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Abstract

The downscaling of electronic components in terms of voltage and physical dimen-
sions has enabled the development of modern high-performance microprocessors,
which are increasingly adopted in safety-critical applications. However, their
reduced dimensions have increased the sensitivity to radiation. Radiation-induced
soft errors have become a key threat in terms of reliability in safety-critical
real-time embedded systems (SACRES). A common technique used to enhance
the hardware reliability is N-Modular Redundancy (NMR). With the growing
complexity of modern microprocessors, this solution has become unaffordable.
The development of lighter alternatives for implementing hardware/software error
detection mechanisms has become a crucial area of research.

This thesis investigates the effects of fault injections on automotive bench-
marks to assess the reliability of the target setup, a crucial step for studying new,
lighter robustness solutions. The selected benchmarks are taken from the EEMBC
MultiBench™ Multicore Benchmark Suite to strengthen the representativeness
of the experimental environment. The strength of this approach lies in the fact
that MultiBench combines a wide variety of application-specific workloads with
the EEMBC Multi-Instance Test Harness (MITH), which is compatible and
portable across most multicore processors and operating systems. The benchmarks
are executed in a real-time scenario under FreeRTOS, exploiting its scheduling
algorithm to enable task concurrency, on the Xilinx Pynq-Z2 board. With this
setup, benchmarks are scheduled concurrently and executed across multiple runs
of the system, resulting in different demos. Faults are injected into both memory
and registers via host, and their effects are analyzed by leveraging Hardware
Performance Counters (HPCs) to monitor micro-architectural events. To maximize
the information gathered, each fault is executed multiple times so that its impact
can be observed across different monitored events.

ii





Table of Contents

List of Tables vi

List of Figures vii

Acronyms ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Verification and Validation . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 The basic workflow . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7
2.1 Dependability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 A taxonomy of Dependability . . . . . . . . . . . . . . . . . 8
2.2 Faults in ISO 26262 . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Soft Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Mitigation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Classical Approaches: TMR and ECC . . . . . . . . . . . . 12
2.3.2 AI-Based Detection . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Fault Injections Techniques . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Hardware Fault Injection . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Software Fault Injection . . . . . . . . . . . . . . . . . . . . 15
2.4.3 Other Categorization . . . . . . . . . . . . . . . . . . . . . . 16
2.4.4 Classification of Faults . . . . . . . . . . . . . . . . . . . . . 17

2.5 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.1 High-Level Details . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Experimental Setup and Workflow . . . . . . . . . . . . . . 19

iv



2.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Target Platform 22
3.1 Target Hardware Platform . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 The Cortex-A9 processor . . . . . . . . . . . . . . . . . . . . 23
3.2 Real-Time Operating System . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 FreeRTOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 FreeRTOS Fundamentals . . . . . . . . . . . . . . . . . . . . 27

4 Implementation Details 29
4.1 AutoBench - Automotive Industrial Benchmarking . . . . . . . . . . 29

4.1.1 Benchmark Structures . . . . . . . . . . . . . . . . . . . . . 30
4.1.2 Benchmark Descriptions . . . . . . . . . . . . . . . . . . . . 31

4.2 Integration into the single workload campaigns . . . . . . . . . . . . 33
4.3 Multi-workload campaigns . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 High-level overview of MultiBench . . . . . . . . . . . . . . . 35
4.3.2 Global Structure for HPC collection and task management . 36
4.3.3 Timeline-based Multibench Scheduler . . . . . . . . . . . . . 38
4.3.4 Fault Injector . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Experimental Setup and Evaluation 41
5.1 Campaign Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 Configuration of the target . . . . . . . . . . . . . . . . . . . 41
5.1.2 Configuration of the Fault Injector . . . . . . . . . . . . . . 42
5.1.3 PMU Configuration . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Dataset extraction and statistics for single-workload campaigns . . 48
5.3 Dataset extraction and statistics for multi-workload campaigns . . . 50
5.4 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4.1 Dimensionality Reduction and Data Visualization . . . . . . 52

6 Conclusions and Future Work 55

A Specifications 58

B Implementation Code 60

Bibliography 65

v



List of Tables

3.1 Cortex-A9 PMU Registers . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Dataset statistics extracted from single_a2time and single_rspeed. 48
5.2 Fault-level effectiveness summary for a2time and rspeed01. . . . . . 50
5.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.1 Common FreeRTOS APIs for Task Management and Synchronization 58

vi



List of Figures

1.1 Experimental setup: fault injection via JTAG and PMU data acqui-
sition on the PYNQ-Z2. . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Basic workflow proposed in the experiments . . . . . . . . . . . . . 4

2.1 The dependability tree from [15] . . . . . . . . . . . . . . . . . . . . 8
2.2 Relationship between Fault, Error, and Failure . . . . . . . . . . . . 10
2.3 Causes of soft errors in modern microprocessors . . . . . . . . . . . 11
2.4 High-Level architecture of the fault injection framework presented

in [12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Software execution flow taken from [12] . . . . . . . . . . . . . . . . 20

3.1 Pynq Z2 board [54] . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Multi-workload campaigns workflow . . . . . . . . . . . . . . . . . . 37
4.2 Timeline Scheduling workflow . . . . . . . . . . . . . . . . . . . . . 38

5.1 Cumulative Explained Variance Ratio by Principal Components for
a2time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 t-SNE for a2time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vii





Acronyms

a2time
Angle to Time Conversion

AI
Artificial Intelligence

API
Application Programming Interface

ASIL
Automotive Safety Integrity Levels

BSP
Board Support Packages

BG
Background

BRAM
Block Random Access Memory

CAN
Controller Area Network

canrdr01
CAN Remote Data Request

CCR
Cycle Count Register

ix



CIA
Confidentiality, Integrity and Availability

CPU
Central Processing Unit

CRC
Cyclic Redundancy Check

CSMS
Cybersecurity Management System

CSV
Comma-Separated Values

ECC
Error Correction Code

EEMBC
Embedded Microprocessor Benchmark Consortium

ELF
Executable and Linkable Format

EMFI
Electromagnetic Fault Injection

FIB
Focused Ion Beam

FG
Foreground

FPGA
Field-Programmable Gate Array

GPIO
General-Purpose Input/Output

x



HFI
Hardware Fault Injection

HDMI
High-Definition Multimedia Interface

HPC
Hardware Performance Counter

ISR
Interrupt Service Routine

ISO
International Organization for Standardization

JTAG
Joint Test Action Group

LFI
Laser Fault Injection

LED
Light Emitting Diode

LU
Lower-Upper

matrix01
Matrix Arithmetic

MCR
Move to Coprocessor

MBU
Multi-Bit Data Upset

MITH
Multi-Instance Test Harness

xi



MRC
Move from Coprocessor

NIST
National Institute of Standards and Technology

NMR
N-Modular Redundancy

OS
Operating System

OTA
Over-The-Air

PC
Personal Computer

PC
Program Counter

PCA
Principal Component Analysis

PMCR
Performance Monitor Control Register

PMCNTENSET
Performance Monitor Count Enable Set

PMU
Perfomance Monitoring Unit

PMSELR
Performance Monitors Event Counter Selection Register

PMXEVCNTR
Performance Monitors Event Count Register

PMXEVTYPER
Performance Monitors Event Type Select Register

xii



Pmod
Peripheral Module

POSIX
Portable Operating System Interface

PRNG
Pseudorandom Number Generator

PYNQ
Python on Zynq

QEMU
Quick Emulator

RAM
Random Access Memory

RDR
Remote Data Request

rspeed01
Road Speed Calculation

RTOS
Real-Time Operating System

SACRES
Safety-Critical Real-Time Embedded Systems

SBU
Single-Bit Data Upset

SDK
Software Development Kit

SDC
Silent Data Corruption

SECDED
Single Error Correction/Double Error Detection

xiii



SEU
Single Event Upset

SFI
Software Fault Injection

SMOTE
Synthetic Minority Over-sampling Technique

SoC
System on a Chip

SRAM
Static Random-Access Memory

SUMS
Software Update Management System

TARA
Threat Analysis and Risk Assessment

TCB
Task Control Block

TDC
Top Dead Center

TCL
Tool Command Language

TMR
Triple Modular Redundancy

t-SNE
t-distributed Stochastic Neighbor Embedding

UNECE
United Nations Economic Commission for Europe

VHDL
VHSIC Hardware Description Language

xiv



VLSI
Very-large-scale integration

V&V
Verification and Validation

XSCT
Xilinx Software Command Line Tool

xv



Chapter 1

Introduction

1.1 Motivation

In recent years, several international standards for security and safety have been
integrated into the traditional lifecycle development process. In this context, the
automotive industry is among the sectors that have experienced the most significant
impact. Some key standards are outlined below:

• ISO/SAE 21434:2021 — Road Vehicles: Cybersecurity Engineering
[1]: It establishes a framework for cybersecurity management throughout the
product lifecycle. It also addresses the problem of standardizing roles and
responsibilities during product development and emphasizes the importance
of executive management’s commitment to cybersecurity by providing specific
guidelines. A new introduction of this regulation is the Threat Analysis
and Risk Assessment, which provides a systematic approach to assess the
cybersecurity risks.

• UNECE Regulation No. 155 (R155)[2]: This regulation focuses on
the vehicle lifecycle, including the supply chain. Suppliers should adopt the
secure by design approach, including cybersecurity management from the early
stages of development. It also requires the implementation of a Cybersecurity
Management System to ensure protection against cyber threats.

• UNECE Regulation No. 156 (R156)[3]: It is complementary to R155, and
the purpose of this regulation is to ensure secure software updates throughout
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Introduction

the vehicle’s lifetime. It requires the deployment of Software Update Man-
agement System which ensures that software updates are delivered securely,
authenticated, and traceable. This is particularly challenging but necessary,
given the increasing reliance on Over-The-Air updates in modern vehicles.

• ISO/SAE 24089:2023 — Road Vehicles: Software Update Engineer-
ing [4]: It complements UNECE-R156 by defining processes for planning,
developing, verifying, validating and distributing software updates. By apply-
ing the standard, manufacturers can minimize risks introduced by frequent
software changes.

Current standards and regulations emphasize the need for safety and security in
modern vehicles: to address this necessity, Verification and Validation techniques
and fault injection methods are widely used [5, 6]. These methods help evaluate
safety in critical systems, and systematic test case analysis is essential for identifying
and addressing potential failures.

The growing demand for improved reliability analysis and fault detection in
the automotive sector drives the research and development presented in this thesis.

1.2 Verification and Validation

V&V are two complementary processes used to determine whether a product,
service, or system satisfies its requirements and fulfills its intended purpose [7]. A
key aspect of this process is that verification and validation should be considered
as independent activities, meaning that they are ideally performed by an external
entity rather than by the development team itself [8, 9]. Although the terms are
often used interchangeably in practice, they describe distinct objectives and rely
on different methodologies:

• Verification: it focuses on checking that the system has been built according
to its design specifications. It can be performed at different stages of the
development cycle, using procedures appropriate to each phase. Importantly,
verification is not limited to the final stages; on the contrary, it should be
applied as early as possible. From both a security and an economic perspective,
detecting flaws in the early phases is crucial, since correcting them later may
become significantly more costly and time-consuming [10].

• Validation: it refers to the set of activities used to demonstrate that the
system, once implemented, actually meets the needs and expectations of the
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end users in its operational environment. It includes the testing and validation
of the actual product [10].

As demonstrated by the literature [5, 6], fault injections can be used in the V&V
process of embedded automotive software as they enable assessing system reliability,
evaluating fault tolerance, and identifying vulnerabilities.

