
POLITECNICO DI TORINO
Master’s Degree in Cybersecurity

Master’s Degree Thesis

Fault Attack Injection strategies for
RISC-V Microprocessors in Simulated

Environments

Supervisors

Prof. Alessandro SAVINO

Prof. Stefano DI CARLO

Candidate

Giorgio FARDO

October 2025





Summary

Hardware and software security are becoming increasingly critical due to the
widespread proliferation of computing systems and the exponential growth of the
IoT and embedded domains, both of which demand robust protection mechanisms.
Addressing the rising sophistication and impact of attacks requires reducing the
complexity of software testing against specific classes of vulnerabilities. In this
context, access to simulator software capable of evaluating software robustness
against such attacks can significantly lower the cost of security assessments and
shorten the time to market of final products. This thesis presents modifications
to the gem5 architectural simulator through the integration of a fault injection
module for the RISC-V architecture. The proposed module enables the injection of
register level single and multi-bit faults during simulation, supporting both fine-
grained, deterministic fault injection and general fault testing through randomized
spatial and temporal fault distributions. The work begins with an overview of
the current state of the art in fault injection, fault attacks and emerging research
trends. That review drove the design choices made to ensure the injection module
realistically mimics real world fault modalities and capabilities. In the second
part, the thesis details the modifications applied to gem5, the design decisions
underlying these changes, and the challenges encountered due to the simulator’s
architecture. Furthermore it describes the auxiliary tools developed to support
this work, including the Campaign Manager, which provides an entry point for
managing and launching automated test campaigns. The final part of the thesis
presents the evaluation of the proposed tool and outlines directions for future
development. The evaluation uses security-focused code from the FISSC collection
curated by the Université Grenoble Alpes. This dataset comprises multiple versions
of test software incorporating varying levels of countermeasures and hardening,
allowing assessment across different attack strengths and granularities. Particular
attention is given to testing different versions of VerifyPIN, a program designed
to mimic a card PIN verification routine. As future work, the thesis proposes
extending fault injection support to caches and main memory to broaden the range
of possible attacks and widen testing coverage.

ii





Table of Contents

List of Tables vi

List of Figures vii

Acronyms ix

1 Introduction 1

2 Background : State of the art 3
2.1 Fault Injection techniques . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Laser Fault Injection . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Electromagnetic Fault Injection . . . . . . . . . . . . . . . . 4
2.1.3 Voltage Glitching . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.4 Clock Glitching . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 RISC-V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Base ISA and extensions . . . . . . . . . . . . . . . . . . . . 8

2.3 Architectural Simulators . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 gem5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Operations modes . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 Simulation Scripts . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.3 Interaction Between Guest and Simulator . . . . . . . . . . . 12
2.4.4 Checkpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.5 ThreadContext . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.6 Event-Driven Programming Model . . . . . . . . . . . . . . 13
2.4.7 SimObjects . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 InjectV 15
3.1 Why RISC-V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 FaultInjector Module . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 CampaignManager . . . . . . . . . . . . . . . . . . . . . . . 19

iv



3.2.3 Flowgraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Testing and Results 22
4.1 Testing setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 VerifyPIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2 Image configuration . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.3 Fault plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Simulation execution . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Random campaign . . . . . . . . . . . . . . . . . . . . . . . 29

5 Conclusions and Future Work 35
5.1 Main Takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Future Developments . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 VerifyPIN 37
6.1 VerifyPIN_0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 VerifyPIN_4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Bibliography 40

v



List of Tables

2.1 Overview of fault injection methods, requirements, and typical equip-
ment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1 FISSC VerifyPIN versions and their applied hardenings. HB: Hard-
ened Booleans, FTL: Fixed-Time Loop, INL: Inlined Calls, BK:
Backup Copy, SC: Step Counter, DT: Double Test. . . . . . . . . . 23

4.2 v0 main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 v0 verifyPIN results . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 v0 byteArrayCompare results . . . . . . . . . . . . . . . . . . . . . 30
4.5 v0 dec_tries results . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.6 v4 main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.7 v4 verifyPIN results . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.8 v4 byteArrayCompare results . . . . . . . . . . . . . . . . . . . . . 32
4.9 v4 verifyPIN_2 results . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.10 v0 overall statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.11 v4 overall statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vi



List of Figures

2.1 Meta MTIA 2i PE architecture [10] . . . . . . . . . . . . . . . . . . 7
2.2 gem5 internals [14] . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 gem5 components [11] . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 FaultInjector class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 FaultInjector fault execution . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Precise campaign mode . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 VerifyPIN_0 trace around the g_ptc decrement. . . . . . . . . . . 27
4.2 VerifyPIN_0 precise campaign results . . . . . . . . . . . . . . . 34

vii





Acronyms

AI
artificial intelligence

SEE
single event effects

ix



Chapter 1

Introduction

Testing software against hardware-injected faults has long been an important topic
in both reliability and security research. Historically, this type of testing began
with studies on the effects of radiation on hardware and how such environmental
factors influenced software execution. These early efforts focused on reliability
testing in harsh or exposed environments, where radiation could alter the normal
behavior of hardware components. Over time, researchers realized that similar fault
effects could also be intentionally induced by adversaries. This realization shifted
the focus toward understanding, modeling, and mitigating hardware fault attacks.

With the emergence of embedded systems and the Internet of Things (IoT), the
relevance of such attacks has become even more pronounced. As these devices are
often deployed in unprotected environments, they present attractive targets for
fault injection attacks. Consequently, research in this area has expanded rapidly,
addressing both novel attack techniques and improved countermeasures. At the
same time, as hardware designs grow increasingly complex, there is a growing need
for alternative approaches to study fault effects without requiring access to physical
devices.

The main objective of this thesis is the development of a fault injection simulator,
called InjectV, built upon the gem5 architectural simulator for the RISC-V
architecture. The simulator is capable of injecting transient faults into the registers
of the simulated CPU. The secondary objectives include validating the simulator
through test scenarios and demonstrating its operational modes.

RISC-V was chosen as the target instruction set architecture (ISA) due to
the limited number of existing gem5-based fault injectors supporting it, as well as
its growing adoption in both research and industry, particularly in the IoT and
embedded domains.
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Introduction

The importance of this work lies in the demand for fast, flexible, and cost-
effective methods to test the reliability and security of software when access to
physical hardware is limited or infeasible. Hardware-based fault injection setups are
often prohibitively expensive and time-consuming to manage. Moreover, as systems
become more interconnected and security grows in importance, understanding the
impact of hardware faults on software reliability is critical for designing robust and
secure systems. In this context, InjectV provides a software-based alternative that
facilitates early testing and prototyping, while also serving as a valuable educational
and research tool given the widespread use of gem5 in the academic community.

This thesis is structured into five main chapters. Following this introduction,
Chapter 2 presents an overview of physical fault injection techniques and discusses
the types of effects that InjectV aims to replicate. It also includes a brief intro-
duction to the RISC-V architecture, examples of its use in real-world applications,
and a description of existing architectural simulators. The chapter concludes with
a detailed technical overview of gem5 and its components, justifying its selection
as the foundation for InjectV. Chapter 3 describes the architecture and operation
of InjectV, outlining its internal structure and fault injection workflows. Chapter
4 focuses on the experimental setup used to validate InjectV, including the test
software, simulation configuration, and injection scenarios. Finally, Chapter 5
summarizes the main findings of this work and suggests possible directions for
future development.
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Chapter 2

Background : State of the
art

2.1 Fault Injection techniques
This is a brief taxonomy of the current state-of-the-art of fault injection techniques
and the current research trends on the matter. The most common physical fault
injection techniques that can be found used in research and the actual industry are
: Laser Fault Injection, EM Fault Injection, Voltage/Power Glitching and Clock
Glitching.

