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"Enjoy the butterflies, enjoy being naive, enjoy
the nerves, the pressure.

If you kind of want stand on the top from day
one, then there’s nothing else to look forward
to.

Enjoy kind of the process of making a name for
yourself and meeting some great people along
the way. Theres a lot of worldly people that you
can laugh with, learn from, enjoy some
moments with.

So embrace the good ones, stay focused, don’t
be too far off your path, just keep trying to
build and grow, and learn from yourself.

But don’t forget what got you here.

Bring friends along, bring family along.

They might be something to take the weight off
your shoulders, they’re also people to enjoy the
moments with, to celebrate with.

So don’t be afraid to surround yourself with
people that you care about and love, they’re also
so excited to be on this journey too.

Get after it!"



Summary

This thesis describes the design, implementation and validation of a connector that act
as an automated bridge between the OpenC2 Context Discovery (CTXD) specification
and the VEREFOO formal verification framework. The main objective is to create a
closed-loop system for proactive security policy management in modern, dynamic net-
work environments.

This thesis project addresses a fundamental challenge: bridging the structural gap between
network context information, which is often non-standardized and the rigorous, structured
input format required by formal verification tools. The connector is specifically built to
manage real-time network topological data, provided in OpenC2 CTXD JSON format,
and translate it into a comprehensive network graph model that is compliant with VERE-
FOO’s NFV XML schema.

The implementation of the connector is detailed in a Python script that operate a multi-
stage workflow. First, it performs data extraction and aggregation, parsing multiple JSON
files to collect a holistic view of network services, links, and configurations. It then exe-
cutes the data model mapping, which includes prioritizing IPv4 addresses for unique node
identification, using heuristics to automatically deduce the functional role of each network
element (e.g., FORWARDER, WEBSERVER), and ensuring graph coherence by creating
nodes for implicit network elements and enforcing bidirectional link relationships.

Once the VEREFOO-compliant XML is generated, the connector automates its submis-
sion to the VEREFOO RESTful API. It is designed to handle the responses, employing
a robust polling mechanism to retrieve the final verification results. The most critical
function of the connector is the output analysis, where it parses the VEREFOO response,
identifies policy violations flagged by an isSat="false" status, and translates them into
precise, actionable OpenC2 commands. For example, a violated ReachabilityProperty
triggers an allow command, while a violated IsolationProperty generates a deny com-
mand.

In summary, this thesis presents a solution that fills the critical gap between network
discovery and security policy enforcement. It moves beyond traditional manual and reac-
tive security measures by demonstrating an automated, continuous process where network
context is dynamically discovered, the security provided by formally verification, and cor-
rective actions are automatically generated. This approach significantly enhances network
security by minimizing human error and providing a verifiable foundation for security pol-
icy compliance.
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Chapter 1

Introduction

Keeping networks secure has become an increasingly complex and dynamic challenge in
the modern cybersecurity landscape. The fast adoption of Software-Defined Networking
(SDN) and Network Functions Virtualization (NFV), combined with the spreading of
cloud services and IoT devices, has expanded the attack surface of cyber system [1]. In
such environments, manually configuring security policies, particularly for critical func-
tions like firewalls, is laborious, error-prone and often unfeasible tasks [2].

Traditional static security models and manual configuration processes already showed
their increasingly inadequateness. Even a single misconfigured firewall rule can expose a
critical vulnerability, potentially leading to data breaches, significant compliance penalties
and lasting reputational damage to an organization. The volume of network traffic and
the constant re-provisioning of virtual resources mean that a security analyst cannot keep
up with the pace of change, creating a constant window of vulnerability.

This embedded vulnerability shows the need to shift from reactive and manual processes
to a proactive and automated security approach. Attackers take advantage of the dy-
namic nature of virtualized networks to move in lateral ways, evading detection, targeting
the supply chain, exploiting vulnerabilities in software components or hardware devices.
These sophisticated, multi-stage attacks often exploit a series of small misconfigurations
that would be impossible to identify and correct through manual inspection alone.

In addition to this complexity, there is the highly specialized nature of many security tools
from different vendors, operating in isolation and being statically configured, creating a
lack for common language to communicate and coordinate responses, disintegrating the
cybersecurity operations [3]. Every individual siloed approach makes extremely difficult to
achieve a holistic view of the network’s security and to implement suited coordinated de-
fenses, providing an asymmetric time advantage to the attackers. Without a standardized
communication framework, the security ecosystem becomes a collection of fragmented and
incompatible tools. An intrusion detection system might detect a threat, but it cannot
automatically trigger a response from a firewall, if the components come from a different
vendor without a custom integration.

The integration of different cybersecurity technologies requires coordinated actions, but
this process is difficult due to the reliance on custom communication interfaces: these
proprietary APIs make cross-platform integration costly and complex, also limiting the

11



Introduction

ability to be dynamically integrated with other tools. While modern orchestration plat-
forms try to solve this limitation with a plug-and-play architecture, the scalability issues
still remain, invalidating the effectiveness that became based on the availability of the
development of custom interfaces. Furthermore, while adopting technologies from multi-
ple vendors can enhance security by preventing a single vulnerability from compromising
an entire infrastructure (for example a zero-day vulnerability), this vendor diversity also
complicates device management due to the fragmented nature of the defense.

Nowadays, the need for a proactive —rather than reactive— security stance is needed
more than ever, requiring solutions that can adapt quickly to the changes and automat-
ically ensuring their correctness. Automated responses must be not only fast, but also
fundamentally correct. A fast, but flawed, automated action could potentially cause more
harm than the original threat, such as by blocking legitimate business traffic or creating
new vulnerabilities.

To overcome these challenges, automated and formally verifiable approaches to network
configuration and security policy enforcement are game changer [4]. Standardizing in-
formation exchange, through mechanisms like OpenC2 Context Discovery, is needed for
enabling this automation, allowing machines to communicate and share network context
in a more efficient way.

1.1 The Role of OpenC2 in Cybersecurity Automa-
tion

To address these issues, the Open Command and Control (OpenC2) framework emerges
as a key enabling technology. It provides a standardized language for setting up differ-
ent cybersecurity tools, by defining a common syntax and structure for commands and
responses, facilitating the automated exchange of information [1].

The OpenC2 language is built on the fundamental triad of "Action-Target-Arguments',
which break down complex commands into three fundamental components, creating a
common grammar for cybersecurity and allowing the understanding by any compliant
system, regardless the vendor [3]. Actuator profiles extend the language to focus on spe-
cific cyber defense functions and provide conformance requirements for interoperability.
This modular approach allows the language to be extended to new technologies without
the need to change the standard, making it highly scalable and prone for future imple-
mentations. For instance, this capability is decisive for Context Discovery (CTXD), an
OpenC2 Actuator Profile that allows a "Producer" to dynamically query "Consumers" (net-
work devices or security tools) about their configuration details, like network’s topology,
active services, peers that are indispensable for any advanced automation and verification
framework, as it provides the raw data needed to understand the current state of the
network.
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1.2 — The Importance of Formal Verification in VEREFOO

1.2 The Importance of Formal Verification in VERE-
FOO

The acquisition of dynamic network context, while central, is only one part of the solution.
As anticipated before, the complexity of modern networks necessitates automation, but
it should be a wverified one. This is where formal verification tools, such as VEREFOO
(VErified REFinement and Optimized Orchestrator), become indispensable.

Formal verification is a discipline eradicated in mathematics and computer science that
is based on rigorous methods to prove the correctness of a system. The main difference
with heuristic or simulation-based approaches is that they can only test a limited number
of scenarios, which are based on a set of pre-defined rules that may not cover all possible
cases; on the other hand, formal verification provides a mathematical guarantee that a
system will behave as intended under all possible conditions.

In the context of network security, this means that a formally verified firewall configu-
ration can be trusted to enforce policies without introducing unwanted vulnerabilities or
unintentionally blocking legitimate traffic. This is particularly critical in dynamic envi-
ronments where network state can change frequently, making it impractical to test every
potential configuration manually.

VEREFOO leverages the rigorous formal methods by modeling the network and its se-
curity policies as a complex mathematical problem, a Maximum Satisfiability Modulo
Theories (MaxSMT) problem, to mathematically guarantee the correctness and optimal-
ity of the generated firewall configurations. This provides a high level of assurance that
the implemented security policies will work as intended. By translating the network’s
topology, services and security policies into a precise form, VEREFOO can exhaustively
analyze all possible states and interactions, eliminating the risks associated with human
error and incomplete testing.

Furthermore, the connector’s ability to find the optimal configuration ensures that the
security rules applied are not only correct but also efficient, avoiding the unnecessary ones
that can reduce performance.

1.3 Covering the Operational Gap: the Thesis Ob-
jective

Despite the individual strengths of OpenC2 (dynamic context discovery and standardized
command execution) and VEREFOO (formal verification and optimized policy genera-
tion), a significant operational gap exists between them [5]. OpenC2 provides structured
information about the network’s current state in a machine-readable JSON format. How-
ever, VEREFOO requires its input in a highly formalized, static XML schema, detailing
network nodes, functional types and interconnections.

The main difficulties are translating the discovered context from OpenC2 into the precise
semantically consistent and structured format required by VEREFOO.

A manual process is required to act as a bridge, where a security analyst must:

1. Manually parse the OpenC2 JSON response.
13
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2. Identify the relevant network entities (nodes, links, services).

3. Map these entities to the specific fields and attributes required by VEREFOQO’s NFV
(Network Functions Virtualization) XML schema.

4. Manually create the XML file, ensuring that all structural constraints (like node
bidirectionality, functional types) are correctly specified.

This step is time consuming and could represent a bottleneck in a security workflow, that
require an extremely fast response. As an example, it could be considered a scenario
where a critical vulnerability is detected and requires a new firewall policy to be deployed
immediately: if an analyst has to spend hours manually converting data, the organization
remains exposed to the threat and the manual intervention introduces the risk of human
error. OpenC2 and VEREFOO were built with the purpose of eliminating this issue.
This thesis addresses the critical integration gap, focusing on security policy management,
and it aims to enable the full potential of complementary technologies by proposing a
methodology and implementing a connector. This connector specifically converts network
topological information and service capabilities, obtained via OpenC2 Context Discovery,
into a specific XML format for formal verification using VEREFOO.

1.4 The Connector Implementation: Bridging the
Gap

The connector’s functionality goes beyond a simple data conversion. The script performs
a crucial semantic analysis of the raw OpenC2 data to infer the "functional role" of each
service, such as nat, webserver, webclient or forwarder This logic is essential because
VEREFOO’s formal model relies on these explicit functional types, which are not always
present in the OpenC2 response. The connector acts as an intelligent interpreter, map-
ping the dynamic and often incomplete data into the precise format required for formal
verification.

Another key aspect of the implementation is the handling of network addresses. Since
VEREFOO requires a valid IP address for every node, the connector includes a dynamic
IP assignment logic. For nodes that lack an explicit IPv4 address in the OpenC2 JSON,
the script automatically assigns an arbitrary IP (starting from "20.0.0.1"), ensuring that
every element in the network model can be correctly identified and handled within the
formal model. Furthermore it automatically ensures the bidirectionality of links between
nodes, a structural constraint necessary for VEREFOOQO’s graph model, by adding a sym-
metric neighbour entry for each connection.

The connector also completes the automation loop by communicating to VEREFOO via
REST API. After VEREFOO performs its verification and identifies any unsatisfied prop-
erties (REACHABILITY_PROPERTY or ISOLATION_PROPERTY), the script parses
the output response provided by VEREFOO. It then interprets the verification results to
generate executable OpenC2 commands (allow or deny rules) that correct the detected
policy violations. This bidirectional process, from dynamic context discovery to pol-
icy enforcement commands, demonstrates the full potential of the integrated framework,
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transforming a manual error-prone workflow into an automated formally verified security
pipeline.

The central role of this connector in the overall security pipeline can be illustrated as a
three-stage process:

1.

2.

3.

4.

Data Normalization: raw OpenC2 JSON data is cleaned and completed with seman-
tic information.

Formal Modeling: the normalized data are converted into the precise XML format
required by VEREFOO.

Communication with VEREFOO: the connector obtains the output from VERE-
FOO, if the verification result is 'SAT’ (Satisfied).

Output Translation: the verified output is then translated back into actionable
OpenC2 commands.

This holistic approach ensures that the entire security lifecycle —from network discovery
to policy enforcement— is automated and verifiably correct.
The thesis is structured in different parts:

Chapter 2 provides a comprehensive background on OpenC2 and VEREFOO, detail-
ing their architectures and relevance to cybersecurity and for this thesis, establishing
the foundations by explaining how these two frameworks enable automated security
orchestration and formal verification.

Chapter 3 defines the thesis objective, exposing the existing gap in the security
management process, such as the lack of an automated and reliable bridge between
OpenC2 Context Discovery data and VEREFOO’s formal verification engine. Than,
it outlines the objectives of this thesis, focusing on the design and implementation
of a tool to fill this gap.

Chapter 4 outlines a detailed overview of the system’s architecture, describing the
modular design of the connector. The chapter explains the data mapping strategy
from OpenC2 JSON to VEREFOO’s XML format and details the main logic that
orchestrates API interactions, response parsing, and the generation of final OpenC2
Commands.

Chapter 5 presents the validation methodology for the connector, demonstrating the
correctness and effectiveness of the connector. It showcases four specific case study,
illustrating every file obtained through the connector, which mean the XML file
generated as output, the VEREFOO response file and the final OpenC2 Commands
file. That provides concrete evidence of the tool’s accuracy and effectiveness not
only in preparing data for VEREFOO, but also in interpreting verification results
and translating them into actionable security policies.

Chapter 6 summarizes the conclusions drawn from this thesis project and discusses
promising avenues for future work, considering the broader implications of the work.
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Chapter 2
Background

This chapter provides a comprehensive overview of the two foundational concepts that
are central to this thesis: OpenC2 and VEREFOO.

In today’s dynamic threat landscape, cybersecurity tools often operate in isolated silos,
hindering effective and timely responses to threats [2]. OpenC2, a standard for harmo-
nizing Command-and-Control (C2) communication among cybersecurity tools, addresses
this critical challenge by providing a common language that allows disparate systems to
work together seamlessly. At the same time, network configurations are becoming increas-
ingly complex, making them prone to misconfigurations and vulnerabilities that can be
exploited by attackers. VEREFOO is a tool that leverages formal verification methods to
rigorously analyze and validate network configurations, ensuring that they conform to a
defined set of security policies.

By understanding the unique capabilities of both OpenC2 and VEREFOO, we can un-
dersand the problem addressed in this thesis: bridging the gap between automated threat
response and proactive security validation. These two technologies are the basis for un-
derstanding the problem domain and the solutions proposed in this thesis.

