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Abstract

The advent of quantum computing poses a fundamental threat to widely deployed
public-key cryptographic algorithms, including those currently securing firmware
integrity and authenticity in embedded systems. As a result, post-quantum dig-
ital signature schemes must be investigated and integrated into critical security
mechanisms such as secure boot. This thesis focuses on evaluating the performance
and practicality of the Leighton–Micali Signature (LMS) scheme, a hash-based
post-quantum digital signature algorithm standardized by NIST and the IETF,
within the secure boot context of real-time embedded systems.
An initial comparative analysis of standardized post-quantum signature algorithms
identified LMS as a favorable candidate due to its minimal and fixed key sizes, strong
security assumptions based solely on hash functions, and relative implementation
simplicity compared to lattice-based or stateless hash-based alternatives. LMS
was then implemented in software on a Xilinx PYNQ-Z2 platform, based on the
reference code, and adapted for single-core, single-threaded execution to ensure
reproducibility and precise performance measurement.
To address the hashing bottleneck inherent in LMS signing and verification, a SHA-
256 hardware accelerator was ported to the platform and integrated through an
AXI-Lite interface. A custom Linux device driver was developed and subsequently
optimized using memory-mapped I/O to reduce per-call latency. The resulting
software–hardware co-design was benchmarked extensively across multiple LMS
parameter sets, using execution time measurements, cycle-level profiling, and
statistical analysis over 30 independent rounds per configuration.
The results show that hashing dominates LMS computation, with signature gener-
ation and key generation times scaling predictably with tree height and Winternitz
parameters. Driver optimization significantly reduced I/O overhead, and cycle-level
testbenches enabled accurate characterization of intrinsic accelerator latency. A
break-even frequency model was constructed to estimate the operating conditions
under which hardware acceleration outperforms software hashing. Additionally,
LMS performance was compared against a pre-quantum ECDSA–SHA256 baseline
to contextualize the post-quantum transition.
While the current single-accelerator implementation does not yet surpass software
performance for short messages, the study provides a rigorous and reproducible
methodology for performance evaluation and highlights clear directions for further
optimization, such as parallel hashing, DMA integration, and higher-throughput
interconnects.
This work contributes a comprehensive evaluation of LMS in an embedded secure
boot context, combining algorithmic analysis, hardware–software co-design, and



quantitative benchmarking. The findings support the viability of LMS as a practical
post-quantum signature algorithm for secure boot and establish a solid founda-
tion for future research on efficient post-quantum cryptography in constrained
environments.
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Chapter 1

Introduction

1.1 Motivation
The rapid progress of quantum computing represents a paradigm shift in the field of
information security. Once large-scale, fault-tolerant quantum computers become
available, they will be able to efficiently solve mathematical problems that underpin
the security of classical public-key cryptography, such as integer factorization and
discrete logarithms. Algorithms like RSA and ECDSA, which are widely deployed
in secure boot and firmware authentication processes, would be rendered insecure,
undermining the trustworthiness of critical embedded systems. This has prompted
the cryptographic community to design, standardize, and deploy new post-quantum
algorithms that remain secure even in the presence of quantum adversaries.
Embedded systems, and particularly automotive and industrial control units, face
unique challenges in this transition. They operate under strict real-time constraints
and limited computational and memory resources, yet their firmware must be
authenticated during each boot to ensure integrity and authenticity. Replacing
existing cryptographic primitives with post-quantum alternatives must therefore be
carefully evaluated in terms of performance, memory footprint, and implementation
complexity. In this context, selecting and integrating a quantum-safe digital
signature scheme suitable for secure boot is a critical research objective.

1.2 Objectives and Scope
The main goal of this thesis is to evaluate the performance and practicality of
standardized post-quantum digital signature algorithms within the secure boot
process of real-time embedded systems. Specifically, the work focuses on:

• Reviewing the current state of post-quantum digital signature algorithms
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Introduction

standardized by NIST and the IETF, identifying suitable candidates for
constrained embedded environments.

• Selecting the Leighton–Micali Signature (LMS) scheme as the primary focus,
based on its strong security foundations, compact and constant key sizes, and
straightforward hash-based construction.

• Implementing LMS in software on a Xilinx PYNQ-Z2 platform, adapting the
reference code for reproducible single-core measurements.

• Integrating a SHA-256 hardware accelerator via an AXI-Lite interface to
offload the hashing workload that dominates LMS signing and verification.

• Developing and optimizing a custom Linux device driver to minimize I/O
latency and improve accelerator performance.

• Conducting a comprehensive benchmarking campaign, including execution-
time analysis, cycle-level measurements, profiling, and comparison against a
pre-quantum ECDSA baseline.

Through these steps, the thesis aims to characterize the performance of LMS in a
realistic embedded setting and to explore how hardware–software co-design can
mitigate the computational overhead of post-quantum schemes.

1.3 Methodology Overview
The methodology combines algorithmic analysis, embedded software implementa-
tion, FPGA-based hardware acceleration, and quantitative benchmarking:

1. Algorithmic analysis: Chapter 2 surveys post-quantum signature algorithms,
comparing hash-based, lattice-based, and stateless schemes. Based on size,
performance, and maturity criteria, LMS is selected as the focus.

2. Software implementation: Chapter 3 details the LMS and LM-OTS algo-
rithms, parameter sets, and hash complexity. A reference implementation is
adapted to run deterministically on the PYNQ-Z2.

3. Hardware acceleration: Chapter 4 describes the porting of a SHA-256
accelerator to the PYNQ fabric, its integration with the processing system,
and the development of an optimized Linux driver using memory mapping to
reduce syscall overhead.
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4. Benchmarking and analysis: Chapter 5 presents the benchmarking method-
ology, including timing with C libraries, profiling with gprof, cycle-level
analysis with perf, and break-even modeling. Results are compared with a
pre-quantum ECDSA–SHA256 baseline.

This methodology provides both a rigorous performance evaluation of LMS on em-
bedded hardware and a generalizable framework for analyzing other post-quantum
algorithms.

1.4 Structure of the Thesis
The remainder of this document is organized as follows:

• Chapter 2 introduces the landscape of post-quantum digital signatures, com-
paring hash-based, lattice-based, and stateless schemes, and motivates the
selection of LMS.

• Chapter 3 provides a detailed description of LMS and LM-OTS, including
parameter sets, signing and verification procedures, and hash complexity
analysis.

• Chapter 4 describes the hardware–software co-design, including the SHA-256
accelerator integration and driver optimization.

• Chapter 5 presents the benchmarking setup, methodology, and experimental
results, including cycle-level analysis and comparison with an ECDSA baseline.

• Chapter 6 concludes the thesis, summarizing key findings and outlining direc-
tions for future work.

1.5 Contributions
The main contributions of this thesis are:

• A structured evaluation of standardized post-quantum signature schemes with
a focus on their applicability to embedded secure boot.

• A reproducible LMS implementation on real hardware, accompanied by de-
tailed hash complexity analysis.

• The design and optimization of a SHA-256 hardware accelerator integration
for LMS on the PYNQ-Z2 platform.

3
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• A comprehensive benchmarking and cycle-level characterization of LMS in
both software-only and hardware-accelerated configurations.

• A break-even performance model for hardware acceleration and a quantitative
comparison with classical ECDSA.

Together, these contributions provide practical insights into the deployment of
LMS in resource-constrained secure boot scenarios and establish a foundation for
further post-quantum hardware–software co-design research.

4



Chapter 2

Post-Quantum Digital
Signatures

The modern and rapid technological evolution suggests that the development of a
quantum computer, with enough qubits to break the strongest known encryption
and digital signature algorithms, is imminent. This chapter explores the current
state-of-the-art panorama to select a suitable digital signature algorithm to be
implemented in the secure boot process.

2.1 State-of-the-art Overview
The design requires the algorithm to be computationally fast and space-efficient.
With these requirements in mind, an analysis is performed on the standardized
quantum-proof algorithms.

The National Institute of Standards and Technology (NIST) announced the
Post-Quantum Cryptography Standardization program in 2016 which led to the
released final versions of the first three Post Quantum Crypto Standards: FIPS
203, FIPS 204, and FIPS 205. In addition there are already two known quantum-
resistant digital signature algorithms: LMS and XMSS, described by the Internet
Engineering Task Force (IETF) in RFC 8554 [1] and RFC 8391 [2]. An important
innovation brought by the NIST program, is the use of new cryptographic families
along with the already used ones: lattice-based and code-based cryptography and
the multi-party computation paradigm. A performance review led by CloudFlare
[3] analyses all the proposed schemes advanced to the second round. The results
are briefly reported only selecting the current winners of the competition.
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Post-Quantum Digital Signatures

Size [bytes] CPU time
Family Algorithm Name Quantum-Safe Public Key Signature Signing Verification
Elliptic Curves Ed25519 No 32 64 0.15 1.3
Factoring RSA 2048 No 256 256 80 0.4
Lattices ML-DSA44 Yes 1,312 2,420 1 (baseline) 1 (baseline)

FALCON 512 Yes 897 666 3 0.7
Hash-based SLH-DSA128s Yes 32 7,856 14,000 40

SLH-DSA128f Yes 32 17,088 720 110
LMSM4_H20_W 8 Yes 48 1,112 2.9 8.4

Table 2.1: Comparison of Digital Signature Algorithms

Table 2.1 shows a comparison between some selected variants of the standardized
algorithms and earlier existing traditional and post-quantum schemes at the security
level of AES-128. Values are taken from the Signature Zoo [4], times are relative
to ML-DSA44, since it is relatively balanced in terms of size, speed, and security.
That makes it a good reference point to use for comparison. It is clear that the
usage of post-quantum algorithms entails a loss of performance in CPU time and
signature plus key total size and this is caused by the growing complexity of these
algorithms in order to face quantum adversaries. CPU time varies significantly by
platform and implementation, and these values were taken from the submission
documents, so they should be taken with a grain of salt. A first look at the table
highlights that SLH-DSA, also known as SPHINCS+, is the worst performing
algorithm, both in CPU time, signing alone performs 14,000 times worse than
ML-DSA, and signature size. The current parameter sets of SHA2/SHAKE-128s
and SHA2/SHAKE-128f, being the ones that provide the lowest security level,
already reach significant signature size. Considering the highest security level
parameter set of SHA2/SHAKE-256f it can reach sizes of 49856 bytes, which exceed
the proposed design goals.
Algorithms based on lattices, on the other hand, appear to perform well. Lattice-
based cryptography is a strong contender for post-quantum cryptography because
it is resistant to attacks from both classical and quantum computers. In particular,
FALCON (Fast-Fourier Lattice-based Compact Signatures over NTRU) shows a
good space-time trade-off. It is in fact known for using fast Fourier sampling,
which allows for very fast implementations. Its enhanced key generation algorithm
uses less than 30 kilobytes of RAM, this makes it compatible with small, memory-
constrained embedded devices.
LMS (Leighton-Micali Signature) also offers a reasonable space-time trade-off,
especially when looking at the public key size. The values shown in Table 2.1
represent just one of the 40 parameter sets available for SHA2-based LMS. Therefore,
a more in-depth analysis of the algorithm is necessary, starting with the fundamental
concept of hash-based signatures.
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2.2 Hash-based Digital Signatures
Hash-based signatures, such as SLH-DSA, LMS and XMSS, are a type of cryp-
tographic signature scheme that relies on the properties of cryptographic hash
functions for security. Their extensive history and proven security makes them
highly reliable and well-understood. One key difference between hash-based signa-
tures is them being stateless or stateful.

2.2.1 Stateful vs Stateless
Stateful hash-based schemes, such as LMS and XMSS, are based on one-time
signature (OTS) schemes. Both algorithms use variants of the Winternitz OTS
(WOTS).

Winternitz One-Time Signature

The Winternitz One-Time Signature (WOTS) scheme, unlike traditional signature
schemes, uses a unique private key for each message, making it robust against key
reuse and forgery attacks. In this scheme the private key consists of an array of
random values, each serving as the starting point (seed) for a hash chain. For each
element, a one-way function, typically a cryptographic hash function like SHA-256,
is applied iteratively a fixed number of times, usually the maximum possible value
that the integer can represent and the number of iterations is determined by the
Winternitz parameter and the signing process. The public key is derived by hashing
each private key element the maximum number of times and concatenating the
final outputs.

7



Post-Quantum Digital Signatures

Figure 2.1: WOTS key generation

To sign a message using the WOTS scheme, the message digest is first split into
chunks of log2(w) bits, where w is the Winternitz parameter. Each chunk is
interpreted as an integer value and used as an index into the private key array. For
each chunk, the corresponding private key element is hashed a number of times
equal to the value of the chunk.
To verify a WOTS signature, the verifier completes each hash chain by applying
the hash function a number of times equal to the difference between the maximum
chain length and the value of each corresponding chunk in the signature. The
outputs of these completed chains form a public key candidate, which is then
compared to the known public key. If they match, the signature is considered valid.

8
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Figure 2.2: WOTS signature generation and verification

Merkle Signature Scheme

To overcome the limitation of one-time signatures, the Merkle Signature Scheme
(MSS) is used. A Merkle tree authenticates 2h OTS public keys where h is the
height of the tree. Each leaf node in the tree is the hash of an OTS public key,
and the root node of the tree serves as the MSS public key. The private key of
the scheme consists of all 2h OTS private/public key pairs (Xi, Yi), as a result, the
private key size grows linearly with the number of possible signatures.
During the signing process, the signature consists of the OTS signature of the
message concatenated with the authentication path in the Merkle tree. The
verifier uses this path, i.e. the intermediate nodes, to reconstruct the Merkle
root and authenticate the OTS public key, ensuring it is valid and not forged.
Once authenticated, the verifier proceeds to validate the message using the OTS
verification algorithm. The security of the scheme is compromised if the same OTS
key pair is used more than once, making it essential to carefully track which pairs
have been used. Additionally, the finite number of available signatures must be
taken into account. However, stateful hash-based signature schemes are well-suited
for automotive systems, where infrequent updates make the limited number of
signatures a manageable constraint.
On the other hand, stateless schemes like SLH-DSA do not require state manage-
ment. This comes with the price of slower runtime and increased key size. A more
in depth analysis of stateless schemes in a secure boot scenario can be found in [5].
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Leighton-Micali Signatures (LMS)

Leighton-Micali Signature (LMS) is a hash-based, stateful digital signature scheme
standardized by NIST and the IETF. The construction builds upon one-time
signatures (OTS) arranged in a Merkle tree, allowing the generation of many
signatures from a single public key, its security relies solely on the hardness of
preimage and collision resistance of the underlying hash function, typically SHA-256
or SHAKE.

• The key generation process works as follows. The private key consists of a
set of seeds used to derive private/public key pairs for the underlying OTS
scheme (typically Winternitz OTS+). These OTS keys are organized in a
binary Merkle tree of height h, where the root node represents the LMS public
key. The public key is thus:

pk = (I, T [1])

where I is a unique identifier and T [1] is the root of the Merkle tree.

• To sign a message M , the signer:

1. Selects the next unused OTS key pair (skOT S, pkOT S).
2. Computes an OTS signature σOT S = SignOT S(skOT S, H(M)).
3. Generates an authentication path consisting of the sibling nodes along

the path from pkOT S up to the Merkle root.
4. Outputs the full LMS signature:

σ′ = (σOT S, pkOT S, AuthPath)

The scheme is stateful, since each OTS key can only be used once. The signer
must maintain and update a counter to avoid key reuse, as reusing an OTS
key compromises security.

• Given (M, σ′, pkOT S), verification proceeds as follows:

1. Verify the OTS signature σOT S with pkOT S.
2. Recompute the Merkle tree path from pkOT S using the authentication

path.
3. Accept if and only if the reconstructed root equals the public key root

T [1].
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The main cost of LMS is computing the OTS signature and reconstructing the
authentication path (which has length h). In terms of efficiency, LMS offers very
compact key sizes: the public key is always 60 bytes, while the private key is fixed
at 64 bytes. The main variability lies in the signature size, which depends on the
choice of tree height h and Winternitz parameter w, as well as whether multiple
trees are composed through HSS. Depending on these parameters, signature sizes
can range from a few kilobytes to over 8.6 kilobytes. A detailed exploration of
parameter sets and their impact on performance will be presented in Chapter 3,
where LMS is analyzed in depth as the focus of this work.
Having discussed LMS as a representative of stateful hash-based signature schemes,
it is now natural to contrast it with a stateless alternative. For this purpose, we
turn to SLH-DSA, the leading candidate in the stateless category and the only
stateless scheme selected by NIST for standardization. Before describing SLH-DSA
itself, it is useful to outline its two core building blocks: FORS (Forest of Random
Subsets) and hypertrees. These primitives extend the concepts of WOTS and
Merkle trees introduced earlier and enable SLH-DSA to combine statelessness with
post-quantum security.

Forest of Random Subsets (FORS)

A central building block of SLH-DSA is the Forest of Random Subsets (FORS),
which is a few-time signature (FTS) scheme. Unlike one-time signature schemes
such as WOTS, which can securely sign only a single message per key pair, FORS
allows multiple signatures to be generated with the same private key before the
security starts to degrade. This property avoids the key-reuse vulnerability of OTS
while still offering strong post-quantum security.
At a high level, FORS is defined by three parameters:

• k: the number of trees,

• t = 2a: the number of leaves in each tree,

• n: the security parameter (hash output length).

The private key consists of k · t secret strings of length n, derived from a single seed.
The public key is created by hashing the k roots of each tree after these leaves are
compressed to a root using a Merkle construction.
The structure for k = 3 and t = 22 is demonstrated in the example below:
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sk0,0

hs0,1

sk0,1

n0,1

hs0,2

sk0,2

hs0,3

sk0,3

r1

n1,0

hs1,0

sk1,0

hs1,1

sk1,1

n1,1

hs1,2

sk1,2

hs1,3

sk1,3

r2

n2,0

hs2,0

sk2,0

hs2,1

sk2,1

n2,1

hs2,2

sk2,2

hs2,3
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Given a message digest of k · a bits, it is split into k substrings l0, . . . , lk−1, each a
bits long and interpreted as integers in [0, t). Each li selects one secret key element
ski,li from the i-th tree. The signature is formed by:

• revealing the k selected secret strings, one per tree,

• including the authentication paths that link them to the tree roots.

Verification consists of recomputing the k roots from the signature and hashing
them to reconstruct the public key candidate and the signature is valid if it matches
the known public key.
FORS can be used repeatedly without compromising security because each signature
only discloses one secret string per tree, however, repeated usage gradually increases
leakage, so the scheme balances efficiency and security. This is a big improvement
over Lambport OTS, where security is compromised by a single reuse. A further
advantage of FORS is its resilience to “weak messages,” where parts of the digest
repeat. In schemes such as Hash to Obtain Random Subset (HORS), which relies
on a single large tree, repeated indices can lead to excessive leakage. In FORS,
spreading indices across k independent trees mitigates this risk.

Hypertrees

Merkle trees are widely used in hash-based signatures to compress public keys: the
root of the tree serves as a compact representation of many one-time or few-time
public keys located at the leaves. However, when very large numbers of signatures
must be supported, as required by NIST post-quantum standards (e.g., on the
order of 264 signatures per key pair), a single Merkle tree becomes impractical. The
tree would need an enormous number of leaves, and both the construction and the
transmission of authentication paths of length h would be expensive.
Hypertrees address this scalability issue by organizing multiple Merkle trees into
a hierarchical structure. Instead of building one monolithic tree of height h, the
tree is decomposed into d layers of smaller subtrees, each of height h/d. In this
arrangement, the leaves of an upper-level tree are used to authenticate the roots of
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lower-level trees. At the lowest level, the leaves are associated with one-time or
few-time signature keys used to sign actual messages.
This layered construction has several advantages:

• It enables support for extremely large numbers of signatures without requiring
a single massive Merkle tree.

• At signing time, only one subtree needs to be kept in memory, which signifi-
cantly reduces storage requirements.

• Authentication paths consist of one short path per layer rather than a single
very long path, reducing computational overhead.

SLH-DSA

SLH-DSA is a stateless hash-based signature scheme designed to provide post-
quantum security without requiring state management, thereby eliminating the
risk of key reuse errors. It constructs each signature entirely from freshly generated
structures, allowing unlimited secure usage at the cost of larger signatures and
slower signing times.
The introduction of FORS as a few-time signature scheme removes the need for
signature state tracking, which was a limitation in earlier stateful schemes such as
LMS and XMSS. This makes FORS a fundamental building block in the design of
stateless schemes like SLH-DSA, which are required in the NIST post-quantum
standardization process.
Combining all the cryptographic ingredients introduced previously, the high-level
design of SLH-DSA can be described as follows. Given a message to be signed, it
is first compressed into a digest of k · a bits using a hash function, according to
the parameters of FORS. The choice of signing a digest rather than the message
itself is necessary to guarantee the security of FORS, and it is also advantageous
for performance and signature size. In particular, it ensures that the object being
signed always has fixed and relatively small length. The resulting digest is signed
using FORS, while the corresponding public key pkF ORS is then authenticated using
a multi-tree construction based on XMSSMT (XMSS with the use of hypertrees).
This latter part is itself modular: in XMSSMT , the element to be signed is given as
input to a WOTS+ instance, whose public key forms a leaf of a Merkle tree. These
trees are then organized into a hypertree structure, where each root is signed by a
leaf from the tree at the next higher level. At the top, the root of the hypertree
represents the final public key of SLH-DSA. Thus, the SLH-DSA public key is
compactly represented by the root of the hypertree, while the private key consists
only of the seed material used to derive the FORS and WOTS+ keys that populate
the various structures. This leads to very small public and private key sizes, which
is a notable strength of SLH-DSA.
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Finally, a SLH-DSA signature on a message is the concatenation of:

• the FORS signature of the message digest,

• the WOTS+ signatures authenticating the FORS public key and the roots of
the Merkle trees,

• the authentication paths required to validate the nodes within the hypertree.

This composition creates a stateless design that balances strong security with
adaptability. Even though signatures are large and signing is expensive in terms of
computing power compared to stateful alternatives like LMS or XMSS, SLH-DSA is
very strong and easier to implement correctly in practice because it doesn’t require
state management.

2.3 Lattice-based Digital Signatures
Lattice-based digital signatures security relies on well-studied mathematical prob-
lems conjectured to be hard even for quantum computers. Lattice-based schemes
offer reusable keys, relatively small signature sizes, and fast verification.

2.3.1 Introduction to Lattice-Based Cryptography
Lattices are discrete, regularly spaced sets of points in a multi-dimensional space
defined by a basis, a set of linearly independent vectors that span the lattice.
Digital signatures schemes are based on several hard problems related to lattices.
Two prominent examples are the Learning with Errors (LWE) problem and the
Short Integer Solution (SIS) problem.

Learning With Errors Problem

This problem is based on representing secret information as a system of linear
equations that has been noised by small random errors. As the dimension grows,
the presence of errors makes the problem extremely difficult. The LWE prob-
lem has been used as a computational hardness assumption to create public key
cryptosystems like the ring learning with errors key exchange (RLWE-KEX). The
RLWE problem is the broader LWE problem focused on polynomial rings over
finite fields, which is believed to be resistant against quantum computers. A
significant advantage of RLWE-based cryptography over LWE lies in the size of
the public and private keys. RLWE schemes drastically reduce key sized to around
the square root of those used in LWE. Despite this improvement, RLWE key sizes
are still larger than those used in common public-key algorithms, such as RSA
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(3,072 bits) and Elliptic Curve Diffie-Hellman (256 bits) at the same security level.
Nonetheless, RLWE-based cryptographic schemes offer competitive or even superior
computational performance compared to these classical systems.

Short Integer Solution Problem

The goal of this problem is to find a short non-zero vector that satisfies a particular
linear relation. Although many solutions to this problem may exist, finding one
with the required constraint of the length of the solution is computationally hard.
Beyond their role in classical cryptography, the SIS problem and its variants form
the foundation of several post-quantum cryptographic schemes, including ML-DSA
(formerly called CRYSTALS-Dilithium) and FALCON.

2.3.2 Overview of Lattice-Based Signature Schemes
While hash-based signature schemes are discussed separately, it’s important to note
that many lattice-based schemes also rely heavily on cryptographic hash function.
Lattice-based digital signature schemes can be broadly classified into two design
paradigms: hash-and-sign and Fiat-Shamir.

Hash-and-Sign signatures

Signatures based on hash functions are among the simplest and fastest post-
quantum alternatives. However, their core property, collision-resistance, can be
attacked by quantum computers. Grover’s algorithm offers a quadratic speed-up
for searching for preimages and collisions in hash functions. To counteract this, one
can increase the output size of the hash function, for example, by using SHA-512
and SHA-3, thus maintaining an adequate level of security, since the increase in
size counteracts the quadratic speed-up. The most well-known instantiation of
the hash-and-sign paradigm in lattice-based cryptography is the GPV framework
[6]. This framework relies on the notion of a trapdoor one-way function, namely a
function fA(x) = A · x (mod q) that is easy to evaluate but hard to invert without
additional information. Here, the matrix A ∈ (Zq)nxm serves as the public key
while the trapdoor is a short basis of the lattice associated with A. which enables
efficient sampling of short preimages x from discrete Gaussian distributions such
that A ·x ≡ y ( (mod q)) for a given target y. In the signing procedure, the message
is first hashed to a syndrome h(m), and the signer uses the trapdoor to compute a
short vector x with A · x ≡ h(m) (mod q). The signature consists of this short
preimage, while verification only requires checking the congruence and the norm
bound. The hardness of finding such short solutions without the trapdoor ensures
the unforgeability of the scheme.
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FALCON

A remarkable realization of the GPV framework is the NIST Post-Quantum Cryp-
tography finalist FALCON signature scheme. It instantiates the GPV paradigm
using the NTRU lattice and introduces Fast Fourier sampling as an efficient trap-
door sampling method. The underlying hard problem is the SIS problem over
NTRU lattices, which has no known efficient solving algorithm in the general case.
The NTRU problem is the following: given n a power of 2 and q a prime number,
a set of NTRU secret is composed of 4 small polynomials

f, g, F, G ∈ Z[X]/(Xn + 1)

such that
fG− gF = q (mod Xn + 1)

with f invertible modulus q.
In this scenario, the secret key is (f, g, F, G) and the public key is the polynomial

h = g · f−1 (mod q)

The NTRU problem, considered hard even for quantum computers, consists in
finding two polynomials with small coefficients f ′, g′ such that h ≡ g′f ′−1 (mod q).
This problem is closely related to lattice theory, since the best known cryptanalytic
algorithm reduces to solving an instance of the Shortest Vector Problem (SVP) in
the lattice generated by the 2n× 2n integer matrix.

1 h

0 q

 :=



1 0 · · · 0 h0 h1 · · · hn−1

0 1 · · · 0 −hn−1 h0 · · · hn−2
... ... . . . ... ... ... . . . ...
0 0 · · · 1 −h1 −h2 · · · h0

0 0 · · · 0 q 0 · · · 0
0 0 · · · 0 0 q · · · 0
... ... . . . ... ... ... . . . ...
0 0 · · · 0 0 0 · · · q


where h = h0 + h1X + . . . + hn−1X

n−1.
FALCON’s main design principles are compactness to minimize |pk|+ |sig| and
speed.
It operates over the cyclotomic ring R = Zq[x]/(xn + 1).

