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Summary

The growing complexity and dynamic nature of modern computer networks pose
significant challenges for ensuring their security and correctness. Network miscon-
figurations are the most common reason for vulnerabilities, most times resulting
in security breaches, disruptions of service, as well as non-compliance. Formal
verification, a rigorous methodology rooted in mathematical logic, offers the sys-
tematic method to understand network configurations and give robust guarantees
for their actions and adherence to the security policies. One of the most visible
tools in this area is VEREFOO, designed at the Politecnico di Torino, excels for
its capacity to efficiently fulfill network needs by allocating firewalls to avoid subtle
configuration errors. While VEREFOO has proven highly successful in evading
critical bugs, its use on large-scale, enterprise-level networks frequently incur se-
vere performance bottlenecks. Computational cost needed to exhaustively search
the entire state space of complex network topologies grows exponentially, leading to
unfeasibly long analysis times and memory consumption. This inherent scalability
limitation restricts VEREFOQO’s practical use for eventual real-world deployments
where quick verification loops are repeatedly iterated frequently essential for main-
taining a strong security posture. This master’s thesis addresses the crucial problem
of VEREFOO’s scalability by proposing and assessing a parallelization strategy us-
ing network clusterization. The key idea involves intelligently partitioning a large,
monolithic network into a set of smaller, more manageable subnetworks. These sub-
networks may then be analyzed concurrently by separate instances of VEREFOO.
This concurrent processing paradigm leverages modern multi-core architectures,
promising a substantial reductions in aggregate verification time. After this phase,
an aggregation algorithm is used to collect the individual outputs of verification
and aggregate them in a final solution. The key benefit of this approach is its high
capability to increase the configuration speed significantly and to let VEREFOO
process high scale networks, thus allowing formal verification becoming increasingly
accessible and embedded feature of regular security assurance processes. However,
this performance enhancement comes with an acknowledged trade-off: the poten-
tial loss of global optimality in the verification solution. By analyzing subnetworks
in isolation, certain inter-subnetwork dependencies or global properties that span
across partition boundaries might not be fully captured or optimized, leading to a
”good enough” rather than a perfectly optimal solution. Despite this trade-off, the
cybersecurity implications are profound. In dynamic environments where frequent
integration and quick deployment are essential, a faster, larger scale verification
procedure with highly accurate, potentially non-optimum, results are frequently
more beneficial than an optimum solution delivered too late. This thesis fills the
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gap between theoretical rigor and usability for practical network security verifica-
tion, opening the door to wider and better use of formal methods when securing
the critical network infrastructures against evolving cyber threats.
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Chapter 1

Introduction

1.1 Thesis objective

Modern computer networks form the backbone of global commerce, communica-
tion and critical infrastructure: from massive cloud installations to advanced cor-
porate intranets to highly interconnected IoT ecosystems. Their scope, size, and
heterogeneity continue to expand, this rapid development, while permitting un-
precedented connectivity and innovation, is introducing numerous security issues.
Network configuarations, which establish who can access what and how security
policies are enforced, have become highly complex. One misconfiguration, both
accidental and intentional, can result in great weaknesses, which can lead to data
breaches, denial-of-service attacks and severe financial and reputational risk. Tra-
ditionally, network security assurance has been highly reliant on manual configura-
tion, which by nature is limited, indeed as stated in [1] and [2] manual procedures
are prone to human error, labor-intensive, and incapable of sustaining pace with
the explosive development of large networks. The sheer volume of security policies
and the very massive scale of current networks make it impractical for human basic
rule-based systems or experts to rigorously verify network correctness and security
policy compliance. This case illustrates the necessity of increased systematic, au-
tomated, and rigorous means of checking network configurations. Here, the formal
verification is one dominant paradigm to counter these weaknesses, which has a
foundation in mathematical logic and computer science. Formal verification tech-
niques aim to prove or disprove the correctness of a system with respect to a formal
specification. When applied to networks, this consists in creating a mathemati-
cal model of the network’s configuration and behaviour, defining desired security
properties and then using automated tools to formally verify if the network model
satisfies these properties. This approach offers a level of rigor and completeness not
feasible for traditional manual methods, capable of uncovering subtle, non-obvious
errors that could otherwise be exploited.

Among all the state-of-the-art tools concerning the network formal verification fron-
tier, VEREFOO stands out prominently. Developed by the Politecnico di Torino,
VEREFOO has been made to provide automatic, precise, and complete verification
of network configuration. The strength of VEREFOO lies in the rigid application
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Introduction

of formal methods, often leveraging methods such as Satisfiability Modulo Theories
(SMT) solvers, model checking, or symbolic execution. By translating the network
topology and security properties into the formal logical representation, VEREFOO
can examine every one of the potential interactions and the traffic paths thoroughly,
generating definitive answers regarding the network properties. It allows network
admins as well as security engineers to be highly sure regarding the network se-
curity state, detect issues ahead of time and fix them before deployment, and be
constantly compliant. Despite the clear strengths of the formal verification tools
like VEREFOO, the real-world constraint is scalability. As the network size grows,
computational resources that have to be invested in exhaustive formal verification
scale exponentially. This limitation translates to the fact that VEREFOO performs
very well on smaller static networks or on subtrees of high critical nature, but it very
soon fades when it is matched against the scale and dynamism of the modern-day
enterprise, cloud, or service provider network. Getting above the scalability barrier
is the answer that can unlock the full potentials of formal network verification and
make it a necessity of modern cybersecurity practice.

This thesis directly addresses the issue of scalability faced by VEREFOO. The pri-
mary goal of the current work is to significantly enhance the speed and scalability
of VEREFOO, and consequently, its application’s extendability to large and com-
plex network configurations that currently fall beyond its practical capability. To
achieve this, it is proposed and analyze a new parallelization scheme using the net-
work decomposition principle. The entire methodology consists in cleverly dividing
a massive, highly interconnected network into a collection of smaller, more man-
ageable subnetworks. The decomposition is such that it reduces inter-subnetwork
dependencies without altering the overall essence of the original network in each
partition. After the decomposition, each subnetwork will be studied simultaneously
and independently by separate instances of VEREFOO. This simultaneous pro-
cessing paradigm will yield significant performance improvements by distributing
the computational load across multiple processing cores or distributed computing
nodes. By subdividing a solitary, intractable problem into many small, manage-
able problems, we aim to significantly alleviate the overall verification time. After
conducting parallel analysis of individual subnetworks, the results retrieved from
every occurrence of VEREFOO are then aggregated and incorporated to provide a
complete verification analysis for the entire original network. This aggregation pro-
cess should be crafted thoughtfully such that the pooled results do actually reflect
the network state globally. Though the provided parallelization and decomposition
methodology offers substantial improvements in speed and scalability, it’s critical
to appreciate an intrinsic trade-off: the likely deviation from global optimality of
the solution. After the decomposition into isolated subnetworks, particular global
features or complicated relations that persist throughout the boundaries of such
partitions might not necessarily be accurately documented or strictly verifiable by
the VEREFOO instances independently. For instance, a security policy that dic-
tates flow of traffic over various distinct subnetworks may be hard to check best
when subnetworks in isolation are considered. The local analysis might yield an
optimal result for that specific subnetwork, but the overall results might not give
the ultimate 'most optimal’, 'most complete’, verification for the entire network.
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Introduction

This thesis aims to contribute to the improvement of automated network security
by providing an efficient and practical method of scaling formal verification. By
bringing together the pursuit of optimal solutions and the need for speed and scal-
ability, the thesis attempts at making rigorous network configuration assurance an
integral component of today’s cybersecurity practices. The following chapters will
discuss about the methodology, implementational aspects, experimental analysis,
and thoughtful consideration of the involved trade-offs of this parallel decomposi-
tion approach.

1.2 Thesis description
The remaining chapters of this thesis are organized as follows:

e Chapter 2: This chapter presents the way in which network packets are
modeled within VEREFOO. It explains the logic behind representing net-
work communication at the packet level and introduces two key strategies
for grouping packets into traffic flows: Maximal Flows and Atomic Flows.
The chapter discusses in detail how each approach captures different levels
of granularity in traffic analysis and highlights the respective advantages and
disadvantages of these two methodologies.

e Chapter 3: This chapter provides a brief yet comprehensive overview of
VEREFOO, focusing on its internal architecture and functioning. It explains
how both the network topology and the associated security requirements are
modeled within the framework. Furthermore, it introduces the MaxSMT
problem, the core verification mechanism that enables the automatic config-
uration of network security devices, while also discussing why this process
becomes computationally expensive and therefore unsuitable for large-scale
networks.

e Chapter 4: This chapter outlines the primary objectives of the thesis and
provides a summary of the methodological approach adopted to achieve them.
It defines the research questions that guided the work and offers an overview of
how the proposed solution was structured to enhance VEREFOQ’s scalability
and efficiency.

e Chapter 5: This chapter presents an in-depth description of the scalability
approach developed during this research. It details the use of the Leiden
algorithm for clustering the network into smaller, manageable subnetworks,
as well as the strategy for handling inter-cluster dependencies. In addition,
it describes the merge algorithm, which combines the results obtained from
each cluster to reconstruct a coherent overall configuration, ensuring both
correctness and completeness of the final solution.

e Chapter 6: This chapter focuses on the validation and performance evalua-
tion of the proposed approach. It presents a series of experiments designed to
assess how the parameters of the Leiden algorithm—such as resolution and
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minimum node size—affect the resulting clustering. The chapter also com-
pares the performance and scalability of the new approach with the standard
version of VEREFOO, demonstrating the improvements achieved in terms of
computation time and verification efficiency.