2.1 OpenC2

2.1.1 Cybersecurity Landscape Challenges

The current cybersecurity landscape is characterized by its increasing complexity and
the continuous evolution of cyberthreats. Organizations face a growing volume and so-
phistication of attacks, while the proliferation of cloud adoption, virtualization and IoT
devices continues to expand the attack surface. This dynamic environment places a lot
of pressure on Security Operations Centers (SOCs) to respond rapidly and effectively to
incidents. However, the different array of security products from various vendors leads
to a fragmented ecosystem. Each tool typically exposes its own Application Program-
ming Interface (API) and command-line interface (CLI), requiring costly, time-consuming
and weak custom integrations [6]. This fragmentation makes coordinated responses hard
and prone to human error, highlighting the urgent need for interoperable and automated
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solutions.

2.1.2 Motivation and Principles of OpenC2

The escalating complexity and dynamic nature of modern cybersecurity landscapes re-
quire robust and interoperable solutions for threat response and system management.
Standardized interfaces, protocols and data models are the key factors to enable con-
tinuous integration both within and across the various cyber defense systems. In this
environment, the Open Command and Control (OpenC2) [7] [8] presents itself as a re-
sponse, focused on the development of a language for inter operation between functional
element of cyberdefence system; nowadays, it also became a standard that serves as a key
enabler, providing a unified and vendor-agnostic language for managing different security
tools, defining a set of abstract atomic cyberdefense actions in a platform [9].

OpenC2 is developed by an expert technical committee within the OASIS (Organization
for the Advancement of Structured Information Standards) [3], to address the lack of
standardized interfaces and command sets, providing a common ground for the smooth
integration and automation of cyberdefense capabilities across the infrastructures of dif-
ferent organizations. By establishing common syntax and structure for commands and
responses, Open(C2 facilitates the automated exchange of cyberdefense instructions, also
enhancing reaction times, reducing manual intervention and improving overall security
posture: all this is achieved through a modular architecture that allows the definition of
"Actuator Profiles" —specifications tailored to specific classes of components— and the
integration of different protocols. Semantic clarity guarantees that commands are unam-
biguous and can be interpreted consistently across different implementations, minimizing
the risk of misconfiguration or unintended actions. By standardizing the 'what' (ac-
tions and targets) and decoupling it from the underlying "how", OpenC2 allow a smooth
machine-to-machine communication for cyberdefense, providing also a greater interoper-
ability and automation within heterogeneous security ecosystems.

However, it is important to recognize that while a language like OpenC2 is necessary for
coordinated cyber responses, it is not enough on itself. Critical aspects of the selection
of appropriate courses of action fall outside the scope of OpenC2 and must be addressed
through complementary technologies and strategies within a comprehensive cybersecurity
framework. This separation of concerns is a foundational principle of OpenC2: it defines
the "language' for communication but leaves the "decision-making logic" to an external
orchestrator or a human analyst. This makes the standard very flexible, allowing it to
be integrated with a wide range of analysis and verification tools. For example, a threat
intelligence platform can decide to block a malicious IP address and an OpenC2 command
can then be used to communicate this decision to a firewall, regardless of the firewall’s
vendor.

The design of OpenC2 is based on four key principles [3]:

o Technology agnostic: it defines abstract and atomic actions to ensure interoperability
regardless of underlying implementations.
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o Concise: OpenC2 language is pretty minimal, with a deep focus on essential infor-
mation required to minimize communication overhead in network-constrained envi-
ronments.

o Abstract: Commands and Responses are abstracts, allowing the encoding and the
transferring via different schemes.

o Extensible: created in a modular design to evolve beside cyberdefense technologies,
it can be extended for introducing future cyberdefense functionalities.

OpenC2
OpenC2
OpenC2 m OpenC2
Producer Consumer
OpenC2 Ci d
OpenC2 M OpenC2
Producer Consumer

Figure 2.1. Architecture with OpenC2 interfaces

2.1.3 OpenC2 Language Structure and Components

As widely explained in [7], an OpenC2 message typically comprises a Command and
a Response. It uses a request-response paradigm, where a Command is encoded by a
Producer (who manage the application), and the Consumer send a Response with status
and the requested information.

The two participants, as just mentioned, are:

1. Producer: it creates and sends Commands instructing one or more systems to
execute specified Actions; it may be a SOAR (Security Orchestration, Automation
and Response) platform, or a threat intelligence feed.

2. Consumers: it receives and acts upon a Command, may create Responses to pro-
vide the information captured or necessary to response to the Producer; it may be
a firewall, a intrusion detection system (IDS) or a network sensor.

OpenC2 Commands are instructions defined by an action-target pair and are used by
the Producer to perform specific Actions, received by the Consumer and executed by
the Actuator, to carry out the Target and may optionally include details as identifier,
parameters or specified Profile [7]. A brief definition of the four fields is reported below:
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OpenC2 OpenC2
Producer Consumer

OpenC2
Message Exchange

Figure 2.2. OpenC2 Message Exchange

+ Action (mandatory): defines the operation that has to be executed by an actuator.
— scan, locate, query, allow, deny, contain, start, stop, restart, set, update, ...
« Target (mandatory): identifies what is acted upon.

— artifact, command, device, domain__name, email _addr, ipvj__connect,
ipv4__net, mac__addr, uri, ...

« Arguments (optional): provide execution details and granularity, such as timing,
duration, periodicity, need of acknowledgment, additional status information.

— start_time, stop__time, duration, response__requested, comment

« Profile (optional): indicates the function to be performed and ensures compatibility
for Consumers, else the Command will be ignored.

— slpf, sfof, pf, ids, av, hp, er, log

OpenC2 Responses are used as information return by a Consumer, to the Producer, as
a result of the execution of a Command, and serve as acknowledgment receipt, return
execution status and other relevant data. They are composed by:

« Status (mandatory): indicates the outcome of the Command.

— 102 - Processing, 200 - OK, 400 - Bad Request, 401 - Unauthorized,
403 - Forbidden, 404 - Not Found, 500 - Internal Error, 501 - Not Implemented,
503 - Service Unavailable

« Status text (optional): describes the status code.
+ Response (optional): additional information.

— wverstons, profiles, pairs, rate_ limit
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The example shows an OpenC2 Command for a StateLess Packet Filter (SLPF), allowing
an IPv6 connection, using the common JSON (JavaScript Object Notation) serialization:

{
"action": "allow",
"target": {
"ipv6_connection": {
"protocol": "tcp",
"dst_addr": "3ffe:1900:4545:3::f8ff:fe21:67cf",
"src_port": 21
}
3,
"actuator": {
Ilslpfll : {}
+
}

This example shows the OpenC2 Response, in which the Actuator returns a rule number
associated with the allowed interaction:

{
"status": 200,
"results": {
"slpf": {
"rule number": 1234
}
}
}

2.1.4 Implementation

OpenC2 implementations incorporate the OpenC2 core specifications with relevant indus-
try standards, protocols and other specifications [7]. The Fig. 2.3 outlines the links within
the OpenC2 specification family, with the external environment-specific deployments. It
is important to highlight that the layering implementation is notional and is not a restrict
specific approach (such as utilizing application-layer mechanisms for message authentica-
tion and integrity).

OpenC2 can be conceptually partitioned in four layers:

o Function-Specific Content: defines the language elements deployed to provide a cy-
berdefense function.

e Common Content: defines the Commands and Responses structure and a set of
common language used to create them.

o Message: defines a transfer and a content mechanisms for the transmission of Mes-
sages.

21



Background

e Secure Transport: provides the path of communication between the Producer and
the Consumer.

OpenC2
Architecture
Specification (1)

openC2 OpenC2 OpenC2 Scope
Content Actuator . Language
Profiles {n) Specification (1) Indusiry Standards
Implementations
Message
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Syntax (e.g., MQTT, HTTPS, COAP)

Authentication /

" T OpenC2 Security
conﬂden.ﬂa“w ! ;:ect.!rlty Transfer Protocols
Integrity / Eices Specifications (m) (e.g., TSL, IPSEC, SMIME)
Availability
Transport
Transport Transport Protocols

(e.g, TCP, SCTP)

Figure 2.3. OpenC2 Model

As shown in [8], OpenC2 data types are defined using the types and options available
in JADN (JSON Abstract Data Notation) [10]. It is a UML-based information modeling
language which defines data structure independently of data format, providing a tool
used to define and generate physical data models, validate information instances and
enable lossless translation across data formats. By using JADN, it is possible to define
types that are decoupled from their internal representation within applications (known
as "API" values) and the format used for transmitting data between systems ("serialized"
values):

o API values: must adhere the characteristics of the defined type, while their repre-
sentation does not impact interoperability.

o Serialized values: ensure interoperability, have specified unambiguous serialization
rules for all the possible types, defined in JSON (JavaScript Object Notation) format.

The standard query features command in OpenC2 allows a Producer to understand
the Actuator’s capabilities, but it does not provide the important contextual information
about the nodes and the interconnections within the network.

To solve this lack, as described in [11], a new Actuator Profile for the OpenC2 language
has been developed: the Context Discovery (CTXD). This profile is specifically designed
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to enable an OpenC2 Producer to discover and understand the environment, including
running services, their interactions and all the integrated security features. By implement-
ing CTXD Actuator Profile, the Consumers can provide specific and detailed contextual
information, allowing the Producer to build a precise network’s topology. The main goal
of CTXD is to verify a service’s type, characteristics, important connectivity details like
hostname, encoding format and transfer protocol. This creates an operational context for
each service within the network.

The steps of the pipeline are outlined as follow:

e a Producer dispatches an OpenC2 query command specifically targeting CTXD
Actuator.

o If, and only if, the Consumer supports this profile, it processes the command by
employing a sophisticated recursive function.

o This function triggers a set of iterative queries trying to discover new digital resources
and to obtain their features, helping to construct a detailed map of the network’s
services and their interdependencies.

Context Discovery (CTXD) Actuator Profile

As accurately explained by [11], while OpenC2 provides a unified language for cyber
defense, a big challenge in modern cybersecurity remains the fragmented ecosystem of
security tools and the inherent lack of real-time knowledge about the dynamic network
environment. The standard query features command in OpenC2 allows a Producer
to understand an Actuator’s capabilities, but it does not provide the crucial contextual
information about the services, devices, and their interconnections within the network.
This gap in visibility hinders the ability of Security Operations Centers (SOCs) to respond
rapidly and effectively to complex incidents with fully informed, automated actions. To
address this critical need for greater situational awareness, a new Actuator Profile for
the OpenC2 language has been developed: the Context Discovery (CTXD). This profile
is specifically designed to enable an OpenC2 Producer to discover, abstract and under-
stand the dynamic state of the operational environment, including running services, their
interactions, and integrated security features. By implementing CTXD Actuator Pro-
file, Consumers can provide detailed contextual information, allowing the Producer to
build a comprehensive map of the network’s topology and its security landscape. The
core functionality of CTXD revolves around identifying digital resources and their re-
lationships. It systematically ascertains a service’s type and characteristics, along with
essential connectivity details such as hostname, encoding format and transfer protocol.
This establishes a holistic operational context for each service within the network. From
an operational standpoint, a Producer dispatches an OpenC2 query command specifically
targeting CTXD Actuator. If the Consumer supports this profile, it processes the com-
mand by employing a sophisticated recursive function. This function iteratively queries
newly discovered digital resources to extract their features, thereby constructing a detailed
map of the network’s services and their interdependencies.
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OpenC2 Command Extensions

The Context Discovery profile expands the basic OpenC2 language elements to build the
needed requirements of context discovery, sticking to the principles of OpenC2’s archi-
tecture. This ensures that CTXD remains a passive, information-gathering mechanism,
clearly distinct from active command and control actions like deny or allow.

o Action: CTXD profile uses only the query action, as the Actuator Profiles extend
the OpenC2’s functionality and does not have to introduce new ones.

o Target: there are main modifications used to request information on active services
and their links, expanding the optional fields:

— services: a list of service names for which detailed information are requested.
If empty, it is a request for all discovered services.

— links: a list of link names for which details are searched. If empty, it is a
request for all discovered links.

— response_requested: not new, indicates the desired level of response (none,
ack, status, complete).

— name_only: boolean flag that, if true, imposes if the Consumer returns only the
names of services and links; else, it provides the full detailed objects.

o Arguments: expand the standard arguments (start_time, duration) with the
name_only argument is a command argument.

o Profile: the header must explicitly specify ctxd, assuring that the Consumer inter-
prets correctly the command in the Context Discovery framework.

OpenC2 Response Extensions

The Context Discovery profile expands the basic OpenC2 language elements, while main-
taining the standard OpenC2 response structure (including status and status_text), CTXD
introduces a dedicated field within the results section to deliver the discovered information.

» Results: includes an x-ctxd field (custom extension, denoted by x-) which contains
the specific output of the Context Discovery operation. It is structured to return
the requested services and links, can be as full objects or only their names, based on
the flag defined in name_only that originate the command:

— services: list of Service objects, provide comprehensive details about each
discovered service (populated if name__only is false).

— links: list of Link objects, defining the connections between services (populated
if name__only is false).

— services_names: list of Name objects, containing only the names of the discov-
ered services (populated if name__only is true).
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— link_names: list of Name objects, containing only the names of the discovered
links (populated if name__only is true).

The services and links fields are mutually exclusive with services_names and
link names.

CTXD Data Types

The Context Discovery profile defines a wide set of data types, based on JADN, to precisely
represent various aspects of the network context:

Name: a Choice type used to identify any object in the context: uri, reverse_dns,
uuid, local.

Operating System (OS): a Record detailing an operating system with attributes:
name, version, family, type.

Service: a Record type that provide the services’ information requested by the Pro-
ducer: name, type, links, subservices, owner, release, security_functions,
actuator.

Service-Type: a Choice type that specify the general category: application, vm,
container, web_service, cloud, network, iot.

Application: a Record for generic software applications: description, name,
version, owner, type.

VM (Virtual Machine): a Record that details a Virtual Machine: description, id,
hostname, os.

Container: a Record for generic software containers: description, id, hostname,
runtime, os.

Web Service: a Record describing a generic web service: description, server,
port, endpoint, owner.

Cloud: a Record for generic Cloud services: description, id, name, type.
Network: a Record describing a generic network service: description, name, type.

Network-Type: a Choice specifying various network service types: ethernet,
802.11 (Wi-Fi), 802.15 (WPAN), zigbee, vlan (Virtual Local Area Network),
vpn (Virtual Private Network), lorawan, wan (Wide Area Network).

IOT (Internet of Things): a Record for IoT devices: description, name, type.

Link: a Record that describes the type of connection between Service entities and
any security features applied directly to the link: name, description, versions,
link_type, peers, security_functions.
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o Link-Type: an Enumerated type that describes the type of the link between a peer
and the service under analysis: api, hosting, packet_flow, control.

