
Master’s Degree in Cybersecurity
LM32 - Computer Engineering

Academic Year 2024-2025
October 2025

Towards Energy-Aware Network Security
Automation in Edge-to-Cloud Environments

Supervisors Candidate

Prof. Daniele BRINGHENTI Federico CAGNAZZO
Prof. Fulvio VALENZA
Prof. Riccardo SISTO

Summary

The rapid evolution of digital infrastructures, accelerated by the proliferation of the
Internet of Things (IoT) and virtualization, has increased the complexity of securing
distributed environments while raising concerns about energy efficiency. Traditional
manual configuration of security controls is no longer feasible in dynamic networks,
where even small errors can compromise protection. Automation addresses this
challenge by ensuring correctness and adaptability, but current approaches often
overlook the energy consumption of security operations.

This thesis focuses on the integration of network security automation with
energy-aware strategies in Edge-to-Cloud (E2C) environments, where resources are
dynamically distributed between endpoints, edge devices, and cloud infrastruc-
tures. The work builds upon GreenShield, an energy-aware framework for auto-
mated firewall configuration, designed to enforce security policies with strict cor-
rectness while reducing energy consumption. The thesis extends GreenShield to
support the hierarchical nature of E2C systems, introducing novel constraints to
guide the placement and activation of security functions with explicit consideration
for power efficiency. A key contribution is the analysis of the power consumption
of virtualization technologies, i.e., virtual machines (VMs) and containers, that are
at the basis of E2C platforms. Finally, new constraints are proposed to integrate
GreenShield in the E2C context.

In the second part, to evaluate scalability and practical feasibility, the thesis
develops a dedicated test generator integrated into Verefoo, the security automa-
tion framework that serves as the foundation for GreenShield. The generator is
adapted to the CESNET3 research and education network, based on real encrypted
TLS traffic traces, taken by the CESNET-TLS-Year22 dataset. It systematically
produces realistic test cases by statistically modeling traffic distributions and gen-
erating reachability and isolation policies.

In the final part, the thesis presents a comprehensive validation of the tests gen-
erated for the CESNET3 network. The results are evaluated under different con-
figurations, including various solver versions, both with a MaxSMT and a heuristic
approach, and varying policies complexity. The findings demonstrate the effec-
tiveness of the proposed extensions in maintaining security guarantees, while also
providing a means to study the scalability of the test generator and of Verefoo, on
a real network such as CESNET3. As a future work, the thesis suggests further
extension of the test generator to GreenShield, enabling the evaluation of energy-
aware security automation in contexts that closely resemble real-world scenarios
like CESNET3 network.

1

Contents

List of Figures 4

List of Tables 6

Listings 7

1 Introduction 9

1.1 Thesis description . 10

2 Network Security Automation 12

2.1 Objectives of Network Security Automation 13

2.2 Problems in Manual Security Configuration 14

2.3 Pros and Cons of Automated Network Security Configuration . . . 18

2.4 Sustainability in Firewall Configuration 19

2.5 GreenShield: Optimizing Firewall Configuration for Sustainable Net-
works . 20

2.5.1 Objectives of GreenShield 21

2.5.2 Network Graph and Security Policies 21

2.5.3 Firewall Configuration Problem Formalization 22

2.5.4 Automatic Output Computation 23

3 Edge-to-Cloud Computing 24

3.1 Main Elements of the Edge-to-Cloud Architecture 25

3.1.1 Connectivity and Integration in Edge-Cloud Systems 30

3.2 Edge-to-Cloud Interplay . 30

3.3 Applications of Edge-to-Cloud Computing 31

4 Thesis Objective 33

2

5 GreenShield in the Edge-to-Cloud Computing 36

5.1 Motivations for GreenShield Integration in Edge-to-Cloud Environ-
ments . 36

5.2 Analysis of Power Consumption in Virtualization Technologies . . . 38

5.2.1 Physical vs Virtualized Firewalls 38

5.2.2 Power Consumption Analysis 39

5.2.3 Optimization Techniques . 41

5.3 Proposed Hard and Soft Constraints 41

5.4 Use Case: Smart City . 43

5.4.1 The Architecture of the Smart City 43

6 Implementation of the CESNET Test Generator 48

6.1 CESNET3 Network Overview . 48

6.2 Dataset Analysis . 50

6.2.1 Dataset Structure and Statistics 51

6.2.2 Methodology for Generating Statistics 52

6.3 CESNET Test Generator Architecture and Design 55

6.3.1 Implementation and Design 56

6.3.2 Node Selection . 59

6.3.3 Policy Generation . 61

7 Validation and Results 63

7.1 Validation Methodology . 64

7.2 Validation Experiments . 66

7.2.1 MaxSMT Approach With Z3 v4.8.8 67

7.2.2 MaxSMT Approach With Z3 v4.14.1 67

7.2.3 Heuristic Approach and Extension 67

7.3 Results and Analysis . 68

8 Conclusions and Future Works 76

Bibliography 79

3

List of Figures

2.1 Conflict Anomalies - Shadowing Conflict and Correlation 15

2.2 Sub-Optimization Anomalies - Duplication, Shadowing Redundancy,
and Unnecessary . 16

3.1 Challenges of Edge-to-Cloud Computing 26

3.2 Edge-to-Cloud Computing Architecture 28

3.3 Edge-to-Cloud Computing Architecture Dimensions 29

5.1 Power consumption with different number of active VMs/containers. 40

5.2 Memory power consumption with eight active VMs/containers. . . . 40

5.3 Architecture of the Smart City . 44

5.4 Hardware and Virtual Firewall . 46

6.1 CESNET3 Network Architecture 50

6.2 Entries extracted from the dataset 52

6.3 Hashed Source IP address and in clear Destination IP address . . . 52

7.1 50%, no ports, AP with Z3 v4.8.8 69

7.2 50%, no ports, AP with Z3 v4.14.1 69

7.3 90%, no ports, AP with Z3 v4.8.8 69

7.4 90%, no ports, AP with Z3 v4.14.1 69

7.5 90%, ports enabled, AP with Z3 v4.8.8 70

7.6 90%, ports enabled, AP with Z3 v4.14.1 70

7.7 10%, ports disabled, MaxSMT approach 71

7.8 10%, ports disabled, Heuristic approach 71

7.9 10%, ports enabled, MaxSMT approach 71

7.10 10%, ports enabled, Heuristic approach 71

7.11 90%, ports disabled, Heuristic approach with AP 73

7.12 90%, ports enabled, Heuristic approach with AP 73

4

7.13 30%, ports disabled, Heuristic approach with AP 73

7.14 30%, ports enabled, Heuristic approach with AP 73

7.15 50%, ports disabled, Extended Heuristic approach with AP 74

7.16 50%, ports disabled, Extended Heuristic approach with MF 74

7.17 50%, ports enabled, Extended Heuristic approach with AP 74

7.18 50%, ports enabled, Extended Heuristic approach with MF 74

5

List of Tables

5.1 Power Consumption Comparison 39

5.2 Smart City Nodes . 47

6.1 Distribution of IP addresses per city 55

6.2 CESNET main nodes IP assignment 59

6.3 CESNET other points IP assignment 59

7.1 MF Algorithm Comparison Between Z3 v4.8.8 and Z3 v4.14.1 . . . 70

7.2 Comparison Between MaxSMT and Heuristic Approaches Using AP
Algorithm with 50% and Ports Disabled/Enabled 71

7.3 Comparison Between MaxSMT and Heuristic Approaches Using AP
Algorithm with 90% and Ports Disabled 72

7.4 Comparison Between MaxSMT and Heuristic Approaches Using AP
Algorithm with 90% and Ports Enabled 72

6

Listings

6.1 Analysis of the dataset through all the 52 weeks 54

7

Chapter 1

Introduction

The rapid evolution of digital infrastructures has fundamentally transformed the
way modern societies generate, exchange, and protect information. The prolifer-
ation of the Internet of Things (IoT), together with the widespread adoption of
virtualization technologies and cloud-native paradigms, has dramatically increased
both the scale and complexity of networked systems. These transformations, while
enabling extraordinary levels of connectivity and innovation, have also intensified
the challenges of securing distributed environments against increasingly sophisti-
cated cyber threats. At the same time, the growing energy demands of large-scale
networks raise critical challenges about sustainability, making energy efficiency a
critical design objective for future digital infrastructures.

In this context, network security automation is now an integral part of many
strong infrastructures. Traditional manual security configuration is becoming in-
creasingly infeasible in large and dynamic networks with the potential that even
small errors can expose the system to critical vulnerabilities. Automating security
policy deployment and enforcement not only reduces the risk of misconfigurations
but also enhances agility, enabling organizations to respond rapidly to evolving
threats. However, existing approaches to automation typically prioritize correct-
ness and performance, without considering their energy power consumption.

At the same time, the Edge-to-Cloud Computing (E2C) paradigm has gained
popularity as a response to the limitations of centralized cloud architectures. Pro-
viding computation and storage closer to data sources, E2C systems address the
low-latency, high-bandwidth, and reliability requirements of emerging IoT and real-
time applications. However, the distributed and heterogeneous nature of E2C in-
frastructures introduces new challenges for both security and energy management
that demand dynamic coordination of capabilities across many layers while allowing
compliances with policy and sustainability.

This thesis brings together two important areas: network security automation
and energy efficiency in E2C environments. The main objective is to make security
automation not only correct and reliable, but also more sustainable. To achieve this,
the work extends GreenShield, a framework originally designed to automatically
configure firewalls in an optimized way. GreenShield already combines formal policy
enforcement with optimization techniques, but in this thesis it is further improved
so that it can also take into account the unique characteristics of Edge-to-Cloud

9

Introduction

systems. In particular, the new version of GreenShield introduces additional rules
and constraints that make it capable of deciding where and when to activate security
functions, while also reducing the overall power consumption of the network.

To make these improvements meaningful, the thesis also analyzes the energy us-
age of virtualization technologies, such as virtual machines (VMs) and containers,
which form the foundation of most modern edge and cloud platforms. These tech-
nologies behave differently in terms of resource allocation and power consumption,
so understanding their energy profiles is crucial. By analyzing how they perform
under different conditions, it becomes possible to identify opportunities for saving
energy without compromising the security of the system.

In addition to theoretical analysis, the thesis also develops a test generator
that is currently programmed for the Verefoo framework. The generator has been
specifically developed to apply Verefoo to the CESNET3 network, the national
research and education network of the Czech Republic. This allows the evaluation
of optimization strategies in a real and complex environment using real traffic traces.
It is able to simulate realistic network traffic scenarios and evaluate the scalability,
accuracy, and execution time of the optimization engine under different conditions.
Although its first implementation is dedicated to Verefoo, the long-term goal is to
extend the generator to GreenShield, so that the proposed energy-aware techniques
can be tested directly within the enhanced framework as well.

Moreover, this thesis includes a validation phase in which the execution times of
the generator are compared while varying different input parameters. This makes
it possible to analyze how the system behaves under different configurations, pro-
viding insights into its feasibility for real-world use and its scalability when applied
to larger and more complex scenarios. These tests represent an essential step in un-
derstanding the practical limits of the approach and verifying that the optimization
engine can operate efficiently even in demanding environments.

In conclusion, this thesis addresses the integration of network security automa-
tion with Edge-to-Cloud infrastructures by extending the GreenShield framework
to operate effectively in such environments. It also presents the development of a
test generator for the CESNET3 network, implemented within the Verefoo frame-
work, and validates its performance by analyzing scalability, execution time, and
the realism of generated traffic scenarios. Through this validation, the work demon-
strates that the proposed tools can reliably support the evaluation of automated
security strategies in real-world and large networks.

1.1 Thesis description

This thesis is organized to provide a logical structure starting from the background
topics and gradually advances toward the actual analysis. Chapter 2 focuses on
network security automation, discussing its importance in modern infrastructures
and the challenges it faces. It also reviews existing solutions and highlights their
limitations, particularly in terms of energy efficiency, presenting GreenShield as a
possible solution to these challenges. Chapter 3 introduces the Edge-to-Cloud

10

Introduction

Computing paradigm, explaining its architecture, benefits, and the specific chal-
lenges it poses for security and energy management. Chapter 4 presents the ob-
jectives of the thesis, detailing the specific research questions and goals that guide
the work. Chapter 5 presents a detailed analysis of the virtualization technolo-
gies power consumptions, and describes the proposed extensions to the GreenShield
framework, including the new hard and soft constraints designed to optimize en-
ergy consumption in E2C environments. Chapter 6 presents the analysis about
the dataset used for the evaluation of the proposed methods and techniques, in-
cluding a description of the data collection process and the key characteristics of
the dataset. It also details the implementation of the CESNET Test Generator,
including its design, architecture, and integration with the existing Verefoo frame-
work. Chapter 7 presents the validation of the implemented test generator by
comparing its performance against baseline scenarios and evaluating its effective-
ness in generating realistic traffic patterns. Finally, Chapter 8 summarizes the
key findings and contributions of the thesis, and outlines potential directions for
future research.

11

Chapter 2

Network Security Automation

In modern enterprise and critical infrastructure networks, the size and complexity of
computer networks are growing, as a consequence of novel architectural paradigms
such as the Internet of Things (IoT) and network virtualization. Consequently, the
growing scale and complexity of cybersecurity policy management have made man-
ual configuration increasingly impractical in an environment where cyber attacks
can dramatically exploit breaches related to any minimum configuration error. As
a result, automated network security has become essential for maintaining robust
security postures and ensuring compliance with evolving security requirements.

Network Security Automation involves a broad suite of methodologies, tools,
and frameworks that focus on automating management, configuration, validation,
and monitoring of core security elements like firewalls, Access Control Lists (ACLs),
and Intrusion Detection Systems (IDS). This allows organizations to have strong
security measures in place while avoiding the risks of human error and delayed
responses [1].

The introduction of network softwarization in its two variants, Network Func-
tions Virtualization (NFV) and Software-Defined Networking (SDN), has further
enhanced network agility. On the one hand, NFV enables allocating virtual func-
tions instead of manually installed physical middleboxes, whereas SDN decouples
the network data plane from the control plane, leading to a centralization of the
orchestration operations [2]. On the other hand, they allow users to dynamically
request the creation of virtual Service Graphs (SGs), a generalized and more flex-
ible form of the traditional Service Function Chain (SFC). SGs represent logical,
virtualized network topologies that are abstracted from the underlying physical
infrastructure, thanks to the decoupling of computing and networking resources.

A key challenge in this environment is the enforcement of Network Security
Requirements (NSRs), such as data protection and traffic isolation, within these
virtual service graphs. Traditionally, defining and enforcing such requirements is
the responsibility of a security manager, who operates independently from the net-
work manager responsible for designing the SG topology. This separation of roles
can result in miscommunication, gaps in domain expertise, and ultimately, the mis-
configuration of security controls. Moreover, the manual configuration of Network
Security Functions (NSFs), which include virtual firewalls, IDS/IPS, and other
protections, introduces delays in response to threats and increases the likelihood of

12

Network Security Automation

errors. For instance, failing to define just one of hundreds of rules required for a
complete isolation policy could leave the network vulnerable, despite intentions to
enforce strict segmentation [3, 4].

By automating these processes, organizations can accelerate the deployment of
security policies, ensure consistent and accurate enforcement of security policies,
and significantly reduce the potential for human error. Overall, network security
automation both maximizes operations and secures the environment with fast mit-
igation of threats and continuous policy enforcement [5].

An examination of the Verizon Data Breach Investigations Reports from 2013
to 2021, highlights two key findings that underscore the significance of security con-
figuration issues. Among the various causes of security breaches, both misconfigu-
rations and their broader category, miscellaneous errors, have shown a consistent
upward trend. Within this group, misconfigurations have grown from representing
42% of incidents, making them the leading contributor to breaches in this category.
Similarly, the overall proportion of incidents attributed to miscellaneous errors has
risen, increasing from 5% to 13%. In 2021 alone, Verizon recorded 23,896 security
incidents, of which more than 1,300 were the result of misconfigurations (about
5%). This large number illustrates the critical impact of configuration issues on
cybersecurity [2].

2.1 Objectives of Network Security Automation

Automation, by definition, is a technique that ”emphasizes efficiency, productivity,
quality, and reliability, focusing on systems that operate autonomously, often in
structured environments over extended periods, and on the explicit structuring of
such environments”.

The main objective of Network Security Automation is to provide as automatic
configuration as possible of security services to minimize human intervention. In
other words, when the system receives an external input from a human being or
from another system, it should be able to work without requiring other external
contributions. In general, a fundamental requirement for automatic configuration
is agility, i.e., whenever the current state changes, the system must be able to auto-
matically adapt to the new conditions as fast as possible, to avoid inconsistencies.
The absence of agility in traditional computer networks represented one of the main
reasons why automation had not already been fully introduced in the past in this
engineering field. In addition, the other objectives of Network Security Automation
include [2, 6]:

• Improve Accuracy and Reduce Errors: it minimizes the risk of human
error in security configurations, ensuring that policies are applied consistently
and correctly across the network.

• Enhanced Security Posture: by automating the deployment, enforcement,
and monitoring of security controls, organizations can maintain a resilient
security posture and reduce risks of misconfiguration, breaches, and non-
compliance.

13

Network Security Automation

• Operational Efficiency: automation streamlines security operations, re-
ducing the burden of manual configuration and enabling teams to focus on
high-value tasks. This leads to faster incident responses and lower operational
overhead.

• Optimize Resource Usage: with the automation of configuration and
management of security operations, organizations improve performance by
minimizing unnecessary use of bandwidth, compute, and storage through
optimization-aware configuration.

• Scalability and Management of Complexity: as networks become more
dynamic and complex, automation allows organizations to scale security poli-
cies and controls, supporting large, distributed, and multi-tenant environ-
ments.

• Continuous Compliance: automated monitoring and policy verification
help ensure continuous compliance with internal security standards and ex-
ternal regulations, including the ability to generate real-time audit reports.

• Rapid Threat Mitigation: integration with threat intelligence and au-
tomated response mechanisms allows for the immediate detection, mitiga-
tion, and remediation of security threats, reducing Mean Time To Resolution
(MTTR).

• Policy-Aware Service Graph Design: automation allows embedding se-
curity requirements directly into the design of virtualized service graphs, en-
suring that security is an integral part of the network design process.

2.2 Problems in Manual Security Configuration

Manual configuration of security policies within networked environments presents
a variety of issues that can generate significant security risks and operational in-
efficiencies. In such a situation, the security manager has to collect the security
requirements that have been specified by the network users and manually assign and
configure the corresponding NSFs in a way that the requirements are fulfilled. For
example, in the event of a requirement for blocking all traffic destined to a partic-
ular website, the security manager needs to specify the corresponding filtering rule
explicitly on a firewall. However, the process has always been more complex than
configuring non-security-related network functions. That is because the failures or
mistakes in the process have drastic implications, including exposing network users
to malicious attacks.

The main reason is that the configuration of security functions, e.g., firewalls,
or anti-spam filters, is traditionally performed manually, with a trial-and-error ap-
proach: whenever an attack is detected, the configuration is modified accordingly.
This work paradigm is not scalable, and it is prone to several errors due to the
human fallibility [7]. If done incorrectly, manual NSF configuration can introduce

14

Network Security Automation

anomalies, which are defined by the literature as an incorrect specification intro-
duced during the configuration of an NSF by the security manager. Anomalies are
typically classified into three broad categories [6]:

• Conflicts, such as where two sets of firewall filtering rules have identical
condition sets but effect opposite actions.