Chapter 7: The final chapter summarizes the conclusions of the thesis. It
revisits the goals established at the beginning of the work, evaluates the extent
to which they were successfully achieved, and discusses potential directions for
future improvements and research. This includes possible optimizations of the
current implementation, extensions to other types of network configurations,
and broader applications of the developed methodology.
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Chapter 2

Traffic Flows

To effectively analyze and verify the security properties of a computer network, tools
like VEREFOO cannot directly interact with the physical network infrastructure.
Instead, they operate on abstract, mathematical representations of the network and
its behavior. These representations are known as formal models. The use of formal
models is fundamental to formal verification because they provide a precise, un-
ambiguous, and rigorous framework for describing complex systems. Without such
models, it would be impossible to apply mathematical logic and automated reason-
ing to guarantee the correctness or identify flaws in network configurations. The
process of formal verification within VEREFOO, therefore, begins with translating
the real-world network into these structured models. These models must capture
all the information relevant to the security properties being verified, such as how
data travels, how network devices process that data, and what security rules are
in place. At the same time, these models must be designed efficiently enough to
allow for practical computation, balancing the need for accuracy with the demands
of computational tractability. If a model is too simplistic, it might miss critical
details leading to inaccurate verification results. Conversely, if it is overly detailed,
the verification process could become computationally infeasible, especially for large
and dynamic networks. For VEREFOO to perform its verification tasks, it relies
on several interconnected formal models, each representing a different aspect of
the network security problem. These include models for the network itself, for the
security requirements that need to be enforced, and crucially, for the packets that
traverse the network, which then form the basis for traffic flows. In this chapter
will be briefly described the network model and the NSR model but they will be
analyzed deeper in later, while it will focus on the traffic flows.

2.1 The Network Model

The network model is essentially a blueprint of the network’s structure and the
behavior of its components. It represents the network’s topology, which includes
all the devices (nodes) and the connections between them (links). Nodes can repre-
sent various network elements, such as client computers, servers, routers, firewalls,
Network Address Translators (NATSs), and load balancers. Beyond just the physi-
cal layout, the network model also formally describes the behavior of each network
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function (NF'). This is critical because network devices don’t just forward packets;
they can also modify them (e.g., NATs changing IP addresses) or decide to drop
them based on specific rules (e.g., firewalls). VEREFOO needs to understand pre-
cisely how each of these functions processes incoming packets and what happens to
them as they traverse the device. This includes modeling their forwarding behavior
(which packets are allowed to pass and which are discarded) and their transfor-
mation behavior (how packet attributes are changed). We will delve deeper into
the specifics of the network model in a later section, as it forms a comprehensive
representation of the network’s operational logic.

2.2 The Network Security Requirements Model

The Network Security Requirements (NSR) model defines the desired security poli-
cies and behaviours that the network is expected to uphold. These are the "spec-
ifications” against which VEREFOO verifies the network’s actual configuration.
NSRs typically express connectivity policies, specifying which types of traffic are
allowed to reach certain destinations (known as reachability policies) and which
types of traffic must be prevented from reaching specific destinations (known as
isolation policies). These policies are formally expressed as conditions on packet
attributes and actions (allow or deny). The NSR model provides the ground truth
for verification, allowing VEREFOO to determine if the network’s configuration
correctly implements these critical security directives. The detailed structure and
formalization of NSRs will also be discussed in a subsequent section.

2.3 The Traffic Model

To provide a concrete foundation for VEREFOQ'’s operations, the packet class
model precisely defines traffic, ¢, as a predicate over the values of the TCP/IP 5-
tuple packet fields. Specifically, ¢ is represented as a disjunction of predicates, g1V
qt2V -V qin, Where each ¢ ; is a conjunction of five predicates, one for each field of
the b-tuple: source IP address (IPSrc), destination IP address (IPDst), source port
(pSrc), destination port (pDst), and transport protocol (tPrt). For IPv4 addresses,
[PSrc and IPDst are conjunctions of four predicates, one for each byte of the IP
address, allowing for single integer values or ranges (e.g., 130.192.5.*% identifies
addresses matching 130.192.5.0/24). Similarly, pSrc and pDst can identify single
integer port numbers or ranges (e.g., 80 or [80, 100]), while tPrt can specify single
or subsets of values (e.g., "TCP” or "UDP”). The wildcard * concisely represents
the full range of values for a field. Furthermore, the concept of a ”sub-traffic”
(t1 C t2) is defined, indicating that t1 represents a subset of packets represented
by t2, which is crucial for understanding flow relationships.
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2.4 The Packet Model and the Genesis of Traffic
Flows

At the most granular level, network communication is composed of individual pack-
ets. Each packet carries specific information in its header, such as source IP address,
destination IP address, source port, destination port, and the transport protocol
(often referred to as the IP 5-tuple). For VEREFOO to analyze network behavior,
it must first understand these fundamental units of data. The packet class model
is designed to identify and group packets that share common characteristics and
are expected to be treated similarly by network functions. Instead of modeling
every single packet individually (which would be computationally impossible given
the sheer number of possibilities), VEREFOO groups them into packet classes. A
packet class is formally defined as a predicate over the values of packet fields. For
instance, a packet class might be defined as ”all TCP packets originating from IP
address 192.168.1.100 destined for port 80 on any IP address.” This abstraction
allows VEREFOO to reason about the behavior of entire groups of packets rather
than individual ones. This concept of grouping packets naturally leads to the no-
tion of traffic flows. A traffic flow, in the context of VEREFOO, represents the
journey of a specific packet class through the network. It describes not only the
path a packet class takes from its source to its destination but also how its at-
tributes might be transformed by intermediate network functions along that path.
A traffic flow f is formally modeled as a list of alternating nodes and predicates
[Tsy Lsas Tas taby Moy -y Mk, tra, Ma). Each node in the list corresponds to a node crossed
by the flow in the path, starting from the source node n, (that generates traffic
tso) and arriving at the destination node ny (that receives traffic ty4). This list
shows how a packet class is transmitted between nodes and how it might be trans-
formed or dropped. This approach is highly advantageous because it allows the
verification algorithms to operate on a manageable number of equivalent classes
of packets, rather than dealing with the countless individual packets that could
traverse the network. The way these packet classes are grouped into traffic flows
is a critical design choice, as it directly impacts the computational efficiency and
the level of detail in the verification process. Different grouping strategies lead to
different trade-offs between the number of flows that need to be analyzed and the
granularity (or specificity) of each flow. This section will now focus extensively
on these different strategies for defining and computing traffic flows, specifically
examining Atomic Flows and Maximal Flows.

2.4.1 Traffic Flow Aggregation Strategies: Atomic Flows
vs. Maximal Flows

While a network can theoretically be crossed by an infinite number of distinct
traffic flows, formal verification tools must focus on a relevant subset. The key
challenge lies in how to aggregate individual packets into meaningful flow entities
that are both representative of network behavior and computationally tractable.
The paper ” A Two-Fold Traffic Flow Model for Network Security Management” [3]
explores two contrasting strategies for this aggregation: Atomic Flows and Maximal
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Flows. These two approaches represent different philosophies regarding the balance
between the number of flows generated and their granularity, each with distinct
implications for performance and verification accuracy.

2.4.2 Atomic Flows: Precision through Disjoint Minimality

The concept of Atomic Flows is inspired by ” Atomic Predicates,” a powerful idea
from prior research in network verification. At its core, the Atomic Flow strategy
aims to identify the smallest possible, mutually disjoint classes of packets that
are treated identically by every network function (like filters and transformers)
within the network. Imagine you have a set of rules, each defined by a condition
on packet fields (e.g., "source IP is 10.0.0.1” or "destination port is 80”). These
conditions can overlap. An Atomic Predicate is a unique, minimal combination
of these conditions that doesn’t overlap with any other Atomic Predicate. For
instance, if you have a rule for 10.0.0.0/24 and another for 10.0.0.1, the Atomic
Predicates would be 10.0.0.1 and 10.0.0.0/24 AND NOT 10.0.0.1. Every packet in
the network will belong to exactly one Atomic Predicate. When this concept is
extended to traffic flows, an Atomic Flow is defined as a flow where every packet
class within it corresponds to an Atomic Predicate. This means that each Atomic
Flow represents a very specific and minimal group of packets, and crucially, no two
Atomic Flows will ever represent the exact same set of packets at any point in the
network. Advantages of Atomic Flows:

e Fine Granularity: Because each packet class in an Atomic Flow is minimal
and disjoint, the verification can be extremely precise. Every nuance of how
different packet types are handled is explicitly represented.

e Simplified Representation: A significant benefit is that each unique Atomic
Predicate can be assigned a unique integer identifier. This allows VERE-
FOOQ’s internal computations to operate on simple integer numbers instead
of complex logical expressions (like conjunctions of predicates over multi-
ple packet fields). This simplification can lead to more efficient processing in
subsequent verification steps, particularly when dealing with constraint-based
programming problems like Satisfiability Modulo Theories (SMT).

e Clearer Disjointness: The inherent disjointness of Atomic Predicates sim-
plifies reasoning about traffic paths and transformations, as there’s no ambi-
guity about which flow a packet belongs to.

Disadvantages of Atomic Flows:

e Large Number of Flows: The pursuit of minimal and disjoint packet
classes often results in a significantly larger number of Atomic Predicates,
and consequently, a much larger number of Atomic Flows. This increased
number of entities can introduce an overhead in the initial computation of
these flows and potentially in the memory required to store them.

e Initial Computation Cost: The process of identifying all Atomic Predi-
cates across an entire network, considering all possible intersections and trans-
formations, can be computationally intensive as an initial step.
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2.4.3 Maximal Flows: Efficiency through Aggregation

In contrast to Atomic Flows, the Maximal Flows strategy operates on an opposite
principle: it aims to maximize the aggregation of traffic flows. The goal is to reduce
the total number of distinct flows that VEREFOO needs to consider by grouping
together all packet classes that behave identically as they traverse the network.
A Maximal Flow aggregates all subflows that follow the same path and undergo
the same sequence of transformations and forwarding decisions. If multiple packet
classes, even if distinct at their origin, end up being processed identically by every
network function along a particular path, they are grouped into a single Maximal
Flow. This means a single Maximal Flow can represent a much broader class of
packets compared to an Atomic Flow. Advantages of Maximal Flows:

e Reduced Number of Flows: The most immediate benefit is a substantial re-
duction in the total number of traffic lows that need to be computed and
processed. This can lead to faster initial flow computation times, as there are
fewer entities to track.

e Potentially Lower Memory Usage (for flow representation): With fewer flows,
the memory required to store the flow entities themselves might be lower,
especially if the complexity of individual packet class predicates is not exces-
sively high.