« Peers: a Record type (object) used for the iterative discovery process:
service_name, role, consumer.

o Peer-Role: an Enumerated type that defines the role of the Peer connected with the
service under analysis: client, server, guest, host, ingress, egress,
bidirectional, control, controlled .

o Consumer: a Record that provides the needed networking parameters for the con-
nection to an OpenC2 Consumer: server, port, protocol, endpoint, transfer,
encoding.

o Server: a Choice that specifies information of a server: hostname, ipv4-addr.

o Transfer: an Enumerated type defining the transfer protocol, can be extended with
other transfer protocol: http, https, mqtt.

o Encoding: an Enumerated type that defines the encoding format for messages, can
be extended to include other encoders (like XML): json.

o OpenC2-Endpoint: a Record type corresponding directly to an OpenC2 Actuator
Profile and the endpoint that implements it: actuator, consumer.

OpenC2 Transfer Specification HTTPS

The OpenC2 Transfer Specification for HT'TPS is a dedicated standard used to formal-
ize the secure transport layer for every OpenC2 messages, establishing a robust client-
server communication model where the OpenC2 Producer acts as an HTTP client and
the OpenC2 Consumer functions as an HTTP server. The main reason why HTTPS is
used is to ensure that all the message exchanges are secured via a TLS tunnel (using TLS
1.2 or a higher version) and secure cipher suites. Also, to provide cryptographic authenti-
cation of both the Producer and Consumer, the specification requires mutual TLS (mTLS,
Transport Layer Security) to provide cryptographic authentication of both the side, which
is the basis for trusted Command and Control. The OpenC2 Commands are transmitted
using the HTTP POST method, with the command payload, serialized in JSON contain-
ing the body of the HT'TP Request; the same occurs for the Responses, that are returned
within the HTTP response body. A key feature of this layered approach is the clear sepa-
ration of concerns: standard HTTP headers convey transport-level metadata and status,
while the OpenC2 message itself, identified by the application/openc2-+json content-type,
handles the command and response logic. This also includes using HTTP status codes (for
example 200 OK, 400 Bad Request), which indicate the success or failure of the message
delivery, that is different from the OpenC2 status field which reports on the success of the
Command execution. Considering these precise mechanisms, the specification guarantees
reliable, secure and interoperable communication for security automation [12].
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The following Fig. 2.4 illustrates the Producer/Consumer interactions. The process
begins when the Producer, that need to send OpenC2 Commands, initiates a TCP (Trans-
mission Control Protocol) connection to the Consumer: after the TCP handshake, a TLS
session is established to mutually authenticate both endpoints and ensure the confiden-
tiality of the connection. Within this secure tunnel, the Producer transmits OpenC2
Commands as HTTP requests using the POST method, with the Consumer’s OpenC2
Responses returned in the corresponding HT'TP response.

“Orchestrator”

OpenC2
Producer

Select
Actuator

Authenticated
Consumer
Info

:

Initiate TCP Connection

OpenC2
Consumer

Create TLS Session

(mutual authentication)

HTTP REQ: POST (OpenC2 command JSON)

= 1 Producer

HTTP RESP: (OpenC2 response JSON)

Process Loop

Figure 2.4. OpenC2 Interactions

Example of OpenC2 JSON Response

One of the most complete example to illustrate the structure of a Response received using
the Context Discovery profile to OpenC2 is the kube0.txt file. This file shows all the field

“Actuator”

Authenticated

Info

Execute
Command

| Create
Response

and information about the services and links discovered in the network:

{

"headers": {

"request_id": "d2f7lea6-a09a-4d41-a62f-0f8bbcf15c08",

"created": 1743783591683,

"from": "testconsumer",
Iltoll: [
"producer.example.net"
]
I
"body": {
"openc2": {

"response"

: {
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"status": 200,
"status_text": "OK",
"results": {

"x-ctxd": {
"services": [
{
"name": {
"local": "vm"
},
lltypell: {
"ym": {
"description": "wvm",
"id": "b1820977-693d-4eef-9f0a-cd707343478b",
"hostname": "kubeO",
llOSII: ,{
"name": "Debian GNU/Linux 12 (bookworm)",
"family": "linux"
}
}
},
"links": [
{
"local": "1821c3e4-584c-4e9a-b074-c35e9084eeba"
},
{
"local": "b1374852-ba74-46be-901f-d08b19190892"
},
{
"local": "kubernetes"
},
{
"local": "os-fw"
}
1,
"owner": "openstack',

"actuator": {
"server": {

"hostname": "kubeO"
3,
"port": 8080,
"protocol": "tcp",
"endpoint": "/.well-known/openc2",
"transfer": "http",
"encoding": "json"
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1,
"links": [
{
Ilnamell: {
"local": "1821c3e4-584c-4e9a-b074-c35e9084eeba"
I
"link_type": "hosting",
"peers": [
{
"service name": {
"local": "container\n10.17.0.233"
I
"role": "guest",
"consumer": {
"server": {
"hostname": "udr-0"
I
"port": 8080,
"protocol": "tcp",
"endpoint": "/.well-known/openc2",
"transfer": "http",
"encoding": "json"

"name" : {
"local": "b1374852-ba74-46be-901f-d08b19190892"
3,
"link_type": "hosting",
"peers": [
{
"service name": {
"local": "container\n10.17.0.234"
3,
"role": "guest",
"consumer": {
"server": {
"hostname": "upf-0"
s
"port": 8080,
"protocol": "tcp",
"endpoint": "/.well-known/openc2",
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"transfer": "http",
"encoding": "json"

"name": {
"local": "kubernetes"
1,
"description": "kubernetes",
"link_type": "hosting",
"peers": [
{
"service name": {
"local": "kubernetes"
I
"role": "guest",
"consumer": {
"server": {
"hostname": "kubernetes"
3,
"port": 8080,
"protocol": "tcp",
"endpoint": "/.well-known/openc2",
"transfer": "http",
"encoding": "json"

"name": {
"local": "os—fw"
},
"description": "slpf",
"link type": "protect",
"peers": [
{
"service_name": {
"local": "slpf"
},
"role": "control",
"consumer": {
"server": {
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"hostname": "os—-fw"
+,
"port": 8080,
"protocol": "tcp",
"endpoint": "/.well-known/openc2",
"transfer": "http",
"encoding": "json"

2.2 VEREFOO

2.2.1 Evolution of Network Management

Network architecture has evolved from static networks to highly dynamic Software-Defined
Networking (SDN) and Network Functions Virtualization (NFV) environments, introduc-
ing flexibility in the network.

In the past, firewalls were the single points of control between local and external net-
works, but nowadays SDN and NFV enable a wider distribution across various service
functions, demanding more sophisticated and automated deployment strategies to main-
tain efficiency and scalability. The combinations of these technologies enable the design of
Service Graphs (SGs) that define the functions and their connections in a network service
[13].

As widely explained before, an automated approach would facilitate the deployment and
setup of Network Security Functions (NSFs), where actually are slowed down by manual
tasks and tendency to errors. These NSFs are essential in enforcing Network Security
Requirements (NSRs), which define the necessary security behaviors of the network.

An easy example is the necessity to isolate a compromised node after an attack: on one
hand, if the task is performed manually, can be time-consuming, error-prone and maybe
ineffective [14]; on the other hand, automation allows a precise and efficient placement of
the NSFs required, ensuring correctness and optimality. Formal correctness is an addi-
tional advantage as it removes the necessity of manual verification, basing the effectiveness
on a mathematical model [15]
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2.2.2 VEREFOO Overview

To overcome these challenges, VEREFOO, which stands for VErified REFinement and
Optimized Orchestrator, has been designed to provide an automated and formally verified
method for allocating packet filters in a Service Graph and automatically configuring their
rules, based on input specified security requirements. This framework solves the problem
of manual configuration, guaranteeing the correctness of the generated firewall policies
and optimizing the allocation scheme and the number of rules.

The framework takes as input the Service Graph describing the virtual network topology
and a set of Network Security Requirements (NSRs), which it then uses to formulate a par-
tial weighted Mazimum Satisfiability Modulo Theories (MaxSMT) problem. This problem
is solved to find an optimal allocation scheme and configurations of packet filtering firewall
[16]. This ensures formal correctness, meaning that all security requirements are provably
satisfied, and optimized deployment, minimizing the number of required firewall number
and rules [1]: by relying on a rigorous formal model, VEREFOO inherently ensures the
"correctness-by-construction’ of the proposed solutions, eliminating the necessity of post-
deployment formal verification [17]. The real innovation lies in a new network modeling
approach: instead of working on individual packets, VEREFOO models "packet classes",
significantly improving the performance and scalability of the verification process, espe-
cially in complex virtualized networks [18]. This approach guarantees mathematical rigor
without compromising efficiency [19]. The term optimal refers to a combination of:

o minimizing the number of allocated firewall in the SG;

o minimizing the number of rules inside each firewall, storing in a smaller portion
possible of memory and, at the same time, improving the filtering operations’ per-
formances.

The MaxSMT solver works to find a solution that satisfies all the mandatory "hard" clauses
while maximizing the satisfaction of "soft" clauses, which represent the optimization goals.
This approach effectively transforms a complex network design problem into a solvable
mathematical one, guaranteeing that if a solution exists, it is both correct and optimized
according to the defined criteria. This is in line with [19], who propose an optimized
approach for network security policy enforcement in complex SDN/NFV environments,
highlighting the necessity of automated methods to manage evolving cyber threats which
is in clear contrast to heuristic-based approaches which might find a good solution but
offer no guarantees on its correctness or optimality.

2.2.3 VEREFOO Architecture

As described in [20], the VEREFOO framework is organized into three main phases, that
automate the process from the security specification to the policy deployment:

o First phase, Network Description and Intent Specification: this is the only phase that
requires active human interaction, in fact the user provides the two inputs required
from the framework, namely the Service Graph describing the network topology and
the Network Security Requirements.
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o Second phase, Firewall Allocation and Configuration: this phase begins when VERE-
FOO receives the inputs in an XML file. The framework internally validates the
inputs against the NF'V XML schema to ensure correctness before proceeding. Then
it formulates the MaxSMT problem, which is the core functionality of VEREFOO.
The problem is solved using a state-of-art MaxSMT solver, specifically the Z3. The
output in this phase is an XML file describing the optimized firewall allocation and
configuration in a vendor-agnostic syntax.

e Third phase, Low-Level Rules Generation: the generic output rules are converted
into the specific syntax of the actual firewall deployed in the network (like iptables),
translating the generic rules into concrete configurations that can be passed to an
orchestrator and than being deployed on actual firewall systems.

The actual work tested in this thesis is focused on the second phase, while the first and
the third will be implemented as part of this thesis project.
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Network Description and Intent Specification Firewall Allocation and Configuration Low-Level Rules Generation

Figure 2.5. VEREFOO Architecture

2.2.4 Problem Formulation as MaxSMT

To formulate the problem as a partial weighted Maximum Satisfiability Modulo Theories
(MaxSMT) problem, the two required inputs are a graph, that describes the network
functions and the interconnection, and a set of NSR. The problem receives two sets of
clauses:

o Hard clauses, which must be necessarily satisfied, represent the fundamental input
of the problem, to reduce the space of possible solutions;

o Soft clauses are relaxable constrains, where each one has an assigned weight, repre-
senting the firewall positioning in the graph and the configurations, and this maxi-
mization contributes to the optimal solution.

If at least one hard clause can not be satisfied, the MaxSMT problem outcome is "UN-
SAT". Conversely, if all hard constraints can be satisfied, the result is the optimal firewall
allocation scheme and the automatically computed Filtering Policy (FP) configuration,
achieving the stated optimization requirements.

The already cited Service Graph is a directed graph where nodes represent basic network
elements or endpoints, like terminals or physical servers, and edges define the network
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links between them. SG acts as an abstraction, separating logical network from physical
structure. From the SG, an internal structure called the Allocation Graph (AG) is auto-
matically derived by adding Allocation Places (APs) to every edge, which are basically
some potential positions for placing firewalls, to explore all possible placements and en-
sure the desired optimality [1]: the service designer may restrict or enforce placements
through constraints, for example either forbidding APs in specific positions or requiring
them where certain VNFs are already deployed, allowing fine-grained control over firewall
placement [17]. It is important to underline that AG is also a directed graph, but its node
set includes the original endpoints and service functions plus the APs.

To each node and link in the graph, a unique identifier, which is crucial for the MaxSMT
solver to precisely track network elements and enforce policies at specific locations. For
example, a functional_type attribute in the input XML file helps the system under-
stand the role of each node (WEBSERVER, WEBCLIENT, NAT), which informs the
logical model and the potential for applying security policies.

2.2.5 Security Requirements Specification

With the Allocation Graph (AG) formally defined, the next crucial input expected to the
MaxSMT is the set of Network Security Requirements (NSRs), which defines the specific
connectivity constraints that have to be enforced in the network. Each NSR reflects a
precise security policy: either a reachability requirement, where communication must be
allowed, or an isolation one, where communication must be blocked by the firewall.

The methodology includes a general behavior that is applied to all unspecified flows which
do not match the specific requirements, creating a minimum of security in the system|[1].
To define the set of security constraints, four approaches are supported for specifying the
required security constraints:

o Whitelisting: the default behavior is to block all traffic flows, except for the explicitly
allowed ones.

o Blacklisting: the default behavior is to allow all traffic flows, except for the explicitly
denied ones.

o Rule-oriented Specific: allows to explicitly formulate both isolation and reachabil-
ity properties, without defining a default behavior, hence the system automatically
chooses how to manage the unspecified traffic depending on its specific goals. The
main goal is to minimize the number of rules.

o Security-oriented Specific: as the rule-oriented specific approach, it allows both isola-
tion and reachability properties. Its objective is to permit only the strictly necessary
communications required to satisfy all user requirements.

To avoid ambiguity and ensure deterministic behavior, this set of NSRs is assumed to
be conflict-free, since it is obtained using well-established conflict detection techniques,
eliminating the need for rule prioritization[17].
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2.2.6 Firewall Allocation and Policy Generation

Formally, each NSR is modeled as a 6-tuple (type, IPsrc, IPdst, psrc, pdst, proto) where
the type identifies whether the rule enforces reachability or isolation, while the remaining
fields specify the relevant packet header values (IP source, IP destination, port source,
port destination, protocol): these rules form the hard clauses in the MaxSMT problem
and strictly limit the solution space.

If the MaxSMT problem is satisfiable:

o The first output generated is the optimal Allocation Scheme of the firewall instances
in the SG. This outcome is derived by evaluating every available Allocation Place
(AP) as a candidate for firewall deployment and, to minimize resource usage, the
system adopts solutions that allocate the fewest possible firewalls. As already ex-
plained, to achieve this, the placement of each firewall is modeled as a soft constraint
whose satisfaction is weighted and evaluated.

« The second output is the configuration of the Filtering Policies (FP) for the deployed
firewalls: each firewall policy includes a default action and a set of specific rules based
on the 5-tuple structure of IP-based traffic. The default action is strategically chosen
to reduce the number of required filtering rules, depending on the approach adopted
for defining the NSRs.

For each firewall instance deployed at a given AP, the system identifies a set of placeholder
rules that represents the maximum number of entries that may be needed in the policy.
To avoid generating unnecessary rules, two main strategies are applied: if a specific NSR
relates to a traffic flow that can not pass through the AP under consideration, no rule is
created for it at that location; if the default behavior of the firewall already satisfies the
requirement (like isolation requirement in a whitelisting-based configuration), there is no
need to add a specific rule for that traffic flow.