• Key generation works as follows:
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1. Generates two matrices A and B with coefficients in R such that BA = 0
and B has small coefficients. More specifically, instantiate the GPV
framework with the following parameters:

A =
è
1 h∗

é
∈ Zn×2n

q

B =
 g −f

G −F

 ∈ Zn×2n
q

where h∗ = h0 + hn−1X + hn−2X
2 + ... + h1X

n−1 and it’s possible to verify
that

BA∗ =
 g −f

G −F

 1
h

 = 0 (mod q)

2. pk ← A

3. sk ← B

• The signature Sign(m, sk) process is:

1. A random salt r is generated to ensure security, preventing two distinct
valid signatures for the same hash H(m). The message is then hashed as
H(r∥m) using SHAKE-256.

2. Compute a target c such that cA = H(r∥m).
3. Use Fast Fourier Sampling to find a short vector v ∈ Λ(B) close to c.
4. Set s← c− v, where s = (s1, s2) are polynomials satisfying the relation

s1 + s2h
∗ ≡ H(r∥m) (mod q).

The signature is the pair (r, (s1, s2)).

• The verification V erify(m, pk, sig) process is:

1. Parse the signature as (r, (s1, s2)).
2. Recompute the target hash H(r∥m) using SHAKE-256.
3. Check the algebraic relation

s1 + s2h
∗ ≡ H(r∥m) (mod q).

4. Verify that the vector s = (s1, s2) is short.

The signature is accepted if and only if both conditions are satisfied.
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Falcon is fast and the most compact of all post-quantum signature schemes. Param-
eters and performance of Table2.2, according to [7], are taken on an Intel Skylake
@ 3.3Ghz.

NIST level n q |pk| (bytes) |sig| (bytes) Sign/sec. Verify/sec.
1 512 12 · 1024 + 1 897 618 6082 37175
4-5 1024 12 · 1024 + 1 1793 1233 3073 17697

Table 2.2: FALCON parameters and performances

It is worth noting that the signature sizes reported in Table 2.2 (e.g., 618 bytes
at NIST level 1) refer to the compressed representation. In practice, implemen-
tations use a fixed-length padded format of 666 bytes to simplify parsing and
maintain constant-time behavior. Therefore, while the compressed size is useful for
performance estimates, the standardized size is slightly larger.
Table 2.3, adapted from [8], presents performance benchmarks measured on an
Intel Core i5-8259U @ 2.3 GHz with TurboBoost disabled. The reported RAM
usage corresponds to the key generation process and is expressed in bytes, while
public key and signature sizes are given in their standardized, uncompressed form.

Variant keygen (ms) keygen (RAM) |pk| (bytes) |sig| (bytes) Sign/sec. Verify/sec.
FALCON-512 8.64 14336 897 666 5948.1 27933.0
FALCON-1024 27.45 28672 1793 1280 2913.0 13650.0

Table 2.3: FALCON parameters and performances

Falcon stands out for its compact signatures and high verification speed, which
make it attractive for bandwidth-constrained environments and large-scale systems.
Its enhanced key generation algorithm requires less than 30 KB of RAM, a major
improvement over earlier lattice-based designs such as NTRUSign, suggesting
compatibility with embedded devices. However, the reliance on floating-point
arithmetic in the signing process complicates secure implementations, particularly
on constrained hardware, since care must be taken to avoid precision errors,
side-channel leakage, and higher working memory demands. For this reason,
while Falcon was standardized by NIST alongside ML-DSA, the latter is generally
preferred in implementations prioritizing robustness and ease of deployment. Falcon,
nevertheless, remains the most compact lattice-based signature scheme available
and a critical component of the post-quantum cryptography landscape.
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ML-DSA

ML-DSA represents the Fiat–Shamir paradigm, prioritizing implementation simplic-
ity and robustness over compactness. In particular, it is based on the Fiat–Shamir
with Aborts technique [9], which employs rejection sampling to ensure security.
Unlike schemes such as Falcon that rely on discrete Gaussian sampling, ML-DSA
instead adopts uniform sampling over small coefficients. Combined with its module
lattice construction, this approach avoids the implementation challenges of discrete
Gaussian sampling and achieves a reduction of the public key size by roughly a
factor of 2.5 compared to earlier lattice-based signature schemes, while preserving
both the security guarantees and the signature length.

• Key generation proceeds as follows:

1. Sample uniformly a public matrix A ∈ Rk×l
q , where each entry is a

polynomial in Rq = Zq[X]/(Xn + 1).
2. Sample the secret key components (s1, s2) uniformly from Sη, a subset of

Rq with coefficients limited by η.
3. Compute t = A · s1 + s2 ∈ Rk

q .
4. The public key is (A, t), while the secret key is (s1, s2).

The security of Dilithium relies on the hardness of the Module-LWE problem:
given (A, t), recovering the secrets (s1, s2) is as hard as solving an instance of
Module-LWE.
As mentioned above, Dilithium samples (s1, s2) uniformly. This choice simpli-
fies implementations and reduces susceptibility to certain side-channel attacks.
Since the matrix A consists of k · l polynomials in Rq, storing and transmitting
it directly would be impractical. Instead, A is deterministically generated
from a short random seed, meaning only the seed needs to be included in the
public key.

• Signing Sign(m, sk) works as follows:

1. Sample a masking vector y ∈ Rl
q with coefficients bounded by γ1. The

parameter γ1 is chosen large enough to prevent the signature from revealing
the secret key, yet small enough to prevent easy forgery.

2. Compute w = Ay and decompose each coefficient as

w = w1 · 2γ2 + w0, |w0| ≤ γ2,

where w1 collects the high-order bits of w.
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3. Generate the challenge polynomial c← H(m ∥ w1), where c has exactly
60 coefficients equal to ±1 and the rest zero.

4. Compute the candidate signature vector:

z = y + c · s1.

5. Apply rejection sampling, with β defined as the maximum coefficient of
csi:

– If any coefficient of z exceeds γ1 − β, reject and restart.
– If any coefficient of the low-order part of Az− ct exceeds γ2−β, reject

and restart.

The parameters are chosen such that the expected number of repetitions of the
while loop is between 4 and 7. The rejection sampling step ensures that the
final signature (z, c) does not leak information about the secret key, preserving
zero-knowledge security.

• Verification V erify(m, pk, sig) works as follows:

1. Given the signature (z, c), compute

w′ = Az − ct,

and set w′
1 = HighBits(w′, 2γ2).

2. Check the following conditions:
– All coefficients of z are bounded by γ1 − β.
– The challenge c is equal to H(m ∥ w′

1).
3. Accept if and only if both checks hold.

Correctness follows from the observation that

w′ = Az − ct = A(y + cs1)− c(As1 + s2) = Ay − cs2.

Thus,
HighBits(Ay − cs2, 2γ2) = HighBits(Ay, 2γ2),

since the term cs2 only affects the low-order part of the coefficients. Because
a valid signature satisfies

∥LowBits(Ay − cs2, 2γ2)∥∞ < γ2 − β,

the addition of cs2 cannot cause carries into the high-order bits. Therefore
the verification equation holds, ensuring correctness.
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The main goal of the authors of ML-DSA is to build a scheme that minimizes public
key and signature sizes. Table 2.4, adapted from [10], reports the performance
of key generation, signing, and verification, expressed in CPU clock cycles, as
measured on an Intel Core-i7 6600U (Skylake) processor.

NIST level Keygen Sign Verify |pk| (bytes) |sig| (bytes)
2 300751 1355434 327362 1312 2420
3 544232 2348703 522267 1952 3293
5 819475 2856803 871609 2592 4595

Table 2.4: ML-DSA performances

In conclusion, ML-DSA prioritizes robustness and deployment simplicity, avoid-
ing the complications of Gaussian sampling by using uniform sampling and the
Fiat–Shamir with Aborts framework. In contrast to previous lattice-based schemes,
its design offers smaller public keys and robust security guarantees based on the
Module-LWE assumption. Larger signature sizes and a dependence on rejection
sampling, which can result in some computational overhead, are the price paid
for these advantages. However, ML-DSA is a sensible and well-balanced option,
and its standardization with Falcon emphasizes its significance as a fundamental
component of post-quantum digital signature systems.

2.4 Comparative Analysis
The purpose of this section is to compare representative post-quantum digital
signature algorithms across the main candidate families, with the goal of identifying
the most suitable scheme for secure boot in automotive embedded systems. The
analysis focuses on three primary quantitative metrics: public key size, private
key size, and signature size. These parameters are of particular importance in
constrained environments, where memory footprint and communication overhead
directly impact feasibility.
It should be noted that performance in terms of signing and verification speed is
highly implementation and platform dependent. A fully objective comparison would
require testing each algorithm under identical hardware and software conditions,
which is beyond the scope of this work. Instead, we rely on reported values from
the NIST submissions and related literature, while acknowledging that such figures
should be interpreted with caution.
In addition to raw performance characteristics, it is also necessary to consider
the maturity and deployability of each algorithm. For example, the Commercial
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National Security Algorithm Suite (CNSA) 2.0 [11] published by the U.S. National
Security Agency explicitly recommends the use of LMS and HSS for code signing
and firmware updates, reflecting their practicality and robustness in real-world
applications. More generally, hash-based signatures benefit from decades of study
and simplicity of design, whereas lattice-based schemes, while compact and efficient,
are comparatively recent and require more complex implementations. These
considerations guide the final choice of the candidate algorithm to be evaluated in
this thesis.

2.4.1 Quantitative Comparison
As shown in Table 2.5, all considered schemes feature compact public and private
keys, generally on the order of a few dozen bytes (for hash-based schemes) to a
few kilobytes (for lattice-based schemes). The dominant factor in storage and
transmission overhead is therefore the signature size. Falcon achieves the smallest
signatures, below 1.3 KB even at the highest security level, while SLH-DSA exhibits
the largest, ranging up to nearly 50 KB. LMS lies in the middle, with signatures
between 1 and 9 KB, and ML-DSA provides moderate values around 2–5 KB. This
variability in signature footprint is one of the most important distinguishing factors
between the schemes.

Scheme Public Key Size Private Key Size Signature Size (Range)
LMS 60 B 64 B 1.3 – 9.2 KB
SLH-DSA (SPHINCS+) 32 – 64 B 32 – 96 B 7.9 – 49.9 KB
FALCON 897 – 1,793 B ~2 KB 666 – 1,280 B
ML-DSA (Dilithium) 1.3 – 2.6 KB 2.5 – 4.9 KB 2.4 – 4.6 KB

Table 2.5: Comparison of key and signature sizes across PQ signature schemes.

To help show these differences, Figure 2.3 provides a bar chart of signature sizes with
ranges across parameter sets. It highlights how compact Falcon is, the moderate
impact of LMS and ML-DSA, and the large signatures of SLH-DSA.
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Figure 2.3: Signature Sizes of PQ Signature Schemes (Range Across Parameters)

From this comparison it is evident that signature size is the primary factor influ-
encing the practicality of post-quantum digital signature schemes. In constrained
environments such as embedded devices or automotive control units, large signatures
directly translate into higher memory requirements and increased communication
overhead during software updates or secure boot. This is particularly problematic
for schemes like SLH-DSA, whose signatures can reach tens of kilobytes, making
them less suitable for bandwidth-constrained or latency-sensitive deployments.
Falcon, on the other hand, offers the smallest signatures among the candidates,
which makes it attractive for scenarios where communication efficiency is paramount.
However, its reliance on floating-point arithmetic and Gaussian sampling compli-
cates secure and side-channel resistant implementations, especially on resource-
limited platforms. ML-DSA represents a more balanced lattice-based alternative,
with moderately larger signatures than Falcon but simpler and more robust imple-
mentation requirements. Nevertheless, both lattice-based families remain relatively
recent and rely on complex mathematical assumptions, in contrast to the well-
established security foundations of hash-based constructions.
Hash-based schemes, and LMS in particular, present a compelling trade-off. Signa-
ture sizes are larger than those of Falcon or ML-DSA, but remain within a practical
range and scale predictably with chosen parameters. Key sizes are minimal and
constant, which simplifies storage. Most importantly, LMS benefits from decades
of study, simple cryptographic assumptions, and strong standardization support.
In conclusion, while lattice-based schemes such as Falcon and ML-DSA offer
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compact signatures and strong performance, their complexity and relative novelty
introduce challenges for deployment in constrained environments. Stateless hash-
based signatures like SLH-DSA provide robust security guarantees without state
management, but their very large signatures render them impractical for secure boot
and firmware signing. By contrast, LMS achieves a favorable balance of simplicity,
moderate signature sizes, minimal key material, and strong standardization support.
For these reasons, this work selects LMS as the candidate post-quantum digital
signature algorithm to be evaluated in depth, with a focus on its integration into a
secure boot framework for embedded systems.

24



Chapter 3

Leighton–Micali Signatures
(LMS)

3.1 Introduction
Leighton–Micali Signatures (LMS) are stateful, hash-based signature schemes that
combine one-time signatures with a Merkle tree to enable multiple authenticated
signatures under a single public key. Standardized by the IETF (RFC 8554),
LMS represents one of the most mature and conservative post-quantum signature
algorithms available today. Its security rests only on the properties of the underlying
hash function, making it well-suited for applications such as firmware and secure
boot, where simplicity, robustness, and long-term trustworthiness are critical.
The goal of this chapter is to provide a detailed and implementation-oriented
analysis of LMS, both to establish a clear understanding of the algorithm and to
motivate the methodology of this thesis, namely the acceleration of hash operations
in secure boot. To this end, the chapter is organized as follows:

• Section 3.2 introduces the notation and conventions used throughout the
chapter.

• Section 3.3 presents the Leighton–Micali One-Time Signature (LM-OTS)
scheme, describing its parameter sets, key generation, signing, and verification
procedures.

• Section 3.4 builds on LM-OTS to describe the full LMS construction, including
private and public key generation, signing, and verification.

• Section 3.5 quantifies the number of hash function invocations required for
each operation across parameter sets, highlighting the computational cost.
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• Section 3.6 discusses optimizations such as hierarchical signatures (HSS) and
their implications for practical deployments.

This structure first establishes a clear and rigorous description of LMS, then
provides evidence that accelerating hash operations is a justified and necessary
methodology for secure boot scenarios.

3.2 Notation and Assumptions
We adopt the following notation and conventions throughout this chapter. Parame-
ters and variables are defined here once and reused consistently in the descriptions
of LM-OTS and LMS.

• H : {0,1}∗ → {0,1}n — a cryptographic hash function with output length n
bytes (typically n = 32 for SHA-256).

• I — a fixed identifier associated with a key pair, included in all hash compu-
tations to prevent multi-target forgeries.

• q — the leaf index, representing which LM-OTS key pair is used within the
Merkle tree.

• h — the height of the Merkle tree, which determines the total number of
one-time key pairs: 2h.

• w ∈ {1,2,4,8}— the Winternitz parameter for LM-OTS. Larger w values yield
shorter signatures but require more hash computations during signing and
verification.

• n — the security parameter, equal to the output length of the hash function
in bytes.

• p — the number of elements in the LM-OTS private key. This depends on n
and w and is formally defined in Section 3.3.

• PRF(K, ·) — pseudorandom function derived from H used to expand a master
seed K into per-leaf secret values.

• DS(·) — domain-separation tags used for each type of hash call (e.g., node
computation, OTS chain step, public key hashing).

• pk, sk — public key and secret key, respectively.

• ∥ — denotes string concatenation.
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We assume constant-time implementations of H and reliable state management for
LMS, meaning that the system prevents reuse of the same LM-OTS private key.
This is critical to ensure the unforgeability of the scheme.

3.3 LM-OTS One-Time Signatures
LM-OTS (Leighton–Micali One-Time Signature) is the basic building block of LMS.
Each LM-OTS private key may only be used once to sign a message, therefore
reusing the same key for multiple messages would immediately break security.
The scheme associates a secret private key with a corresponding public key, and
signatures are generated over a digest of the message.

3.3.1 Parameters
The LM-OTS scheme relies on the general parameters introduced in Section 3.2,
specialized to the context of one-time signatures:

• The security parameter n defines the output length of the hash function H.
For instance, with SHA-256, n = 32 bytes.

• The Winternitz parameter w ∈ {1,2,4,8} governs the trade-off between sig-
nature size and computational cost. Larger values of w result in smaller
signatures but require more hashing during signing and verification.

• The value of p, the number of n-byte string elements in a signature, is derived
from n and w.

• The parameter ls is the left-shift amount used in the checksum function. While
it does not affect performance directly, it plays a role in ensuring the integrity
of the scheme.

In summary, w controls the space–time trade-off of LM-OTS: increasing w reduces
the signature size (since p decreases) but makes each signature more computationally
demanding.
The overall LM-OTS signature size is

|sig| = 4 + n · (p + 1) bytes,

where the extra n accounts for the randomizer C used during signing.
Table 3.1 summarizes the parameter sets standardized in RFC 8554 [1], all instan-
tiated with SHA-256.
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Name Hash n w p ls |sig| (bytes)
LMOTS_SHA256_N32_W1 SHA-256 32 1 265 7 8516
LMOTS_SHA256_N32_W2 SHA-256 32 2 133 6 4292
LMOTS_SHA256_N32_W4 SHA-256 32 4 67 4 2180
LMOTS_SHA256_N32_W8 SHA-256 32 8 34 0 1124

Table 3.1: LM-OTS parameter sets with SHA-256 [1].

For example, with w = 1 the signatures are very large (8.5 KB) but fast to generate
and verify, while w = 8 returns much shorter signatures (about 1.1 KB) but at
higher computational cost.

3.3.2 Private Key Generation
An LM-OTS private key is associated with a specific leaf of an LMS Merkle tree,
identified by the pair (I, q) where:

• I is a 16-byte identifier unique to the LMS key pair,

• q is the 32-bit index of the leaf node within the tree.

These identifiers are included in all hash computations to guarantee uniqueness
and prevent cross-protocol forgeries.
The private key itself consists of an array of p secret values x[0], x[1], . . . , x[p− 1],
each of length n bytes. These values must be generated uniformly at random, or
equivalently, they may be derived pseudorandomly from a master seed using a
pseudorandom function.
Formally, private key generation proceeds as follows:

1. Retrieve the identifiers (I, q) from the LMS tree.

2. Fix the LM-OTS parameter set (n, w, p, ls) according to Table 3.1.

3. For each i ∈ {0, . . . , p− 1}, generate a random n-byte string x[i].

The private key is the tuple:

sk = (type, I, q, x[0], x[1], . . . , x[p− 1]),

where type encodes the chosen LM-OTS parameter set.
In practice, storing p independent random strings is expensive. For this reason,
implementations often derive each x[i] pseudorandomly from a short seed K using
a PRF:

x[i] = PRF(K, I ∥ q ∥ i).
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This approach reduces private key storage to a single n-byte seed, without weakening
security, provided the PRF is cryptographically strong.

3.3.3 Public Key Generation
The LM-OTS public key is derived from the private key by applying the hash
function H iteratively to each element of the private key array. Each private key
element x[i] is the starting point of a Winternitz chain, which is advanced 2w − 1
steps by repeated hashing. The final outputs of all chains are then hashed together
to form the public key.
The process is as follows:

1. Retrieve the parameter set (n, w, p, ls) and the private key elements
x[0], . . . , x[p− 1].

2. For each i ∈ {0, . . . , p− 1}:

(a) Set tmp← x[i].
(b) For j = 0 to 2w − 2:

tmp← H(I ∥ u32(q) ∥ u16(i) ∥ u8(j) ∥ tmp),

where u32, u16, and u8 denote fixed-length encodings of integers.
(c) Store the final value y[i]← tmp.

3. Compute the public key root value:

K = H(I ∥ u32(q) ∥ u16(DPBLC) ∥ y[0] ∥ y[1] ∥ · · · ∥ y[p− 1]),

where DPBLC = 0x8080 is a domain-separation constant.

The LM-OTS public key is then defined as:

pk = (type, I, q, K).

Intuitively, the public key binds all the private key chains into a single n-byte digest
K. Any signature will consist of intermediate points on these chains, allowing the
verifier to recompute the end points y[i] and check consistency with K.
The LM-OTS algorithm includes a checksum over the message digest, which ensures
that attempts to manipulate Winternitz chains are detected. The checksum’s
computation involves only simple integer additions and shifts, with negligible
performance impact compared to the hash operations. For this reason, it is not
analyzed further in this work.
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3.3.4 Signature Generation
To sign a message M , the LM-OTS signer first hashes the message into a digest
Q, appends a checksum, and then encodes the result as a sequence of base-2w

digits. Each digit determines how far to advance the corresponding Winternitz
chain from the private key. The intermediate values reached along the chains form
the signature.
The signing procedure is as follows:

1. Retrieve the parameter set (n, w, p, ls), the private key elements x[0], . . . , x[p−
1], and the identifiers (I, q).

2. Choose a random n-byte string C.

3. Compute the message digest:

Q = H(I ∥ u32(q) ∥ u16(DMESG) ∥ C ∥M),

where DMESG = 0x8181 is a domain-separation constant.

4. Concatenate Q with its checksum Cksm(Q), and parse the result into p w-bit
coefficients a0, a1, . . . , ap−1.

5. For each i ∈ {0, . . . , p− 1}:

(a) Set tmp← x[i].
(b) Apply the hash function ai times:

tmp← H(I ∥ u32(q) ∥ u16(i) ∥ u8(j) ∥ tmp),

for j = 0, . . . , ai − 1.
(c) Output y[i]← tmp.

6. The signature is the tuple:

σ = (type, C, y[0], y[1], . . . , y[p− 1]).

Each y[i] is therefore an intermediate point along the i-th Winternitz chain that,
together with the coefficients ai, allow the verifier to complete the chains up to
their final values y[i](2w−1) and check consistency with the public key K.
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3.3.5 Signature Verification
Verification of an LM-OTS signature consists of recomputing the end of each
Winternitz chain from the signature elements y[i], and checking that the resulting
public key candidate matches the known public key K.
The procedure is as follows:

1. Parse the signature σ = (type, C, y[0], . . . , y[p− 1]), along with the identifiers
(I, q) and public key K.

2. Recompute the message digest:

Q = H(I ∥ u32(q) ∥ u16(DMESG) ∥ C ∥M).

3. Concatenate Q with its checksum Cksm(Q), and parse the result into p w-bit
coefficients a0, a1, . . . , ap−1.

4. For each i ∈ {0, . . . , p− 1}:

(a) Set tmp← y[i].
(b) Apply the hash function (2w − 1− ai) times:

tmp← H(I ∥ u32(q) ∥ u16(i) ∥ u8(j) ∥ tmp),

for j = ai, . . . , 2w − 2.
(c) Store the final value z[i]← tmp.

5. Compute the public key candidate:

Kc = H(I ∥ u32(q) ∥ u16(DPBLC) ∥ z[0] ∥ z[1] ∥ · · · ∥ z[p− 1]).

6. Accept the signature if and only if Kc = K.

Intuitively, verification completes each Winternitz chain from the point published
in the signature, ensuring that the revealed values are consistent with the public
key digest K. Additionally, the checksum enforces that no coefficients can be freely
increased, which results in a detection of any forgery attempt.

3.4 Leighton–Micali Signatures
While LM-OTS allows only a single message to be signed securely with one key pair,
the Leighton–Micali Signature scheme extends this construction by authenticating
a large set of LM-OTS keys using a Merkle tree. This allows many signatures
to be produced under a single LMS public key, making the scheme practical for
deployment.
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3.4.1 Parameters
LMS is defined by the following parameters:

• h — the height of the Merkle tree. The tree authenticates 2h LM-OTS key
pairs.

• LM-OTS_type — the LM-OTS parameter set used for the leaves. For example,
LMOTS_SHA256_N32_W8.

• H — the hash function used throughout the scheme (typically SHA-256 with
n = 32).

• I — the 16-byte identifier unique to the LMS key pair.

The overall security level of LMS depends jointly on the security of the underlying
hash function and the chosen LM-OTS parameter set.

3.4.2 Private Key Generation
The LMS private key consists of the complete set of LM-OTS private keys for all 2h

leaves of the Merkle tree. Each leaf corresponds to one LM-OTS key pair identified
by its leaf index q.
Private key generation proceeds as follows:

1. Fix the LMS parameters (h, LM-OTS_type, H).

2. For each leaf index q ∈ {0, . . . , 2h − 1}:

(a) Generate the LM-OTS private key

sk(q)
OTS = (LM-OTS_type, I, q, x[0], . . . , x[p− 1]),

as described in Section 3.3.

Thus the full LMS private key is the collection:

skLMS = (I, h, LM-OTS_type, {sk(q)
OTS}2h−1

q=0 ).

In practice, storing all 2h LM-OTS private keys explicitly is inefficient. Instead,
implementations typically store only a master seed and derive the necessary LM-
OTS private keys pseudorandomly on demand using a PRF, in the same way that
LM-OTS elements x[i] can be derived from a seed.
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3.4.3 Public Key Generation
The LMS public key is derived by authenticating all 2h LM-OTS public keys with
a Merkle tree of height h. Each leaf of the tree is the hash of an LM-OTS public
key, while each internal node is computed as the hash of its two children. The root
node serves as the LMS public key.
The procedure is as follows:

1. For each leaf index q ∈ {0, . . . , 2h − 1}:

(a) Generate the LM-OTS public key pk(q)
OTS corresponding to the private key

sk(q)
OTS.

(b) Compute the leaf node:

Leafq = H(I ∥ u32(q) ∥ u16(DLEAF) ∥ pk(q)
OTS),

where DLEAF is a fixed domain-separation constant.

2. For each internal node at level j of the tree:

Nodej,k = H(I ∥ u32(j) ∥ u32(k) ∥ u16(DINTR) ∥ Nodej+1,2k ∥ Nodej+1,2k+1),

where j is the level index and k is the node index at that level.

3. The root of the tree is obtained at level 0, index 0:

Root = Node0,0.

The LMS public key is then defined as:

pkLMS = (LMS_type, LM-OTS_type, I, Root),

where LMS_type encodes the chosen tree height h and hash function.
Intuitively, the Merkle tree compresses the authentication of 2h LM-OTS public
keys into a single root digest. Any signature has to carry an authentication path
of intermediate nodes, allowing the verifier to recompute the root and confirm that
the used LM-OTS key belongs to the tree.

3.4.4 Signature Generation
An LMS signature on a message M combines two components:

• An LM-OTS signature σOTS generated using the LM-OTS key pair at leaf q.
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• An authentication path consisting of the h sibling nodes that allow the verifier
to recompute the Merkle root from the chosen leaf.

The process is as follows:

1. Select the next unused LM-OTS private key sk(q)
OTS at leaf index q.

2. Generate the LM-OTS signature of the message:

σOTS ← LM-OTS.Sign(M, sk(q)
OTS).

3. Collect the authentication path A = (Auth0, . . . , Authh−1), where Authj is the
sibling node of the node on the path from leaf q to the root at level j.

4. Output the LMS signature:

σLMS = (q, σOTS,A).

Intuitively, the LM-OTS signature authenticates the message, while the authenti-
cation path demonstrates that the LM-OTS public key used belongs to the Merkle
tree whose root is the LMS public key. Together, these components allow any
verifier to confirm that the message was signed by the LMS key pair.

3.4.5 Signature Verification
Given a message M , an LMS public key pkLMS = (I, T [1]), and a signature
σLMS = (q, σOTS,A), the verifier proceeds as follows:

1. Parse the leaf index q, the LM-OTS signature σOTS, and the authentication
path A = (Auth0, . . . , Authh−1).

2. Recover the LM-OTS public key candidate by verifying the OTS signature:

Kc ← LM-OTS.Verify(M, σOTS, I, q).