Disadvantages of Maximal Flows:

e Coarser Granularity: While reducing the number of flows, Maximal Flows
inherently represent broader, less specific packet classes. This means that
a single Maximal Flow might encompass a wide range of packets, some of
which might behave slightly differently in subtle ways that are not captured
by the aggregation. This can lead to a less precise verification result in certain
scenarios.

e Complex Packet Class Representation: Unlike Atomic Predicates, the
packet classes within Maximal Flows are typically represented by complex
logical predicates (e.g., conjunctions and disjunctions of conditions on IP
5-tuple fields). These predicates cannot be simplified to single integer identi-
fiers. Consequently, VEREFOOQ’s internal algorithms must work with these
more complex representations, which can increase the computational burden
in the later stages of verification, particularly for solvers that prefer simpler,
numerical inputs.

e Non-Disjoint Packet Classes: The packet classes represented by different
Maximal Flows might not be mutually exclusive; they can overlap. This non-
disjointness can complicate reasoning and require more sophisticated handling
during the verification process to avoid double-counting or misinterpreting
results.
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Chapter 3

VEREFOO

This chapter delves into the intricacies of VEREFOO [1], the formal verification
tool developed at Politecnico di Torino, which forms the core subject of this the-
sis. Building upon the foundational concepts of formal models and traffic flow
discussed in the preceding chapter, we will now explore VEREFOOQO’s architecture
and operational mechanisms in greater detail. Understanding these specifics is cru-
cial for appreciating the challenges of scalability that this thesis aims to address
through parallel decomposition. We will begin by examining VEREFOQO’s network
modeling approach, specifically its use of Service Graphs and Allocation Graphs,
and how various network functions like NATSs, Firewalls, and Forwarders are rep-
resented. Following this, we will explore how Network Security Requirements are
formally captured within VEREFOO, providing the essential specifications for ver-
ification. Finally, we will dissect the underlying Maximum Satisfiability Modulo
Theories (MaxSMT) problem, which VEREFOO leverages to achieve automated,
optimal, and formally correct solutions for network security management.

3.1 The Network Model in VEREFOO: Service
Graph and Allocation Graph

To effectively apply formal verification techniques, VEREFOO relies on precise and
abstract representations of the network. These representations, known as formal
models, serve as the foundation upon which all analysis and problem-solving are
performed. VEREFOO primarily utilizes two interconnected models to describe
the network: the Service Graph (SG) and the Allocation Graph (AG).

3.1.1 The Service Graph (SG)

The Service Graph (SG) provides a high-level, logical abstraction of a virtual net-
work. It represents the interconnection of various service functions and network
nodes that collectively deliver an end-to-end network service. Unlike a physical
network diagram, the SG focuses on the functional relationships and traffic paths,
abstracting away the underlying physical infrastructure. It is typically defined by a
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network service designer whose primary concern is to provide a functional network-
ing service to users, with security considerations often handled separately or at a
later stage. Formally, an SG is modeled as a directed graph, Gs = (Ng, Lg), where
Ny is the set of vertices (nodes) and Lg is the set of directed edges (links) repre-
senting connections between these nodes. The set of nodes, Ng, is further divided
into two disjoint subsets: Eg, representing the endpoints (such as single hosts or
entire edge subnetworks like client machines or servers), and Sg, representing the
middleboxes (various service functions). Each node in Ng is uniquely identified by
a non-negative integer index, k, denoted as ny. Crucially, each node ny C Ng is
also characterized by a specific IP address, an IP address range, or, more generally,
a set of IP addresses. Low-level functions like switches and routers, which primarily
forward packets based on routing tables, are typically not explicitly included in the
SG. Instead, the SG assumes that these underlying functions correctly implement
the connections between the more complex service functions, providing a simplified
yet functionally complete view of the network’s logical paths.

3.1.2 The Allocation Graph (AG)

The Allocation Graph (AG) is an internal representation derived automatically
from the user-provided SG. Its purpose is to introduce Allocation Places (APs),
which are placeholder elements where VEREFOO can potentially decide to allocate
a firewall instance. This transformation from SG to AG is crucial for the automated
firewall allocation process. Similar to the SG, the AG is also modeled as a directed
graph, G4 = (N4, L4), maintaining the same indexing scheme for its vertices and
edges. However, the set of nodes in the AG, Ny, is a union of three disjoint
subsets: Ey4, Su, and A,. Here, E4 and S, correspond directly to the endpoints
and middleboxes from the original SG (E4 = Es and S4 = Ss), meaning these core
network components remain unchanged. The new set, A 4, comprises the Allocation
Places. For each link between any pair of network nodes or functions in the original
SG, a placeholder AP element can be generated in the AG. The generation of APs
and the overall structure of the AG can be influenced by specific requirements
provided by the security designer. These requirements are formalized using two
predicates: forbidden : Ls — B and forced : Ls — B. The forbidden(l; )
predicate is true if the creation of an AP on a specific link [, ; from the SG is
prohibited. Conversely, forced(l;;) is true if the allocation of a firewall on that
link is explicitly required. Based on these forbidden constraints, A4 and L, are
computed to be the smallest sets satisfying certain conditions. For instance, if an
AP is not prohibited on an SG link, an AP node ah is inserted between the original
nodes n; and n;, replacing the original link with two new links (/;;, and I, ;). If
an AP is prohibited, the original link /; ; is simply included directly in the AG’s
links. The forced predicate then dictates that if a firewall is explicitly required
on a link, the corresponding AP ah must have an allocated firewall. A predicate
allocated : No — B is introduced to formalize allocation decisions, specifying
whether a network node (particularly an AP) is actually allocated in the AG. For
existing endpoints and service functions (ny C E4 U Sy), allocated(ny) is true
by definition. For APs (a;, C Aj,), the automated procedure decides whether
allocated(ay,) should be true (i.e., a firewall is placed there) or false.
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3.1.3 Network Functions (NFs): NAT, Firewalls, and For-
warders

The behavior of each Network Function (NF) within the network, whether it’s a
pre-existing middlebox in the SG/AG or a newly allocated firewall in an AP, is
abstractly modeled in VEREFOO using two key functions:

e Forwarding Behavior: This is captured by a predicate deny : T — B,
where T represents a packet class and B is the Boolean set (true, false).
deny(t) is true if the NF drops all packets belonging to the input packet
class t due to its configuration. This function helps determine which traffic
is permitted or blocked.

e Transformation Behavior: This is modeled by a function 7; : T — T,
called a transformer. It maps an input packet class to the corresponding
output packet class after the NF has processed it.

It’s important to note that these two functions are kept distinct and independent
in VEREFOO’s model. A transformer describes packet modifications regardless of
whether the packet is ultimately dropped. This separation allows for a more flexible
and modular approach to modeling network functions. Let’s examine how specific
types of NFs are modeled:

e Forwarder: This is the simplest type of network function. For a forwarder,
the transformation function T; is the identity function, meaning it does not
modify the packets it processes (T;(t) = t). Additionally, its deny predicate is
typically false for all traffic, as its primary role is simply to forward packets.

e Firewall: Firewalls are crucial for enforcing security policies by filtering traf-
fic. In VEREFOO’s model, a firewall is characterized by an identity transfor-
mation function (7;(¢) = t), as firewalls do not typically modify packet headers
(unlike NATSs). Its core behavior is encapsulated in the deny;(t) predicate,
which is true if packets of class t are dropped according to the firewall’s con-
figured rules. The complexity of a firewall lies entirely in its filtering logic,
which determines which packets are allowed to pass and which are blocked
based on their attributes. Note that at the moment only packet filters are
supported by VEREFOO, which are the most common type of firewalls.

e NAT (Network Address Translator): NATSs are examples of network
functions with non-identity transformation behaviors, as they modify packet
headers, typically IP addresses and/or port numbers. VEREFOO models a
NAT’s behavior based on the type of transformation it performs. For instance,
a common NAT might perform address translation, where source addresses are
translated into public addresses (shadowing) or destination addresses are re-
converted into shadowed addresses. If no such conditions are met, the packet
might remain unmodified. This complex behavior is expressed as a disjunc-
tion of transformations: T;(t) = V;(T;,;(D;,j At)). Here, D, ; represents the
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specific packet class that triggers a particular transformation 7; ;. For exam-
ple, if p, represents a shadowed IP address and a, a public IP address, the
model defines specific predicates like D;; (source is shadowed, destination is
not) for shadowing, D, (source is not shadowed, destination is public) for
reconversion, and D; 3 (all other cases) for identity transformation. Each T ;
then describes how the packet fields are modified (e.g., IPSrc changing to
a, for shadowing). This detailed modeling allows VEREFOO to accurately
track how traffic is altered as it traverses NAT devices, which is fundamental
for correct security verification.

These are only some of the Network Functions that can be modelled, other
complex NFs exist and can be supported, for example VEREFOO can deal with
VPNs as shown in [5].

3.2 Network Security Requirements (NSRs) Mod-
eling in VEREFOO

Network security is fundamentally about enforcing specific rules and behaviors.
In VEREFOO, these desired security behaviors are formally captured by Network
Security Requirements (NSRs). NSRs express the high-level security policies that
the network must satisfy, serving as the ”ground truth” against which the configured
network is verified. An NSR, denoted as r, is formally modeled as a pair r = (C, a),
where:

e (' is a condition that defines the specific traffic (a packet class) to which the
requirement applies. This condition is structured similarly to the packet class
model, based on the IP 5-tuple fields (IPSrc, IPDst, pSrc, pDst, tPrt). The
IPSrc and pSrc predicates specify the traffic sources, while IPDst, pDst, and
tPrt specify the traffic destinations and protocol.

e ¢ is the action that must be performed on the traffic matching condition C.
The action can be either ALLOW or DENY.