If the MaxSMT problem is unsatisfiable, as cited before, the system generates a non-
enforceability report, allowing the analysis on the reason why the given NSRs could not
be satisfied. One common reason is that the Service Graph (SG) does not include suffi-
cient Allocation Places (APs) for firewall placement, usually because the overly restrictive
constraints.

2.2.7 Rule Minimization and Wildcard Usage

To further reduce the number of placeholder rules, the wildcards feature are used, which
allow the aggregation of multiple NSRs into a single rule by generalizing IP addresses,
ports or protocol fields: for example, instead of writing distinct rules for each individual
IP in a subnet, the use of a wildcard rule can cover the entire range, as long as it does
not compromise the satisfiability of other constraints.

After the definition of this rules, the additional soft constraints are defined to guide the
configuration of each firewall:

o The first set focuses on minimizing the number of rules that are actually imple-
mented, prioritizing configurations where placeholder rules are left unused: for doing
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that, the associated weights are assigned in a way that reflects a higher penalty for
adding rules than for using wildcards.

o The second set of soft constraints encourages the use of wildcards within the indi-
vidual fields of each rule (IPsre, IPdst, psrc, pdst, proto), keeping a more compact
filtering policy and also improving processing efficiency. Nevertheless, the system en-
sures that using a wildcard remains a lower-priority objective compared to removing
rules.

Finally, the entire set of constraints (hard and soft) is passed to the MaxSMT solver. If a
solution exists (SAT), it provides the optimal firewall deployment and the corresponding
configuration policies that respect all the defined security requirements while achieving
minimal resource usage. If instead the solver finds the problem unsatisfiable (UNSAT),
it returns a non-enforceability report, which indicates that the current set of constraints,
and any limitations placed on AP usage, prevents a valid solution from being found. The
output can then be used to adjust the input parameters and rerun the optimization pro-
cess under revised conditions.

The core of VEREFOQO’s output is an XML file that includes the final configuration
policies for each deployed firewall. The connector parses this XML to translate the ab-
stract IsolationProperty and ReachabilityProperty into concrete network commands. For
instance, a property with name="IsolationProperty" src="10.0.1.1" dst="10.0.2.1" would
be translated into a deny action targeting the specified IP addresses. This translation is
essential for enabling true automation and bridging the gap between the formal model
and the real-world network deployment.

2.2.8 Example Scenario

To illustrate the practical application and efficacy of VEREFOO [1], let’s consider Fig.
2.6, which shows the Allocation Graph (AG) derived from a Service Graph (SG) where
endpoints such as e3 and e4 represent subnetworks rather than individual hosts.

€6

Figure 2.6. Before: Allocation graph
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The Table 2.1 provides the mapping between SG nodes and their corresponding IP
addresses or subnets along with their function types, while Table 2.2 provides the set of
Network Security Requirements (NSRs) defined using the specific approach.

Identifier | IP address Function type
el 192.168.0.2 Web client
e2 192.168.0.3 Web client
e3 130.192.225.% | Network of end points
ed 130.192.120.* | Network of end points
ed 220.226.50.2 HTTP web server
eb 220.226.50.3 POP3 mail server
7 120.0.2.2 NAT
8 120.0.2.3 Traffic monitor
f9 120.0.2.4 Web cache
Table 2.1. IP Addresses and Function Type
Type IPSrc IPDst pSrc | pDst | tProto
Isol 192.168.0.2 220.226.50.* * * *
Isol 192.168.0.3 220.226.50.* * * *
Isol | 130.192.225.% | 220.226.50.3 * * *
Reach | 130.192.225.*% | 220.226.50.2 * 80 TCP
Isol | 130.192.225.*% | 220.226.50.2 * =80 TCP
Isol | 130.192.225.*% | 220.226.50.2 * * UuDbP
Reach | 220.226.50.2 | 130.192.225.* * * *
Isol | 130.192.120.% | 220.226.50.2 * * *
Reach | 130.192.120.*% | 220.226.50.3 * 110 TCP
Isol | 130.192.120.% | 220.226.50.3 * =110 | TCP
Isol | 130.192.120.% | 220.226.50.3 * * UuDbP
Reach | 220.226.50.3 | 130.192.120.* * * *
Isol | 130.192.120.% | 130.192.225.* * * *

Table 2.2.

Network Security Requirements

Initially, the focus is on the first two NSRs, which require isolating endpoints el and
e2, that are hidden behind NAT {7, from services eb and e6. To satisfy these, the system
needs at least one firewall: given APs pl0, pll, and pl2, the optimal solution is to
deploy a whitelisting firewall at p12, that intercepts all outbound traffic from the NAT.
This strategy minimizes resource usage, in contrast to a manual approach that might
incorrectly place two separate firewalls at p10 and p11.

Continuing to other NSRs (except the last), e3 must access the HTTP server e5 on TCP
port 80 and e4 must access the POP3 server e6 on TCP port 110, while all other traffic
between these nodes must be blocked. Since the communication paths intersect at AP

37



Background

pl5 with el and e2, placing a firewall at pl15 is enough to satisfy these constraints with
minimal overhead. The final NSR requires that e4 cannot contact e3: this traffic does not
go through pl5 and no other shared path exists that can be filtered centrally. Thus an
additional firewall must be allocated, either at p13 or p14, to block traffic from e4.

Performing this allocation operation manually by a designer would probably introduce

configuration mistakes and an unoptimal configuration.

Instead, applying VEREFOO framework ensures formal correctness and optimal resource
utilization. The final logical topology produced is the one present in Fig. 2.7, while Table
2.3 defines the resulting filtering policies of the allocated firewalls, including their default

actions (denoted with a ‘D’).

€1 €5
= Jr £ fwa  Jo P =
-l’ -
[ — |
E |
/ -
=7 / o ¥
g ey ekl
= )
€6
Figure 2.7. After: Service graph with allocated firewall
Firewall fwl
# | Action IPSrc IPDst pSrc | pDst | tProto
1 Allow 220.226.50.3 | 130.192.120.* * * *
2 Allow | 130.192.120.* | 220.226.50.3 * 110 TCP
D Deny * ok k % * % sk % * * *
Firewall fw2
# | Action IPSrc IPDst pSrc | pDst | tProto
1 Allow | 130.192.225.* | 220.226.50.2 * 80 TCP
2 Allow | 130.192.120.* | 220.226.50.3 * * *
3 Allow 220.226.50.* 130.192.*% * * * *
D Deny * % k% * % sk % * * *

Table 2.3. Policy Rules
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2.2.9 React-VEREFOO: an automated framework

So far, the software VEREFOO framework was explored, understanding how it works and
its limitations, but its functionality can be extended to enable it as a fully autonomous
component thanks to React-VEREFOO: it is designed to automate all the process of
attack mitigation, from threat detection to policy deployment. This approach directly
addresses the need for rapid response in dynamic network environments, where manual
intervention is too slow and error-prone [21].

The major innovation of React-VEREFOO is its ability to use real-time data as input
for the formal verification process, instead of relying on a static set of Network Security
Requirements (NSRs), deriving new security requirements directly from logs generated by
Intrusion Detection Systems (IDSs). When an IDS detects a suspicious activity, React-
VEREFOO automatically formulates new NSRs to contain the threat. These new require-
ments are then sent into the MaxSM'T solver, which re-evaluates the problem to generate
an updated, formally correct and optimized firewall policy.

The updated configuration is automatically sent to the deployed firewalls, allowing in
small time to reconfigure the network neutralizing the threat without human interven-
tion. By integrating threat detection with policy enforcement, React-VEREFOO closes
the loop on security automation, proving that formal verification can be a core component
of a real-time, autonomous security orchestration system.

The Fig. 2.8 shows the approach of React-VEREFOO:
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Figure 2.8. React-VEREFOQ'’s approach

React-VEREFOO'’s steps

The major steps of React-VEREFOO are below described. The first step is to perform a
high-level classification of all network security policies, comparing the initial set of policies
with the new one, allowing to sort them into three groups:

o Added Policies: new policies that need to be enforced and were not part of the initial
configuration.

o Deleted Policies: policies that were present in the initial configuration but are no
longer needed in the target configuration.
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« Kept Policies: policies that are already configured in the network and must remain
in the final configuration.

The primary focus is on the "added" policies as they lead the reconfiguration process, so
the algorithm should determine which network elements are in conflict with these new
policies and must be modified. This process is handled in different ways, based on the
new policy requirement:

 For a new isolation requirement (like a policy to block specific traffic), the algorithm
examines all possible paths that the traffic could manage through the network, and,
for each one, it checks if there is an existing firewall that is already blocking that
traffic. If it finds a path where no firewall is blocking the traffic, it means that the
current network configuration is not sufficient to enforce that new isolation policy:
the algorithm marks all the nodes through that unblocked path as candidates for
reconfiguration; then a solver, in a second moment, will decide where a new firewall
should be placed or which existing one should be reconfigured to enforce the policy.

« For a new reachability requirement (like a policy to allow specific traffic), the logic
is reversed: the algorithm scans all possible paths to see if at least one path is
successfully unblocked from source to destination. If at least a path is found, the
new policy is considered already satisfied and no reconfiguration is necessary. But, in
the unfortunate case where all possible paths are blocked by a firewall, the algorithm
identifies every firewall that is causing the blockage and adds these specific firewalls
to the list of nodes that must be reconfigured. This ensures that the final solution
will modify one (or more) of these blocking firewalls, thereby creating at least one
valid path for the traffic and satisfying the new reachability requirement.

For a better understanding of the logic, the example present in [21] shows the addition of
isolation requirement:

Algorithm 1 Algorithm for selecting network area to reconfigure for each added isolation requirement.
Input: an isolation requirement r, and an AG G,
Output: nodes to be reconfigured Nyecon figure

1 for f € F, do

2 found < False
3 for n; € #(f) = [n1,ns, ..., ng] do
4 if allocated(n;) & denyy, (z(f, n;)) then
5 found < True
6: break
7 end if
8 end for
9 if found == False then
10: Nreconfigure < m(f) > All nodes in the path should be reconfigured
11: end if
12: end for

13: return Nyecon figure
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Initial Set: Target Set:
- Isolation {*, *, 30.0.0.%, *, *} - Isolation {10.0.0.1, *, 20.0.0.1, *, *}
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Figure 2.9. Example of adding an isolation requirement

2.2.10 Example of VEREFOO input structure

One of the most complete example to illustrate the structure required by VEREFOO for
the input XML file is the demo__input.aml file. This file shows all the field and information
required by the framework for a complete view of the network. The most important parts

of the file are reported below.

<?xml version="1.0" encoding="UTF-8"?7>
<NFV xmlns:xsi="http://www.w3.o0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="../../xsd/nfvSchema.xsd">
<graphs>
<graph id="0">
<node functional_ type="WEBSERVER" name="130.10.0.1">
<neighbour name="1.0.0.1" />
<configuration description="el" name="httpserverl">
<webserver>
<name>130.10.0.1</name>
</webserver>
</configuration>
</node>
<node functional_ type="WEBSERVER" name="130.10.0.2">
<neighbour name="1.0.0.2" />
<configuration description="e2" name="httpserver2">
<webserver>
<name>130.10.0.2</name>
</webserver>
</configuration>
</node>
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<node functional_type="WEBCLIENT" name="40.40.41.-1">
<neighbour name="1.0.0.5" />
<configuration description="e4" name="officeA">
<webclient nameWebServer="130.10.0.1" />
</configuration>
</node>
<node functional_type="WEBCLIENT" name="40.40.42.-1">
<neighbour name="1.0.0.6" />
<configuration description="e5" name="businessofficeA">
<webclient nameWebServer="130.10.0.1" />
</configuration>
</node>
<node functional_type="FORWARDER" name="33.33.33.3">
<neighbour name="1.0.0.7" />
<neighbour name="1.0.0.8" />
<neighbour name="1.0.0.9" />
<configuration name="ForwardConf">
<forwarder>
<name>Forwarder</name>
</forwarder>
</configuration>
</node>
<node name="1.0.0.9">
<neighbour name="33.33.33.3" />
<neighbour name="220.124.30.1" />
</node>
<node functional_type="NAT" name="220.124.30.1">
<neighbour name="1.0.0.9" />
<neighbour name="1.0.0.10" />
<neighbour name="1.0.0.11" />
<configuration description="s12" name="nat">
<nat>
<source>192.168.3.-1</source>
<source>192.168.2.-1</source>
</nat>
</configuration>
</node>
</graph>
</graphs>
<Constraints>
<NodeConstraints/>
<LinkConstraints />
</Constraints>
<PropertyDefinition>
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<Property graph="0" name="ReachabilityProperty" src="40.40.41.-1"
dst="130.10.0.4" dst_port="80" lv4proto="TCP"/>
<Property graph="0" name="IsolationProperty" src="40.40.41.-1"
dst="130.10.0.1" dst_port="0-79" lv4proto="TCP" />
<Property graph="0" name="ReachabilityProperty" src="40.40.42.-1"
dst="40.40.41.-1" />
<Property graph="0" name="IsolationProperty" src="40.40.41.-1"
dst="40.40.42.-1" />
</PropertyDefinition>
</NFV>

For a more in-depth analysis of VEREFOQO’s implementation, you can consult the project’s
official GitHub page.
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Chapter 3

Thesis Objectives

Modern computer networks are characterized by increasing complexity and evolving cy-
ber threats, so ensuring an effective security management in this environments requires
automated solutions. However, a major obstacle lies in the lack of compatibility between
the data formats used for network monitoring and the rigid input requirements of formal
verification tools. In particular, these tools, like VEREFOO, require an input in XML for-
mat and in a precise structured way, while operational data is usually collected in JSON,
following the OpenC2 standard. This strictness is necessary because, as demonstrated
n [18], VEREFOO uses a sophisticated modeling approach on packet classes to achieve
high scalability in complex virtualized environments. This main difference requires secu-
rity analysts to manually translate this data, which is time-consuming and very prone to
errors.

The main objective of this thesis is the development of a connector that can auto-
matically take network information from several OpenC2 JSON files, each one of them
describing a different aspect of the network, and merging them into a single XML file
suited for VEREFOO, to allow to easily understand and check for the network’s security
rules. This automated conversion process eliminates the manual task of data translation
but also ensures that the network security can be continuously validated in a scalable, reli-
able manner, which is essential for managing large-scale, dynamic network infrastructures
[22].