2.1.1 Laser Fault Injection
Laser fault injection, or LFI, is a fault injection technique that uses a focused laser
beam to inject faults on the silicon die. The theory behind it is as follows, physical
characteristics of semiconductor transistors influence their sensitivity to ionizing
radiation, and laser radiation can ionize an IC’s semiconductor regions if its photon
energy exceeds the semiconductor band gap. The ionizing power and thus the
applicability to generate alteration in the transistor behavior depend on the type
and power of the laser used. Different wavelengths result in different penetration
power, dispersion, and precision.

These transients at the gate level, if timed correctly, can induce bit flips and/or
bit resets.

History

The first paper that discusses laser use to introduce SEE in silicon is from 1965 by
D. H. Habing [1], where they used lasers to simulate the effects of SEE caused by
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Background : State of the art

exposure of silicon to intense gamma-ray sources. The used neodymium laser was
able to induce transients that resemble those from a flash X-ray machine.

Following, the first paper on LFI is S. P. Skorobogatov et al. in 2002 [2], where
they introduced a new class of attacks on secure microcontrollers and smart cards.
The "low-cost" setup, based on a laser pointer and flashgun, highlighted the shift
from infrared, which had good penetration depth and good spatial ionization
but lacked precision for modern semiconductor devices, to visible red or green
lasers, which also benefited from much higher photon absorption. The thinning
of semiconductors and reduced scale meant also that lower-power lasers were now
sufficient to introduce faults.

With semiconductor process node scaling, the precision of the laser beam became
much more important to obtain high accuracy and localization; especially gate-level
accuracy became harder as the process node was shrunk.

Recent research also described multi-spot laser fault injection, where multiple
locations on the semiconductor are subjected to the influence of the laser in tight
temporal proximity, meaning we can induce bit flips and/or bit resets in multiple
locations almost simultaneously [3]. Brice Colombier et al. describe multi-spot
laser fault injection as a new technique, backed by real-world test cases, that is able
to overcome the shortcomings of traditional laser fault injection techniques, such
as targeting more complex protected designs that have preventive countermeasures
in place.

2.1.2 Electromagnetic Fault Injection
EM fault injection uses a transient, localized electromagnetic disturbance (a pulse or
burst) placed near a packaged chip to produce unwanted electrical transients inside
the target integrated circuit. The advantages over other types of fault injection are
that de-packaging is not always needed, making the attacks less destructive, while
still allowing relatively high localization to be achieved.

According to the literature, there are two main demonstrated techniques [4].
The first one, called harmonic EM injection, uses continuous EM waves to affect the
behavior of critical analog blocks, such as TRNGs and embedded clock generators.
The second technique, characterized by inducing transient faults through sudden
EM pulses near the target IC, targets digital blocks.

The most recent empirical model, called the sampling fault model, is based on
sampling faults that are “direct perturbations of the sampling process of D-type
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flip-flops” [4]. In this scenario, EMFI alters the input and control signals of the
DFF and provokes erroneous sampling of data if the perturbations are timed just
before the rising edge of the clock. This model highlights the presence of a Sampling
Fault Window (SFW), which is the time frame during which the DFF is susceptible
to this type of perturbation caused by EM.

2.1.3 Voltage Glitching

Voltage glitching (voltage fault injection, VFI) is a physical fault injection technique
where an attacker transiently perturbs the supply voltage of an integrated circuit
(usually by producing a short-duration voltage drop or spike) in order to cause
timing violations or undefined internal states. Properly timed and parameterized
glitches can induce instruction skips, corrupt register or memory values, bypass
software or hardware checks (authentication and signature verification code paths),
or create side channels that leak secrets. The attack requires physical access to the
power domain (directly or through an injection point) and precise control of glitch
timing, amplitude, and duration.

The first significant research on voltage glitching dates back to 1997, when
Anderson and Kuhn demonstrated the practical use of voltage manipulation in
attacks targeting smart cards. In their analysis, they highlighted the vulnerabilities
of some smart cards and processors to voltage spike and fluctuation attacks that
could cause instruction skips or data corruption during execution [5].

More recent real-world research on VFI is represented by VoltPillager (Chen et
al.) [6]. The authors built a low-cost hardware tool that injects messages on the
Serial Voltage Identification (SVID) bus between the CPU and the on-board voltage
regulator, allowing an adversary with physical access to directly control the CPU
core voltage. By abusing SVID (which lacks cryptographic authentication), they
performed hardware-based undervolting/glitching on Intel CPUs, enabling fault-
injection attacks against Intel SGX enclaves—even on fully patched systems where
the software undervolting interface (MSR 0x150 / Plundervolt mitigations) had
been disabled. Using this technique, they reproduced previous attacks (in this case,
Plundervolt [7]) and demonstrated key-recovery attacks against cryptographic code
(including mbed TLS), as well as novel faults such as briefly delayed memory writes,
showing that physical SVID manipulation can bypass software countermeasures
and break SGX integrity.
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2.1.4 Clock Glitching

Clock glitching is a fault injection technique where an attacker deliberately alters a
device’s clock signal to induce errors in its normal operation. Although this method
was once highly popular in the realm of smart card testing, it eventually became
less prominent when many smart cards transitioned to internal clock generators.
However, clock glitching is regaining relevance, as modern systems-on-chip (SoCs)
and other embedded devices often rely on external clocks during critical initializa-
tion phases. These windows of opportunity allow attackers to disrupt the clock
signal at just the right moments, potentially exposing vulnerabilities that other
testing methods might miss.

At its core, clock glitching involves creating short disturbances in the clock
line. By timing these with critical sections of the system’s operating cycle, the
attacker can alter normal execution flow, resulting in unpredictable behavior such
as instruction skips, unexpected or corrupted memory reads and writes, or bypasses
of security checks.

This technique is particularly useful in cases where the system relies on an
external clock source and has been used in more recent proof-of-concept attacks on
the MediaTek BootROM [8], where researchers from the NCC Group used clock
glitching to bypass the signature verification of the BootROM in the MediaTek
MT8163V SoC. This demonstrates that even modern SoCs are still susceptible to
these types of attacks and that they remain a valid area of research.

2.2 RISC-V

RISC-V is an open-standard instruction set architecture (ISA) that is widely used
in microcontrollers and other devices with embedded cores. It is also gaining
significant traction as part of AI accelerators and high-performance computing
(HPC), thanks in part to major projects like the Chip Act [9], which will most likely
boost investments and development toward RISC-V chips and IP. As examples of
already deployed use cases of RISC-V in the AI and HPC sectors, we have the Meta
MTIA 2i, an AI inference accelerator that uses RISC-V cores in the processing
elements of the accelerator [10]. In Figure 2.1, we can see the internal architecture
of a single processing element, which contains two RISC-V cores.
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Fault Injection
Method Requirements Example of necessary

equipment Cost Attack
control

Clock glitching Access to internal clock, generation and introduction
of different clock waveforms.

• Oscilloscope

• Clock Fault Gener-
ator

Low Medium

Voltage glitching
Access to efficient ways of effecting the power supply,
e.g. switching two or more voltage sources to intro-
duce voltage shapes.

• Oscilloscope

• Voltage Fault Gen-
erator

Low Low

Electromagnetic
Fault Injection

Electromagnetic pulse shape generation at desired
location on chip.

• Electromagnetic
probes

• Probe positioning

• Pulse Generator

• Oscilloscope

Medium /
High

Medium /
High

Laser Fault Injec-
tion

Chip decapsulation and high precision laser spot gen-
eration.