1.3 Thesis Overview

Figure 1.1: Experimental setup: fault injection via JTAG and PMU data acquisi-
tion on the PYNQ-Z2.

This thesis investigates the effects of fault injections on a target system and
provides a comprehensive reliability analysis using automotive benchmarks from
the Embedded Microprocessor Benchmark Consortium MultiBench™ Multicore
Benchmark Suite[11]. Building on the work of [12, 13], which introduced a fault
injection framework for Safety-Critical Real-Time Embedded Systems applications,
this thesis enforces the usage of HPC-based monitoring and proposes an environment
as close as possible to a real-time scenario. The environment is built by developing
test cases in which multiple automotive benchmarks are executed, using specific
scheduling algorithms provided by FreeRTOS. This setup is fundamental, since
automotive systems perform several tasks in parallel. The correct profiling of

3



Introduction

the target system is evaluated using the Hardware Performance Counters special-
purpose registers, which track architectural events in the modern microprocessor.
These registers are collected from the Perfomance Monitoring Unit using the
developed fault injector. The ARM Cortex-A9 PMU provides six counters to gather
statistics on the operation of the processor and memory system, and each counter
can count any of the 168 events available [14]. This approach is portable and
innovative thanks to the fault injector that can collect valuable data to enable
better anomaly detection: common examples of trackable events are cache misses,
instruction executed or branch misprediction. Although the proposed framework is
highly modular and generalizable, the target system tested during the thesis is an
Xilinx Pynq-Z2 board, built around the Xilinx Zynq 7020 System on a Chip.

1.3.1 The basic workflow

The workflow adopted consists of two different phases:

• The workload is first executed without any fault injection. The results of this
fault-free run (called golden run) are stored and later used as a reference for
comparison with subsequent executions;

• The workload is then re-executed on the benchmark selected as the injection
target. Faults are injected through the board’s debug interface, and multi-
ple repetitions and iterations (the difference is explained in chapter 4) are
performed in order to collect the architectural events required for the analysis.

Figure 1.2: Basic workflow proposed in the experiments
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The setup phase is managed by the fault injector, implemented as a Python script,
which allows precise targeting of the injections. In practice, this means that faults
can be injected randomly into one of the two benchmarks executed, and their
effects can then be evaluated. After executing the campaigns, the collected data are
transformed into a format suitable for machine learning, which can aid in training
models for fault detection purposes.

1.4 Structure of the Thesis

The thesis is organized into the following chapters:

Chapter 1 — Introduction

This chapter introduces the context of the research, outlines the motivations and
objectives, and describes the specific contributions made to the existing framework.

Chapter 2 — Background

This chapter provides an overview of the theoretical background necessary for this
research, including definitions of fault, error, and failure, as well as a taxonomy
of fault injection techniques. It also reviews the state of the art, with particular
emphasis on the framework proposed in [12, 13], which serves as the foundation for
the developments presented in this thesis.

Chapter 3 — Target Platform

Describes the tools and technologies used during this thesis. It provides architectural
information on the target platform and its main components and also addresses
the key features of Real-Time Operating System.

Chapter 4 — Implementation Details

This chapter presents the design and implementation of the fault injection cam-
paigns, including the system architecture, HPC-based monitoring integration, and

5



Introduction

key improvements over previous work.

Chapter 5 — Experimental Setup and Evaluation

This chapter is divided into two parts: the first part presents the setup and results
of the fault injection campaigns, while the second part covers the preprocessing
steps and data visualization of the resulting dataset.

Chapter 6 — Conclusions and Future Work

This chapter summarizes the personal contributions to the framework used, discusses
the main findings, and outlines possible directions for future research, particularly
regarding the extension of fault injection techniques and the application of machine
learning for anomaly detection.

6



Chapter 2

Background

This chapter provides an overview of the main concepts required to understand
the choices behind the implementation and the terminology used in this thesis.
It discusses a structured taxonomy that positions fault injection as a central
concept for dependability evaluation and then provides details about the framework
developed in [12, 13] that is utilized in this thesis.

2.1 Dependability

Dependability [15, 16] can be considered as the system’s ability to perform its
required function consistently and continuously, and it refers to the operational
requirement of a system. Although often associated with modern computing, this is
an old concept that first appeared in 1822 in the context of Babbage’s Calculating
Engine[17], even before the first generation of electronic computers. Some of the
definitions of dependability are provided as follows:

• IFIP WG 10.4 [18]: "[..] the trustworthiness of a computing system which
allows reliance to be justifiably placed on the service it delivers [..]";

• IEC IEV [19]: "Dependability (is) the collective term used to describe the
availability performance and its influencing factors: reliability performance,
maintainability performance, and maintenance support performance";

• Laprie [20]: "Trustworthiness of a computer system such that reliance can be
placed on the service it delivers to the user".
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As can be understood by these definitions, the property of dependability is highly
related to different attributes such as reliability, availability, safety, and secu-
rity.

2.1.1 A taxonomy of Dependability

A detailed taxonomy of the fundamental concepts of dependability was presented by
Avizienis et al. in 2001 [15]. According to the authors, dependability is structured
into three main components: threats, means, and attributes.

Figure 2.1: The dependability tree from [15]

Attributes

The dependability tree identifies several key attributes: availability, reliability,
safety, confidentiality, integrity, and maintainability. These attributes can
be interpreted as the properties that characterize a system from the standpoint
of dependability. It is important to note that the Confidentiality, Integrity and
Availability triad - although fundamental to information security - is not sufficient
by itself to guarantee dependability. Dependability should be understood as a
probabilistic and inherently uncertain property, due to the possible presence of
faults and their propagation into errors and failures [15].

Means

Avizienis et al.[15] also introduce the means to achieve dependability, introducing
the families of techniques and methods employed to mitigate the impact of faults
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on a system[21]:

• Fault Prevention: techniques aimed at preventing the occurrence or intro-
duction of faults. These approaches can substantially reduce the likelihood of
faults, but often involve significant cost and effort [22]. Examples are rigorous
development processes, design reviews, or shielding.

• Fault Tolerance: techniques that enable the system to deliver correct service
in the presence of faults. This is particularly crucial in SACRES, where service
continuity must be preserved despite errors [22]. Examples are redundancy,
error detection, and recovery.

• Fault Removal: techniques to reduce the number or the severity of faults,
through verification, testing, debugging, and corrective maintenance [22].

• Fault Forecasting: techniques to estimate the current number of faults, their
future incidence, and their potential consequences [22]. Typical examples are:
reliability modeling, statistical testing, and field data analysis.

Threats

A threat can be defined as a potential danger to a computer system that may
result in the interception, alteration, obstruction, or destruction of computational
resources, as well as any other form of service disruption [23, 24]. When a threat
damages a system asset, thereby preventing the system from delivering the expected
service, a failure occurs. An error is defined as the part of the system state that
may lead to a subsequent failure, whereas a fault constitutes the underlying cause
of the error. A fault may be active when it actually produces an error, or dormant
when it remains latent without immediate effect [20, 15, 25].

Because dependability reflects a computer system’s ability to deliver a justi-
fiably trusted service, it is essential to analyze both the causes of faults and their
potential consequences to detect and mitigate anomalies. Furthermore, the concept
of fault is central in legislative and regulatory contexts. International standards,
such as ISO 26262 [26], explicitly define frameworks and requirements to mitigate
the presence and impact of faults in safety-critical systems.
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2.2 Faults in ISO 26262

Although first published in 2011 and revised in 2018, ISO 26262 remains particularly
significant, as it requires organizations to provide sufficient evidence of compliance
with safety requirements, and fault injection techniques can be used effectively to
offer such evidence. According to ISO document 10303-226 [27], a fault is defined as
an abnormal condition or defect at the component, equipment, or subsystem level
which may lead to a failure. A fault is active when it causes an error ; otherwise, it
is dormant. In this definition, there are some key concepts linked to faults:

• Failure: the event in which the service delivered by the system deviates from
the expected correct one;

• Error: a system state (or part of it) that can potentially lead to a subsequent
service failure.

Figure 2.2: Relationship between Fault, Error, and Failure

A fault occurring on a target device does not always result in an error; often, faults
remain inactive and have no observable effects. When a fault causes a temporary
error, it is classified as a soft error.

2.2.1 Soft Errors

Soft errors are transient faults that occur in electronic devices due to external
or internal factors, causing temporary changes in the device’s state or behavior.
They can reverse or flip the data state of a memory cell, register, latch, or flip-flop;
however, these disturbances do not permanently damage the circuit, which can
still correctly store data once new values are written [28, 29].

Despite the transient nature of the fault, soft errors are becoming a concern
in modern microprocessors, due to the increased sensitivity of smaller transistor
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geometries and lower operating voltages. Under these conditions, circuits become
more vulnerable to perturbations such as cosmic radiation, electrical noise and
interference, as well as variability or defects introduced during manufacturing [30].

Figure 2.3: Causes of soft errors in modern microprocessors

Soft errors include Single Event Upsets, which can be further categorized into
Single-Bit and Multi-Bit Data Upsets.

Single-Bit Data Upset

A Single-Bit Data Upset occurs when a high-energy particle, such as a cosmic ray or
a neutron, strikes a sensitive region of a semiconductor device, altering the charge
stored in a memory cell or flip-flop. The event changes the logical state of the
storage element, from ‘0’ to ‘1’ or vice versa. In sequential logic, such as flip-flops,
the upset manifests itself as a single erroneous bit, which is usually overwritten
during the next valid clock cycle. While in many non-critical applications the effect
of an SBU may be negligible, in safety-critical or mission-critical systems even a
single incorrect bit can compromise correctness [31].

In Field-Programmable Gate Array, SBU may occur both in user data and
in the (typically SRAM-based) configuration memory. In the latter case, a flipped
configuration bit can alter the programmed functionality, leading to persistent
misbehavior or the propagation of corrupted data. Mitigation commonly combines
configuration memory scrubbing[32] (periodic readback and correction) with Error
Correction Code [31, 33, 34].
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Multi-Bit Data Upsets

Multi-Bit Data Upset arises when a single high-energy particle simultaneously
affects multiple adjacent storage elements, causing two or more bits within a
memory word or logic element to flip [35]. MBUs are particularly critical in
memories where physically adjacent cells map to the same logical word, since they
can produce errors that exceed the correction capability of standard ECC, resulting
in uncorrectable errors. The spatial correlation of MBUs is highly dependent on
the device layout: for instance, in SRAM memories, if the cells of a logical word are
placed close together, the likelihood of uncorrectable MBUs increases. Conversely,
modern FPGA architectures often physically separate the SRAM cells belonging
to the same logical word, thereby reducing the probability that MBUs will corrupt
multiple bits in a way that cannot be mitigated[36, 31].

Mitigation strategies for MBUs include the use of interleaved memory archi-
tectures (to physically separate adjacent bits of the same logical word physically),
more advanced ECC schemes capable of detecting and correcting multiple-bit
errors, as well as architectural hardening techniques at the FPGA design level[31,
36, 37].

2.3 Mitigation Techniques

2.3.1 Classical Approaches: TMR and ECC

The primary mitigation techniques discussed in the literature include the following:

• Triple Modular Redundancy (TMR);

• Error Correction Code (ECC).