Moreover, conflict anomalies can be classified as:

– Contraddiction, if two rules match the same traffic, but have opposite
actions.

– Shadowing Conflict, where two rules match the same traffic, but one
is more specific than the other and the one with less priority matches
the same traffic of the more specific one. In addition, they have opposite
actions.

– Correlation, where two rules specify different actions and some packets
are matched by both rules, but there are other packets that are matched
by one rule but not the other.

Figure 2.1: Conflict Anomalies - Shadowing Conflict and Correlation

• Errors, like when a VPN gateway is instructed to use a cryptographic algo-
rithm that the gateway does not have in its cipher suite.

• Sub-optimizations, such as firewall rules that do not trigger because more
specific rules already match the same traffic conditions.

Sub-optimizations can be further classified as:

– Irrelevance, if the firewall rule does not match any packet.

– Duplication, where two rules match the same traffic, but one is more
specific than the other.

– Shadowing Redundancy, if two rules have the same action, but one
is more specific than the other and the one with less priority matches
the same traffic of the more specific one.

– Unnecessary, where a rule is not needed because it does not match any
traffic, or because it is already covered by another rule.

15

Network Security Automation

Figure 2.2: Sub-Optimization Anomalies - Duplication, Shadowing Redundancy,
and Unnecessary

In addition to configuration issues, human intervention also introduces chal-
lenges to orchestrate security controls. For instance, during a transition from one
security state of a network to another, i.e., a security transient, it is important
that all required changes be quickly effected and in an organized fashion to avoid
vulnerabilities arising. Sadly, this speed and precision are usually lacking in human
operators, particularly when working under tight time deadlines, raising the risk of
mistakes. Similarly, if a user has to enter a predefined security parameter manually
into a network orchestrator, there will always be some possibility of the incorrect
parameters being entered by mistake, even if the configuration is theoretically cor-
rect.

The following outlines the key reasons why manual security orchestration and
configuration have become impractical in today’s computer networks [2, 6]:

• Human Error: manual configuration is inherently error-prone, with com-
mon mistakes including misconfigured firewall rules, misplaced access con-
trols, and misdirected routing policies. Even a single error can leave valu-
able assets open to exploitation or critical services interrupted. All of these
are generally amplified by the utilization of trial-and-error techniques, where
configurations are modified reactively according to attack needs. This accu-
mulates to ever more complex and unmanageable configurations over time.

• Role Separation and Lack of Communication: the duty segregation
between security managers and network admins inclines towards poor coordi-
nation and weak visibility, which can cause misconfigurations with disastrous
consequences. For example, if the network administrator does not provide
the security manager full information about the network settings, then the
latter could make incorrect assumptions when starting to design the security
architecture for the network service defined by the former.

• Inconsistent Policy Enforcement: the enforcement of security policies
uniformly across a network by hand is hard in practice. Consequently, orga-
nizations typically experience policy drift and configuration inconsistencies,
where conflicting or overlapping rules cause unintended behavior or security

16

Network Security Automation

vulnerabilities. These are crucial in heterogeneous environments that include
equipment and software from multiple vendors, each having different forms
for configuration and hardware/software management tools, hence minimizing
complexity and risk of inconsistency.

• Lack of Agility: manually altering security settings to respond to new
threats or developing network requirements is slow and labor-intensive. Such
incapacity to respond paralyzes the organization’s capacity to respond to risks
in a timely manner. Agility is likewise disabled when security managers are
not constantly informed regarding evolving threats or emerging protection
technologies. Without current information, their ability to respond appropri-
ately and promptly is limited.

• Poor Scalability: as network sizes and sophistication grow, driven by tech-
nologies such as IoT, cloud, and virtualized services, manual configuration
remains increasingly impractical. Endpoints, services, and applications that
require security action currently far outnumber those that can be practically
managed manually. Organizations continue to report this trend and antici-
pate it will continue, putting more pressure on traditional manual solutions.

• Increasing Network Sophistication and Diversity: next-generation net-
works require the introduction of new services and security features, such as
deep packet inspection and threat detection with AI. While these technolo-
gies are vital to combat threats of the current generation, they significantly
increase the level of complexity for manual management as well. Presence of
multi-vendor solutions and virtualized NSFs introduces heterogeneity as well.
Each solution may have distinct syntax or config interfaces, so it is extremely
important to maintain consistency and security across the entire network.

• Limited Coordination Between Functions: in the majority of firms,
network management and security administration are carried out by different
individuals or teams. Although both functions handle the same infrastruc-
ture, absence of frequent interaction and common understanding typically
results in uncoordinated decision-making. For instance, if a security admin-
istrator is unaware of recent structural evolution in the network, they could
set their configurations on the basis of misguided assumptions, inadvertently
opening up vulnerabilities.

• Outdated Training and Knowledge: security managers are not necessar-
ily brought up to speed with new cyber threats or latest defense mechanisms.
Although recent efforts have improved update and training frequency, a vast
majority of organizations fall behind. Lack of continuous learning can lead to
obsolete or unusable configurations, weakening the overall security posture of
the organization.

17

Network Security Automation

2.3 Pros and Cons of Automated Network Secu-

rity Configuration

Automated network security configuration offers several advantages and its intro-
duction is motivated by its ability to overcome most of the limitations listed in the
previous section [8].

The main advantages of automated network security configuration include [2]:

• Enhancing Network Security Through Automation: trained security
professionals are scarce and costly. Therefore, most organizations utilize staff
with generic networking skills, supervised by some security professionals. Us-
ing automated tools, such teams can counterbalance their limited technical
proficiency. Even though human oversight is still necessary.

• Management of the Scale and Diversity of Modern Networks: mod-
ern computer networks are vast and heterogeneous, making manual handling
less feasible. Automatic orchestrators could provide a coherent, global per-
spective of the network, with centralized and consistent decision-making that
would be impossible for a person to manage. Additionally, by using an ab-
straction layer between the orchestrator and diverse security functions, the
system can automatically convert high-level setups into commands specific
to the device. This minimizes the necessity to have deep knowledge of every
vendor’s implementation and makes deployments faster and more accurate.

• Automatically Optimizing Security Configuration: as opposed to hu-
man methods that are often trial-and-error-oriented, automated orchestration
can identify correct and best solutions from the start. Optimization mech-
anisms can be applied to prevent middleboxes and unnecessary resources,
reducing overhead. The systems can also optimize and maximize security
guards. It would be extremely hard to manually achieve the same correctness
and efficiency.

Despite all these benefits, there are some potential drawbacks that are normally
mentioned. These are, however, largely psychological and not technical in nature
and based on human bias or prejudice:

• Fear and suspicion users may have towards automated tools.

Historically, automation has generated fear, mainly because users have been
ignorant of the workings of these tools. This lack of knowledge has resulted
in the belief that automated procedures will cause more harm than human
actions.

• The sense that automated decision-making is untrustworthy or ob-
scure.

However, automation can actually improve reliability through the incorpora-
tion of formal verification methods, which provide extremely strong correct-
ness assurance, much harder to achieve with manual configuration.

18

Network Security Automation

• The challenge of understanding or debugging automated tools.

Remember that the tools are designed by humans, and the developers must
ensure that the tools have complete documentation. The documentation en-
ables users to grasp the behavior of the tool and how to solve issues that can
occur.

• The design of the tools and how well they are monitored.

Both of these tasks, design and monitoring, are human activities. Therefore,
any negative consequences of automation are ultimately the result of human
factors, not the automation process itself.

2.4 Sustainability in Firewall Configuration

Sustainability in Firewall Configuration refers to the ability to maintain and evolve
automated security practices over time while minimizing environmental impact and
resource consumption. It is an increasingly critical design feature for modern net-
works. However, green objectives related to energy savings are affected by the ap-
plication of approximate cybersecurity management techniques. In particular, their
impact is evident in distributed firewall configuration, where traditional manual ap-
proaches create redundant architectures, leading to avoidable power consumption.

Overall, operating networks with energy efficiency has been crucial for two pri-
mary purposes: economic and social. From an economic perspective, the continu-
ously increasing size of networks compels providers to limit power usage in a bid
to reduce operational costs. Socially, there is a rising global emphasis on environ-
mental sustainability across all industries, compelling network operators to adopt
”green” strategies that align with the expectations of both current users and future
customers who increasingly value green initiatives [9].

One of the main challenges in sustainable network design is managing the power
consumption associated with cybersecurity measures. Ensuring robust protection
against a wide variety of attack types is crucial for next-generation networks, where
threats evolve rapidly, exploit vulnerabilities in shorter timeframes, and may orig-
inate from multiple concurrent sources. The concept of defense in depth, a core
principle of security by design, is frequently employed to protect network resources.
This method depends on the use of frequency, varied security mechanisms, which
all complement one another to create layers of protection. However, what really
happens in actuality is that administrators compromise by using similar devices
with duplicated configurations, hoping this is adequate. This method not only fails
to achieve the real meaning of defense in depth, but also causes unnecessary redun-
dancy, contrary to power-saving, environmentally friendly network administration
principles, as every added security function raises the overall power consumption
of the network.

A network security function where this issue is becoming increasingly evident
is the distributed packet-filtering firewall, which remains the most widely adopted
core defense mechanism against prevalent cyber threats. The operation of a dis-
tributed firewall impacts network sustainability in two key ways. First, each firewall

19

Network Security Automation

instance within a distributed architecture introduces its own baseline power con-
sumption simply by being active. Second, this use of energy rises with the amount
of traffic handled by the firewall. The cause of this inefficiency is most often the
traditional ways of configuring firewalls, which are even to this day heavily manual,
inexact, and trial-and-error-based. As a result of the huge sizes of contemporary
networks, human administrators already have a very hard time getting even func-
tionally correct configuration, typically adding misconfigurations that subvert de-
signed firewall functionality. Additionally, they tend to deploy security layers with
identical configurations, which undermines the defense in depth strategy and rarely
results in an energy-optimized setup.

In order to overcome these limitations, a few research efforts have explored auto-
mated approaches to firewall configuration. These have shown promise in reducing
human error and, in some cases, have led to more efficient configurations, such as
minimizing the number of firewalls and filtering rules. However, while valuable,
such optimizations fail to provide a substantial breakthrough for environmentally
sustainable networks.

Finally, there is a lack of detailed assessments of firewall energy consumption.
Since different firewall implementations may vary in power usage depending on
the features they support, such variability must be considered for energy-aware
optimization across the network. These should be as few middle nodes as possible
to handle as little traffic as possible for getting close to peak power levels. This
objective requires placing firewalls close to the sources of traffic [9].

2.5 GreenShield: Optimizing Firewall Configura-

tion for Sustainable Networks

Nowadays, sustainability is recognized as a critical design factor, since current
practices in security, particularly setting up firewalls, neglect green factors. Hand-
built classical distributed firewall designs have a tendency to add redundancy that
is power-intensive. Even the automated solutions implemented primarily focus on
security, correctness, and performance, while lacking energy-focused optimization.

GreenShield, a Java framework that integrates security enforcement and sus-
tainability goals, addresses this gap. GreenShield aims to reduce the energy usage
of network firewalls by minimizing the number of active devices required to enforce
a given security policy. Doing so, it enhances traffic processing efficiency by render-
ing unwanted traffic filtered as close to its source as possible, reducing unnecessary
forwarding and load across the network.

GreenShield is built on an optimization-based orchestration engine that ensures
administrator-specified security policies are enforced with confidence while also op-
timizing for energy savings. This methodology achieves automation by following
a principle named policy-based management, where human administrators spec-
ify the desired security related to blocked or allowed communications as sentences
named policies, which are expressed with a user-friendly language, and later are
refined into the concrete network security configuration.

20

Network Security Automation

GreenShield combines automation with two other features: optimization and
formal verification. The optimization component ensures that the firewall config-
uration is not only functionally correct but also energy-efficient, minimizing the
number of active firewalls and the amount of traffic they process. The formal veri-
fication component guarantees that the generated configurations meet the specified
security policies, providing a high level of assurance against misconfigurations [9].

2.5.1 Objectives of GreenShield

GreenShield achieves two green-oriented objectives [9]:

• Energy-efficient firewall activation: it activates the firewalls of the dis-
tributed architecture in a way to minimize the overall average power con-
sumption of the network. From an operational point of view, the savings
achieved by GreenShield are related to the power consumption during net-
work operations, and therefore with a constant environmental impact.

• Traffic-aware firewall placement: it configures the firewalls so as to block
communications as closely as possible to their sources, thus reducing the
number of traffic flows processed by each network middlebox.

In addition, GreenShield provides formal assurance that the computed firewall
configuration is correct and compliant with the requests of human administrators.
All these features are embedded in the methodology of GreenShield, by formulating
the configuration problem as a Maximum Satisfiability Modulo Theory (MaxSMT)
problem based on constraint programming.

2.5.2 Network Graph and Security Policies

The input definition is the only manual activity that is requested for the user. This
does not impact the automation of all next operations, because this task is merely
descriptive and does not require computational complex operations.

In particular, GreenShield requires two specific inputs [9]:

• Network Graph (NG): representing the computer network where the dis-
tributed firewall must be automatically configured in a green-oriented way. It
should provide information about how network functions are interconnected
and how they are configured. The NG includes three possible types of nodes:

– Endpoints, which represent the source and destination of traffic flows.

– Middleboxes, providing service functionalities, but these do not exe-
cute firewalling functionalities.

– Firewalls, instances of the distributed firewalling architecture. Each
firewall is initially inactive, and it is activated only if it is needed to
enforce the security policies. We assume that an inactive firewall does
not perform traffic filtering. Each firewall is associated with a weight,
representing the average power consumption.

21

Network Security Automation

• Network Security Policies (NSP): describing which traffic flows must be
blocked because potentially malicious, and which other ones must be able to
reach their destination to guarantee the availability of some services. Each
NSP is composed of:

– Action, which specifies how the firewalling architecture must manage
packets satisfying the condition, and it also discriminates NSPs into two
classes: isolation NSP, characterized by a deny action, and reachability
NSP, characterized by an allow action.

– Condition, which is used to identify the packets to which the action
must be applied. In particular, it specifies the IP 5-tuple of the prohib-
ited or allowed flows, where the 5-tuple is composed of IP source address,
IP destination address, source port, destination port, and protocol.

2.5.3 Firewall Configuration Problem Formalization

Upon receiving the administrator input, GreenShield uses it as input to a partial
weighted MaxSMT problem formulation. It is a generalization of the traditional
SMT problem. The reason for its partiality is the discrimination of two kinds of
constraints [9]:

• Hard Constraints, whose satisfaction is always required.

• Soft Constraints, whose satisfaction can be relaxed because it is not manda-
tory.

Rather, its weighted character lies in the fact that every soft constraint has a
weight, and one wants to maximize the sum of the weights of the satisfied soft
constraints.

For what concerns formal verification, if a solution is determinable, the MaxSMT
formulation guarantees that every hard constraints are satisfied in such a solution.
Such correctness-by-construction assurance is, however, naturally provided as long
as basic building blocks of the constraints are formally defined so that their for-
mal models satisfy the properties of their actual counterparts and include all the
information potentially influencing the correctness of the solution.

On the other hand, the optimization is taken care of by the partial weightedness
of the MaxSMT problem. As the soft constraints do not have to be fully complied
with, they are well suited to express GreenShield’s optimization objectives. In
particular, if some of them cannot be met with a solution, then only it means
that all optimization objectives cannot be achieved, but correctness is guaranteed.
In summary, soft constraints are used to express the two optimization purposes of
GreenShield, i.e., reduction of the average power consumption of the active firewalls,
and blocking of traffic flows as close as possible to sources [10].

Lastly, in the formulation of all these constraints, there remain some predicates
respectively free because solving the problem of firewall configuration is to find
an eventual assignment for them. As a representative example of free predicates

22

Network Security Automation

are those specifying the choice of whether or not to enable each firewall for which
the human administrator did not explicitly impose a strict requirement, and those
specifying the choices of the filtering rules configuration they must enforce [9].

2.5.4 Automatic Output Computation

Once the MaxSMT problem has been formulated, GreenShield runs an automatic
solver to search for the existence of an optimal solution and, if so, to produce the
solution that optimizes the green goals as much as possible [11].

Whenever GreenShield calls the solver, this returns always in a decidable way,
i.e., if there does not exist any solution for all hard constraints, the solver signals
to GreenShield the problem’s unsolvability, or else it returns the optimal solution.
Decidability nature of the constructed MaxSMT is motivated by the observation
that we used only a finite subset of theories to construct it. If GreenShield informs
the network administrator that the solver has been unable to find any solution
which satisfies all hard constraints, then the administrator must alter the input so
it becomes solvable, i.e., the used firewalls are not enough to satisfy all NSPs, even
when all of them are activated.

Instead, if there exists at least one valid solution, the MaxSMT solver returns
GreenShield the assignment of variables and the predicate for the solution that
maximizes the aggregation of weights of the soft constraints satisfied. With this
result, GreenShield can directly infer the two outputs of the activation scheme, i.e.,
the set of firewalls that should be activated and the filtering rules to be configured,
so that it can block or allow traffic flows as desired by the NSPs [9].

23

Chapter 3

Edge-to-Cloud Computing

The rise of the Internet of Things (IoT) has led to an explosion of networked devices
producing unimaginable volumes of data in real time. They are everywhere in our
daily environment, from homes and medical monitoring to industrial sensors, and
require robust computing architectures to process and react to this data with quick
and clever efficiency. Additionally, the increased complexity of IoT applications
has created the need for scalable, responsive, and intelligent computing infrastruc-
tures. However, traditional cloud computing, which relies on remote data center
processing, increasingly fails to meet the low-latency, high-bandwidth, and reliable
connectivity requirements of modern IoT applications. To enable this attribution,
the confluence of IoT and Cloud Computing (CC) as a new paradigm with ad-
vanced services exclusive to aggregating, storing, and processing data produced by
IoT, called Edge-to-Cloud Computing (E2C), has been developed [12].

To overcome the limitations of traditional cloud-based architectures in han-
dling IoT requirements, new paradigms such as Edge and Fog Computing (FC)
have emerged. In such a model, computational and storage resources are pooled
not just in central cloud data centers but also close to the data source, thus at the
edge. This hierarchical and collaborative edge-to-cloud model has the significant
advantage of providing intelligent and distributed processing. It enables optimized
performance in terms of latency and energy efficiency optimization. Moreover, the
integration of Edge Computing (EC) and Fog Computing (FC) into the cloud-
IoT paradigm represents a major breakthrough, reshaping both current and future
IoT solutions by significantly reducing latency in mission-critical applications and
more effectively managing the massive volume of data generated by IoT devices.
However, the integration of fog/edge and cloud computing takes a commanding po-
sition in providing greater potential for IoT applications, particularly those relying
on Artificial Intelligence (AI) and Machine Learning (ML) [13].

Edge and fog-enabled network infrastructure enables edge storage and process-
ing capacity beyond the cloud. These models were introduced to address the gap
between the IoT endpoint devices and the centralized cloud infrastructure. Through
the integration of the functionalities of end devices, edge nodes, and cloud servers,
a hierarchical Internet of Things (IoT) architecture, or edge-fog-cloud is formed.
This architecture enhances the system performance, optimizes the utilization of
resources, and maximizes the Quality of Experience (QoE) for various IoT services.