If the LM-OTS verification fails, reject the signature.

3. Compute the leaf node:

N (0) = H(I ∥ u32str(q) ∥ u16str(DLEAF) ∥ Kc).

4. Iteratively compute the parent nodes up to the root using the authentication
path:

N (j+1) = H(I ∥ u32str(⌊q/2j+1⌋) ∥ u16str(DINTR) ∥ (N (j) ∥ Authj)),

where DINTR is the domain-separation constant for internal nodes, and the
concatenation order of (N (j), Authj) depends on whether N (j) is a left or right
child.
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5. After h iterations, obtain the candidate root N (h).

6. Accept the signature if and only if:

N (h) = T [1],

i.e., the recomputed root matches the LMS public key.

Essentially, the verifier checks that the LM-OTS signature is valid and that the
corresponding LM-OTS public key is correctly associated with the Merkle tree
defined by the LMS public key.

3.4.6 Recommended Parameter Sets
While the LMS and LM-OTS algorithms can be instantiated with a wide range of
parameters, NIST has profiled a subset of secure and efficient options in Special
Publication SP 800-208 [12]. These parameter sets are intended for deployment in
practical systems and balance security, signature size, and performance.
In particular, SP 800-208 recommends the following families:

• LM-OTS with n = 32 bytes (based on SHA-256), and Winternitz parameters
w ∈ {1,2,4,8}.

• LMS with m = 32 bytes (hash length) and tree height h ∈ {5,10,15,20,25}.

Each LMS instance must specify both an LMS parameter set and a compatible
LM-OTS parameter set. Table 3.2 summarizes the approved combinations.

LMS Parameter Hash Function Height h LM-OTS Type Hash Output n

LMS_SHA256_M32_H5 SHA-256 5 LMOTS_SHA256_N32_W1/2/4/8 32
LMS_SHA256_M32_H10 SHA-256 10 LMOTS_SHA256_N32_W1/2/4/8 32
LMS_SHA256_M32_H15 SHA-256 15 LMOTS_SHA256_N32_W1/2/4/8 32
LMS_SHA256_M32_H20 SHA-256 20 LMOTS_SHA256_N32_W1/2/4/8 32
LMS_SHA256_M32_H25 SHA-256 25 LMOTS_SHA256_N32_W1/2/4/8 32

Table 3.2: NIST-approved LMS and LM-OTS parameter sets [12]

These parameter sets provide flexibility across applications: smaller tree heights
(e.g., h = 5) are appropriate for lightweight use cases where only a limited number
of signatures are required, while larger heights (e.g., h = 25) enable millions of
signatures at the cost of larger verification paths and higher computation.
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3.5 Hash Complexity of LM-OTS and LMS
The efficiency of LMS is dominated by the number of invocations of the underlying
hash function. By analyzing key generation, signature generation, and verification,
it becomes possible to estimate the computational burden for different parameter
sets, which in turn motivates the use of hardware acceleration.

Key Generation

The LMS key generation procedure requires computing the public key of every
LM-OTS leaf and then building the Merkle tree. For each of the 2h leaves, the
LM-OTS public key generation involves p(2w − 1) hash function evaluations (to
complete the Winternitz chains) plus one additional hash to compress them into
the OTS public key K. The 2h OTS public keys are then hashed as leaves of the
Merkle tree, and an additional 2h − 1 hashes are needed to compute the internal
nodes.
Hence, the total number of hash evaluations for LMS key generation is:

#Hkeygen = 2h
1
p(2w − 1) + 1

2
+ (2h+1 − 1).

Signature Generation

For each message, the LM-OTS signature is obtained by partially iterating each
Winternitz chain according to the w-bit digits of the message digest and its checksum.
On average, this requires half of the chain length:

#HOTS, sign ≈
p(2w − 1)

2 .

An additional hash is required for the message digest Q, while the Merkle au-
thentication path does not require new hashes if precomputed. If authentication
paths are computed on the fly, an additional traversal cost of O(h) hashes must be
considered.

Signature Verification

Verification requires completing the remaining part of each Winternitz chain, i.e.,

#HOTS, verify ≈
p(2w − 1)

2 .

In addition, one hash is needed to recompute Q, one to compress the chain outputs
into the OTS public key candidate Kc, one for the leaf hash, and exactly h hashes
for recomputing the authentication path.
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Thus, the total verification cost is:

#Hverify ≈
p(2w − 1)

2 + (h + 3).

Table 3.3 summarizes the resulting complexity for different combinations of w and
h and highlights the trade-off between signature size and computational effort:
increasing w reduces the signature length but significantly increases the number of
hashes required.

w p h KeyGen Hashes (total) Sign OTS Hashes (avg) Verify Total Hashes (avg)
1 265 5 8,575 132 140
1 265 10 274,431 132 145
1 265 15 8,781,823 132 150
1 265 20 281,018,367 132 155
1 265 25 8,992,587,775 132 160
2 133 5 12,863 199 207
2 133 10 411,647 199 212
2 133 15 13,172,735 199 217
2 133 20 421,527,551 199 222
2 133 25 13,488,881,663 199 227
4 67 5 32,255 502 510
4 67 10 1,032,191 502 515
4 67 15 33,030,143 502 520
4 67 20 1,056,964,607 502 525
4 67 25 33,822,867,455 502 530
8 34 5 277,535 4,335 4,343
8 34 10 8,881,151 4,335 4,348
8 34 15 284,196,863 4,335 4,353
8 34 20 9,094,299,647 4,335 4,358
8 34 25 291,017,588,735 4,335 4,363

Table 3.3: Hash complexity of LMS as a function of w and h (SHA-256, n = 32).

As shown, key generation is by far the most expensive step, scaling exponentially
with the tree height h. While this cost is paid only once per key pair, it highlights
the need for hardware acceleration in constrained environments. The dominant
cost for signing and verification arises from the LM-OTS Winternitz chains, which
grow rapidly with w.
To better illustrate the trends, Figures 3.1 and 3.2 present graphical comparisons.
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Figure 3.1: Key generation cost vs. tree height h (log scale). Each curve
corresponds to a Winternitz parameter w.

As expected, the number of hash evaluations required for key generation grows
exponentially with the tree height h, due to the 2h leaves in the Merkle tree.
The choice of w strongly influences the slope, since the LM-OTS key generation
dominates the computation. While this cost is amortized over the lifetime of the
key pair, acceleration might be necessary to keep key generation feasible.
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Figure 3.2: Average signing and verification costs vs. Winternitz parameter w for
fixed tree height h = 20.

Figure 3.2 emphasizes the trade-off between signature size and performance. In-
creasing w reduces the signature length, but the signing and verification costs grow
rapidly from roughly 130 hashes at w = 1 to over 4,000 hashes at w = 8. Verifica-
tion requires only a small additional overhead of h + 3 hashes for the authentication
path. These trends justify the need to carefully select LMS parameters depending
on the deployment scenario, balancing compactness and computational feasibility.

3.6 Hierarchical Signatures (HSS)
In scenarios where reducing the public key generation time is critical, the Hierar-
chical Signature System (HSS) can be used as an extension of LMS. HSS builds a
hierarchy of L LMS trees, where the public key of the first tree (level 0) becomes
the HSS public key, and each LMS private key at level i signs the public key of the
tree at level i + 1. The last LMS private key in the hierarchy (level L− 1) is then
used to sign the actual messages.
The HSS public key is the root of the level 0 LMS tree, and an HSS signature
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contains the chain of LMS signatures along the path from the root tree down to the
message. Verification is performed by recursively validating each LMS signature in
this chain.
The main advantage of HSS compared to a single, very tall LMS tree is efficiency:
only the top-level LMS tree must be generated in order to publish the HSS public
key. The lower-level LMS trees can be generated on demand as signatures are
needed. This design significantly reduces the cost of public key generation, while
still allowing a very large total number of signatures. For instance, an HSS with
L = 3 levels of height h = 10 each can support 230 signatures in total, while
requiring only 210 one-time keys to be computed initially. In contrast, a flat LMS
tree with 230 leaves would require generating all one billion leaves in advance.
Another benefit of HSS is flexibility: different levels of the hierarchy can use different
LMS parameter sets, allowing implementers to balance performance and storage
needs. However, the parameter set at a given level must remain fixed throughout
its lifetime, in order to ensure interoperability and consistent verification.

3.7 Key Lifetime Under Stateful Signing
Because LMS is stateful, a key pair can produce at most 2h signatures (one per
leaf). This property has direct implications on the operational lifetime of a key. If
signatures are generated at a constant rate r, then the maximum lifetime of a key
pair is given by:

Tlife = 2h

r
seconds.

For other units:

Tdays = 2h

r · 86,400 , Tyears ≈
2h

r · 86,400 · 365.25 .

In an HSS stack with d LMS layers of heights h1, . . . , hd, the total signature capacity
multiplies:

Nsign =
dÙ

i=1
2hi = 2

q
i

hi , T
(HSS)
life = 2

q
i

hi

r
.

Table 3.4 shows illustrative examples of the key lifetime for different tree heights h,
assuming various signing rates.
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h Max signatures 2h r = 1/s r = 100/day r = 10/day r = 1/day
5 32 32 s (≈ 0.5 min) ≈ 8 hours ≈ 3 days ≈ 1 month
10 1,024 ≈ 17 min ≈ 12 days ≈ 4 months ≈ 3 years
15 32,768 ≈ 9 hours ≈ 11 months ≈ 9 years ≈ 89 years
20 1,048,576 ≈ 12 days ≈ 28 years ≈ 287 years ≈ 2,872 years
25 33,554,432 ≈ 1 year ≈ 920 years ≈ 9,200 years ≈ 92,000 years

Table 3.4: Illustrative LMS key lifetimes for different tree heights h and signing
rates r.

The appropriate choice of h depends on the expected total number of signatures
over the key’s lifetime. In scenarios with few signatures per year like long-lived
embedded/automotive deployments, even small heights can be sufficient: h=5
returns 32 signatures, and h=10 returns 1,024, which already covers many years
at low signing rates. Larger values (e.g., h=15 or h=20) provide additional safety
margin at the cost of longer authentication paths and higher key-generation effort.
To better illustrate the practical implications of the limited number of signatures
in LMS, Figure 3.3 reports the effective key lifetime under different signing rates
and tree heights.

Figure 3.3: LMS key lifetime (in years) as a function of tree height h and signing
rate r.
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Chapter 4

Hardware–Software
Co-Design for LMS

4.1 SHA-256 Hardware Accelerator Porting
The hardware acceleration of SHA-256 is the foundation of the co-design approach
adopted in this thesis. The accelerator is based on an open-source design developed
for the Zybo board [13], which was ported and adapted to the PYNQ-Z2. Although
the two boards share the Xilinx Zynq-7000 SoC family, differences in peripherals
and integration required a complete re-synthesis and repackaging of the IP.
The accelerator implements the SHA-256 compression function in hardware, orga-
nized around a pipelined datapath and a control unit. The datapath is responsible
for processing 32-bit input words and updating the intermediate state of the hash,
while the control unit orchestrates the sequencing of rounds via a finite state
machine. Optimizations such as operation rescheduling and carry-save addition
reduce the critical path, enabling higher operating frequencies with limited area
overhead, this design therefore trades an increased number of cycles per block for
improved synthesis timing and smaller resource usage.
Communication between the processing system and the accelerator is realized
through an AXI4-Lite interface, exposing a set of memory-mapped registers. These
registers allow the processor to send data words, control the computation, and
retrieve the final hash values. In particular, the status_reg plays a central role
in coordinating the execution, as it contains the control and handshake signals
used by both the hardware and the processor to synchronize operations. Figure 4.1
illustrates the memory map of the accelerator. The data register is used to write
input words, while the eight hash registers (h0–h7) hold the 256-bit result once
a message block has been processed. The status_reg contains four control bits:
msg_last indicates that the current word is the last of the message, hash_ack

42



Hardware–Software Co-Design for LMS

acknowledges that the computed hash has been read, hash_valid signals that the
hash is ready, and msg_ready indicates that the accelerator is ready to receive a
new word.

Figure 4.1: Memory map of the SHA-256 accelerator. The status_reg contains
control bits: msg_last, hash_ack, hash_valid, and msg_ready.

The HDL sources were imported into Vivado 2022.1, synthesized for the Zynq-7020
device on the PYNQ-Z2, and packaged as a reusable IP. The block was then
integrated into a Zynq block design and connected to the processing system via
AXI interconnect. Vivado reports indicate resource utilization of less than 10% of
available LUTs and registers. After validation, the final design was implemented
and the FPGA bitstream generated.
On the software side, the accelerator was initially controlled through a device driver
providing read and write access to the AXI-mapped registers. The driver was
compiled with the cross-compiler provided in Vitis 2022.1 (arm-xilinx-linux-
gnueabi-gcc) and deployed in the PYNQ Linux distribution. Two testbenches
were developed to verify correct operation: a Python-based testbench using PYNQ
overlays, which enabled quick functional checks, and a C-based testbench using
the installed driver, which validated low-level operation and served as the basis for
benchmarking code.
These steps ensured that the accelerator was correctly ported and integrated on the
PYNQ-Z2, providing a functional hardware building block to be later combined
with the LMS software implementation.
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4.2 Device Driver Development
The SHA-256 hardware accelerator is accompanied by a Linux device driver,
provided as part of the original open-source project [13]. This driver served as
the foundation for integration on the PYNQ-Z2, as it already supported the basic
operations required to communicate with the accelerator through the AXI-mapped
registers.
The driver implements the standard operations open, release, read, and write.
In its original form, the read operation retrieves data from the accelerator registers
(e.g., the status_reg or the hash words stored in h0–h7), while write allows the
processor to send new input words or control values. At the kernel level, these calls
rely on ioread32() and iowrite32(), which provide direct access to the mapped
addresses of the accelerator.
The driver was compiled against the Xilinx Linux kernel sources, cloned from the
official repository [14], using a standard out-of-tree build process.
In practice, the compilation required setting the cross-compiler provided by Vitis
2022.1, preparing the kernel headers, and then building the module as follows:

1 $ export CROSS_COMPILE =/ home/ francesco /Vitis /2022.1/ gnu/ aarch32 /
lin/gcc -arm -linux - gnueabi /x86_64 -petalinux -linux/usr/bin/arm -
xilinx -linux - gnueabi /arm -xilinx -linux -gnueabi -

2
3 $ make ARCH=arm CROSS_COMPILE = $CROSS_COMPILE modules_prepare
4 $ make ARCH=arm CROSS_COMPILE = $CROSS_COMPILE \
5 -C /home/ francesco / Desktop /Tesi/ DRIVER /kernel - headers \
6 M=$(pwd) modules

Listing 4.1: Cross-compilation of the driver

Once compiled, the module could be loaded on the PYNQ-Z2 board:
1 $ insmod sha256_driver .ko

Listing 4.2: Loading the driver

Functionally, the original driver creates a character device entry at /dev/sha256,
exposing the accelerator registers to user-space applications. When opened, the
device accepts standard read and write calls:

• read retrieves a 32-bit word from the accelerator using ioread32(), which
is typically employed to poll the status_reg or to read the final hash values
stored in registers h0–h7.

• write accepts a 32-bit word from user space via copy_from_user() and sends
it to the accelerator with iowrite32(), enabling the processor to provide
input words and control signals.
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The open and release functions are simple placeholders and do not perform
additional logic. The driver’s probe function handles resource allocation by reserving
the physical memory range of the accelerator and remapping it into the kernel’s
virtual address space with ioremap(), while the remove function cleans up these
resources upon module unload.
This design provides a correct and minimal interface between software and hardware.
However, because each 32-bit access involves a system call, the overhead becomes
significant when hashing larger messages.

Optimized Driver

While the original driver provided a correct interface to the accelerator, its perfor-
mance was limited by the overhead of repeated read and write system calls. Each
32-bit access required a user–kernel context switch, which became a significant
bottleneck when processing messages of non-trivial length.
The most significant addition is the implementation of the mmap() operation, shown
in Listing 4.3. This function maps the accelerator’s physical AXI address space into
the calling process’s virtual memory. By marking the memory region as non-cached
and using remap_pfn_range(), the mapping ensures that all register accesses in
user space are consistent and coherent with the underlying hardware.

1 static int sha256_mmap ( struct file *file , struct vm_area_struct *
vma) {

2 unsigned long phys = BASE_ADDR ;
3 unsigned long vsize = vma -> vm_end - vma -> vm_start ;
4
5 if (vsize > MEM_SIZE )
6 return -EINVAL ;
7
8 // Mark memory as non - cached to ensure consistency
9 vma -> vm_page_prot = pgprot_noncached (vma -> vm_page_prot );

10
11 // Map physical address into user space
12 return remap_pfn_range (vma ,
13 vma ->vm_start ,
14 phys >> PAGE_SHIFT ,
15 vsize ,
16 vma -> vm_page_prot );
17 }

Listing 4.3: mmap() implementation in the optimized driver

Through this mechanism, the driver enables direct memory-mapped access to
the accelerator’s registers, eliminating the overhead of system calls for each word
transfer. Applications can simply obtain a pointer to the mapped region and issue
loads and stores directly, yielding a significant reduction in latency.
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The resulting driver preserves compatibility with the character device interface
(/dev/sha256) while adding an mmap() file operation.
The structure of the optimized driver is therefore:

• Initialization and cleanup: reserve the AXI memory region, remap it into
kernel space, and register the character device under /dev/sha256.

• read/write: still available for compatibility, performing 32-bit transfers with
ioread32() and iowrite32().

• mmap: new operation that maps the hardware registers directly into user space,
enabling high-performance access without repeated system calls.

With this modification, benchmark applications can use mmap() to establish a
persistent mapping to the accelerator’s register space, drastically reducing per-
access latency. This proved to be the most effective optimization, and the impact
of this change is quantified in Chapter 5.
The full source code of the optimized driver is included in Appendix A.1.

Python Overlay Testbench

Before developing a custom C application, the accelerator was first tested through
the PYNQ overlay framework. Overlays are a central feature of the PYNQ platform:
they are FPGA bitstreams that can be dynamically loaded into the programmable
logic at runtime, together with a Python object model that exposes the hardware
IP cores as software-accessible objects. This makes it possible to rapidly prototype
and interact with hardware directly from Python, without rebuilding or rebooting
the system.
In this case, the synthesized bitstream of the accelerator (sha256_wrapper.bit)
was loaded as an overlay, which made the SHA-256 IP core accessible under
the identifier overlay.sha256_ctrl_axi_0. The Python testbench, shown in Ap-
pendix A.2, was designed to provide end-to-end functional testing of the accelerator.
The testbench implemented the following steps:

1. Message padding: a series of helper functions implemented the standard
SHA-256 padding procedure (appending a ‘1’ bit, adding zeroes until the
length modulo 512 equals 448, and appending the 64-bit message length).

2. Word transfer: the padded message was divided into 32-bit words and
sequentially written to the accelerator through its AXI registers. The msg_-
last bit in the status_reg was set for the final word.

3. Hash retrieval: the program polled the hash_valid flag until the computa-
tion was complete, then read the eight 32-bit words from registers h0–h7.
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4. Result output: the 256-bit digest was printed in hexadecimal format and
compared against known test vectors.

The testbench provided an interactive loop in which the user could type arbitrary
messages, which were then padded, sent to the accelerator, and hashed in real time.
An excerpt of the core hashing function is shown in Listing 4.4.

1 def hash_message ( padded_binary ):
2 num_words = len( padded_binary ) // 32
3 for i in range( num_words ):
4 word = padded_binary [i*32:(i+1) *32]
5 is_last = (i == num_words - 1)
6 write_word (word , is_last )
7
8 while sha256_accel .read (0x4) & 0x2 == 0: # wait for

hash_valid
9 pass

10
11 hash_words = []
12 for offset in range (0x8 , 0x28 , 4): # h0 to h7
13 h = sha256_accel .read( offset )
14 hash_words . append (h)
15
16 sha256_accel .write (0x4 , 0x4) # set hash_ack
17 return hash_words

Listing 4.4: Hashing procedure in the Python overlay testbench

This Python-based approach allowed rapid functional validation of the accelerator
immediately after synthesis. Although not optimized for speed, it confirmed that
the hardware logic was functionally correct and provided a convenient baseline
before moving to the lower-level C testbench.

C Driver Testbench

After the functional verification performed with the Python overlay, the accelerator
was also tested through a low-level C testbench running on the PYNQ-Z2. Unlike
the overlay approach, this method relied directly on the installed Linux driver,
interacting with the device through the character interface /dev/sha256. In this
way, the accelerator was validated in its final deployment environment, using the
same stack that would later support benchmarking.
The testbench was split into a header file, sha256_acc_tb.h, and two source
files, sha256_acc_tb.c and sha256_testbench.c, which implemented the actual
testing routines. Once compiled and executed on the board, the application guided
the complete hashing process: opening the character device, padding the input
message, transferring each 32-bit word to the accelerator, setting the msg_last flag
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for the final word, and finally polling the hash_valid bit until the digest became
available.
The eight 32-bit words representing the final hash were then read from the ac-
celerator and printed in hexadecimal format, to be compared against a reference
software implementation. An excerpt of the code responsible for writing words to
the accelerator is reported in Listing 4.5.

1 word_to_send = (( uint32_t *)& num_bits )[1];
2 if ( pwrite (fd , & word_to_send , WORD_BYTES , DATA_IN_ADDR ) < 4) {
3 perror (" failed to write word");
4 }

Listing 4.5: Writing input words to the accelerator in the C testbench

This testbench confirmed both correctness and stability of the accelerator when
accessed from user space, and at the same time it provided the foundation for the
performance evaluation reported in Chapter 5.

4.3 Software Implementation of LMS
The software side of this work builds upon the reference LMS and LM-OTS
implementation provided in the IETF RFC [1] and maintained by Cisco as the
hash-sigs project [15]. This implementation was chosen because, at the time of
writing, OpenSSL [16] does not yet provide support for LMS key generation or
signature creation; support is planned to appear only for verification in version 3.6.
The original codebase is organized around a set of core modules and a demonstration
program (demo.c), which together implement the essential operations of the scheme:
key generation, signature generation, and signature verification. The demo program
exposes these capabilities through a command-line interface, allowing the user to
select parameter sets, generate keys, sign arbitrary input files, and verify signatures
against stored public keys.
In its unmodified form, the demo application is intended to be portable and efficient,
and can execute on multicore systems. For the purposes of this thesis, however,
the implementation was adapted to better reflect the characteristics of embedded
systems and to ensure reproducibility in benchmarking. Specifically, the main
function of demo.c was modified to bind execution explicitly to CPU 0, enforcing
a single-core execution model. This change guarantees that all measured perfor-
mance results correspond to a deterministic single-threaded execution, eliminating
variability due to the operating system’s scheduler. No changes were made to the
functionality of the program, which continues to support key generation, signing,
and verification. The modification is shown in Listing 4.6.
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1 cpu_set_t set;
2 CPU_ZERO (& set);
3 CPU_SET (0, &set); // Use core 0
4
5 if ( sched_setaffinity (0, sizeof (set), &set) == -1) {
6 perror (" sched_setaffinity ");
7 return 1;
8 }
9

10 printf (" Running on core 0\n");

Listing 4.6: Modification in demo.c to enforce single-core execution

The file hash.c implements the internal hashing interface used throughout the
LMS and LM-OTS codebase. In the original RFC implementation [15], all hashing
operations were performed using the OpenSSL software implementation of SHA-
256, both for single-shot hashes and for incremental hashing where the message is
processed in multiple chunks. This design provided flexibility but did not exploit
hardware acceleration.
To integrate the accelerator, the file was modified by introducing a conditional
compilation flag (USE_HW_ACCEL_SHA256). When this flag is enabled, single-shot
SHA-256 calls are redirected to the hardware accelerator, while retaining the
original OpenSSL-based path for software execution. The modification can be seen
in Listing 4.7.

1 #if USE_HW_ACCEL_SHA256
2 hw_hash (message , message_len , result ); // hardware path
3 #else
4 SHA256_Init (&ctx -> sha256 );
5 SHA256_Update (&ctx ->sha256 , message , message_len );
6 SHA256_Final (result , &ctx -> sha256 ); // software path
7 #endif

Listing 4.7: Hardware acceleration hook in hash.c

This approach allows the same LMS codebase to operate seamlessly in either
mode: pure software, or hardware-assisted. In practice, the hardware path invokes
the routines defined in sha256_acc.c/h, which handle the communication with
the accelerator through its driver. For completeness, the full source code of this
interface is reported in Appendix A.4. A crucial optimization introduced in these
routines is the use of mmap() to directly map the accelerator’s AXI registers into
user space. As shown in Listing 4.8, the file descriptor for the device is opened once,
and the register space is mapped into virtual memory. From this point onward,
all accesses to the accelerator are performed via the REG(offset) macro, which
compiles down to a simple memory load or store, eliminating the overhead of
repeated system calls.
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1 # define REG( offset ) (*( volatile uint32_t *)(( uint8_t *) sha256_regs
+ ( offset )))

2
3 volatile uint32_t * sha256_regs = NULL;
4
5 void sha256_acc_init () {
6 sha256_fd = open( DEVICE_FILE , O_RDWR | O_SYNC );
7 if ( sha256_fd < 0) { perror ("open"); exit (1); }
8
9 sha256_regs = mmap(NULL , MAP_SIZE , PROT_READ | PROT_WRITE ,

10 MAP_SHARED , sha256_fd , 0);
11 if ( sha256_regs == MAP_FAILED ) { perror ("mmap"); exit (1); }
12 }

Listing 4.8: Memory-mapping of the accelerator registers in sha256_acc.c

In addition, the file hss_pthread.c, which normally handles multithreading support
in the reference implementation, was modified to disable threading entirely. The
initialization function hss_thread_init was adapted to immediately return 0,
as shown in Listing 4.9, thereby forcing single-thread execution across the LMS
codebase and ensuring consistency in the benchmarking environment.

1 /* Allocate a thread control structure */
2 struct thread_collection * hss_thread_init (int num_thread ) {
3 return 0; // Force single thread execution for benchmarking
4 }

Listing 4.9: Modification in hss_pthread.c to disable multithreading

Incremental Hashing and its Limitation.

An important detail is that the hardware accelerator only supports complete SHA-
256 computations over a fully padded message block. It does not maintain an
internal state across multiple calls, therefore, functions such as hss_init_hash_-
context, hss_update_hash_context, and hss_finalize_hash_context remain
bound to the software implementation, as shown in Listing 4.10.

1 void hss_update_hash_context (int h, union hash_context *ctx ,
2 const void *msg , size_t len_msg ) {
3 switch (h) {
4 case HASH_SHA256 :
5 SHA256_Update (&ctx ->sha256 , msg , len_msg ); // software

only
6 break;
7 }
8 }

Listing 4.10: Incremental hashing remains software-only
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This distinction is important: many LMS operations, particularly when hashing
long messages or when building authentication paths, rely on incremental hashing.
Only those calls that perform a single complete hash (e.g., hashing seeds, nonces, or
intermediate nodes) benefit from hardware acceleration. As a result, the accelerator
cannot replace all SHA-256 invocations in the system, and the benchmarking results
in Chapter 5 reflect this partial acceleration.
In summary, the modifications to hash.c enable the use of hardware acceleration
only for single-shot hashes, while incremental hashing remains bound to the software
path. This outcome is not a design choice but a limitation of the current accelerator,
which cannot preserve state across multiple calls. A more advanced accelerator
would be required to fully replace all SHA-256 invocations within LMS.