TMR is a fault-tolerant approach based on N-Modular Redundancy, in which
three identical logic circuits are used to compute a specified Boolean function.
Each circuit receives the same input data, and their outputs are compared through
a majority-voting mechanism. In this way, even if one of the three circuits produces
an incorrect result, the other two can correct it, ensuring that the fault is effectively
masked. TMR technique is particularly effective in protecting against errors and
introduces a small delay in the circuit. However, its main drawback is that it
requires triplicate logic and additional circuitry, which results in more than three
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times the original area [38].

ECC represents a set of techniques for detecting and correcting errors: the
detection is enabled by adding redundant parity bits to the data. One of the
most well-known examples is the family of Hamming Codes, which belongs to the
linear error-correcting codes. The standard Hamming code can only detect and
correct a single-bit error. Still, there are more powerful versions in which additional
parity bits are added, a technique known as Single Error Correction/Double Error
Detection (SECDED). ECC RAM commonly uses Hamming codes with SECDED
to automatically correct single-bit errors and raise an alert when double-bit errors
occur [39, 40].

2.3.2 AI-Based Detection

More recently, AI-based approaches have been explored to enhance fault detection
and prediction. Machine learning models trained on historical data have shown
promising results in identifying patterns associated with potential failures, thereby
improving the reliability and resilience of SACRES [41, 42].

2.4 Fault Injections Techniques

Different fault injection techniques have been introduced in the literature. The
following sections analyze the most common approaches [43].

2.4.1 Hardware Fault Injection

Hardware Fault Injection involves techniques that deliberately introduce faults into
the physical components of an electronic system to study their effects on system
behavior. Several surveys and experimental studies [44, 45] group HFI methods
into two broad categories:

• Contact (direct) HFI: the injector physically interfaces with the target
to perturb its electrical conditions (e.g., via pin-level probes or by inserting
the device into a manipulable socket); such methods enable relatively precise
timing control but often require physical access to the target.
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• Non-contact (indirect) HFI: the injector acts from outside the package us-
ing external stimuli—such as heavy-ion radiation or electromagnetic fields—to
provoke faults without direct electrical contact.

Another common classification in the literature distinguishes techniques by their
invasiveness, defined as the degree of physical alteration or risk of damage to the
target: non-invasive, semi-invasive, and invasive. The following list summarizes the
most common HFI techniques, with all information sourced from [46]:

• Clock glitching (non-invasive): the system clock is disturbed to create
timing violations that may cause registers to capture incorrect values. Effects
are typically non-deterministic, making it challenging to target precise internal
locations.

• Voltage glitching (non-invasive): the supply voltage is momentarily per-
turbed (spikes or drops), altering logic timing and potentially inducing incorrect
computations. As with clock glitching, reproducibility and spatial targeting
are limited.

• Electromagnetic Fault Injection (non-invasive): focused electromagnetic
pulses are applied externally to induce currents or voltage transients in on-chip
circuits. EMFI can produce effects similar to voltage glitches, but, due to field
dispersion, precise spatial targeting is challenging.

• Laser Fault Injection (semi-invasive): a laser beam is employed to
inject localized energy into the die (after decapsulation or package thinning),
producing controlled bit flips or timing faults. LFI enables finer spatial
targeting compared to non-invasive techniques while remaining less destructive
than invasive editing.

• Focused Ion Beam editing (invasive): semiconductor-editing equipment
is used to physically modify the chip (e.g., cut/add interconnects) to create
permanent alterations or to expose internal nodes for probing. FIB is highly
targeted and powerful, but destructive and complex to perform.

Each technique represents a trade-off between cost, potential damage to the target
system and the reliability of the obtained results. Non-invasive methods are
generally easier to deploy and less destructive, but they provide limited spatial
precision. Semi-invasive and invasive techniques, on the other hand, enable higher
targeting accuracy at the expense of greater complexity, higher costs, and an
increased risk of permanent modification.
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Overall, HFI techniques yield highly reliable results because tests are conducted
directly on the physical device under realistic operating conditions. This makes
them particularly suitable for diagnostic purposes and for validating detection
mechanisms. However, hardware-based fault injection is costly, requires specialized
expertise, and carries the risk of permanently damaging the device under test.
Additionally, many techniques have limited portability across different architectures,
restricting their applicability in heterogeneous embedded environments.

2.4.2 Software Fault Injection

SFI, on the other hand, introduces faults into a running software system. This
technique is highly flexible: faults can be injected at multiple levels, including
memory, registers, and even the operating system, which is otherwise difficult to
analyze [43]. Although not considered intrusive, in real-time systems, where precise
timing is essential for correct operation, software-level injections may disrupt
normal system activity [47].

SFI techniques can be categorized by considering the trigger mechanism that
produces the artificially generated fault or error, or the injection times. In this
way, it is possible to distinguish according to [45, 48]:

• Injection Strategy

– Time-based: Faults are injected at predetermined time intervals. This
technique is easy to implement non-intrusively, but limited in flexibility.

– Location-based: Faulty values are written into predefined memory
locations. Suitable for memory corruption studies, but prevents dynamic
control of the fault load.

– Execution-driven: Faults are triggered dynamically depending on the
control flow. This approach allows realistic and complex fault models but
does not apply to black-box applications.

• Injection Timing

– Before runtime: The program is modified before execution (e.g., source
code mutation to insert software bugs).

– During runtime: Faults are injected while the program is executing.
– At loading time: Faults are introduced when external components are

loaded, for example, via dynamic library binding or dependency injection.
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The benefits of using software fault injection are numerous. They can be catego-
rized as a flexible approach that enables extensive experimentation without the
need for specialized hardware, eliminating the risk of damaging physical devices.
Furthermore, it is cost-effective and can be easily extended to support new types of
faults. The main drawbacks of software fault injection complement the strengths
of hardware-based methods. Specifically, software-based approaches often offer
limited observability and coverage, and it is more challenging to induce permanent
faults.

Tools

In the literature, there are different tools that can be used to inject faults at the
software level:

• BOND [49], a software-based fault injection system for COTS applications;

• Xception [50], a software-implemented fault injection tool for dependability
analysis;

• MAFALDA [51], a fault injection environment for real-time COTS microkernel-
based systems ;

• DOCTOR [52], an integrated software fault injection environment .

Among the tools presented, Xception is the most interesting one for the thesis,
because it exploits the debug unit of modern processors to inject faults. In the
literature, there are few examples of SFI based on the debug unit, and a more
precise approach will be presented in the next sections.

2.4.3 Other Categorization

The distinction between hardware-based and software-based fault injection alone is
not sufficient. Fault injection techniques can also be categorized by the development
phase in which they are applied [46]:

• Simulation-Based Fault Injection: faults are injected into high-level system
models (often described in VHDL). This approach is particularly powerful
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because it enables dependability evaluation in the early stages of development,
as soon as a model is available.

• Emulation-Based Fault Injection: faults are introduced into an emulated
environment rather than into real hardware. This approach relies on simulators
such as QEMU or on FPGA-based platforms, and can reproduce scenarios
like bit flips in memory or registers. It allows the analysis of system behavior
under fault conditions without requiring a physical prototype.

• Hybrid Fault Injection: combines hardware and software-based techniques
to leverage the advantages of both approaches.

2.4.4 Classification of Faults

The observable effects of a fault can vary significantly and are typically classified
as follows [53]:

• Crash: the program terminates abnormally;

• Hangs: the program enters in an unresponsive state;

• Reboots: the operating system reboots;

• Silent Data Corruption (SDC): the program continues to run, but the
result of the computation is incorrect;

• Benign: the program outputs the correct result, and the fault does not affect
the outcome.

Among these outcomes, detecting SDCs is particularly challenging: for this reason,
different detection mechanisms have been developed and analyzed in the literature.

2.5 Related Works

Dependability evaluation constitutes a crucial step in the design of SACRES, as
widely demonstrated in the scientific literature. Among the various approaches
proposed in recent years, the framework presented in [12] is particularly relevant and
forms the basis of the evaluation conducted in this thesis. The authors introduce
a fault injection framework specifically designed for the reliability assessment of
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SACRES. This framework aims to reproduce soft errors induced by environmental
disturbances and analyze their effects through machine learning algorithms to
enable the detection of malfunctions in the system’s architecture.

2.5.1 High-Level Details

Figure 2.4: High-Level architecture of the fault injection framework presented in
[12]

Figure 2.4 illustrates the high-level architecture of the proposed framework, which
consists of two primary components: a Host PC and the embedded system under
test. The framework employs a SFI mechanism based on the microprocessor’s debug
unit. While this method has been infrequently reported in the literature, its main
advantage is the ability to inject faults at multiple levels, such as CPU registers,
memory, and the operating system, with minimal overhead since execution must
be halted for fault injection. In this context, the debug unit was the only viable
option. In contrast to alternative techniques, this approach does not require code
recompilation between executions following fault injection, as the code remains
unchanged. Since the primary objective is to generate a dataset for machine
learning-based assessment, this method is the most practical solution. Additionally,
this approach guarantees experiment repeatability, which is critical for collecting
architectural event data during execution (this requirement will be addressed in a
subsequent section). The CPU debug unit operates in external mode using the
JTAG protocol, which enables control of the debug phase of the target system
from an external host and permits modification of CPU registers and memory.
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The framework extends the traditional SBU approach introduced in [13] to
support MBU. A key feature is the integration of the processor’s PMU, which
enables the collection of HPCs during execution. This capability allows the
framework to combine functional correctness checks with a detailed analysis of
micro-architectural events recorded at runtime.

The Host PC coordinates the fault injection campaigns through a Python-based
script that interacts with the Xilinx Software Command Line Tool. On the target
side, a Xilinx Zynq SoC running FreeRTOS executes the workload compiled into a
ELF binary. The faults are injected either by selecting faults from a predefined
list of location–time tuples (e.g., provided in a CSV file) or by generating them
randomly at runtime. To ensure reproducible results, the random seeds used to
initiate execution, as well as the golden outputs obtained in the fault-free runs are
stored in the FPGA memory. Fault injection outcomes are classified according to
the standard dependability taxonomies into Benign, SDCs, or crash/hangs.

2.5.2 Experimental Setup and Workflow

The experimental evaluation was carried out on a Pynq-Z2 board featuring a
dual-core ARM Cortex-A9 and running FreeRTOS v.10. Benchmarks were selected
from the MiBench suite, chosen for their diversity across application domains such
as Automotive, Networking, Security, Office, Telecommunications, and
Industrial Control. The subset considered includes:

• SHA, a hashing algorithm producing a 160-bit digest, widely used in crypto-
graphic applications;

• Dijkstra, an implementation of the shortest-path algorithm on graphs;

• Quicksort, a sorting algorithm applied to arrays of strings;

• Rijndael, better known as AES, a block cipher for secure data encryption;

• BasicMath, which performs arithmetic operations often lacking hardware
acceleration in embedded CPUs;

• Stringsearch, which performs pattern matching within a text.

These benchmarks were evaluated both individually and within multitask workloads
managed by the FreeRTOS scheduler, resulting in 23 injection campaigns that
covered injections into memory, CPU registers, and Program Counter.
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Figure 2.5: Software execution flow taken from [12]

The workflow, illustrated in Figure 2.5, is structured in two main phases. First,
during the golden run, the host boots the target, supplies random input data to
ensure reproducibility, and collects the golden output, used later for comparison. In
the faulty run, the host activates an injection loop: for each iteration, it specifies
the events to monitor, sets the injection breakpoint, and resumes execution. When
the breakpoint is reached, faults are injected and execution continues until the end.
The final output is then compared with the golden reference. If outputs coincide,
the run is classified as Benign; if they differ, it is classified as SDC; and if execution
fails to terminate within the timeout, it is labeled as Crash/Hang. The timeout is
carefully calibrated to account for both OS boot and benchmark execution time,
with additional margin to distinguish between minor timing deviations and genuine
failures.
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2.5.3 Results

The main findings of the experimental campaigns can be summarized as follows:

• Faults injected into memory are mostly benign, owing to the large address
space that reduces the likelihood of affecting critical regions;

• CPU register injections exhibit a higher susceptibility to SDCs, particularly
in cryptographic workloads where intermediate values are more sensitive;

• PC injections are especially critical, frequently resulting in system crashes or
significantly increasing the SDC rate.