24

Edge-to-Cloud Computing

Rather than operating in separate layers, IoT applications these days increasingly
leverage interoperable coordination among the edge, fog, and cloud layers to deliver
reliable services addressing a wide range of time-sensitive and location-dependent
requirements. However, the very distributed nature of the edge-fog-cloud setup
poses a variety of problems, such as offloading work, locating services, as well as
security and privacy. This architecture is furthermore very heterogeneous and dy-
namic, comprised of a huge variety of devices with varying levels of computational
capability. A few of these include wearable technology, sensors, smartphones, cars,
gateways, base stations, servers, and other networked nodes that all combine to
make up the collective computing power of the system [13].

Moreover, since most data is generated at the edge while computationally in-
tensive processing typically occurs in centralized cloud infrastructures, a flexible
interconnection between all participating entities is required to bring the edge
closer to the cloud and vice versa. Together with cloud capabilities, edge com-
puting is pushing the boundaries of traditional centralized solutions by enabling
efficient data processing and storage, as well as low-latency service execution. This
paradigm shift centers around the dynamic, intelligent, and seamless integration
of IoT devices, edge resources, and cloud infrastructure into a unified computing
environment, often referred to as the computing continuum. The goal of this syn-
ergy is to deliver advanced services and applications to end users. This is further
empowered by innovations in networking, such as Network Function Virtualization
(NFV) and Software-Defined Networking (SDN) [14].

Hence, Edge-to-Cloud Computing (E2C) should address various technical chal-
lenges, such as: (i) the distributed data management; (ii) continuum infrastructure
virtualization and diverse network connectivity; (iii) optimized and scalable ser-
vice execution and performance; (iv) guaranteed trust, security, and privacy; (v)
reliability and trustworthiness; and (vi) support of scalability, extensibility, and
adoption of open-source frameworks [14]. These challenges are crucial for the suc-
cessful implementation of E2C systems, as they ensure that the architecture can
handle the complexities and demands of modern IoT applications while providing
a seamless user experience (Figure 3.1).

3.1 Main Elements of the Edge-to-Cloud Archi-

tecture

The result of this new paradigm is the fusion of IoT devices and Cloud Computing
(CC) into a unified computing environment. Generally, the entities within IoT can
be categorized into five main elements: end devices, gateways, applications, cloud,
and administrative monitoring tools and offices. This classification features the
cloud as a unique entity, without distinguish the entities within it [15].

In this context, there are some characteristics shared by the models beyond the
cloud [12]:

• They support computation and storage offloading between the endpoints and
edge nodes, cloud devices, or other endpoints.

25

Edge-to-Cloud Computing

Figure 3.1: Challenges of Edge-to-Cloud Computing

• The offload sources support either local or data processing to decrease the
amount of data sent over the network.

• The offload targets are capable of handling data streams from multiple end-
points simultaneously.

• The computing devices involved have varying resource constraints.

• They use a lot of networking technologies such as Ethernet, Wi-Fi, and mobile
broadband.

• A centralized controller in the cloud is used to manage the entire system.

The reference architecture consists of three main layers: Endpoint, Edge, and
Cloud. This separation is made from a data processing perspective: data is gener-
ated by users at the Endpoint layer and is processed either locally or offloaded for
remote processing, either to resource-constrained edge devices near the user or to
large-scale cloud infrastructures located far away.

• Endpoint Layer: this layer consists of the endpoint devices that are typi-
cally operated by a single tenant, which generate data via interactions with
users or sensors, and are positioned at the end of the network. Examples of
endpoint devices are smartphones and IoT sensors.

They are made up of the following features [12]:

– Data Preprocessing: the endpoint devices implement data preprocess-
ing capabilities to reduce the amount of data that needs to be processed
in the cloud. This can include filtering, aggregation, and compression of
data.

26

Edge-to-Cloud Computing

– Application: user-defined logic determines how to handle data gener-
ated at the endpoint. It evaluates whether to offload the data to the
edge or cloud, whether additional preprocessing is needed, or if local
processing is more appropriate, based on application-level metrics.

– Operating System and Resource Management: the device man-
agement layer serves as a bridge between applications and the underly-
ing endpoint hardware. Operating systems like TinyOS and Android are
commonly tailored to accommodate the resource constraints of endpoint
devices and are capable of supporting specialized hardware.

– Infrastructure: this encompasses all physical and virtual resources
available on an endpoint device, including the CPU, memory, virtual
machines, and containers. Unlike cloud infrastructure managed by a
service provider, these resources are directly accessible to users.

• Edge Layer: this layer enables data processing near the user, directly in
the field, to satisfy the low-latency and privacy requirements of applications,
needs that centralized cloud offloading often cannot fulfill. Notably, edge and
cloud environments are generally more distributed and may support multiple
tenants, unlike endpoint devices. To support applications in such distributed
settings, edge and cloud systems include an operating services layer that is
absent in endpoints.

Edge devices are capable of locally running on bare-metal hardware or can
be virtualized with containers or virtual machines (VMs), enabling flexible
deployment and efficient resource isolation. These systems are designed to
support multi-tenancy, allowing multiple applications or users to share the
same underlying infrastructure securely and efficiently.

The edge layer is made up of the following components [12]:

– Application: developers of user-facing applications on edge systems
must determine whether the data offloaded from endpoints should be
processed locally at the edge or further forwarded to the cloud.

– Back-end: supports applications designed for resource-constrained en-
vironments. These back-end systems are often specialized for a specific
domain, for instance, TensorFlow Lite for machine learning tasks.

– Resource Manager: manages physical and virtual resource allocation
and distribution across edge applications that may extend over multiple
tenants. The resource manager also shapes the selection of the comput-
ing models that are available within the edge-cloud continuum.

– Operating Services: facilitates the operation of applications within
the highly distributed, heterogeneous, and complex edge environment.
These services include support for communication, metadata manage-
ment, consensus protocols, and more.

– Infrastructure: includes all physical and virtual components available
on edge devices, similar to endpoint infrastructure. However, unlike
endpoints, which are typically user-managed, whereas edge systems may
be operated by service providers. This management model can mirror

27

Edge-to-Cloud Computing

cloud environments, where users interact with virtualized resources while
providers maintain the underlying physical infrastructure.

The edge layer is composed of both edge devices and fog nodes. The fog is
composed of additional layers to reflect the distribution of Fog Nodes (FNs)
throughout the network infrastructure. These FNs can communicate both
horizontally (with each other) and vertically (with higher or lower layers),
depending on system load and application demands. This communication
and coordination are typically managed by Fog Orchestration Nodes (FONs),
which form the control layer within fog clusters. Depending on the appli-
cation, fog infrastructures may also include Fog Gateway Nodes (FGNs),
gateways or access points that act as entry points into the fog environment.
Additionally, Fog Computing Nodes (FCNs) serve as general-purpose com-
puting units responsible for executing tasks delegated by the FONs. To in-
crease flexibility in the E2C architecture, the model can be extended to sup-
port edge-device-driven resource orchestration. This allows an edge device to
autonomously trigger Service Placement (SP), which helps prevent resource
starvation in multi-user scenarios where multiple devices may compete for
access to the same service [13].

• Cloud Layer: this layer is a parallel and distributed system consisting of
virtualized nodes owned by cloud providers and can be provisioned on demand
to different consumers. Both the edge and cloud offer users access to physical
and virtual resources, utilize operating services and resource managers to hide
the complexity of their distributed nature, and support applications through
dedicated back-end systems that execute user-defined logic [12].

Figure 3.2: Edge-to-Cloud Computing Architecture

The conceptual reference architecture is made up of a horizontal dimension as
well as a vertical dimension [13]:

28

Edge-to-Cloud Computing

• Vertical Dimension, made of 3 main layers, and each layer contains different
types of nodes required to handle component tasks. In addition, the edge/fog
layer can also consist of multiple sub-layers.

• Horizontal Dimension, which captures the following aspects of the archi-
tecture:

– Node Perspective, including accelerators, computation, sensors, and
storage nodes. Edge/Fog servers, gateways, or devices can stand alone
or be connected to the IoT devices, and they can be virtualized or bare-
metal.

– Communication Perspective, providing flexibility, scalability, and
availability required of communication processes as well as the Quality
of Service (QoS) needed to handle delivery of low latency or important
data. The connectivity model depends upon the node’s location and
function.

– Control and Management Perspective, which captures lifecycle
management, registration, provisioning, automated discovery, offloading,
load balancing, task placement, task migration, and resource allocation.

– Data Processing and Analytics Perspective, which includes how to
effectively process, analyze, and manipulate the tsunami of multi-scale
and distributed IoT data.

Figure 3.3: Edge-to-Cloud Computing Architecture Dimensions

29

Edge-to-Cloud Computing

3.1.1 Connectivity and Integration in Edge-Cloud Systems

The hardware within the Edge-to-Cloud (E2C) is highly heterogeneous. It may
come in all sizes, from huge data centers to the smallest single-purpose network-
connected sensors and microcontrollers. Essentially, any device with minimal com-
putational power and the ability to connect to a network can participate in the
E2C ecosystem.

Software platforms running on that hardware are also very heterogeneous, and
they can be categorized into: device-specific firmware without an OS, real-time OS,
language runtime, full OS, e.g., Linux, App OS, e.g., Android Wear, server OS, e.g.,
Linux and Node.js, and container OS, e.g., Linux and Docker.

Networks are crucial in E2C systems, as all devices need to be somehow con-
nected in order to be a part of the same continuum. These networks encompass
both hardware and software components, with technologies like Software-Defined
Networking (SDN) and Network Function Virtualization (NFV) recognized as key
enablers of E2C systems. The technologies and standards used across E2C are also
very diverse. Common wireless protocols include WiFi, Bluetooth, and NFC, while
less commonly adopted protocols such as ZigBee, Z-Wave, and MiWi are also used.
This diversity stems partly from the current lack of universal standards in the still-
evolving IoT and ECC landscape. However, efforts are underway to address this,
with new interoperable standards being developed and supported by major IoT
platform providers [15].

3.2 Edge-to-Cloud Interplay

The widely distributed nature of Edge-to-Cloud (E2C) systems, and the adoption of
its infrastructure, has led to the reduction on endpoint device local storage demands
and it has also enabled the edge devices to offload computationally intensive tasks.
On the other hand, fog computing has enabled the endpoints to offload tasks with
lower transmission latency and greater resilience in case of heavy traffic on the
network. Moreover, their well-orchestrated collaboration allows endpoint devices
to leverage the strengths of both approaches [13]:

• Reduced Network Load: processing data streams at the edge layer, by
placing computing resources closer to the data sources, helps to balance the
load more evenly across the network. As a result, the demand for higher
backhaul data rates is minimized, and long-distance data links can be reserved
for services that truly require them.

• Latency-aware Computing: reducing the network load is only one of the
many benefits of redistributing processing resources across the network. By
bringing computation closer to data sources, edge devices benefit from faster
task execution due to shorter data propagation times. As a result, the Qual-
ity of Service (QoS) is enhanced and latency-sensitive applications can be
supported more effectively.

30

Edge-to-Cloud Computing

• Native Support for Mobility: bringing resources closer to the data sources
also means the network can responde to the mobility of the users and devices
more effectively, because the edge and fog nodes can communicate directly
with one another, due to the horizontal dimension of the E2C architecture.

• Providing Context: resources near to the users can provide them with
specific content related to that geographical area. If the FNs are aware of the
absolute position of the resources, they can provide context-aware services to
the users.

• No Single Point of Failure: the distribution of resources throughout the
network also means that if a certain data link is congested or fails, the system
can still operate effectively. The edge and fog nodes can communicate with
each other, allowing for alternative paths and redundancy in data processing.

• Low Energy Consumption: due to the fact that data is significantly pro-
cessed in or close to the site of origins, the need for long-distance, multi-hop
transmissions is minimized, resulting in lower overall energy usage. Addition-
ally, the distributed power demand can be better managed through existing
energy infrastructure and renewable sources.

• Support Heavy Loads: despite the strength of fog computing, the cloud
components remain essential for handling peak loads. When a FN is over-
whelmed, tasks can be offloaded to the cloud, which offers extensive compu-
tational capacity. This hybrid capability ensures the system remains scalable
under heavy workloads.

• Infinite Storage: avoiding the need to integrate additional storage capacities
into the space-constrained edge and fog nodes, the edge devices can rely on
the cloud’s ability to almost infinitely expand its resources and meet their
storage demands.

3.3 Applications of Edge-to-Cloud Computing

The Edge-to-Cloud paradigm is being increasingly adopted across various scenarios.
It is particularly beneficial in applications that require real-time data processing,
low latency, and high reliability. Some of the key application areas include:

• Smart Cities, which have to ingest and analyze sensor data in real-time.
E2C could assist with smart streets, or mapping of noise pollution. In this
type of scenario, various types of data are collected and processed from dif-
ferent types of diverse sources, and the goal is to facilitate everyday tasks and
improve citizens’ life quality. Moreover, data collected directly from sensing
IoT devices can be offloaded at edge servers for latency-critical applications,
while big data analytics can be used in the cloud infrastructure to analyze
long-period time data and reconfigure infrastructure deployment when neces-
sary [13, 14].

In this scenario, we can point out some components of the E2C architecture:

31

Edge-to-Cloud Computing

– Endpoints Devices: these include IoT sensors, surveillance cameras,
and environmental sensors.

– Edge Devices: smart gateways in buildings or city blocks, edge servers
located in street cabinets, and traffic signal controllers with local com-
pute.

– Cloud Infrastructure: analytics platforms hosted in data centers for
energy usage trends or pollution analysis, ML models for large-scale
predictions, and data storage and long-term archiving.

• Healthcare, where E2C computing addresses several big data challenges in
the healthcare sector, such as the dispersed locations of healthcare providers,
limited interoperability between systems, and stringent data privacy and se-
curity regulations concerning patient information. By enabling efficient data
processing, E2C helps convert massive volumes of raw data into actionable
insights or smart data. It also facilitates real-time patient monitoring through
the integration of sensor technologies [13].

In the healthcare scenario, we point out the following E2C components:

– Endpoints Devices: patient monitoring devices, e.g., blood pressure
monitors or glucometers, imaging equipment such as X-ray machines,
and mobile health apps.

– Edge Devices: on-premise hospital servers, smart medical gateways for
patient device data aggregating, and edge analytics boxes in clinics for
real-time alerting, e.g., detecting anomalies.

– Cloud Infrastructure: healthcare analytics platforms, or AI-based
diagnostic services for analyzing medical images, and long-term patient
data storage.

• Smart Transportation Systems, where E2C enables real-time monitor-
ing of public transit systems like buses, trains, and subways, offering live
updates on vehicle locations and delays. It enhances traffic management
through technologies such as intelligent traffic lights, surveillance cameras,
and vehicle-mounted sensors. Additionally, smart vehicles can interact with
roadside infrastructure and E2C platforms to analyze current traffic condi-
tions, calculate optimal routes, and prevent collisions [13].

In the smart transportation systems scenario, we can identify the following
E2C components:

– Endpoints Devices: roadside cameras, inductive loop traffic sensors
for vehicle detection, and mobile traffic apps used by drivers.

– Edge Devices: local traffic control centers, and edge devices processing
video streams, e.g., for license plate recognition.

– Cloud Infrastructure: centralized traffic management system, inte-
gration with public transport systems, and predictive maintenance of
traffic infrastructure.

32

Chapter 4

Thesis Objective

In the evolving landscape of network security and automation, two innovations
stand out as particularly relevant: the integration of network security automation
in the context of the Edge-to-Cloud Computing (E2C) paradigm, and the analysis of
the power consumption of the main involved technologies. This chapter outlines the
objectives of the thesis, focusing on these two key areas. Specifically, it highlights
the challenges and opportunities they introduce, proposes solutions to address them,
and finally presents the implementation and evaluation of the developed solutions.

The GreenShield framework represents an important step forward in the direc-
tion of energy-efficient network security. Its main goal is to reduce the energy usage
of network firewalls by minimizing the number of active devices required to enforce
a given security policy. By doing so, it not only reduces energy consumption, but
also enhances traffic processing efficiency. In practice, unwanted traffic is filtered as
close to its source as possible, which avoids unnecessary forwarding and reduces the
load across the network. The framework is built on top of an optimization-based
orchestration engine that ensures the administrator-specified security policies are
always enforced with strict correctness, while at the same time applying energy-
saving optimizations in a transparent and automated manner. This dual focus on
policy enforcement and energy efficiency makes GreenShield particularly suited to
future large-scale, distributed network environments.

At the same time, in order to overcome the limitations presented by tradi-
tional cloud-based architectures in meeting the diversified requirements of Internet
of Things (IoT) applications, a new paradigm known as Edge-to-Cloud Comput-
ing (E2C) has emerged. Unlike classical models, where computation and storage
are mainly centralized in remote cloud data centers, the E2C paradigm extends
these resources closer to the data sources, i.e., at the edge of the network. This
hierarchical and collaborative edge-to-cloud model has the significant advantage
of enabling distributed intelligence, maximizing responsiveness, and reducing the
amount of raw data transmitted across the network. As a result, it is able to
provide optimized performance not only in terms of latency reduction, but also in
terms of energy efficiency, thanks to more localized processing and adaptive re-
source allocation strategies. This paradigm shift is especially critical for modern
applications that demand real-time processing, such as smart cities, industrial IoT,
and cybersecurity monitoring.

33

Thesis Objective

To create a connection between these two areas, this thesis proposes a set of
novel features to be integrated into the GreenShield framework, enabling it to fully
support the Edge-to-Cloud Computing paradigm. The proposed features extend
the optimization engine by introducing new hard and soft constraints, designed
to account for both the hierarchical structure of the edge-to-cloud architecture and
the energy consumption of the devices involved. These extensions will allow Green-
Shield not only to enforce security policies in a distributed environment, but also
to optimize the placement and utilization of security functions with explicit consid-
eration for energy efficiency. A key challenge in this context is the detailed analysis
of the power consumption of the virtualization technologies that support edge and
cloud infrastructures. Understanding their consumption profiles is fundamental to
evaluate whether GreenShield can be effectively and sustainably deployed in E2C
scenarios.

Finally, to evaluate the scalability and performance of the proposed solutions,
this thesis presents the development of a test generator to simulate representative
use cases and measure execution performance under different conditions. The test
generator is designed for VEREFOO, a framework for network security automation
that constitutes the basis of GreenShield. Specifically, the generator is adapted to
the CESNET3 network, a Czech research and education network, and it is exten-
sively used for anomaly detection and traffic classification tasks. The evaluation
leverages a dataset of real traffic traces, primarily composed of TLS traffic collected
in 2022. By comparing the execution time of the optimization engine under dif-
ferent parameters and configurations, the study aims to assess the scalability and
performance of the proposed approach. As a future work, the idea is to extend
the test generator to support GreenShield, enabling large-scale evaluations of the
proposed energy-aware solutions.