• XYZ Table

• Oscilloscope

• Laser Control

• Laser Source

High High

Table 2.1: Overview of fault injection methods, requirements, and typical equip-
ment.

Figure 2.1: Meta MTIA 2i PE architecture [10]
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2.2.1 Base ISA and extensions
RISC-V adopts strongly RISC-oriented design principles, allowing it to be imple-
mented, modified, or extended by anyone without license requirements. Modularity
is at the core of the ISA, consisting of a base set that can be extended with
special-purpose, custom, and standard extensions.

The base ISA is identified by the 64-bit RV64I and 32-bit RV32I variants, with
support for reduced versions such as RV32E and RV32C. The E variant reduces the
number of registers, while the C (compressed) extension supports 16-bit instruction
variants.

On top of this base, a wide range of standard extensions can be added: M
(Integer Multiplication and Division), A (Atomic Instructions), F (Single-Precision
Floating-Point), D (Double-Precision Floating-Point), Q (Quad-Precision Floating-
Point), L (Decimal Floating-Point), C (Compressed Instructions), B (Bit Ma-
nipulation), J (Dynamically Translated Languages), T (Transactional Memory),
P (Packed-SIMD/DSP), V (Vector Operations), and Zicsr/Zifencei (Control and
Status Register and Instruction-Fetch Fence support). There are also special-
ized extensions such as H (Hypervisor), K (Cryptography), and N (User-Level
Interrupts).

2.3 Architectural Simulators
In this section, the available architectural simulators on the market are described,
motivating the choice of gem5 as the target for development.

Architectural simulators are critical tools in computer architecture research,
providing a controlled and repeatable environment to evaluate new designs, validate
performance measures, and study complex hardware–software interactions. These
simulators vary in their level of abstraction, accuracy, and supported platforms,
ranging from fast functional emulators to cycle-accurate full-system models. Below,
we summarize several widely used simulators relevant to modern processor and
system-level research.

gem5 The gem5 simulator [11] is one of the most widely adopted in computer
architecture research. It is a modular, flexible, and open-source platform that
supports detailed modeling of processor cores (both in-order and out-of-order),
memory hierarchies, and interconnects. gem5 supports multiple ISAs, including
x86, ARM, RISC-V, and MIPS. It can operate in either system-call emulation or
full-system mode, allowing real operating systems to be executed. Its extensibility
and accuracy make it the de facto standard for studies on microarchitecture, cache
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hierarchies, and heterogeneous systems. In addition, it is highly extendable and
relatively well-documented, making it an optimal choice for custom solutions or
extensions.

Simics Simics is a commercial full-system simulator developed by Intel (originally
by Wind River)[12]. Unlike cycle-accurate simulators, Simics focuses on determin-
istic and high-performance functional simulation of complete hardware platforms,
including processors, peripherals, and networks. It is particularly valuable for
pre-silicon software development, system validation, and large-scale debugging.

SPIKE SPIKE is the RISC-V ISA simulator [13]. It can perform full-system
simulation or proxied emulation through HTIF/FESVR. It supports the RISC-V
base ISA and RV32IMAFDQCV extensions, privileged specifications, and single-
step debugging. Unlike cycle-accurate simulators such as gem5, SPIKE focuses on
functional simulation of RISC-V processors, serving as a reference implementation of
the ISA specification. Due to its strict adherence to the ISA, SPIKE is widely used
for verification and compliance testing, ensuring that hardware implementations
and toolchains (compilers, assemblers, debuggers) conform to the RISC-V standard.
Although it does not model microarchitectural details such as pipelines, caches,
or timing, its simplicity and correctness make it useful for early development,
debugging, and validation of RISC-V-based systems.

2.4 gem5
This section explains the details of the internal structure of gem5, from the simula-
tion modes to the internal programming concepts like SimObjects. The following
paragraphs will be key to understand the reasoning behind InjectV structure and
the design choices.

gem5 provides four interpretation-based CPU models: a simple one-CPI CPU, a
detailed in-order CPU model, a detailed out-of-order CPU model, and a KVM-based
CPU that uses virtualization to accelerate simulation. These CPU models use a
common high-level ISA description. The module focuses on the detailed in-order
CPU to simplify analysis of the results against the test code, but is interoperable
with all CPU models.

gem5 also includes a detailed event-driven memory system, including caches,
crossbars, and a DRAM controller model, that is capable of simulating current
memory types. This subsystem is fully configurable and modifiable in order to
define custom cache hierarchies and heterogeneous memories.
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Furthermore, gem5 supports a series of ISAs, including Alpha, ARM, SPARC,
MIPS, POWER, RISC-V, and x86. Our target in this module is the RISC-V
architecture. Porting the fault injector module to other architectures would be
possible, keeping in mind the register layout and limits.

Figure 2.2: gem5 internals [14]

Continuing with its capabilities, gem5 supports the simulation of many-core
systems; however, the limits depend on the chosen ISA. These capabilities are part
of one of the two modes of operation of the gem5 simulator.

2.4.1 Operations modes

Syscall-emulation mode

In syscall-emulation mode, there is no OS image to boot, as the simulator itself
emulates the operating system. SE mode ignores the timing of many system-level
effects, including system calls, TLB misses, and device accesses.

10
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Figure 2.3: gem5 components [11]

Full-System Mode

Full-system mode (FS) can boot a full-fledged Linux-based operating system. After
booting, the guest can execute the application used to test the configuration.

2.4.2 Simulation Scripts

To configure the simulated system, gem5 relies on Python configuration files, where
it is possible to define the ISA, memory hierarchy, number of cores, memory sizes,
mode of operation, and type of CPU. Furthermore, from these files it is possible to
specify the kernel to be booted, along with the bootloader and disk image. After
configuration, the simulator can be initialized and started. These scripts are fed
to the compiled gem5 runtime, which initializes the system objects and starts the
simulation. At the end of the run, gem5 outputs various statistics that contain
information about the completed simulation. Some of these include:

11



Background : State of the art

• Number of ticks: the basic unit of measurement representing a single simulated
time instant (e.g., a single clock cycle);

• Duration of the simulation;

• Number of instructions executed;

• Other architecture-specific metrics, such as cache misses and hits, TLB misses
and hits, memory accesses, and disk accesses.

In the output folder, full instruction traces can also be found if the run is
executed with –debug-flags=ExecAll –debug-file="<path-to-file>". These files are
usually very large, as they contain all executed instructions for both the operating
system and the binary running on the guest. This can complicate analysis of the
program’s behavior under test, but filtering is possible thanks to gem5’s ability to
import kernel code symbols, allowing extraction of traces that exclude kernel code.

2.4.3 Interaction Between Guest and Simulator
gem5 provides an API for interaction between the guest and the simulator itself.
The main tool for interacting with this API is the m5 utility, which is capable
of sending commands to gem5 from within the guest. Some of the most useful
commands that can be sent are:

• exit: Stops the simulation.

• resetstats: Resets simulation statistics.

• dumpstats: Saves simulation statistics to a file.

• dumpresetstats: Same as dumpstats.

• checkpoint: Creates a checkpoint.

• readfile: Prints the file specified by the configuration parameter system.readfile.
This is how the rcS files are copied into the simulation environment if they
are not already included in the image.

• switchcpu: Causes an exit event of type “switchcpu,” allowing the Python
configuration to switch to a different CPU model if desired.

• workbegin: Causes an exit event of type “workbegin,” which can be used to
mark the beginning of a region of interest (ROI).

• workend: Causes an exit event of type “workend,” which can be used to mark
the end of an ROI.