In addition, HPC profiling demonstrated its effectiveness in distinguishing benign
executions from faulty ones, thus confirming the potential of performance counters
as indicators for the development of fault detection mechanisms in SACRES.
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Target Platform

This chapter introduces the platform and tools used to conduct this thesis. It opens
with a description of the target system employed in the experimental work and
highlights the principal features of FreeRTOS, the Real-Time Operating System
under which the benchmarks are executed.

3.1 Target Hardware Platform

Figure 3.1: Pynq Z2 board [54]

The target hardware platform used for the experimental setup is a Pynq-Z2[54]
3.1, which is a FPGA development board, based on ZYNQ XC7Z020. It supports
Python on Zynq (PYNQ, an open-source framework from Xilinx that enables the
customization of Xilinx ZYNQ SoCs without fully rely on the design programming
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logic circuit. PYNQ-Z2 board integrates Ethernet, HDMI Input/Output, MIC
Input, Audio Output, Arduino interface, Raspberry Pi interface, 2 Pmod, user LED,
push-button and switch. It is designed to be easily extensible with Pmod, Arduino,
and peripherals, as well as general purpose General-Purpose Input/Output pins.

3.1.1 The Cortex-A9 processor

The processor exhibited by the board is an ARM Cortex-A9[55, 56]: it belongs to
the Cortex-A series, which can support complex OS and multiple user applications,
available in different smartphones and digital devices. It is effective and powerful,
suitable for a large number of applications and constitutes the perfect choice for
applications where energy efficiency is necessary.

ARM Cortex-A9 is a 32 bit multi-core processor, based on ARMv7 architec-
ture and on the implementation of Thumb-2 instruction set, which reduces the size
of programs with little impact on performance. Moreover, it presents the following
features:

• High-Efficiency Superscalar Pipeline;

• NEON Media Processing Engine;

• Optimized Level 1 Caches;

• Thumb-2 Technology;

• Floating-point unit.

Among these interesting characteristics, the PMU available is the most relevant
one. In general, PMU is commonly used for performance analysis and debugging,
providing a wide range of events that can be monitored for performance profiling.
In general, most of the events provided are common, however, each processor can
define its own specific events.

In the case of Cortex A-9, as already reported in the introductory part, ac-
cording to the Technical Reference Manual [55], PMU provides six counters
to gather statistics on the operation of the processor and the memory system.
Counters can be accessed from the internal CP15 interface as well as from the
DAP interface. A clear overview of the registers are reported in the table below:
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Table 3.1: Cortex-A9 PMU Registers

Name Type Description
PMXEVCNTR0–5 RW Event Counter Register
PMCCNTR RW Cycle Count Register
PMXEVTYPER0–5 RW Event Type Selection Register
PMCNTENSET RW Count Enable Set Register
PMCNTENCLR RW Count Enable Clear Register
PMINTENSET RW Interrupt Enable Set Register
PMINTENCLR RW Interrupt Enable Clear Register
PMOVSR RW Overflow Flag Status Register
PMSWINC WO Software Increment Register
PMCR RW Performance Monitor Control Register
PMUSERENR RW User Enable Register
PMSELR RW Event Counter Select Register

Among them, the most interesting ones are the following:

• Performance Monitor Control Register (PMCR): which enables/disables
the PMU, controls reset of counters and sets some global modes;

• Event Counter (PMC): a set of 32-bit counters that can be programmed to
track specific event, typically we have 6 events counters and 1 cycle counter;

• Cycle Counter (CCNT): a dedicated counter for counting CPU clock cycles;

• Performance Monitors Event Type Select Register (PMXEVTYPERn):
each counter has a register that defines which event it should monitor.

• PMU Interrupts: Counters can trigger an interrupt on overflow.

Event Selection Registers are very useful because they enable the selection of the
Performance Monitor Count Register to Count. They can be accessed in this way:

MRC p15, 0,<Rd>, c9, c13, 1 ; Read PMXEVTYPER Register
MCR p15, 0,<Rd>, c9, c13, 1 ; Write PMXEVTYPER Register

More details will be provided in the later chapters, for managing and configuring
the PMU.
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3.2 Real-Time Operating System

RTOS is an operating system specifically designed to support real-time computing
applications, where tasks must meet strict deadlines. Due to its characteristics,
an RTOS is commonly used in embedded systems and automotive context where
being event-driven and preemptive is important, meaning that the scheduler can
assign different priorities to tasks and preempt lower-priority tasks in favor of
higher-priority ones [57, 58, 59].

For the proposed framework, the choice fell on RTOS according to several
factors:

• Faithfulness to the automotive context: in this scenario, RTOS are
largely used and in most of the cases they represent the only choice.

• Reproducibility for profiling: an RTOS is easy and predictable, so that
reproducibility can be ensured to reply the experiments and collect as much
information as possible for a correct profiling.

3.2.1 Tasks

Real-time applications are typically structured into periodic tasks, which can
be defined as a sequence of instructions designed to perform specific functions.
Tasks are managed and scheduled by the operating system and, depending on the
criticality of the functions they implement, can be assigned different priorities:
tasks with higher priority are executed before those with lower priority. In general,
each task comprises an initialization phase followed by an infinite loop, within
which the required functions are repeatedly executed.

When an operating system is capable of managing and executing multiple tasks
concurrently, this capability is referred to as multitasking. In the case of a RTOS,
true parallel execution of tasks on a single-core processor is not possible. Instead,
the RTOS employs scheduling algorithms to allocate CPU time among the available
tasks. A schedule specifies the strategy adopted by the operating system to assign
resources and determine the execution order of tasks. Each task can exist in one
of four states: ready, running, suspended, or blocked. The scheduler within
the RTOS manages the transitions between these states according to the adopted
scheduling policy.
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Two main types of schedulers can be distinguished in RTOS: preemptive
and cooperative. A preemptive scheduler allows a task to be interrupted during
its execution if a task with higher priority becomes ready, ensuring that the most
critical task is executed immediately. Conversely, a cooperative scheduler does
not permit preemption: even if a higher-priority task is ready, it must wait until
the currently running lower-priority task has completed its execution before being
scheduled.

Scheduling Algorithms

As previously introduced, a scheduling algorithm is defined as a set of rules
that determine, at any point in time, the order in which tasks are executed. One
of the simplest approaches is static scheduling, where decisions are based on fixed
parameters assigned to tasks prior to their activation. Other relevant examples
include:

• Timeline scheduling: tasks are organized within a predefined timeframe,
called the major cycle. Each task is executed during its dedicated minor cycle.
This is one of the simplest and most deterministic scheduling strategies.

• Round-Robin scheduling: ensures fairness by allocating fixed time slices
to tasks belonging to the same priority level. Once a task exhausts its time
slice, the scheduler moves to the next task in the queue.

• Rate-Monotonic Scheduling: a fixed-priority scheduling algorithm in which
tasks are assigned priorities based on their periods: the shorter the period,
the higher the priority. It is optimal among static-priority scheduling policies.

• Earliest Deadline First: a dynamic-priority scheduling algorithm in which
tasks are scheduled according to their absolute deadlines. This approach
is particularly suitable for real-time systems, where meeting strict timing
constraints is critical.

3.2.2 FreeRTOS

FreeRTOS is a widely adopted open-source OS designed for embedded systems
[60]. It is particularly suitable for microcontrollers and applications characterized
by limited memory resources and constrained computational capabilities. A
basic FreeRTOS application is typically structured around tasks, which represent
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independent units of execution. Two types of tasks can be distinguished: the
standard tasks, defined by the user to perform specific application functions, and
the idle task, which is automatically created by the kernel and executed whenever
no other tasks are ready to run.

In the case of standard tasks, the user must specify several parameters at
creation time, including a unique name for identification, the task function to be
executed, its priority, and the stack size. Task priority is expressed as a positive
integer value, ranging from 0 (the lowest priority, typically reserved for the idle
task) to configMAX_PRIORITIES - 1. The constant configMAX_PRIORITIES is
defined in the configuration file FreeRTOSConfig.h and determines the maximum
number of priority levels available within the system.

The scheduler of FreeRTOS supports different policies for task execution. By
default, the scheduler operates in a preemptive mode with time slicing, but there
is also the possibility to disable timeslicing or configure a cooperative scheduling
approach. Regardless of the chosen policy, when two or more tasks share the same
priority level, the Round-Robin mechanism is applied to determine their execution
order.

1 /∗ FreeRTOSConfig . h ∗/
2 #d e f i n e configUSE_PREEMPTION 1 // preemption enabled
3 #d e f i n e configUSE_TIME_SLICING 1 // time−s l i c i n g enabled

3.2.3 FreeRTOS Fundamentals

FreeRTOS provides a set of primitives for synchronization and communication
between tasks. These mechanisms are essential to coordinate concurrent activities,
manage access to shared resources, and synchronize tasks with interrupts.

Binary Semaphores and Mutexes

A binary semaphore is a synchronization primitive that can assume only two values,
typically 0 or 1. It is often used to signal events, for example from an Interrupt
Service Routine to a task. In FreeRTOS, when multiple tasks attempt to take the
same semaphore, the scheduler ensures that the highest-priority task succeeds first.
The API also allows specifying a block time, which is the maximum number of
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system ticks a task will remain in the Blocked state while waiting to acquire the
semaphore.

A mutex (mutual exclusion object) is similar to a binary semaphore but in-
cludes a priority inheritance mechanism. This feature helps mitigate the problem
of priority inversion, ensuring that lower-priority tasks holding a mutex do not
unduly delay higher-priority tasks.

Task Notifications

In addition to semaphores, FreeRTOS provides lightweight synchronization through
task notifications. A task notification can be considered as a binary or count-
ing semaphore built directly into each TCB. This approach reduces RAM con-
sumption and improves performance. Functions such as ulTaskNotifyTake() or
ulTaskNotifyTakeIndexed() are used in place of xSemaphoreTake(), with the
parameter xClearOnExit set to pdTRUE to emulate the binary semaphore behavior.

The RTOS Tick

When a block time is specified (for example, when a task is put to sleep), FreeRTOS
measures the waiting period using the system tick. A timer interrupt, known as
the RTOS tick interrupt, periodically increments the kernel tick count. This allows
the kernel to measure time with a resolution determined by the tick frequency.
Each time the tick count is incremented, the scheduler verifies whether it is time
to unblock any tasks whose delay periods have expired.

The tasks.c File

The file tasks.c is the core of the FreeRTOS kernel. It implements task manage-
ment and scheduling, including the creation and deletion of tasks, context switching,
and state transitions. Moreover, it provides the implementation of TCB and defines
the mechanisms for handling priorities and scheduling policies.
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Implementation Details

After reviewing the literature on fault injection techniques, this chapter describes the
implementation of the proposed framework. It first presents the benchmarks used
in the single-workload campaigns and then proceeds describing the multi-workload
campaign.