The thesis objectives can therefore be summarized as follows. First, to analyze
the energy consumption of different virtualization technologies, which is crucial to
understand the overall energy efficiency of the Edge-to-Cloud Computing paradigm
and identifying opportunities for optimization. Second, to extend GreenShield with
new hard and soft constraints that explicitly consider both the hierarchical nature
of E2C architectures and their energy requirements. Third, to define a concrete use
case where GreenShield is applied to an E2C scenario, demonstrating the practical
benefits of the proposed features and optimizations. Lastly, to design and evaluate a
test generator capable of simulating traffic scenarios and verifying the performance
of the optimization engine in realistic conditions. The test generator is initially
targeted to VEREFOO and the CESNET3 network.

In summary, this thesis aims to bridge the gap between energy-efficient net-
work security automation and the emerging Edge-to-Cloud Computing paradigm.
The work is structured around three main contributions. First, it investigates the
power consumption of different virtualization technologies, providing insights that
are essential for understanding and improving the energy efficiency of distributed
computing infrastructures. Second, it extends the GreenShield framework by in-
troducing new hard and soft optimization constraints that explicitly account for
the hierarchical and collaborative nature of edge-to-cloud architectures, as well as
their energy requirements. Third, it develops a dedicated test generator, integrated
with VEREFOO and adapted to the CESNET3 network, in order to evaluate the

34

Thesis Objective

scalability and performance of the proposed solutions on real traffic traces.

Altogether, these contributions not only demonstrate the feasibility of applying
GreenShield in an Edge-to-Cloud environment, but also highlight how energy-aware
policy enforcement can enhance both the sustainability and the effectiveness of fu-
ture network infrastructures. By combining theoretical analysis, architectural ex-
tensions, and practical evaluation, the thesis provides a solid foundation for further
research and real-world deployment of secure and energy-efficient network automa-
tion frameworks.

35

Chapter 5

GreenShield in the Edge-to-Cloud
Computing

This chapter discusses the integration of GreenShield into Edge-to-Cloud Com-
puting (ECC) environments, focusing on its role in optimizing resource usage and
enhancing security across distributed infrastructures.

The idea behind the integration in the Edge-to-Cloud (E2C) is to leverage the
capabilities of GreenShield to monitor and manage the energy consumption and
security of applications that span across edge devices and cloud resources, focusing
also on the virtualization of technologies as firewalls and the power consumption of
the used infrastructure.

The chapter first explores the motivations for the integration of GreenShield
into E2C environments, highlighting the need for efficient resource management
and enhanced security in distributed systems. Then, it performs an analysis of
the power consumption of the different virtualization technologies, comparing their
efficiency and impact on overall system performance. Finally, it proposes new
hard and soft constraints to be implemented in the new version of GreenShield,
and concludes with a use case demonstrating its application in a real-world E2C
scenario.

5.1 Motivations for GreenShield Integration in

Edge-to-Cloud Environments

Before the integration of GreenShield in Edge-to-Cloud (E2C) environments, secu-
rity management relied mainly on traditional or semi-automated firewall configu-
rations. These approaches often suffered from several limitations:

• Redundancy and Inefficiency: distributed firewalls were deployed without
energy-awareness, leading to unnecessary activation of multiple devices, which
increased power consumption.

• Lack of Scalability: as E2C environments combine highly heterogeneous
devices, traditional security solutions struggled to scale and adapt to dynamic
workloads.

36

GreenShield in the Edge-to-Cloud Computing

• Weak Alignment with Sustainability Goals: classical security manage-
ment focused primarily on correctness and protection, without considering
the environmental and operational costs of excessive energy consumption.

• Limited Responsiveness to Dynamic Threats: traditional solutions
could not rapidly adapt to evolving attack vectors in highly distributed con-
texts, where threats may emerge simultaneously at different layers of the E2C
architecture.

• Fragmented Orchestration: firewall policies were often designed in isola-
tion from resource allocation strategies, preventing a unified optimization of
security and system performance.

• High Operational Overhead: maintaining security across multiple do-
mains, i.e., edge, fog, and cloud, required significant manual intervention,
increasing both complexity and costs.

The motivation for moving to a GreenShield-enabled scenario stems directly
from these limitations. E2C environments require not only strict enforcement of
security policies but also intelligent resource optimization across distributed infras-
tructures. By extending GreenShield to E2C, organizations can:

• Enhance adaptability in dynamic E2C contexts, where workloads, traffic
patterns, and user demands constantly evolve.

• Integrate seamlessly with other virtualization technologies (contain-
ers, VMs), while ensuring that firewall deployment and optimization respect
both performance and energy efficiency levels.

• Support multi-tenancy and isolation in shared infrastructures, there-
fore ensuring that security guarantees remain intact even when resources are
dynamically reallocated among different users or services.

• Enable context-aware enforcement by leveraging edge proximity to data
sources, which allows the system to filter malicious or unnecessary traffic at
the earliest possible point, reducing backhaul congestion.

• Facilitate compliance and auditing by embedding formal verification in
distributed environments, producing verifiable proofs of correctness that help
organizations meet regulatory requirements.

• Optimize cost-efficiency by reducing not only energy consumption but also
the operational expenses tied to manual intervention, redundant configura-
tions, and over-provisioned infrastructures.

This evolution represents a transition from an energy-aware model, primarily
focused on optimizing firewall activation and placement, to an extended model that
explicitly considers the characteristics of E2C environments. In this new scenario,
GreenShield not only enforces security and energy efficiency but also integrates
cloud-related aspects such as scalability, multi-tenancy, virtualization overhead, and

37

GreenShield in the Edge-to-Cloud Computing

distributed resource allocation. By addressing these additional challenges, Green-
Shield evolves into a comprehensive framework capable of balancing protection,
efficiency, and sustainability across the entire E2C continuum, making it particu-
larly suitable for large-scale, heterogeneous, and future-ready infrastructures.

5.2 Analysis of Power Consumption in Virtual-

ization Technologies

Understanding power consumption patterns of virtualization technologies is cru-
cial for optimizing energy efficiency in Edge-to-Cloud (E2C) environments. The
analysis involves examining how different virtualization techniques, such as Virtual
Machines (VMs) and Containers, impact overall energy use, taking into account
workloads, resource allocation, and optimization strategies.

Each physical node in the system can be modeled as a logical node capable
of virtualizing one or more additional nodes, enabling scalable and flexible service
deployment. For GreenShield, this means that activated firewalls may be either
physical or virtualized. In the case of virtualized firewalls, multiple instances can
coexist within a single logical node, enabling multi-tenancy. This additional layer of
virtualization introduces new patterns of power consumption that must be carefully
analyzed and managed to ensure energy-efficient operation.

5.2.1 Physical vs Virtualized Firewalls

The choice between deploying physical or virtualized firewalls has a significant
impact on both energy consumption and system performance.

On the one hand, physical firewalls provide dedicated hardware resources
optimized for packet inspection and filtering, typically ensuring higher and more
predictable performance under heavy traffic loads. They offer strong isolation and
security guarantees, as they are not subject to multi-tenancy risks. At the same
time, physical firewalls have limitations in terms of flexibility and scalability, as they
require dedicated hardware for each instance, leading to higher capital and main-
tenance costs. They have also high and fixed power consumption due to always-on
dedicated hardware.

On the other hand, virtualized firewalls uses the existing server infrastruc-
ture to run multiple instances on a single physical machine. This approach can lead
to significant energy savings, as resources can be dynamically allocated based on
demand, allowing for more efficient use of hardware. Virtualized firewalls are also
highly scalable and flexible, enabling rapid deployment of new instances without the
need for additional hardware. However, they may suffer from performance degra-
dation due to resource contention and virtualization overhead, especially under
high loads. Security isolation can also be weaker compared to dedicated hardware,
depending on the virtualization technology used.

In summary, physical firewalls provide strong performance and isolation at the

38

GreenShield in the Edge-to-Cloud Computing

cost of higher power consumption, while virtualized firewalls enable flexible, energy-
efficient deployment but involve trade-offs in performance and security.

5.2.2 Power Consumption Analysis

Power consumption in virtualization can be studied by comparing hypervisor-based
and container-based technologies:

• Hypervisor-based virtualization relies on a virtualization layer (the hy-
pervisor) that emulates hardware resources, allowing multiple Virtual Ma-
chines (VMs) to run on a single physical host. Each VM includes its own
operating system, libraries, and applications, which provides strong isolation
and compatibility but introduces additional overhead in terms of memory and
CPU usage.

• Container-based virtualization, on the other hand, leverages the host
operating system’s kernel to run multiple isolated user-space instances, known
as containers. Unlike VMs, containers share the same OS kernel, making them
more lightweight and efficient in terms of resource utilization. This reduces
the startup time but may result in weaker isolation compared to VMs.

In general, hypervisor-based technologies tend to have higher power consump-
tion compared to container-based technologies, primarily due to the overhead as-
sociated with running multiple full operating systems and the associated resource
requirements. In the idle state, the differences are small and negligible, but with
network- and CPU-intensive tasks, hypervisor-based technologies consume more
power [16].

In the table 5.1, it is presented a clear distinction in power usage patterns
between the two virtualization approaches. It summarizes the power consumption
for some different platforms: KVM, Xen, which are hypervisor-based, Docker, LXC,
which are container-based [16, 17].

Table 5.1: Power Consumption Comparison

Platform Idle State CPU-intensive
Native 123W -
Docker 124W 176W
LXC 124W 177W
KVM 126W 184W
Xen 128W 201W

Moreover, two additional observations can be made from the power consumption
data. First, the power consumption of container-based platforms (Docker and LXC)
is consistently lower than that of hypervisor-based platforms (KVM and Xen) in
CPU-intensive state, indicating a more efficient resource utilization in containerized
environments. Second, the difference in power consumption between idle and CPU-
intensive states is more pronounced in hypervisor-based platforms, suggesting that

39

GreenShield in the Edge-to-Cloud Computing

these platforms may not scale as efficiently under load compared to their container-
based counterparts.

At the same time, other element of comparison are the power consumption based
on the number of active VMs/container and the memory power consumption [16]:

• Number of Active VMs/Containers: power consumption increases loga-
rithmitically with the number of active VMs or containers. This means that
while adding more instances does increase power usage, the rate of increase
diminishes as more instances are added, indicating a level of efficiency in re-
source sharing. From this point of view, there are not consistent differences
between the two types of virtualization technologies, and the power consump-
tion are quite similar. At the same time, it is important to consider the fact
that the number of virtual entities influences how resources are allocated to
handle the traffic, since a poor allocation can cause energy waste, whereas
skewed distribution can improve efficiency.

Figure 5.1: Power consumption with different number of active VMs/containers.

• Memory Allocation: more resources allocated to guests result in higher
power consumption. In general, it is crucial to consider a trade-off between
performance and power consumption. This implies that increasing memory
allocation can lead to better performance but at the cost of higher power
usage.

Figure 5.2: Memory power consumption with eight active VMs/containers.

40

GreenShield in the Edge-to-Cloud Computing

Power consumption depends also on other factors, like the workload. From
this point of view, it is important to analyze the specific characteristics of the
workloads being executed in virtualized environments. Different workloads can
have varying resource requirements and usage patterns, which can significantly
impact power consumption. In general, the power consumption increases linearly
with the workload, up to a certain point, after which it may plateau due to the
saturation of resources [18, 19].

5.2.3 Optimization Techniques

To mitigate the power consumption challenges associated with virtualization, there
exist two crucial optimization techniques: vCPU pinning and buffering of network
packets.

• vCPU Pinning: this technique involves binding virtual CPUs (vCPUs) to
specific physical CPU cores. By doing so, it reduces the overhead associated
with CPU scheduling and context switching, leading to improved performance
and lower power consumption. vCPU pinning can be particularly beneficial in
scenarios with predictable workloads, as it allows for better cache utilization
and reduced latency. It improves data locality, reduces core migration and
the power consumption can be reduced of about 17%.

• Buffering of Network Packets: network I/O can be a significant source of
power consumption in virtualized environments. By buffering network packets
and optimizing their transmission, the frequency of context switches and the
associated power overhead can be reduced. Techniques such as batch process-
ing and traffic shaping help achieve this by allowing the CPU to handle multi-
ple packets at once, rather than waking up repeatedly for individual packets.
Processing larger batches of packets also minimizes context-switching over-
head and cache misses, further improving energy efficiency. It can reduce the
overall power consumption of the system of about the 16%.

5.3 Proposed Hard and Soft Constraints

Building on the motivations and power consumption analysis, the integration of
GreenShield into Edge-to-Cloud (E2C) environments requires a formalization of
constraints that can guide the management of security and resource allocation. As
seen in Chapter 3, GreenShield leverages a MaxSMT formulation where hard con-
straints ensure strict correctness and compliance, while soft constraints encode op-
timization objectives that improve efficiency without compromising security guar-
antees.

Moreover, in the context of Edge-to-Cloud (E2C) environments, these con-
straints must also take into account the dynamic nature of both edge and cloud
resources. Unlike traditional centralized systems, where the infrastructure tends to
be more static and predictable, E2C ecosystems are composed of highly heteroge-
neous devices, ranging from resource-constrained IoT endpoints to powerful cloud

41

GreenShield in the Edge-to-Cloud Computing

servers. As a result, constraint definition and enforcement cannot rely solely on
static parameters, but must be designed to adapt dynamically to context changes.
This includes an additional layer of complexity to the management of both resources
and security policies, as orchestration strategies must continuously balance strict
security guarantees with the need for efficient and sustainable use of computing
and networking resources.

The proposed constraints aim to directly address these challenges by intro-
ducing mechanisms of flexibility and adaptability into the resource management
processes. Instead of enforcing rigid placement or activation rules, the new model
allows firewall instances and other security mechanisms to be dynamically allocated
and reconfigured in response to real-time conditions, such as fluctuating workloads,
mobility of users and devices, or unexpected peaks in traffic demand. In this way,
the optimization process is not limited to static energy savings, but evolves towards
a proactive and context-aware approach that maximizes efficiency without compro-
mising security. By embedding these constraints into GreenShield, the placement
and activation of security functions can be continuously adapted, achieving a bal-
ance between performance, sustainability, and regulatory compliance. Ultimately,
this ensures that the distributed E2C infrastructure is resilient, adaptable, and ef-
ficient in terms of energy consumption, even when there is considerable variation
and diversity.

• Node Power Cap: this hard constraint enforces that each node must not
exceed a predefined average power consumption threshold during its opera-
tion. By setting such a limit, it becomes possible to avoid situations where
nodes are overused, leading to inefficient energy expenditure and potential
instability. In specific cases, such as nodes designed to handle specialized or
high-priority traffic types, this limit can be selectively relaxed, provided that
the hardware is dimensioned to tolerate higher energy usage. The application
of this constraint is particularly relevant when multiple logical nodes are vir-
tualized on the same physical host, as exceeding the aggregated power limit
could lead to significant inefficiencies or even service disruption. Each logical
node is associated with a virtual firewall instance, characterized by its own
power consumption and specific features.

• Virtualization Optimization: this soft constraint encourages the deploy-
ment of firewall instances on nodes that support advanced virtualization fea-
tures, such as vCPU pinning and network packet buffering. These optimiza-
tions help reduce the overhead of virtualization, minimizing context switching
and improving cache locality, which in turn lead to both better performance
and lower energy consumption. By favoring nodes equipped with these ca-
pabilities, GreenShield can ensure that the allocation of virtualized firewalls
not only satisfies security requirements but also achieves sustainability and
scalability compared to deployments on less optimized infrastructures.

• Energy-Efficient Software Configuration: this new soft constraint states
that when a node offers multiple possible configurations for its software fire-
walls, the system should prefer the one that provides the best balance between

42

GreenShield in the Edge-to-Cloud Computing

energy consumption and performance. In addition, the optimization can ex-
tend to the number of active VMs or containers within the same guest, since
their proliferation can increase power usage disproportionately. By intelli-
gently adjusting the quantity and configuration of these virtual instances,
GreenShield can maintain the required level of protection while ensuring that
the energy-to-performance ratio remains as efficient as possible.

5.4 Use Case: Smart City

To demonstrate the practical applicability of the proposed framework, this sec-
tion presents a use case in which GreenShield is deployed within an Edge-to-Cloud
(E2C) environment. The aim of the use case is to fill the gap between the theoretical
formulation of constraints and optimization strategies, and their real-world imple-
mentation in a distributed infrastructure. By focusing on a representative E2C
scenario, the use case illustrates how GreenShield can orchestrate firewall place-
ment and configuration in a manner that simultaneously satisfies strict security
requirements and minimizes energy consumption.

In modern urban contexts, and particularly within smart cities, the massive pro-
liferation of IoT devices, ranging from traffic cameras to environmental monitoring
systems, requires the design of robust, scalable, and secure network infrastructures.
At the same time, the complexity and scale of these environments make manual
security management impractical, highlighting the need for automated approaches
capable of adapting to evolving conditions. Furthermore, the widespread use of
edge computing introduces an additional challenge: ensuring that security mech-
anisms are not only effective but also energy-efficient, in order to mitigate the
environmental impact of growing energy consumption.

The chosen scenario, a smart city, reflects the typical characteristics of modern
E2C systems, in which different edge devices collaborate with centralized cloud
resources to support IoT applications. Such environments are inherently dynamic,
with fluctuating workloads, heterogeneous devices, and different requirements in
terms of connectivity, computational power, and energy efficiency. In this con-
text, traditional firewall management approaches prove insufficient, as they cannot
adapt to variability while simultaneously meeting the strict sustainability goals that
characterize large-scale, future-ready deployments.

5.4.1 The Architecture of the Smart City

The architectural model represents a comprehensive approach to securing and man-
aging heterogeneous data flows within a smart city ecosystem. This system archi-
tecture is structured on a Edge-to-Cloud Network composed of three interdependent
layers: Endpoint Layer, Edge Computing Layer, and Cloud Processing Layer, each
playing a distinct role in the collection, processing, and protection of urban data.

• Endpoint Layer: composed of data-generating devices such as traffic cam-
eras, SOS call stations, noise and humidity sensors, and operational offices.

43

GreenShield in the Edge-to-Cloud Computing

These endpoints collect raw data and forward it for processing. In a real
scenario, these endpoints help people in various ways, such as providing real-
time traffic updates, monitoring environmental conditions, and facilitating
emergency responses.

• Edge Computing Layer: composed of fog nodes that aggregate, pre-
process, and filter data locally before sending it to the cloud. This layer
also hosts both hardware and virtual firewalls, some managed by the city ad-
ministration, others controlled by third parties. These nodes can be servers
or dedicated appliances designed for specific tasks.

• Cloud Processing Layer: composed of containerized services and AI-based
modules that perform advanced analytics on the data streams, supporting
decision-making in real time. These layer is composed of virtualized resources
that can be dynamically allocated based on demand, ensuring efficient use of
computational power and energy. They are in charge of performing final com-
putation, producing some statistics, and finally sending back to the endpoints
and related offices for response handling.

Devices are interconnected through secure channels, with uni-directional flows,
e.g., cameras and sensors sending data to the cloud, and bi-directional flows, e.g.,
offices interacting with both cloud services and sensors. In this architecture, fire-
walls play a key role in filtering traffic, protecting critical services, and ensuring
compliance with security policies.

Figure 5.3: Architecture of the Smart City

44

GreenShield in the Edge-to-Cloud Computing

In particular, the smart city, at the endpoint layer, is composed of the following
nodes:

• Traffic Cameras: deployed at key intersections and roads, these cameras
continuously capture video streams of traffic conditions. They contribute
to traffic congestion monitoring, incident detection, vehicle counting, and
real-time pattern analysis. The video data is forwarded to AI modules in
the cloud for deeper semantic interpretation, e.g., anomaly detection on the
public streets, or flow estimation. At the same time, they can also be used
for security and surveillance purposes.