Based on the action, NSRs are categorized:

e Isolation Requirements (r.a = DENY): These policies specify that cer-
tain traffic lows must be prohibited from reaching a particular destination.
For example, "traffic from the guest network to the internal database must

be denied.”

e Reachability Requirements (r.a = ALLOW): These policies specify that
certain traffic flows must be allowed to reach a particular destination. For

example, "traffic from the web server to the external payment gateway must
be allowed.”

For a traffic flow f = [es,t54, ..., tka, €q] to satisfy a condition C, three conditions
must be met:
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1. Its source endpoint es and destination endpoint ed must have IP addresses
matching C.IPSrc and C.IPDst, respectively.

2. The traffic originating from the source, ¢, ,, must satisfy C.I PSrc and C.pSrc.

3. The traffic arriving at the destination, t; 4, must satisty C.IPDst, C.pDst,
and C.tPrt.

The set of all flows that satisfy a policy p.C' is denoted as F,, C F'. An important
property is that if a flow is in F},, then all its subflows are also in F,. VEREFOO
supports different high-level approaches for specifying NSRs, which influence how
default behaviors are handled:

e Whitelisting: In this approach, the default behavior is to block all traffic.
Users explicitly specify only ALLOW requirements. Any traffic not explicitly
allowed is implicitly denied.

e Blacklisting: Conversely, the default behavior is to allow all traffic. Users
explicitly specify only DENY requirements. Any traffic not explicitly denied
is implicitly allowed.

e Rule-Oriented Specific: Users can explicitly formulate both ALLOW and
DENY properties. The system automatically decides how to manage other
cases (traffic not covered by specific rules) with the objective of minimizing
the number of generated firewall rules.

e Security-Oriented Specific: Similar to rule-oriented specific, users define
both ALLOW and DENY properties. However, the system’s objective here
is to allow only the communications that are strictly necessary to satisfy all
user requirements, often leading to a more restrictive default.

The specific NSRs provided by the user form the set R,. Additionally, a set Rp
is defined to represent the default behavior (if applicable for whitelisting or black-
listing). The total set of requirements considered by VEREFOO is R = R, U Rp.
Finally, the core of how VEREFOO formally checks these requirements against the
network model is expressed through logical formulas:

e For an isolation requirement r (action DENY), the model ensures that for
every flow f that satisfies r.C', there must exist at least one allocated network
node n; along that flow’s path (7 (f)) that drops the traffic 7(f,n;) at its
ingress. In simpler terms, to block a specific type of traffic, at least one
firewall or denying function must be placed in its path to drop it.

Vf e F.Ji.(n; € m(f) A allocated(n;) A deny;(T(f,n;))) (3.1)

e For a reachability requirement r (action ALLOW), the model ensures that
there must exist at least one flow f that satisfies r.C' such that for all allocated
network nodes n; along its path, the traffic is not denied. This means that
at least one valid path must exist where the traffic is allowed to pass through
all intermediate allocated devices.

af € F.Vi.(n; € w(f) A allocated(n;) = —deny;(t(f,n;)) (3.2)
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Additionally, VEREFOO also incorporates the concept of a complete reachability
requirement, which, while similar to a standard reachability requirement, specifi-
cally mandates that all flows satisfying the condition r.C' must not be blocked by
any node along their paths.

3.3 The MaxSMT Problem in VEREFOO

The central mechanism by which VEREFOO achieves its objectives of automated,
optimal, and formally correct firewall allocation and configuration is by formulating
and solving a partial weighted Maximum Satisfiability Modulo Theories (MaxSMT)
problem.

3.3.1 Introduction to MaxSMT

MaxSMT is a powerful extension of the traditional Satisfiability Modulo Theories
(SMT) problem. An SMT problem involves determining if a given set of first-order
logic constraints (formulas expressed in a combination of logical and mathemat-
ical theories, such as arithmetic or bit-vectors) can be simultaneously satisfied.
MaxSMT takes this a step further by introducing an optimization component. It
distinguishes between two types of constraints:

e Hard Clauses: These are non-relaxable constraints that must be satisfied
for any valid solution to exist. If even one hard clause is violated, the problem
has no solution. They define the core correctness requirements of the system.

e Soft Clauses: These clauses are assigned a numerical weight. Their satis-
faction is not strictly required, but the objective of the MaxSMT solver is
to find a solution that maximizes the sum of the weights of all satisfied soft
clauses. This allows for expressing optimization goals, where some conditions
are preferred but not strictly mandatory

While MaxSMT problems are computationally complex (NP-complete in the worst
case), modern state-of-the-art solvers, such as Z3 (used by VEREFOO), employ
sophisticated algorithms and heuristics that can efficiently solve many real-world
instances in polynomial time.

3.3.2 Why VEREFOO Leverages MaxSMT

The choice of MaxSMT as the underlying problem formulation is fundamental to
VEREFOQ'’s design, enabling it to achieve its three main objectives:

e Full Automation: MaxSMT problems can be solved entirely by automated
solvers without human intervention, apart from the initial problem specifi-
cation. This aligns perfectly with the goal of automating network security
management.
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e Optimization: The optimization objectives, such as minimizing the num-
ber of allocated firewalls or the number of rules within each firewall, can be
directly expressed as soft constraints. The weighted nature of these clauses
allows VEREFOO to prioritize different optimization criteria.

e Formal Correctness: All critical security requirements and network behav-
ioral rules are encoded as hard constraints. By finding a solution that satisfies
all hard constraints, VEREFOO formally guarantees that the resulting fire-
wall allocation and configuration are correct by construction, meaning they
inherently adhere to the specified security policies. This eliminates the need
for a separate, post-deployment formal verification step.

3.3.3 The Challenge of Modeling for MaxSMT

A significant challenge in using MaxSMT effectively lies in the modeling of the
problem components. The formal models of the network (SG, AG, NFs) and se-
curity requirements (NSRs) must accurately capture all relevant information that
influences the correctness of the solution. If critical details are missing or incor-
rectly represented, the solver’s output, even if mathematically consistent, might
not reflect the real-world network’s behavior or security posture. At the same time,
these models must be designed to keep the number and complexity of the generated
MaxSMT constraints manageable. An overly complex model with redundant vari-
ables or intricate logical formulas can drastically increase the computational time
required by the solver, hindering scalability. VEREFOO strives to find a balance
between expressiveness (capturing necessary detail) and complexity (ensuring com-
putational efficiency). For instance, by pre-computing maximal flows (as discussed
in the previous section), VEREFOO can reduce the number of free variables that
the MaxSMT solver needs to determine, thereby limiting the search space.

3.3.4 Summary of MaxSMT Problem Formulation in VERE-
FOO

The MaxSMT problem in VEREFOO is constructed from a combination of hard
and soft constraints, operating on the formal models of the network, network func-
tions, and security requirements:

e Hard Constraints: These clauses ensure the fundamental correctness and
adherence to non-negotiable rules.

— NSR Satisfaction: For each network security requirement r, a hard
constraint is introduced to ensure it is satisfied. This translates to ei-
ther the isolation requirement formula or the reachability requirement
formula, depending on r.a. These formulas ensure that the allocated and
configured firewalls correctly enforce the policies.

— Network Function Behavior: Hard constraints define how each net-
work function in the AG (including potential firewalls in APs) forwards
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and transforms traffic. For example, for NFs that cannot drop flows, a
hard constraint like deny;(t) = false is applied. For firewalls placed in
APs, complex hard constraints define their precise forwarding behavior
based on whether traffic should be denied or allowed, considering the
firewall’s default action and specific rules.

— Allocation Logic: Constraints related to the forbidden and forced
predicates are hard constraints, ensuring that the AG is correctly con-
structed and that firewalls are allocated as explicitly required by the
user. Additionally, a hard constraint ensures that a firewall is allocated
in an AP only if at least one rule is configured within it, preventing the
allocation of empty, useless firewalls.

e Soft Constraints: These clauses guide the solver towards an optimal solu-
tion by assigning weights to preferred conditions.

— Minimize Allocated Firewalls: For each Allocation Place ah, a soft
clause is introduced stating that it is preferable for allocated(ay) to be
false (i.e., no firewall is allocated). These clauses are assigned a higher
weight to prioritize minimizing the total number of firewalls.

— Minimize Rules per Firewall: For each potential rule (placeholder
rule p;) in a firewall at an AP ay, a soft clause is added stating that it
is preferable for con figured(p;) to be false (i.e., the rule is not included
in the firewall’s configuration). These clauses have a lower weight than
those for firewall allocation but are still crucial for optimization.

— Minimize Allowed Traffic Flows (for Security-Oriented Spe-
cific): In the security-oriented specific approach, additional soft con-
straints are introduced to minimize the scope of ALLOW rules (or max-
imize DENY rules), promoting a more restrictive security posture. These
have the lowest priority among optimization goals.

— Weight Assignment: The weights assigned to soft clauses are carefully
chosen to reflect the optimization priorities (e.g., minimizing firewalls is
more important than minimizing rules, which is more important than
minimizing allowed traffic).

