packets, misses
rise from ∼3.79M to ∼25.36M (+568%); at 50,000 packets, from ∼15.74M to
∼66.48M (+322%). Within each rule size, misses grow monotonically with the
interval (e.g., 200 rules: 3.79M → 15.74M; 500 rules: 25.36M → 66.48M), con-
firming that longer refresh windows leave the rule table stale for longer.

Figure 6.10. 27 states Digital Twin: Total Misses with 200 rules

83

Implementation and Validation

Figure 6.11. 27 states Digital Twin: Total Misses with 500 rules

The processing time of the traditional firewall scales with both the interval and
the number of rules. Going from 200 to 500 rules (Figure 6.12 and 6.13), the time
at 1,000 packets increases from ∼93.6 s to ∼357.2 s (+281.6%), and at 50,000
from ∼308.6 s to ∼914.2 s (+196.2%). For a fixed rule size, larger intervals yield
longer chains before the first match and thus higher wall-clock time (e.g., 200 rules:
93.6 s → 308.6 s; 500 rules: 357.2 s → 914.2 s).

Figure 6.12. 27 states Digital Twin: Processing Time with 200 rules

84

Implementation and Validation

Figure 6.13. 27 states Digital Twin: Processing Time with 500 rules

The RL agent update time is stable across intervals for a fixed rule size (Figure
6.14 and 6.15), but increases with the number of rules. It moves from ∼124–137 s
(200 rules) to ∼358–387 s (500 rules), i.e., roughly from +170% to +190%. Con-
sequently, at 200 rules the critical path is agent bound at small intervals (e.g.,
1k: 124.6 s vs 93.6 s) and processing-bound at large intervals (e.g., 50k: 133.3 s vs
308.6 s). At 500 rules the two times are comparable at 1k (359.5 s vs 357.2 s), while
processing dominates beyond 5k (e.g., 50k: 360.5 s vs 914.2 s).

Figure 6.14. 27 states Digital Twin: Update Time with 200 rules

85

Implementation and Validation

Figure 6.15. 27 states Digital Twin: Update Time with 500 rules

The 27 states agent scales predictably: misses and traditional processing time
grow with both rule set size and update interval; agent update time is largely
interval agnostic but increases with the rule space. The effective wall-clock per
window is governed by the slower of the two components, shifting from agent bound
(small intervals, smaller rule sets) to processing bound (large intervals and/or larger
rule sets).

6.6.3 Head-to-Head: 27 states Smart Firewall vs 27 states
Digital Twin

We compare the best single agent (27 states) against its digital twin counterpart
at a fixed update interval of 1,000 packets. For each rule set size we report: the
total misses and the total time. In the digital twin case, the effective wall-clock
per window is governed by the critical path, i.e.,

TDT = max{Tprocessing , Tagent update }.

With 100 rules the single 27 states firewall achieves 486,965misses and 149.13 s
total time (Figure 6.16 and 6.17). The digital twin records 1,409,220 misses and a
critical path time of max(47.74, 75.19) = 75.19 s. Hence, the single agent is more
accurate, while the digital twin is faster in latency.

86

Implementation and Validation

Figure 6.16. Smart Firewall vs. Digital Twin: Total Misses with 100 rules

Figure 6.17. Smart Firewall vs. Digital Twin: Total Time with 100 rules

Instead, with 500 rules, the single 27 states firewall attains 3,815,158 misses
and 1,157.93 s total time (Figure 6.18 and 6.19). The digital twin reaches 25,356,731
misses and a critical path time of max(357.21, 359.52) = 359.52 s. Again, the sin-
gle agent minimizes misses, whereas the digital twin minimizes the elapsed time.

87

Implementation and Validation

Figure 6.18. Smart Firewall vs. Digital Twin: Total Misses with 500 rules

Figure 6.19. Smart Firewall vs. Digital Twin: Total Time with 500 rules

In conclusion, the single 27 states firewall yields the lowest number of misses,
while the digital twin offers lower end-to-end time by leveraging parallel processing
and periodic rule table refreshes. The preferred solution depends on the target
objective: accuracy vs. latency/throughput.

88

Chapter 7

Conclusions

This thesis examined the role of machine learning in network traffic filtering, argu-
ing that the integration of AI into firewall rule management can materially improve
performance under first–match semantics. By framing rule ordering as a reinforce-
ment learning problem, we showed that an agent can internalize traffic regularities
and continuously refine the rule sequence to shorten match chains. In practical
terms, this translates into reduced latency and greater resilience to bursts, precisely
the conditions under which conventional, static orderings tend to create bottlenecks
and queue build-ups. The study also explored a digital twin composition in which a
learning component evolves the rule order while a traditional firewall enforces deci-
sions, highlighting how learning and enforcement can be decoupled without altering
existing operational models.