• Incident Response Node: this node acts as a central dispatcher and com-
munication hub for emergency services. Upon receiving alerts from SOS sta-
tions or sensors, e.g., fire, or gas leak, it initiates appropriate response work-
flows, such as notifying the fire department, redirecting traffic, or activating
public warning systems. It also has a microphone to speak through the SOS
call station with the person who raised the alert. It interacts with both edge
and cloud resources to ensure timely and effective action.

• SOS Call Station: installed in public areas, these emergency stations al-
low citizens to directly call for help. When activated, the station transmits
metadata, e.g., location, time, along with a voice or video feed to the Incident
Response Node, triggering immediate analysis and intervention procedures.

• Environmental Office: serves as the data collection and regulatory node
for environmental metrics. It receives sensor inputs, e.g., humidity, noise, air
quality, and provides initial validation and reporting. It may also publish
alerts to other city departments.

• Humidity Sensor: measures the relative humidity. This data is used for
weather prediction, urban agriculture monitoring, and optimizing HVAC sys-
tems in public buildings.

• Traffic Management Office: functions as the city’s central traffic coordi-
nation hub. It ingests data from traffic cameras, sensors, and road condition
reports, then generates optimized traffic light schedules, road use policies,
and public notifications.

• Noise Sensor: continuously monitors ambient sound levels to detect viola-
tions of noise ordinances or to analyze patterns related to population density,
traffic noise, or events.

• Environmental Sensors: includes a variety of devices measuring air quality,
temperature, and light levels. These sensors support public health monitor-
ing, urban planning, and smart building systems.

In general, both the cameras and the various sensors establish a mono-directional
communication channel with their respective containers in the cloud. Their role
is mainly to capture and forward raw data, such as video streams, environmental
measurements, or emergency signals, without requiring feedback from the cloud.

45

GreenShield in the Edge-to-Cloud Computing

This one-way communication pattern reflects their nature as data producers, de-
signed primarily for continuous monitoring and information delivery rather than
interaction.

On the other hand, the operational offices maintain bi-directional communica-
tion with the cloud containers. These entities do not simply handle processed data
but also contribute actively to the system by updating or enriching the datasets
used for analysis. For instance, an office can receive aggregated environmental
reports while simultaneously adding new contextual information, such as incident
reports or operational instructions, which refine the global decision-making process.
Moreover, offices interact directly with sensors, enabling them to monitor or even
reconfigure them if necessary. This implies the need for open and secure channels
that allow both upstream and downstream data flows, ensuring that the offices can
act not only as consumers but also as coordinators within the overall architecture.

To mitigate risks, improve resilience, and reduce communication latency, the
Edge Computing Layer introduces a set of fog nodes that have localized pro-
cessing and storage capabilities. These nodes act as intermediate points between
the endpoints and the cloud, performing tasks such as data aggregation, filtering,
and preliminary security checks before forwarding information for advanced anal-
ysis. By processing data closer to the source, fog nodes help reduce bandwidth
consumption on backbone links and provide faster response times for applications
with high latency. Each fog node can be equipped with firewalls, which may serve
different administrative domains:

• Administrator-controlled firewalls, configured and maintained directly
by the data or infrastructure owners, ensuring strong alignment with global
security policies.

• Third-party-controlled firewalls, typically managed by external providers,
which may impose additional constraints on configuration flexibility and op-
timization.

Figure 5.4: Hardware and Virtual Firewall

These firewalls can be implemented either as dedicated hardware appliances or
as virtual instances running on shared infrastructure. Virtualization allows each
fog node to host multiple firewall instances, enabling multi-tenancy and greater
scalability, particularly in scenarios where traffic from different services or tenants
must remain logically separated. The choice of firewall deployment type, hardware
or virtual, depends on several factors, such as expected traffic load, performance
requirements, applicable security policies, and available computational resources.
For instance, critical nodes handling high-throughput video streams may favor

46

GreenShield in the Edge-to-Cloud Computing

hardware-based firewalls for predictable performance, whereas flexible container-
ized firewalls may be preferable in dynamic, multi-service contexts.

At the top of the architecture there is the Cloud Computing Layer, which hosts
a collection of containerized microservices responsible for advanced analytics and
large-scale data processing. These services include AI-driven modules for real-time
video analysis, sensor fusion for environmental monitoring, and decision-support
tools capable of integrating data from heterogeneous sources. Containerization
provides modularity, scalability, and ease of continuous deployment, features that
are essential for coping with the ever changing requirements of smart city opera-
tions. In practice, the cloud layer receives data streams that have already been
pre-processed by sensors and fog nodes, refines them through advanced algorithms,
and outputs actionable insights. These results are then communicated back to the
operational offices, which can take corrective measures, coordinate emergency re-
sponses, or update field devices. In this way, the cloud layer acts as the intelligence
core of the smart city infrastructure, while still relying on the edge and fog layers
to ensure timely, efficient, and secure data management.

In conclusion, the architecture of the endpoints, fog nodes, and cloud container
is summarized in table 5.2:

Table 5.2: Smart City Nodes

Device Description IP Address
E1: Traffic Cameras Subnet of Smart Cameras 10.0.1.*

E2: Incident Response Node Office for Incident Response 10.0.2.1
E3: SOS Call Station Station for SOS Calls 10.0.2.2

E4: Environmental Office Office for Environmental Monitoring 40.40.41.*
E5: Humidity Sensor Sensor for Humidity 40.40.42.1

E6: Traffic Management Office Office for Traffic Management 10.0.3.*
E7: Noise Sensor Sensor for Noise Monitoring 40.40.43.1

E8: Environmental Sensors Subnet of Environmental Sensors 40.40.44.*
NAT1 Network Address Translation 100.64.10.1
NAT2 Network Address Translation 100.64.10.2

Gateway 1 Default Gateway 40.40.41.254
Gateway 2 Default Gateway 10.0.2.254
Router R1 Core Router 198.168.1.1
Router R2 Core Router 198.168.1.2
Router R3 Core Router 198.168.1.3

Load Balancer Load Balancer 198.168.1.4
IDS1 Intrusion Detection System 198.168.1.5

Router R4 Core Router 198.168.1.6
IDS2 Intrusion Detection System 198.168.1.7

Router R5 Core Router 198.168.1.8
Container 1 AI-Based Video Analysis 198.51.100.1
Container 2 Data Aggregation 198.51.100.2
Container 3 Data Processing 198.51.100.3

47

Chapter 6

Implementation of the CESNET
Test Generator

This chapter presents the implementation of the CESNET Test Generator, a feature
developed to support the testing and validation of Verefoo in real-world scenarios,
such as the CESNET3 network. The generator is designed to produce realistic
traffic patterns and workloads that closely resemble real cases, enabling a thorough
evaluation of Verefoo’s performance and effectiveness. This work also serves as a
preparatory step toward the broader goal of extending testing and validation to
GreenShield.

The idea behind the implementation of the test generator is to leverage the capa-
bilities of Verefoo to monitor and manage the security of applications distributed
across network nodes. The main goal is to create a flexible and scalable testing
framework that can adapt to various network conditions and workloads, ensuring
comprehensive coverage of potential security threats. To achieve this, the generator
must faithfully reproduce real traffic traces and incorporate all network nodes with
their specific characteristics and peculiarities.

The chapter opens with a detailed description of the CESNET3 network ar-
chitecture and design, followed by an analysis of the dataset used to characterize
typical traffic patterns and behaviors within the network. This analysis is essential
for generating realistic test scenarios that accurately reflect CESNET’s operational
environment. Finally, the chapter outlines the specific features and functionalities
of the test generator, detailing first how it was implemented and integrated with
the existing Verefoo framework, and then how it can be configured to test the
performance of Verefoo under different conditions.

6.1 CESNET3 Network Overview

The CESNET3 network is the Czech Republic’s national research and education
network (NREN), operated by CESNET Z.S.P.O., an association of Czech univer-
sities and Academy of Sciences. Since its establishment, CESNET has played a
key role in bringing high-performance networking technologies to the academic and

48

Implementation of the CESNET Test Generator

research community, evolving from the country’s first academic internet service into
one of the most advanced European backbone infrastructures [20].

Nowadays, CESNET3 connects universities, research centers, and other insti-
tutions in the nation to nearly half a million users. It is based on redundant
topological high-capacity optical fiber routes, which support scalability and redun-
dancy. The architecture supports several link speeds between n x 10 Gbps and n x
100 Gbps to meet high-data-intensity scientific needs, such as high-energy physics
experiments, climate modeling, bioinformatics, and distributed large-scale comput-
ing.

As can be seen in Figure 6.1, CESNET3 provides the entirety of the Czech
Republic with an extensive network of high-density Points of Presence (PoPs). In
particular, it is composed of 59 nodes distributed across the country, intercon-
nected by a robust optical fiber infrastructure. Main hubs such as Prague, Brno,
Ostrava, Plzeň, and Hradec Králové are utilized as focal aggregation and distribu-
tion points, with regional connections offering access to institutions throughout the
nation. Three of these nodes, i.e., Prague, Brno, and Ostrava, are also used for
monitoring and measurement purposes. CESNET3 has high-capacity connections
to international research networks through GÉANT and to large commercial ex-
changes such as AMS-IX, thus well connecting the Czech research community with
the global digital infrastructure.

A defining feature of CESNET3 is its dual role: serving as a stable production-
grade service and simultaneously serving as an innovation testbed. It has pio-
neered technologies in network monitoring, cyber security, photonic networking,
distributed data storage, and multimedia transfers throughout the years. Among
its specialist services are e-infrastructures for scientific cloud computing, advanced
data repositories, and enhanced videoconferencing systems, many of which are al-
ready adopted by international scientific collaborations.

In network monitoring and traffic observation, CESNET3 is perhaps best known
for its backbone level measurement infrastructure, where multiple 100 Gbps lines
are monitored around the clock through Prague, Brno, and Ostrava. These obser-
vation points enable mass-scale traffic analysis under real operational conditions,
producing high-quality anonymized data for the research community. As an ex-
ample, CESNET-TLS-Year22, a yearly dataset of encrypted TLS traffic, which is
also used for the current analysis, was captured directly from CESNET backbone
lines and provides important insights into the temporal evolution of traffic as well as
helping to create robust machine learning models for encrypted traffic classification.

No less important is CESNET3’s compliance with ethical research and privacy
principles. Any monitoring processes are stringently anonymized and data protec-
tion policies applied, such that sensitive user information is never revealed without
even permitting meaningful scientific results. Being able to strike such a fine bal-
ance between operational credibility, research worth, and privacy protection says
much for CESNET3 as a credible infrastructure enabler and facilitator of research.

In conclusion, CESNET3 is more than a backbone network. It is a strategic
enabler of Czech science and education, a testing ground for networking innova-
tion, and a key player in the international research infrastructure. Its combination

49

Implementation of the CESNET Test Generator

of high-performance connectivity, experimentation capacity, and international con-
nectivity makes it one of the pillars of European collaborative digital research [20].

Figure 6.1: CESNET3 Network Architecture

6.2 Dataset Analysis

The CESNET-TLS-Year22 dataset is a large-scale collection of TLS network traf-
fic captured from the backbone of the CESNET3 national research and education
network during the entire year of 2022. It represents one of the most comprehen-
sive publicly available datasets for encrypted traffic analysis, providing researchers
with unique insight into the evolution of internet services and user behavior over a
long time horizon. Unlike many existing datasets, which are often limited to short
capture windows or lack temporal context, CESNET-TLS-Year22 spans 52 contin-
uous weeks, making it possible to study trends, seasonal variations, and long-term
changes in encrypted communication [20].

The dataset was collected at multiple vantage points on CESNET3’s 100 Gbps
backbone lines, with monitoring probes deployed in Prague, Brno, and Ostrava.
These probes passively observed production traffic, ensuring that the dataset re-
flects authentic usage patterns from a diverse set of users. In total, CESNET3
serves around half a million users across universities, research institutions, hospi-
tals, and public organizations, which guarantees that the captured data covers a
wide variety of applications and services. Importantly, all data were anonymized
using privacy-preserving methods such as IP hashing, timestamp rounding, and the
removal of sensitive identifiers, ensuring that no individual user can be identified
while still preserving the structural and statistical properties of traffic flows. In par-
ticular, there is the hashing of the source IP addresses and ports, for each network
trace, while other information such as the requested domain and the destination IP
address are in clear and accessible.

50

Implementation of the CESNET Test Generator

Each flow record in CESNET-TLS-Year22 describes a bidirectional TLS com-
munication session, enriched with multiple types of metadata. These include packet
sequences (capturing the size, direction, and timing of the first 30 packets), flow-
level statistics (e.g., byte and packet counts, durations, histograms), and informa-
tion extracted from the TLS handshake, such as the Server Name Indication (SNI)
domain. In total, the dataset labels 180 distinct web services, grouped into 24
categories ranging from cloud platforms and streaming services to social media and
communication tools. This diversity makes the dataset especially valuable for ma-
chine learning research on encrypted traffic classification, anomaly detection, and
robustness against data drift.

By combining scale, diversity, and temporal continuity, CESNET-TLS-Year22
fills a major gap in the availability of open, real-world encrypted traffic datasets.
It provides a reliable foundation for evaluating traffic analysis methods, developing
robust machine learning models, and advancing the state of the art in encrypted
traffic research [20].

6.2.1 Dataset Structure and Statistics

The CESNET-TLS-Year22 dataset is organized to provide researchers with easy
access to traffic records while maintaining logical grouping by time and service.
The data are stored in compressed CSV files, each file corresponding to a specific
week of the year 2022. This weekly granularity enables time-consistent evaluation,
allowing models to be trained on one period and tested on subsequent weeks to
study the effects of traffic evolution and data drift.

Each CSV file contains one row per bidirectional TLS flow, enriched with both
flow-level statistics and packet-level metadata. The attached JSON metadata files
summarize the number of flows per week, as well as aggregated counts for individual
services and for the entire dataset. This dual structure makes it possible to quickly
explore dataset composition without needing to parse all the raw CSV records [20].
The most important dataset’s features, also shown in Figure 6.2, are:

• Source IP: the hashed IP address of the client initiating the TLS connection.

• Destination IP: the IP address of the server hosting the TLS service. This
address is not hashed and available in clear.

• TLS Service Name Indication (SNI): the hostname requested by the
client during the TLS handshake. This field is important to filter the more
interesting traffic from the unneeded, in particular to filter the Czech services
from the rest.

• Destination Autonomous System Number (ASN): the ASN of the
server’s IP address, providing insight into the network provider. This field is
important to filter the traffic related to the CESNET3 network from other
providers.

In particular, the ASN related to the CESNET3 traffic is the 2852, which is
assigned to CESNET Z.S.P.O. and includes all IP addresses within the network,

51

Implementation of the CESNET Test Generator

while the TLS SNI field used to filter the dataset is every Czech domain, ending
with .cz. Doing so allows us to focus on the most relevant traffic for our analysis
and to exclude all the unneeded traffic traces that can mislead our analysis and
statistics about the CESNET3 traffic.

From the point of view of the source IP addresses, we can briefly prove their
anonymization by using simple and free-to-use tool, such as [21], where you can
insert the IP and obtain information about it, such as geographical location, orga-
nization, and more. Inserting the hashed IP address into the tool will not reveal
the original IP, thus demonstrating the effectiveness of the anonymization process,
like in the example shown in Figure 6.3.

Given the following entries extracted from the dataset:

Figure 6.2: Entries extracted from the dataset

we observe that looking for the source IP address 7.73.238.153, even if it refers
to a Czech IP address, it does not yield any useful information, as it is hashed and
results located in the USA.

Figure 6.3: Hashed Source IP address and in clear Destination IP address

At the same time, since the destination IP address is in clear, we can eas-
ily retrieve information about it, such as geographical location, organization, and
more. In this case, the destination IP address 195.113.180.204 relates to a Czech
location, in particular Prague.

6.2.2 Methodology for Generating Statistics

To analyze the CESNET-TLS-Year22 dataset and generate meaningful statistics
regarding the types of traffic present in the network, a structured pipeline composed

52

Implementation of the CESNET Test Generator

of several steps was adopted. This approach ensures reproducibility and consistency
across the dataset, while minimizing the influence of noise and irrelevant traffic. The
main phases of the methodology are summarized below:

1. Dataset Import: the dataset is imported from cesnet-datazoo.datasets

library, where it is available alongside other CESNET3-related datasets. The
CESNET-TLS-Year22 dataset is organized by week, from week 1 to week
52, and each week is stored as a CSV file containing all the traffic traces
captured during that period. Furthermore, the framework allows the selection
of different dataset sizes, offering flexibility depending on the computational
resources available and the depth of analysis required. It is important to set
the flag return other fields is set to True to retrieve additional metadata,
such as src ip and dst ip, which are essential for subsequent filtering and
geographical analysis.

2. Data Filtering: the dataset is filtered to maintain only the most relevant
traffic for the analysis. Specifically, traffic is restricted to that associated
with the CESNET Z.S.P.O., identified by ASN 2852. Additional filtering is
applied to the TLS SNI (Server Name Indication) field to include only Czech
domains, i.e., .cz domains, thereby focusing on the characterization of local
traffic patterns.

3. Data Cleaning: the dataset is then cleaned by removing noisy or irrelevant
entries. This includes eliminating duplicate records, filtering out anomalous
traffic that does not conform to expected patterns, and handling missing
or inconsistent values. This step is crucial to ensure that the subsequent
statistical analysis is based on high-quality and reliable data, thereby reducing
the risk of misleading conclusions.

4. Statistical Analysis: after filtering and cleaning, a statistical analysis is
performed. First, a set of unique destination IP addresses is extracted. Sub-
sequently, a dictionary is created in which the keys represent cities, and the
values correspond to the lists of IP address ranges associated with those cities.
The mapping between IP ranges and geographic locations is obtained from
publicly available resources such as [22]. Once the dictionary is constructed,
the statistics are computed to evaluate the distribution of traffic across dif-
ferent geographic locations. This provides a clear picture of which cities are
the most significant endpoints within the CESNET3 network.

5. Visualization: the results are visualized through tables, which highlight the
most frequent destination cities and, for each city, the most representative
IP ranges. These visualizations are particularly useful to identify concentra-
tion points of traffic and to understand which areas are most affected. The
extracted information is then integrated into the test generator to simulate
realistic traffic patterns that closely reflect actual network behavior.

It is crucial to repeat the entire analysis for each of the 52 weeks of the dataset
in order to obtain a comprehensive view of traffic dynamics throughout the year.
This approach makes it possible to capture temporal variations, seasonal effects,

53

Implementation of the CESNET Test Generator

and long-term trends in network activity, thereby providing a more detailed and
robust understanding of the CESNET network’s behavior. Moreover, not all weeks
contain traffic data to be analyzed, as some were affected by the restrictions imposed
during the COVID-19 pandemic, which significantly reduced network activity and
led to the closure of many academic institutions [20].