Some of these commands will be used later in the testing setup for InjectV.
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2.4.4 Checkpoints
Due to the inherent slowness of the simulator, especially in FS mode, when using
the TIMING CPU model, which is more accurate than the SIMPLE CPU model,
the runtime required to boot a full Linux image and load the environment tools can
range from several minutes to several hours, depending on the operating system
being booted and the hardware of the host machine. We will examine some of
these runtime figures in the results chapter.

To overcome this speed limitation, a very useful tool for repeated runs or for
simulating applications after the OS has booted is checkpointing. This feature
allows the complete state of the simulation to be saved in a checkpoint file, which
can later be restored. The restore process restarts the simulation from the tick
time at which it was stopped.

This is particularly useful to skip the boot process entirely (after the first
simulation run), which is typically slow due to the initialization subsystem and the
final stages of the bootloader. After the initial checkpoint is saved post-boot, done
by inserting the m5 checkpoint command at the start of the rcS file, so it executes
just after system initialization, the simulator can be restarted any time (even with
a different workload) and rerun from just after the complete Linux boot.

2.4.5 ThreadContext
ThreadContext is the external interface to all the state of a thread, for anything
outside the CPU model. It provides accessor methods to state that might be needed
by external objects, ranging from register values to kernel statistics. In our specific
case, it exposes methods such as getReg() and setReg(), which enable direct access
to register values.

2.4.6 Event-Driven Programming Model
gem5 is an event-driven simulator. In this model, each event has a callback function
responsible for processing the event when it is triggered. Whenever an event is
fired, the simulator calls the defined callback function to execute it.

Scheduling of events can be done in two ways:

• Before the simulation starts: using the startup() call. Inside its body, events
can be scheduled with the schedule(<event>, <tick>) function. This allows
all events to be scheduled before the simulation starts, setting triggers for
them in advance.
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• Dynamically during simulation: a first event can be scheduled in the startup()
function, and subsequent events can be scheduled within the callback of
the previous event. This allows successive events to be scheduled based on
conditions that are not known at the start of the simulation, providing greater
flexibility.

2.4.7 SimObjects
Almost all objects in gem5 are SimObjects, which represent physical components
and can be specified and instantiated in the configuration file. For example, a
ClockedObject is a superset of SimObject that adds a clock and functions to interact
with it (e.g., nextCycle, clockEdge) in relation to ticks, which are the base unit of
time in the simulation.
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Chapter 3

InjectV

InjectV is the proposed gem5 module that provides support injecting register
transient faults in full-system simulations based on the RISC-V architecture. To
better understand the reasoning behind the design choices, the following section
analyzes the architecture of gem5 and how it can be extended.

Currently, InjectV focuses on transient single and multi-bit faults in the registers.

3.1 Why RISC-V
The target architecture is RISC-V because, upon reviewing the available fault
injectors for gem5, there was no support specifically for the RISC-V ISA. Fault
injection modules for other architectures exist; for example, projects like GemFI
[15] support x86, ARM, and Alpha. There is also gem5-MARVEL, which is a much
more complex framework that primarily focuses on heterogeneous systems.

3.2 Architecture
The two fundamental components of InjectV are the gem5 module FaultInjector
and the CampaignManager.

3.2.1 FaultInjector Module
The gem5 module is responsible for:

• Parsing the fault settings and the mode of operation defined by the runners
in the CampaignManager.

• In Precise mode: mapping register names to actual RISC-V gem5 registers
and checking bit indices for bounds.
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• In Random mode: generating random fault locations and bit indices according
to the settings provided by the caller.

• Reverse-mapping register names and register IDs for both modes.

• Preparing, planning, and executing the faults defined by the CampaignMan-
ager.

Below we show the flow of a fault from its definition in the CampaignManager
to execution in the gem5 FaultInjector module.

For CPU state access, the FaultInjector uses the ThreadContext interface, which
provides the ability to inspect and modify the state of the running CPU model.
Register reads and writes are the two operations used by the FaultInjector ’s flipBit()
method to inject faults.

Figure 3.1: FaultInjector class

The creation of the FaultInjector object (which inherits from SimObject) is a two-
step process. The simulation script (written in Python) creates a Python wrapper
object for the underlying C++ class and calls the C++ FaultInjector constructor
with the provided parameters. From that point onward the implementation is in
C++. One of the constructor parameters specifies the mode (0 = Random mode,
1 = Precise mode). This choice affects the number of parsed parameters and the
code paths used to process the faults to be injected. In particular:
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Random mode

When the mode is set to Random, the constructor calls the internal method
faultListBuilder(), which, given the parameters for the run, generates a list of
RegisterFault objects. faultListBuilder() uses an internal random generator, which
can be seeded externally via the FaultInjector constructor, to select the target
register and the bit index for each fault injection. The current version of InjectV
uses a uniform distribution.

The random generator produces an integer representing a flat register index,
this index is mapped to a real RISC-V register in gem5 by the function mapGlob-
alIndexToReg(). That function translates the flat index used by the generator to
the corresponding register (selected from the integer and floating-point register
classes in gem5’s RISC-V ISA implementation). After translation, the fault tick
time, the bit index, the fault width, and the resulting register are packed into a
RegisterFault object.

The list of RegisterFault objects produced by faultListBuilder() is then passed
to the startup() method, which creates the FaultEvent objects and schedules them
for execution with schedule() [16]. The startup() function is called by the gem5
simulator when the simulation begins, it prepares the SimObjects and schedules
their associated events.

Precise mode

In Precise mode, the FaultInjector calls preciseFaultListBuilder(). Unlike fault-
ListBuilder() in Random mode, preciseFaultListBuilder() uses explicit parameters
supplied to the FaultInjector constructor, no parameters are randomly generated.
This method calls mapNameToRegId(), which maps a register name string (e.g. x12,
f5) to the corresponding register ID that gem5 methods can use. If the constructor
parameter num_faults is greater than one, the RegisterFault entry is copied with
the specified parameters and the tick target is incremented appropriately to repeat
the same fault at regular intervals. The resulting RegisterFault list is processed the
same way as in Random mode.
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Fault execution

Figure 3.2: FaultInjector fault execution

As shown in Figure 3.2, the planned FaultEvent objects are stored in the event
queue. The gem5 main simulation loop calls serviceOne() at each iteration, which
extracts and processes the first event in the queue. Processing an event invokes the
class’s process() method, every class that inherits from SimObject implements this
interface to generate or handle events. In our case, FaultInjector::process() calls
the internal function executeFault().

executeFault() performs the bit flip. Depending on the fault width, it calls either
flipBit() for single-bit injections or flipMultiBit() for multi-bit injections. Both
methods operate similarly: they obtain the current value of the target register via
the ThreadContext interface (using getReg()), construct an appropriate mask for
the bit flip, XOR the mask with the register content, and write the updated value
back using ThreadContext::setReg(), which updates the gem5 CPU object state.

This process is repeated for all FaultEvent objects scheduled during the prepa-
ration phase.
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3.2.2 CampaignManager

The CampaignManager is responsible for the interface with the user and exposes
different modes and settings to define, plan, and execute testing campaigns. The
tool can launch five modes:

• Prepare mode: This loads the user-defined boot image, kernel, and bootloader,
runs until the first user-defined checkpoint (for example, just after boot),
creates a checkpoint, and returns. This is used to prepare the system for
testing runs and speeds up simulation, as the boot process is usually the
slowest. The checkpointing after boot is based on guest-side checkpointing
defined in the init.d script. To further accelerate booting, this part of the
simulation is executed using an ATOMIC CPU.