3.1 Connector Architecture and Functionality

To achieve this goal, the development focuses on several technical challenges. The connec-
tor, implemented in Python, is structured into logical phases, with each phase addressing
a specific aspect of the data transformation process.
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3.1.1 OpenC2 JSON Data Analysis

The process begins with the analysis and extraction of network data from the input JSON
files. The connector is built to navigate the nested structure of OpenC2 Response mes-
sages, focusing on the x-ctxd (OpenC2 Context Discovery) field to extract the details
from the services and links sections. A dedicated function, get_nested_value, ensures
the correct access to the data, preventing any errors. The deduce_service role func-
tion is designed to gather the role of a network element (for example FORWARDER,
WEBCLIENT) analyzing key attributes like protocol, local name and description. With
this approach, the connector extracts valuable data and also performs model interpre-
tation, which is crucial for VEREFOQ’s formal verification. The implementation of
deduce_service_role in Python utilizes regular expressions (re library) to perform key-
word matching in a case-insensitive way, making the detection process more robust and
ensuring that the service roles are accurately inferred from various textual descriptions

within the JSON data.

3.1.2 Data consolidation and Normalization

After the extraction of the data for all the input files, the connector consolidate them into
a single network model, processing each link service and link entry, mapping logical names
and hostnames to the corresponding IPv4 address, ensuring that the final output accu-
rately represents the network. The use of dictionaries and sets is the key factor to prevent
duplicate entries and maintain data integrity. This process covers not only the aggregation
of different JSON sources, but also the normalization of the various identifiers, ensuring
that the output file represents the network graph in an accurate and non redundant way.
Specifically, the connector uses dictionaries to store network elements, with their names
or IP addresses serving as unique keys to prevent duplicate entries. This approach guar-
antees that even if multiple JSON files describe the same network component, it will be
represented only once in the final model, thus creating a clean and consistent graph, with
all the information retrieved by the different file for each node.

3.1.3 VEREFOO XML Structure Generation

This phase involves the construction of the XML output file according to VEREFOQO’s
strict schema. The connector uses Python’s xml.etree.ElementTree library to build the
XML tree element, from the root <NFV> tag with its schema location (nfvSchema.xsd)
to the sub-elements like <graphs>, <graph>, <nodes> and <node>. The correct func-
tional type (like WEBCLIENT, FORWARDER) and attributes are automatically assigned
to each node, ensuring complete compliance with VEREFOO’s input requirements. The
connector also automatically adds the necessary tags, such as <Constraints> and <Prop-
ertyDefinition>, which are required by VEREFOO for validation, but their definition is
not part of this thesis objective.

In addition, the created XML tree undergoes an additional pass through a prettify util-
ity that adds spaces and indents, ensuring not only the required formal validity of the
output, also its readability and utility.
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The generation of the XML structure is a key function of the connector: in fact, after
processing the JSON data, the connector iterates through the consolidated service_map
to create each <node> element. For each service, it sets the functional type attribute
based on the deduced role and assigns the name attribute using the service’s IP address.
It also populates the <neighbour> tags by referencing the 1link_map to build the graph
topology. The use of the xml.dom.minidom library then processes the raw XML tree,
applying indentation and line breaks to produce the final file. Additionally the gener-
ated XML file is merged with a specified file containing the security properties, ensuring
stability and execution speed.

3.1.4 Connector Management and Graph Coherence

This section is quite technically sophisticated because the key challenge in generating
network graphs is ensuring the consistency and bidirectionality of connections. The con-
nector automatically checks and enforces it: if a node A lists node B as its neighbour,
the code automatically checks that node B contains A as a neighbour as well, adding the
missing link if necessary. Additionally, the connector creates new nodes for network ele-
ments that are only referenced as neighbour in the input data but not explicitly defined as
services, further ensuring that the final graph is as complete as possible. This consistency
check is implemented by iterating through all discovered links and for each link from node
A to node B: the code explicitly verifies if a reciprocal link exists from B to A in the
link_map. If the link is unidirectional in the raw data, the connector adds the reverse
link to guarantee bidirectionality.

Benefits and Impact of this Solution

The use of this automated connector provides significant benefits for the field of network
security:

o Automation and Error Reduction: just eliminating the manual data translation, the
connector enormously reduces the potential for human error and ensures that the
network model is always accurate and consistent.

o Increased Efficiency: the entire conversion process, which could take hours of manual
effort and high skills, is completed in seconds, allowing security personnel to focus
on higher-level analysis and threat mitigation.

o Seamless Integration and Workflow: the automated merge of the generated XML
with the user-provided security properties file enables a single, complete execution.
This eliminates the need for a manual, intermediate step, making the entire workflow
smoother, more reliable, and significantly faster.

o Continuous Security Posture Management: this solution allows continuous security
checks, as can be integrated into automated workflows, enabling organizations to run
VEREFOO analyses on every minor network change to ensure security rules remain
optimized and without any misconfigurations.
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In summary, this thesis provides a trusted practical tool to address the needs in network
security automation, making easier and quicker to manage complex systems in a more
reliable and automated way, avoiding manual mistakes. Automated and verifiable solu-
tions are extremely important in dynamic environments such as SDN-based IoT systems,
as discussed in [23], where the emphasis is placed on policy-driven approaches to security
orchestration.

3.1.5 Submitting the XML to VEREFOO for Formal Verifica-
tion

The second phase of the data transformation process involves submitting the final XML
file to VEREFOO. The connector uses a RESTful API to interact with VEREFOO, tar-
geting a specific endpoint that initiates a simulation. The process begins with an HT'TP
POST request, sending the XML file content as the request body. This action triggers
VEREFOO to perform its analysis on the provided network model. The VEREFOO API
is designed to handle this process either synchronously or asynchronously. If the analysis
is performed in real-time, the response contains the complete results. However, for more
complex network models, which VEREFOO is optimized to handle [18], the API returns
a status response with a URL to a resource where the results will be available once the
analysis is finished. To handle this, the connector implements a robust polling mecha-
nism, making repeated HTTP GET requests to the provided URL with an exponential
backoff strategy, ensuring that the final verification output is successfully retrieved. This
automated submission and retrieval process eliminates the need for manual intervention,
making the entire workflow extremely efficient for security analysts. The Python requests
library is used to perform the HI'TP POST to the specific VEREFOO endpoint, which
is hard-coded as /verefoo/adp/simulations.

3.1.6 Parsing the VEREFOO XML Response and Generating
OpenC2 Commands

Upon receiving the full XML response from VEREFOO, the connector acts as a parser to
extract actionable information. The core of this process is to identify the security prop-
erties that have been violated during the formal verification. The VEREFOO output in-
cludes a propertyDefinition section, where each property, such as REACHABILITY_ PROPERTY
or ISOLATION_PROPERTY, is detailed along with its satisfaction status (isSat). Using
Python’s xml.etree.ElementTree library, the connector navigates this structure to find
properties where the isSat tag has a value of false. For each violation, the parser ex-
tracts key attributes of the property, including source (src), destination (dst), protocol
(protocol) and ports (src_port, dst_port). This extracted data is then used to construct
structured OpenC2 commands. This process is part of the larger autonomous security
framework, allowing the system to automatically generate and deploy new security poli-
cies to mitigate detected threats, as described in [22]. Specifically, a violated REACH-
ABILITY_ PROPERTY triggers the generation of an allow command, while a violated
ISOLATION_PROPERTY leads to a deny command. The commands are formatted
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into a JSON-like structure that can be easily consumed by an OpenC2 actuator, thereby
enabling the automatic reconfiguration of network devices (like firewalls) to enforce the
required security policies.

The connector for this parsing and generation is explicit: it checks the isSat attribute of
each property. If the status is true, it builds a string representing the OpenC2 command.
For example, for an isolation property violation, it generates a line of code like cmd =
oc2.Command(oc2.Actions.deny, oc2.IPv4Connection(src_addr=".", dst_addr="."), ac-
tuator=pf), which can then be saved to a file for direct execution by the orchestration
layer.
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Chapter 4
Implementation

The implementation phase of this thesis focuses on the development of a connector that
bridges the gap between OpenC2 Context Discovery (CTXD) responses and VEREFOO’s
XML required input format. The connector not only parses the network context into
VEREFOO’s XML but also automatically merges the generated XML with a separate
security properties file, submits the XML to the VEREFOO API for formal verification,
parses the returned results, and, if the outcome is satisfiable, generates the file of action-
able OpenC2 commands to enforce the required security policies. This chapter details
the overall system architecture, the design choices made for data model mapping and the
specific aspects of the logic.

4.1 System Architecture and Workflow

The connector is implemented as a single Python script (connector.py) that functions as
an automated parser. The workflow is as follows:

o Input Acquisition: the script takes a directory, passed as command-line input and
using the argparse module to handle it, containing the OpenC2 CTXD responses
stored as multiple JSON files. This initial step aggregates network data from different
sources into a unified model.

o Data Extraction: the script iterates through each JSON file, parsing its content to
extract relevant network context data, including services and links. The extract_
data_from_json, extract_service_data and extract_link data functions are
part of this step.

o Data Aggregation: the extracted data from all input files is collected into a single
comprehensive dataset. This aggregated data provides a holistic view of the entire
network topology, achieved by appending the data from each processed JSON file
into a list named all extracted_data, which is then passed to the XML generation
function.
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o XML Generation: the core function of the connector, the create_xml from_data
function, processes the aggregated data to build the VEREFOO-compliant XML
tree. This involves a multi-pass approach to ensure all network elements are present
and correctly represented, including the automatic assignment of IP addresses and
functional roles. The final XML file is the formal representation of the network
topology, ready for VEREFOOQO’s verification.

o Security Property Integration: the connector then proceeds to consolidate the newly
generated XML with a separate file containing the security properties. This step
creates a single and comprehensive input, eliminating the need for manual file com-
bination and streamlining the entire workflow.

o« VEREFOO API Interaction: the connector uses the requests library to send the
generated XML to the VEREFOO REST API. It manages the full API communi-
cation, including handling the response. This step is where the formal verification
process begins.

o Output Parsing and Command Generation: once VEREFOO returns its XML re-
sponse, the connector acts as a final parser. It reads the VEREFOO output, specif-
ically looking for isSat="true" statuses on properties like 'REACHABILITY _
PROPERTY’ or ISOLATION_PROPERTY’. Based on the specific policy violation,
the script generates a corresponding OpenC2 command (’allow’ or 'deny’), translat-
ing the abstract verification result into a concrete security action.

o Actionable Output: the generated OpenC2 commands, formatted as Python code
strings, are saved in a file. This file can then be used by an OpenC2 actuator (such as
an iptables or firewall manager) to automatically implement the necessary security
changes, completing the security management loop.

A graphic visualization of the main phases connector’s workflow is reported in Fig. 4.1:

VEREFOO

REST API call

OpenC2
commands

JSON files Connector

Figure 4.1. Connector workflow

4.2 Data Model Mapping and Design Choices

A key challenge addressed by the connector is the mapping between the hierarchical
data model of OpenC2’s CTXD JSON responses and the rigid NFV schema required by
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VEREFOO (XML). The main goal of this mapping is to store the information in an
accurate, complete and coherent way for the formal verification requirements.
The mapping involves:

o Node identification and naming: VEREFOO requires a unique identifier for each
node in its graph. The connector is designed to prioritize the most concrete network
identifier available in a specified hierarchy, being set to a service’s IPv4 address,
when found, to provide a verifiable network identity. In cases where an IPv4 is not
available, the connector falls back to the other unique identifiers like the service’s
hostname or logical name. The choice to prioritize IPv4 is strategic because it is a
fixed and universally recognized network address, making it the most reliable iden-
tifier for VEREFOQ'’s graph-based analysis. A temporary IPv4 address is assigned
to nodes lacking a definitive IP, ensuring every node in the VEREFOO graph has a
verifiable network address. The code uses an arbitrary predefined IP range, specifi-
cally 20.0.0.1 and increments it for each new node, to prevent clashes with existing
network IPs.

o Automated functional_role deduction: the deduce_service role function is im-
plemented to automatically assign a functional_type (for example NAT, FOR-
WARDER, WEBCLIENT). This function uses heuristics based on protocol infor-
mation, keywords in the service’s name or description (e.g., nat, database), and link
types (protect) to deduce the node’s role. This is crucial for VEREFOO to apply
the correct verification logic for the nodes without all the information required.

o FEzhaustive topology synthesis: it is a two-pass approach for building the network
topology. Firstly it processes all the explicitly defined services and then performs
another pass to identify and create nodes for network elements that are only men-
tioned as peers within the links section of the JSON data. This ensures that the
generated XML graph is a complete representation of the network, including implicit
or "neighbour-only" nodes. The create_xml_from_data function creates the nodes
for all services found in the JSON responses; then, in a second loop, it checks for
any neighbour names that do not correspond to an existing node and creates a new
node with a deduced functional type for them.

e Data deduplication: service_map tracks all processed nodes to prevent the creation
of duplicate <node> elements. Similarly, a seen_neighbour_ipvé4s set is used to
ensure that a node’s neighbours are listed only once, even if they are referenced
multiple times in the JSON links. This is used for preventing redundant entries and
maintaining an accurate graph for the VEREFOO solver.

4.3 Connector Logic and Implementation Details
The connector is implemented as a Python script employing standard libraries for JSON
parsing and XML manipulation. The core logic is developed in different key functions:

o extract_service_data(svc): processes individual OpenC2 service objects, ex-
tracting their name, ID, hostname, associated links and description. An important
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aspect is how it employs the deduce_service_role function to assign an heuristi-
cally deduced functional_type (for example FORWARDER, WEBCLIENT) and
to handle specific configurations like NAT rules. The function begins by initializing
a dictionary service_data with default values for various fields. Subsequently it
iterates through the service’s type dictionary, which can contain multiple entries,
to extract the id, hostname, and description, giving a more complete overview of
the service. It calls deduce_service_role to automatically determine the service’s
function, ensuring that, if a specific role like "NAT" is identified, it specifically looks
for nat_rules in the configuration section to extract the nat_sources for later XML
generation.

extract_link data(link): parses OpenC2 link objects, extracting their name,
description, type and detailed peer information, including service names and IPv4
addresses. It handles cases where service names might include embedded IPv4s.
The function creates a link_data dictionary and processes each peer within the
link. A key part of its logic is the handling of peer names that may contain a
newline character (\n) separating a logical name from an IPv4 address, which is a
specific format found in different OpenC2 responses. This logic splits the string to
correctly capture both the logical name and the IPv4 address, which is critical for
accurate node naming in the VEREFOO XML output.

extract_data_from_json(json_data): takes a complete OpenC2 JSON response,
navigates to the x-ctxd section and calls the extract_service_data and extract_
link data functions to gather all relevant services and links. The function first
checks if the x-ctxd section exists, as it is the root of all the contextual information.
If it is missing, the function returns an empty dictionary, preventing crashes. It then
uses list comprehensions to process all services and links, applying the extraction
functions to each element and collecting the results. This approach ensures that all
relevant data from the JSON is captured in a structured format.

create_xml from data(all_extracted data): it is the main function that effec-
tively build the VEREFOO XML. It iterates through all extracted services, cre-
ating a <node> for each. For each node, the connector first ensures that it has
a valid name attribute, prioritizing the IPv4 address if available, and assigns the
functional type. After resolving any missing [Ps with fallback arbitrary addresses
and consolidating neighbour references, the connector generates the <configuration>
block with all relevant details (ID, hostname, IPv4, link type) and then adds <neigh-
bour> elements based on the established adjacency relationships. The function in-
cludes a multi-pass approach to handle nodes without explicit IPs: it identifies these
nodes, assigns them a unique arbitrary IPv4 from a reserved range (20.0.0.1) and
then renames all neighbour references accordingly to ensure a fully consistent network
graph. For each node with additional information, it generates the <configuration>
block, including detailed information like NAT sources and then adds <neighbour>
elements based on the discovered links. An important step is the handling of dupli-
cate neighbour IPv4s. A seen_neighbour_ipvés set is used for each node: before
adding a new <neighbour> element, the script checks if the corresponding IPv4 is
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already present. This prevents redundant neighbour entries for a single node, which
can arise from the structure of OpenC2 links, ensuring that VEREFOOQO’s graph
model is clean and accurate.