The overall picture that emerges is that modest amounts of state, coupled with
on-line learning, make firewalls more responsive to the temporal structure of real
traffic. Rather than relying solely on periodic, manual curation of large rule sets,
an RL assisted controller can adapt the ordering to the current mix of protocols,
ports, and communication patterns, thus mitigating the cumulative cost of sequen-
tial matching. This perspective does not replace traditional policy engineering; in-
stead, it augments it with a mechanism that continuously improves the operational
efficiency of the rule base, while remaining compatible with established tooling and
first–match policies.

Looking ahead, several extensions appear both natural and valuable. A first
direction is dynamic state abstraction: instead of fixing the state space a priori,
the agent could discover and adapt its granularity to the prevailing traffic, learning
when to refine or merge states as conditions evolve. A second avenue concerns
drift–aware operation, in which exploration, learning rates, and update cadence
are adjusted on the fly in response to non-stationarity, preserving stability while
remaining agile. A third line is scale and realism: validating the approach on sub-
stantially larger traces and rule bases, representative of enterprise environments,
to stress the learning loop under heavier workloads and more diverse behaviors.
Finally, distributed deployment offers an architectural pathway to production readi-
ness: coordinating multiple enforcement points and a shared controller, supporting
safe, low disruption table swaps, and integrating with existing observability and in-
cident response pipelines. Taken together, these directions suggest that AI assisted

89

Conclusions

firewalls are not a speculative convenience but a pragmatic step toward networks
that adapt their defensive posture as quickly as the traffic that traverses them.

90

Bibliography

[1] D. Bringhenti, G. Marchetto, R. Sisto, and F. Valenza, “Automation for
network security configuration: State of the art and research trends,”
ACM Comput. Surv., vol. 56, no. 3, Oct. 2023. [Online]. Available:
https://doi.org/10.1145/3616401

[2] D. Bringhenti, S. Bussa, R. Sisto, and F. Valenza, “Atomizing firewall policies
for anomaly analysis and resolution,” IEEE Transactions on Dependable and
Secure Computing, vol. 22, no. 3, pp. 2308–2325, 2025.

[3] D. Bringhenti, L. Seno, and F. Valenza, “An optimized approach for assisted
firewall anomaly resolution,” IEEE Access, vol. 11, pp. 119 693–119 710, 2023.

[4] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov, “Au-
tomated firewall configuration in virtual networks,” IEEE Transactions on
Dependable and Secure Computing, vol. 20, no. 2, pp. 1559–1576, 2023.

[5] D. Bringhenti and F. Valenza, “Greenshield: Optimizing firewall configura-
tion for sustainable networks,” IEEE Transactions on Network and Service
Management, vol. 21, no. 6, pp. 6909–6923, 2024.

[6] ——, “Optimizing distributed firewall reconfiguration transients,” Comput.
Netw., vol. 215, no. C, Oct. 2022. [Online]. Available: https://doi.org/10.
1016/j.comnet.2022.109183

[7] F. Pizzato, D. Bringhenti, R. Sisto, and F. Valenza, “Automatic and optimized
firewall reconfiguration,” in NOMS 2024-2024 IEEE Network Operations and
Management Symposium, 2024, pp. 1–9.

[8] D. Bringhenti, F. Pizzato, R. Sisto, and F. Valenza, “Autonomous attack
mitigation through firewall reconfiguration,” Int. J. Netw. Manag., vol. 35,
no. 1, Dec. 2024. [Online]. Available: https://doi.org/10.1002/nem.2307

[9] H. Hamed and E. Al-Shaer, “Dynamic rule-ordering optimization for
high-speed firewall filtering,” in Proceedings of the 2006 ACM Symposium
on Information, Computer and Communications Security, ser. ASIACCS
’06. New York, NY, USA: Association for Computing Machinery, 2006, p.
332–342. [Online]. Available: https://doi.org/10.1145/1128817.1128867

[10] H. Abie, “An overview of firewall technologies,” 12 2000.

[11] D. Bringhenti, S. Bussa, R. Sisto, and F. Valenza, “Atomizing firewall
policies for anomaly analysis and resolution,” IEEE Trans. Dependable Secur.
Comput., vol. 22, no. 3, p. 2308–2325, Nov. 2024. [Online]. Available:
https://doi.org/10.1109/TDSC.2024.3495230

[12] F. Valenza and M. Cheminod, “An optimized firewall anomaly resolution,”
J. Internet Serv. Inf. Secur., vol. 10, pp. 22–37, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:212666334

91

https://doi.org/10.1145/3616401
https://doi.org/10.1016/j.comnet.2022.109183
https://doi.org/10.1016/j.comnet.2022.109183
https://doi.org/10.1002/nem.2307
https://doi.org/10.1145/1128817.1128867
https://doi.org/10.1109/TDSC.2024.3495230
https://api.semanticscholar.org/CorpusID:212666334

Bibliography

[13] S.-d. Krit and E. Haimoud, “Overview of firewalls: Types and policies: Man-
aging windows embedded firewall programmatically,” in 2017 International
Conference on Engineering MIS (ICEMIS), 2017, pp. 1–7.