• Golden-run mode: This mode uses the user-defined workload (which must be
loaded in the specified disk image), restores the previously made checkpoint,
and runs until the workload is completed. This run is used to determine the
baseline timing for the simulation (used later to define timeouts for successive
simulations). Furthermore, if enabled, this mode runs the simulation with
the debug flag ExecAll, exporting the entire run trace to a file. By manually
passing the generated trace to the debugTrace.py script, the trace is parsed
and the user-specified function entry point is identified, enabling specific tick
targeting for precise testing.

• Random-campaign mode: As the name suggests, this mode launches a random
fault injection campaign, leveraging the random mode of the FaultInjector
module. Parameters such as the number of faults per run, number of bits
per fault, delays between faults, number of parallel runs, and total number
of runs can be specified. After each simulation, the run output is processed
to determine the outcome. This process is customizable by defining custom
AttackParsers tailored for each tested binary.

• Precise-campaign mode: This mode runs the FaultInjector in precise mode,
taking the fault plan from a file. Multiple fault patterns can be tested in a
single campaign. The outcome is handled in the same manner as in random-
campaign mode.
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3.2.3 Flowgraph

Figure 3.3: Precise campaign mode

Fault flow for the precise campaign mode is as follows:

1. Faults are defined in the fault plan file, each line tells InjectV to create a
simulation with those parameters, that are:

• Number of faults to insert: this drives the number of consecutive faults,
delayed by Delay each one with the same values as the one described by
this line in the fault file.

• First delay: this sets the delay of the fist injection from the specified
tick time

• Tick time: this defines the moment where the fault will be injected, if the
faults are multiple then the second fault will be injected at Tick Time +
Delay where delay is the next parameter.

• Delay: this as mentioned just above is the interval between insertions.
• Register target: used to define where the fault will be injected.
• Bit index target: bit target for the bit-flip, in case of multiple bits fault,

this is the first bit, the others will be on the left, until register boundary.
• Fault width: drives the amount of bits that are faulted, will be truncated

when going over the register boundary

2. The fault file is parsed and the number of runs defined in the tool are set up,
each with the defined faults.
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3. For each run, the fault list is sent to the simulation script, which takes these
as input parameters.

4. The simulation script creates the FaultInjector object with the input param-
eters, mapping the register name to the actual register index for gem5 and
checking bit boundaries.

5. The simulation is started, restoring from the checkpoint after boot that has
been created previously.

6. The startup() function is called, setting the triggers for the defined faults and
the parameters for the faults to be executed.

7. The simulator starts executing. When it reaches the planned tick where the
FaultEvent is scheduled, it executes the faultExec() function. This function
retrieves the specified register value from the ThreadContext, XORs the
content with the mask defining the bits to flip, and then writes back the
modified register content using the ThreadContext.

8. Execution continues until one of two things happens:

• Simulation concludes and stops: the binary executed and reached the
simulation exit. The outcome of the finished execution is classified later.

• Simulation hangs: this is checked by the CampaignManager, which assigns
each gem5 process a timeout proportional to the time of the golden run.
If the simulation process reaches the timeout, it is terminated and the
outcome is recorded as HANG.

9. If the execution completed, the outcome is determined based on a user-provided
script, which analyzes the terminal output of the simulation to classify the
program as:

• CRASH: if, for example, a kernel panic occurred or the binary crashed
but the simulation ended.

• NO_EFFECT: if the fault was correctly injected but the program
outcome did not change.

• SUCCESS: if the fault was injected and the binary oracle indicates that
the attack was successful.

10. Stats are generated from the campaign, highlighting the successful injections
that generated attacks, and the distribution of the faults injected.

21



Chapter 4

Testing and Results

To verify the functionality of InjectV and to demonstrate its capabilities, we created
the following demonstration. The demonstration architecture is intended to mimic
a typical InjectV use case, highlighting the steps and procedures required to set
up the experiment and collect results. Because the primary goal of the simulator
is to emulate a real-world physical fault-testing campaign, the objectives of the
simulated campaign closely match those of an actual campaign.

The necessary steps in the campaign are:

1. Select the test target: In this case we use two versions of VerifyPIN;
more details follow below.

2. Prepare the image: Because the gem5 simulator boots Linux, we prepare
the disk image, the compiled kernel, and the bootloader so the test target can
be booted and executed.

3. Identify timing and triggers. Determine the timing of the code sections
to be tested and the triggers for those sections. In our case we identify
function entry points and the execution time of individual instructions using
the debugTrace script (see Section 4.1.3).

4. Create the fault plan(s): Define the fault-injection plan(s) that will drive
the simulations and the injections.

5. Set up outcome parsers: Each binary produces different terminal outputs
that correspond to different exit states; for example, a binary that performs au-
thentication will emit a confirmation string on success. Parsers are configured
to capture those outputs.

6. Run the simulator: Execute the simulator with the selected fault plan and
mode.
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7. Analyze results: Interpret the statistics and logs generated by the tool.

4.1 Testing setup
This section describes the components needed for the evaluation.

4.1.1 VerifyPIN
As mentioned earlier, the chosen test program for the capability evaluation of
InjectV is VerifyPIN, this binary is part of the FISSC collection. The FISSC col-
lection [17] is the Fault Injection and Simulation Secure Collection, a collection of C
codes with countermeasures against fault injections associated with attack scenarios.

From this collection, we focused our analysis on the VerifyPIN program, which
mimics a card PIN verification routine. In the FISSC there are seven versions of the
VerifyPIN program. These versions differ in the types of hardening that are in place.

Version HB FTL INL BK SC DT
v0 No No No No No No
v1 Yes No No No No No
v2 Yes Yes Yes No No No
v3 Yes Yes Yes Yes No No
v4 Yes Yes Yes Yes Yes No
v5 Yes Yes Yes Yes No Yes
v6 Yes Yes Yes Yes No Yes
v7 Yes Yes Yes Yes Yes No

Table 4.1: FISSC VerifyPIN versions and their applied hardenings. HB: Hardened
Booleans, FTL: Fixed-Time Loop, INL: Inlined Calls, BK: Backup Copy, SC: Step
Counter, DT: Double Test.

The VerifyPIN program is divided into three main functions: initialize(),
verifyPIN(), and oracle(). The initialize() function creates two PINs that
are deliberately different so that a normal execution results in a failed authentica-
tion. The verifyPIN() routine performs the verification; this is the component
that varies across versions, we discuss the two chosen versions in detail later. Finally,
oracle() triggers the oracle based on the program outcome.

The oracle is not strictly necessary when using the attackParser script, since
the parser directly checks the program outcome; therefore the oracle would be

23



Testing and Results

redundant for our tests. All tests reported here use the default authentication
oracle. There are two oracle types:

• auth oracle checks if at the end of the execution the result is g_authenticated
= 1, that means that authentication has been bypassed and no countermeasure
was triggered.

• ptc oracle checks if at the end of the execution the result is g_ptc>= 3, that
means that the try counter has been manipulated, as from a normal execution,
as we can see from Appendix 6.1 on line 31, g_ptc is decremented.

Table 4.1 are listed all the VerifyPIN versions from the v0 that has no hardenings
all the way to v7 that is the most hardened and secure.

For the testing phase of InjectV we focus on version 0, the base one without
hardenings, and version 4, which introduces hardened bools, a fixed-time loop,
inlined functions, PTC decremented first, PTC backup, and a loop counter.

VerifyPIN_0

VerifyPIN_0 splits the main verifyPIN function in two, separating the byteArray-
Compare() function that is responsible for the comparision of the two pins, byte
by byte. This returns 1 only if all the bytes of the pins match. Following Listing
6.1 on Appendix 6.1 we can examine the rest of the function body of verifyPIN,
notable section are the reset and decrement of the g_ptc counter that is reset to
the start value of 3 in case of successful pin comparison, and decremented whenever
the comparison fails.