4.4 Dataset and Examples

The input for the connector is derived from OpenC2 Context Discovery responses, pro-
vided in JSON format. For this thesis, a representative set of 21 example input files serves
as the primary dataset (described in details as Example 0 in subsection 5.2.1). These files
are structured in the typical network context structure that an OpenC2 Consumer pro-
vides, including details about services (such as containers, virtual machines, nat, cloud,
etc) and their interconnections (links). The JSON structure provides granular information
like service id, hostname, type, owner and actuator details.

The successful execution of the connector generates a VEREFOO XML file, which rep-
resents the XML file that adheres to VEREFOO’s NFV schema, formalizing the network
topology and service configurations for verification. The process is a direct mapping from
the JSON-structured output of OpenC2’s Context Discovery to the VEREFOO XML
format. A service, described as a container in the JSON input file, with its unique identi-
fier, hostname, and associated IPv4 address, is systematically transformed into a <node>
element. This <node> element is populated with key attributes: a name attribute that pri-
oritizes the IPv4 address as a unique network identifier and a functional_type (like WE-
BCLIENT, FORWARDER) returned from the deduce_service_role function. Nested
within the <node> are the <neighbour> block and <configuration>, if other information
is present.

An example that shows the complete structure of the extracted information parsed for
the XML file is the "vm" (Virtual Machine) node with IPv4 addresses "192.168.0.201". An
important aspect is the presence on neighbours which, based on the input file provided,
are present only in specific type of nodes: this issue is discussed further along.

<node functional type="WEBCLIENT" name="192.168.0.201">
<neighbour name="10.17.1.45"/>
<neighbour name="10.17.1.46"/>
<neighbour name="10.17.1.47"/>
<neighbour name="10.17.1.48"/>
<neighbour name="10.17.1.49"/>
<neighbour name="10.17.1.50"/>

<neighbour name="20.0.0.2"/>
<neighbour name="20.0.0.3"/>
<neighbour name="20.0.0.4"/>

As described before, the 20.0.0.4 ("os-fw") node is not explicitly defined in services but it is
present as neighbour. When the connector identifies a node name in a neighbour list that
is not defined, it proceeds to create a new node entry for it. To the absence of detailed
service information, due to the absence of an explicit definition, the connector applies a
heuristic approach to deduce the node’s functional_type based on its name (for example
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if the name contains nat, the deduced role will be NAT), while for the firewall node the
connector set the functional type as None, allowing a more flexible use from VEREFOO.
This is a critical design choice because it ensures that even partially defined networks can
be fully represented and verified, preventing gaps in the topological graph that could lead
to verification failures. The create_xml from_ data function specifically includes a loop
that scans all neighbour elements of the already created nodes: if a neighbour’s name
(which could be an IP or a logical name) does not match any existing node’s name, the
script dynamically creates a new node element for it and uses the deduce_service role
function to assign a functional_type based on keywords in the name.

This is another important aspect that needs to be highlighted: the connector maintains
a correct network representation, guaranteeing the bidirectionality of neighbour relation-
ships. For VEREFOO to perform a complete and accurate formal verification, the network
topology must be fully connected and consistent. If a node (Node A) lists another node
(Node B) as a neighbour, the connector must ensure that Node B also includes Node
A in its list of neighbours, even if not directly defined. The create xml from data
function manages this by firstly building an adjacency list-like data structure called
neigh list_after_ip_assignment, which maps each node to a set of its neighbours. It
then iterates through this map and, for every neighbour-to-neighbour relationship found
(A is a neighbour of B), it ensures that the reverse relationship (B is a neighbour of A) is
also added to the set. Finally, it rebuilds the XML tree by removing all original <neigh-
bour> elements and creating new ones based on this symmetrical, verified adjacency list.
This ensures that the final XML graph is undirected and consistent, satisfying a key
requirement for VEREFOO. This fixed approach can be seen in "os-fw" XML output:

<node name="20.0.0.4">
<neighbour name="192.168.0.200"/>
<neighbour name="192.168.0.201"/>
<neighbour name="192.168.0.202"/>
<neighbour name="20.0.0.2"/>
</node>

4.5 Connector XML Output

The output of the connector is an XML file structured according to VEREFOO’s NFV
schema, which serves as the formal representation of the network graph and its com-
ponents. The XML structure begins with the root <NFV> element, which includes
the schema definitions. Nested within there are <graphs> containing a single <graph
id="0">, which cover the <nodes> section. The <nodes> section lists all the network
elements discovered. Below the graphs, the XML defines a <PropertyDefinition> section,
which is required by VEREFOO for specifying verification properties, though they remain
empty as they are beyond the scope of this thesis.

Each network element discovered by OpenC2 CTXD is represented as a <node> within
the XML. Key attributes of the <node> element include:

o name: essential for identifying the node within VEREFOQO’s graph. It is dynamically
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set to the service’s IPv4 address if available, providing a concrete network identifier.

o functional_type: derived by the deduce_service_role function, specifies the role
of the node (for example WEBCLIENT, NAT). This is essential for VEREFOO to
apply the correct verification logic and allocate the appropriate security functions.
For instance, a node identified as functional type="WEBCLIENT" specifies its role.

Immediately after the functional type attribute, specific type of <node> contains
a <configuration> element. This block provides additional detailed information that
VEREFOO can leverage for its verification and optimization. A specific improvement is
the specific handling of configurations for NAT nodes, where a <nat> block is created
with <source> tags for each source IP address. This detail is needed for VEREFOO to
understand how the NAT is configured and to correctly model network traffic. The config-
uration details are stored in a config details_map and then used to populate the XML
tree, ensuring that only relevant configuration blocks (<nat>, etc.) are generated for the
correct functional types. After the <configuration> section, the <node> element includes
one or more <neighbour> tags which formally represent the direct connectivity between
nodes in the network graph. Each <neighbour> element has a name attribute, which is
set to the IPv4 address of the neighbouring node if present. The de-duplication logic (us-
ing seen_neighbour_ipv4s) ensures that each unique IPv4 neighbour is listed only once,
preventing duplicates and maintaining an accurate network topology for VEREFOO. This
ensures the integrity and correctness of the network graph, which is vital for the formal
verification process to properly function and produce reliable results.

This structured XML output accurately translates the network context into a format
that VEREFOO can elaborate, using the formal verification of security policies on the
discovered network topology.

Figure 4.2. Network topology

For the graphs in this thesis the Graphviz Online tool has been used, specifying the
DOT language for the visualization of the network graph gemerated by the connector.
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4.6 Submitting the XML to VEREFOO

After the generation of the XML file, the script proceeds with the interaction with the
VEREFOO framework and the subsequent generation of OpenC2 commands:

o Automated Input Merging: the connector automatically merge the generated XML
network topology with a separate file containing security properties. This is achieved
by concatenating the contents of both xml files into a new XML structure that
includes both the <graphs> and <propertyDefinition> sections. The merged XML
is saved to a temporary file, which is then used for the VEREFOO API submission.
In this manner, it creates a single and complete input file for VEREFOO without
requiring any manual intervention.

o VEREFOO API Interaction: the script initiates a POST request to the VEREFOO
REST API endpoint, by default verefoo/adp/simulations, sending the complete XML
file (which must include <propertyDefinition> manually added by the user for secu-
rity policies). It sets the headers to handle XML content while VEREFOO processes
this input for formal verification and optimization. A key feature of the connector is
its handling of API responses. The requests.post call might not immediately re-
turn the full result. The script checks for a nested <content> element in the response
to determine if the full XML output is present. If not, it looks for a <href> link
within a <links> element, which points to the location of the final result. The script
then automatically makes a subsequent GET request to this URL, effectively man-
aging VEREFOQ’s asynchronous job execution to retrieve the complete verification
output.

« VEREFOO Output Processing: the response from VEREFOO, an XML file con-
taining the verification results (SAT/UNSAT) and optimized firewall policies (if ap-
plicable), is saved. Crucially, the script checks that the VEREFOO output is not
"UNSAT": if the security policy cannot be satisfied (UNSAT), the process stops, and
no OpenC2 commands are generated. This prevents the deployment of ineffective or
impossible policies. The script uses the ET. fromstring function to parse the XML
response from VEREFOO. It then performs a case-insensitive check for the string
"UNSAT" within the XML content. This ensures, that regardless of how VEREFOO
formats the unsatisfied result, the connector recognizes it and stops the process.
This check prevents the connector from generating commands for policies that are
provably unreachable or violated.

e OpenC2 Command Generation: if VEREFOOQO’s simulation result is "SAT", the script
proceeds to parse the VEREFOO output XML file. It extracts information about
verified security properties (ReachabilityProperty and IsolationProperty), along with
source/destination IPs, protocols, and ports if present. Based on whether a property
is "REACHABILITY_PROPERTY" or "ISOLATION_ PROPERTY" and its satis-
faction status ("true"), the script constructs corresponding OpenC2 allow or deny
commands. These commands are then written to a specified output file, format-
ted for an OpenC2 consumer, such as iptables rules. This final step translates the
formally verified policies into executable network security actions.
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An example that shows the VEREFOO’s output is the following:

<node>
<neighbour>
<neighbour>
<id>131</id>
<name>10.17.1.45</name>
</neighbour>
<neighbour>
<id>132</id>
<name>10.17.1.46</name>
</neighbour>
<neighbour>
<id>133</id>
<name>10.17.1.47</name>
</neighbour>
<neighbour>
<id>134</id>
<name>10.17.1.48</name>
</neighbour>
<neighbour>
<id>136</id>
<name>10.17.1.49</name>
</neighbour>
<neighbour>
<id>136</id>
<name>10.17.1.50</name>
</neighbour>
<neighbour>
<id>137</id>
<name>20.0.0.1</name>
</neighbour>
<neighbour>
<id>138</id>
<name>20.0.0.3</name>
</neighbour>
<neighbour>
<id>139</id>
<name>20.0.0.1</name>
</neighbour>
</neighbour>
<configuration/>
<id>17</id>
<name>192.168.0.201</name>
<functionalType>WEBCLIENT</functionalType>
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</node>

<propertyDefinition>

<property>
<property>
<pop3Definition/>
<name>REACHABILITY_ PROPERTY</name>
<graph>0</graph>
<src>192.168.0.201</src>
<dst>10.17.1.50</dst>
<1v4Proto>ANY</1v4Proto>
<srcPort/>
<dstPort/>
<isSat>true</isSat>
<body/>
<httpdefinition/>
</property>

</property>
</propertyDefinition>

4.7 Parsing the VEREFOO Response and Generat-
ing OpenC2 Commands

The final and most crucial step of the pipeline is the translation of VEREFOQ’s formal
verification results into actionable OpenC2 commands. The connector acts as a parser,
with its primary focus on the isSat field, which is nested within each <property> element
of the VEREFOO response: the script only generates an OpenC2 command file when a
property is satisfied (isSat=true). An UNSAT value signifies that the policy cannot be
fulfilled, so the script alerts the user and stops the command generation process, preventing
the deployment of invalid security rules. If the value is true, the connector continues with
the parsing and command generation.

« REACHABILITY_ PROPERTY: when VEREFOO reports a true result for a reach-
ability property, it means that the required communication path is successfully ver-
ified and can be enabled. Consequently, it generates a Python-style OpenC2 com-
mand with the allow action, aiming to ensure the connection remains open. The
script specifically looks for the relevant <property> elements in the parsed XML
tree, then extracts the name, src, and dst fields, which define the details of the pol-
icy. The protocol, src_port, and dst_port are also extracted if available, ensuring
the generated command is as specific and detailed as possible, creating precise and
non-ambiguous OpenC2 commands.

o ISOLATION_PROPERTY: a true result for an isolation property is a direct in-
dication of a security success. It means that a connection that should be blocked
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is verifiably blocked. To enforce it, the connector generates an OpenC2 command
with the deny action. This command is designed to prevent unauthorized traffic, re-
establishing the network’s security and satisfying the policy. The logic for generating
a deny command is similar to the allow one, but it’s triggered by a different property
name. The script constructs the oc2.Command string by dynamically concatenating
all the extracted connection arguments (e.g., src_addr, dst_addr, protocol). This
dynamic construction makes the script very flexible, as it can adapt to various policy
definitions from VEREFOO without needing a predefined command structure. The
generated command strings are then written to the output file creating an executable
script for an OpenC2 actuator.

For each satisfied property, the parser meticulously extracts all necessary details from the
VEREFOO response, including source and destination IPv4 addresses, protocols (such
as TCP, UDP, ICMP), and port numbers. These details are used to construct a precise
and complete OpenC2 command, formatted as a Python code string (oc2.Command).
This command is then saved to a file, making it ready to be consumed by an OpenC2
actuator, such as an iptables or a firewall manager. This automated step closes the
security management loop, transforming the abstract data from network discovery and
formal verification into a proactive and enforceable set of commands.

An example that shows the output file in OpenC2 is the following:

cmd = oc2.Command(oc2.Actions.allow, oc2.IPv4Connection(
src_addr=oc2.IPv4Net("192.168.0.201"),
dst_addr=oc2.IPv4Net("10.17.1.50")),

arg, actuator=pf)

cmd = oc2.Command(oc2.Actions.allow, oc2.IPv4Connection(
src_addr=oc2.IPv4Net("192.168.0.202"),
dst_addr=oc2.IPv4Net("10.17.2.104")),

arg, actuator=pf)

cmd=oc2.Command (oc2.Actions.allow, oc2.IPv4Connection(
src_addr=oc2.IPv4Net("10.17.1.45"),
dst_addr=oc2.IPv4Net("192.168.0.201")),

arg, actuator=pf)

4.7.1 File I/O and JSON Parsing

The initial step of input acquisition involves reading and parsing JSON files. The script
uses a try. . .except block to wrap the file reading and JSON parsing operations. Specif-
ically, if a file at the specified input path does not exist (FileNotFoundError), or if a file
is found but its content is not a valid JSON object (json.JSONDecodeError), the script
will catch the exception, print the error message to the console, and continue processing
other files in the directory without crashing the entire workflow. In addition, every in-
put file is processed independently, ensuring that a single corrupted file cannot stop the
rest of the workflow. Nested key lookups within JSON structures are always checked by a

61



Implementation

helper function that falls back to safe default values, thus avoiding KeyError or TypeError
exceptions when expected fields are missing.