The MaxSMT solver takes all these hard and soft constraints as input. Its output
includes the values for the allocated predicate (indicating where firewalls are placed)
and the configured predicate (specifying which rules are active in each firewall).
Crucially, it also determines the specific 5-tuple-based conditions and actions for
these configured rules, providing a complete and deployable firewall configuration.
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Chapter 4

Thesis Objective

As detailed in Chapter 3, VEREFOO’s core functionality relies on encoding network
verification and optimization problems as a partial weighted MaxSMT problem.
This approach guarantees the formal correctness of the solution, but it is inher-
ently limited by the computational complexity of the underlying problem. The
MaxSMT problem is classified as NP-complete, which means that in the worst-case
scenario, the time required for a solver to find a solution grows exponentially with
the size of the network and the number of security requirements. In cybersecurity
scenarios may not be acceptable to wait too much time, since it is important to
react as fast as possible to a cyber-attacks, for this reason REACT VEREFOO
[6][7][%] was developed to optimize and speed up the reconfiguration of the fire-
walls in a network, but also in this case the problem remains a single, indivisible
task that cannot effectively leverage modern multi-core or distributed computing
resources. To overcome the exponential complexity barrier and truly scale the tool,
a more fundamental architectural shift is required. This thesis proposes to tackle
the scalability challenge by reframing the problem as a set of smaller, paralleliz-
able sub-problems. The central hypothesis is that by intelligently decomposing a
large network into smaller, more manageable subnetworks, and then verifying these
subnetworks in parallel, the total verification time can be drastically reduced. The
proposed methodology is structured in three main phases:

1. Network Clusterization: the first task is to use an algorithm to divide the
overall network graph into a set of subnetworks (or clusters). The clusteriza-
tion has to be performed carefully such that inter-subnetwork dependencies
and shared resources (e.g., traffic streams crossing partition boundaries) are
minimized, as these dependencies introduce complexity in subsequent stages.
The partitioning algorithm has to be efficient and fast enough such that par-
allel preparation of the network can be accomplished quickly.

2. Parallel Configuration: Once the network has been clusterized, each sub-
network is given as input to an independent instance of the VEREFOO solver.
These instances can be executed concurrently on multiple processor cores or
on separate machines in a distributed computing environment. Solving a
small instance of MaxSMT tailored to its subnetwork, any VEREFOO in-
stance can find a solution much more quickly than a single instance would on
the entire network.
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3. Aggregation: The last and most critical step involves aggregating verifica-
tion results from all parallel executions of VEREFOO and generating a con-
sistent, overall solution of the entire network. This merging process should
handle all potential conflicts or inconsistencies induced by isolated subnet-
work analysis, in particular regarding flows that traverse partition borders.
The aim is to generate a individual, integrated firewall allocation and config-
uration that is technically correct for the entire network.

The main contribution of this thesis is the design, implementation, and evaluation
of this parallelized approach. The expected outcome is a significant reduction in
the verification time of VEREFOO, transforming it from a powerful but computa-
tionally intensive tool into a scalable and practical solution for large-scale network
security management. The drawback of this parallelized approach is the loss of
optimality of the solution, which will likely have more firewalls and rules compared
to the optimal solution.
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Chapter 5

Network Partitioning Approach

This chapter provides a detailed explanation of the proposed approach to divide a
large network into multiple subnetworks or clusters, which can then be verified in
parallel by independent instances of VEREFOO. The first step will be the intro-
duction of a particular graph called Flow Graph, which is derived from the Service
Graph or the Allocation Graph and the set of traffic flows, this representation
highlights the density and distribution of traffic flows. Then will be introduced
the Leiden algorithm, a graph community detection algorithm fundamental to ob-
tain different clusters from the original network. This algorithm takes in input a
network modelled as a graph and returns for each node the cluster it belongs to.
The Leiden algorithm will be used on the Flow Graph, it is supposed to create
clusters with a high density of traffic flows and minimize the number of traffic flows
that pass through more than one cluster (cutoff flows). At this point is possible to
use VEREFOO on each obtained cluster and use multi-threading to parallelize the
tasks. A crucial step is the management of the cutoff flows, since these flows belong
to more than one cluster there is the need to define how the clusters that have in
common a traffic flow handle this situation. For each cluster VEREFOO returns an
optimal solution, the final step is to merge the different solutions to make a unified
solution.

5.1 Flow Graph

The Flow Graph is an undirected weighted graph that is used as the starting point
for the network partitioning process. It is derived from the network’s logical rep-
resentation, either the Service Graph (SG) or the Allocation Graph (AG), and the
set of traffic flows. The nodes of the Flow Graph are identical to the nodes in the
SG or AG. The crucial difference lies in its edges and their assigned weights. For
every traffic flow that passes through a link between two nodes in the original SG
or AG, the weight of the corresponding edge in the Flow Graph is increased by
one. This simple but effective model allows the Flow Graph to visually and quanti-
tatively represent how traffic is distributed across the network, with thicker, more
heavily weighted edges indicating areas of greater traffic density. By focusing on
flow density rather than just network topology, the Flow Graph is perfectly suited
for identifying natural clusters within the network’s traffic patterns. Here follows
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an example to clarify how to obtain the Flow Graph from the original network and
the set of security requirements. Let’s consider a simple Service Graph composed
of just 8 nodes shown in Fig. 5.1 and the set of requirements in table 5.1

Table 5.1. Example of Network Security Requirements

IP Src Port Src IP Dest Port Dest Protocol Action

10.0.0.* : 10.0.0.* * * Isolation

10.0.1.* = 10.0.1.* = = Isolation
* * * Reachability

10.0.1.1 5 10.0.0.2 & & Isolation

s

N ﬁ1

10002 oot

ln :lu

ln

10003 10043

Figure 5.1. Service Graph

From the set of requirements the traffic flows are generated, each traffic flow is
represented with an arrow in Fig. 5.2.
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Figure 5.2. Service Graph with flows

At this point is possible to construct the Flow Graph (Fig. 5.3), which will have
the same nodes of the Service Graph and each edge will have a weight equal to the
number of flows passing through the corresponding edge in the Service Graph.

Figure 5.3. Flow Graph

5.2 The Leiden Algorithm

The Leiden algorithm[9] is a state-of-the-art method for detecting communities
within a large graph. It is an improvement upon the popular Louvain algorithm
and is known for its ability to produce high-quality, well-connected communities,
guaranteeing that every community is itself connected. The algorithm has a time
complexity roughly of O(mlog(n)), where m is the number of edges and n is the
number of nodes, making it suitable for partitioning also large networks. The core
principle behind community detection is to partition a network’s nodes into groups
where connections are denser within the groups than between them. The Leiden
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algorithm achieves this by iteratively refining an initial, random partitioning. The
algorithm’s effectiveness is determined by its ability to optimize a quality function,
which measures the quality of a given partition. Two common quality functions
are modularity and the Constant Potts Model (CPM).

e Modularity: This function measures the difference between the number of
edges within communities and the expected number of edges in a randomized
network with the same number of nodes and edges. A higher modularity score
indicates a better community structure. The modularity of a partition P is
formally defined as:

1 kik;
L X [

CePi,jeC

where m is the total number of edges in the graph, A;; is the weight of the
edge between nodes 7 and j, and k; is the sum of the weights of all edges
connected to node 7. The term A;; accounts for the actual number of edges,
while ’;lf;j represents the expected number of edges. However, modularity is
known to have a "resolution limit,” which means it may fail to identify small

communities in very large networks.

e Constant Potts Model (CPM): The CPM is a more flexible alternative
that overcomes the resolution limit. Instead of comparing the graph to a
randomized network, it compares the number of edges within a community
to a given constant density parameter 7. The CPM value is a sum over all
communities of the number of internal edges minus v times the number of
nodes in the community. The CPM for a partition P is defined as:

H(P)=>_ {E((J, o) — 7(@‘)}

CeP

where FE(C,C) is the total weight of edges within community C, and |C| is
the number of nodes in that community. By adjusting the v parameter, it
is possible to control the size and number of the resulting communities. A
higher ~ value favors smaller, more tightly connected communities, while a
lower ~ value tends to merge communities into larger ones.

The algorithm’s procedure is divided into three main phases that are repeated until
no further improvements can be made:

1. Local Moving of Nodes: The algorithm starts with an initial partition,
often where each node is in its own community. It then iterates through the
nodes and moves each one to a neighboring community if that move results
in the largest increase in the chosen quality function. This is similar to the
first phase of the Louvain algorithm. The key difference in Leiden’s approach
is that it performs this local moving on a randomly ordered subset of nodes
rather than all of them, which makes it more efficient.
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2. Refining the Partition: Once a locally optimal partition is found, the Lei-
den algorithm takes a crucial step that distinguishes it from Louvain. It builds
a new aggregate graph where each community from the current partition be-
comes a single, new node. The edges between these new nodes represent the
sum of the weights of all edges connecting the original communities. The
algorithm then applies the same local moving procedure to this new, smaller,
aggregate graph. This process is repeated until a stable state is reached.

3. Splitting Communities: This is the most important phase and a key in-
novation of the Leiden algorithm. After refining the partition, it checks the
connectivity of each community. If a community is found to be internally dis-
connected (meaning it consists of multiple sub-components), the algorithm
will automatically split it into its connected components. The quality func-
tion used by the algorithm is designed to ensure that splitting a disconnected
community will always increase the overall quality score, guaranteeing that
the final communities are all connected. This addresses a major flaw in the
Louvain algorithm, which could produce disconnected communities.
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Figure 5.4. Leiden Algorithm

This iterative process ensures that the algorithm converges to a partition where all
subsets of all communities are locally optimally assigned, meaning no single node
or even a group of nodes can be moved to another community to further improve
the quality function. By relying on a fast local move approach and this explicit
guarantee of connectivity, the Leiden algorithm provides a powerful and reliable
method for partitioning a network into meaningful and well-defined clusters.
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5.3 Leiden Application on the Flow Graph

The application of the Leiden algorithm to the Flow Graph is a crucial step in the
network partitioning approach. By treating the Flow Graph as the input for com-
munity detection, we can identify network regions that are highly cohesive in terms
of traffic flows. The algorithm’s guarantee of connected communities is paramount
in this context; it ensures that a detected cluster of flows truly represents a con-
tiguous segment of the network, preventing nonsensical groupings of disconnected
nodes. This effectively transforms a complex, monolithic verification problem into
a set of smaller, more manageable sub-problems. The resulting partitions, or sub-
networks, are gropus of nodes and traffic flows that can be analyzed independently
by separate VEREFOO instances, greatly reducing the computational complexity
and enabling a parallelization strategy. In this context, the concept of cutoff flows
is particularly important. These are the traffic flows that traverse more than one
cluster in the partitioned network. The presence of such flows can introduce sub-
optimalities into the final solution, specifically by increasing the total number of
firewalls and the number of rules required on each firewall. This is because a single
cutoff flow must be managed by every cluster it passes through, leading to redun-
dant policy implementations. Therefore, the application of the Leiden algorithm
to the Flow Graph serves a critical purpose: by minimizing the number of cutoff
flows, it directly contributes to a more optimal and efficient final solution.