The following lines of codes, illustrates how to set this loop for reproducibility
and consistency of the analysis:

Listing 6.1: Analysis of the dataset through all the 52 weeks

from cesnet_datazoo.datasets import CESNET_TLS_Year22

from cesnet_datazoo.config import DatasetConfig, AppSelection

Loop through all weeks of 2022

for i in range(0, 52):

print("Week", i)

Configure dataset for the current week

dataset_config = DatasetConfig(

dataset=dataset,

apps_selection=AppSelection.ALL_KNOWN,

train_period_name=f"W-2022-{i}",

return_other_fields=True,

)

Initialize dataset with the configuration

dataset.set_dataset_config_and_initialize(dataset_config)

train_dataframe = dataset.get_train_df()

Filter dataset for a specific ASN, TLS_SNI ending with

’.cz’, and remove duplicate connections

cesnet_dataset = train_dataframe[

(train_dataframe[’DST_ASN’].isin([2852])) &

(train_dataframe[’TLS_SNI’].str.endswith(’.cz’))

].drop_duplicates(

subset=["SRC_IP", "DST_IP", "TLS_SNI"],

inplace=False

)

Extract unique destination IPs

dst_ip = cesnet_dataset[’DST_IP’].unique().tolist()

Append new destination IPs to the list

for el in dst_ip:

if el not in dst_ips:

dst_ips.append(el)

The results of this process form the foundation for the design and implemen-
tation of the CESNET Test Generator, which aims to replicate realistic traffic

54

Implementation of the CESNET Test Generator

patterns derived from real-world observations. A summary of the analysis is re-
ported in Table 6.1, which lists the main CESNET3 network nodes alongside the
number of unique destination IP addresses associated with them.

Table 6.1: Distribution of IP addresses per city

City # IPs
Prague 80

Úst́ı nad Labem 21
Brno 6

Ostrava 5
Pardubice 3
Plzeň 3
Liberec 2

České Budějovice 1
Olomouc 1

Hradec Králové 1
Jihlava 1

From Table 6.1, it can be observed that the city with the highest number of
distinct destination IP addresses is Prague, with a total of 80 IPs, representing ap-
proximately 65% of the addresses in the dataset. This dominance is not surprising,
considering Prague’s central role as both the capital city and the main technological
hub of the Czech Republic, which naturally concentrates a significant portion of
the national and academic network infrastructure. In contrast, other cities such as
Brno, Ostrava, and Úst́ı nad Labem, although still relevant, display a much lower
number of unique IPs, highlighting the hierarchical structure of network traffic
distribution across the country.

6.3 CESNET Test Generator Architecture and

Design

The CESNET Test Generator is a framework specifically designed to transform the
real-world characteristics of the CESNET3 network into test cases for Verefoo. Its
primary purpose is to bridge the gap between raw traffic traces and relevant secu-
rity policies, ensuring that the evaluation of Verefoo reflects realistic operational
conditions. By leveraging both the dataset analysis and the architectural informa-
tion of the network, the generator automatically produces a set of requirements
and network policies, which are then translated into concrete test cases. These test
cases are subsequently passed to Verefoo to verify whether the tool can satisfy them
under the defined constraints, thereby providing a realistic and reliable validation
environment.

The internal logic of the generator follows a structured process. First, it selects
nodes in a proportional manner, based on the statistics retrieved from the dataset
analysis. This proportionality ensures that the generated network representation

55

Implementation of the CESNET Test Generator

reflects the actual distribution of resources and services within the CESNET in-
frastructure, avoiding biased or unrealistic scenarios. Next, the generator produces
security policies, which can be of different types, such as reachability policies, en-
suring the communication between two endpoints, or isolation policies, ensuring
that specific traffic flows are blocked. For each policy, additional constraints are
added, reflecting the specific characteristics of the observed traffic and the actual
topology of the CESNET3 network. Finally, the generator composes these policies
into test inputs for Verefoo, which can then be executed to check the feasibility,
consistency, and correctness of the requirements.

In this way, the test generator provides an automated, reproducible, and scalable
means of testing Verefoo against highly realistic network conditions. Rather than
relying on synthetic or manually defined scenarios, the generator ensures that test
cases are derived directly from the operational environment of CESNET3. This
guarantees that the resulting experiments are both representative and credible,
increasing the robustness of the validation process. Additionally, the automatic
generation of diverse and complex policy sets makes it possible to test Verefoo
under stress conditions, evaluating not only its correctness but also its scalability
when dealing with large-scale infrastructures.

Moreover, this methodology lays the groundwork for extending the same ap-
proach to GreenShield. In this context, the pipeline can be employed not only to
assess and enforce security policies, but also to address additional objectives related
to energy efficiency, such as monitoring and optimizing power consumption and al-
locating resources in a way that minimizes unnecessary energy usage. By applying
the same methodological principles, the test generator can capture these dynamics
and reflect them in realistic test scenarios, enabling the joint evaluation of security
guarantees and energy efficiency. This flexibility demonstrates the generality of the
proposed design and highlights its potential to be adapted to GreenShield’s security
and sustainability objectives.

The main idea behind the test generator is to preserve a realistic representation
of the network environment throughout the entire testing process. By ensuring that
the generated test cases accurately reflect the traces and communications reported
in the CESNET-TLS-Year22 dataset, the tool achieves a high degree of fidelity to
real-world conditions. This realism allows to evaluate not only the functional cor-
rectness of Verefoo, but also its performance and scalability in practical scenarios.
Consequently, the test generator does not merely serve as a validation tool, but
also as a framework for experimentation, enabling the study of how policy gener-
ation and enforcement scale when applied to complex and heterogeneous network
environments.

6.3.1 Implementation and Design

From an architectural perspective, the test generator is composed of two main Java
classes, which cooperate to transform the dataset analysis and the configuration
parameters into executable test cases for Verefoo. These classes are TestCesnet

and TestCaseGeneratorCesnet:

56

Implementation of the CESNET Test Generator

• TestCesnet: this class contains the main method and serves as the entry
point of the test generation process. Its primary role is to manage the con-
figuration phase and then delegates the actual generation of test cases to the
TestCaseGeneratorCesnet class. It defines four main parameters, which can
be tuned to control the characteristics of the generated test set:

– policyNumber: an int variable representing the total number of policies
to be generated. This parameter implicitly controls not only the size of
the test case but also the number of source-destination pairs required
for the policy creation process. Reachability policies are always bidirec-
tional, meaning that for each pair of nodes two symmetric policies are
generated. Isolation policies, on the other hand, are non-bidirectional
by default, but by setting the isolationBidirectional flag to true,
they can also be generated as bidirectional. This parameter therefore
plays a central role in shaping both the scale and the complexity of the
generated test cases.

– reachabilityPerc: a Double variable representing the proportion of
reachability policies over the total number of generated policies. For
instance, if set to 0.7, then 70% of the generated policies will be reach-
ability and the remaining 30% isolation. This parameter allows users
to control the balance between the two categories of policies, making it
possible to stress-test Verefoo under different distributions and to evalu-
ate how the tool scales when the percentage changes and to analyze the
behavior of Verefoo in various scenarios.

– usePorts: a Boolean variable indicating whether port constraints should
be included in the generated policies. When set to true, the generator
enriches the policies with specific port numbers, thereby increasing the
complexity of the test cases. The inclusion of ports significantly increases
the space of possible policy combinations, and thus increases the com-
putational workload for Verefoo, which must verify policies at a finer
granularity.

– isolationBidirectional: a Boolean variable that specifies whether
isolation policies should be bidirectional. When enabled, the generator
creates two symmetric isolation policies, analogous to the behavior of
reachability policies. This option is useful to evaluate scenarios where
isolation requirements must be enforced symmetrically across the net-
work.

Moreover, the class accepts another parameter, fileName, which specifies the
output filename and path where the generated test case will be saved. This
enables the reproducibility of experiments and the archiving of test inputs for
future reference.

After generating the test case, the class calls the TestCoarse method, which
is responsible for passing the generated input to Verefoo and measuring its
performance. Execution time is computed in milliseconds: a timestamp is
taken immediately before invoking Verefoo, and another one right after exe-
cution. If the result returned is SAT, i.e., Verefoo successfully finds a solution

57

Implementation of the CESNET Test Generator

to the constraints, the difference between the two timestamps is calculated
and printed. This mechanism allows researchers to monitor the efficiency of
Verefoo under different workloads and policy distributions.

Internally, the TestCoarse method serves as a lightweight wrapper around
the VerefooSerializer class. It takes the NFV object produced by the
TestCaseGeneratorCesnet class, which represents the network topology and
the associated security requirements, and directly feeds it into the Verefoo
engine. The VerefooSerializer is then responsible for parsing the model,
validating the security policies, and invoking the underlying constraint solver
in order to verify whether a feasible configuration exists. At the end of this
process, TestCoarse retrieves the resulting NFV object: if a solution is found
(SAT), this object contains the instantiated configuration that satisfies all the
constraints: if no solution exists (UNSAT), it still provides useful feedback for
analyzing infeasible scenarios.

Beyond its role in correctness verification, the TestCoarse function also pro-
vides an essential experimental tool. By systematically varying the param-
eters of the test generation, such as the number of policies, the percentage
of reachability versus isolation policies, or the inclusion of port constraints,
it becomes possible to evaluate how Verefoo behaves under increasingly com-
plex workloads. The reported execution times allow researchers to assess the
scalability of the tool and to identify potential performance bottlenecks in
different scenarios. In this sense, TestCoarse closes the loop of the testing
pipeline: starting from the generated NFV object, it executes the full verifica-
tion cycle, collects performance metrics, and returns a structured output that
can be further marshalled into XML for documentation and reproducibility.

• TestCaseGeneratorCesnet: this class performs the actual test case genera-
tion. It takes as input the configuration parameters defined in TestCesnet

and uses them to build the CESNET3 network topology and generate the
corresponding security policies. The topology is defined by explicitly creat-
ing nodes and links: each node is assigned a name corresponding to an IP
address, a type (either FORWARDER or WEBCLIENT), and a list of neighbors. A
FORWARDER node may serve either as an endpoint or as an intermediate node
along a traffic path, whereas a WEBCLIENT node always represents an end-
point. After building the topology, the class selects source–destination pairs
in a pseudo-random way and generates security policies according to the cho-
sen pairs and the specified parameters, ensuring variability and realism in the
test cases.

To simplify the assignment of IP addresses to the network nodes, each node is
associated with a single IP address. Whenever possible, the assigned IP address is
one of the destination IPs extracted from the dataset analysis, thus grounding the
generated topology to real communication endpoints observed in CESNET. In this
way, each node directly corresponds to an actual service or resource in the network,
and the generated policies reflect authentic traffic patterns. For nodes that do
not appear in the dataset, the generator assigns a conventional IP address from
the reserved range 20.0.X.X, where X is a number between 0 and 255. This hybrid

58

Implementation of the CESNET Test Generator

approach guarantees that all nodes in the generated CESNET network are assigned
unique and valid IP addresses, preserving both the realism and the completeness
of the generated scenarios.

The final IP address allocation is summarized in Tables 6.2 and 6.3. These
tables provide a clear mapping between nodes and IP addresses, making it easier
to trace back the generated test inputs to the dataset analysis and ensuring that
the resulting experiments are both interpretable and reproducible.

Table 6.2: CESNET main nodes IP assignment

Node IP Address
Prague 146.102.200.120

Úst́ı nad Labem 195.113.198.50
Brno 147.251.100.25

Ostrava 158.196.100.101
Pardubice 195.113.165.33
Plzeň 147.228.2.7
Liberec 147.230.17.200

České Budějovice 195.113.145.101
Olomouc 195.113.161.188

Hradec Králové 195.113.106.122
Jihlava 195.113.227.169

Table 6.3: CESNET other points IP assignment

Node IP Address

Řež 193.84.160.28
Jenštejn 20.0.0.8
Lednice 20.0.1.99
Zĺın 20.0.1.200

Opava 20.0.2.4
Cheb 20.0.4.10
Most 20.0.6.155
Děč́ın 20.0.7.87

Letohrad 20.0.8.100
Jindřich̊uv Hradec 20.0.12.28

All the nodes listed in Tables 6.2 and 6.3 are configured as FORWARDER nodes,
whereas the remaining ones are configured as WEBCLIENT nodes. For the sake of
readability, the WEBCLIENT nodes are not included in the tables, since their number
is significantly higher and their IP assignment follows a conventional scheme.

6.3.2 Node Selection

The node selection process is a crucial step in the CESNET Test Generator, as it
determines which nodes will be included in the generated test cases. The selec-
tion is based on the statistical analysis of the CESNET-TLS-Year22 dataset, which

59

Implementation of the CESNET Test Generator

provides insights into the distribution of traffic across different nodes and services.
The goal is to ensure that the selected nodes accurately reflect the real-world char-
acteristics of the CESNET network.

This process is composed of three main steps, which are:

• Probabilities Computation: this step involves the computation of the
probabilities behind the selection of the nodes. There are some nodes, also
called main nodes, which have the higher probabilities, i.e., the 90%, while all
the other nodes are considered minor nodes and all together have a probability
of 10%. In addition, between the main nodes, Prague is the node with the
higher probability, i.e., 80%, while the remaining percentage is assigned to
Úst́ı nad Labem, Ostrava, and Brno, respectively the 10%, 5% and 5%. The
idea behind this process is to have a pseudo-random node generation, that
reflects the proportions retrieved from the dataset analysis, in order to have
a realistic node selection.

• Node Selection: this step is performed by the selectRandomNodes() func-
tion, which takes as arguments the Graph object, the number of policies to
be generated, and the Constraints object. This function plays a central role,
since it not only selects nodes according to the probabilities computed in the
previous step, but also ensures that the selection is consistent and suitable
for the generation of valid security policies. More specifically, it generates
the same number of sources and destinations, equal to the number of policies
requested, and carefully checks that the couples are unique in both directions.
For instance, if a pair (Prague, Brno) has already been selected, the reverse
pair (Brno, Prague) will not be generated again.

Moreover, the function is designed to handle the presence of FORWARDER nodes
in a realistic way. Since FORWARDER nodes can act as sources or destinations,
but often represent intermediate devices in the traffic path, the function guar-
antees that they are always paired with a valid WEBCLIENT node to complete
the communication. To achieve this, when a FORWARDER is selected, the func-
tion automatically creates a corresponding WEBCLIENT, which inherits the
same IP address of the original node, while the FORWARDER itself is reassigned
to a new conventional IP address obtained by incrementing the previous one.
This mechanism prevents inconsistencies in the couples and ensures that each
policy reflects a feasible communication scenario.

In practice, the selectRandomNodes() function implements the logic that
connects the statistical distribution of the dataset with the technical require-
ments of the test generation, transforming abstract probabilities into concrete
node pairs that can be used to generate realistic policies.

• Allocation Constraints Introduction: this step is fundamental to avoid
the placement of firewalls by Verefoo within the link between the FORWARDER
node and the corresponding WEBCLIENT just created. This is done using the
AllocationConstraints object and checking if, for each couple, the end-
points are one of these pseudo nodes. If they are, the function ensures that
an AllocationConstraint is declared between the WEBCLIENT and the cor-
responding FORWARDER, specifying that no firewall can be placed on the link

60

Implementation of the CESNET Test Generator

between them. This is important to specify because in the real topology, the
WEBCLIENT node does not exist, so a placement of the firewall in that link
would result in a wrong solution.

6.3.3 Policy Generation

Policy generation is a critical component of the CESNET Test Generator, as it
defines the security requirements that Verefoo will evaluate. The generator creates
two types of policies: reachability and isolation policies. Reachability policies
specify that communication must be allowed between two nodes, while isolation
policies specify that communication must be blocked between two nodes. These
policies are generated according to the parameters defined in the TestCesnet class,
particularly the total number of policies to generate, the percentage of reachabil-
ity policies, whether isolation policies should be bidirectional, and whether port
constraints should be included.

This process is carried out by the createPolicy() function, which plays a cen-
tral role in transforming the selected nodes and their connections into concrete
security requirements. The function takes as input the selected nodes, organized
in a HashMap where the keys represent source nodes and each key maps to an
ArrayList of corresponding destination nodes. Additional inputs include the total
number of policies to generate, the flag indicating if isolation policies must be bidi-
rectional, the reachability percentage, and the flag for including port constraints.
By combining all these inputs, the function ensures that the generated policies are
consistent, realistic, and aligned with the parameters defined by the user.

The process can be divided into two main steps:

• Couples Composition: the first step involves creating all source-destination
pairs from the selected nodes. The function iterates through the HashMap and
generates unique pairs for each source node with its associated destination
nodes. This ensures that each couple represents a valid potential commu-
nication path in the network and avoids duplicate or conflicting pairs. The
function also preserves the directionality of the pairs, which is particularly
important for isolation policies that can be unidirectional or bidirectional
depending on the configuration.

• Policy Generation: in this step, the actual security policies are generated
based on the previously composed couples. The function calculates the num-
ber of reachability policies as the product of the total number of policies and
the reachability percentage, while the remaining couples are used for isolation
policies. For example, if policyNumber is 10 and reachabilityPerc is 0.7,
there will be 10 couples and 10 security policies to generate. Reachability
policies are always bidirectional, meaning that for each reachability policy
created, a corresponding symmetric policy is automatically added. Isolation
policies are unidirectional by default, but if the isolationBidirectional

flag is set to true, they are also mirrored, effectively doubling the number of
isolation policies. In the previous example, this would result in a total of 20
policies (14 reachability and 6 isolation).

61

Implementation of the CESNET Test Generator

Furthermore, if the usePorts flag is enabled, the function assigns specific port
numbers to the policies to more accurately simulate realistic traffic. Since the
dataset contains TLS traffic, the source port is set to 2852 and the desti-
nation port to 443, reflecting typical network configurations. In the case of
bidirectional policies, the ports are inverted in the mirrored policy to maintain
correct correspondence between the nodes and the expected communication
ports. This step ensures that the generated policies not only respect the
network topology and statistical distribution of nodes but also incorporate
realistic protocol-specific constraints, thereby enhancing the fidelity of the
test cases.

Overall, the createPolicy() function translates abstract node selections and
parameter settings into concrete, executable security policies that can be directly
processed by Verefoo. It ensures that the generated policies are valid, non-conflicting,
and representative of real-world network behavior, providing a robust foundation
for subsequent verification and performance evaluation.

62

Chapter 7

Validation and Results

This chapter presents the validation process of the CESNET Test Generator, a crit-
ical step in ensuring that the generated test scenarios accurately reflect real-world
conditions and effectively evaluate the performance and correctness of Verefoo.
Validation is essential to confirm that the tool not only produces syntactically cor-
rect test cases, but also generates scenarios that are representative of the CESNET3
network’s operational environment, encompassing realistic traffic patterns, network
topologies, and security requirements.

The validation process serves multiple purposes. First, it evaluates the func-
tional correctness of Verefoo when processing the generated test cases, ensuring
that reachability and isolation policies are properly enforced and that the tool can
handle the full range of complexity introduced by realistic network conditions. Fi-
nally, the validation explores the scalability and performance of the test generator
and Verefoo, testing how both components behave under increasing numbers of
policies, nodes, and constraints.

This chapter begins by presenting the criteria and methodology used to validate
the CESNET Test Generator, emphasizing reproducibility, coverage, and realism.
It then presents a series of validation experiments, detailing the setup, metrics, and
results. It includes the comparison of generated scenarios using different configu-
rations and parameters, analyzing how these variations impact the effectiveness of
Verefoo in verifying network policies. The chapter concludes by discussing the im-
plications of the validation results for the broader application of the test generator,
highlighting its robustness and reliability as a tool for verifying network security
policies in complex and heterogeneous environments.