4.7.2 VEREFOO API Interaction Failures

The interaction with the VEREFOO REST API is a potential point of failure due to
network issues, server unavailability, or incorrect request formats. To ensure the cor-
rect communication, the script encapsulates the requests.post and requests.get calls
within another try...except requests.exceptions.RequestException as e: block.
This allows the script to manage various network-related problems, such as connection
timeouts, DNS resolution failures, or HT'TP errors. Upon catching an exception, the
script logs the specific error message, providing the user with immediate feedback on why
the API call failed. It also prevents the script from proceeding to the following steps,
which rely on a successful API response, thus avoiding subsequent errors. Furthermore,
the script checks the presence of the selected XML file before attempting transmission,
cleans problematic characters (such as non-breaking spaces \xa0), and validates whether
the response contains either inline verification results or an external result URL before
proceeding.

4.7.3 XML Structure and Parsing Errors

Once the VEREFOO API returns an XML response, the script must parse it to extract
verification results. The xml.etree.ElementTree library is used for this purpose. To
prevent the script from crashing if the returned XML is malformed or has an unexpected
structure, the ET.fromstring() call is wrapped in a try...except ET.ParseError as
e: block. This is especially important as external APIs can sometimes return corrupted
data. Additional safeguards ensure that property definitions are skipped if incomplete or
malformed, avoiding the generation of invalid commands.

4.7.4 Handling UNSAT Results from VEREFOO

The script explicitly checks VEREFOOQO’s verification results for unsatisfiable conditions
(“UNSAT?”). If any UNSAT result is detected, the script stops before the generation
of OpenC2 commands, preventing the execution of potentially invalid commands. This
introduces an additional layer of robustness by coupling API feedback with execution
control.

4.7.5 Default Value Assignment and Data Consistency

When generating the internal XML representation, the connector assigns fallback IP ad-
dresses to nodes lacking valid IPs and ensures that neighbour relationships are consistent.
This prevents malformed XML or broken references that could cause later failures in com-
mand generation or external API interactions. To achieve this, the script validates IPv4
addresses against a clear pattern, guarantees uniqueness of assigned fallback IPs, and en-
forces bidirectional neighbour relationships (if A is neighbour of B, B becomes neighbour
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of A). Duplicate neighbours are removed, and unknown service roles fall back to a default
type (None).

4.7.6 Configuration and Command Generation Safeguards

Configuration tags within the XML (such as nat, cache, dpi, mailserver) are only generated
if valid attributes are available, ensuring that incomplete or unnecessary elements are not
created. During OpenC2 command generation, the script validates that all mandatory
fields (name, src, dst, isSat) are present, checks the protocol against a predefined map,
and only adds port arguments if values are properly defined. If no valid commands can
be generated, the script explicitly notifies the user.

4.7.7 Global Exception Handling

Finally, the main execution flow is wrapped in a global exception handling so any unex-
pected errors poped up during the execution process are caught and reported to the user
with descriptive messages, rather than causing abrupt termination of the program.
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Chapter 5

Validation

The validation phase is essential to confirm that the implemented connector effectively con-
verts OpenC2 Context Discovery (CTXD) JSON responses into a VEREFOO-compatible
XML format so it can be successfully processed by VEREFOO for formal verification.

This chapter outlines the methodology applied for the validation process, establishing a
clear and repeatable framework for evaluating the connector’s performance. Each example
tests the connector against different network topologies and data integrity challenges and
it presents the specific results obtained from the VEREFOO processing phase, demon-
strating the accuracy and robustness of the connector in different formed experiments.

5.1 Validation Methodology

The validation process was designed to rigorously test the connector’s functionality and
its integration with the VEREFOO framework. The methodology follows a multi-step
approach, simulating a complete network security orchestration workflow.

1. Input Preparation: the process begins by populating a dedicated directory with a
set of representative OpenC2 CTXD JSON files. The dataset used for validation
consisted of different files with a network elements without explicitly defined IPv4
addresses for testing purposes. These files describe the network components, includ-
ing web servers, web clients, firewall, forwarder, along with their interconnections.
The inclusion of files with incomplete data, such as missing [P addresses, was a clear
choice to stress-test the connector’s data-handling and role-deduction logic, simulat-
ing realistic conditions where network context might be fragmented or incomplete.

2. Data Transformation: the connector script is executed. The script processes the
entire directory of JSON files, performs data aggregation and normalization, and
generates a complete XML file that follows to the VEREFOO NFV schema. This
step validates the connector’s core functionality: the correct deduction of node roles,
the dynamic assignment of unique identifiers (prioritizing IPv4) and the enforce-
ment of graph coherence through bidirectional link validation. The multi-pass data
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transformation process ensures that every piece of information is processed and cross-
referenced. The first pass aggregates all discovered nodes, while a second pass is used
to validate and create links between them, ensuring the generation of a complete and
valid network graph. This two-phase approach is fundamental to maintain the graph
integrity required by VEREFOO.

3. Security Properties Definition: following the generation of the base XML file, the
connector automatically merges it with a user-defined file containing the security
properties. This is done by populating the PropertyDefinition section of the gener-
ated XML file with the relevant security policies, such as ReachabilityProperty and
IsolationProperty. These properties are crucial for VEREFOO execution, guiding
the formal verification process, ensuring that the network model is evaluated against
the specified security requirements.

4. Formal Verification with VEREFOO: the generated XML file is then submitted to
the VEREFOO RESTful API for formal verification. The process confirms that the
network topology and properties are correctly interpreted by the formal verification
engine.

5. Output Analysis: the final VEREFOO XML response, which includes the satisfac-
tion status (‘isSat‘) for each security property, is parsed by the connector. The
script is designed to identify all policy violations (where ‘isSat="true"") and auto-
matically generate corresponding OpenC2 commands (like allow for violated ‘Reach-
abilityProperty‘ and deny for violated ‘IsolationProperty*).

5.2 VEREFOO Processing and Results

5.2.1 Example 0: Initial case

This example, which was used to create the connector script and is cited in the previous
chapter, is fully described below.

This example demonstrates the connector script’s ability to handle a complex and highly
interconnected network topology with numerous nodes. The graph consists of multiple
web clients grouped around several central nodes, which act as points of connection to
the wider network. The topology includes WEBCLIENT, FORWARDER and other func-
tional types, representing a realistic scenario with different network services.

This test case represents the kind of intricate network data that a real-world context
discovery tool might generate. The great volume and complexity of nodes and their in-
terconnections are a significant challenge for the connector’s parsing and graph-building
logic. The success of this test case validates that the connector’s data handling is scalable
and robust enough for a production environment.

The primary purpose of this example is to validate that the connector can correctly parse
an extensive set of JSON input files. It then accurately reconstructs a complex Service
Graph that maintains the integrity of all node relationships and roles. This test case en-
sures the script’s robustness in generating an XML file that can be successfully processed
by the VEREFOO framework. The PropertyDefinition section, as in other examples,
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specifies the security policies to be enforced, including both ReachabilityProperty and
IsolationProperty to test the verification of specific communication paths within the net-
work.

The connector’s ability to deduce the functional type for each node, even without ex-
plicit declarations, is the feature that allows the automatic creation of a semantically
correct network model. The bidirectional link validation ensured that connections were
accurately represented, preventing logical errors that could lead to an incorrect verifi-
cation result from VEREFOO. The resulting XML graph was a complete and coherent
representation of the network topology.

The connector generates the following XML structure for this case:

<?7xml version="1.0" 7>
<NFV xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemal.ocation="../../xsd/nfvSchema.xsd">
<graphs>
<graph id="0">
<node functional_type="WEBCLIENT" name="10.17.2.108">
<neighbour name="192.168.0.202"/>
</node>
<node functional type="WEBCLIENT" name="192.168.0.202">
<neighbour name="10.17.2.104"/>
<neighbour name="10.17.2.106"/>
<neighbour name="10.17.2.107"/>
<neighbour name="10.17.2.108"/>
<neighbour name="10.17.2.109"/>

<neighbour name="20.0.0.1"/>
<neighbour name="20.0.0.3"/>
<neighbour name="20.0.0.4"/>

</node>

<node functional_type="WEBCLIENT" name="20.0.0.3">
<neighbour name="192.168.0.200"/>
<neighbour name="192.168.0.201"/>
<neighbour name="192.168.0.202"/>
<neighbour name="20.0.0.4"/>
</node>
<node name="20.0.0.4">
<neighbour name="192.168.0.200"/>
<neighbour name="192.168.0.201"/>
<neighbour name="192.168.0.202"/>
<neighbour name="20.0.0.3"/>
</node>
</graph>
</graphs>
</NFV>

67



Validation

The security property definition file is shown below:

<NFV>
<PropertyDefinition>
<Property graph="0" name="ReachabilityProperty"
src="192.168.0.202" dst="10.17.2.104"/>

<Property graph="0" name="ReachabilityProperty"
src="10.17.0.234" dst="192.168.0.200"/>
<Property graph="0" name="ReachabilityProperty"
src="10.17.1.45" dst="192.168.0.201"/>
</PropertyDefinition>
</NFV>

After the automated merge, the complete XML file submitted to VEREFOO, which now
includes the property definition, is the following:

<?xml version="1.0" 7>
<NFV xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="../../xsd/nfvSchema.xsd">
<graphs>
<graph id="0">
<node functional_ type="WEBCLIENT" name="10.17.2.108">
<neighbour name="192.168.0.202"/>
</node>
</graph>
</graphs>
<Constraints>
<NodeConstraints/>
<LinkConstraints/>
</Constraints>
<PropertyDefinition>
<Property graph="0" name="ReachabilityProperty" src="192.168.0.202"
dst="10.17.2.104"/>

<Property graph="0" name="IsolationProperty" src="192.168.0.202"
dst="192.168.0.201"/>
<Property graph="0" name="ReachabilityProperty" src="10.17.0.234"
dst="192.168.0.200"/>
</PropertyDefinition>
</NFV>

The file differentiation will not be shown in the next examples to avoid unnecessary re-
dundancy.
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Figure 5.1. Network topology of Example 0

The VEREFOO API response of this simple topology is the following:

<Resources>
<links>
<links>
<rel>self</rel>
<href>http://localhost:8085/verefoo/adp/simulations/1</href>
<hreflang/>
<media/>
<title>get the resource</title>
<type/>
<deprecation/>
</links>

</Resources>

The final output file, which can be directly consumed by an OpenC2 actuator, in this
simple case will be:

cmd = oc2.Command(oc2.Actions.allow, oc2.IPv4Connection(
src_addr=oc2.IPv4Net("192.168.0.202"),
dst_addr=oc2.IPv4Net("10.17.2.104")),
arg, actuator=pf)

cmd = oc2.Command(oc2.Actions.allow, oc2.IPv4Connection(
src_addr=oc2.IPv4Net("10.17.0.234"),
dst_addr=oc2.IPv4Net("192.168.0.200")),
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arg, actuator=pf)

cmd = oc2.Command(oc2.Actions.allow, oc2.IPv4Connection(
src_addr=oc2.IPv4Net("10.17.1.45"),
dst_addr=oc2.IPv4Net("192.168.0.201")),
arg, actuator=pf)

The following figure illustrates the terminal output for the execution of Example 0:

m carlo@carlo-VEREFOO: ~/Desktop o= > o x

carlo@carlo-VEREFOO: ~/Desktop. carlo@carlo-VEREFOO: ~/Desktop.. carlo@carlo-VEREFOO: ~/Desktop v

2 $ python3 connector.py --input_dir "/home/carlo/Desktop/input/res
ponses/Responses” --security_properties_xml "/home/carlo/Desktop/security_properties_base.xml"

'21' file/s in this path!
'smf-0.txt' processed successfully.
'amf-0.txt' processed successfully.
'udr-0.txt' processed successfully.
'pcf-0.txt' processed successfully.
'os-fw.txt' processed successfully.
"kube2.txt' processed successfully.
'webui-79d945f56d-wjzr5.txt' processed successfully.
'gnb-0.txt' processed successfully.
'ausf-0.txt' processed successfully.
"kubernetes.txt' processed successfully.
'bsf-0.txt' processed successfully.
"kube0.txt' processed successfully.
'udm-0.txt' processed successfully.
'nrf-0.txt' processed successfully.
'nssf-0.txt' processed successfully.
'mySgtestbed.txt' processed successfully.
'scp-0.txt' processed successfully.
"kube-fw.txt' processed successfully.
"kubel.txt' processed successfully.
'upf-0.txt' processed successfully.
'openstack.txt' processed successfully.
XML input with topology saved in 'generated_xml_file_2025-09-11_10-58-00.xml"'

Merging the generated XML with the security properties from '/home/carlo/Desktop/security_prop
lerties_base.xml'...

Merge successful. The full XML is ready to be sent to VEREF0O.

Sending XML to VEREF0O's API to 'http://localhost:8085/verefoo/adp/simulations?Algorithm=AP"..

VEREFOO's output XML saved in 'verefoo_output_2025-09-11_10-58-00.xml"

OpenC2 Commands saved in 'openc2_commands_2025-09-11_10-58-00.py"

Figure 5.2. Terminal execution of Example 0

5.2.2 Example 1: Reachability and Isolation

To illustrate the validation process, it is used a simplified network topology. The topology,
represented in the provided XML file, consists of a central firewall (20.0.0.1) connecting
a web server (10.0.0.10) and three web clients (10.0.0.20, 10.0.0.30, and 10.0.0.40).

This test case was specifically designed to validate the connector’s handling of core secu-
rity properties, by defining a large number of ReachabilityProperty and IsolationProperty
considering the small number of nodes. The simple topology allowed for a clear and un-
ambiguous interpretation of the results.

The key element of this validation test case is the definition of security properties in the
<PropertyDefinition> section, VEREFOQ’s formal verification results are determined by
whether an explicit rule is needed to satisfy the property.
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The connector generates the following XML file, which is then submitted to the VERE-
FOO APL:

<?xml version="1.0" 7>
<NFV xmlns:xsi="http://www.w3.o0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="../../xsd/nfvSchema.xsd">
<graphs>
<graph id="0">
<node functional_ type="WEBSERVER" name="10.0.0.10">
<neighbour name="20.0.0.1"/>
</node>

<node name="20.0.0.1">
<neighbour name="10.
<neighbour name="10.
<neighbour name="10.
<neighbour name="10.
</node>
</graph>
</graphs>
<Constraints>
<NodeConstraints/>
<LinkConstraints/>
</Constraints>
<PropertyDefinition>
<Property graph="0" name="ReachabilityProperty" src="10.0.0.30"
dst="10.0.0.40"/>

<Property graph="0" name="IsolationProperty" src="20.0.0.1"
dst="10.0.0.30"/>
<Property graph="0" name="IsolationProperty" src="10.0.0.40"
dst="20.0.0.1"/>
</PropertyDefinition>
</NFV>

10.0.0.40 10.0.0.10

10.0.0.20 10.0.0.30

Figure 5.3. Network topology of Example 1
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The VEREFOO API responds with a complete XML document, which the connector
retrieves and parses.