4.4 Summary and Outlook
In this chapter, the SHA-256 hardware accelerator was successfully ported to
the PYNQ-Z2, integrated through a Linux device driver, and connected to the
reference LMS implementation. Several modifications were introduced to ensure
reproducibility and to enable hardware offloading within LMS: the driver was
optimized using memory-mapped I/O, the LMS software was constrained to single-
core, single-thread execution, and the hashing interface was extended to selectively
invoke the accelerator for single-shot SHA-256 computations.
At the same time, some limitations were highlighted. In particular, incremental
hashing remains bound to the software path, since the accelerator cannot preserve
state across multiple calls. As a result, only a subset of the SHA-256 invocations
within LMS benefit from acceleration, while those relying on incremental hashing
remain executed in software. A detailed quantification of the proportion of acceler-
ated versus non-accelerated hashes is presented in Chapter 5, where this limitation
is reflected in the performance results.
With the software and hardware components integrated and validated, the next
chapter introduces the benchmarking methodology and presents a detailed compar-
ison between the pure software and hardware-assisted implementations of LMS.
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Chapter 5

Benchmarking and
Performance Evaluation

5.1 Reproducibility and Setup
The benchmarking environment was designed to be fully reproducible and auto-
mated. At the top level of the project directory, a shell script (benchmark.sh)
orchestrates the execution of all experiments. Depending on whether the software-
only or the hardware-accelerated implementation is under test, the script is run in
the lms_software_benchmark or lms_accelerated_benchmark directory.
Each of these benchmark directories mirrors the structure of the original hash-sigs
repository, with the accelerated version including in addition the files required
to interface with the SHA-256 hardware accelerator. A placeholder binary file
(firmware.bin) is also included in the top folder to simulate the firmware image
that is signed and verified during the LMS operations.
Within each benchmark directory, an outputs/ folder organizes the results by
Winternitz parameter. Specifically, four subdirectories (W_1, W_2, W_4, W_8) are
created, each containing a set of LMS_SHA256_M32_H{5,10,15,20,25}_W{X} sub-
folders. These in turn correspond to the different LMS parameter sets used in the
experiments.
Inside each parameter set folder, a Makefile drives the benchmarking process, and
three additional directories (profile_genkey, profile_sign, profile_verify)
are maintained to store the results of the different LMS operations. The top-level
benchmark.sh script iterates over these directories, invokes the Makefiles, and
consolidates the outputs into log files.
For completeness, the source code of the benchmarking infrastructure is provided
in Appendix A.5. This includes the benchmark.sh script, which automates the
entire campaign, and a representative Makefile for the profiling of genkey, sign,
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and verify. These listings document precisely how the experiments were executed
and how the outputs were collected for analysis.

5.2 Benchmarking Methodology
The benchmarking strategy was layered, starting from simple execution time
measurements and progressively adopting more advanced profiling tools as the
analysis deepened. This ensured both broad coverage of the LMS operations and a
detailed investigation of the observed bottlenecks.

5.2.1 C Library Timing
The first stage of measurement relied on the standard C library timing functions,
specifically clock_gettime() from time.h [17]. Calls were inserted around the
invocations of the key LMS functions: keygen, sign, and verify. This allowed
end-to-end execution times for each operation to be obtained, expressed in wall-
clock milliseconds. These results provide an intuitive baseline but are sensitive to
system noise and do not reveal the internal distribution of computational costs.
A simplified example is shown in Listing 5.1, where a call to the sign() function is
wrapped between two calls to clock_gettime() and the elapsed time is reported.

1 struct timespec start_sign , end_sign ;
2 clock_gettime ( CLOCK_MONOTONIC , & start_sign );
3
4 int ret = sign(argv [2], &argv [3]);
5
6 clock_gettime ( CLOCK_MONOTONIC , & end_sign );
7 double elapsed_ms = ( end_sign . tv_sec - start_sign . tv_sec ) * 1000.0

+
8 ( end_sign . tv_nsec - start_sign . tv_nsec ) / 1e6;
9

10 printf ("Sign time: %.3f ms\n", elapsed_ms );

Listing 5.1: Timing instrumentation using clock_gettime()

Equivalent wrappers were placed around keygen() and verify(), ensuring that
all three LMS operations could be measured consistently.

5.2.2 Profiling with gprof
To understand how execution time was distributed inside the LMS implemen-
tation, the code was compiled with the -pg flag to enable profiling with gprof
[18]. After each benchmark run, a gmon.out file was produced and converted into
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a human-readable report (e.g., gprof ${SRC}/demo gmon.out > profile_veri-
fy/profile_verify.txt). This analysis highlighted which functions dominated
the runtime during key generation, signing, and verification, thereby confirming
the central role of SHA-256 in the computation.

5.2.3 Cycle-accurate Measurements with perf
Finally, to analyze the root causes of performance differences between the software
and hardware-assisted implementations, the Linux perf tool was employed [19].
This allowed cycle-accurate statistics such as the number of executed instructions,
cache misses, and branch mispredictions to be collected, while also being robust
against variability due to operating system scheduling. perf was used particularly
in the microbenchmarks that measured isolated SHA-256 operations, enabling a
direct comparison between software-only and hardware-accelerated execution.

5.3 Software-only LMS Benchmarking
The first set of experiments was conducted using the unmodified software imple-
mentation of LMS. All parameter sets recommended in the NIST specification were
evaluated, namely tree heights h ∈ {5,10,15,20,25} combined with Winternitz pa-
rameters w ∈ {1,2,4,8}. For each configuration, the execution time of the three main
operations (keygen, sign, and verify) was measured using clock_gettime(),
and profiling data was collected with gprof.
To improve statistical confidence, each signing and verification measurement was
repeated over 30 rounds. The raw results were post-processed with a custom
Python script that extracted values from the logs, computed averages and stan-
dard deviations, and exported them in CSV format. The script is reported in
Appendix A.6.
During the benchmarking, it was observed that all configurations with h = 25
exceeded practical runtimes for key generation on the PYNQ-Z2 board. Runs with
w = 1,2,4 eventually completed but required many hours, while w = 8 was aborted
due to the prohibitive runtime (estimated in the order of weeks). To handle this,
the h = 25, w = 8 key pair was generated once on the Politecnico di Torino HPC
cluster and transferred to the PYNQ-Z2, so that signing and verification could still
be attempted for completeness.
However, an additional limitation was encountered: for all parameter sets with
h = 25, the signing operation systematically failed on the PYNQ-Z2. The library
reported an hss_error_out_of_memory, which in the reference implementation
corresponds to a “A malloc failure caused us to fail” condition. This indi-
cates that the embedded platform cannot allocate sufficient memory for the internal
structures required at this parameter size. Consequently, only key generation times
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could be measured for h = 25, while signing and verification benchmarks are limited
to h = 5,10,15,20.

5.3.1 Key Generation Times
Key generation proved to be by far the most resource-intensive operation. Table 5.1
reports the average execution time of key generation on the PYNQ-Z2 for all
parameter sets. The exponential dependency on tree height h is immediately
visible: moving from h = 20 to h = 25 increases the runtime by roughly two orders
of magnitude. At w = 8, the experiment was aborted after several days without
completion.

h w = 1 w = 2 w = 4 w = 8
5 38.625 39.750 52.563 338.200
10 1035.991 860.013 1419.075 10557.765
15 32678.435 26969.896 44733.633 337161.818
20 1047901.150 855383.434 1426530.702 10765737.466
25 33498680.063 27502367.549 45639979.067 timeout

Table 5.1: Software-only key generation times (ms) on PYNQ-Z2.

As discussed earlier, for h = 25 the generated keys were either aborted on the
board (for w = 8) or completed after many hours (for w = 1,2,4). In practice, these
results confirm that key generation dominates the computational cost of LMS at
higher security parameters, and explains why such parameter sets are unsuitable
for constrained platforms like the PYNQ-Z2.

Feasibility estimate via openssl speed

To give an intuitive sense of why LMS key generation becomes infeasible at large
tree heights, the OpenSSL microbenchmark was executed:

1 $ openssl speed sha256

Listing 5.2: Measuring SHA-256 throughput on PYNQ

The tool runs repeated SHA-256 computations on 64-byte blocks for three seconds
and reports the total operations. On the PYNQ, the output was approximately

523,076 hashes in 3 s ⇒ hashes_per_sec ≈ 1.75× 105.
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This benchmark is not restricted to single-core execution and is therefore not
directly comparable to the controlled measurements presented earlier. However, it
provides a useful order-of-magnitude reference when estimating runtimes.
For w = 1,2,4 the experiments on the PYNQ-Z2 completed successfully, although
with very long runtimes in the order of hours. The measured key generation times
were:

w Measured time
1 33,498.7 s (∼ 9.3 h)
2 27,502.4 s (∼ 7.6 h)
4 45,640.0 s (∼ 12.7 h)

Table 5.2: Measured key generation times for h=25 and w = 1,2,4 on the PYNQ-
Z2.

The experiment for w = 8 was aborted due to the prohibitive runtime. Using the
closed-form expression for LMS key generation

#Hkeygen = 2h
1
p(w)(2w − 1) + 1

2
+

1
2h+1 − 1

2
,

together with the throughput estimate from openssl speed, the expected runtime
is on the order of 19 days:

w p(w) #Hkeygen Estimated time
8 34 ≈ 2.91× 1011 ∼ 19 d

Table 5.3: Estimated key generation time for h=25, w=8 on the PYNQ-Z2.

This estimate is consistent with the observation that completing the h = 25, w = 8
key generation on the PYNQ was impractical. For completeness, the key was
generated once on the Politecnico di Torino HPC cluster and then transferred to
the PYNQ-Z2 for subsequent signing and verification attempts, which however
failed due to memory allocation errors.

5.3.2 Execution Times
Figures 5.1 and 5.2 report the averaged signing and verification latencies over 30
measurement rounds, with error bars indicating ±1 standard deviation. Signing
latencies increase with both h and w, while verification times remain remarkably
stable across all parameters. The low variance in verification (standard deviation
consistently below 1% relative to the mean) highlights the deterministic nature of

56



Benchmarking and Performance Evaluation

this operation: verification always requires traversing the full authentication path
and performing a fixed number of hash computations. In contrast, signing exhibits
higher dispersion, especially for w = 8. This behavior is a direct consequence of
the Winternitz one-time signature scheme, where the number of hash iterations
per signature depends on message-specific coefficients. For larger w, the possible
chain lengths span a wider range (e.g., up to 255 hashes for w = 8), resulting in
significant variation between different messages and, consequently, higher timing
variance.
The complete set of numerical results, including averages and standard deviations
for each (h, w) parameter set, is reported in Appendix B.1.

Figure 5.1: Execution time of LMS signing (average of 30 rounds) in the software-
only implementation, with error bars indicating ±1 std. dev.
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Figure 5.2: Execution time of LMS verification (average of 30 rounds) in the
software-only implementation, with error bars indicating ±1 std. dev.

5.3.3 Profiling Results
Profiling reports generated with gprof were collected for all parameter sets, with
particular focus on the case h = 20, which provides a representative trade-off
between computational intensity and practicality. To process the profiling output,
a custom Python script (Appendix A.6.1) was used to parse the gprof tables, filter
out functions unrelated to the LMS algorithm (e.g., initialization, zeroization),
and aggregate the time spent in SHA-256 related functions versus other auxiliary
routines. The script then produced stacked bar plots normalized to 100% of
execution time.
Figures 5.3–5.5 report the results for keygen, sign, and verify respectively, across
all Winternitz parameters w ∈ {1,2,4,8} at h = 20. In both key generation and
signing, hashing clearly dominates the runtime, consuming over 80% of the total
execution time in all cases. This confirms that SHA-256 is the computational
bottleneck of LMS.
By contrast, the stacked bar for verification (Figure 5.5) appears empty. This is
not due to a lack of operations, but rather to the extremely short runtime: the
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verification phase completes so quickly that gprof cannot accumulate measurable
percentages for any function. The appendix (see Table B.4 and related) still reports
the raw call counts, which confirm that the expected hash invocations take place.
The absence of measurable bars therefore illustrates the lightweight nature of
verification compared to key generation and signing.

Figure 5.3: Profiling result for LMS key generation at h = 20, showing the
proportion of runtime spent in hash-related functions versus other operations.
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Figure 5.4: Profiling result for LMS signing at h = 20, showing the dominance of
SHA-256 operations.
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Figure 5.5: Profiling result for LMS verification at h = 20. The stacked bar
appears empty due to the very short runtime, confirming the negligible cost of
verification.

The figures confirm that SHA-256 dominates all phases of the scheme. Depending
on the operation and the value of w, hash-related functions account for more than
80–95% of the runtime, leaving only a small fraction to encoding or structural
operations. This observation provides a strong motivation for the hardware/software
co-design explored in the next section, where SHA-256 invocations are offloaded to
the accelerator.

5.4 HW–SW Co-Design Benchmarking
The second set of experiments evaluated the hardware/software co-design, where
SHA-256 operations were offloaded to the custom accelerator instantiated on the
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PYNQ-Z2 FPGA fabric. The benchmarking methodology initially mirrored the
software-only setup: LMS operations were executed for the NIST-recommended
parameter sets, and runtime was measured with clock_gettime(), while profiling
data was collected with gprof.
At first sight, the raw execution times were slower than in the pure software
implementation. Since key generation is by far the most time-consuming phase,
it was omitted from this stage of testing to avoid days of runtime. The focus was
placed instead on the sign and verify operations, which can be executed in a few
seconds and are therefore better suited to iterative performance analysis.

5.4.1 Initial Results
The raw numerical results for all parameter sets are reported in Appendix B.2.1.
For h = 25, key generation was performed on the HPC cluster for completeness, but
signing and verification attempts on the PYNQ-Z2 again failed with hss_error_-
out_of_memory. Figures 5.6 and 5.7 report the execution times of signing and
verification when SHA-256 calls are offloaded to the accelerator. The measurements
demonstrate that, despite successful integration of the accelerator, the overall
measured execution time was longer than in the software-only case.
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Figure 5.6: Execution time of LMS signing in the HW–SW co-design, before
driver optimization.
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Figure 5.7: Execution time of LMS verification in the HW–SW co-design, before
driver optimization.

Profiling of the HW/SW co–design reveals a clear height–dependent split. For small
trees (h=5–10), the runtime is dominated by SHA256_Update, i.e., the incremental
software path that the current accelerator cannot offload. As h grows, the number
of single–shot hashes explodes and the time attributed to hw_hash (the wrapper
that drives the accelerator) increases accordingly; by h=20 it becomes the single
largest contributor in most (h, w) configurations. Importantly, the time charged
to hw_hash is not CPU computation; it includes the cost of marshalling data,
padding, register I/O/polling, and waiting for the device to complete. In other
words, the bottleneck shifts from pure hashing (software) to offload overhead and
device latency/clock frequency (hardware). In practice, this also highlights a
scalability issue: the accelerator offers little benefit for small workloads, where
software routines dominate, and becomes the main cost driver only at large h, where
its overhead outweighs the gains from hardware acceleration. A per–configuration
summary is reported in Table 5.4.

64



Benchmarking and Performance Evaluation

h w = 1 w = 2 w = 4 w = 8
5 1.50 / 75.19 1.56 / 73.44 0.78 / 77.52 4.23 / 66.20
10 2.03 / 79.31 1.50 / 75.19 2.28 / 81.68 5.96 / 67.55
15 11.37 / 56.87 9.84 / 60.62 25.00 / 43.53 51.25 / 14.62
20 29.52 / 29.27 37.16 / 23.90 53.39 / 11.67 62.80 / 1.32

Table 5.4: Relative time distribution (%) between hw_hash and SHA256_Update
for signing (HW/SW co–design).

This observation explains why the wall-clock runtime did not improve despite the
per-cycle advantage of the hardware core. The bottleneck has not been removed, but
relocated from software hashing routines to the communication and synchronization
path between software and hardware. The disappointing outcome of these initial
benchmarks highlighted that raw acceleration alone is insufficient: the surrounding
driver and software stack must also be carefully optimized. The next subsection
therefore investigates the impact of driver design on performance.

5.4.2 Driver Optimization Results
To quantify the benefit of the driver redesign, the performance of the unopti-
mised and optimised implementations was compared. The unoptimised driver was
evaluated with a single measurement per configuration, since the runtimes were
consistently high and further repetition was unnecessary. In contrast, the optimised
driver was benchmarked over 30 rounds, with averages and standard deviations
reported to improve statistical robustness.
Table 5.5 reports the comparison, showing the average latency with the optimised
driver alongside the one-shot baseline from the unoptimised driver. A speedup
factor was then computed as the ratio of the two. Figure 5.8 visualises the same
results.
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h w Unoptimised (1 run) Optimised (avg ± std) Speedup
5 1 1880.469 1847.387 ± 2.156 1.02×
10 1 2005.605 1892.182 ± 23.684 1.06×
15 1 2122.998 1927.240 ± 1.711 1.10×
20 1 2201.208 1954.115 ± 2.466 1.13×
5 2 1913.687 1858.488 ± 3.006 1.03×
10 2 1993.180 1883.553 ± 1.997 1.06×
15 2 2113.278 1921.105 ± 2.461 1.10×
20 2 2190.628 1945.469 ± 2.194 1.13×
5 4 2012.551 1885.732 ± 2.057 1.07×
10 4 2165.307 1936.780 ± 2.202 1.12×
15 4 2404.307 2006.931 ± 3.106 1.20×
20 4 4024.542 2055.915 ± 2.189 1.96×
5 8 3371.347 2320.352 ± 3.973 1.45×
10 8 4625.536 2689.925 ± 2.143 1.72×
15 8 6546.042 3272.497 ± 2.194 2.00×
20 8 7784.278 3661.065 ± 2.814 2.13×

Table 5.5: Comparison of unoptimised vs. optimised driver (signature latency in
ms). Optimised results are averages over 30 rounds with ±1 std. dev. Speedup is
computed as the ratio of the two.
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Figure 5.8: Driver optimisation speedup (signature generation)

The results show a clear trend: for small Winternitz parameters (w=1,2), the impact
of driver optimisation is limited (1.02–1.13×). In contrast, as w increases, the
overhead of accelerator invocation grows and the optimised driver brings substantial
benefits. At w=8, the speedup exceeds 2×, demonstrating that software overhead,
rather than the accelerator core itself, was the dominant performance bottleneck.
Verification latencies showed negligible differences between the two driver versions,
confirming that this operation is lightweight and not bottlenecked by driver overhead.
For completeness, the raw verification results over 30 rounds are reported in
Appendix B.2.2.
Despite the observed gains, the optimised HW/SW co–design still lags behind
the pure software implementation. Even at its best configuration (h=20, w=8),
signature generation with the accelerator remains significantly slower than the
software-only baseline. This counter–intuitive outcome shows that removing driver
overhead was not sufficient to unlock a net speedup. To clarify the root cause, a
deeper investigation of the underlying execution characteristics is required, which
is the focus of the next section.
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5.5 Cycle-Level Analysis
The driver optimisation experiments showed that performance improved consid-
erably compared to the initial implementation, yet the HW/SW co–design still
lagged behind the pure software baseline in wall–clock time. To clarify the root
cause, a cycle–level analysis was performed to quantify the intrinsic cost of a single
SHA-256 invocation in hardware compared to software.

5.5.1 Intrinsic Hardware Latency
To measure the cycle count of the accelerator in isolation, the VHDL testbench
of the SHA-256 core was modified to include a simple cycle counter. The counter
started when the msg_valid signal was asserted and stopped once hash_valid
was raised. The instrumented testbench is reported in Appendix A.6.2.
Simulation in Vivado reported that one SHA-256 operation requires a fixed latency
of 137 clock cycles. This figure represents the intrinsic datapath cost of the hardware
core, independent of driver or software overhead. It provides a theoretical lower
bound for the number of cycles required by the programmable logic to process one
message block.

5.5.2 Measurement Methodology
The next step was to measure the effective cycle cost of invoking the hash function
from C, both in pure software (OpenSSL) and through the hardware wrapper (hw_-
hash). A dedicated microbenchmark, shown in Appendix A.6.3, was developed,
invoking either the SW or HW path for a controlled number of iterations. The num-
ber of iterations was parameterized at compile time (ITERATIONS=1,10,100,1000)
to investigate scaling behavior and to reduce the relative impact of fixed overheads.
For each configuration, the benchmark was executed 50 times to obtain stable
statistical estimates. The perf stat tool was used to collect the number of retired
CPU cycles during each execution, and the results were appended to log files
for later processing. The entire process was automated through the shell script
shown in Appendix A.6.4, which builds both hardware and software versions of the
benchmark, runs the desired number of rounds, and collects cycle counts.

5.5.3 Results
Table 5.6 reports the average number of retired cycles measured over 50 repetitions
for both HW and SW modes, for iteration counts of 1, 10, 100, and 1000. Standard
deviations are also shown to illustrate measurement stability.
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Iterations HW Cycles SW Cycles
1 2,089,897 ± 67,428 4,283,441 ± 100,828
10 2,349,323 ± 67,730 4,269,507 ± 80,369
100 4,695,088 ± 92,729 4,509,441 ± 94,171
1000 28,100,721 ± 356,813 6,769,845 ± 98,718

Table 5.6: Average CPU cycles (mean ± standard deviation) over 50 runs.

Figure 5.9 provides a per-iteration bar comparison between HW and SW modes,
with error bars corresponding to one standard deviation. For 1 and 10 iterations,
the HW path consistently requires approximately half the number of cycles of the
SW path. This matches expectations: the hardware accelerator offloads the hash
computation almost entirely, resulting in fewer retired CPU cycles.
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Figure 5.9: Average retired cycles for HW vs. SW modes at different iteration
counts (mean ± std).

Figure 5.10 shows the same data on a logarithmic x-axis to highlight scaling trends.
While the SW mode grows almost linearly with the number of iterations, the HW
mode exhibits a sharp increase beyond 100 iterations. At 1000 iterations, the HW
path requires more than four times the number of CPU cycles than SW, reversing
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the advantage observed at smaller scales.
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Figure 5.10: Scaling of HW and SW cycle counts with the number of iterations
(logarithmic x-axis).

5.5.4 Discussion
These results offer a nuanced picture of the HW/SW trade-off at the cycle level:
for short bursts of work, involving one or ten hash invocations, the HW/SW path
requires roughly half the number of CPU cycles compared to the pure software path.
This behaviour matches expectations for an efficient hardware offload: the CPU
issues the command, then waits while the accelerator performs the computation,
retiring relatively few instructions in the process.
As the workload grows to intermediate sizes (around 100 iterations), the initial
advantage of the hardware path largely disappears. At this scale, the fixed overhead
of each accelerator invocation begins to accumulate, effectively cancelling out the
cycle savings achieved by offloading the hash computations to hardware.
For large workloads (1000 iterations), the situation reverses completely: the
HW/SW path performs substantially worse than the software baseline in terms of
total CPU cycles. This is a direct consequence of the current driver model, which
invokes the accelerator once per iteration, incurring the cost of AXI transactions,
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input padding, and synchronization on every call. Meanwhile, the software loop ex-
ecutes entirely within the OpenSSL library, benefiting from tight, highly optimized
instruction loops without any system call overhead.
In essence, the hardware accelerator is per-call cycle efficient, but the current driver
model introduces a significant fixed cost per invocation. This explains the non-linear
behavior observed at larger iteration counts. Two main factors contribute to this:

(i) The accelerator runs at a much lower frequency (31.25 MHz) compared to the
ARM cores, so raw cycle reductions do not translate directly to time savings.

(ii) The blocking driver model serializes CPU and PL activity, preventing any
overlap and making per-call synchronization overhead dominant at scale.

To unlock the full potential of the accelerator, batching multiple messages into
a single offload, using DMA transfers, or switching to an interrupt-driven model
would be required. These optimizations could reduce per-call overhead and make
the hardware solution competitive at higher workloads.

5.6 Break-Even Accelerator Frequency Estima-
tion

The cycle-level analysis demonstrated that the SHA-256 hardware core is intrin-
sically more cycle-efficient than software, but this advantage does not currently
translate into a wall-clock speedup. A natural question is therefore: at what
clock frequency would the accelerator need to run to outperform the software
implementation? This section derives an estimate of such a break-even frequency
under both optimistic and more realistic assumptions.

5.6.1 Performance Model
The wall-clock time of a single hash invocation through the HW/SW co-design can
be modelled as

THW/SW = TSW(pre) + THW + TSW(post) ≈ 2Tdriver + THW, (5.1)

where Tdriver represents the fixed software cost of preparing the input, performing
AXI register I/O, and synchronising with the device, while THW is the actual
accelerator latency.
For N consecutive hash invocations, the total time becomes

THW/SW(N) ≈ 2Tdriver + N · Titer, (5.2)
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where Titer is the per-hash iteration cost. Assuming the software baseline has total
time TSW(N), the break-even frequency f ⋆

PL for the accelerator is the value at which

THW/SW(N ; f ⋆
PL) = TSW(N). (5.3)

5.6.2 Optimistic Model
As a first approximation, we assume that the entire per-iteration cost Titer scales
inversely with the programmable logic (PL) clock frequency. Letting fPL,now denote
the current PL frequency and Titer,now the measured per-iteration time at that
frequency, the required break-even frequency is

f ⋆
PL ≈ fPL,now ·

N Titer,now

TSW(N)− 2Tdriver
. (5.4)

5.6.3 Realistic Model
In practice, not all of Titer scales with frequency. A large portion is due to fixed
software and I/O overhead, while only the core hashing latency (137 cycles) depends
on the PL clock. We therefore refine the model by splitting

Titer = Tfixed + Ccore

fPL
, (5.5)

where Tfixed is the per-call overhead independent of PL frequency, and Ccore is the
number of accelerator cycles per hash (137 for the implemented core). Substituting
(5.5) into (5.2) and solving for f ⋆

PL yields

f ⋆
PL = Ccore N

TSW(N)− 2Tdriver −NTfixed
. (5.6)

This situation corresponds to a regime in which the combined cost of driver
invocation and per-iteration software overhead already exceeds the total runtime of
the software baseline, even assuming an infinitely fast accelerator. In other words,
the overhead alone is sufficient to make the HW/SW path slower than software.
Under these conditions, increasing the PL clock frequency cannot compensate for
the structural overheads: the only way to make acceleration beneficial is to reduce
the fixed costs associated with each invocation.
It is important to distinguish between the roles of Tdriver and Tfixed in this model.
The former represents a one-time cost per benchmark call: it includes all pre-
and post-processing steps performed outside the hashing loop, such as interface
initialisation, memory mapping, and other fixed software setup routines. This is
why it appears in (5.2) as 2Tdriver rather than being multiplied by the number of
iterations N .
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By contrast, Tfixed captures the per-iteration software and I/O overhead that does
not scale with the PL clock frequency. This includes operations such as writing
message blocks to AXI registers, applying padding and length encoding, issuing
control signals, and polling for completion. These steps are repeated for each
hash invocation inside the loop, which is why Tfixed is multiplied by N in (5.6).
Distinguishing between these two components is essential: grouping them together
would either underestimate overheads for large N (if treated as purely driver cost)
or overestimate them for small N (if treated as purely per-iteration cost).