VerifyPIN_4

VerifyPIN_4, full code is in Appendix 6.2, presents the following hardenings :

• Hardened Booleans: to prevent vulnerabilities where a single-bit fault could
invert a logical value, booleans are encoded using values with the maximum
Hamming distance, making it extremely difficult for a single fault to change
True into False (or vice versa).

• Fixed-Time Loop: ensures that the PIN verification process always takes
the same number of iterations, regardless of when a mismatch is detected.
This prevents timing attacks that could reveal information based on execution
time.

• Inlined Calls: all function calls are inlined to eliminate call/return instruc-
tions that could be exploited by instruction-skipping or fault-injection attacks
targeting control-flow changes.
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• Backup Copy: critical variables (such as the tries counter and loop counters)
are stored in redundant backup copies. These are checked for consistency
during execution to detect and mitigate transient faults.

• Step Counter: a dedicated counter keeps track of the number of executed
steps or iterations, allowing the program to detect anomalies such as skipped
instructions or early termination caused by fault injection.

As we can see in listing 6.2 in this version the byteArrayCompare function
is embedded in the code and not in a separate function. After that the g_ptc
decrement is not vulnerable as is backed up and not isolated ad the end of the
verification.

4.1.2 Image configuration
The VerifyPIN binary was loaded into a custom disk image built with RootFS as
the base, disabling the TC module to reduce size and initial boot times. For basic
utilities, we used BusyBox. The kernel used was Linux 6.8, compiled with defconfig
as a base, and OpenSBI 1.3.1 was used as the bootloader, configured to bootstrap
the vmlinux. After creating the disk with an Ext2 file system, the VerifyPIN binary
was inserted and called from the init.d scripts to allow automatic execution at
boot.

To skip the boot process for subsequent runs, the init script was structured as
follows:

1. The kernel boots and executes the init rcS script. The first instruction echoes
the full boot and immediately calls the m5 utility to create a checkpoint and
stop the simulation.

2. When the checkpoint is restored, the init script execution resumes. The next
instruction calls the VerifyPIN binary.

3. After the VerifyPIN binary execution completes, the m5 utility exit command
is executed, terminating the simulator.

4.1.3 Fault plan
We have prepared two fault plans, one for random injections that will use the
Random mode of InjectV, this plan will target generally the VerifyPIN binary, and
a run with custom tailored fault file for the precise mode.
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Random campaign

For the random campaign 4 different injection point have been choosen for each of
the versions on VerifyPIN.

For v0 the injection points are :

• main: positioned at the start of the main function of the binary.

• verifyPIN: positioned at the start of the verifyPIN function.

• byteArrayCompare: positioned at the start of the byteArrayCompare function.

• dec_tries: positioned a couple ticks before the decrement of the tries counter
(g_ptc −−).

For v4 they are:

• main: positioned at the start of the main function of the binary.

• verifyPIN: positioned at the start of the verifyPIN function.

• byteArrayCompare: positioned at the start of the section of verifyPIN that
does the PIN comparison byte by byte function.

• verifyPIN_2: positioned a couple ticks after the pin comparison section.

Each campaign for each location was composed by 400 to 600 simulations,
depending on the location, each one with 8 faults injected with a delay of 2000
ticks between them. Each fault was 1 bit wide, the register target and the bit in
the register to target were randomly selected by the simulator. We used as starting
seed 123456789 to make the run repeatable, as the seed is linearly incremented
for each instance of the run. Considering the 8 faults per run, 4 for each version
of VerifyPIN the total amount of injected faults is 3100 simulations for a total of
24800 faults injected.

Precise campaign

Then the precise fault plan will be used for the Precise mode, in this case the objec-
tive is not general testing but is to try to prove that with only register injected faults
that cause bit flips we can stop the decrement of the g_ptc counter or infer arbitrary
values to increment the number of possible tries. The fault file used for VerifyPIN_0
is listed in listing 4.1. This fault file was redacted after the analysis of the normal
execution trace of VerifyPIN_0 4.1 compared with the compiled binary, in order to
identify the instructions responsible for the write back of the updated value of g_ptc.
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The trace of the golden run highlighted a probable placement for the injection,
as at tick 641435737000, register a4 (x14) contains the already update value of
g_ptc (2). Thus injecting a bit flip on the first bit will set the register content to
value 3.

Listing 4.1: verifyPIN_0 precise fault list file
1 1 ,0 ,641435737000 ,500 , x12 , 0 , 1
2 1 ,0 ,641435737000 ,500 , x14 , 0 , 1
3 1 ,0 ,641435737000 ,500 , x14 , 63 , 1

Figure 4.1: VerifyPIN_0 trace around the g_ptc decrement.

How to obtain the tick time of a function: To obtain the tick time where the
simulation starts executing a function, we developed a Python script debugTrace
that, given the binary to be tested and the debug trace of the golden run (obtained
by extracting the output of the –debug-flags=ExecAll run), uses riscv64-linux-gnu-
addr2line to match symbols in the binary to the tick times when they are executed
during the simulation. This script can parse the usually very large full trace file
and extract the selected function symbols contained in the binary under test.

This can also be used to obtain precise tick times for single-instruction execution
to test in tailored precise fault-injection campaigns.

4.2 Simulation execution
The tests were executed on a workstation with the following specifications: AMD
Ryzen 9 7945HX (16 cores / 32 threads), 64 GB DDR5, and a 1 TB NVMe disk.
The cumulative time for all simulations was approximately five hours, running four
parallel simulations at a time. Each individual simulation run required roughly 28
seconds.

The primary constraint on parallelism was memory usage: four concurrent runs
peaked at about 34 GB. Accounting for system caching and other services, running
four to five concurrent simulations was reasonable on this machine. With further
memory optimizations or on systems with greater memory capacity, a larger degree
of parallelism would be possible; a single run consumes about 8.5 GB at peak. CPU
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cores were not the limiting factor because gem5 simulations are single-threaded, so
a single simulation cannot be parallelized across multiple cores.

To illustrate an example InjectV run, we analyze one of the campaign setups.
Listing 4.2 shows the random campaign configuration passed to the campaign
manager. The arguments appear in the following logical order:

• run mode (here: random);

• bootloader, disk image and kernel directives (–opensbi, –disk, –kernel);

• the base checkpoint to restore from (–checkpoint-dir);

• fault-injection parameters: number of faults per run (–num-faults), delay be-
fore the first injection in ticks (–first-delay), the starting tick (–tick-start),
delay between successive faults in ticks (–delay), and number of bits per fault
(–num-bits);

• parallelism and total workload control: number of concurrent runs (–parallel)
and total number of simulations (–num-sims);

• output management: output directory prefix (–outdir-prefix) and the
golden-run output directory used for reference timing (–golden-outdir);

• and finally the seed (–seed).

Listing 4.2: InjectV random campaign setup✞ ☎
python3 ./ runner / campaign_manager .py random \

--opensbi ./ image/ fw_jump .elf \
--disk ./ image/ riscv_disk \
--kernel ./ image/ vmlinux \
--gem5 ./ gem5/build/RISCV/gem5.opt \
--checkpoint -dir test_run / verifyPIN_0 / boot_checkpoint \
--num - faults 8 \
--first -delay 100 \
--tick -start 641434903000 \
--delay 2000 \
--num -bits 1 \
--parallel 4 --num -sims 400 \
--outdir - prefix test_run / verifyPIN_0 / random_main \
--golden - outdir test_run / verifyPIN_0 / m5out_golden / \
--seed 123456789✝ ✆
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4.3 Results

This section will contain the summary of the result from the simulations and for the
resulted successful injections, the ones that generate an attack on the two binary
versions.