<Resources>
<links>
<links>
<rel>self</rel>
<href>http://localhost:8085/verefoo/adp/simulations/1</href>
<hreflang/>
<media/>
<title>get the resource</title>
<type/>
<deprecation/>

</links>
</content>
</Resources>

The final output file, which can be directly consumed by an OpenC2 actuator, is:

cmd = oc2.Command(oc2.Actions.allow, oc2.IPv4Connection(
src_addr=oc2.IPv4Net("10.0.0.30"),
dst_addr=oc2.IPv4Net("10.0.0.40")),
arg, actuator=pf)

cmd = oc2.Command(oc2.Actions.deny, oc2.IPv4Connection(
src_addr=oc2.IPv4Net("20.0.0.1"),
dst_addr=oc2.IPv4Net("10.0.0.30")),
arg, actuator=pf)

cmd = oc2.Command(oc2.Actions.deny, oc2.IPv4Connection(
src_addr=oc2.IPv4Net("10.0.0.40"),
dst_addr=oc2.IPv4Net("20.0.0.1")),
arg, actuator=pf)

5.2.3 Example 2: Complex Topology

Another example of network topology consists of two distinct subnets: a DMZ (De-
Militarized Zone) and an internal network. The DMZ is managed by a central firewall
at 20.0.0.1 and includes a web server (172.16.0.10) and several web clients (172.16.0.20,
172.16.0.21, 172.16.0.22, and 172.16.0.23).

The internal network is managed by 10.0.0.254 and contains an internal web server
(10.0.0.10), a web client (10.0.0.20), and additional web clients in different subnets (10.0.1.
30, 10.0.1.31, 10.0.1.32, 10.0.2.33, and 10.0.2.34). This test case was designed to simulate
a more realistic enterprise network architecture. The inclusion of a DMZ, multiple sub-
nets, and inter-subnet routing points validates the connector’s ability to accurately map
more complex routing logic. These two main subnets are interconnected via 192.168.1.254
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and 10.0.0.254. The key element of this validation test case is the definition of security
properties in the <PropertyDefinition> section. The formal verification results will be
determined by whether an explicit rule is needed to satisfy each property. The connector
generates the following XML file, which is then submitted to the VEREFOO API: the
properties defined for this topology were designed to test inter-subnet communication, for

example, a ReachabilityProperty from a DMZ client to an internal web server.

<?xml version="1.0" 7>
<NFV zxmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="../../xsd/nfvSchema.xsd">

<graphs>
<graph id="0">

<node functional_type="WEBCLIENT" name="172.16.0.21">
<neighbour name="20.0.0.1"/>

</node>

<node functional_type="WEBCLIENT" name="10.0.1.32">
<neighbour name="10.0.0.254"/>

</node>

<node name="10.0.0.254">

<neighbour name="10.
<neighbour name="10.
<neighbour name="10.
<neighbour name="10.
<neighbour name="10.
<neighbour name="10.
<neighbour name="10.
<neighbour
</node>
</graph>
</graphs>
<Constraints>
<NodeConstraints/>
<LinkConstraints/>
</Constraints>

0.

O O O O O O

N, P, P, OO

2

.10"/>
.20"/>
.30"/>
.31 />
.32"/>
.33"/>
.34"/>

name="192.168.1.254"/>

<PropertyDefinition>
<Property graph="0" name="ReachabilityProperty" src="20.0.0.1"
dst="172.16.0.10"/>

<Property graph="0" name="IsolationProperty" src="10.0.1.31"
dst="10.0.0.254"/>
<Property graph="0" name="IsolationProperty" src="172.16.0.21"
dst="172.16.0.10"/>
</PropertyDefinition>

</NFV>
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10.0.0.20

10.0.0.10

Figure 5.4. Network topology of Example 2

The VEREFOO API response of this more complex topology is the following:

<Resources>
<links>
<links>
<rel>self</rel>
<href>http://localhost:8085/verefoo/adp/simulations/1</href>
<hreflang/>
<media/>
<title>get the resource</title>
<type/>
<deprecation/>
</links>

</Resources>
The final output file, which can be directly consumed by an OpenC2 actuator, in this case

will be:

cmd = oc2.Command(oc2.Actions.allow, oc2.IPv4Connection(
src_addr=oc2.IPv4Net("20.0.0.1"),
dst_addr=oc2.IPv4Net("172.16.0.10")),
arg, actuator=pf)

cmd = oc2.Command(oc2.Actions.deny, oc2.IPv4Connection(
src_addr=oc2.IPv4Net("10.0.1.31"),
dst_addr=oc2.IPv4Net("10.0.0.254")),
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arg, actuator=pf)

cmd = oc2.Command(oc2.Actions.deny, oc2.IPv4Connection(
src_addr=oc2.IPv4Net("172.16.0.21"),
dst_addr=oc2.IPv4Net("172.16.0.10")),
arg, actuator=pf)

One example of what is shown in the terminal is:

carlo@carlo-VEREFOO: ~/Desktop

$ python3 connector.py --input_dir "/home/carlo/Desktop/input/respo
--security_properties_xnl "/home/carlo/Desktop/security_properties_ex2.xml"

carlo@carlo-VEREFOO: ~/Desktop/verefoo

INTERESTING PREDICATES: 10
Filling transformers map

successfully.

e 'internal_client2.json' processed successfully.
'internal_client3.json' processed s Fully.
'internal_client.json' pro uccessfully.
'dnz_client3.json' processed successfully.
"dnz_client4. json' processed successfully.
"internal_clientS.json' processed succe:
"dnz_client.json' processed s fi

e 'internal_webserver.json'
"internal_db.json' processed y
"internal_fw.json' processed successfully.

XML input with topology saved in 'generated_xml_file_2025-89-11_10-59-08.xml'

NUMBER OF REQUIREMENTS: 6

Computing atomic flows:
ko ok ok ke

single checker time 4
SAT

Merging the generated XML with the security properties from '/home/carlo/Desktop/security_proper
ties_ex2.xml'...
Merge successful. The full XML is ready to be sent to VEREF0O.

Sending XML to VEREFOO's API to 'http://localhost:8085/verefoo/adp/simulations?Algorithm=AP' ...

EREFO0's output XML saved in 'verefoo_output_2025-09-11_ -08.xml Figure 5.6. VEREFOO terminal

OpenC2 Commands saved in 'openc2_commands_2025-09-11_10-59-08.py"

of Example 2

Figure 5.5. Terminal execution of Example 2

5.2.4 Example 3: Connector Resilience

This example demonstrates a test case assessing the robustness and error-handling ca-
pabilities of the connector script. Instead of providing a complete and valid network
topology, this test uses a set of input JSON files that are intentionally incomplete or mal-
formed. This test case was designed to simulate the unpredictable nature of real-world
data sources. By purposely introducing missing IP addresses and malformed links, we
could verify that the connector’s parsing logic is solid. The ability to handle these data
anomalies is a measure of the tool’s readiness for a production environment.

The simulated network consists of a basic topology with a firewall, a web server, and a
web client, and the JSON input files contain deliberate errors to test the script’s resilience:
despite the errors in the input, the connector successfully assigned fallback IP addresses
to the nodes that were missing them.

e The JSON file for the web server is missing a crucial field, its [P address, that will
be assigned by the script.

e« The JSON for the web client contains a malformed IP value.

o The firewall’s JSON file has a missing or empty links array, preventing the correct
mapping of connections to its neighbours.
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The connector produces the following XML file, submitted to the VEREFOO API for
verification:

<?xml version="1.0" 7>
<NFV xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="../../xsd/nfvSchema.xsd">
<graphs>
<graph id="0">
<node functional_ type="WEBCLIENT" name="20.0.0.1">
<neighbour name="10.0.0.2"/>
</node>
<node functional_type="WEBSERVER" name="20.0.0.2">
<neighbour name="10.0.0.2"/>
</node>
<node name="10.0.0.2">
<neighbour name="20.0.0.1
<neighbour name="20.0.0.2"
</node>
</graph>
</graphs>
<Constraints>
<NodeConstraints/>
<LinkConstraints/>
</Constraints>
<PropertyDefinition>
<Property graph="0" name="ReachabilityProperty" src="20.0.0.1"
dst="20.0.0.2"/>
<Property graph="0" name="IsolationProperty" src="10.0.0.2"
dst="20.0.0.1"/>
</PropertyDefinition>
</NFV>

>

/
/>

Figure 5.7. Network topology of Example 3
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The VEREFOO API response of this basic topology is the following:

<Resources>
<links>
<links>
<rel>self</rel>
<href>http://localhost:8085/verefoo/adp/simulations/1</href>
<hreflang/>
<media/>
<title>get the resource</title>
<type/>
<deprecation/>
</links>
</Resources>
The final output file, which can be directly consumed by an OpenC2 actuator, in this
simple case is:

cmd = oc2.Command(oc2.Actions.allow, oc2.IPv4Connection(
src_addr=oc2.IPv4Net("20.0.0.1"),
dst_addr=oc2.IPv4Net("20.0.0.2")),
arg, actuator=pf)

cmd = oc2.Command(oc2.Actions.deny, oc2.IPv4Connection(
src_addr=oc2.IPv4Net("10.0.0.2"),
dst_addr=oc2.IPv4Net("20.0.0.1")),
arg, actuator=pf)

This test case demonstrates that the connector can handle missing or malformed data
while continuing to process valid input.

5.3 Analysis and Limitations

The validation results confirm that the connector successfully achieves its primary objec-
tive: providing an automated bridge between OpenC2 CTXD and VEREFOO. The tool
demonstrates robust functionality in several key areas:

o Data Fidelity: the connector accurately translates the complex, nested JSON struc-
ture into a clean and coherent VEREFOO XML graph, ensuring that no network
elements or links are omitted.

¢ Role Deduction: the heuristic-based deduce_service_role function proves to be
effective in heuristic assigning functional types, which is critical for VEREFOQO’s
verification logic.

o Graph Coherence: the two-pass approach and the bidirectional link check ensure that
the generated XML represents a complete and valid network topology, preventing
errors in VEREFOO’s analysis.
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o Actionable Output: the final step of generating OpenC2 commands from VERE-
FOOQO’s response directly links formal verification to practical network security ac-
tions, closing the automation loop.
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Chapter 6

Conclusions and Future Work

This chapter summarizes the key achievements of this thesis project, draws final conclu-
sions, and outlines directions for future research. It serves as a synthesis of the entire
project, connecting the theoretical background and problem statement with the practi-
cal implementation and validation. The first section provides a high-level overview of
the successful implementation and validation of the connector, reflecting on how the ini-
tial objectives were met. The second section, dedicated to future work, discusses how
the project’s foundational work can be expanded to address more complex and dynamic
cybersecurity challenges.

6.1 Conclusions

This thesis successfully implemented and validated a connector that bridges OpenC2 Con-
text Discovery (CTXD) with the VEREFOO formal verification framework. The primary
objective was to automate the security management loop by transforming fragmented net-
work context data into actionable security policies [5]. As demonstrated in the Validation
chapter, the connector proved its effectiveness in three key areas:

« Robust Data Translation: the connector successfully parses complex, nested OpenC2
JSON data, handling incomplete or malformed inputs, and generates a syntactically
and semantically valid VEREFOO XML file. The multi-pass approach and auto-
mated role deduction proved to be effective in creating a complete and verifiable
representation of the network, even with a minimal starting dataset. This robust
data handling is achieved through several key technical decisions: the get_nested
_value function was specifically implemented to correctly traverse nested JSON ob-
jects, preventing errors from missing or improperly structured data; the deduce
_service_role function autonomously categorizes network entities (e.g., webserver,
forwarder, nat), ensuring that the VEREFOO XML output accurately reflects the
functional role of each node without requiring manual input. The multi-pass ap-
proach and automated role deduction proved to be effective in creating a complete
and verifiable representation of the network, even with a minimal starting dataset.
This process includes a sophisticated fallback mechanism for assigning unique IP
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addresses to nodes lacking this information, using an arbitrary range (20.0.0.1 to
20.255.255.255) to guarantee graph completeness and prevent IP collisions, which is
a critical requirement for formal verification tools like VEREFOO. It also ensures
the bidirectionality for the neighbours, as requested by VEREFOO.

o Automated Data Consolidation: the connector automatically merges the generated
XML network topology with a user-defined file containing security properties. This
process eliminates the need for manual file editing, ensuring a single, seamless exe-
cution of the script from start to finish. This approach prevents premature workflow
termination and streamlines the entire security analysis pipeline, making it more
efficient and less prone to human error.

o Integration with Formal Verification: the connector’s ability to communicate with
the VEREFOO API ensures that the formal verification process is an automated
step. This communication is powered by the Python requests library, which allows
the script to send a POST request containing the generated XML. After the initial
POST, the connector checks the response for a results URL, and if one is provided,
it then performs a GET request to retrieve the final verification results when they
are ready. The successful processing of different topologies, from simple client-server
setups to complex DMZ configurations, confirms that the generated XML is a reliable
input for VEREFOO’s analysis and that the connector’s API logic is resilient and
effective.

o Closing the Security Automation Loop: generating the OpenC2 commands based
on VEREFOO’s output and translating isSat="true" results into corrective allow
or deny commands, the connector transforms security analysis into an executable
response. This effectively closes the loop between network discovery, formal policy
verification, and automated security enforcement.

This thesis project provides a proactive and verifiable approach to network security that
replaces manual, reactive security interventions with an automated, logic-based system
that can identify, analyze, and remediate policy violations at scale, strengthening network
security and reducing the potential for human error [13]. This work serves as a proof-of-
concept for the practical application of formal methods in cybersecurity, demonstrating
that complex verification can be integrated into an automated, operational workflow to
enhance network defense. Specifically, this work directly addresses the need to integrate
formal methods into automated security workflows, a challenge highlighted in the research
on the state of the art of network security automation [2].

6.2 Future Work

The implemented connector provides a solid foundation for further research and devel-
opment in automated network security orchestration. While effective, the current imple-
mentation can be expanded in several key areas to enhance its capabilities, scalability,
and integration with real-world systems.
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o Handling State and Dynamic Context: the connector processes a static snapshot of
network context. A significant improvement would be to adapt the tool to a dynamic
environment. This could involve implementing a continuous polling mechanism to
react to real-time changes in the network, such as a new host coming online or a
link failing. This would require incorporating a persistent data store to maintain the
network’s state over time and handle incremental updates.

o Full OpenC2 Actuator Integration: another possible next step would be the develop-
ment of a fully functional OpenC2 Actuator module that can directly execute these
commands on a live network device (e.g., an iptables or a cloud-based firewall APT).
This module could be a dedicated service that listens for the OpenC2 commands
generated by the connector and translates them into specific API calls for real-world
network devices or cloud-based firewalls. This would eliminate the manual step of
executing the generated commands, achieving a truly end-to-end automated pipeline
from discovery to enforcement.
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