5.6.4 Numerical Estimates
To extract the parameters Tdriver and Tfixed from the measured cycle counts, a
simple linear model was fitted to the hardware microbenchmark results. Let
HW_cycles(N) denote the average number of retired CPU cycles measured with
perf for the hardware path when hashing N blocks. The measurements follow the
relation

HW_cycles(N) ≈ A + B N, (5.7)
where A corresponds to the one-time driver cost (enter/exit) and B captures the
per-iteration cost.
Converting cycles to time using the CPU frequency fCPU = 650 MHz gives

Tdriver = A

2 fCPU
, (5.8)

Titer,now = B

fCPU
, (5.9)

where Titer,now represents the total per-iteration cost measured at the current PL
clock frequency.
This per-iteration cost is then decomposed into a frequency-independent soft-
ware/I/O component and a frequency-dependent core latency:

Titer,now = Tfixed + Ccore

fPL,now
, (5.10)

where Ccore = 137 is the number of accelerator cycles per hash, and fPL,now =
31.25 MHz is the current PL frequency. Solving for Tfixed yields

Tfixed = Titer,now −
Ccore

fPL,now
. (5.11)

Using the measured data from Section 5.5, the linear fit produced A ≈ 2.08× 106

cycles and B ≈ 2.60× 104 cycles per iteration. This gives

Tdriver ≈ 1.60 ms, Titer,now ≈ 40.0 µs, Tfixed ≈ 35.6 µs.
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The latter corresponds to the per-iteration cost not attributable to the 137-cycle
core latency (≈ 4.4 µs at 31.25 MHz).
Table 5.7 reports the resulting break-even PL frequencies for N = 1, 10, 100, 1000
iterations, using both the optimistic and realistic models.

Table 5.7: Estimated break-even PL frequencies f ⋆
PL for different iteration counts.

Iterations Optimistic Model Realistic Model
1 ∼33 MHz ∼36 MHz
10 ∼33 MHz ∼40 MHz
100 ∼33 MHz ∼60 MHz
1000 ∼173 MHz no finite solution

5.6.5 Discussion
The estimates reveal two important insights. First, for short to moderate workloads
(up to tens of hashes), a modest increase of the PL clock to around 50–60 MHz
would be sufficient to break even with the software baseline. This is plausible on
the PYNQ-Z2 platform and would already yield speedups without architectural
changes.
Second, for larger workloads (hundreds to thousands of hashes), simply raising the
PL frequency is not enough. The per-call overhead dominates the total runtime,
making the denominator in (5.6) negative: in other words, no clock frequency can
compensate for the current driver design. This explains why the HW/SW co-design
performs worse than software at N = 1000 despite the intrinsic efficiency of the
SHA-256 core.
The model therefore highlights two complementary optimisation paths: increasing
the accelerator frequency can yield immediate gains for short workloads, while
batching, DMA transfers, or interrupt-driven drivers are required to reduce Tfixed
and Tdriver to unlock scalability.

5.7 Pre-Quantum Baseline: ECDSA–SHA256
To contextualize the performance of LMS on embedded hardware, a set of reference
measurements was carried out using the classical ECDSA–P256 digital signature
scheme combined with SHA-256. This represents a widely deployed pre-quantum
baseline: ECDSA–P256 is currently used in numerous secure-boot frameworks and
firmware signing pipelines in industry. Comparing LMS against this well-known
scheme provides a practical sense of the performance gap that must be bridged
when transitioning to post-quantum signature schemes.
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5.7.1 Methodology
Firmware signing and verification were implemented using OpenSSL’s EVP API
for ECDSA over the NIST P-256 curve. The benchmarking script is shown in
Appendix A.6.5. A firmware file (firmware.bin), identical to the one used in the
LMS benchmarks, was signed and verified to ensure consistency. Key pairs were
generated once and stored in PEM format; signing and verification benchmarks
were then performed using the same pre-generated key in order to isolate the cost
of the cryptographic operations from key generation.
Signing and verification were each repeated over 30 rounds. The benchmarking
harness used clock_gettime() with the CLOCK_MONOTONIC clock source to measure
wall-clock time, as in the LMS measurements. The average time and standard
deviation over the 30 rounds were computed for both signing and verification.
Additionally, the signature length was recorded to compare the size overhead
between the two schemes.

5.7.2 Results
Table 5.8 reports the average signing and verification times for ECDSA–P256 on
the PYNQ-Z2, measured over 30 rounds using the EVP API. Signature size is
also included for completeness. This table represents the classical, pre-quantum
baseline against which the various LMS configurations are compared.

Sign (ms) Verify (ms)
ECDSA P-256 (EVP) 426.15± 4.83 419.28± 5.04

Table 5.8: ECDSA–P256 baseline on PYNQ-Z2 (30 rounds).

Representative LMS Comparison

To avoid overwhelming the reader with the full parameter space, a selected set
of LMS parameter configurations is presented in Table 5.9. These configurations
are chosen to illustrate the trade-offs between runtime and signature size across
different (h, w) combinations, covering small, medium, and large parameter sets,
as well as the hardware/software co-design at the most demanding point.
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Scheme Params Sign (ms) Verify (ms) Sig. size (B) Sign / ECDSA Verify / ECDSA
ECDSA P-256 (EVP) – 426 419 64 1.0 1.0
LMS (SW) (h=10, w=1) 502 491 ∼ 8,832 1.18× 1.17×
LMS (SW) (h=20, w=4) 515 493 ∼ 2,816 1.21× 1.18×
LMS (SW) (h=20, w=8) 677 501 1,112 1.59× 1.20×
LMS (HW/SW) (h=20, w=8) 3661 ∼ 1945 1,112 8.6× 4.6×

Table 5.9: Comparison between ECDSA–P256 and selected LMS parameter sets
on PYNQ-Z2. Ratios are relative to ECDSA (lower is better).

Figures 5.11 and 5.12 compare the signing and verification latencies of all LMS
parameter sets against a fixed ECDSA P-256 baseline on the PYNQ-Z2 board.
The figures show the evolution of execution time as a function of the Winternitz
parameter w, with separate curves for each tree height h ∈ {5,10,15,20}. Error
bars represent ±1 standard deviation over 30 measurement rounds. The ECDSA
baseline is shown as a horizontal dashed line for reference.
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Figure 5.11: LMS signing time across Winternitz parameters and tree heights
compared to the ECDSA P-256 baseline (dashed). Error bars show ±1 standard
deviation.
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Figure 5.12: LMS verification time across Winternitz parameters and tree heights
compared to the ECDSA P-256 baseline (dashed).

Unlike ECDSA, which corresponds to a single, highly optimized operating point,
LMS spans a wide design space parameterized by (h, w). The plots clearly show
that, on the PYNQ-Z2 platform, even the smallest LMS configurations are several
times slower than ECDSA for both signing and verification. Signing cost increases
significantly with w and h, with the largest configurations (w=8, h=20) taking
several seconds per operation. Verification times are much less sensitive to (h, w),
forming nearly flat curves across Winternitz parameters, but still remain above the
ECDSA baseline.

5.8 Limitations and Future Work

5.8.1 Limitations
The results presented in this thesis should be interpreted in light of a number of
methodological, platform, implementation, and scope limitations that influenced
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both the design choices and the measured performance.

Methodological Limitations

The benchmarking campaign focused exclusively on runtime performance, in terms
of execution time and retired cycles, and did not include measurements of power
consumption or energy efficiency, which are essential metrics for evaluating post-
quantum schemes on embedded platforms. All measurements were conducted on a
single hardware platform (PYNQ-Z2), which limits the generalizability of the results
to other architectures such as STM32 MCUs, automotive SoCs, or ASIC-based
designs. Moreover, the analysis considered only SHA-256 as the underlying hash
function; alternative NIST-approved hash variants (e.g., SHA-256/192 or SHAKE
functions) were not explored.
All benchmarks were performed in a single-threaded configuration, without exploit-
ing the potential for parallelism or pipelining in LMS key generation or signing.
In addition, the LMS software implementation used in this work is based on the
official RFC reference code, which is functionally correct but not optimized for
performance. At the time of this work, OpenSSL had not yet released an LMS
implementation for key generation, signing, and verification. Consequently, the
software baseline does not reflect the level of optimization that can be expected
from future mainstream cryptographic libraries. Repeating this benchmarking
campaign once an optimized OpenSSL LMS backend becomes available would likely
yield more representative software baselines.

Platform Limitations

The programmable logic on the PYNQ-Z2 board operates at a relatively low
frequency of 31.25 MHz, which strongly affects the computed break-even frequencies
and the overall performance of the accelerator. The accelerator is accessed through
a blocking AXI-Lite interface, which prevents overlapping CPU and PL activity and
increases per-call latency. No DMA or interrupt-driven mechanisms were employed;
instead, data transfers rely on CPU-driven register writes and polling, introducing
significant overhead. Furthermore, the platform hosts only a single accelerator
instance, and no multi-accelerator or multithreaded architectures were explored.

Implementation Limitations

The SHA-256 accelerator implements only the compression function for single
message blocks and does not support incremental hash operations in hardware. As
a result, only a fraction of the total hash computations are offloaded, particularly
during LMS signing and verification, where incremental hash updates are dominant.
The driver, although optimized to remove syscall overhead via memory mapping,
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follows a per-block invocation model in which each hash block triggers a separate
sequence of data marshalling, padding, AXI register transactions, and polling.
The LMS implementation itself is single-threaded and follows the RFC reference
algorithm without structural optimizations such as caching of internal nodes or
batching of hash computations. The accelerator is limited to a single datapath,
without pipelining, message chaining, or parallel hashing capabilities. Architectural
techniques such as batched hash processing or Merkle tree computations in hardware
were not implemented, which limits the achievable performance.

Scope Limitations

The scope of this work is limited to performance evaluation; security analysis,
side-channel resistance, and formal verification of the hardware/software stack were
not investigated. Within the performance analysis, only signing and verification
operations were benchmarked in the HW/SW co-design; key generation was ex-
cluded due to its prohibitive runtime at high tree heights. No end-to-end secure
boot prototype was developed and tested; the reported measurements are based
on isolated microbenchmarks. Finally, the ECDSA comparison was limited to a
single P-256 software baseline, without including hardware-accelerated ECDSA
implementations or alternative elliptic curve parameters.

5.8.2 Future Work
Several directions can be pursued to address these limitations and extend this work.
From a platform perspective, increasing the accelerator clock frequency, enabling
DMA or interrupt-driven operation, and instantiating multiple accelerators could
significantly reduce driver overhead and improve throughput. At the algorithmic
level, supporting incremental hashing in hardware, batching multiple message
blocks per invocation, or pipelining hash computations would allow the accelerator
to target the dominant SHA256_Update phase of LMS signing and verification,
which is currently handled in software.
On the software side, the availability of a native OpenSSL LMS implementation
would provide a more realistic and optimized software baseline for comparison.
Integrating the accelerator into a full secure-boot chain would enable end-to-end
performance and security evaluation. Finally, extending the benchmarking to
additional platforms, evaluating energy consumption, and exploring ASIC or high-
frequency FPGA targets would provide valuable insight into the practical feasibility
of LMS for post-quantum secure boot in real embedded systems.
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Conclusions

This work investigated the integration of post-quantum digital signature algorithms
within the secure boot process of real-time embedded systems. The motivation
stems from the imminent advent of quantum computers, which threatens cur-
rently deployed public-key cryptography, and from the need to adopt standardized,
quantum-resistant algorithms in constrained environments such as automotive
electronic control units.
An initial comparative analysis of standardized post-quantum signature schemes
identified hash-based signatures, and in particular the Leighton–Micali Signature
(LMS) scheme, as a promising candidate. LMS offers strong security guarantees
grounded solely on the hardness of preimage and collision resistance of the under-
lying hash function, compact and fixed key sizes, and a mature standardization
and deployment profile. While lattice-based schemes such as Falcon or ML-DSA
achieve more compact signatures, their mathematical complexity and implemen-
tation challenges make LMS a more practical choice for early-stage adoption in
embedded secure boot frameworks.
The core of this thesis consisted of a detailed software–hardware co-design and
benchmarking study of LMS on a Xilinx PYNQ-Z2 board. The LMS algorithm
was implemented in software following the IETF reference code, modified to
run in a single-core, single-threaded setting to enable accurate and reproducible
measurements. A SHA-256 hardware accelerator was ported to the platform and
integrated with the processing system through an AXI-Lite interface. A custom
Linux character driver was then developed and optimized to minimize overhead
through memory-mapped I/O, reducing system call latency and maximizing the
effective throughput of the accelerator.
Extensive benchmarking campaigns were performed on both software-only and
hardware-accelerated configurations, across multiple LMS parameter sets and over
30 independent measurement rounds. The experiments measured execution times,
cycle counts, and profiling information for key generation, signature generation, and
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verification. The results highlighted the dominant role of hashing in LMS signing
and verification, justifying the acceleration strategy. Driver optimization led to
a substantial reduction of per-call overhead, while intrinsic accelerator latency
was measured through a cycle-level testbench. Break-even analysis was then
conducted to estimate the minimum accelerator frequency required to outperform
pure software hashing. Finally, the hardware-accelerated LMS performance was
compared against a pre-quantum ECDSA–SHA256 baseline to provide a practical
deployment perspective.
The study demonstrated that, although the current single-accelerator configuration
with AXI-Lite access cannot yet surpass optimized software hashing for short
messages, the methodology enables precise identification of performance bottlenecks
and provides a clear path toward scalable acceleration. The results also confirm that
LMS, despite higher signature generation costs compared to ECDSA, remains a
viable candidate for post-quantum secure boot thanks to its simplicity, predictability,
and hardware-friendly structure.
Looking forward, several avenues of improvement have been identified. These
include adopting multi-accelerator or pipelined designs to enable parallel hashing,
moving from AXI-Lite to higher-throughput interfaces, exploiting DMA for bulk
message transfer, and integrating LMS implementations from optimized crypto-
graphic libraries such as OpenSSL once available. Beyond performance, integrating
LMS into a complete secure boot chain on heterogeneous SoCs would provide
further insights into system-level impacts and required optimizations.
In conclusion, this thesis contributes a complete and reproducible evaluation
framework for post-quantum LMS signatures on embedded platforms, combining
algorithmic analysis, hardware–software co-design, and quantitative benchmarking.
The results offer both a baseline and a methodology for future research toward
efficient, quantum-safe secure boot in resource-constrained environments.

81



Appendix A

Source Code and Benchmark
Data

A.1 Optimized SHA-256 Driver
This section reports the complete source code of the optimized SHA-256 Linux
character device driver used to interface with the accelerator. The driver employs
mmap()-based register access to minimize system call overhead and achieve low-
latency hash operations.

1 // sha256_driver .c minimal char driver for SHA -256
accelerator on PYNQ

2

3 # include <linux/init.h>
4 # include <linux/ module .h>
5 # include <linux/fs.h>
6 # include <linux/cdev.h>
7 # include <linux/ device .h>
8 # include <linux/io.h>
9 # include <linux/ uaccess .h>

10 # include <linux/mm.h>
11

12 # define DRIVER_NAME " sha256 "
13 # define DEVICE_NAME " sha256 "
14 # define CLASS_NAME " sha256_class "
15

16 # define BASE_ADDR 0 x40000000
17 # define MEM_SIZE 0x1000 // 4 KB mapped size
18

19 MODULE_LICENSE ("GPL");
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20 MODULE_AUTHOR (" Francesco Corvaglia ");
21 MODULE_DESCRIPTION (" Minimal SHA -256 driver for PYNQ -Z2 Board

");
22 MODULE_VERSION ("0.2");
23

24 static dev_t dev_number ;
25 static struct cdev sha256_cdev ;
26 static struct class * sha256_class ;
27

28 static void __iomem * base_addr ;
29

30 static int sha256_open ( struct inode *inode , struct file *
file) {

31 return 0;
32 }
33

34 static int sha256_release ( struct inode *inode , struct file *
file) {

35 return 0;
36 }
37

38 static ssize_t sha256_read ( struct file *file , char __user *
buf , size_t len , loff_t * offset ) {

39 uint32_t value;
40

41 if (* offset + sizeof ( uint32_t ) > MEM_SIZE )
42 return -EINVAL ;
43

44 value = ioread32 ( base_addr + * offset );
45

46 if ( copy_to_user (buf , &value , sizeof ( uint32_t )))
47 return -EFAULT ;
48

49 return sizeof ( uint32_t );
50 }
51

52 static ssize_t sha256_write ( struct file *file , const char
__user *buf , size_t len , loff_t * offset ) {

53 uint32_t value;
54

55 if (len != sizeof ( uint32_t ) || * offset + sizeof ( uint32_t
) > MEM_SIZE )

56 return -EINVAL ;
57

58 if ( copy_from_user (& value , buf , sizeof ( uint32_t )))
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59 return -EFAULT ;
60

61 iowrite32 (value , base_addr + * offset );
62

63 return sizeof ( uint32_t );
64 }
65

66 static int sha256_mmap ( struct file *file , struct
vm_area_struct *vma) {

67 unsigned long phys = BASE_ADDR ;
68 unsigned long vsize = vma -> vm_end - vma -> vm_start ;
69

70 if (vsize > MEM_SIZE )
71 return -EINVAL ;
72

73 // Mark memory as non - cached
74 vma -> vm_page_prot = pgprot_noncached (vma -> vm_page_prot );
75

76 // Map the physical address to user space
77 return ( remap_pfn_range (vma ,
78 vma ->vm_start ,
79 phys >> PAGE_SHIFT ,
80 vsize ,
81 vma -> vm_page_prot ));
82 }
83

84

85 static const struct file_operations fops = {
86 .owner = THIS_MODULE ,
87 .open = sha256_open ,
88 . release = sha256_release ,
89 .read = sha256_read ,
90 .write = sha256_write ,
91 .mmap = sha256_mmap ,
92 };
93

94 static int __init sha256_init (void) {
95 int ret;
96

97 // Reserve the region
98 if (! request_mem_region (BASE_ADDR , MEM_SIZE , DRIVER_NAME

)) {
99 pr_err (" Unable to reserve memory region \n");

100 return -EBUSY;
101 }
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102

103 base_addr = ioremap (BASE_ADDR , MEM_SIZE );
104 if (! base_addr ) {
105 pr_err (" Unable to map memory \n");
106 release_mem_region (BASE_ADDR , MEM_SIZE );
107 return -ENOMEM ;
108 }
109

110 // Allocate char device number
111 ret = alloc_chrdev_region (& dev_number , 0, 1, DEVICE_NAME

);
112 if (ret < 0) {
113 pr_err (" Failed to allocate char device region \n");
114 goto err_unmap ;
115 }
116

117 cdev_init (& sha256_cdev , &fops);
118 sha256_cdev .owner = THIS_MODULE ;
119

120 ret = cdev_add (& sha256_cdev , dev_number , 1);
121 if (ret < 0) {
122 pr_err (" Failed to add char device \n");
123 goto err_unregister ;
124 }
125

126 sha256_class = class_create ( THIS_MODULE , CLASS_NAME );
127 if ( IS_ERR ( sha256_class )) {
128 pr_err (" Failed to create device class\n");
129 ret = PTR_ERR ( sha256_class );
130 goto err_cdev_del ;
131 }
132

133 if ( device_create ( sha256_class , NULL , dev_number , NULL ,
DEVICE_NAME ) == NULL) {

134 pr_err (" Failed to create device \n");
135 ret = -EINVAL ;
136 goto err_class ;
137 }
138

139 pr_info (" SHA256 driver loaded . /dev /%s ready .\n",
DEVICE_NAME );

140 return 0;
141

142 err_class :
143 class_destroy ( sha256_class );
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144 err_cdev_del :
145 cdev_del (& sha256_cdev );
146 err_unregister :
147 unregister_chrdev_region (dev_number , 1);
148 err_unmap :
149 iounmap ( base_addr );
150 release_mem_region (BASE_ADDR , MEM_SIZE );
151 return ret;
152 }
153

154 static void __exit sha256_exit (void) {
155 device_destroy ( sha256_class , dev_number );
156 class_destroy ( sha256_class );
157 cdev_del (& sha256_cdev );
158 unregister_chrdev_region (dev_number , 1);
159 iounmap ( base_addr );
160 release_mem_region (BASE_ADDR , MEM_SIZE );
161 pr_info (" SHA256 driver unloaded .\n");
162 }
163

164 module_init ( sha256_init );
165 module_exit ( sha256_exit );

Listing A.1: Optimized SHA-256 driver (full source).

A.2 Python Overlay Testbench
To validate the correct functionality of the SHA-256 accelerator via PYNQ overlays,
a dedicated Python testbench was developed. It loads the hardware overlay, applies
SHA-256 message padding, transfers input words to the accelerator, and compares
the resulting digest with reference values computed using Python’s hashlib.

1 from pynq import Overlay
2 import struct
3 import time
4

5 # Load the overlay and IP block
6 overlay = Overlay ("/home/ xilinx /Tesi/ sha256_tests /

sha256_wrapper .bit")
7 sha256_accel = overlay . sha256_ctrl_axi_0
8

9 # Padding functions
10 def create_binary ( input_string ):
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11 return ’’.join( format (ord(x), ’08b’) for x in
input_string )

12

13 def append_bit_1 ( input_string ):
14 return input_string + ’1’
15

16 def append_k_bit ( input_string ):
17 while len( input_string ) % 512 != 448:
18 input_string += ’0’
19 return input_string
20

21 def append_length_of_message ( input_string ):
22 length_bin = format (len( input_string ), ’064b’)
23 return length_bin
24

25 def pad_message ( input_string ):
26 binary = create_binary ( input_string )
27 padded = append_k_bit ( append_bit_1 ( binary )) +

append_length_of_message ( binary )
28 return padded
29

30 # Function to write one 32- bit word
31 def write_word (word_bits , is_last ):
32 word = int(word_bits , 2)
33 while sha256_accel .read (0x4) & 0x1 == 0: # wait for

msg_ready
34 pass
35 if is_last :
36 sha256_accel .write (0x4 , 0x8) # set msg_last
37 sha256_accel .write (0x0 , word) # write to data_reg
38

39 # Feed message and get hash
40 def hash_message ( padded_binary ):
41 num_words = len( padded_binary ) // 32
42 for i in range( num_words ):
43 word = padded_binary [i*32:(i+1) *32]
44 is_last = (i == num_words - 1)
45 write_word (word , is_last )
46

47 while sha256_accel .read (0x4) & 0x2 == 0: # wait for
hash_valid

48 pass
49

50 hash_words = []
51 for offset in range (0x8 , 0x28 , 4): # h0 to h7
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52 print(f" Reading offset { offset }")
53 h = sha256_accel .read( offset )
54 hash_words . append (h)
55

56 sha256_accel .write (0x4 , 0x4) # set hash_ack
57 return hash_words
58

59 # Main loop
60 if __name__ == " __main__ ":
61 while True:
62 input_str = input("Enter message to hash (type ’Bye ’

to exit): ")
63 if input_str == "Bye":
64 print(" Exiting ...")
65 break
66

67 padded = pad_message ( input_str )
68 print(" Padded Hexadecimal Message :")
69 padded_hex = ’’.join( format (int( padded [i:i+8], 2), ’

02x’) for i in range (0, len( padded ), 8))
70 print( padded_hex )
71 print(len( padded_hex ))
72 result = hash_message ( padded )
73

74 print("SHA -256 Hash:")
75 print(’’.join( format (word , ’08x’) for word in result

))
76 print ()

Listing A.2: Python testbench for functional validation of the SHA-256
accelerator.

A.3 C Testbench for SHA-256 Accelerator
A standalone C testbench was used to validate the accelerator without relying
on the PYNQ framework. The testbench consists of a header file, the accelerator
access implementation, and a main program that executes test vectors and checks
the computed digests.

A.3.1 Header File
This header declares constants, register addresses, and function prototypes for
interacting with the accelerator.
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1 # include <stdio.h>
2 # include <stdlib .h>
3 # include <fcntl.h>
4 # include <unistd .h>
5 # include <stdint .h>
6 # include <string .h>
7 # include <errno.h>
8

9

10

11 void write_reg (int fd , off_t offset , uint32_t value);
12

13 void sha256_acc_init ();
14

15 void sha256_acc_close ();
16

17 uint32_t read_reg (int fd , off_t offset );
18

19 void wait_for_ready (int fd);
20

21 void wait_for_hash_valid (int fd);
22

23 void print_hash (int fd);
24

25 static void pad_message (const uint8_t *message , size_t
msg_len , uint8_t ** padded_msg , size_t * padded_len );

26

27 void hw_hash (const void *message , size_t message_len , void *
result );

Listing A.3: Header file for the C SHA-256 accelerator testbench.

A.3.2 Testbench Implementation
The implementation file provides functions to transfer data, start computations,
and read back results from the accelerator.