4.3.1 Random campaign

In this section are presented the results from the random campaign, with detailed
results for each of the injection points for VerifyPIN_0 and VerifyPIN_4. Each
table has the counts for the occurrences for the observed outputs, classified based
on the outcome.

VerifyPIN_0

In this section are presented the detailed results coming from the 4 random
campaigns that have been illustrated before.

Table 4.2: v0 main results

v0 main count
crash
seg_fault 92
illegal instruction 3
no_effect
[@] g_countermeasure = 0, g_authenticated = 0, g_ptc = 2 290
countermeasure
[@] g_countermeasure = 3, g_authenticated = 0, g_ptc = 0 1
other
[@] g_countermeasure = 0, g_authenticated = 0, g_ptc = 0 14

The main campaing resulted in 95 crashes, 290 runs that had no effect and the
program output remained the default one, one case where the countermeasure is
reported as a number that should not be normally possible and, the tries counter
is zeroed.
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Table 4.3: v0 verifyPIN results

v0 verifyPIN count
crash
seg_fault 31
no_effect
[@] g_countermeasure = 0, g_authenticated = 0, g_ptc = 2 369

The verifyPIN campaign resulted in just crashes in 31 cases and 369 no_effect.

Table 4.4: v0 byteArrayCompare results

v0 byteArrayCompare count
crash
seg_fault 82
no exec 1
no_effect
[@] g_countermeasure = 0, g_authenticated = 0, g_ptc = 2 496
success
[@] g_countermeasure = 0, g_authenticated = 1, g_ptc = 3 18
other
[@] g_countermeasure = 0, g_authenticated = 0, g_ptc = 0 3

For the byteArrayCompare function campaign we have 83 crashes, of those 1
returns no binary output. In the other non crashed instances we have we have a
successful injection that produces an attack, for our testing and InjectV features
an attack is a case where the program returns that the authentication is 1 and the
countermeasure are not triggered (g_countermeasure = 0 ).

Table 4.5: v0 dec_tries results

v0 dec_tries count
crash
seg_fault 54
no exec 2
no_effect
[@] g_countermeasure = 0, g_authenticated = 0, g_ptc = 2 441
success
[@] g_countermeasure = 0, g_authenticated = 0, g_ptc = 34 2
other
[@] g_countermeasure = 0, g_authenticated = 0, g_ptc = -126 1
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For the dec_tries test we have two ghost executions, 441 no_effects 2 successful
attacks as two runs managed to increase the try counter path the original 3 value.
The run that produces the negative number as try counter is labeled as other,
even though due to the initial check in the code of verifyPIN function, returns
immediately if the number of tries is negative. Going deeper on the two successful
runs we can analyze the InejctV FaultInjector log to see where the fault was
injected.

1 641831922100: board . f a u l t e r : I n j e c t i n g f a u l t at t i c k
641831922100: reg=i n t e g e r : i n t e g e r [ 1 5 ] b i t=5 numBits=1

2 641831922100: board . f a u l t e r : Current r e g i s t e r content : 3
3 641831922100: board . f a u l t e r : Updated r e g i s t e r content : 35

If we observe the above listing we can see that the target register was the int
register number 15, the content when the register is read was 3 and the result with
the applied bit flips is 35. Due to the fact that binary returned 34 as the tries
counter status, this means that the fault was injected when the g_ptc value is read
from memory, hence the "Current register content: 3". Then the bit is flipped and
the value is then decremented.

VerifyPIN_4

For v4 we have to keep in mind that due to the now implemented boolean hardening,
false will be 0x55 and true will be 0xaa, this is useful to read some of the tables to
better understand the results.

Table 4.6: v4 main results

v4 main count
crash
seg_fault 91
illegal_instr 2
Aborted (fatal glibc error) 1
no_effect
[@] g_countermeasure = 0, g_authenticated = 55, g_ptc = 2 291
countermeasure
[@] g_countermeasure = 3, g_authenticated = 55, g_ptc = 84 1
[@] g_countermeasure = 85, g_authenticated = 55, g_ptc = 0 2
other
[@] g_countermeasure = 0, g_authenticated = 55, g_ptc = 0 12

For v4 main we have 94 crashes, 291 case where the fault did not result in
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change in the behavior of the binary output. Then we have two different variants
where the countermeasures report random values, and the tries counter has also
variations.

Table 4.7: v4 verifyPIN results

v4 verifyPIN count
crash
seg_fault 49
no_effect
[@] g_countermeasure = 0, g_authenticated = 55, g_ptc = 2 329
countermeasure
[@] g_countermeasure = 1, g_authenticated = 55, g_ptc = 2 20
success
[@] g_countermeasure = 0, g_authenticated = 55, g_ptc = 3 2

In v4 verifyPIN runs, the crashes are all due to segmentation faults, the
no_effect are 329. They are them followed by 20 instances where the countermeasure
is triggered but no authentication is done. And then most notably, 2 instances
where the countermeasures are not triggered, the authentication is not done but
the tries counter is reset to 3. This can enable brute-force attacks to guess the
PIN. Further analysis is needed on the run outcome to identify the root cause that
enabled the fault injection to bypass the double check on the g_ptc counter, that
would have prevented the reset to the original value of 3.

Table 4.8: v4 byteArrayCompare results

v4 byteArrayCompare count
crash
seg_fault 39
no_effect
[@] g_countermeasure = 0, g_authenticated = 55, g_ptc = 2 356
countermeasure
[@] g_countermeasure = 1, g_authenticated = aa, g_ptc = 3 1
[@] g_countermeasure = 1, g_authenticated = 55, g_ptc = 2 4

For the injections in byteArrrayCompare section we have 39 segmentation faults,
356 that produces no variation of the output. After those we have 1 run where the
authentication is successful but the countermeasures are triggered. The 4 remaining
ones triggered countermeasures but did not produce any successful authentication.
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Table 4.9: v4 verifyPIN_2 results

v4 verifyPIN_2 count
crash
seg_fault 38
no_effect
[@] g_countermeasure = 0, g_authenticated = 55, g_ptc = 2 326
countermeasure
[@] g_countermeasure = 1, g_authenticated = aa, g_ptc = 3 1
[@] g_countermeasure = 1, g_authenticated = 55, g_ptc = 2 35

Lastly we have the results from the campaigns on the second insertion point
in verifyPIN. This resulted in 38 segmentation faults and 326 that produced no
variation. The rest of the runs resulted in activations of the countermeasures.

Here follows the summary table with the general statistics for the VerifyPIN_0
campaigns.

Table 4.10: v0 overall statistics

Category Count Percentage (%)
crash 265 13.9
no_effect 1596 84.0
countermeasure 1 0.05
success 20 1.1
other 18 0.9
Total 1900 100.0

And here the one for the VerifyPIN_4 campaigns.

Table 4.11: v4 overall statistics

Category Count Percentage (%)
crash 220 13.8
no_effect 1302 81.4
countermeasure 64 4.0
success 2 0.1
other 12 0.8
Total 1600 100.0

Overall we can see the on both the versions the faults generated no observable
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difference in the binary output, crash figures remained somewhat consistent between
the tho binary versions. But countermeasures triggers where much more present in
the v4 version, this has to be expected due to the presence of the hardenings. Also
based on this we can observe the drastically reduced number of successful attacks,
that went from 20, in v0, to 2 in v4.