4.1 AutoBench - Automotive Industrial Bench-
marking

The benchmarks selected to carry out the experiments and ensure an environment
as close as possible to the real one are provided by the Embedded Microprocessor
Benchmark Consortium [61]. AutoBench is suite of benchmarks created to evaluate
the performance of microprocessors and microcontrollers in automotive, industrial
and general-purpose applications. It consists of sixteen benchmarks, including
basic automotive algorithms and signal processing algorithms: a brief
description of the algorithm is proposed in appendix.

The choice fell on AutoBench because it is one of the most adopted automo-
tive benchmark suites, used in both academia and industry. It integrates a set of
automotive workloads with the EEMBC Multi-Instance Test Harness, a framework
designed to ensure portability across a wide range of multicore processors and op-
erating systems. MITH employs a POSIX-compliant, thread-based API to provide
a common programming model: benchmarks interact with the harness through
an abstraction layer, which offers a flexible interface for testing heterogeneous,
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thread-enabled workloads.

Each benchmark is composed of three main elements: workload, dataset,
and a Cyclic Redundancy Check. The workload corresponds to the algorithm
under test, which may be implemented as single-threaded or multi-threaded. The
dataset consists of the input data supplied to the workload, typically available in two
different sizes (4MB and 4KB). Finally, the CRC is used to verify the correctness
of the computation by comparing the produced output against a reference signature.

Among the sixteen algorithms available in the EEMBC AutoBench suite, the
following benchmarks were selected to be included in the framework: Angle to
Time Conversion, CAN Remote Data Request, Matrix Arithmetic, and Road Speed
Calculation. These benchmarks were chosen because, on one side, they reflect
typical computational patterns found in automotive applications and provide
sufficiently complex scenarios to emulate realistic operating conditions, including
communication between interfaces. On the other, they are diverse enough to enable
a comprehensive analysis of different system aspects, ranging from arithmetic-
intensive workloads to communication and control-oriented tasks. Although all
four benchmarks were integrated, the experiments carried out focused exclusively
on a2time and rspeed01.

The selected benchmarks were integrated in two configurations: single and
multi-workload setup. The single-workload campaign refers to the execution of
a single workload (in our case either a2time or rspeed01); while multi-workload
campaign refers to the execution of multiple workloads (both a2time and rspeed01),
leveraging the FreeRTOS scheduler. For the single-workload, the existing frame-
work was just extended to include new test cases and to enable the fault injector
to target the newly added tasks. For the multi-workload configuration, it was
necessary to create a scheduling infrastructure that manages the chosen benchmarks
concurrently under FreeRTOS, while ensuring reproducibility and randomness
typical of the existing framework. In the experiments, we considered two concurrent
tasks and injected faults into one of them, but the infrastructure can easily be
extended to include more than two tasks.

4.1.1 Benchmark Structures

Each AutoBench benchmark follows a standardized execution flow, structured
around a set of core functions. This standardization is particularly convenient
because it allows to understand the workflow of data around the execution and the
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basic operation performed by the algorithm. The set of core functions are provided
below: the * can be substitute with the name of the benchmark that is executed.

• define_params_*: configures the general parameters of the benchmark, such
as the dataset to be used and the reference CRC associated with that dataset.
The input file containing the dataset is read and stored into RAM. This
function is called once before any execution, regardless of the number of runs
performed.

• bmark_init_*: initializes the parameters for the current run, allocates the
memory required for the output file, and resets all counters. This function
must be called at the beginning of each new iteration.

• t_run_test_*: implements the core benchmark algorithm. It executes the
workload in a loop, repeating the computations across multiple iterations
without reinitializing the parameters. Results are overwritten in the output
buffer at each iteration.

• bmark_verify_*: computes the CRC of the output data on the fly and
compares it with the reference CRC provided during parameter definition.
The function returns a boolean value indicating whether the results are correct.

• bmark_fini_*: finalizes the benchmark run by releasing the memory al-
located for the output file, effectively performing the inverse operation of
bmark_init_*.

• bmark_clean_*: completely clears the memory and resets the variables used
by the benchmark, performing the inverse operation of define_params_*.

To satisfy the requirements needed to carry out the experiments, some of the
functions were slightly modified, but they do not change the overall structure.

4.1.2 Benchmark Descriptions

The description of the operation performed by the algorithms integrated in the
framework are reported as follows. Details are directly taken from the EEMBC
AutoBench Data Book [62].
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Angle to Time Conversion

This benchmark models an embedded automotive application in which the processor
processes input from a toothed wheel mounted on the engine crankshaft. Each
tooth produces a pulse, and the time interval between consecutive pulses provides a
measure of the crankshaft’s angular velocity (engine speed). From this information,
the benchmark estimates the crankshaft position relative to the Top Dead Center
reference, computes the instantaneous engine speed, and converts the tooth pulses
into an accurate crankshaft angle expressed in linear time from TDC.

At the start of each iteration, the kernel reads a counter value from the in-
put dataset and subtracts the previous value to obtain the elapsed time between
two consecutive teeth. As long as TDC is not detected, the tooth counter is
incremented to track progress through the revolution. When the counter matches
the firing angle associated with a cylinder, the benchmark simulates an ignition
event by generating the corresponding firing time. Upon detecting the next TDC,
the tooth counter is reset and the cycle repeats.

The a2time benchmark can be classified as CPU-centric. Its workload is
dominated by arithmetic and logical operations rather than memory accesses. The
algorithm performs continuous numerical conversions from crankshaft angle to
linear time, involving subtraction, multiplication, and division on a small set of
variables.

CAN Remote Data Request

This benchmark emulates an automotive communication workload in which
nodes connected through a Controller Area Network exchange messages. The
scenario modeled is the reception of a Remote Data Request message, which is
broadcast to all nodes. Each node inspects the message identifier to determine
whether it is responsible for the requested data. If so, the node retrieves the appro-
priate information and places it back on the network to be received by the requester.

At the kernel level, the benchmark processes messages from a simulated re-
ceive buffer by checking their identifier fields. Messages that are not relevant are
discarded, while relevant ones are either stored locally or, in the case of an RDR
message, used to fetch the corresponding data. The retrieved data is then written
into a simulated transmit buffer, ready to be sent back across the network to the
original requester.

32



Implementation Details

Matrix Arithmetic

This benchmark represents an automotive and industrial workload characterized by
intensive matrix arithmetic. The kernel operates on n×n input matrices, performing
an Lower-Upper decomposition as its primary computation. In addition, it evaluates
the determinant of the input matrix and computes a cross product with a second
matrix, thereby stressing the system with a mix of linear algebra operations: these
simple calculations are nowadays the basic foundations of AI.

Road Speed Calculation

This benchmark models an automotive workload in which the processor periodically
computes vehicle speed from differences between timer counter values. To mitigate
noise, the raw values are filtered, and the algorithm must also handle corner cases
such as counter rollover, abrupt variations in measurements, or the absence of
increments when the speed is zero (to avoid indefinite waiting).

The benchmark combines arithmetic operations with control-flow routines. The
arithmetic part relies on basic operations (addition, subtraction, multiplication,
and division), which may represent a performance bottleneck on low-end microcon-
trollers. Conversely, in more advanced processors, efficiency is influenced not only
by raw arithmetic throughput but also by pipeline behavior, since a considerable
number of compare and branch instructions are executed. Processors that balance
both aspects tend to achieve the best performance on this workload.

4.2 Integration into the single workload cam-
paigns

To correctly integrate the benchmarks into the proposed framework, both random-
ness and reproducibility must be ensured. Randomness permits to increase the
coverage during fault-injection campaigns, while reproducibility allows replaying
the same fault across iterations to collect the architectural events. In our setup,
inputs are sampled uniformly using rand() and the seed is derived from the clock
cycle count or Cycle Count Register value to achieve randomness. On the other
side, reproducibility is ensured because each seed used for the input generation
is stored in a dedicated memory region separated from the main memory, that
remains intact also after the reboot. Moreover, for AutoBench benchmarks that
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provide a dataset, the stored seed is also used to deterministically select dataset
indices, ensuring identical elements are replayed across experiments.

The interaction and the organization between host and target is consistently
divided in golden run and faulty run. The phases are reported as follows:

• The host initiates the campaign by rebooting the target system to ensure
consistency and that injections begin from a clean, deterministic state. In
respect to the previous framework, the boot procedure includes additional
checks, since injecting faults into a corrupted environment may produce
unpredictable behavior or cause crashes.

• Then, the host configures the target for the injection by generating a fault list
composed of tuples that identify the injection location (address and register).
Injections may target memory locations or CPU registers; each specified
location also indicates the particular bit position to be flipped.

• After the execution of the workload on the target system, a final breakpoint is
established, necessary to read the HPCs from the PMU.

Once the workload is completed, the resulting golden output is saved for reference.
During the faulty run, the previously stored inputs are read to execute the workload
under injected faults. The faulty output is compared against the golden reference
and the result is classified in benign, SDC or crash/hang.

The integration of new benchmarks in the proposed structure was necessary
to extend the dataset previously obtained with new data from the Autobench
benchmarks. Only in this way, it was possible to learn about the effectiveness and
usefulness of the data collected employing the new test cases. Furthermore, the
inclusion of benchmarks more faithful to the automotive context has allowed us to
improve some practical aspects of the implementation that in the past had not
had a great influence, but which would certainly have affected the performance of
multiworkload-campaigns.

4.3 Multi-workload campaigns

The execution of multiple workloads within the same campaign was realized thanks
to the development of a new scheduling infrastructure. The infrastructure was
designed to be highly customizable, supporting more than two concurrent workloads
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in future tests, and to remain controllable by the fault injector even though the
target is rebooted at each injected fault. Customizability is achieved through
the configuration data structures MultiBenchCfg_t and MultiBenchCfgTLS_t
(more details about the code are provided in the next chapter), which provide a
convenient and extensible way to set benchmark parameters. Controllability to
repeated reboots is ensured by storing runtime configuration and control data in
BRAM, this enables the injector to preserve and reapply settings across iterations.
Another critical requirement was randomness, achieved by extending the previously
described approach to the multi-workload setting. In this case, a per-benchmark
local seed is derived from the iteration number and the benchmark index, ensuring
deterministic reproducibility for each benchmark, while randomness is preserved
because rand() is still used.

4.3.1 High-level overview of MultiBench

The main components of a MultiBench campaigns are the following:

• benchList[]: an array of pointers to benchmark wrapper functions that
determines which benchmark each task executes.

• demo(int golden): the demo entry point. It initializes the MultiBenchCfg_t
parameters by reading values written by the fault injector in BRAM and then
calls runMultiBenchmark(&cfg).

• runMultiBenchmark(&cfg): performs sanity checks, allocates PMU vectors,
creates semaphores used to orchestrate execution, spawns the worker tasks,
and iterates the campaign for the number of iterations specified by the fault
injector.

• multiBenchmarkTask(): waits for a notification to start, sets the execution
context, runs the assigned benchmark, reads the PMU when the task is the
injection target, stores the execution result, resets the PMU buffers, and
releases the semaphore.

Configuration structure

The infrastructure relies on several ad-hoc structs. The MultiBenchCfg_t con-
figuration structure holds the global parameters of a campaign: benchList, the
number of tasks (used for sanity checks), the global seed (provided by the fault
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injector and used as the source for per-task local seeds), the number of iterations
(the number of golden-run repetitions; one of these is randomly chosen as the
injection target), and the target injection index (which indicates whether task 1
or task 2 will be the injection target). The WorkerParam_t structure contains
each task’s local parameters, including a pointer to the global configuration, the
task’s benchmark index, a local seed, the number of iterations already executed, a
semaphore used for synchronization, and the task handle.