Through this structured validation process, the chapter establishes a high level
of confidence in the CESNET Test Generator as a practical framework for testing
Verefoo under conditions that closely mirror those of real-world networks. More-
over, the analysis of the results provides valuable insights into the system’s scal-
ability, Verefoo’s behavior under complex workloads, and the robustness of the
implemented security policies. This methodical approach not only guarantees the
reproducibility and consistency of the tests but also lays the groundwork for future
extensions. In particular, applying the same framework to GreenShield is envisioned
as future work, which would allow the evaluation of security policies, network be-
havior, and the impact on energy consumption in real-world scenarios such as the

63

Validation and Results

CESNET3 network, thereby further confirming the potential and flexibility of the
test generator as a tool for advanced validation and experimentation.

7.1 Validation Methodology

The validation methodology for the test generator is designed to ensure that the
generated test cases are both realistic and effective in evaluating the performance
of Verefoo. The methodology encompasses several key components:

• Reproducibility: each test scenario is generated using a fixed topology and
a set of parameters derived from the CESNET-TLS-Year22 dataset. This
ensures that the scenarios can be consistently reproduced for validation pur-
poses.

• Coverage: the generated test cases are designed to cover a wide range of net-
work configurations, including varying numbers of nodes, which are selected
in a pseudo-random manner to ensure diversity. The scenarios also include
different types of policies, such as reachability and isolation, to test various
aspects of Verefoo’s functionality.

• Realism: the scenarios are constructed to reflect realistic network conditions,
including the distribution of IP addresses, traffic patterns, and the presence of
both internal and external nodes. This is achieved by analyzing the CESNET-
TLS-Year22 dataset to inform the generation process.

• Metrics: the validation process includes the collection of various metrics,
such as the number of nodes, policies, and constraints in each scenario, as well
as the performance of Verefoo in processing these scenarios. These metrics
are used to assess the effectiveness of the test generator and the correctness
of Verefoo’s outputs.

The validation experiments are structured to evaluate the test generator across
different configurations. Each experiment involves the following parameters:

• Policy Number: the total number of policies to be generated in the test.
This parameter is crucial for assessing how well Verefoo can handle varying
levels of complexity in network policies and to evaluate its scalability and
performance under different workloads.

• Reachability Percentage: the percentage of reachability policies among the
total number of policies. This parameter is important for testing Verefoo’s
ability to correctly enforce reachability constraints, which are fundamental
to network security and functionality. A lower percentage indicates a higher
number of isolation policies, which can increase the complexity of the network
configuration.

64

Validation and Results

• Ports Usage: a boolean flag indicating whether to include port constraints in
the generated policies. This parameter is significant for evaluating Verefoo’s
capability to handle more granular and specific network policies that involve
the usage of ports, adding complexity to the policies, making it a critical
aspect of the validation process.

• Isolation Bidirectional: a boolean flag indicating whether to include bidi-
rectional isolation policies in the generated test scenarios. This parameter is
important for assessing Verefoo’s ability to enforce isolation constraints that
apply in both directions between nodes. The inclusion of bidirectional iso-
lation policies can significantly impact the complexity and behavior of the
generated network configurations. In the whole validation process, this value
is set to true, meaning that all isolation policies are bidirectional.

The experiments are conducted by systematically varying these parameters to
generate a comprehensive set of test cases. Each case is composed of a fixed per-
centage of reachability policies and a set value for the ports, while the number of
policies is incremented until a certain limit. This approach allows for a thorough
evaluation of the CESNET Test Generator’s ability to produce diverse and realistic
test cases, as well as the performance and correctness of Verefoo when processing
these scenarios. The resulting execution times are taken as the average of 30 runs
for each configuration, ensuring statistical significance and reliability in the results.
This is done both for the generation of the scenarios, which is pseudo-random, and
for the execution of Verefoo, which can be influenced by various factors such as
system load and memory usage.

In the context of Verefoo, the two main algorithms used for validation are Al-
location Places (AP) and Maximal Flows (MF). The AP algorithm deals with
the management of possible firewall allocation points in the allocation graph. Each
network link can potentially host a firewall, by adding an Allocation Place for each
link in the graph, and then explores these options while respecting the constraints
defined by the service designer, e.g., mandatory or forbidden positions. The use of
AP therefore reduces the problem to a well-defined set of candidate nodes, limiting
the search space and making the MaxSMT problem formulation more efficient.

The MF algorithm, on the other hand, is based on the concept of maximal
flows, which represent sets of packets traversing the same sequence of nodes and
undergoing the same transformations. Compared to packet-level modeling, the MF
approach drastically reduces the number of distinct cases to be considered, lowering
both the number of free variables and constraints in the MaxSMT problem. This
results in significant performance improvements, as the computation of maximal
flows is fast and only marginally impacts the overall execution time, while still
ensuring correctness and completeness of the model [3].

For the validation process, the same tests are repeated with both algorithms,
in order to compare their performance and assess the impact of different modeling
strategies. This dual evaluation allows for verifying not only the correctness of the
results, but also the differences in terms of efficiency and scalability.

Finally, the MaxSMT solver used in these experiments is Z3, a high-performance
theorem prover developed by Microsoft Research. Z3 is widely recognized for its

65

Validation and Results

efficiency and effectiveness in solving complex logical formulas, making it a suitable
choice for the validation of Verefoo. The solver’s capabilities are leveraged to han-
dle the constraints and variables generated by both the AP and MF algorithms,
ensuring that the validation process is robust and reliable [3].

7.2 Validation Experiments

The experiments are designed to systematically explore the impact of these param-
eters on the performance of Verefoo, as well as to assess the realism and coverage
of the generated scenarios. These are conducted on a machine with a Ryzen 7
7000 series CPU, 16 GB of RAM, and running Windows 11 Home. The results are
collected and analyzed to provide insights into the effectiveness of the CESNET
Test Generator and the performance of Verefoo under various conditions.

The experiments are divided into four main scenarios:

• AP and MF using a MaxSMT approach with Z3 v4.8.8: this scenario
evaluates the performance of Verefoo using both the AP and MF algorithms,
with the MaxSMT solver Z3 version 4.8.8. This version is the default one
used in the original implementation of Verefoo [3].

• AP and MF using a MaxSMT approach with Z3 v4.14.1: this scenario
evaluates the performance of Verefoo using both the AP and MF algorithms,
with the MaxSMT solver Z3 version 4.14.1. This version is chosen to evaluate
the performance changes in this newer release of the solver.

• AP and MF using a heuristic approach: this scenario tests the per-
formance of Verefoo with a heuristic-based approach for both the AP and
MF algorithms, aiming to provide a comparison with the MaxSMT-based
methods.

• Extended AP and MF using a heuristic approach: this scenario ex-
tends the previous heuristic approach by incorporating an additional type of
policies, called CompleteReachability, which requires that all nodes in the
network can reach each other. This extension is designed to evaluate how the
inclusion of more complex policies affects the performance of Verefoo.

Each experiment involves generating test scenarios with varying numbers of
policies, reachability percentages, and port usage configurations. In particular, the
experiments are conducted with a fixed reachability percentage and port usage set-
ting, while incrementally increasing the number of policies by 20 for each test. This
systematic variation allows for a comprehensive assessment of how these parameters
influence the performance and scalability of Verefoo.

In general, it is crucial to note that the each experiments is repeated 30 times
for each configuration, and the execution times are averaged to ensure statistical
significance and reliability in the results. This approach helps to mitigate the
effects of the pseudo-random selection of the nodes and the variability in system
performance, providing a more accurate representation of Verefoo’s capabilities

66

Validation and Results

under different conditions. This helps also to smooth out any anomalies or outliers
that may arise due to transient system states or other external factors.

7.2.1 MaxSMT Approach With Z3 v4.8.8

The first set of experiments focuses on evaluating the performance of Verefoo using
both the Allocation Places (AP) and Maximal Flows (MF) algorithms, with the
MaxSMT solver Z3 version 4.8.8. The experiments are conducted with varying
configurations, which are composed of:

• Reachability Percentage: this parameter is fixed in the experiment, and
can take different values, i.e., 10%, 30%, 50%, 70%, and 90%. This allows for
assessing how the proportion of reachability policies affects the performance
of Verefoo.

• Policy Number: this parameter is incremented by 20 for each test, starting
from a base value. This systematic increase enables the evaluation of Verefoo’s
scalability and performance under different levels of policy complexity. This
value is varied from 20 to 200, and it is incremented after 30 iterations of the
same test configuration.

• Use Ports: this boolean parameter is first set to false, meaning that no
port constraints are included in the generated policies, and after the whole
experiments, this is repeated with the value set to true, meaning that port
constraints are included.

7.2.2 MaxSMT Approach With Z3 v4.14.1

The second set of experiments evaluates the performance of Verefoo using both the
Allocation Places (AP) and Maximal Flows (MF) algorithms, with the MaxSMT
solver Z3 version 4.14.1. This version is chosen to assess the performance changes
in this newer release of the solver. The configurations for these experiments are
the same as those used in the previous set, varying the reachability percentage,
policy number, and port usage settings. This allows for a direct comparison of the
performance of Verefoo with different versions of the Z3 solver, providing insights
into how updates to the solver may impact the efficiency and scalability of the tool.

7.2.3 Heuristic Approach and Extension

The last set of experiments evaluates the performance of Verefoo using a heuristic-
based approach for both the Allocation Places (AP) and Maximal Flows (MF)
algorithms. This approach is designed to provide a comparison with the MaxSMT-
based methods, focusing on the efficiency and scalability of the heuristic techniques.
The experiments are conducted with the same configurations as the previous set,
varying the reachability percentage, policy number, and port usage settings.

67

Validation and Results

In addition to the standard heuristic approach, an extended version is also
tested, which incorporates an new type of policy called CompleteReachability.
The extended heuristic approach aims to evaluate how the inclusion of more com-
plex policies affects the performance of Verefoo. The configurations for this ex-
tended approach are similar to the previous experiments, but the experiments are
conducted only with a reachability percentage of 50%, where 50% are isolation poli-
cies, 30% reachability policies, and 20% complete reachability policies. Moreover,
the experiments are conducted with a number of policies that starts from 100 and is
incremented by 100 until reaching 1000 policies, always conducting the experiments
with both ports usage set to true and false.

7.3 Results and Analysis

The results of the validation phase are presented in a series of charts that show the
performance of Verefoo under different configurations. Each chart corresponds to
a specific set of parameters, including the reachability percentage, policy number,
and port-usage settings. Execution times are reported in milliseconds (ms) and
the average value is taken over 30 runs for each configuration. In particular, each
configuration is composed of a fixed reachability percentage and a set value for the
ports, while the number of policies is incremented until a certain limit.

Overall, this phase illustrates the performance of Verefoo across different situ-
ations, highlighting differences between the AP and MF algorithms, the impact of
different Z3 solver versions, and also the contrast between MaxSMT and heuris-
tic approaches. The results provide insights into the scalability and efficiency of
Verefoo, as well as the effectiveness of the CESNET Test Generator in producing
realistic and diverse test scenarios.

The analysis compares the different configurations and examines trends and pat-
terns observed in the execution times. It is organized to evaluate the performance
and scalability of Verefoo across the various scenarios, highlighting the strengths
and weaknesses of each approach. Moreover, the results are discussed in the context
of the validation objectives, with particular attention to the realism and coverage
of the generated test cases. Comparisons are reported only for those configurations
that show significant differences and where the analysis is more interesting.

The first case concerns the comparison between two versions of the MaxSMT
solver Z3, i.e., v4.8.8 and v4.14.1, using both the AP and MF algorithms. The
analysis focuses on the execution times and scalability of Verefoo with the two
solver versions, in order to evaluate performance variations between them. A first
comparison can be made by analyzing the configuration with a reachability per-
centage of 50% and no port usage, as shown in Figure 7.1 and Figure 7.2 for the
AP algorithm.

In the charts, it is shown that using the newer version of Z3, execution times
are significantly lower and the scalability is improved, since Verefoo reaches 120
policies while in the older version it stops at 100 policies. In particular, for 100
policies, the execution time with Z3 v4.14.1 decreases of about the 23% compared
to Z3 v4.8.8, and this trend is consistent across different policy numbers.

68

Validation and Results

Figure 7.1: 50%, no ports, AP with Z3
v4.8.8

Figure 7.2: 50%, no ports, AP with Z3
v4.14.1

Another interesting comparison can be made by analyzing the configuration
with a reachability percentage of 90% and port usage both disabled and enabled,
again using the AP algorithm. In the first case, the execution time with the newer
version of Z3 is significantly lower than the older version, showing a decrease of
about 21%, as reported in Figure 7.3 and Figure 7.4, thus confirming the trend
observed in the previous comparison. In the second case, with the port usage
enabled, the performance differs from the previous one, since, in general, Verefoo
does not scale well with either version of Z3, as shown in Figure 7.5 and Figure 7.6.
In particular, execution times are considerably higher, and scalability is limited,
since Verefoo stops at 100 policies.

Figure 7.3: 90%, no ports, AP with Z3
v4.8.8

Figure 7.4: 90%, no ports, AP with Z3
v4.14.1

In the second case, the reduction in execution time is about 20% for 100 policies,
confirming the trend observed in the previous comparisons. However, it is important
to note that the performance degradation with port usage enabled is significant,
indicating that this configuration introduces additional complexity that impacts
the efficiency of Verefoo.

In general, the decreasing trend observed in these comparisons is confirmed
across all the tested configurations, showing that the newer version of Z3 provides
significant performance improvements for Verefoo when using the AP algorithm.
On the other hand, using MF algorithm scalability does not improve significantly,
as for both Z3 versions, Verefoo stops at 20 policies for a reachability percentage of
90%, both with and without port usage, while for the other configurations the tool
is unable to find a solution. In addition, the execution times are much higher than
those observed with the AP algorithm, indicating that the MF approach may not
be as effective in handling the complexity of the generated scenarios. The results

69

Validation and Results

Figure 7.5: 90%, ports enabled, AP
with Z3 v4.8.8

Figure 7.6: 90%, ports enabled, AP
with Z3 v4.14.1

are summarized in the Table 7.1:

Table 7.1: MF Algorithm Comparison Between Z3 v4.8.8 and Z3 v4.14.1

Z3 Version Ports Usage Execution Time (ms)
v4.8.8 False 469178
v4.14.1 False 456928
v4.8.8 True 572176
v4.14.1 True 468957

From this table, it can be observed that execution times, when port usage is
disabled, are quite similar, with only a slight improvement in the newer version
of Z3, i.e., a decreasing of about 2.6%. However, when port usage is enabled,
the performance difference becomes more significant, with the newer version of Z3
showing a significant improvement of about 18%.

The second case focuses on the MaxSMT approach using Z3 v4.8.8 and the
heuristic approach, both with the AP and MF algorithms. The analysis evaluates
the execution times and scalability of Verefoo using the two approaches, to analyze
the performance variations between the MaxSMT-based methods and the heuristic
techniques.

The first comparison considered involves a reachability percentage of 50% with
port usage both disabled and enabled. In the case of AP algorithm and port usage
disabled, the most evident result is that the heuristic approach scales much better
than the MaxSMT approach, reaching 200 policies, while the MaxSMT approach
stops at 100 policies. Moreover, the execution times are significantly lower for the
heuristic approach, i.e., 6135 ms for 200 policies, compared to 262482 ms for 100
policies with MaxSMT. This trend also holds when port usage is enabled, since the
scalability remains higher for the heuristic approach, reaching 200 policies, while
the MaxSMT approach stops at 40, and execution times are significantly lower, as
shown in Table 7.2. On the other hand, with the port usage enabled, the execution
times are significantly higher for both the approaches, i.e., 41481 ms for 200 policies
in the heuristic case, but the difference between the two is still substantial, with
the heuristic approach being much more efficient and scalable (Table 7.2).

At the same time, other two complementary configurations can be analyzed,
i.e., a reachability percentage of 10% and 90%, both with port usage disabled

70

Validation and Results

Table 7.2: Comparison Between MaxSMT and Heuristic Approaches Using AP
Algorithm with 50% and Ports Disabled/Enabled

Policies MaxSMT Heuristic MaxSMT Heuristic
(Ports Disabled) (Ports Disabled) (Ports Enabled) (Ports Enabled)

20 1832 147 50525 579
40 5582 447 330262 2651
60 28258 998 UNSAT 6766
80 62374 1719 UNSAT 11691
100 262482 2327 UNSAT 15340
120 UNSAT 2991 UNSAT 19882
140 UNSAT 3867 UNSAT 25156
160 UNSAT 4741 UNSAT 28688
180 UNSAT 5275 UNSAT 33553
200 UNSAT 6135 UNSAT 41481

and enabled. In the first case, the scalability is generally much better for both
approaches, with the MaxSMT approach reaching 180 policies, while the heuristic
approach reaches 200 policies, and the proportions between the execution times
are similar to those observed in the previous comparison, as shown in Figure 7.7
and Figure 7.8. Moreover, also in the case with port usage enabled, the difference
between the two approaches is still significant, with the heuristic approach being
much more efficient and scalable, as shown in Figure 7.9 and Figure 7.10.

Figure 7.7: 10%, ports disabled,
MaxSMT approach

Figure 7.8: 10%, ports disabled, Heuris-
tic approach

Figure 7.9: 10%, ports enabled,
MaxSMT approach

Figure 7.10: 10%, ports enabled,
Heuristic approach

71

Validation and Results

Finally, to complete the analysis, the configuration with a reachability percent-
age of 90% is considered. This is particularly interesting because it is comple-
mentary to the previous one, and it allows for assessing how the proportion of
reachability policies affects the performance of Verefoo. In the first case, with 90%
reachability and port usage disabled, the scalability is generally better for both ap-
proaches since they reach 200 policies, but the execution times are still significantly
different, with the heuristic approach being much more efficient, as shown in Table
7.3. On the other hand, with port usage enabled, the scalability is significantly lim-
ited in the case of the MaxSMT approach, while the heuristic approach reaches 200
policies and the execution times are still significantly different, with the heuristic
approach being much more efficient, as shown in Table 7.4.

Table 7.3: Comparison Between MaxSMT and Heuristic Approaches Using AP
Algorithm with 90% and Ports Disabled

Number of Policies MaxSMT Heuristic
20 1244 109
40 3129 388
60 12983 865
80 25063 1548
100 39538 2106
120 50254 2529
140 80425 3494
160 114867 4155
180 149140 4838
200 232534 5443

Table 7.4: Comparison Between MaxSMT and Heuristic Approaches Using AP
Algorithm with 90% and Ports Enabled

Number of Policies MaxSMT Heuristic
20 2844 403
40 18251 1884
60 63267 5439
80 122225 8054
100 234273 11521
120 UNSAT 12819
140 UNSAT 16090
160 UNSAT 21223
180 UNSAT 23499
200 UNSAT 25054

A third case concerns the heuristic approach, using both the AP and MF algo-
rithms. The experiments are conducted with varying configurations to analyze the
performance differences between the two algorithms.