Precise fault campaigns

VerifyPIN_0 The precise campaign using the fault file 4.1 produces the following
simulation output:

Figure 4.2: VerifyPIN_0 precise campaign results

In particular, run number 2 (corresponding to line 2 of the fault file 4.1)
produced the expected outcome, restoring g_ptc to 3. In practice, if an attacker
can consistently inject this fault, they can effectively brute-force the PIN, gaining
unlimited attempts without triggering the countermeasures.

VerifyPIN_4 From the limited analysis done on the VerifyPIN_4 binary we
were not able to identify a feasible attack path with a single fault injection, or a
number of fault injections with the same parameters during the execution. Because
of the structure of version 4, locating a fault injection point that bypasses the
g_ptc decrement is extremely hard with our current modeling capabilities, or would
require substantially longer simulations to exhaust the search space of possible
fault locations and timings.

Building from the successful injection run observed in the random campaign
would require developing accessory tools that can instrument the code and compare
the full execution trace of the single run to the golden run. To implement this we
would need to introduce alternative solutions for full trace collection, as full traces
require considerable storage space, the golden run trace was around 7GB in size,
meaning that saving all traces is not possible. More conceptualization work has to
be done on this front.

Regarding the precise fault injections, due to the current limitation of InjectV,
in precise mode, only faults with the same parameters can be run at intervals; we
cannot insert two or more faults with different parameters at different temporal
locations in the precise mode.
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Chapter 5

Conclusions and Future
Work

This chapter discusses the main takeaways of this work and outlines possible future
developments to advance it further.

5.1 Main Takeaways
As described in the previous chapters, there are many classes of fault injection
techniques. Each presents subtle differences in operating procedures, available
instrumentation, current technology, and manufacturing processes that can influ-
ence the outcomes of testing scenarios. Combined with the growing importance of
security-related testing, where attack complexity can be immense and hardware
complexity increases exponentially as technology evolves, this highlights the need
to find alternatives for the initial stages of product development that do not rely
on direct access to hardware.

Creating, managing, and instrumenting hardware-based testing platforms can
be extremely expensive, as they require specialized equipment and strict procedures
to ensure reliable testing mechanisms for product evaluation. In cases where only
software testing or limited types of injection scenarios are needed, simulated testing
environments can be beneficial, especially due to their speed and relatively low
effort requirements.

Projects like InjectV provide a fast prototyping solution for testing software
against different classes of injections, allowing researchers to study their effects on
software. In particular, InjectV’s current focus on register-based injection makes it
a valuable tool for analyzing the impact of such injections without the need for a
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full hardware platform. Furthermore, its extensibility and configurability, features
inherited from gem5, can be instrumental in adapting it for comprehensive security
testing pipelines on a larger scale.

In addition to its extensibility and configurability, InjectV also positions itself
as a relatively easy-to-use teaching tool for demonstrating the effects of injections
on software running on RISC-V. This makes it useful for introducing hardening
techniques for both embedded and non-embedded code, forming a foundation for
enhancing software robustness against various classes of injections.

5.2 Future Developments
By correlating practical physical injections with the feature set of InjectV, we can
identify several necessary additions that would greatly expand its capabilities and
the range of possible testing. A primary enhancement would be adding the ability
to target memory for injections. This would enable testing memory reliability
and examining the effects of software behavior on unreliable memory. The gem5
interfaces can support this by applying the same base concept used in the current
version of InjectV, using SimObjects for planning and execution. By combining
gem5’s internal API with precisely placed hooks into the memory subsystem, it
would be possible to issue timed memory reads and writes, effectively simulating
fault injections in memory objects. Consequently, this also opens the possibility of
inserting hook points in the cache. These additions would significantly expand the
capabilities of InjectV, enabling diverse fault models and allowing the simulation
of more complex scenarios and injection workflows.

One aspect to consider is that even with these additions, InjectV would still
be limited to injecting faults at the ISA level, meaning it cannot simulate cases
where faults occur within the processor’s control logic. However, recent literature
presents other projects that, starting from RTL-level simulations, allow exploration
of this type of injection.

Even with these limitations, InjectV provides an extensible and efficient frame-
work for testing software against fault injection campaigns.
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Chapter 6

VerifyPIN

6.1 VerifyPIN_0

Listing 6.1: verifyPIN_0 code body
1 extern SBYTE g_ptc ;
2 extern BOOL g_authenticated ;
3 extern UBYTE g_userPin [ PIN_SIZE ] ;
4 extern UBYTE g_cardPin [ PIN_SIZE ] ;
5

6 #i f d e f INLINE
7 __attribute__ ( ( a lways_in l ine ) ) i n l i n e BOOL byteArrayCompare (UBYTE∗ a1

, UBYTE∗ a2 , UBYTE s i z e )
8 #e l s e
9 BOOL byteArrayCompare (UBYTE∗ a1 , UBYTE∗ a2 , UBYTE s i z e )

10 #e n d i f
11 {
12 i n t i ;
13 f o r ( i = 0 ; i < s i z e ; i++) {
14 i f ( a1 [ i ] != a2 [ i ] ) {
15 re turn 0 ;
16 }
17 }
18 re turn 1 ;
19 }
20

21 BOOL ver i fyPIN ( ) {
22 g_authenticated = 0 ;
23

24 i f ( g_ptc > 0) {
25 i f ( byteArrayCompare ( g_userPin , g_cardPin , PIN_SIZE) == 1) {
26 g_ptc = 3 ;
27 g_authenticated = 1 ; // Authent icat ion ( ) ;
28 re turn 1 ;
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29 } e l s e {
30 g_ptc−−;
31 re turn 0 ;
32 }
33 }
34

35 re turn 0 ;
36 }

6.2 VerifyPIN_4

Listing 6.2: verifyPIN_4 code body
1 extern SBYTE g_ptc ;
2 extern BOOL g_authenticated ;
3 extern UBYTE g_userPin [ PIN_SIZE ] ;
4 extern UBYTE g_cardPin [ PIN_SIZE ] ;
5

6 BOOL ver i fyPIN ( ) {
7 i n t i ;
8 BOOL s ta tu s ;
9 BOOL d i f f ;

10 i n t stepCounter ;
11 SBYTE ptcCpy = g_ptc ;
12 g_authenticated = BOOL_FALSE;
13

14 i f ( g_ptc > 0) {
15 i f ( ptcCpy != g_ptc ) {
16 countermeasure ( ) ;
17 }
18 g_ptc−−;
19 i f ( g_ptc != ptcCpy−1) {
20 countermeasure ( ) ;
21 }
22 ptcCpy−−;
23

24 s t a tu s = BOOL_FALSE;
25 d i f f = BOOL_FALSE;
26 stepCounter = 0 ;
27 f o r ( i = 0 ; i < PIN_SIZE ; i++) {
28 i f ( g_userPin [ i ] != g_cardPin [ i ] ) {
29 d i f f = BOOL_TRUE;
30 }
31 stepCounter++;
32 }
33 i f ( stepCounter != PIN_SIZE) {
34 countermeasure ( ) ;
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35 }
36 i f ( i != PIN_SIZE) {
37 countermeasure ( ) ;
38 }
39 i f ( d i f f == BOOL_FALSE) {
40 s t a tu s = BOOL_TRUE;
41 } e l s e {
42 s t a tu s = BOOL_FALSE;
43 }
44

45 i f ( s t a tu s == BOOL_TRUE) {
46 i f ( ptcCpy != g_ptc ) {
47 countermeasure ( ) ;
48 }
49 g_ptc = 3 ;
50 g_authenticated = BOOL_TRUE; // Authent icat ion ( ) ;
51 re turn BOOL_TRUE;
52 }
53 }
54

55 re turn BOOL_FALSE;
56 }

numpy
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