4.3.2 Global Structure for HPC collection and task man-
agement

A common feature to preserve also in the multibench campaigns is the reproducibil-
ity, which is necessary to collect HPC meaningful for the analysis. In this case,
since just one workload is target of the injections, the infrastructure allows to
collect just the HPC of interests. In future works, it will be possible to interconnect
the execution flows of the two benchmarks to emulate a real-time scenario, and to
collect the HPCs of both tasks in order to analyze how a fault in one workload
affects the other and to investigate their mutual interactions. From a practical
point of view, the collection of HPC and the association of the gathered data with
benchmark tasks, it was necessary to define some global variables: g_numTask
(the number of tasks), g_pcVector and g_numTaskVector. These variables are
inizialized in the multibench file, but used internally in FreeRTOS tasks.c.
In the operational flow, runMultiBenchmark initializes g_numTask and allocates
g_pcVector (one slot per task): after creating the tasks, task numbers are stored
in g_numTaskVector. During the execution, PMU collection is integrated into
the scheduler routines: an initial PMU snapshot is taken at scheduler start using
the function (readPMU(pc_init_state)), and on each task switch-out a final
snapshot (readPMU(pc_fin_state)) is read and the difference is accumulated into
g_pcVector[index]. To quickly determine whether the current TCB corresponds
to a benchmark task, the helper function check_currentTCB_is_bench_task com-
pares uxTaskGetTaskNumber(pxCurrentTCB) against the entries in g_numTaskVector;
if not found it returns -1 and no collection is performed.

Advantages

This approach is, in practice, the only workable solution, since only the operating
system has precise knowledge of when context switches occur. Moreover, other
advantages are reported below:
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• By extending the FreeRTOS kernel, benchmark binaries are freed from dupli-
cated collection code that would otherwise need to be present across different
benchmarks. In SACRES applications, where the resources allocated are quite
limited, this requirement should be enforced.

• Integrating PMU monitoring into the scheduler makes it straightforward to
correlate counter values with iterations, seeds, and injection events, which is
particularly useful for machine learning-based analysis and post hoc investiga-
tions.

• The scheme scales naturally to multiple tasks: accumulators are allocated per
task and data collection can be limited to the injected (target) task, reducing
overhead.

However, it is also important to highlight the timing overhead introduced by this
approach, since PMU reads and delta computation may add latency to context
switches. In order to limit the effect on task timing, the number of architectural
events to track are limited, so that a limited overhead is introduced.

Figure 4.1: Multi-workload campaigns workflow
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4.3.3 Timeline-based Multibench Scheduler

The multi-workload campaigns included also the realization of a timeline-based
multibench routine, based on the execution of sets of Foreground workloads within
predefined time windows and Background tasks, executed only in the slots left idle
by the FG windows. The aim of this approach was to introduce precise timing of
workload windows, a strict requirements of RTOS. The main components of the
approach are:

• FG worker tasks: Each FG task waits for a scheduler notification to start its
window, executes the benchmark and collects the PMU data in the case of the
target of the injections. Then classifies the results and perform a busy-waits
until the absolute end of the FG window.

• BG worker tasks: BG tasks are low-priority tasks that run only when no
FG window is active in the same partition. BG tasks are suspended/resumed
by the timeline scheduler.

• Timeline Scheduler: this is an high-priority task that manages major cycle
and timeline events, notifies the FG tasks to start and stop, and suspends/re-
sumes BG tasks accordingly.

Figure 4.2: Timeline Scheduling workflow

As in the multibench campaigns described above, a series of data and configuration
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structures where realized:

• MultiBenchCfgTLS_t *cfg: timeline configuration (major period, number of
major cycles, global seed, etc.).

• xFGTasksInfo[] / xBGTasksInfo[]: per-window and per-BG task descrip-
tors (start, stop offsets, partition, stack depth, parameters pointer, name).

• TimelineEvent array events: built at startup with two events per FG window
(start and stop), then sorted by time.

• sFGHandles, sBGHandles: runtime arrays of created TaskHandle_t for
FG/BG tasks.

• g_numTask, g_pcVector: shared globals used for PMU accumulation.

• g_slotEndTick[]: per-FG index absolute end tick used by FG tasks to
busy-wait until window end.

Considerations

Timeline scheduling is a simple and general approach for RTOS workloads, and
was necessary to characterize time–driven campaigns. This enriches the framework
with data from a schedule where timing is explicitly enforced.

4.3.4 Fault Injector

Introducing multi–bench campaigns required changes to the existing infrastructure
of the fault injector. A key clarification is the distinction between repetitions and
iterations:

• Repetition (r): the number of times the same set of tasks is executed within
one run. One randomly chosen repetition is the one where the fault is injected.

• Iteration (i): the number of times the same faulty run is repeated to collect
different architectural events.

Given this terminology, the workflow is the following:
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• Golden run: R repetitions of the task set without injection are executed and
the and the outputs are collected as reference.

• Faulty runs: The faulty run is performed I times (iterations) and each faulty
run consists of R repetitions. One repetition r∗ ∈ {1, . . . , R} is randomly
chosen for the injection, while the other repetitions are executed without
changes. After each repetition, the outcome is classified as Benign, SDC, or
Crash/Hang.

In practice, I iterations of the faulty run and, within each iteration, R repetitions
of the task set with different input (with one injected repetition) are performed.
Final classification uses majority voting over the I iterations for each repetition r:

Final(r) =


Crash/Hang, if NCrash(r) > 0,

SDC, if NSDC(r) >
ê

I
2

ë
,

Benign, otherwise,

where NSDC(r) and NCrash(r) are the counts over iterations. In our typical configu-
ration I = 7 (events collection), so “more than three” SDCs across iterations yields
an overall SDC; ties resolve to Benign. It is important to notice that, even if a
majority voting system is introduced, the property of reproducibility should ensure
that the same fault repeated across multiple iterations produces the same outcome.
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Chapter 5

Experimental Setup and
Evaluation

This chapter begins by detailing the implementation of the experiments, then
proceeds to address the preprocessing phase and the data visualization techniques
used to enable a better assessment of the results.

5.1 Campaign Setup

The complete experimental setup used for the fault-injection campaigns consisted of
a host PC running Ubuntu Linux with the Xilinx Vitis IDE. The host is responsible
for building the FreeRTOS kernel and benchmark binaries, flashing them into the
target PYNQ-Z2 board, controlling execution via the debugger, and collecting the
execution logs and results.

5.1.1 Configuration of the target

The benchmarks are executed through FreeRTOS as tasks, which are created using
the function xTaskCreate(). This function allows specifying different parameters
(see A.1) and allocates the TCB and the task stack from the FreeRTOS heap. After
the task creation, the application calls vTaskStartScheduler(), which performs
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the kernel initialization, creates the Idle task, and starts executing the highest-
priority ready task. As already mentioned previously, a task in FreeRTOS is
implemented as an infinite loop, which implies that if it does return, this usually
indicates a configuration or resource problem. If the compilation goes correctly,
this results in a ELF file that can be flashed on the board, completing the setup of
the target.

Listing 5.1: Task Creation in FreeRTOS
1 i n t main ( void )
2 {
3 #i f ( configSUPPORT_STATIC_ALLOCATION == 0 )
4

5 /∗ Create the Fault I n j e c t o r task ∗/
6 xTaskCreate ( f au l t In j e c t o rTask ,
7 ( const char ∗ ) " FI " ,
8 FI_STACK_SIZE,
9 NULL,

10 FI_PRIORITY,
11 &xFITask ) ;
12

13 #e n d i f
14

15 /∗ Star t the ta sk s and t imer running . ∗/
16 vTaskStartScheduler ( ) ;
17 f o r ( ; ; ) ;
18 }
19

20 s t a t i c void f a u l t I n j e c t o r T a s k ( void ∗pvParameters )
21 {
22 i f ( f e a t u r e == 0) { // events as f e a t u r e s
23 i f ( golden_run == 0) {
24 confPMU( c ) ;
25 }
26 targetTask ( golden_run , num_benchmark) ;
27 }
28 vTaskDelete (NULL) ;
29 }

5.1.2 Configuration of the Fault Injector

The configuration of the host PC also involves arranging the fault injector, the
component responsible for controlling execution and injecting faults within the
framework. This is realized through XSCT, which is an interactive and scriptable
command-line interface to Xilinx Software Development Kit that also includes
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Vitis. XSCT is based on the Tool Command Language which allows to create and
configure hardware, generating Board Support Packages and application projects,
and producing flash boot images. The choice fell on XSCT [13, 12] because it
exposes commands for controlling the debug session of a running application and for
inspecting both hardware and software state. To automate XSCT, it was necessary
to use the module pexpect, which enables a Python script to spawn child processes,
interact with them, and react to expected patterns in their output: the usage here
allows driving XSCT from Python. The fragment below presents the code used to
prepare the board and flash the ELF file, along with additional checks to ensure a
clear and uncorrupted environment.

Listing 5.2: Python snippet automating board reset and flashing through XSCT
1 xsc t = pexpect . spawn ( " xsc t " ) #spawn the xsc t te rmina l
2 xsc t . expect ( " x sc t%" ) #wait the xsc t te rmina l to be ready
3 pr in t ( xsc t . b e f o r e . decode ( ) )
4 xsc t . s e n d l i n e ( " r s t −proc e s s o r −c l ea r −r e g i s t e r s " )
5 xsc t . s e n d l i n e ( " r s t −system " )
6 xsc t . s e n d l i n e ( " r s t −s r s t " )
7 xsc t . s e n d l i n e ( " r s t −por " )
8 xsc t . s e n d l i n e ( " r s t −dap " )
9 xsc t . s e n d l i n e ( " d i s connec t " )

10 xsc t . s e n d l i n e ( " source . / i n i t . t c l " )
11 xsc t . expect ( " . ∗ S u c c e s s f u l l y downloaded . ∗ " ) #wait u n t i l the board i s

f l a s h e d

Listing 5.3: Fault Injector code
1 # loop over f a u l t s
2 f o r i in range ( i n t ( num_of_fault ) ) :
3 pr in t ( " Fault num: " , i )
4 rand_iter_inj = random . rand int (0 , num_of_rep−1)
5

6 # prepare golden run , f l a s h board , s e t MMIO. . .
7

8 # determine number o f runs per f a u l t
9 num_of_run = 7

10 i f f e a t u r e == "memory" : num_of_run = 1
11 e l i f f e a t u r e == " a l l " : num_of_run = 8
12 i f checkpo int ing : num_of_run = 1
13

14 r e s u l t = [ [ 0 ] ∗ num_of_rep f o r _ in range (num_of_run) ]
15

16 # runs ( e . g . , one per PMU−event−group )
17 f o r y in range (num_of_run) :
18 xsc t . s e n d l i n e ( "mwr 0x40000000 0x0 " )
19 xsc t . s e n d l i n e ( "mwr 0x40000000 " + s t r ( i n t ( y+1) ) )
20
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21 i f rand_iter_inj == 0 :
22 xsc t . s e n d l i n e ( " bpadd " + s t r ( rand_bp_pos ) )
23 num_bp_remove += 1
24

25 xsc t . s e n d l i n e ( " con −addr 0x00100000 " )
26

27 # r e p e t i t i o n s per run ( one o f these may host the i n j e c t i o n )
28 f o r r in range (num_of_rep ) :
29 i f rand_iter_inj == r :
30 xsc t . expect ( " . ∗ Breakpoint . ∗ " ) # stop on

i n j e c t i o n bp
31 # perform bit −f l i p ( s ) here
32 xsc t . s e n d l i n e ( " bpremove " + s t r (num_bp_remove) )
33 xsc t . s e n d l i n e ( " con " )
34

35 t ry :
36 xsc t . expect ( " . ∗ Breakpoint . ∗ " ) # wait f o r f i n a l /

i t e r breakpoint
37 except :
38 crash = True
39 break
40

41 # read / aggregate r e s u l t f o r t h i s r e p e t i t i o n

From the snippet above, several aspects need to be considered. The host-side
script is organized as nested loops that set the parameters for each injection:
in particular, the host configures the total number of faults to inject, which in
our case was typically between 3 000 and 5 000 faults per campaign. For each
fault, the script also selects a repetition index: this repetition number determines
on which run the injector will perform the bit flip and the observed outcome is
attributed to that specific repetition (this mechanism is used in the multi-workload
campaigns). Finally, the number of runs per fault is set according to the number
of events to track; as described in the previous chapter and better described in the
following section, the number is set to seven runs per fault to cover the selected
set of architectural events while remaining feasible in terms of overall execution time.