5.3.1 Network Partitioning: ideal case

In the ideal case cutoff flows are not present, this means that the Leiden Algorithm
can create clusters with no inter-cluster dependencies, leading to an optimal final
solution. To give an example, consider the Network Security Requirements in table
5.2, the Service Graph with traffic flows in Fig. 5.5 and the corresponding Flow
Graph in Fig. 5.6. Leiden will produce 2 clusters with no cutoff flows as shown in
Fig. 5.7.

Table 5.2. Example of Network Security Requirements (ideal case)

IP Src Port Src IP Dest Port Dest Protocol Action
10.0.0.* * Isolation

10.0.1.* £ Isolation
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Figure 5.5. Service Graph with ) )
Figure 5.6. Flow Graph (ideal case)

flows (ideal case)

Figure 5.7. Cluster 1 on the left, cluster 2 on the right (ideal case)

Each traffic flow, along with its corresponding Network Security Requirement
(NSR), is assigned to a specific cluster. For instance, in Fig. 5.7, the red traffic flows
originating from the first NSR in Table 5.1 are assigned to Cluster 1. Similarly, the
blue traffic flows from the second NSR are assigned to Cluster 2. This partitioning
allows two independent instances of VEREFOO to be applied in parallel, each
processing its assigned cluster to find an optimal solution, each VEREFOO instance
takes as input the set of nodes within its cluster the associated NSRs and traffic
flows. As this represents an ideal case, the combination of these solutions results

in a globally optimal outcome.
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Figure 5.9. Solution for cluster 2
Figure 5.8. Solution for cluster 1

Figure 5.10. Final solution (ideal case)

5.3.2 Network Partitioning: not ideal case

In real-world scenarios, a network is rarely so perfectly divisible that it has no
cutoff flows. For this reason, the proposed approach must manage situations where
cutoff flows exist and define how clusters handle traffic flows they share with other
clusters. As in the ideal case, the Leiden algorithm is applied to the Flow Graph to
identify the clusters. Traffic flows that are not cutoff flows are simply assigned to
the single cluster they belong to, along with their corresponding Network Security
Requirements (NSRs). However, if a flow is identified as a cutoff flow, the cluster is
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expanded to include the adjacent allocation places it passes through. This means
that an allocation place located between two clusters will belong to both clusters.
Consequently, both clusters may attempt to place a firewall in that node, which
necessitates a specific merging strategy to resolve potential conflicts, a topic that
will be addressed in a later section. Cutoff flows are handled differently depending
on the Network Security Requirement (NSR) action they descend from:

e Isolation cutoff flows: in case the action of the NSR is DENY, a possible
solution is to assign the NSR to all the clusters where the associated cutoff
flows pass through, This forces each VEREFOO instance to block the same
flow, which leads to redundant firewall policies and a sub-optimal solution.
Consider the set of NSRs in Table 5.3 and the Service Graph (SG) in Fig. 5.1.
The Leiden algorithm divides this network into two clusters, and the third
NSR creates a cutoff flow that spans both clusters, as shown in Fig. 5.11.

Table 5.3. Example of NSRs for isolation cutoff flows

IP Src Port Src IP Dest Port Dest Protocol Action

10.0.0.* & 10.0.0.* & b Isolation

10.0.1.* - 10.0.1.* Reachability
10.0.1.1 * 10.0.0.2 * * Isolation

Figure 5.11. Isolation cutoff flow

The SG is then converted into an Allocation Graph (AG) by VEREFOO.
Assuming each edge of the SG contains a potential firewall location (allocation
place), one such location will be between the two clusters. Since the cutoff
flow passes through this location, both clusters must be expanded to include
it, as shown in Fig. 5.12, where allocation places are represented by white
circles.
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Figure 5.12. Extended clusters

Each cluster will now consider the cutoff flow, but it can only act within its
own set of nodes and allocation places. This means the flow is conceptually
“cut” at the cluster’s border, as seen from the perspective of each cluster
(Figs. 5.13 and 5.14). Each VEREFOO instance can only place firewalls
within its assigned allocation places.

Figure 5.14. Cluster 2 point of view

Figure 5.13. Cluster 1 point of view

Each cluster with its own nodes, traffic flows and NSRs is given in input to
a different instance of VEREFOO, so each cluster is solved independently as
shown in Fig. 5.15 and 5.16.
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Figure 5.16. Cluster 2 Solution

Figure 5.15. Cluster 1 Solution

The original version of VEREFOO, which handles the entire network at once,
would solve this optimally by placing only two firewalls as shown in Fig.
5.17. However, this distributed approach solves each cluster independently.
Because each VEREFOO instance lacks a complete view of the network, it
can lead to a sub-optimal solution where firewalls are redundantly placed, as
shown in Fig. 5.18.
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Figure 5.17. Optimal solution Figure 5.18. Not optimal solution

An alternative solution is to assign the isolation cutoff flow to only one cluster.
This is a valid approach because an isolation requirement is satisfied if the
traffic is blocked at just a single point along its path. In this case, only one
cluster will be responsible for managing and blocking that specific traffic flow.

To decide which cluster receives the assignment, the traffic flow is given to
the cluster that has the fewest traffic flows to manage among all the clus-
ters it traverses. This strategy aims to balance the workload across clusters,
improving the overall scalability of the solution.

40



Network Partitioning Approach

Let’s refer again to Fig. 5.12. Both clusters initially have 6 traffic flows to
handle (excluding the cutoff flow). Because the clusters are balanced, it is
equivalent to assign the cutoff flow to either the first or the second cluster.
For this example, let’s assign the cutoff flow to the first cluster as shown in
Fig. 5.19 and Fig. 5.20.

Figure 5.19. Cluster 1 point of view

Figure 5.20. Cluster 2 point of view

With this new assignment, the solution for Cluster 1 remains the same as
before (Fig. 5.15). However, the second cluster now has no isolation traffic
flows to manage and therefore does not need to allocate any firewalls. In this
specific case, the final solution will be the optimal one, represented in Fig.

0.17.

This second approach for handling isolation cutoff flows offers two main ad-
vantages over the previous method. First, it is more scalable as it aims to
balance the number of traffic flows per cluster, preventing situations where
one cluster becomes a bottleneck. Second, it is more optimal because assign-
ing the cutoff flow to only one cluster avoids the implementation of redundant
policies.

However, it is important to note that even this improved approach does not
guarantee a globally optimal solution in every scenario. Since it is not possible
to know in advance which cluster will produce the most optimal result after
receiving the cutoff flow, the final solution may still have a certain level of
sub-optimality. The benefit comes from using a traffic-balancing heuristic to
increase the likelihood of a near-optimal outcome, this is why this second
solution is preferred and will be used in the final approach.
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e Reachability cutoff flows: When an NSR’s action is ALLOW, the NSR
is assigned to all clusters that its corresponding cutoff flows pass through.
Consider the Service Graph in Fig. 5.1 and the NSRs in Table 5.4. The
Leiden algorithm will again divide the network into two clusters. In this case,
the third NSR generates three separate cutoff flows, as shown in Fig. 5.21.

Table 5.4. Example of NSRs for reachability cutoff flows

IP Src Port Src IP Dest Port Dest Protocol Action

10.0.0.* & 10.0.0.* & g Isolation
10.0.1.*% o 10.0.1.* Isolation
* Reachability

Figure 5.21. Reachability cutoff flows

Just as before, VEREFOO generates the Allocation Graph from the Service Graph,
and the clusters are expanded to include the central allocation place because it is
traversed by the cutoff flows (Fig. 5.22). For this example, let’s assume that the
allocation place between node 10.0.0.3 and the forwarder is forbidden for some
reason.
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Figure 5.22. Extended clusters

The core challenge with reachability is that, according to the formula, an NSR is
satisfied if at least one of its corresponding traffic flows is allowed to pass. Each
VEREFOO instance, working in its own cluster, will try to satisfy this condition.
However, this can lead to conflicts: one cluster might allow a flow that is then
blocked by the second cluster, and vice-versa. As a result, after merging the two
solutions, the overall reachability requirement may not be met, as illustrated in
Fig. 5.23. In this example, Cluster 1 allows the flow from ‘10.0.0.2° to ‘10.0.1.1°,
but Cluster 2 blocks it. At the same time, Cluster 2 allows the flow from ‘10.0.0.2¢
to ‘10.0.1.2°, but Cluster 1 blocks it.

E DENY ALL DENY ALL E

-
=’¢"%' 10.0.1.1
-’

, 10.0.0.210 10.0.1.1 ALLOW 10.0.0.2 10 10.0.1.2 ALLOW
DENY ALL DENY ALL

Figure 5.23. Reachability NSR not satisfied

To solve this issue, we can change the NSR’s action from ”Reachability” to ” Com-
plete Reachability”. As discussed in Chapter 3, Complete Reachability is a stricter
form of reachability where every traffic low generated by the NSR must be allowed.
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This approach guarantees that the final merged solution will satisfy the require-
ment. However, it can lead to a sub-optimal solution by allowing more traffic flows
than are strictly necessary, as seen in Fig. 5.24.
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, 1000210 10.0.1.2 ALLOW 10.0.0.2 10 10.0.1.2 ALLOW 10.0:952
/| 1000210 10013 ALLOW DENY ALL
DENY ALL

Figure 5.24. Solution with Complete Reachability

5.4 Merge the results

If an allocation place is located between two clusters, it will belong to both of
them. This can lead to conflicts if both clusters independently decide to place
a firewall in the same location. Consequently, a merge algorithm is necessary to
unify the solutions from each cluster into a single, correct final solution. When two
clusters both place a firewall in the same shared allocation place, three scenarios
are possible:

e Both firewalls are in denylist: In this configuration, firewalls are designed
to permit all traffic by default and only block specific traffic with explicit
rules. As we have established, each isolation cutoff flow is assigned to only
one cluster. Each cluster’s instance of VEREFOO may then decide to block its
assigned isolation cutoff flow using an internal firewall or by placing a firewall
at an allocation place that is shared with another cluster. Consequently, the
firewalls placed at these shared locations will likely not have identical rule sets.
Therefore, the merge operation must combine the rules from both firewalls to
create a single, comprehensive rule set that satisfies the requirements of both
clusters.