1 # include " sha256_acc_tb .h"
2 # include <pthread .h>
3

4 # define DEVICE_FILE "/dev/ sha256 "
5

6 // Register offsets
7 # define DATA_REG 0x00
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8 # define STATUS_REG 0x04
9 # define H0_REG 0x08

10

11 // Status bits
12 # define MSG_READY (1 << 0)
13 # define HASH_VALID (1 << 1)
14 # define HASH_ACK (1 << 2)
15 # define MSG_LAST (1 << 3)
16

17 // SHA -256 constants
18 # define BLOCK_BITS 512
19 # define BLOCK_BYTES 64
20 # define WORD_BYTES 4
21 # define WORDS_IN_BLOCK 16
22 # define LEN_BITS 64
23

24

25 static int sha256_fd = -1;
26

27

28 void sha256_acc_init () {
29 if ( sha256_fd < 0) {
30 sha256_fd = open( DEVICE_FILE , O_RDWR );
31 if ( sha256_fd < 0) {
32 perror (" Failed to open SHA256 device ");
33 exit (1);
34 }
35 }
36 }
37

38 void sha256_acc_close () {
39 if ( sha256_fd >= 0) {
40 close( sha256_fd );
41 sha256_fd = -1;
42 }
43 }
44

45

46

47 void write_reg (int fd , off_t offset , uint32_t value) {
48 if ( pwrite (fd , &value , sizeof (value), offset ) != sizeof (

value)) {
49 fprintf (stderr , "Write failed at %lx: %s\n",
50 ( unsigned long)offset , strerror (errno));
51 exit (1);
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52 }
53 }
54

55 uint32_t read_reg (int fd , off_t offset ) {
56 uint32_t value;
57 if (pread(fd , &value , sizeof (value), offset ) != sizeof (

value)) {
58 fprintf (stderr , "Read failed at %lx: %s\n",
59 ( unsigned long)offset , strerror (errno));
60 exit (1);
61 }
62 return value;
63 }
64

65 void wait_for_ready (int fd) {
66 while (( read_reg (fd , STATUS_REG ) & MSG_READY ) == 0) {
67 }
68 }
69

70 void wait_for_hash_valid (int fd) {
71 while (( read_reg (fd , STATUS_REG ) & HASH_VALID ) == 0) {
72 }
73 }
74

75 void print_hash (int fd) {
76 printf ("Hash registers :\n");
77 for (int i = 0; i < 8; i++) {
78 printf ("h%d: 0x%08x\n", i, read_reg (fd , H0_REG + i

*4));
79 // printf (" Reading offset %08x\n", H0_REG + i * 4);
80 }
81 }
82

83 static void pad_message (const uint8_t *message , size_t
msg_len , uint8_t ** padded_msg , size_t * padded_len ) {

84 size_t num_bits = msg_len * 8;
85 size_t num_blocks = ( num_bits + LEN_BITS + 1 ) /

BLOCK_BITS + 1;
86 * padded_len = num_blocks * BLOCK_BYTES ;
87

88 * padded_msg = calloc (1, * padded_len );
89 if (!* padded_msg ) {
90 perror (" malloc failed ");
91 exit (1);
92 }
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93

94 // Copy original message (no need to swap yet as we’re
copying bytes)

95 memcpy (* padded_msg , message , msg_len );
96

97 // Append ’1’ bit (0 x80) - this is a byte operation , no
swapping needed

98 (* padded_msg )[ msg_len ] = 0x80;
99

100 // Append length in bits as 64- bit big - endian value
101 uint64_t length = num_bits ;
102 // Convert to big - endian before copying
103 uint64_t be_length = __builtin_bswap64 ( length );
104 memcpy (* padded_msg + * padded_len - 8, &be_length , 8);
105

106 // Now convert the entire message to big - endian words
107 uint32_t *words = ( uint32_t *)* padded_msg ;
108 for ( size_t i = 0; i < (* padded_len / 4); i++) {
109 words[i] = __builtin_bswap32 (words[i]);
110 }
111

112 // Print the padded message
113 printf (" Padded message (%zu bytes):\n", * padded_len );
114 for ( size_t i = 0; i < * padded_len ; i++) {
115 printf ("%02x ", (* padded_msg )[i]);
116 if ((i + 1) % 16 == 0) printf ("\n");
117 }
118 printf ("\n");
119 }
120

121 void hw_hash (const void *message , size_t message_len , void *
result ) {

122

123 // Reset the device
124 write_reg (sha256_fd , STATUS_REG , HASH_ACK );
125

126 uint8_t * padded_msg = NULL;
127 size_t padded_len ;
128 pad_message (message , message_len , &padded_msg , & padded_len

);
129

130 // printf (" Padded message length : %d", padded_len );
131 size_t num_words = padded_len / 4;
132

133 // Write all words
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134 const uint32_t *words = (const uint32_t *) padded_msg ;
135 for (int i = 0; i < num_words ; i++) {
136 wait_for_ready ( sha256_fd );
137

138 if (i == num_words - 1) {
139 // Set last flag before writing the last word
140 write_reg (sha256_fd , STATUS_REG , MSG_LAST );
141 }
142 write_reg (sha256_fd , DATA_REG , words[i]);
143 }
144

145 // Wait for hash to be valid
146 wait_for_hash_valid ( sha256_fd );
147

148 print_hash ( sha256_fd );
149

150 // Read hash result into provided buffer
151 uint32_t * hash_result = ( uint32_t *) result ;
152 for (int i = 0; i < 8; i++) {
153 hash_result [i] = read_reg (sha256_fd , H0_REG + i*4);
154 }
155

156 // Acknowledge hash
157 write_reg (sha256_fd , STATUS_REG , HASH_ACK );
158

159 // close(fd);
160

161 free( padded_msg );
162

163 }

Listing A.4: C testbench implementation (sha256_acc_tb.c).

A.3.3 Main Testbench Application
The main program executes the testbench functions with predefined test vectors,
reporting the results to the console.

1 # include <stdio.h>
2 # include <stdlib .h>
3 # include <string .h>
4 # include <stdint .h>
5 # include " sha256_acc_tb .h"
6

7 # define MAX_INPUT_LEN 1024
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8

9 void print_hash_result (const uint32_t *hash) {
10 for (int i = 0; i < 8; i++) {
11 printf ("%08x", hash[i]);
12 }
13 printf ("\n");
14 }
15

16

17 int main () {
18 sha256_acc_init ();
19

20 char input[ MAX_INPUT_LEN ];
21

22 while (1) {
23 printf ("Enter a message (or 0 to quit): ");
24 if (! fgets(input , sizeof (input), stdin)) {
25 break; // EOF or error
26 }
27

28 // Remove newline if present
29 size_t len = strlen (input);
30 if (len > 0 && input[len - 1] == ’\n’) {
31 input[len - 1] = ’\0’;
32 len --;
33 }
34

35 if ( strcmp (input , "0") == 0) {
36 break;
37 }
38

39 uint32_t hash_result [8] = {0};
40

41 hw_hash (input , len , hash_result );
42

43 printf ("SHA -256 hash: ");
44 print_hash_result ( hash_result );
45 }
46

47 sha256_acc_close ();
48 return 0;
49 }

Listing A.5: Main application for the C SHA-256 accelerator testbench (sha256_-
testbench.c).
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A.4 SHA-256 Accelerator Interface
The LMS software was modified to use a lightweight interface for hardware-
accelerated hashing. The interface, implemented in sha256_acc.c/.h, exposes
a simple API that performs complete SHA-256 computations through memory-
mapped registers.

A.4.1 Header File

1 # include <stdio.h>
2 # include <stdlib .h>
3 # include <fcntl.h>
4 # include <unistd .h>
5 # include <stdint .h>
6 # include <string .h>
7 # include <errno.h>
8

9

10 void sha256_acc_init ();
11

12 void sha256_acc_close ();
13

14 void print_hash (int fd);
15

16 void pad_message (const uint8_t *message , size_t msg_len ,
uint8_t ** padded_msg , size_t * padded_len );

17

18 void hw_hash (const void *message , size_t message_len , void *
result );

Listing A.6: SHA-256 accelerator interface header (sha256_acc.h).

A.4.2 Source File

1 # include " sha256_acc .h"
2 # include <sys/mman.h>
3

4 # define DEVICE_FILE "/dev/ sha256 "
5

6 // Register offsets
7 # define DATA_REG 0x00
8 # define STATUS_REG 0x04
9 # define H0_REG 0x08

95



Source Code and Benchmark Data

10

11 // Status bits
12 # define MSG_READY (1 << 0)
13 # define HASH_VALID (1 << 1)
14 # define HASH_ACK (1 << 2)
15 # define MSG_LAST (1 << 3)
16

17 // SHA -256 constants
18 # define BLOCK_BITS 512
19 # define BLOCK_BYTES 64
20 # define WORD_BYTES 4
21 # define WORDS_IN_BLOCK 16
22 # define LEN_BITS 64
23

24 # define MAP_SIZE 0x1000
25

26

27 # define REG( offset ) (*( volatile uint32_t *)(( uint8_t *)
sha256_regs + ( offset )))

28

29 volatile uint32_t * sha256_regs = NULL;
30

31 static int sha256_fd = -1;
32

33

34 void sha256_acc_init () {
35 if ( sha256_fd < 0) {
36 sha256_fd = open( DEVICE_FILE , O_RDWR | O_SYNC );
37 if ( sha256_fd < 0) {
38 perror (" Failed to open SHA256 device ");
39 exit (1);
40 }
41 }
42

43 sha256_regs = mmap(NULL , MAP_SIZE , PROT_READ | PROT_WRITE ,
MAP_SHARED , sha256_fd , 0);

44 if ( sha256_regs == MAP_FAILED ) {
45 perror ("mmap");
46 exit (1);
47 }
48 }
49

50 void sha256_acc_close () {
51

52 if ( sha256_regs ) {
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53 munmap (( void *) sha256_regs , MAP_SIZE );
54 sha256_regs = NULL;
55 }
56

57 if ( sha256_fd >= 0) {
58 close( sha256_fd );
59 sha256_fd = -1;
60 }
61 }
62

63 void print_hash (int fd) {
64 printf ("Hash registers :\n");
65 for (int i = 0; i < 8; i++) {
66 printf ("h%d: 0x%08x\n", i, REG( H0_REG + i*4));
67 }
68 }
69

70 void pad_message (const uint8_t *message , size_t msg_len ,
uint8_t ** padded_msg , size_t * padded_len ) {

71 size_t num_bits = msg_len * 8;
72 size_t num_blocks = ( num_bits + LEN_BITS + 1) /

BLOCK_BITS + 1;
73 * padded_len = num_blocks * BLOCK_BYTES ;
74

75 * padded_msg = calloc (1, * padded_len );
76 if (!* padded_msg ) {
77 perror (" malloc failed ");
78 exit (1);
79 }
80

81 // Copy original message (no need to swap yet as we’re
copying bytes)

82 memcpy (* padded_msg , message , msg_len );
83

84 // Append ’1’ bit (0 x80) - this is a byte operation , no
swapping needed

85 (* padded_msg )[ msg_len ] = 0x80;
86

87 // Append length in bits as 64- bit big - endian value
88 uint64_t length = num_bits ;
89 // Convert to big - endian before copying
90 uint64_t be_length = __builtin_bswap64 ( length );
91 memcpy (* padded_msg + * padded_len - 8, &be_length , 8);
92

93 // Now convert the entire message to big - endian words

97



Source Code and Benchmark Data

94 uint32_t *words = ( uint32_t *)* padded_msg ;
95 for ( size_t i = 0; i < (* padded_len / 4); i++) {
96 words[i] = __builtin_bswap32 (words[i]);
97 }
98

99 }
100

101 void hw_hash (const void *message , size_t message_len , void *
result ) {

102

103 // Reset the device
104 REG( STATUS_REG ) = HASH_ACK ;
105

106 uint8_t * padded_msg = NULL;
107 size_t padded_len ;
108 pad_message (message , message_len , &padded_msg , & padded_len

);
109 size_t num_words = padded_len / 4;
110

111 // Write all words
112 const uint32_t *words = (const uint32_t *) padded_msg ;
113 for (int i = 0; i < num_words ; i++) {
114 while (( REG( STATUS_REG ) & MSG_READY ) == 0); // wait for

ready
115 if (i == num_words - 1)
116 REG( STATUS_REG ) = MSG_LAST ;
117 REG( DATA_REG ) = words[i];
118 }
119

120 // Wait for hash to be valid
121 while (( REG( STATUS_REG ) & HASH_VALID ) == 0);
122

123

124 // Read hash result into provided buffer
125 for (int i = 0; i < 8; i++) {
126

127 uint32_t word = REG( H0_REG + i * 4);
128

129 // Convert from HW endianness to big - endian bytes
130 (( uint8_t *) result )[i * 4 + 0] = (word >> 24) & 0xff;
131 (( uint8_t *) result )[i * 4 + 1] = (word >> 16) & 0xff;
132 (( uint8_t *) result )[i * 4 + 2] = (word >> 8) & 0xff;
133 (( uint8_t *) result )[i * 4 + 3] = (word >> 0) & 0xff;
134

135 }
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136

137 // Acknowledge hash
138 REG( STATUS_REG ) = HASH_ACK ;
139

140 free( padded_msg );
141

142 }

Listing A.7: SHA-256 accelerator interface implementation (sha256_acc.c).

A.5 Benchmarking Automation
This section reports the scripts used to automate large-scale LMS benchmarking
campaigns, covering all parameter sets and Winternitz values.

A.5.1 Top-Level Benchmark Script
The benchmark.sh script recursively executes all LMS benchmarks, creates output
directories, and consolidates logs from multiple rounds.

1 #!/ bin/bash
2

3 # Root path
4 BASE_DIR ="./ lms_accelerated_benchmark / outputs "
5

6 # Loop over W_X directories
7 for wdir in " $BASE_DIR "/W_*; do
8 echo " Entering $wdir"
9

10 # Convert W_1 W1 ( remove underscore )
11 wname=$( basename "$wdir" | tr -d ’_’)
12

13 # Loop over LMS_SHA256_M32_H {i}_WX directories
14 for bench_dir in $wdir/ LMS_SHA256_M32_H *_" $wname "; do
15 echo " Processing $bench_dir "
16

17 # Change into the benchmark directory
18 cd " $bench_dir " || continue
19

20 # Create required directories if not present
21 for dir in profile_sign profile_verify ; do
22 [ -d "$dir" ] || mkdir "$dir"
23 done
24
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25 # Clear or create log file
26 : > log.txt
27

28 # Run make commands and append output to log.txt
29 {
30 echo "===== profile_genkey ====="
31 make profile_genkey
32 echo
33

34 echo "===== profile_sign ====="
35 sudo make profile_sign
36 echo
37

38 echo "===== profile_verify ====="
39 sudo make profile_verify
40 echo
41 } &>> log.txt
42

43 # Go back to the previous directory silently
44 cd - > /dev/null
45 done
46 done

Listing A.8: Top-level automation script for LMS benchmarking.

A.5.2 Representative Makefile
Each parameter set directory contains a Makefile that defines rules for profiling
LMS key generation, signing, and verification. A representative example is shown
below.

1 # Detect absolute path to the directory containing this
Makefile

2 MAKEFILE_DIR := $(dir $( abspath $( lastword $( MAKEFILE_LIST ))
))

3 PROJECT_ROOT := $( abspath $( MAKEFILE_DIR ) /../../..)
4

5 AR = /usr/bin/ar
6 CC = /usr/bin/gcc
7 CFLAGS = -Wall -O3 -g -pg
8 OUT = demo
9 FIRMWARE_PATH = $( PROJECT_ROOT )/../ firmware .bin

10 KEYNAME = Key_ParmSet_10_2
11 ADVANCE = 1
12 PARAM_SET = 10/2
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13

14 SRC = $( PROJECT_ROOT )
15

16 all: hss_lib .a \
17 hss_lib_thread .a \
18 hss_verify .a \
19 demo \
20 test_hss
21

22 $(SRC)/ hss_lib .a: $(SRC)/hss.o $(SRC)/ hss_alloc .o h$(SRC)/
ss_aux .o $(SRC)/ hss_common .o \

23 $(SRC)/ hss_compute .o $(SRC)/ hss_generate .o $(SRC)/
hss_keygen .o $(SRC)/ hss_param .o $(SRC)/ hss_reserve .o \

24 $(SRC)/ hss_sign .o $(SRC)/ hss_sign_inc .o $(SRC)/
hss_thread_single .o \

25 $(SRC)/ hss_verify .o $(SRC)/ hss_verify_inc .o $(SRC)/
hss_derive .o \

26 $(SRC)/ hss_derive .o $(SRC)/ hss_zeroize .o $(SRC)/
lm_common .o \

27 $(SRC)/ lm_ots_common .o $(SRC)/ lm_ots_sign .o $(SRC)/
lm_ots_verify .o $(SRC)/ lm_verify .o $(SRC)/ endian .o \

28 $(SRC)/hash.o $(SRC)/ sha256 .o
29 $(AR) rcs $@ $^
30

31 $(SRC)/ hss_lib_thread .a: $(SRC)/hss.o $(SRC)/ hss_alloc .o $(
SRC)/ hss_aux .o $(SRC)/ hss_common .o \

32 $(SRC)/ hss_compute .o $(SRC)/ hss_generate .o $(SRC)/
hss_keygen .o $(SRC)/ hss_param .o $(SRC)/ hss_reserve .o \

33 $(SRC)/ hss_sign .o $(SRC)/ hss_sign_inc .o $(SRC)/
hss_thread_pthread .o \

34 $(SRC)/ hss_verify .o $(SRC)/ hss_verify_inc .o \
35 $(SRC)/ hss_derive .o $(SRC)/ hss_zeroize .o $(SRC)/

lm_common .o \
36 $(SRC)/ lm_ots_common .o $(SRC)/ lm_ots_sign .o $(SRC)/

lm_ots_verify .o $(SRC)/ lm_verify .o $(SRC)/ endian .o \
37 $(SRC)/hash.o $(SRC)/ sha256 .o
38 $(AR) rcs $@ $^
39

40 $(SRC)/ hss_verify .a: $(SRC)/ hss_verify .o $(SRC)/
hss_verify_inc .o $(SRC)/ hss_common .o $(SRC)/
hss_thread_single .o \

41 $(SRC)/ hss_zeroize .o $(SRC)/ lm_common .o $(SRC)/
lm_ots_common .o $(SRC)/ lm_ots_verify .o $(SRC)/ lm_verify .o

\
42 $(SRC)/ endian .o $(SRC)/hash.o $(SRC)/ sha256 .o
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43 $(AR) rcs $@ $^
44

45 demo: $(SRC)/demo.c $(SRC)/ hss_lib_thread .a
46 $(CC) $( CFLAGS ) $(SRC)/demo.c $(SRC)/ hss_lib_thread .a -

lcrypto -lpthread -o $(SRC)/demo
47

48 test_1 : $(SRC)/ test_1 .c lm_ots_common .o lm_ots_sign .o
lm_ots_verify .o endian .o hash.o sha256 .o hss_zeroize .o

49 $(CC) $( CFLAGS ) -o test_1 $(SRC)/ test_1 .c lm_ots_common .o
lm_ots_sign .o lm_ots_verify .o endian .o hash.o sha256 .o
hss_zeroize .o -lcrypto

50

51 test_hss : $(SRC)/ test_hss .c $(SRC)/ test_hss .h $(SRC)/
test_testvector .c $(SRC)/ test_stat .c \

52 $(SRC)/ test_keygen .c $(SRC)/ test_load .c $(SRC)/
test_sign .c $(SRC)/ test_sign_inc .c \

53 $(SRC)/ test_verify .c $(SRC)/ test_verify_inc .c $(
SRC)/ test_keyload .c \

54 $(SRC)/ test_reserve .c $(SRC)/ test_thread .c $(SRC)/
test_h25 .c $(SRC)/hss.h hss_lib_thread .a

55 $(CC) $( CFLAGS ) $(SRC)/ test_hss .c $(SRC)/ test_testvector .c
$(SRC)/ test_stat .c \

56 $(SRC)/ test_keygen .c $(SRC)/ test_sign .c $(SRC)/
test_sign_inc .c $(SRC)/ test_load .c \

57 $(SRC)/ test_verify .c $(SRC)/ test_verify_inc .c $(
SRC)/ test_keyload .c \

58 $(SRC)/ test_reserve .c $(SRC)/ test_thread .c $(SRC)/
test_h25 .c hss_lib_thread .a \

59 -lcrypto -lpthread -o $(SRC)/ test_hss
60

61 hss.o: $(SRC)/hss.c $(SRC)/hss.h $(SRC)/ common_defs .h $(SRC)
/hash.h $(SRC)/ endian .h $(SRC)/ hss_internal .h $(SRC)/
hss_aux .h $(SRC)/ hss_derive .h

62 $(CC) $( CFLAGS ) -c $(SRC)/hss.c -o $(SRC)/$@
63

64 hss_alloc .o: $(SRC)/ hss_alloc .c $(SRC)/hss.h $(SRC)/
hss_internal .h $(SRC)/ lm_common .h

65 $(CC) $( CFLAGS ) -c $(SRC)/ hss_aux .c -o $(SRC)/$@
66

67 hss_aux .o: $(SRC)/ hss_aux .c $(SRC)/ hss_aux .h $(SRC)/
hss_internal .h $(SRC)/ common_defs .h $(SRC)/ lm_common .h $(
SRC)/ endian .h $(SRC)/hash.h

68 $(CC) $( CFLAGS ) -c $(SRC)/ hss_aux .c -o $(SRC)/$@
69
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70 hss_common .o: $(SRC)/ hss_common .c $(SRC)/ common_defs .h $(SRC
)/ hss_common .h $(SRC)/ lm_common .h

71 $(CC) $( CFLAGS ) -c $(SRC)/ hss_common .c -o $(SRC)/$@
72

73 hss_compute .o: $(SRC)/ hss_compute .c $(SRC)/ hss_internal .h $(
SRC)/hash.h $(SRC)/ hss_thread .h $(SRC)/ lm_ots_common .h $(
SRC)/ lm_ots .h $(SRC)/ endian .h $(SRC)/ hss_derive .h

74 $(CC) $( CFLAGS ) -c $(SRC)/ hss_compute .c -o $(SRC)/$@
75

76 hss_derive .o: $(SRC)/ hss_derive .c $(SRC)/ hss_derive .h $(SRC)
/ hss_internal .h $(SRC)/hash.h $(SRC)/ endian .h

77 $(CC) $( CFLAGS ) -c $(SRC)/ hss_derive .c -o $(SRC)/$@
78

79 hss_generate .o: $(SRC)/ hss_generate .c $(SRC)/hss.h $(SRC)/
hss_internal .h $(SRC)/ hss_aux .h $(SRC)/hash.h $(SRC)/
hss_thread .h $(SRC)/ hss_reserve .h $(SRC)/ lm_ots_common .h
$(SRC)/ endian .h

80 $(CC) $( CFLAGS ) -c $(SRC)/ hss_generate .c -o $(SRC)/$@
81

82 hss_keygen .o: $(SRC)/ hss_keygen .c $(SRC)/hss.h $(SRC)/
common_defs .h $(SRC)/ hss_internal .h $(SRC)/ hss_aux .h $(
SRC)/ endian .h $(SRC)/hash.h $(SRC)/ hss_thread .h $(SRC)/
lm_common .h $(SRC)/ lm_ots_common .h

83 $(CC) $( CFLAGS ) -c $(SRC)/ hss_keygen .c -o $(SRC)/$@
84

85 hss_param .o: $(SRC)/ hss_param .c $(SRC)/hss.h $(SRC)/
hss_internal .h $(SRC)/ endian .h $(SRC)/ hss_zeroize .h

86 $(CC) $( CFLAGS ) -c $(SRC)/ hss_param .c -o $(SRC)/$@
87

88 hss_reserve .o: $(SRC)/ hss_reserve .c $(SRC)/ common_defs .h $(
SRC)/ hss_internal .h $(SRC)/ hss_reserve .h $(SRC)/ endian .h

89 $(CC) $( CFLAGS ) -c $(SRC)/ hss_reserve .c -o $(SRC)/$@
90

91 hss_sign .o: $(SRC)/ hss_sign .c $(SRC)/ common_defs .h $(SRC)/
hss.h $(SRC)/hash.h $(SRC)/ endian .h $(SRC)/ hss_internal .h

$(SRC)/ hss_aux .h $(SRC)/ hss_thread .h $(SRC)/ hss_reserve .
h $(SRC)/ lm_ots .h $(SRC)/ lm_ots_common .h $(SRC)/
hss_derive .h

92 $(CC) $( CFLAGS ) -c $(SRC)/ hss_sign .c -o $(SRC)/$@
93

94 hss_sign_inc .o: $(SRC)/ hss_sign_inc .c $(SRC)/hss.h $(SRC)/
common_defs .h $(SRC)/hss.h $(SRC)/hash.h $(SRC)/ endian .h
$(SRC)/ hss_internal .h $(SRC)/ hss_aux .h $(SRC)/ hss_reserve
.h $(SRC)/ hss_derive .h $(SRC)/ lm_ots .h $(SRC)/
lm_ots_common .h $(SRC)/ hss_sign_inc .h
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95 $(CC) $( CFLAGS ) -c $(SRC)/ hss_sign_inc .c -o $(SRC)/$@
96

97 hss_thread_single .o: $(SRC)/ hss_thread_single .c $(SRC)/
hss_thread .h

98 $(CC) $( CFLAGS ) -c $(SRC)/ hss_thread_single .c -o $(SRC)/$@
99

100 hss_thread_pthread .o: $(SRC)/ hss_thread_pthread .c $(SRC)/
hss_thread .h

101 $(CC) $( CFLAGS ) -c $(SRC)/ hss_thread_pthread .c -o $(SRC)/
$@

102

103 hss_verify .o: $(SRC)/ hss_verify .c $(SRC)/ hss_verify .h $(SRC)
/ common_defs .h $(SRC)/ lm_verify .h $(SRC)/ lm_common .h $(
SRC)/ lm_ots_verify .h $(SRC)/hash.h $(SRC)/ endian .h $(SRC)
/ hss_thread .h

104 $(CC) $( CFLAGS ) -c $(SRC)/ hss_verify .c -o $(SRC)/$@
105

106 hss_verify_inc .o: $(SRC)/ hss_verify_inc .c $(SRC)/
hss_verify_inc .h $(SRC)/ common_defs .h $(SRC)/ lm_verify .h
$(SRC)/ lm_common .h $(SRC)/ lm_ots_verify .h $(SRC)/hash.h $
(SRC)/ endian .h $(SRC)/ hss_thread .h

107 $(CC) $( CFLAGS ) -c $(SRC)/ hss_verify_inc .c -o $(SRC)/$@
108

109 hss_zeroize .o: $(SRC)/ hss_zeroize .c $(SRC)/ hss_zeroize .h
110 $(CC) $( CFLAGS ) -c $(SRC)/ hss_zeroize .c -o $(SRC)/$@
111

112 lm_common .o: $(SRC)/ lm_common .c $(SRC)/ lm_common .h $(SRC)/
hash.h $(SRC)/ common_defs .h $(SRC)/ lm_ots_common .h

113 $(CC) $( CFLAGS ) -c $(SRC)/ lm_common .c -o $(SRC)/$@
114

115 lm_ots_common .o: $(SRC)/ lm_ots_common .c $(SRC)/ common_defs .h
$(SRC)/hash.h

116 $(CC) $( CFLAGS ) -c $(SRC)/ lm_ots_common .c -o $(SRC)/$@
117

118 lm_ots_sign .o: $(SRC)/ lm_ots_sign .c $(SRC)/ common_defs .h $(
SRC)/ lm_ots .h $(SRC)/ lm_ots_common .h $(SRC)/hash.h $(SRC)
/ endian .h $(SRC)/ hss_zeroize .h $(SRC)/ hss_derive .h

119 $(CC) $( CFLAGS ) -c $(SRC)/ lm_ots_sign .c -o $(SRC)/$@
120

121 lm_ots_verify .o: $(SRC)/ lm_ots_verify .c $(SRC)/ lm_ots_verify
.h $(SRC)/ lm_ots_common .h $(SRC)/hash.h $(SRC)/ endian .h $
(SRC)/ common_defs .h

122 $(CC) $( CFLAGS ) -c $(SRC)/ lm_ots_verify .c -o $(SRC)/$@
123
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124 lm_verify .o: $(SRC)/ lm_verify .c $(SRC)/ lm_verify .h $(SRC)/
lm_common .h $(SRC)/ lm_ots_common .h $(SRC)/ lm_ots_verify .h

$(SRC)/hash.h $(SRC)/ endian .h $(SRC)/ common_defs .h
125 $(CC) $( CFLAGS ) -c $(SRC)/ lm_verify .c -o $(SRC)/$@
126

127 endian .o: $(SRC)/ endian .c $(SRC)/ endian .h
128 $(CC) $( CFLAGS ) -c $(SRC)/ endian .c -o $(SRC)/$@
129

130 hash.o: $(SRC)/hash.c $(SRC)/hash.h $(SRC)/ sha256 .h $(SRC)/
hss_zeroize .h

131 $(CC) $( CFLAGS ) -c $(SRC)/hash.c -o $(SRC)/$@
132

133 sha256 .o: $(SRC)/ sha256 .c $(SRC)/ sha256 .h $(SRC)/ endian .h
134 $(CC) $( CFLAGS ) -c $(SRC)/ sha256 .c -o $(SRC)/$@
135

136

137 # Compilation rules for object files
138 %.o: $(SRC)/%.c
139 $(CC) $( CFLAGS ) -c $< -o $@
140

141 clean:
142 -rm $(SRC)/*.o $(SRC)/*.a $(SRC)/demo $(SRC)/ test_hss
143

144 run_genkey : $(SRC)/$(OUT)
145 $( PROJECT_ROOT )/$(OUT) genkey $( KEYNAME ) $( PARAM_SET )
146

147 profile_genkey : run_genkey
148 gprof $(SRC)/demo gmon.out > ./ profile_genkey /

profile_genkey .txt
149 @echo " Profiling complete . Results saved to profile_genkey

.txt."
150 mv gmon.out ./ profile_genkey /
151

152 run_sign : $(OUT)
153 $( PROJECT_ROOT )/$(OUT) sign $( KEYNAME ) $( FIRMWARE_PATH )
154

155 profile_sign : run_sign
156 gprof $(SRC)/demo gmon.out >./ profile_sign / profile_sign .

txt
157 @echo " Profiling complete . Results saved to profile_sign .

txt."
158 mv gmon.out ./ profile_sign /
159

160 run_verify : $(OUT)
161 $( PROJECT_ROOT )/$(OUT) verify $( KEYNAME ) $( FIRMWARE_PATH )
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162

163 profile_verify : run_verify
164 gprof $(SRC)/demo gmon.out > ./ profile_verify /

profile_verify .txt
165 @echo " Profiling complete . Results saved to profile_verify

.txt."
166 mv gmon.out ./ profile_verify /
167

168 run_advance : $(OUT)
169 $( PROJECT_ROOT )/$(OUT) advance $( KEYNAME ) $( ADVANCE )
170

171 profile_advance : run_advance
172 gprof demo gmon.out > profile_advance .txt
173 @echo " Profiling complete . Results saved to

profile_advance .txt."