To collect meaningful architectural events, it is necessary to detect the pre-
cise end of the benchmark execution, but in FreeRTOS, when no other ready tasks
exist, the kernel continues to schedule the Idle task. For this reason, in the setup,
it was necessary to add a final breakpoint at the end of the task (typically on a
xil_printf ). During each run, XSCT inserts this breakpoint, resumes the target,
and waits until the breakpoint is hit (line 36 of the above snippet). When the
program counter reaches the final breakpoint, the debugger halts the core, and
read the PMU counter values. Then resets and reconfigures the counters.
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Listing 5.4: Final Classification in the Fault Injector
1 #f i n a l c l a s s i f i c a t i o n o f the r e p e t i t i o n
2

3 xsc t . s e n d l i n e ( "mrd 0x40000008 " ) #read the r e s u l t o f the
comparison

4 xsc t . expect ( " . ∗40000008 : ∗ " )
5 value = xsc t . r e a d l i n e ( ) . decode ( )
6

7 i f c rash :
8 pr in t ( "−−−Crash/Hangs−−−" )
9 r e s u l t [ y ] [ r ] = −1

10 e l s e :
11 i f va lue [ l en ( value ) −5] == ’ 1 ’ :
12 r e s u l t [ y ] [ r ] = 1
13 pr in t ( "−−−Benign−−−" )
14 e l s e :
15 r e s u l t [ y ] [ r ] = 0
16 pr in t ( "−−−SDC−−−" )
17

18 i f ( y == (num_of_run−1) ) :
19

20 r e s u l t _ f i n a l = re su l t_checke r ( r e s u l t , num_of_run , r )
21 i f r e s u l t _ f i n a l == 1 :
22 pr in t ( "FINAL−−−Benign−−−" )
23 f . wr i t e ( " benign \n " )
24 e l i f r e s u l t _ f i n a l == 0 :
25 pr in t ( "FINAL−−−SDC−−−" )
26 f . wr i t e ( "SDC\n" )
27 e l i f r e s u l t _ f i n a l == −1:
28 pr in t ( "FINAL−−−Crash/Hangs−−−" )
29 f . wr i t e ( " crash /hangs\n " )
30

31 xsc t . s e n d l i n e ( "mwr 0x40000008 0x1 " ) #Reset the value
32

33 de f r e su l t_checke r ( r e s u l t , num_of_run , r ) :
34 sdc = 0
35 benign = 0
36 crash = 0
37

38 f o r y in range (num_of_run) :
39 i f ( r e s u l t [ y ] [ r ] == 0) :
40 sdc += 1
41 e l i f ( r e s u l t [ y ] [ r ] == 1) :
42 benign += 1
43 e l i f ( r e s u l t [ y ] [ r ] == −1) :
44 crash += 1
45 i f sdc > benign and sdc > crash :
46 re turn 0 #return SDC
47 e l i f benign > sdc and benign > crash :
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48 re turn 1 #return Benign
49 e l s e :
50 re turn −1 #return crash /hangs

In the multi-workload campaigns, at the end of the last run, result_checker(result,
Nrun, r) performs a majority vote over the set classification and the final label for
the fault at repetition r is the class with the largest count.

5.1.3 PMU Configuration

The target architecture of the embedded system exposes a large set of architectural
events that can be profiled; however, only six PMU hardware counters are available
concurrently. For this reason, to provide full coverage, each fault must be executed
multiple times, reconfiguring the PMU so that different subsets of events are
counted in each run. However, if all the 168 events of interest are covered, the
replication factor equals:

replications per fault = 168
6 = 28.

For this reason, based on prior experiments [13, 12], the monitored architectural
events is set to 42, bringing the replication factor down to:

replications per fault = 42
6 = 7.

which explains the number of run needed of each fault and used by the fault injector.

The configuration of PMU also involved the creation of functions that enable
reading the events that, in the specific run, the PMU has to track. To manage the
PMU registers, it is necessary to use the ARM coprocessor interface. Writes are
performed with the Move to Coprocessor instruction and reads with Move from
Coprocessor. These instructions are written using asm volatile, which embeds
the assembly and prevents the compiler from reordering or removing it.

Configuration proceeds as follows: (i) enable user-mode access to the PMU;
(ii) program the Performance Monitor Control Register to enable the event counters
and reset them; (iii) enable counting in the Performance Monitor Count Enable Set
register. Then, for each hardware counter, select it in the Performance Monitors
Event Counter Selection Register and assign the event code in the Performance
Monitors Event Type Select Register. The read phase reflects the configuration
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one: for each counter, select it with Performance Monitors Event Counter Selection
Register, read back the programmed event from Performance Monitors Event Type
Select Register if needed, and load the count value from the Performance Monitors
Event Count Register using MRC. Then, the script prints the event identifier and
the value obtained.

Listing 5.5: PMU Configuration
1 /∗ Function to c o n f i g u r e the Performance Monitoring Unit (PMU) to

t rack s p e c i f i c
2 ∗ a r c h i t e c t u r a l events . The parameter ’ c ’ s e l e c t s the batch ( 1 . . 7 ) ,

each batch
3 ∗ programming 6 events i n to the counter s .
4 ∗/
5 void confPMU( i n t c ) {
6 c = c − 1 ;
7 // Traceable events (42)
8 i n t events [ 4 2 ] =

{1 ,3 , 4 , 5 , 6 , 7 , 10 ,12 ,13 ,15 ,16 ,17 ,18 ,23 ,80 ,96 ,97 ,98 ,101 ,102 ,103 ,
9 104 ,108 ,109 ,110 ,112 ,113 ,114 ,115 ,118 ,119 ,120 ,129 ,131 ,133 ,138 ,139 ,

10 140 , 142 ,144 ,145 ,146} ;
11

12 // Enable user−mode ac c e s s to performance counter s
13 asm v o l a t i l e ( "MCR p15 , 0 , %0, C9 , C14 , 0\n\ t " : : " r " (1 ) ) ;
14 // Enable and r e s e t event counter s in PMCR
15 asm v o l a t i l e ( "MCR p15 , 0 , %0, C9 , C12 , 0\n\ t " : : " r " (0 x4109300B )

) ;
16 // Enable a l l counter s in PMCNTENSET
17 asm v o l a t i l e ( "MCR p15 , 0 , %0, c9 , c12 , 1\ t \n " : : " r " (0 x8000003f )

) ;
18

19 // Program the s i x performance counter s
20 f o r ( i n t i = 0 ; i < 6 ; i++){
21 // S e l e c t counter in PMSELR
22 asm v o l a t i l e ( "MCR p15 , 0 , %0, c9 , c12 , 5\ t \n " : : " r " ( i ) ) ;
23 // S e l e c t event in PMXEVTYPER
24 i f ( c < 7)
25 asm v o l a t i l e ( "MCR p15 , 0 , %0, C9 , C13 , 1 " : : " r " ( events [

i + c ∗ 6 ] ) ) ;
26 }
27 }
28

29 /∗ Function to read the s i x performance counter s (PC) .
30 ∗ I f ’ pc_vett ’ i s NULL, va lue s are pr in ted ; o the rw i se s to r ed in the

array .
31 ∗/
32 void readPMU( i n t ∗pc_vett ) {
33 unsigned i n t counter_value ; // cur rent counter va lue
34 unsigned i n t evn_type ; // event number
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35

36 f o r ( i n t i = 0 ; i < 6 ; i++){
37 // S e l e c t counter in PMSELR
38 asm v o l a t i l e ( "MCR p15 , 0 , %0, C9 , C12 , 5 " : : " r " ( i ) ) ;
39 // Read event type in PMXEVTYPER
40 asm v o l a t i l e ( "MRC p15 , 0 , %0, C9 , C13 , 1 " : "=r " ( evn_type ) ) ;
41 // Read counter in PMXEVCNTR
42 asm v o l a t i l e ( "MRC p15 , 0 , %0, C9 , C13 , 2 " : "=r " (

counter_value ) ) ;
43

44 i f ( pc_vett == NULL) {
45 x i l _ p r i n t f ( "%d : %d\n" , evn_type , counter_value ) ; // read

by s n i f f e r
46 } e l s e {
47 pc_vett [ i ] = counter_value ;
48 }
49 }
50 }

5.2 Dataset extraction and statistics for single-
workload campaigns

The results obtained from the execution of the single-workload campaigns, targeting
respectively the CPU registers of rspeed01 and a2time for the injections, were
collected in two different raw files named single_rspeed and single_a2time.
These files contain the total number of faults injected, the register and position of
the injection, the location (LOC), and the architectural events collected during
the run. Each raw log was parsed with the same preprocessing procedure to
produce a CSV file. Labels were normalized into three classes: benign, SDC,
and crash; entries labeled as crash/hangs in the raw log were normalized to crash.

The main statistics for the extracted datasets are reported in Table 5.1.

Table 5.1: Dataset statistics extracted from single_a2time and single_rspeed.

Category single_a2time single_rspeed

Total records 10 355 11 393
Benign 9 568 (92.39%) 10 692 (93.85%)
Crash (incl. hangs) 720 (6.96%) 685 (6.01%)
SDC 52 (0.50%) 15 (0.13%)
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From the statistics, both benchmarks exhibit a very large majority of benign
executions, with SDC being the less frequent outcome. The higher SDC count
observed in a2time compared to rspeed01 can be explained directly from their code
structure. In a2time, the pipeline is timing-sensitive around TDC detection: the
TDC margin and the moving average (deltaTimeAvg) create windows in which a
transient fault can perturb timing/angle and nonlinearly propagate to the final CRC.
On the other side, rspeed01 applies filtering and fail-safe logic (clamping unrealistic
periods, rejecting large jumps, and zeroing speed on persistent anomalies), strategy
that allows to be less vulnerable to the faults injected.