As an example, let’s use the Network Security Requirements (NSRs) from
Table 5.5 and the Allocation Graph in Fig. 5.25 after it has been partitioned
into two clusters by the Leiden algorithm.
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Table 5.5. Example of NSRs for merge of two FWs in denylist

IP Src Port Src IP Dest Port Dest Protocol Action

10.0.0.* * Reachability

- 10.0.1.%* - - Reachability
10.0.0.2 * 10.0.1.1 0 * Isolation
10.0.0.2 * 10.0.1.2 * * Isolation

Figure 5.25. Allocation Graph with traffic flows

Excluding the cutoff flows, both clusters have 6 traffic flows to manage. To
balance the workload across the clusters, one isolation cutoff flow is assigned
to the first cluster and the other is assigned to the second cluster. Each
cluster then independently places its firewalls to satisfy its assigned security
requirements. As shown in Fig. 5.26 and Fig. 5.27, both clusters place a
firewall at the shared allocation place to block their respective cutoff flows.
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Figure 5.26. cluster 1 point of view Figure 5.27.  cluster 2 point of view

When merging the firewalls from the shared location, their rules are simply
combined to create a final, comprehensive rule set that addresses all relevant
cutoff flows. The resulting solution is shown in Fig. 5.28.

10.0.0.2 to 10.0.1.1 DENY
10.0.0.2 to 10.0.1.2 DENY
ALLOW ALL

=7,
E::; @. '

Figure 5.28. Final result

e Both firewalls use an allowlist policy: In this configuration, firewalls
block all traffic by default and only permit specific traffic that is explicitly
defined in their rule sets. Reachability cutoff flows, conversely to isolation
cutoff flows, are assigned to both clusters. Therefore, if a cluster decides to
place an allowlist firewall in the shared allocation place, it must include spe-
cific rules to allow the corresponding reachability cutoff flows. When both
clusters independently decide to place an allowlist firewall in the same shared
location, their primary goal for that location is identical: to allow the same
cutoff flows to pass. This means both clusters will generate the exact same

46



Network Partitioning Approach

allow rules to satisfy the shared requirements. However, these firewalls may
also have rules not in common, for example if a firewall is allowing some inter-
nal reachability traffic low. Consequently when merging the two solutions,
it is sufficient to combine the rules from both firewalls, keeping in mind that
there could be duplicate rules which have to be considered only one time.

One firewall uses a denylist and the other an allowlist: This is a
particular case because the two firewalls have opposite default behaviors. As
discussed, an isolation cutoff flow is associated with only one cluster, while
a reachability cutoff flow belongs to both clusters. Since the firewalls have
oppisite default actions, one of the two must be converted to the other’s type
before merging. To dertermine which type of firewall to keep, they are both
converted once in allowlist and once denylist and then are merged together.
Between two resulting firewalls (one allowlist and one denylist), the one with
the fewest rules is chosen for the final solution. To convert a firewall from one
policy type to the other (for example, from allowlist to denylist), the following
steps are taken:

1. The firewall’s default action is changed. For a conversion from allowlist
to denylist, the default action changes from DENY to ALLOW.

2. For each traffic flow that crosses the firewall and has an action that is
opposite to the new default action, a rule is added to manage it.

To make an example, let’s consider the firewall in Fig. 5.29, which has an allowlist
configuration, and the traffic flows coming form the NSRs in table 5.6. To convert
this firewall to a denylist configuration, the default action is changed from DENY to
ALLOW. Then, for each traffic flow that has an action opposite to the new default
action (i.e., ALLOW), a rule is added to block it. In this case, two rules are added to
block the isolation cutoff flows, resulting in the firewall shown in Fig. 5.30.

Table 5.6. Example of NSRs

IP Src Port Src IP Dest Port Dest Protocol Action

10.0.0.2 & 10.0.1.1 & & Isolation
10.0.0.2 & 10.0.1.2 & & Isolation
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Figure 5.29. Firewall before conversion
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Figure 5.30. Firewall after conversion
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Chapter 6

Implementation and Validation

The approach described in chapter 5 has been fully implemented in Java as an
extension of the already existing code of VEREFOQO. This chapter presents the
tests which have been conducted on the implementation of the proposed approach,
to show which goals have been achieved and to understand the limitations which
should be overcome in the future. The first part of this chapter will focus on
the validation of the Leiden algorithm, to understand how the different parameters
influence the final clustering and to provide some guidelines for their correct choice.
The second part will present the results of the parallelized VEREFOO, comparing
its performance and optimality with the standard version.

6.1 Leiden Implementation and Validation

For the Leiden algorithm has been adopted a public available java library [10], this
implementation of Leiden requires different parameters in input that can modify
the final clusterization. Some of these parameters are left to the default value and
cannot be modified:

e Quality function (CPM or Modularity): this parameter defines the qual-
ity function to use, is set to ”CPM” by default which overcomes some limi-
tations of the Modularity

e Algorithm (Louvian or Leiden): the implementation allows to choose
between the Louvian and the Leiden algorithm, the dafault value is ”Leiden”
which is an improvement of Louvian

e Iterations: defines the number of iterations of the algorithm, by default is
set to 710"

Other parameters are not fixed and is network administrator’s duty to understand
which values best suit for a specific network based on some guidelines that will be
presented later in this chapter. These parameters are:
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e Resolution Parameter ~: is a real number such that 0 < + < inf, small
values produce less clusters, higher values more clusters

e MinNodes: define the minimun number of nodes per cluster

e Normalization: can be "None” (N) or ”AssociationStrength” (A). Used to
normalize the weights of the flow graph, useful for heterogeneous networks in
terms of traffic flows

To understand how the previously mentioned parameters influence the final cluster-
ing, a series of tests were conducted. The objective was to define a set of guidelines
for correctly choosing these parameters to achieve an optimal network clusteriza-
tion. A "good” clusterization in this context is defined as a partition where the
clusters are balanced in terms of the number of nodes, which is quantitatively mea-
sured by a low standard deviation of node counts across all clusters. The tests were
performed on two types of network created with two different generators, both
generators take input the desired number of webclients and the number of policies
(NSRs) and produce an allocation graph that differentiates for the topology, in
particular:

e The GEANT generator, creates star-shaped network topologies composed
of a central node with eight-node chains.

e The VPNConfB generator, creates more complex, non-star-shaped net-
work topologies.

To evaluate performance across different scales, tests were conducted on networks
with the following dimensions:

e 50 Webclients, 150 Policies

80 Webclients, 240 Policies

100 WebClients, 300 Policies
300 Webclients, 900 Policies

500 Webclients, 1500 Policies
The Leiden algorithm’s parameters were varied within the following ranges during
the testing:

e Resolution Parameter ~: Varied among 0.1,1.0,2.0.
e MinNodes: Varied among 2,5,10.

e Normalization: Varied between ”N” and ”A”.
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For each network topology, network dimension and combination of parameters have
been computed the following statistics:

e Number of clusters
e Standard deviation of the number of nodes per cluster
e Standard deviation of the number of flows per cluster

e Number of cutoff flows

6.1.1 GEANT networks analysis

GEANT networks are star-shaped networks with a central node and chains of 8
nodes as shown in Fig. 6.1, where the allocation places are represented in red and
normal nodes in black.

Figure 6.1. Example of GEANT network with 20 Webclients

Due to their structure, these networks are always partitioned into a large central
cluster containing the central node, along with several smaller clusters, each ideally
corresponding to one of the eight-node chains. Increasing the resolution parameter
allows for a reduction in the size of the large central cluster, leading to an increased
number of smaller clusters. This generally results in better parallelization perfor-
mance but decreases the optimality of the final solution. As can be observed in
Fig. 6.2 and 6.3, an increase in the resolution parameter corresponds to a higher
number of clusters. In this specific case, the standard deviation of the number of
nodes per cluster also increases. This is because the MinNodes parameter is set to a
low value of 2, which allows for the creation of very small clusters that significantly
contribute to the standard deviation.
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To avoid the creation of clusters smaller than 8 nodes it is necessary to set "minN-
odes” equals to an higher value, keeping unchanged the resolution parameter. This
will decrease the number of clusters but will also decrease the standard deviation
as shown in Fig. 6.4

Performance Leiden Algorithm vs. Web Clients (Parameters: res=1.0 minNodes=5 normalization=N)
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Figure 6.4. GEANT rp=1.0, minNodes=>5, norm="N"

If the resolution parameter is increased again as in Fig. 6.5 the number of clusters
and the standard deviations do not change across all the network dimensions. This
is because the Leiden algorithm, unable to further partition the strongly connected
central cluster, attempts to divide the smaller chain clusters. However, since the
MinNodes parameter is set to 5, any new clusters smaller than this are reconnected,
effectively maintaining the chain-based clusters and preserving a stable partitioning.
So for this network topology, after a certain value of the resolution parameter, there
may be an intrinsic limit for the Leiden algorithm to further clusterize the network.
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Performance Leiden Algorithm vs. Web Clients (Parameters: res=2.0 minNodes=5 normalization=N)
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Figure 6.5. GEANT rp=2.0, minNodes=>5, norm="N"

As final consideration for this topology, ”minNodes” should be set to a value smaller
or equal to the the chain size, otherwise Leiden would produce a single cluster
containing the entire network, making the problem equals to the standard version
of VEREFOO.

6.1.2 GEANT results

Given the previous Leiden analysis on the GEANT networks, it is possible to pro-
vide some guidelines to correctly choose the parameters to obtain a good clustering.
As said before, the algorithm creates a big cluster containing the central node and
many smaller clusters. To ensure that these smaller clusters are balanced with a
size equal to the natural chain length, it is sufficient to set the "minNodes” param-
eter to 8.