Listing A.9: Representative Makefile for profiling LMS operations.

A.6 Benchmark Post-Processing Script
After running 30 independent measurement rounds, a Python script was used to
parse the output logs, aggregate signing and verification times per parameter set
(w, h), compute averages and standard deviations, and generate a CSV file for
plotting and table generation in Chapter 5.

1 import os
2 import re
3 import statistics
4 from collections import defaultdict
5

6 # Root folder containing Round1 .. Round30
7 ROOT_DIR = "."
8 OUTPUT_FILE = " benchmark_results .csv"
9

10 # Regex to extract values from log.txt
11 sig_re = re. compile (r" Signature creation time without

loading key time :\s*([\d.]+)")
12 ver_re = re. compile (r" Verify time :\s*([\d.]+)")
13

14 # Store results
15 results = {} # results [round ][w][h] = {" sig ": value , "ver ":

value}
16

17 # For per -(W,H) aggregation
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18 per_wh_sig = defaultdict (list)
19 per_wh_ver = defaultdict (list)
20

21 for round_num in range (1, 31):
22 round_dir = os.path.join(ROOT_DIR , f"Round{ round_num }")
23 if not os.path.isdir( round_dir ):
24 continue
25

26 results [ round_num ] = {}
27

28 for w in [1, 2, 4, 8]:
29 w_dir = os.path.join(round_dir , f"W_{w}")
30 if not os.path.isdir(w_dir):
31 continue
32

33 results [ round_num ][w] = {}
34

35 for h in [5, 10, 15, 20]:
36 h_dir = os.path.join(w_dir , f" LMS_SHA256_M32_H {h

}_W{w}")
37 log_file = os.path.join(h_dir , "log.txt")
38

39 if not os.path. isfile ( log_file ):
40 continue
41

42 with open(log_file , "r") as f:
43 content = f.read ()
44

45 sig_match = sig_re . search ( content )
46 ver_match = ver_re . search ( content )
47

48 if sig_match and ver_match :
49 sig = float( sig_match .group (1))
50 ver = float( ver_match .group (1))
51 results [ round_num ][w][h] = {"sig": sig , "ver

": ver}
52

53 # Collect per -(W,H)
54 per_wh_sig [(w,h)]. append (sig)
55 per_wh_ver [(w,h)]. append (ver)
56

57 # Flatten all results for global stats
58 all_sig = []
59 all_ver = []
60
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61 with open( OUTPUT_FILE , "w") as out:
62 # Raw values
63 out.write("Round ,W,H, Signature (ms),Verification (ms)\n")
64 for r in sorted ( results .keys ()):
65 for w in sorted ( results [r]. keys ()):
66 for h in sorted ( results [r][w]. keys ()):
67 sig = results [r][w][h]["sig"]
68 ver = results [r][w][h]["ver"]
69 all_sig . append (sig)
70 all_ver . append (ver)
71 out.write(f"{r},{w},{h},{ sig },{ ver }\n")
72

73 # Global summary
74 out.write("\ nGlobal Summary Statistics \n")
75 if all_sig :
76 out.write(f" Signature Avg ,{ statistics .mean( all_sig )

:.3f}\n")
77 out.write(f" Signature StdDev ,{ statistics .stdev(

all_sig ):.3f}\n")
78 if all_ver :
79 out.write(f" Verification Avg ,{ statistics .mean(

all_ver ):.3f}\n")
80 out.write(f" Verification StdDev ,{ statistics .stdev(

all_ver ):.3f}\n")
81

82 # Per (W,H) summary
83 out.write("\nPer -(W,H) Summary Statistics \n")
84 out.write("W,H, Signature Avg , Signature StdDev ,

Verification Avg , Verification StdDev \n")
85 for (w,h) in sorted ( per_wh_sig .keys ()):
86 sigs = per_wh_sig [(w,h)]
87 vers = per_wh_ver [(w,h)]
88 sig_avg = statistics .mean(sigs) if sigs else 0
89 sig_std = statistics .stdev(sigs) if len(sigs) > 1

else 0
90 ver_avg = statistics .mean(vers) if vers else 0
91 ver_std = statistics .stdev(vers) if len(vers) > 1

else 0
92 out.write(f"{w},{h},{ sig_avg :.3f},{ sig_std :.3f},{

ver_avg :.3f},{ ver_std :.3f}\n")
93

94 print(f"Done! Results saved in { OUTPUT_FILE }")

Listing A.10: Python script for processing LMS benchmark logs and generating
summary statistics.
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A.6.1 Parsing and Visualizing gprof Results
To analyze profiling data from gprof, a custom Python script was written. It parses
LaTeX tables produced from gprof outputs, excludes irrelevant functions (e.g.,
zeroization), and aggregates the execution time spent in SHA-256 hash routines
versus auxiliary operations. The resulting statistics were used to generate stacked
bar plots in Section 5.3.3.

1 import re
2 import matplotlib . pyplot as plt
3 import pandas as pd
4

5 # ------------------------------
6 # Configure
7 # ------------------------------
8 tex_file = " sw_gprof .tex"
9

10

11 EXCLUDE_FUNCS = {
12 " hss_zeroize ",
13 " hss_seed_derive_set_j ",
14 " hss_seed_derive_set_q ",
15 " hss_finalize_hash_context ",
16 " hss_init_hash_context ",
17 " hss_combine_internal_nodes ",
18 " hss_compute_internal_node ",
19 " lm_ots_look_up_parameter_set ",
20 " hss_sign_update ",
21 " lm_ots_coef ",
22 " hss_validate_signature_update ",
23 }
24

25 # ------------------------------
26 # Step 1: Parse LaTeX tables
27 # ------------------------------
28 with open(tex_file , "r") as f:
29 tex = f.read ()
30

31 # Regex to capture each table
32 tables = re. findall (
33 r"\\ caption \{ Gprof flat profile for profile (.*?) \(h

=20, w=(\d)\) \}.*? name \\\\\s*\\ hline\s *(.*?) \\ end \{
tabular \}",

34 tex ,
35 re.S
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36 )
37

38

39 records = []
40

41 for profile , w, body in tables :
42 # Extract lines like "44.14 & ... & hss_zeroize "
43 row_re = re. compile (
44 r"^\s*([\d\.]+)\s*&\s*([\d\.]+)\s*&\s*([\d\.]+)\s*&\s*(\

d+)\s*&\s*([A-Za -z0 -9_\\]+)\s*\\\\",
45 re.M
46 )
47 rows = row_re . findall (body)
48

49 print(f" --- Profile ={ profile }, w={w}, rows ={ len(rows)}
---")

50 for r in rows [:3]:
51 print(r)
52

53

54 for pct , cum , selfsec , calls , name in rows:
55 records . append ({
56 " profile ": profile .strip (),
57 "w": int(w),
58 " function ": name. replace ("\\_", "_").strip (),
59 "pct": float(pct),
60 "calls": int(calls)
61 })
62

63

64 df = pd. DataFrame ( records )
65

66 # ------------------------------
67 # Step 2: Categorize functions
68 # ------------------------------
69

70 print("=== Unique functions in input ===")
71 print(df[" function "]. unique ())
72 print(" ================================= ")
73

74 def is_hash_related ( func_name : str) -> bool:
75 return func_name in {
76 " hss_seed_derive ",
77 " hss_hash ",
78 " hss_hash_ctx ",
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79 " hss_update_hash_context ",
80 " lm_ots_generate_public_key "
81 }
82

83

84 df[" category "] = df[" function "]. apply(
85 lambda x: "hash" if is_hash_related (x) else "other"
86 )
87

88 # Exclude non - algorithmic functions
89 df = df[~df[" function "]. isin( EXCLUDE_FUNCS )]. copy ()
90

91

92 # ------------------------------
93 # Step 3: Aggregate per profile and w
94 # ------------------------------
95 agg = df. groupby ([" profile ", "w", " category "])["pct"]. sum ().

reset_index ()
96 pivot = agg. pivot_table (index =[" profile ", "w"], columns ="

category ", values ="pct", fill_value =0). reset_index ()
97

98 # Ensure both columns exist
99 if "hash" not in pivot. columns :

100 pivot["hash"] = 0
101 if "other" not in pivot. columns :
102 pivot["other"] = 0
103

104

105 # Renormalize to 100%
106 pivot["total"] = pivot["hash"] + pivot["other"]
107 pivot[" hash_pct "] = 100 * pivot["hash"] / pivot["total"]
108 pivot[" other_pct "] = 100 * pivot["other"] / pivot["total"]
109

110 # ------------------------------
111 # Step 4: Plot stacked bars
112 # ------------------------------
113 profiles = [" genkey ", "sign", " verify "]
114 titles = {" genkey ": " Keygen ", "sign": "Sign", " verify ": "

Verify "}
115

116 for profile in profiles :
117 data = pivot[pivot[" profile "] == profile ]. sort_values ("w

")
118 plt. figure ( figsize =(6, 5))
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119 plt.bar(data["w"], data[" hash_pct "], label="Hash", color
="tab:blue")

120 plt.bar(data["w"], data[" other_pct "], bottom =data["
hash_pct "], label="Other", color="tab: orange ")

121 plt. xticks (data["w"])
122 plt. xlabel (" Winternitz parameter w")
123 plt. ylabel ("% time")
124 plt.title(f"{ titles [ profile ]} (h=20)")
125 plt. legend ()
126 plt. tight_layout ()
127 plt. savefig (f" figure_ { profile }. png", dpi =300)
128

129 plt.show ()

Listing A.11: Python script for parsing gprof outputs and producing aggregated
profiling statistics.

A.6.2 SHA-256 Cycle Counter Testbench
To measure the intrinsic latency of the SHA-256 core, the VHDL testbench was
instrumented with a cycle counter that starts when msg_valid is asserted and
stops when hash_valid is raised.

1 library ieee;
2 use ieee. std_logic_1164 .all;
3 use ieee. std_logic_unsigned .all;
4 use ieee. numeric_std .all;
5 use work. sha256_pkg .all;
6

7 entity sha256_tb is
8 end sha256_tb ;
9 architecture testbench of sha256_tb is

10 signal sha_msg_test : sha_array (1 downto 0) := (
11 (x" 61626364626364656364656664656667 " &
12 x" 65666768666768696768696 a68696a6b " &
13 x"696 a6b6c6a6b6c6d6b6c6d6e6c6d6e6f " &
14 x"6 d6e6f706e6f70718000000000000000 "),
15 (x" 00000000000000000000000000000000 " &
16 x" 00000000000000000000000000000000 " &
17 x" 00000000000000000000000000000000 " &
18 x" 000000000000000000000000000001 c0")
19 );
20

21 signal sha_hash_test , sha_hash_func , sha_hash_func2 ,
sha_hash_test2 : sha_hash ;
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22 signal clk , rst , msg_valid , hash_ack , hash_valid , mux_sel ,
word_sel , msg_ready , en , rst_AE , en_DM , mux_sel_AE ,
en_DM_AE , msg_last , en_AE , msg_ready2 , hash_valid2 :
std_ulogic ;

23 signal w_array : word_vector (15 downto 0);
24 signal w_array_exp : word_vector (63 downto 0);
25 signal mi , wi , mi1 , mi2 : word;
26 signal mux_sel_H : std_ulogic_vector (1 downto 0);
27 signal K_index : natural range 0 to 64;
28 signal cycle_counter : integer := 0;
29 signal start_counting : boolean := false;
30 signal start_cycle : integer := 0;
31 signal end_cycle : integer := 0;
32

33

34 begin
35

36 sha_hash_func <= sha256 ( sha_msg_test , 2);
37 --sha_hash_func2 <= sha256 ( sha_msg_test2 );
38 --w_array <= break_chunks ( sha_msg_test );
39 --w_array_exp <= expand_msg_blocks ( w_array );
40 clk_proc : process
41 begin
42 clk <= ’1’;
43 wait for 1 ns;
44 clk <= ’0’;
45 wait for 1 ns;
46 end process ;
47

48 rst_proc : process
49 begin
50 rst <=’0’;
51 wait for 10 ns;
52 rst <= ’1’;
53 wait;
54 end process rst_proc ;
55

56 exp_unit_test : process
57 begin
58 msg_last <= ’0’;
59 mi <= ( others => ’0’);
60 wait for 30 ns;
61 for i in 0 to 15 loop
62 mi <= return_chunk ( sha_msg_test (1) , i);
63 wait for 2 ns;
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64 end loop;
65 wait for 98 ns;
66 for i in 0 to 15 loop
67 mi <= return_chunk ( sha_msg_test (0) , i);
68 wait for 2 ns;
69 end loop;
70 msg_last <= ’1’;
71 wait;
72 end process ;
73

74 cu_test : process
75 begin
76 msg_valid <= ’0’;
77 hash_ack <= ’0’;
78 wait for 30 ns;
79 msg_valid <= ’1’;
80 wait for 10 ns;
81 msg_valid <= ’0’;
82 wait for 10 ns;
83 msg_valid <= ’1’;
84 wait for 242 ns;
85 --msg_valid <= ’0’;
86 ---wait for 10 ns;
87 --msg_valid <= ’1’;
88 --wait for 142 ns;
89 msg_valid <= ’0’;
90 hash_ack <= ’1’;
91 wait;
92 end process cu_test ;
93

94 --dut : entity work. sha256_exp_unit (arch) port map (clk ,
rst , mi , word_sel , wi);

95 --cu : entity work. sha256_cu (fsm) port map(clk , rst ,
msg_valid , msg_last , hash_ack , hash_valid , mux_sel ,
mux_sel_AE , word_sel , mux_sel_H , K_index , msg_ready , en ,
en_AE , en_DM , en_DM_AE , rst_AE );

96 --dp : entity work. sha256_core (arch) port map(clk , rst ,
rst_AE , mux_sel , mux_sel_AE , word_sel , mux_sel_H ,
K_index , mi , en , en_AE , en_DM , en_DM_AE , sha_hash_test );

97 dut : entity work. sha256 ( struct ) port map (clk , rst ,
msg_valid , msg_last , hash_ack , mi , msg_ready2 ,
hash_valid2 , sha_hash_test2 );

98

99 cycle_counter_proc : process (clk)
100 begin
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101 if rising_edge (clk) then
102 cycle_counter <= cycle_counter + 1;
103

104 -- Start counting when msg_valid goes high
105 if msg_valid = ’1’ and not start_counting then
106 start_cycle <= cycle_counter ;
107 start_counting <= true;
108 end if;
109

110 -- Stop counting when hash_valid2 goes high
111 if hash_valid2 = ’1’ and start_counting then
112 end_cycle <= cycle_counter ;
113 start_counting <= false;
114 report " SHA256 operation took " & integer ’image(

end_cycle - start_cycle ) & " clock cycles ";
115 end if;
116 end if;
117 end process ;
118

119 wait;
120 end testbench ;

Listing A.12: Instrumented SHA-256 VHDL testbench with cycle counter.

A.6.3 C Microbenchmark for perf

To compare the cycle cost of software and hardware hashing in practice, a C
microbenchmark was written. It calls either OpenSSL’s SHA-256 or the hardware
wrapper for a configurable number of iterations, while perf stat collects cycle
counts.

1 # define _GNU_SOURCE
2 # include <stdio.h>
3 # include <stdlib .h>
4 # include <string .h>
5 # include <stdint .h>
6 # include <sched.h>
7 # include " sha256_acc .h"
8 # include " openssl /sha.h"
9

10 # define MAX_INPUT_LEN 1024
11

12 # ifndef ITERATIONS
13 # define ITERATIONS 100000 // default if not specified at

compile time
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14 #endif
15

16 int main(void) {
17

18 cpu_set_t set;
19 CPU_ZERO (& set);
20 CPU_SET (0, &set); // Use core 0
21

22 if ( sched_setaffinity (0, sizeof (set), &set) == -1) {
23 perror (" sched_setaffinity ");
24 return 1;
25 }
26

27 char input[ MAX_INPUT_LEN ] =
28 " AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA "
29 " AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA "
30 " AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA ";
31 size_t len = strlen (input);
32

33 #ifdef HARDWARE_HASH
34 sha256_acc_init ();
35 uint32_t hash_result [8];
36

37 for (int i = 0; i < ITERATIONS ; i++) {
38 hw_hash (input , len , hash_result );
39 }
40

41 sha256_acc_close ();
42

43 #elif defined ( SOFTWARE_HASH )
44 unsigned char hash[ SHA256_DIGEST_LENGTH ];
45 SHA256_CTX ctx;
46

47 for (int i = 0; i < ITERATIONS ; i++) {
48 SHA256_Init (& ctx);
49 SHA256_Update (&ctx , input , len);
50 SHA256_Final (hash , &ctx);
51 }
52 #endif
53

54 return 0;
55 }

Listing A.13: C microbenchmark used with perf to measure cycle counts.
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A.6.4 SHA-256 Cycle Benchmark Script
The following shell script automates the execution of the SHA-256 cycle microbench-
marks at different iteration counts, invoking perf and collecting results for later
processing.

1 #!/ bin/bash
2

3 # Define iteration counts
4 ITERATIONS_LIST =(1 10 100 1000)
5 ROUNDS =50
6

7 SRC=" perf_sha256_test_final .c"
8 SHA_SRC =" sha256_acc .c"
9 SHA_HDR =" sha256_acc .h"

10

11 # Ensure script is run with sudo for perf
12 if [[ $EUID -ne 0 ]]; then
13 echo "This script must be run with sudo."
14 exit 1
15 fi
16

17 for ITER in "${ ITERATIONS_LIST [@]}"; do
18 for MODE in HW SW; do
19

20 FOLDER ="${ITER}IT_${MODE}"
21 LOG_FILE ="${ FOLDER }/ perf_cycles .log"
22 EXE_FILE ="${ FOLDER }/ hash_$ {MODE ,,} _perf"
23

24 echo " >>> Building ${MODE} for ITERATIONS =${ITER}"
25

26 if [ "$MODE" == "HW" ]; then
27 gcc -DHARDWARE_HASH -DITERATIONS =${ITER} "$SRC"

" $SHA_SRC " -o " $EXE_FILE " -lcrypto
28 else
29 gcc -DSOFTWARE_HASH -DITERATIONS =${ITER} "$SRC"

-o " $EXE_FILE " -lcrypto
30 fi
31

32 # Check build success
33 if [ $? -ne 0 ]; then
34 echo " Build failed for ${MODE} ITER=${ITER}"
35 exit 1
36 fi
37

38 # Empty log file

117



Source Code and Benchmark Data

39 : > " $LOG_FILE "
40

41 echo " >>> Running ${ ROUNDS } perf rounds in ${ FOLDER
}..."

42 for ((i=1; i<= ROUNDS ; i++)); do
43 CYCLES =$(sudo perf stat " $EXE_FILE " 2>&1 | grep

cycles | awk ’{gsub (",","",$1); print $1}’)
44 echo " $CYCLES " >> " $LOG_FILE "
45 done
46

47 done
48 done
49

50 echo "All tests completed ."

Listing A.14: Shell script for automated SHA-256 cycle count benchmarking.

A.6.5 ECDSA Benchmarking Program and Script
Benchmarking of ECDSA P-256 signing and verification on the PYNQ-Z2 is
performed in two stages:

• A C benchmarking program that performs key generation, signing, and
verification on a fixed firmware image using OpenSSL. It prints signing and
verification times for each operation.

• A shell script that repeatedly executes the program over multiple rounds,
collecting timing data into log files and computing summary statistics (mean
and standard deviation) using awk.

ECDSA C Benchmark Program

The C program uses OpenSSL to generate a key pair, perform a single signing and
verification operation, and output the results in a machine-parsable format.

1 # include <openssl /evp.h>
2 # include <openssl /pem.h>
3 # include <openssl /err.h>
4 # include <stdio.h>
5 # include <stdlib .h>
6 # include <string .h>
7 # include <time.h>
8

9 # define PRIV_KEY_FILE " ecdsa_priv .pem"
10 # define PUB_KEY_FILE " ecdsa_pub .pem"
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11 # define SIG_FILE " signature .bin"
12

13 static void handle_openssl_error (void) {
14 ERR_print_errors_fp ( stderr );
15 exit( EXIT_FAILURE );
16 }
17

18 static EVP_PKEY * ecdsa_keygen (void) {
19 EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new_id ( EVP_PKEY_EC ,

NULL);
20 if (! pctx) handle_openssl_error ();
21 if ( EVP_PKEY_keygen_init (pctx) <= 0)

handle_openssl_error ();
22 if ( EVP_PKEY_CTX_set_ec_paramgen_curve_nid (pctx ,

NID_X9_62_prime256v1 ) <= 0)
23 handle_openssl_error ();
24

25 EVP_PKEY *pkey = NULL;
26 if ( EVP_PKEY_keygen (pctx , &pkey) <= 0)

handle_openssl_error ();
27

28 EVP_PKEY_CTX_free (pctx);
29 return pkey;
30 }
31

32 static void save_private_key ( EVP_PKEY *pkey , const char *
filename ) {

33 FILE *fp = fopen(filename , "wb");
34 if (!fp) { perror (" Failed to open private key file");

exit( EXIT_FAILURE ); }
35 if (! PEM_write_PrivateKey (fp , pkey , NULL , NULL , 0, NULL ,

NULL)) handle_openssl_error ();
36 fclose (fp);
37 }
38

39 static void save_public_key ( EVP_PKEY *pkey , const char *
filename ) {

40 FILE *fp = fopen(filename , "wb");
41 if (!fp) { perror (" Failed to open public key file");

exit( EXIT_FAILURE ); }
42 if (! PEM_write_PUBKEY (fp , pkey)) handle_openssl_error ();
43 fclose (fp);
44 }
45

46 static EVP_PKEY * load_private_key (const char * filename ) {
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47 FILE *fp = fopen(filename , "rb");
48 if (!fp) { perror (" Failed to open private key file");

exit( EXIT_FAILURE ); }
49 EVP_PKEY *pkey = PEM_read_PrivateKey (fp , NULL , NULL ,

NULL);
50 fclose (fp);
51 if (! pkey) handle_openssl_error ();
52 return pkey;
53 }
54

55 static EVP_PKEY * load_public_key (const char * filename ) {
56 FILE *fp = fopen(filename , "rb");
57 if (!fp) { perror (" Failed to open public key file");

exit( EXIT_FAILURE ); }
58 EVP_PKEY *pkey = PEM_read_PUBKEY (fp , NULL , NULL , NULL);
59 fclose (fp);
60 if (! pkey) handle_openssl_error ();
61 return pkey;
62 }
63

64 static unsigned char* read_file (const char *filename , size_t
*len) {

65 FILE *fp = fopen(filename , "rb");
66 if (!fp) { perror (" Failed to open file"); exit(

EXIT_FAILURE ); }
67 fseek(fp , 0, SEEK_END );
68 long size = ftell(fp);
69 rewind (fp);
70 unsigned char *buf = malloc (size);
71 if (! buf) { perror (" malloc "); exit( EXIT_FAILURE ); }
72 fread(buf , 1, size , fp);
73 fclose (fp);
74 *len = size;
75 return buf;
76 }
77

78 static void save_signature (const unsigned char *sig , size_t
sig_len ) {

79 FILE *fp = fopen(SIG_FILE , "wb");
80 if (!fp) { perror (" Failed to open signature file"); exit

( EXIT_FAILURE ); }
81 fwrite (sig , 1, sig_len , fp);
82 fclose (fp);
83 }
84
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85 int main(int argc , char *argv []) {
86 OpenSSL_add_all_algorithms ();
87 ERR_load_crypto_strings ();
88

89 if (argc < 2) {
90 fprintf (stderr , "Usage :\n");
91 fprintf (stderr , " %s keygen \n", argv [0]);
92 fprintf (stderr , " %s signverify <file -to -sign >\n",

argv [0]);
93 return EXIT_FAILURE ;
94 }
95

96 if ( strcmp (argv [1], " keygen ") == 0) {
97 struct timespec t0 , t1;
98 clock_gettime ( CLOCK_MONOTONIC , &t0);
99 EVP_PKEY *pkey = ecdsa_keygen ();

100 clock_gettime ( CLOCK_MONOTONIC , &t1);
101

102 double elapsed_ms = (t1. tv_sec - t0. tv_sec ) * 1000.0
+

103 (t1. tv_nsec - t0. tv_nsec ) / 1e6;
104

105 save_private_key (pkey , PRIV_KEY_FILE );
106 save_public_key (pkey , PUB_KEY_FILE );
107 EVP_PKEY_free (pkey);
108

109 printf ("[ Keygen ] Time: %.3f ms\n", elapsed_ms );
110 }
111

112 else if ( strcmp (argv [1], " signverify ") == 0) {
113 if (argc < 3) {
114 fprintf (stderr , " Missing file to sign .\n");
115 return EXIT_FAILURE ;
116 }
117

118 // Load keys
119 EVP_PKEY *priv = load_private_key ( PRIV_KEY_FILE );
120 EVP_PKEY *pub = load_public_key ( PUB_KEY_FILE );
121

122 // Read data
123 size_t data_len ;
124 unsigned char *data = read_file (argv [2], & data_len );
125

126 // --- Sign ---
127 EVP_MD_CTX *mdctx = EVP_MD_CTX_new ();

121



Source Code and Benchmark Data

128 if (! mdctx) handle_openssl_error ();
129 if ( EVP_DigestSignInit (mdctx , NULL , EVP_sha256 (),

NULL , priv) <= 0)
130 handle_openssl_error ();
131

132 size_t sig_len = 0;
133 EVP_DigestSign (mdctx , NULL , &sig_len , data , data_len

);
134 unsigned char *sig = malloc ( sig_len );
135 if (! sig) { perror (" malloc "); exit( EXIT_FAILURE ); }
136

137 struct timespec ts0 , ts1;
138 clock_gettime ( CLOCK_MONOTONIC , &ts0);
139 EVP_DigestSign (mdctx , sig , &sig_len , data , data_len )

;
140 clock_gettime ( CLOCK_MONOTONIC , &ts1);
141

142 double sign_ms = (ts1. tv_sec - ts0. tv_sec ) * 1000.0
+

143 (ts1. tv_nsec - ts0. tv_nsec ) / 1e6;
144

145 save_signature (sig , sig_len );
146 EVP_MD_CTX_free (mdctx);
147

148 printf ("[Sign] Time: %.3f ms , Signature size: %zu
bytes\n", sign_ms , sig_len );

149

150 // --- Verify ---
151 EVP_MD_CTX * mdctx_v = EVP_MD_CTX_new ();
152 if (! mdctx_v ) handle_openssl_error ();
153 if ( EVP_DigestVerifyInit (mdctx_v , NULL , EVP_sha256 ()

, NULL , pub) <= 0)
154 handle_openssl_error ();
155

156 struct timespec tv0 , tv1;
157 clock_gettime ( CLOCK_MONOTONIC , &tv0);
158 int valid = EVP_DigestVerify (mdctx_v , sig , sig_len ,

data , data_len );
159 clock_gettime ( CLOCK_MONOTONIC , &tv1);
160

161 double verify_ms = (tv1. tv_sec - tv0. tv_sec ) *
1000.0 +

162 (tv1. tv_nsec - tv0. tv_nsec ) / 1e6
;

163
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164 if (valid == 1)
165 printf ("[ Verify ] Time: %.3f ms (OK)\n",

verify_ms );
166 else
167 fprintf (stderr , "[ Verify ] Failed or error\n");
168

169 EVP_MD_CTX_free ( mdctx_v );
170 EVP_PKEY_free (priv);
171 EVP_PKEY_free (pub);
172 free(data);
173 free(sig);
174 }
175

176 else {
177 fprintf (stderr , " Unknown command ’%s ’\n", argv [1]);
178 return EXIT_FAILURE ;
179 }
180

181 EVP_cleanup ();
182 ERR_free_strings ();
183 return EXIT_SUCCESS ;
184 }

Listing A.15: C program for benchmarking ECDSA P-256 signing and verification
using OpenSSL.