Using MF, it is immediately evident that execution times are quite similar for
both the port usage disabled and enabled. At the same time, the execution times

72

Validation and Results

are significantly lower than those observed with the AP algorithm. The worst case,
using the MF algorithm, is with a reachability percentage of 10%, with both port
usage disabled and enabled. In this case, the execution time for 200 policies is 1538
ms with port usage disabled, and 2197 ms with port usage enabled, resulting as
the higher values obtained running the tests with MF algorithm.

On the other hand, using AP algorithm, the execution times are significantly
higher than those observed with the MF algorithm, both with port usage disabled
and enabled. In addition, the execution times have a significant difference between
the two cases, since the port usage introduces additional complexity that impacts
the efficiency of Verefoo, in particular when using AP algorithm. The results are
shown in Figure 7.11, Figure 7.12, where is reported the execution times using AP
algorithm to compare the obtained results when using the port usage disabled and
enabled, with a reachability percentage of 90%.

Figure 7.11: 90%, ports disabled,
Heuristic approach with AP

Figure 7.12: 90%, ports enabled,
Heuristic approach with AP

An additional comparison can be done showing the obtained results using AP,
with 30% reachability. In this case, the execution times are significantly higher with
respect to the previous case, because the number of isolation policies is higher, and
this increases the complexity of the problem. In addition, the difference between
the execution times with port usage disabled and enabled is still significant, as
shown in Figure 7.13 and Figure 7.14.

Figure 7.13: 30%, ports disabled,
Heuristic approach with AP

Figure 7.14: 30%, ports enabled,
Heuristic approach with AP

Finally, an analysis can be done on the extended experiments using heuristic
approach, which incorporates the CompleteReachability policies. This analysis
focuses on the execution times and scalability of Verefoo using the extended heuris-
tic approach, to analyze the performance variations introduced by the inclusion of

73

Validation and Results

more complex policies. The experiments are conducted with a reachability percent-
age of 50%, both port usage disabled and enabled, and with a number of policies
that starts from 100 and is incremented by 100 until reaching 1000 policies.

In the case with port usage disabled, using both AP and MF algorithms, Verefoo
reaches 1000 policies. Using the MF algorithm, the execution times are significantly
lower than those observed with the AP algorithm, as shown in Figure 7.15 and
Figure 7.16. In particular, using the AP algorithm, the execution time is about 4.5
times higher than using the MF algorithm, for 1000 policies.

Figure 7.15: 50%, ports disabled, Ex-
tended Heuristic approach with AP

Figure 7.16: 50%, ports disabled, Ex-
tended Heuristic approach with MF

Figure 7.17: 50%, ports enabled, Ex-
tended Heuristic approach with AP

Figure 7.18: 50%, ports enabled, Ex-
tended Heuristic approach with MF

On the other hand, in the case with port usage enabled, using both AP and MF
algorithms, Verefoo reaches 1000 policies. Moreover, it is important to notice that
using an heuristic approach with MF algorithm, the difference between the port
usage enabled and disabled is not so significant, while using the AP algorithm, the
execution times are significantly higher when port usage is enabled, as shown in
Figure 7.17 and Figure 7.18. In particular, using the AP algorithm, the execution
time is about 8.5 times higher than using the MF algorithm, for 1000 policies. In
addition, also the difference between the execution times with port usage enabled
and disabled, using AP, is very high, since the execution time is about 7.5 times
higher when port usage is enabled, for 1000 policies.

This final analysis shows that the inclusion of more complex policies, such as
CompleteReachability, can impact the performance of Verefoo, but using a heuris-
tic approach, the scalability is not affected significantly, and the execution times
remain manageable, especially when using the MF algorithm.

Overall, the results of the validation phase demonstrate the effectiveness of
the CESNET Test Generator in producing realistic and diverse test scenarios, as

74

Validation and Results

well as the performance and scalability of Verefoo under various configurations.
The analysis presented here provides insights into the strengths and weaknesses of
different approaches, highlighting the importance of choosing the right algorithm
and solver for specific use cases. In particular, it highlights the differences between
the MaxSMT and heuristic approaches, as well as the impact of different Z3 solver
versions, and also the difference in using the AP and MF algorithms, providing a
comprehensive understanding of Verefoo’s capabilities and limitations.

75

Chapter 8

Conclusions and Future Works

This final chapter analyzes the results obtained throughout the thesis work, summa-
rizing the main contributions and findings. It presents the key aspects of the work,
emphasizing their significance and implications, and ultimately outlines potential
future research directions that could build upon the work presented.

The first contribution of this thesis is the design and integration of GreenShield
in the Edge-to-Cloud (E2C) Continuum. This required adapting the original archi-
tecture of GreenShield to meet the specific requirements and constraints of the E2C
scenario. The integration process included the introduction of new components,
both at the node and firewall levels, through the inclusion of virtual nodes and the
adaptation of the virtual firewall instances, in order to ensure multi-tenancy and
scalability of the solution. The integration also required a careful analysis of the
virtualization technologies power consumptions, to understand which technology
would be more suitable for the E2C scenario, between containers and virtual ma-
chines. This analysis considered not only energy consumption but also the amount
of resources required by each technology, as well as the trade-offs between the two
aspects. The findings suggest that containers are generally more energy-efficient
than virtual machines, due to their lower overhead and resource requirements, while
virtual machines provide better isolation and security guarantees.

Furthermore, the integration process included the proposal of new hard and
soft constraints to be included in the implementation of GreenShield, ensuring that
firewall placement is appropriate for the E2C context. These constraints take into
account factors such as the power consumption of single nodes, the existance of
optimized solutions for the virtualization of the firewall instances, and the need to
manage the balance between energy consumption and performance.

Finally, the thesis presents a use case to demonstrate the effectiveness of the
proposed integration in a real-world scenario, specifically the application of the E2C
to a smart city environment. It includes the deployment of various endpoints, which
generate a significant amount of data that needs to be processed and analyzed in
real-time. These endpoints are connected to edge nodes, which are responsible for
processing and filtering the data before sending it to the cloud. At this stage, the
GreenShield solution is applied to ensure that the network security policies are
enforced in an energy-efficient manner. In addition, cloud containers are used to
store and analyze the data, providing insights and information that can be used to

76

Conclusions and Future Works

improve the services provided to the citizens. This use case illustrates how a smart
city can integrate the E2C paradigm, including all its instances, from the edge
nodes to the cloud data centers, and how they can help to improve the efficiency
and sustainability of the city’s operations.

In the second part of the thesis, the focus is on the implementation of a test
generator, designed to create a set of test cases for evaluating the performance of
Verefoo in a real-case network, such as the CESNET3 network. The test generator
is designed to create a variety of test cases, based on the network topology and
the specific requirements of the CESNET3. It is designed to generate a variety of
test cases, with different characteristics, based on the four parameters: the number
of policies, the percentage of reachability policies, the port usage, and the gener-
ation of bidirectional isolation policies. It is implemented according to a specific
analysis of a dataset, i.e., the CESNET-TLS-Year22, containing real TLS traffic
data from the CESNET3 network, captured during the year 2022. The analysis
of this dataset provides insights into the traffic patterns and characteristics of the
CESNET3 network, which are then used to design the generated test cases.

Finally, the last part of the thesis validates the generated test cases, by running
them through Verefoo and analyzing the results. Validation is performed by con-
figuring the previous parameters, and for each configuration running 30 iterations
to compute the average execution time. These results are then compared to eval-
uate the performance of Verefoo in handling the generated test cases, in terms of
execution time and scalability.

When running Verefoo with the MaxSMT approach to solve the verification
problem, the results show that the execution time increases with the number of
policies, and also using a lower percentage of reachability policies. This is due to
the fact that reachability policies are easier to verify than isolation policies. Fur-
thermore, the results also show that the execution time increases with the port
usage, as more ports lead to a larger number of possible connections between poli-
cies, and so more combinations to verify. By contrast, running the MF algorithm,
Verefoo is unable to find a solution in the majority of the test cases, except for a
few cases with a low number of policies and high reachability percentage. Finally,
running two different versions of the Z3 solver, i.e., v4.8.8 and v.4.14.1, the results
show that the newer version of the solver performs better in terms of execution
time, especially for larger test cases with a higher number of policies. In general,
the newer version decreases the execution time by approximately 20% compared to
the older version.

When running Verefoo with a heuristic approach to solve the verification prob-
lem, results show that the execution time is generally lower than the MaxSMT
approach, and in the case of MF algorithm, it does not depends on the usage of
ports. On the other hand, using the AP algorithm, the execution time increases
with the port usage, but it is still lower than the MaxSMT approach. In addi-
tion, the heuristic approach shows a better scalability, being able to handle a larger
number of policies without a significant increase in execution time, since Verefoo
reaches 1000 policies in feasible time.

These findings suggest that the heuristic approach is more suitable for handling
large-scale networks with a high number of policies, while the MaxSMT approach

77

Conclusions and Future Works

may be more appropriate for smaller networks with a lower number of policies.
Moreover, the results also highlight the importance of using an up-to-date solver,
as it can significantly improve the performance of the verification process.

In conclusion, this thesis represents the starting point of a broader and more
complex research path. As future work, it would be valuable to extend the test
generator to GreenShield, in order to evaluate its performance not only in terms
of execution time and scalability, but also regarding energy efficiency. Such an ex-
tension would provide a more comprehensive evaluation of GreenShield’s behavior
in real-world network scenarios, while also identifying opportunities for further im-
provement and optimization. At the same time, another interesting future direction
would be to explore the analysis of the power consumptions of additional security
functions, such as VPN Gateways. Extending the evaluation to multiple functions
would allow GreenShield to be assessed not only in terms of firewall placement, but
as a broader framework for orchestrating different security mechanisms with energy
efficiency in mind.

78

Bibliography

[1] D. Bringhenti, R. Sisto, and F. Valenza, “Automating VPN Configuration
in Computer Networks,” IEEE Transactions on Dependable and Secure
Computing, vol. 22, no. 1, pp. 561–578, 2025. [Online]. Available:
https://doi.org/10.1109/TDSC.2024.3409073

[2] D. Bringhenti, G. Marchetto, R. Sisto, and F. Valenza, “Automation for
Network Security Configuration: State of the Art and Research Trends,”
ACM Computing Surveys, vol. 56, no. 3, pp. 1–37, 2023. [Online]. Available:
https://doi.org/10.1145/3616401

[3] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov,
“Automated Firewall Configuration in Virtual Networks,” IEEE Transactions
on Dependable and Secure Computing, vol. 20, no. 2, pp. 1559–1576, Mar/Apr
2023. [Online]. Available: https://doi.org/10.1109/TDSC.2022.3160293

[4] D. Bringhenti, F. Pizzato, R. Sisto, and F. Valenza, “Autonomous Attack
Mitigation Through Firewall Reconfiguration,” International Journal of
Network Management, vol. 35, no. 1, pp. 1–18, 2024. [Online]. Available:
https://doi.org/10.1002/nem.2307

[5] F. Pizzato, D. Bringhenti, R. Sisto, and F. Valenza, “A Looping Process
for Cyberattack Mitigation,” in 2024 IEEE International Conference on
Cyber Security and Resilience (CSR), 2024, pp. 276–281. [Online]. Available:
https://doi.org/10.1109/CSR61664.2024.10679501

[6] D. Bringhenti, “Network Security Automation,” Ph.D. dissertation, Graduate
School of Politecnico di Torino, 2022.

[7] D. Bringhenti, S. Bussa, R. Sisto, and F. Valenza, “Atomizing Firewall
Policies for Anomaly Analysis and Resolution,” IEEE Transactions on
Dependable and Secure Computing, vol. 22, no. 3, pp. 2308–2325, 2025.
[Online]. Available: https://doi.org/10.1109/TDSC.2024.3495230

[8] F. Pizzato, D. Bringhenti, R. Sisto, and F. Valenza, “Automatic and
Optimized Firewall Reconfiguration,” in 2024 IEEE/IFIP Network Operations
and Management Symposium (NOMS). Seoul, South Korea: IEEE, 2024, pp.
1–9. [Online]. Available: https://doi.org/10.1109/NOMS59830.2024.10575212

[9] D. Bringhenti and F. Valenza, “GreenShield: Optimizing Firewall
Configuration for Sustainable Networks,” IEEE Transactions on Network and
Service Management, vol. 21, no. 6, pp. 6909–6923, Dec. 2024. [Online].
Available: https://doi.org/10.1109/TNSM.2024.3452150

[10] D. Bringhenti, S. Bussa, R. Sisto, and F. Valenza, “A Two-Fold Traffic Flow
Model for Network Security Management,” IEEE Transactions On Network
and Service Management, vol. 21, no. 4, pp. 3740–3758, Aug 2024. [Online].
Available: https://doi.org/10.1109/TNSM.2024.3407159

79

https://doi.org/10.1109/TDSC.2024.3409073
https://doi.org/10.1145/3616401
https://doi.org/10.1109/TDSC.2022.3160293
https://doi.org/10.1002/nem.2307
https://doi.org/10.1109/CSR61664.2024.10679501
https://doi.org/10.1109/TDSC.2024.3495230
https://doi.org/10.1109/NOMS59830.2024.10575212
https://doi.org/10.1109/TNSM.2024.3452150
https://doi.org/10.1109/TNSM.2024.3407159

Bibliography

[11] D. Bringhenti and F. Valenza, “A Twofold Model for VNF Embedding
and Time-Sensitive Network Flow Scheduling,” IEEE Access, vol. 10, pp.
44 384–44 398, 2022. [Online]. Available: https://doi.org/10.1109/ACCESS.
2022.3169863

[12] A. Al-Dulaimy, M. Jansen, B. Johansson, A. Trivedi, A. Iosup, M. Ashjaei,
A. Galletta, D. Kimovski, R. Prodan, K. Tserpes, G. Kousiouris, C. Giannakos,
I. Brandic, N. Ali, A. B. Bondi, and A. V. Papadopoulos, “The computing
continuum: From IoT to the cloud,” Internet of Things, vol. 27, no. 101272,
pp. 1–33, 2024. [Online]. Available: https://doi.org/10.1016/j.iot.2024.101272

[13] F. Firouzi, B. Farahani, and A. Marinšek, “The convergence and interplay
of edge, fog, and cloud in the AI-driven Internet of Things (IoT),”
Information Systems, vol. 107, no. 101840, pp. 1–22, 2022. [Online]. Available:
https://doi.org/10.1016/j.is.2021.101840

[14] P. Gkonis, A. Giannopoulos, P. Trakadas, X. Masip-Bruin, and F. D’Andria,
“A Survey on IoT-Edge-Cloud Continuum Systems: Status, Challenges, Use
Cases, and Open Issues,” Future Internet, vol. 15, no. 383, pp. 1–27, Nov
2023. [Online]. Available: https://doi.org/10.3390/fi15120383

[15] D. Khalyeyev, T. Bureš, and P. Hnětynka, “Towards Characterization
of Edge-Cloud Continuum,” Software Architecture - ECSA 2022 Tracks
and Workshops, no. 13928, pp. 215–230, 2023. [Online]. Available:
https://doi.org/10.1007/978-3-031-36889-9 16

[16] R. Morabito, “Power Consumption of Virtualization Technologies: An
Empirical Investigation,” in 2015 IEEE/ACM 8th International Conference
on Utility and Cloud Computing (UCC). IEEE, 2015, pp. 522–529. [Online].
Available: https://doi.org/10.1109/UCC.2015.93

[17] M. Warade, K. Lee, C. Ranaweera, and J.-G. Schneider, “Monitoring
the Energy Consumption of Docker Containers,” in 2023 IEEE 47th
Annual Computers, Software, and Applications Conference (COMPSAC).
IEEE, 2023, pp. 1703–1710. [Online]. Available: https://doi.org/10.1109/
COMPSAC57700.2023.00263

[18] C. Xu, Z. Zhao, H. Wang, R. Shea, and J. Liu, “Energy Efficiency of Cloud
Virtual Machines: From Traffic Pattern and CPU Affinity Perspectives,”
IEEE Systems Journal, vol. 11, no. 2, pp. 835–845, 2017. [Online]. Available:
https://doi.org/10.1109/JSYST.2015.2429731

[19] R. Shea, H. Wang, and J. Liu, “Power Consumption of Virtual Machines
with Network Transactions: Measurement and Improvements,” in Proceedings
of IEEE INFOCOM 2014. IEEE, 2014, pp. 1051–1059. [Online]. Available:
https://doi.org/10.1109/INFOCOM.2014.6848035

[20] K. Hynek, J. Luxemburk, J. Pešek, T. Čejka, and P. Šǐska, “CESNET-
TLS-Year22: A year-spanning TLS network traffic dataset from backbone
lines,” Scientific Data, vol. 11, no. 1156, 2024. [Online]. Available:
https://doi.org/10.1038/s41597-024-03927-4

[21] ipwhois.io, “IP Geolocation API and IP Location Lookup Tools,” https://
ipwhois.io/.

[22] ipinfo.io, “IP Data Intelligence for Developers & Enterprises,” https://ipinfo.
io/AS2852.

80

https://doi.org/10.1109/ACCESS.2022.3169863
https://doi.org/10.1109/ACCESS.2022.3169863
https://doi.org/10.1016/j.iot.2024.101272
https://doi.org/10.1016/j.is.2021.101840
https://doi.org/10.3390/fi15120383
https://doi.org/10.1007/978-3-031-36889-9_16
https://doi.org/10.1109/UCC.2015.93
https://doi.org/10.1109/COMPSAC57700.2023.00263
https://doi.org/10.1109/COMPSAC57700.2023.00263
https://doi.org/10.1109/JSYST.2015.2429731
https://doi.org/10.1109/INFOCOM.2014.6848035
https://doi.org/10.1038/s41597-024-03927-4
https://ipwhois.io/
https://ipwhois.io/
https://ipinfo.io/AS2852
https://ipinfo.io/AS2852

	List of Figures
	List of Tables
	Listings
	Introduction
	Thesis description

	Network Security Automation
	Objectives of Network Security Automation
	Problems in Manual Security Configuration
	Pros and Cons of Automated Network Security Configuration
	Sustainability in Firewall Configuration
	GreenShield: Optimizing Firewall Configuration for Sustainable Networks
	Objectives of GreenShield
	Network Graph and Security Policies
	Firewall Configuration Problem Formalization
	Automatic Output Computation

	Edge-to-Cloud Computing
	Main Elements of the Edge-to-Cloud Architecture
	Connectivity and Integration in Edge-Cloud Systems

	Edge-to-Cloud Interplay
	Applications of Edge-to-Cloud Computing

	Thesis Objective
	GreenShield in the Edge-to-Cloud Computing
	Motivations for GreenShield Integration in Edge-to-Cloud Environments
	Analysis of Power Consumption in Virtualization Technologies
	Physical vs Virtualized Firewalls
	Power Consumption Analysis
	Optimization Techniques

	Proposed Hard and Soft Constraints
	Use Case: Smart City
	The Architecture of the Smart City

	Implementation of the CESNET Test Generator
	CESNET3 Network Overview
	Dataset Analysis
	Dataset Structure and Statistics
	Methodology for Generating Statistics

	CESNET Test Generator Architecture and Design
	Implementation and Design
	Node Selection
	Policy Generation

	Validation and Results
	Validation Methodology
	Validation Experiments
	MaxSMT Approach With Z3 v4.8.8
	MaxSMT Approach With Z3 v4.14.1
	Heuristic Approach and Extension

	Results and Analysis

	Conclusions and Future Works
	Bibliography