The choice of the resolution parameter is based on the primary objective. In the
case where the performance is the main objective, a higher resolution parameter,
such as 1.0 or 2.0, has to be chosen for the generation of more small and more par-
allelizable clusters. In the situation where also the optimality is a primary concern,
a lower resolution parameter, such as 0.001 or 0.01, has to be employed for the
purpose of creating less clusters.

Finally, Normalization is not required for the GEANT network topology. its effect
is just reducing the number of clusters, which can be achieved by simply reduc-
ing the resolution parameter, making normalization unnecessary for this specific
network topology.
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6.1.3 VPNConfB network analysis

VPNConfB generator creates more complex networks, an example with 20 web-
clients is shown in Fig. 6.6
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Figure 6.6. Example of VPNConfB network with 20 webclients

These kind of networks are very heterogeneous in terms of traffic flows, which means
that there are areas with a high flow density and others with poor density, this
results in very unbalanced clusters and a large standard deviation in the number
of nodes per cluster as can be seen in 6.7. A counter-intuitive behavior is observed
when the resolution parameter increases, as one can see from Fig. 6.7. For larger
networks, the number of clusters decreases instead of increasing. This phenomenon
is a direct consequence of the network’s heterogeneity and its interplay with the
MinNodes parameter. The Leiden algorithm, faced with such a heterogeneous
distribution of flow, tends to output at a first stage big clusters very interconnected
and a vast number of clusters that are composed by a single node. As we have
MinNodes set at 2, these one-node clusters are merged together to form larger
clusters, thereby causing a reduction in the number of clusters. Furthermore, this
merging process exacerbates the imbalance, leading to a significant increase in the
standard deviation, indicating a less balanced clustering solution.
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Performance Leiden Algorithm vs. Web Clients (Parameters: res=0.1 minNodes=2 normalization=N)
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To achieve more balanced clusters in this network topology, it is essential to utilize
the Normalization parameter. This feature normalizes the weights of the flow graph,
thereby mitigating the negative effects of the network’s high heterogeneity. As a
result, shown in Fig. 6.9, the clustering produces a higher number of clusters
with a significantly lower standard deviation of the number of nodes per cluster.
Further, by increasing the MinNodes parameter, as demonstrated in Fig. 6.10, the
total number of clusters decreases, which helps to avoid the creation of very small
subnetworks and contributes to a more balanced and robust partitioning.

By increasing again the resolution parameter the clustering does not change (Fig.
6.11), meaning that Leiden is not able to divide the network in more clusters, so as
before there is an intrinsic limit in the Leiden algorithm to further clusterize the
network.
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6.1.4 VPNConfB results

Based on the preceding analysis of VPNConfB networks, we can now establish a set
of guidelines for the optimal selection of input parameters for the Leiden algorithm.
When the primary objective is to maximize performance, a higher resolution pa-
rameter, such as 1.0 or 2.0, is recommended to produce a greater number of par-
allelizable clusters. Conversely, a lower value should be chosen for a more optimal
solution.

To prevent the formation of very small subnetworks and ensure a more balanced
partitioning, it is advisable to set the ”MinNodes” parameter to a value of at least
5.

Finally, the ”Normalization” parameter is crucial for achieving balanced clusters
within this network topology, as it effectively counteracts the negative effects of
high traffic heterogeneity.

6.2 Performace Validation of Parallel VEREFOO

In this section are analyzed the performance and the optimality of parallel VERE-
FOO against the standard version. The tests were conducted on the same network
topologies used for the validation of the Leiden algorithm, specifically GEANT and
VPNConfB networks. The aim of this analysis is to compare the two versions of
VEREFOO until reaching the maximum network size that the standard version can
handle, subsequently evaluating the performance of the parallel version on larger
networks. The tests were performed on a Ubuntu virtual machine with 4 CPU
cores and 8 GB of RAM, the processor of the host machine was an Intel i7-13620H.

6.2.1 GEANT networks performace

For all the tests on GEANT networks, the parameters of the Leiden algorithm were
set as follows: resolution parameter = 1.0, MinNodes = 8, Normalization = "N”.
These values were chosen based on the guidelines established in the previous section
to ensure a good clustering.

In the first part of the analysis, the performace of the two versions of VEREFOO
were compared on networks with dimensions ranging from 10 to 50 webclients,
from this value the standard version cannot provide a solution before the timeout
threshold of 30 minutes. For each network dimension the number of policies has
been computed as numberWebclients x 3. The results are shown in Fig. 6.12 for
Atomic Flows and in Fig. 6.13 for Maximal Flows. The parallelized version shows
a significant performance improvement, being able to solve in few seconds networks
that require several minutes with the standard version.
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However, the parallel version does not provide the optimal solution as discussed in
chapter 5. The optimality of the two solutions is compared in Fig. 6.14 and 6.15
for Atomic Flows and in Fig. 6.16 and 6.17 for Maximal Flows, where are shown
the number of firewalls and average number of rules used in the two versions.
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The parallel version has been further tested in larger networks, from 100 webclients
up to 1000 webclients. It was not possible to test on networks larger than this size
because of the complexity in computing the Atomic Flows due to a limited amount
of RAM. Again, the number of policies has been computed as numberW ebclients x
3. The results are shown in Fig. 6.18 for Atomic Flows and in Fig. 6.19 for Maximal
Flows. These results show that the parallel version is able to solve networks up
to thousands of nodes in few seconds or minutes for the Atomic Flows, while for
Maximal Flows the maximum network size that can be solved in reasonable time
is 500 webclients.
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6.2.2 VPNConfB networks performace

For all the tests on VPNConfB networks, the parameters of the Leiden algorithm
were set as follows: resolution parameter = 1.0, MinNodes = 5, Normalization =
”A”. These values were chosen based on the guidelines established in the previous

section to ensure a good clustering.
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In this case the two versions of VEREFOO were compared on networks with dimen-
sion up to 200 webclients for Atomic Flows and up to 50 webclients for Maximal
Flows. Again, the number of policies has been computed as numberW ebclients x 3.
The results are shown in Fig. 6.20 for Atomic Flows and in Fig. 6.21 for Maximal
Flows. With this network topology, the parallelized version shows a significant
performance improvement for Atomic Flows, while for Maximal Flows the perfor-
mance improvement is visible up to 20 webclients, then both versions fail to provide
a solution before the timeout threshold of 30 minutes.
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The optimality of the two solutions is compared in Fig. 6.22 and 6.23 for Atomic
Flows and in Fig. 6.24 and 6.25 for Maximal Flows. Again, the optimality of the
parallelized version is lower than the standard version, but the difference is smaller

than in the GEANT networks.
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Also in this case the parallel version has been tested on networks up to 1000 web-
clients. Since using Maximal Flows the maximum network size that can be solved
within the timeout limit is 20 webclients, these tests were conducted only for Atomic
Flows. The results are shown in Fig. 6.26, demonstrating that the parallel version
can efficiently handle networks with up to 1000 webclients within a reasonable time

frame.
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Chapter 7

Conclusions

This thesis specifically focused on the VEREFOO tool, which uses formal methods
to generate an optimal firewall configuration. Even if VEREFOO is automatic,
avoids human errors and guarantees the optimal solution given a network and
set of Network Security Requirements , its main limitation is scalability. It has
been demonstrated that when applied to large-scale networks, the computational
time required to find a solution becomes impractical. To address this, a novel
approach was proposed and implemented, to partition a large network into smaller,
more manageable clusters. By dividing the problem into smaller subproblems,
VEREFOO was able to be applied to each cluster in parallel.

The results of this thesis show that this parallel approach significantly improves
the performance of the standard version of VEREFOO. By processing the network
in smaller, independent clusters, the overall time required to find a solution was
drastically reduced. The challenges introduced by this division were also addressed,
particularly the handling of ”cutoff flows” that traverse multiple clusters. Specific
strategies were devised to manage these flows, and a merging algorithm was created
to resolve conflicts that arise when multiple clusters attempt to place a firewall in
the same location. This method effectively balances the need for computational
efficiency with the goal of maintaining a correct and near-optimal overall solution.
First the parallel approach has been compared with the standard version showing
a great performance improvement, then the parallel version was tested on bigger
networks demonstrating it can handle networks composed of thousands of nodes.

In essence, this thesis successfully provided a scalable solution for VEREFOO,
transforming it from a theoretical tool for small-scale networks into a practical
solution for larger, real-world environments.

While the proposed parallel approach represents a significant step forward in terms
of scalability, several areas can be improved in future research.

The current approach relies on the Leiden algorithm for network partitioning. Al-
though effective, the Leiden algorithm has two main limitations. First, it requires
the user to manually tune three input parameters, which can be a time-consuming
and non-trivial task. The optimal parameter values can vary significantly between
different network topologies, meaning the user must experiment to achieve the best
results. Second, in certain network configurations, the Leiden algorithm may pro-
duce unbalanced clusters, where some clusters are significantly larger or contain
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more flows than others. This unbalance can reduce the efficiency of the parallel
approach, as the total runtime will be limited by the performance of the largest
and most complex cluster.

Therefore, a key area for future work would be to replace the Leiden algorithm with
a new, ad-hoc algorithm specifically designed for this purpose. The ideal algorithm
would be completely automatic, requiring no parameters in input from the user,
and would aim to create clusters that are as balanced as possible in terms of the
number of traffic lows that must be managed. This would not only simplify the
process for the user but also maximize the performance gains of the parallelization
strategy.

Another possible improvement could be to the design and implementation of post-
processing algorithms to remove redundant firewalls and rules in the final solution
to increase the optimality of the solution. Finally, this approach may be extended
to also to REACT-VEREFOO, a different version of VEREFOO that adds sup-
port for the reconfiguration of existing firewalls, enabling the reuse of previous
configurations instead of forcing a full system re-deployment from scratch
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