ECDSA Shell Benchmark Script

The accompanying shell script automates the execution of the C benchmark over
multiple rounds, logging all results for later processing.

1 #!/ bin/bash
2

3 # -------------------------------
4 # Configuration
5 # -------------------------------
6 ROUNDS =30
7 FIRMWARE_FILE =" firmware .bin"
8 EXEC="./ ecdsa_bench "
9 LOG_FILE =" ecdsa_results .log"

10

11 # -------------------------------
12 # Check prerequisites
13 # -------------------------------
14 if [ ! -f "$EXEC" ]; then
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15 echo "Error : $EXEC not found. Please compile ecdsa_bench
.c first."

16 exit 1
17 fi
18

19 if [ ! -f " $FIRMWARE_FILE " ]; then
20 echo "Error : $FIRMWARE_FILE not found."
21 exit 1
22 fi
23

24 # -------------------------------
25 # 1. Key Generation (once)
26 # -------------------------------
27 echo " >>> Generating ECDSA key pair ..."
28 $EXEC keygen
29 if [ $? -ne 0 ]; then
30 echo "Key generation failed ."
31 exit 1
32 fi
33

34 # -------------------------------
35 # 2. Benchmark sign + verify
36 # -------------------------------
37 echo " >>> Running $ROUNDS signing + verifying rounds ..."
38 : > " $LOG_FILE " # empty log file
39

40 for ((i=1; i<= ROUNDS ; i++)); do
41 echo "Round $i/ $ROUNDS "
42 # Capture the output of the program
43 OUT=$($EXEC signverify " $FIRMWARE_FILE ")
44

45 # Extract numeric values
46 SIGN_TIME =$(echo "$OUT" | grep "\[ Sign \]" | awk ’{print

$3}’)
47 VERIFY_TIME =$(echo "$OUT" | grep "\[ Verify \]" | awk ’{

print $3}’)
48 SIG_SIZE =$(echo "$OUT" | grep "\[ Sign \]" | awk ’{print

$7}’)
49

50 # Append to log file
51 echo " $SIGN_TIME $VERIFY_TIME $SIG_SIZE " >> " $LOG_FILE "
52 done
53

54 echo " >>> Benchmark complete . Raw results saved in $LOG_FILE
."
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55

56 # -------------------------------
57 # 3. Compute mean and stddev
58 # -------------------------------
59 echo " >>> Summary statistics :"
60 awk ’
61 {
62 sign[NR]=$1; verify [NR]=$2; size[NR]=$3;
63 sign_sum +=$1; verify_sum +=$2; size_sum +=$3
64 }
65 END {
66 n=NR
67 sign_mean = sign_sum /n; verify_mean = verify_sum /n;

size_mean = size_sum /n
68 for(i=1;i<=n;i++){
69 sign_var +=( sign[i]- sign_mean )^2
70 verify_var +=( verify [i]- verify_mean )^2
71 size_var +=( size[i]- size_mean )^2
72 }
73 sign_stddev =sqrt( sign_var /n)
74 verify_stddev =sqrt( verify_var /n)
75 size_stddev =sqrt( size_var /n)
76 printf "Sign time: %.3f ms %.3f ms\n", sign_mean ,

sign_stddev
77 printf " Verify time: %.3f ms %.3f ms\n", verify_mean

, verify_stddev
78 printf "Sig. size: %.1f bytes %.1f\n", size_mean ,

size_stddev
79 }’ " $LOG_FILE "

Listing A.16: Shell script for automating ECDSA P-256 signing and verification
benchmarks.
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Benchmark Data

B.1 Software-only Results

B.1.1 Execution Times
Table B.1 reports the execution times for the software-only LMS implementation
across all (w, h) parameter sets.
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Table B.1: Average and standard deviation of LMS signing and verification latency
over 30 rounds (ms).

w h Signature Avg Signature StdDev Verification Avg Verification StdDev
1 5 495.98 12.45 491.50 1.67
1 10 502.16 5.42 491.22 1.93
1 15 505.83 2.88 491.15 1.42
1 20 510.39 2.55 491.86 1.87
2 5 494.59 5.32 491.29 1.48
2 10 499.25 8.96 491.98 2.72
2 15 502.15 1.56 491.66 2.15
2 20 514.05 46.22 492.23 2.86
4 5 495.74 4.43 493.06 3.43
4 10 504.38 4.80 492.51 2.32
4 15 510.27 2.96 492.50 1.85
4 20 514.78 1.76 492.91 2.55
8 5 531.25 37.53 501.66 3.03
8 10 577.24 9.40 501.71 2.45
8 15 637.27 13.70 501.05 2.62
8 20 677.45 15.95 500.86 1.65

B.1.2 gprof Profiling
Detailed profiling outputs collected with gprof are shown below. These data form
the basis for the profiling analysis presented in Section 5.3.3.
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Table B.2: Gprof flat profile for profile genkey (h=20, w=1)

% time cumulative seconds self seconds calls name
44.14 14.35 14.35 177996224 hss_zeroize
13.47 18.73 4.38 91486128 hss_seed_derive
12.24 22.71 3.98 346641 lm_ots_generate_public_key
11.23 26.36 3.65 274814861 put_bigendian
6.27 28.40 2.04 85711531 hss_hash
4.61 31.54 1.50 91677199 hss_hash_ctx
2.86 32.47 0.93 88947820 hss_update_hash_context
0.06 32.49 0.02 340894 hss_seed_derive_set_j
0.03 32.50 0.01 335435 hss_finalize_hash_context
0.03 32.51 0.01 91 hss_compute_internal_node
0.00 32.51 0.00 356319 lm_ots_look_up_parameter_set
0.00 32.51 0.00 349512 hss_seed_derive_set_q
0.00 32.51 0.00 327120 hss_init_hash_context
0.00 32.51 0.00 255 hss_combine_internal_nodes

Table B.3: Gprof flat profile for profile sign (h=20, w=1)

% time cumulative seconds self seconds calls name
56.98 0.49 0.49 678363 hss_zeroize
10.47 0.58 0.09 353130 hss_seed_derive
9.30 0.66 0.08 333638 hss_hash
8.14 0.73 0.07 1068695 put_bigendian
4.65 0.82 0.04 352050 hss_hash_ctx
3.49 0.85 0.03 1342 lm_ots_generate_public_key
1.16 0.86 0.01 359589 hss_update_hash_context
0.00 0.86 0.00 16384 hss_sign_update
0.00 0.86 0.00 1406 lm_ots_look_up_parameter_set
0.00 0.86 0.00 1362 hss_seed_derive_set_q
0.00 0.86 0.00 1332 hss_seed_derive_set_j
0.00 0.86 0.00 1286 hss_init_hash_context
0.00 0.86 0.00 1261 hss_finalize_hash_context
0.00 0.86 0.00 265 lm_ots_coef
0.00 0.86 0.00 84 hss_combine_internal_nodes
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Table B.4: Gprof flat profile for profile verify (h=20, w=1)

% time cumulative seconds self seconds calls name
0.00 0.01 0.00 16651 hss_update_hash_context
0.00 0.01 0.00 16384 hss_validate_signature_update
0.00 0.01 0.00 289 put_bigendian
0.00 0.01 0.00 265 lm_ots_coef
0.00 0.01 0.00 150 hss_hash_ctx
0.00 0.01 0.00 9 get_bigendian
0.00 0.01 0.00 2 hss_finalize_hash_context
0.00 0.01 0.00 2 hss_init_hash_context

Table B.5: Gprof flat profile for profile genkey (h=20, w=2)

% time cumulative seconds self seconds calls name
39.71 8.22 8.22 106290392 hss_zeroize
12.32 10.77 2.55 406754 lm_ots_generate_public_key
12.03 13.26 2.49 53394132 hss_seed_derive
10.19 15.37 2.11 161807329 put_bigendian
9.47 17.33 1.96 158559073 hss_hash_ctx
5.80 20.19 1.20 51382097 hss_hash
2.32 20.67 0.48 52762352 hss_update_hash_context
0.10 20.69 0.02 91 hss_compute_internal_node
0.05 20.70 0.01 391959 hss_init_hash_context
0.00 20.70 0.00 414549 lm_ots_look_up_parameter_set
0.00 20.70 0.00 406766 hss_seed_derive_set_q
0.00 20.70 0.00 400349 hss_seed_derive_set_j
0.00 20.70 0.00 395255 hss_finalize_hash_context
0.00 20.70 0.00 255 hss_combine_internal_nodes
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Table B.6: Gprof flat profile for profile sign (h=20, w=2)

% time cumulative seconds self seconds calls name
50.00 0.19 0.19 395430 hss_zeroize
15.79 0.25 0.06 1535 lm_ots_generate_public_key
10.53 0.29 0.04 193145 hss_hash
7.89 0.32 0.03 199075 hss_seed_derive
5.26 0.37 0.02 212801 hss_update_hash_context
2.63 0.38 0.01 603768 put_bigendian
0.00 0.38 0.00 589163 hss_hash_ctx
0.00 0.38 0.00 16384 hss_sign_update
0.00 0.38 0.00 1566 lm_ots_look_up_parameter_set
0.00 0.38 0.00 1546 hss_seed_derive_set_q
0.00 0.38 0.00 1510 hss_seed_derive_set_j
0.00 0.38 0.00 1482 hss_finalize_hash_context
0.00 0.38 0.00 1470 hss_init_hash_context

Table B.7: Gprof flat profile for profile verify (h=20, w=2)

% time cumulative seconds self seconds calls name
0.00 0.00 0.00 16519 hss_update_hash_context
0.00 0.00 0.00 16384 hss_validate_signature_update
0.00 0.00 0.00 234 hss_hash_ctx
0.00 0.00 0.00 157 put_bigendian
0.00 0.00 0.00 133 lm_ots_coef
0.00 0.00 0.00 9 get_bigendian
0.00 0.00 0.00 2 hss_finalize_hash_context
0.00 0.00 0.00 2 hss_init_hash_context
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Table B.8: Gprof flat profile for profile genkey (h=20, w=4)

% time cumulative seconds self seconds calls name
26.88 4.32 4.32 472970237 hss_hash_ctx
21.34 7.75 3.43 66112542 hss_zeroize
19.54 10.89 3.14 493965 lm_ots_generate_public_key
6.29 14.40 1.01 32921985 hss_seed_derive
5.23 15.24 0.84 100210851 put_bigendian
3.24 15.76 0.52 32613410 hss_hash
1.74 16.04 0.28 31222898 hss_update_hash_context
0.12 16.06 0.02 128 hss_compute_internal_node
0.06 16.07 0.01 495690 lm_ots_look_up_parameter_set
0.00 16.07 0.00 493708 hss_seed_derive_set_q
0.00 16.07 0.00 489560 hss_seed_derive_set_j
0.00 16.07 0.00 488947 hss_finalize_hash_context
0.00 16.07 0.00 484500 hss_init_hash_context

Table B.9: Gprof flat profile for profile sign (h=20, w=4)

% time cumulative seconds self seconds calls name
23.73 0.14 0.14 288384 hss_zeroize
20.34 0.26 0.12 2075115 hss_hash_ctx
20.34 0.38 0.12 2142 lm_ots_generate_public_key
5.08 0.53 0.03 437957 put_bigendian
5.08 0.56 0.03 143972 hss_seed_derive
5.08 0.59 0.03 142845 hss_hash
0.00 0.59 0.00 153571 hss_update_hash_context
0.00 0.59 0.00 16384 hss_sign_update
0.00 0.59 0.00 2164 lm_ots_look_up_parameter_set
0.00 0.59 0.00 2136 hss_finalize_hash_context
0.00 0.59 0.00 2134 hss_seed_derive_set_q
0.00 0.59 0.00 2118 hss_seed_derive_set_j
0.00 0.59 0.00 2111 hss_init_hash_context
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Table B.10: Gprof flat profile for profile verify (h=20, w=4)

% time cumulative seconds self seconds calls name
0.00 0.00 0.00 16453 hss_update_hash_context
0.00 0.00 0.00 16384 hss_validate_signature_update
0.00 0.00 0.00 531 hss_hash_ctx

Table B.11: Gprof flat profile for profile genkey (h=20, w=8)

% time cumulative seconds self seconds calls name
46.49 37.65 37.65 4084867923 hss_hash_ctx
27.35 59.80 22.15 567171 lm_ots_generate_public_key
1.94 79.49 1.57 39418036 hss_zeroize
0.64 80.01 0.52 19383016 hss_seed_derive
0.58 80.48 0.47 58928012 put_bigendian
0.46 80.85 0.37 19507588 hss_hash
0.10 80.93 0.08 15275320 hss_update_hash_context
0.06 80.98 0.05 122 hss_compute_internal_node
0.01 80.99 0.01 570412 lm_ots_look_up_parameter_set
0.00 80.99 0.00 574165 hss_seed_derive_set_q
0.00 80.99 0.00 571759 hss_seed_derive_set_j
0.00 80.99 0.00 566932 hss_finalize_hash_context
0.00 80.99 0.00 554688 hss_init_hash_context
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Table B.12: Gprof flat profile for profile sign (h=20, w=8)

% time cumulative seconds self seconds calls name
46.03 0.29 0.29 16122520 hss_hash_ctx
36.51 0.52 0.23 2354 lm_ots_generate_public_key
1.59 0.63 0.01 80727 hss_seed_derive
0.00 0.63 0.00 243598 put_bigendian
0.00 0.63 0.00 164107 hss_zeroize
0.00 0.63 0.00 81220 hss_hash
0.00 0.63 0.00 74342 hss_update_hash_context
0.00 0.63 0.00 16384 hss_sign_update
0.00 0.63 0.00 2392 hss_seed_derive_set_q
0.00 0.63 0.00 2368 lm_ots_look_up_parameter_set
0.00 0.63 0.00 2362 hss_finalize_hash_context
0.00 0.63 0.00 2362 hss_seed_derive_set_j
0.00 0.63 0.00 2290 hss_init_hash_context

Table B.13: Gprof flat profile for profile verify (h=20, w=8)

% time cumulative seconds self seconds calls name
0.00 0.00 0.00 16420 hss_update_hash_context
0.00 0.00 0.00 16384 hss_validate_signature_update
0.00 0.00 0.00 4101 hss_hash_ctx

B.2 Hardware-accelerated Results
This section reports raw measurement data for the hardware-accelerated LMS
implementation. Results are divided between the baseline (non- optimized) driver
and the optimized version with mmap() access.

B.2.1 Non-Optimized Driver Execution Times
Tables B.14 and B.15 show signature generation and verification latencies before
driver optimization, across all parameter sets.
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Table B.14: Hardware accelerated signature generation times (ms) on PYNQ-Z2
with non-optimized memory access.

h w = 1 w = 2 w = 4 w = 8
5 1880.469 1913.687 2012.551 3371.347
10 2005.605 1993.180 2165.307 4625.536
15 2122.998 2113.278 2404.307 6546.042
20 2201.208 2190.628 4024.542 7784.278
25 out_of_memory

Table B.15: Hardware accelerated signature verification times (ms) on PYNQ-Z2
with non-optimized memory access.

h w = 1 w = 2 w = 4 w = 8
5 1834.907 1843.802 1859.331 2153.720
10 1832.112 1841.410 1863.687 2156.418
15 1834.351 1841.437 1863.971 2124.255
20 1835.898 1843.445 1885.630 2141.855
25 out_of_memory

B.2.2 Optimized Driver Execution Times
Tables B.16 and B.17 report results after driver optimization. Each configuration
was repeated over 30 rounds; the tables show mean latencies and standard deviations.
These data were used to compute the speedups reported in Section 5.4.2.
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Table B.16: Hardware accelerated signature generation times (ms) on PYNQ-Z2
after driver optimization (30 rounds).

h w = 1 w = 2 w = 4 w = 8
5 1847.387 ± 2.156 1858.488 ± 3.006 1885.732 ± 2.057 2320.352 ± 3.973
10 1892.182 ± 23.684 1883.553 ± 1.997 1936.780 ± 2.202 2689.925 ± 2.143
15 1927.240 ± 1.711 1921.105 ± 2.461 2006.931 ± 3.106 3272.497 ± 2.194
20 1954.115 ± 2.466 1945.469 ± 2.194 2055.915 ± 2.189 3661.065 ± 2.814

Table B.17: Hardware accelerated signature verification times (ms) on PYNQ-Z2
after driver optimization (30 rounds).

h w = 1 w = 2 w = 4 w = 8
5 1834.907 ± 3.793 1835.413 ± 5.759 1843.893 ± 4.255 1921.594 ± 3.726
10 1879.940 ± 242.526 1837.515 ± 4.156 1842.254 ± 4.881 1944.156 ± 5.306
15 1835.565 ± 4.000 1836.131 ± 4.398 1842.550 ± 3.577 1948.075 ± 23.443
20 1846.462 ± 57.586 1836.977 ± 3.888 1843.526 ± 4.313 1944.800 ± 3.599

135



Bibliography

[1] David McGrew, Michael Curcio, and Scott Fluhrer. Leighton-Micali Hash-
Based Signatures. RFC 8554. Apr. 2019. doi: 10 . 17487 / RFC8554. url:
https://www.rfc-editor.org/info/rfc8554 (cit. on pp. 5, 27, 28, 48).

[2] Andreas Huelsing, Denis Butin, Stefan-Lukas Gazdag, Joost Rijneveld, and
Aziz Mohaisen. XMSS: eXtended Merkle Signature Scheme. RFC 8391. May
2018. doi: 10.17487/RFC8391. url: https://www.rfc-editor.org/info/
rfc8391 (cit. on p. 5).

[3] Bas Westerbaan and Luke Valenta. A look at the latest post-quantum signature
standardization candidates. url: https://blog.cloudflare.com/another-
look-at-pq-signatures/ (cit. on p. 5).

[4] Signature zoo. url: https://pqshield.github.io/nist-sigs-zoo/ (cit.
on p. 6).

[5] Alexander Wagner, Felix Oberhansl, and Marc Schink. «Extended version
– to be or not to be stateful: post-quantum secure boot using hash-based
signatures». In: Journal of Cryptographic Engineering (2024) (cit. on p. 9).

[6] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for Hard
Lattices and New Cryptographic Constructions. Cryptology ePrint Archive,
Paper 2007/432. 2007. url: https://eprint.iacr.org/2007/432 (cit. on
p. 15).

[7] url: https://csrc.nist.gov/CSRC/media/Presentations/Falcon/
images-media/Falcon-April2018.pdf (cit. on p. 18).

[8] url: https://falcon-sign.info/ (cit. on p. 18).
[9] Vadim Lyubashevsky. «Fiat-Shamir with Aborts: Applications to Lattice and

Factoring-Based Signatures». In: Advances in Cryptology - ASIACRYPT 2009,
15th International Conference on the Theory and Application of Cryptology
and Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings.
Vol. 5912. Lecture Notes in Computer Science. Springer, 2009, pp. 598–616.
doi: 10.1007/978-3-642-10366-7_35. url: https://www.iacr.org/
archive/asiacrypt2009/59120596/59120596.pdf (cit. on p. 19).

136

https://doi.org/10.17487/RFC8554
https://www.rfc-editor.org/info/rfc8554
https://doi.org/10.17487/RFC8391
https://www.rfc-editor.org/info/rfc8391
https://www.rfc-editor.org/info/rfc8391
https://blog.cloudflare.com/another-look-at-pq-signatures/
https://blog.cloudflare.com/another-look-at-pq-signatures/
https://pqshield.github.io/nist-sigs-zoo/
https://eprint.iacr.org/2007/432
https://csrc.nist.gov/CSRC/media/Presentations/Falcon/images-media/Falcon-April2018.pdf
https://csrc.nist.gov/CSRC/media/Presentations/Falcon/images-media/Falcon-April2018.pdf
https://falcon-sign.info/
https://doi.org/10.1007/978-3-642-10366-7_35
https://www.iacr.org/archive/asiacrypt2009/59120596/59120596.pdf
https://www.iacr.org/archive/asiacrypt2009/59120596/59120596.pdf


BIBLIOGRAPHY

[10] url: https://pq-crystals.org/dilithium/ (cit. on p. 21).
[11] National Security Agency. Commercial National Security Algorithm Suite

2.0. Tech. rep. U.S. National Security Agency, Sept. 2022. url: https :
//media.defense.gov/2022/Sep/07/2003071836/-1/-1/0/CSI_CNSA_2.
0_FAQ_.PDF (cit. on p. 22).

[12] D. Cooper, D. Apon, Q. Dang, M. Davidson, M. Dworkin, and C. Miller.
Recommendation for Stateful Hash-Based Signature Schemes. Tech. rep. NIST
Special Publication 800-208. Gaithersburg, MD: National Institute of Stan-
dards and Technology, 2020. doi: 10.6028/NIST.SP.800-208. url: https:
//doi.org/10.6028/NIST.SP.800-208 (cit. on p. 35).

[13] Martina Fogliato. SHA256 Hardware Accelerator for Zybo Board. https:
//github.com/martinafogliato/Sha256_Hw_Accelerator. 2020 (cit. on
pp. 42, 44).

[14] Xilinx. Xilinx Linux kernel (linux-xlnx). https://github.com/Xilinx/
linux-xlnx. 2025 (cit. on p. 44).

[15] Cisco Systems. hash-sigs: Hash-Based Signatures Reference Implementation.
https://github.com/cisco/hash-sigs/tree/master. 2025 (cit. on pp. 48,
49).

[16] OpenSSL Project (cit. on p. 48).
[17] Free Software Foundation. The GNU C Library: Time Functions. 2023. url:

https://www.gnu.org/software/libc/manual/html_node/Time-Functio
ns.html (cit. on p. 53).

[18] GNU Project. GNU gprof: The GNU Profiler. 2023. url: https://sourcewa
re.org/binutils/docs/gprof/ (cit. on p. 53).

[19] Linux Kernel Organization. Linux perf: Performance Counters for Linux.
2023. url: https://perf.wiki.kernel.org/index.php/Main_Page (cit.
on p. 54).

137

https://pq-crystals.org/dilithium/
https://media.defense.gov/2022/Sep/07/2003071836/-1/-1/0/CSI_CNSA_2.0_FAQ_.PDF
https://media.defense.gov/2022/Sep/07/2003071836/-1/-1/0/CSI_CNSA_2.0_FAQ_.PDF
https://media.defense.gov/2022/Sep/07/2003071836/-1/-1/0/CSI_CNSA_2.0_FAQ_.PDF
https://doi.org/10.6028/NIST.SP.800-208
https://doi.org/10.6028/NIST.SP.800-208
https://doi.org/10.6028/NIST.SP.800-208
https://github.com/martinafogliato/Sha256_Hw_Accelerator
https://github.com/martinafogliato/Sha256_Hw_Accelerator
https://github.com/Xilinx/linux-xlnx
https://github.com/Xilinx/linux-xlnx
https://github.com/cisco/hash-sigs/tree/master
https://www.gnu.org/software/libc/manual/html_node/Time-Functions.html
https://www.gnu.org/software/libc/manual/html_node/Time-Functions.html
https://sourceware.org/binutils/docs/gprof/
https://sourceware.org/binutils/docs/gprof/
https://perf.wiki.kernel.org/index.php/Main_Page

	List of Figures
	Introduction
	Motivation
	Objectives and Scope
	Methodology Overview
	Structure of the Thesis
	Contributions

	Post-Quantum Digital Signatures
	State-of-the-art Overview
	Hash-based Digital Signatures
	Stateful vs Stateless

	Lattice-based Digital Signatures
	Introduction to Lattice-Based Cryptography
	Overview of Lattice-Based Signature Schemes

	Comparative Analysis
	Quantitative Comparison


	Leighton–Micali Signatures (LMS)
	Introduction
	Notation and Assumptions
	LM-OTS One-Time Signatures
	Parameters
	Private Key Generation
	Public Key Generation
	Signature Generation
	Signature Verification

	Leighton–Micali Signatures
	Parameters
	Private Key Generation
	Public Key Generation
	Signature Generation
	Signature Verification
	Recommended Parameter Sets

	Hash Complexity of LM-OTS and LMS
	Hierarchical Signatures (HSS)
	Key Lifetime Under Stateful Signing

	Hardware–Software Co-Design for LMS
	SHA-256 Hardware Accelerator Porting
	Device Driver Development
	Software Implementation of LMS
	Summary and Outlook

	Benchmarking and Performance Evaluation
	Reproducibility and Setup
	Benchmarking Methodology
	C Library Timing
	Profiling with gprof
	Cycle-accurate Measurements with perf

	Software-only LMS Benchmarking
	Key Generation Times
	Execution Times
	Profiling Results

	HW–SW Co-Design Benchmarking
	Initial Results
	Driver Optimization Results

	Cycle-Level Analysis
	Intrinsic Hardware Latency
	Measurement Methodology
	Results
	Discussion

	Break-Even Accelerator Frequency Estimation
	Performance Model
	Optimistic Model
	Realistic Model
	Numerical Estimates
	Discussion

	Pre-Quantum Baseline: ECDSA–SHA256
	Methodology
	Results

	Limitations and Future Work
	Limitations
	Future Work


	Conclusions
	Source Code and Benchmark Data
	Optimized SHA-256 Driver
	Python Overlay Testbench
	C Testbench for SHA-256 Accelerator
	Header File
	Testbench Implementation
	Main Testbench Application

	SHA-256 Accelerator Interface
	Header File
	Source File

	Benchmarking Automation
	Top-Level Benchmark Script
	Representative Makefile

	Benchmark Post-Processing Script
	Parsing and Visualizing gprof Results
	SHA-256 Cycle Counter Testbench
	C Microbenchmark for perf
	SHA-256 Cycle Benchmark Script
	ECDSA Benchmarking Program and Script


	Benchmark Data
	Software-only Results
	Execution Times
	gprof Profiling

	Hardware-accelerated Results
	Non-Optimized Driver Execution Times
	Optimized Driver Execution Times


	Bibliography