[14] R. Hunt, “Internet/intranet firewall security—policy, architecture and
transaction services,” Computer Communications, vol. 21, no. 13, pp. 1107–
1123, 1998. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S014036649800173X

[15] M. I. Khan, A. Arif, and A. R. A. Khan, “The most recent advances and uses
of ai in cybersecurity,” BULLET: Jurnal Multidisiplin Ilmu, vol. 3, no. 4, pp.
566–578, 2024.

[16] M. F. Ansari, B. Dash, P. Sharma, and N. Yathiraju, “The impact and limi-
tations of artificial intelligence in cybersecurity: a literature review,” Interna-
tional Journal of Advanced Research in Computer and Communication Engi-
neering, 2022.

[17] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[18] Hugging Face, “Deep reinforcement learning course - unit 1: Rl framework,”
https://huggingface.co/learn/deep-rl-course/unit1/rl-framework, 2023, ac-
cessed: 2025-08-09.

[19] A. D. Kara and S. Yüksel, “Convergence and near optimality of q-learning with
finite memory for partially observed models,” in 2021 60th IEEE Conference
on Decision and Control (CDC), 2021, pp. 1603–1608.

[20] C. Hunt, TCP/IP network administration. ” O’Reilly Media, Inc.”, 2002,
vol. 2.

[21] S. Naeem, A. Ali, S. Anam, and M. M. Ahmed, “An unsupervised machine
learning algorithms: Comprehensive review,” International Journal of Com-
puting and Digital Systems, 2023.

[22] H. V. Singh, A. Girdhar, and S. Dahiya, “A literature survey based on dbscan
algorithms,” in 2022 6th International Conference on Intelligent Computing
and Control Systems (ICICCS), 2022, pp. 751–758.

[23] F. Murtagh and P. Contreras, “Algorithms for hierarchical clustering: an
overview,” Wiley interdisciplinary reviews: data mining and knowledge dis-
covery, vol. 2, no. 1, pp. 86–97, 2012.

[24] IBM. (2023) What is hierarchical clustering? Accessed: 2025-08-24. [Online].
Available: https://www.ibm.com/think/topics/hierarchical-clustering

92

https://www.sciencedirect.com/science/article/pii/S014036649800173X
https://www.sciencedirect.com/science/article/pii/S014036649800173X
https://huggingface.co/learn/deep-rl-course/unit1/rl-framework
https://www.ibm.com/think/topics/hierarchical-clustering

	List of Figures
	List of Tables
	Listings
	Introduction
	Thesis Structure

	Firewalls
	Overall Functioning
	Rule Resolution Strategies
	Denylist vs Allowlist

	Classification of Firewalls
	Packet Filtering Firewall
	Circuit Level Gateway
	Application Level Gateway
	Stateful Inspection Firewall

	Anomalies in Firewall Policies
	Conflict anomalies
	Sub-optimization anomalies

	From Background to the Present Work

	Artificial Intelligence and Machine Learning
	Overview of Artificial Intelligence
	Artificial Intelligence vs. Machine Learning vs. Deep Learning
	The Role of Artificial Intelligence in Cybersecurity

	Machine Learning Models
	Supervised Learning
	Unsupervised Learning

	Reinforcement Learning
	Fundamental Elements of Reinforcement Learning
	Exploration vs Exploitation
	Value-Based vs Policy-Based
	Monte Carlo vs Temporal Difference Learning
	Agent–Environment Loop

	Main Reinforcement Learning Algorithms
	k-armed Bandit
	SARSA and Expected SARSA
	Q-Learning

	From Background to the Present Work
	Reinforcement Learning vs. Listwise Learning

	Thesis Objectives
	Approach and Methodology
	Smart Firewall
	Baseline Firewall (Stateless)
	Firewall with State Representation
	Digital Twin configuration

	Rule Generator
	K-Means Clustering
	DBSCAN
	Hierarchical clustering
	K-Means Rule Generator
	Hierarchical Rule Generator
	Comparison between the Two Rule Generators

	Implementation and Validation
	Reinforcement Learning Framework
	Development of Baseline Firewall
	Environment Design
	Action Selection Policy
	Q-Learning Algorithm

	Development of 3 States Firewall
	Environment Design
	Action Selection Policy
	Q-Learning Algorithm

	Development of 9 states firewall
	Environment Design
	Action Selection Policy
	Q-Learning Algorithm

	Development of 27 states firewall
	Environment Design
	Action Selection Policy
	Q-Learning Algorithm

	Development of the Digital Twin Configuration
	General Architecture
	Enhanced Strategy

	Evaluation Protocol
	Single Smart Firewall Results
	Digital Twin Results
	Head-to-Head: 27 states Smart Firewall vs 27 states Digital Twin

	Conclusions
	Bibliography