1 /∗ TDC de t e c t i on and speed update ∗/
2 i f ( pulseDeltaTime1 > (TDC_TEETH ∗ deltaTimeAvg1 ∗ TDC_MARGIN) ) {
3 tdcTime1 = rotat ionTime1 ;
4 rotat ionTime1 = 0 ;
5 engineSpeed1 = RPM_SCALE_FACTOR / tdcTime1 ;
6 toothCount1 = 0 ;
7 }
8

9 deltaTimeAccum1 += pulseDeltaTime1 ;
10 i f ( ( toothCount1 > 0) && ( toothCount1 % ( params−>tonewheelTeeth /

CYLINDERS) == 0) ) {
11 deltaTimeAvg1 = deltaTimeAccum1 / ( params−>tonewheelTeeth /

CYLINDERS) ;
12 deltaTimeAccum1 = 0 ;
13 }
14

15 f i r ingTime1 = ( (FIRE1_ANGLE − angle1 ) ∗ tdcTime1 / TENTH_DEGREES) +
params−>angleCounter ;

16

17 ∗params−>RAMfilePtr = f i r ingTime1 ;
18 params−>RAMfilePtr++;
19 tcde f −>CRC = Calc_crc32 ( f i r ingTime1 , tcde f −>CRC) ;

The code provided shows that engineSpeed1 depends inversely on tdcTime1,
and firingTime1 combines the estimated angle and timing through multiplications
and additions. Small perturbations in counters (rotationTime1, angleCounter)
or averages (deltaTimeAvg1) can produce deviations in the CRC sequence, which
can explain the higher likelihood of SDCs. Although there is increased sensitivity
to failures, the incidence of SDCs remains minimal.

1 i f ( toothDeltaTime1 < MIN_TOOTH_TIME)
2 toothDeltaTime1 = toothDeltaTimeLast1 ;
3 i f ( toothDeltaTime1 > 4 ∗ toothDeltaTimeLast1 )
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4 toothDeltaTime1 = toothDeltaTimeLast1 ;
5

6 toothTimeAccum1 += toothDeltaTime1 ;
7 toothCount1++;
8

9 i f ( toothCount1 >= params−>tonewheelTeeth / 2) {
10 i f ( toothTimeAccum1 > MAX_TOOTH_TIME ∗ params−>tonewheelTeeth /

2) {
11 roadSpeed1 = 0 ;
12 } e l s e {
13 roadSpeed1 = SPEEDO_SCALE_FACTOR / ( toothTimeAccum1 / params

−>tonewheelTeeth ∗ 2) ;
14 toothCount1 = 0 ;
15 toothTimeAccum1 = 0 ;
16 }
17 }
18 ∗params−>RAMfilePtr = roadSpeed1 ;
19 params−>RAMfilePtr++;
20 tcde f −>CRC = Calc_crc32 ( ( e_u32 ) roadSpeed1 , tcde f −>CRC) ;

As shown in the code provided, the checks performed by rspeed01 can mask the
effect of faults before the CRC is updated, which leads to fewer SDCs.

5.3 Dataset extraction and statistics for multi-
workload campaigns

Also in the case of multi-workload campaigns, multiple tests were performed,
targeting respectively a2time and rspeed01 for the injections. The total amount of
injected faults for each campaign was 12,153 for a2time and 12,258 for rspeed01. It
is essential to consider that in these campaigns, multiple repetitions are executed,
while only one repetition is actually targeted for fault injection. In our tests, we
chose five repetitions per fault, and one of them was randomly selected for injection.

Table 5.2: Fault-level effectiveness summary for a2time and rspeed01.

a2time rspeed01
Metric Count Percentage Count Percentage
Total faults 12,153 100.00% 12,258 100.00%
SDCs 3,044 25.05% 870 7.10%
Benign 9,109 74.95% 11,388 92.90%
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The increased complexity of the infrastructure led to a higher SDC rate compared
to single-workload experiments. This suggests that task interference and stricter
timing constraints amplify fault propagation.

5.4 Preprocessing

The data collected from the campaigns were processed to generate a final dataset
required for training machine learning algorithms. Two datasets were created
from the single-workload campaigns and two from the multi-workload campaigns.
The total number of samples obtained from the single-workload campaigns was
10 355 for a2time and 11 393 for rspeed01. In the multi-workload campaigns, 12 153
samples were collected for a2time and 12 258 for rspeed01. The features extracted
for all datasets included fault_id, reg, rep, pos, loc, res, and the event identifier,
resulting in a total of 42 events.

Table 5.3: Dataset

fault_id reg pos loc e1 e3 e4 e5 · · · e144 e145 e146 label

0 r2 27 1244085 90 63774 1 43400 · · · 12 12 0 benign
1 r1 19 1239281 91 63814 1 43474 · · · 12 12 0 crash
2 r0 13 1243166 89 63829 1 43424 · · · 12 12 0 crash

As already mentioned in the previous sections, the obtained datasets are highly
unbalanced, with most faults resulting in benign execution. In machine learning,
such unbalance poses challenges, including misleading accuracy when the majority
class dominates predictions. For instance, if benign outcomes are prevalent, a
model may achieve high accuracy by primarily predicting this class, yet fail to
detect SDCs outcomes effectively. Accuracy alone is often insufficient for evaluating
unbalanced datasets: in this context, it is necessary to assess metrics like precision,
recall, F1-score and confusion matrices, which provide a clearer assessment of
minority class performance.

To address this issue, three primary categories of solutions are commonly employed:
data-based, algorithm-based, and tuning-based approaches. Data-based approaches
involve modifying the dataset to achieve a more balanced class distribution,
thereby enabling the model to learn representative patterns from both classes.
One such technique is undersampling, which reduces the size of the majority class
by randomly removing samples. This adjustment allows the model to allocate
equal attention to both majority and minority classes, reducing bias and improving
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minority class learning. Conversely, oversampling increases the number of minority
class examples, either by duplicating existing data or generating synthetic samples,
to match the majority class size.

To demonstrate the potential of the proposed framework despite existing challenges,
the solution utilizes a data-driven approach by applying the Synthetic Minority
Over-sampling Technique(SMOTE). SMOTE addresses class unbalance by gener-
ating synthetic data points for the minority class through interpolation between
existing samples and their nearest neighbors. This method introduces variation
and avoids simple duplication, thereby enhancing model learning. The technique
operates as follows:

• Identifies the k nearest neighbours for each minority class instance;

• Randomly selects one neighbour and generates a synthetic sample by interpo-
lating between the original instance and the selected neighbour.

This method was selected because, compared to alternative approaches, it reduces
the risk of overfitting by generating new synthetic data. Additionally, expanding
the minority class enables the model to learn more effectively from these instances.
However, due to the highly unbalanced nature of the datasets in this case, this
solution remains suboptimal.

5.4.1 Dimensionality Reduction and Data Visualization

To facilitate interpretation of the results, both t-distributed Stochastic Neighbor
Embedding (t-SNE) and Principal Component Analysis(PCA) were applied. Al-
though both techniques are used for dimensionality reduction, they differ in several
key aspects:

• t-SNE is an unsupervised, non-linear dimensionality reduction technique for
exploring and visualizing high-dimensional data;

• PCA is a statistical technique that transforms high-dimensional data into a
low-dimensional form while preserving as much variance as possible.

PCA is more effective for linear data, whereas t-SNE can identify clusters and
structures that linear methods may overlook by preserving pairwise similarities
between data points. Both are dimensionality reduction techniques and can be
used complementarily:
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• PCA is commonly used for dimensionality reduction and feature extraction,
which is always a preprocessing step for machine learning models;

• t-SNE is commonly used for data visualization.

In this analysis, PCA was implemented as a preprocessing step, and the cumulative
variance curve was plotted to assess the principal components.

Figure 5.1: Cumulative Explained Variance Ratio by Principal Components for
a2time

PCA cumulative variance curve indicates that the first principal components
account for a substantial proportion of the total variance, although the presence of
few features. Subsequently, t-SNE was implemented.
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Figure 5.2: t-SNE for a2time

The t-SNE plots compare two configurations: t-SNE run on data after PCA
(left) and t-SNE run directly on the balanced dataset. In both views, benign
samples form a dense, central cluster; crash samples appear as more distinct
clusters at the periphery; SDCs remain sparse and partially overlap with crash
clusters.

It is possible to conclude that, although SDCs remain rare and overlapping,
preprocessing leads to tighter groupings and fewer outliers. This local structure
improvement may provide more consistent training signals and enhance the model’s
ability to recognize SDC behavior, even in the presence of such a challenging
dataset.
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Chapter 6

Conclusions and Future
Work

This thesis presented a fault injection analysis of automotive benchmarks using HPC-
based monitoring, building upon the previously developed framework described
in [13, 12]. The existing framework comprised a host PC and a target embedded
system, with faults injected through the debug unit. The research conducted in
this thesis was organized into three primary components:

• Inclusion of new benchmarks: First, the benchmark suite was expanded
to include additional automotive sector benchmarks, thereby enhancing the
acquisition of HPC statistics representative of the real-time automotive en-
vironments. These benchmarks were modified to meet the requirements of
the selected framework, ensuring both randomness and reproducibility. For
this reason, new functions were implemented to generate random seeds, par-
ticularly in multi-workload scenarios, where each task required a unique yet
reproducible seed. Then, benchmarks were executed using the developed
multi-workload infrastructure.

• Fault Injection Campaigns: After implementing these new features, fault
injection campaigns were conducted to collect the necessary statistics and
HPC data for evaluation.

• Preprocessing and Evaluation: After data collection, the results were
formatted for machine learning algorithms to facilitate a clear assessment
of system reliability. The results of the fault injection campaign indicated
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that the majority of faults resulted in benign outcomes. In single-workload
campaigns, faults did not significantly affect overall results. However, in multi-
workload campaigns, a greater number of SDCs was detected, attributable
to the increased complexity of the proposed scheduling infrastructure. This
process resulted in the creation of multiple datasets suitable for training new
models, thereby improving the accuracy and precision in the classification of
SDCs.

The development of this thesis involved several challenges, each of which was
successfully addressed:

• Working with real hardware involves inherent risks. To provide a comprehensive
analysis based on HPC monitoring, extensive testing was required. This
approach increased the risk of register corruption, which could compromise
test results.

• Achieving sufficient coverage required a broad set of tests, which created
significant timing challenges. Collecting all necessary data took several weeks.

• A further challenge involved data collection and the creation of a new dataset,
which was heavily imbalanced with mostly benign outcomes and few SDCs.
This imbalance may hinder future efforts to develop models for accurate SDC
classification.

The solutions proposed in the thesis aim to address these challenges by offering a
flexible and realistic approach. While this thesis has addressed numerous challenges
in real-time scenarios, several areas remain for future research and development to
further enhance the framework:

• Inclusion and testing of additional automotive benchmarks could provide
new data and statistics, thereby ensuring a more representative experimental
environment.

• Further investigation of the FreeRTOS scheduling algorithm may enrich the
framework and enable more precise evaluations using a time-driven approach.

• Exploring the connections between different benchmarks, particularly where
outputs are correlated, could enrich the analysis of fault effects based on these
interconnections.

• Deep learning approaches could also be considered and the results evaluated.
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In conclusion, this thesis has addressed several challenges and improved the existing
framework, thereby contributing to the development of next-generation resilient
hardware.
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Specifications

Table A.1: Common FreeRTOS APIs for Task Management and Synchronization

API Description
xTaskCreate() Creates a new task with specified function, priority,

and stack size.
vTaskDelete() Deletes a task.
vTaskDelay() Places a task into the Blocked state for a number

of ticks.
xSemaphoreCreateBinary() Creates a binary semaphore.
xSemaphoreTake() Attempts to take (acquire) a semaphore, with op-

tional block time.
xSemaphoreGive() Releases (signals) a semaphore.
xTaskNotify() Sends a task notification.
ulTaskNotifyTake() Waits for (and clears) a task notification, emulating

a binary semaphore.
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Benchmark Description

Angle to Time
Conversion

Simulates reading toothed-wheel pulses on an engine crankshaft to
detect TDC, compute engine speed, and convert tooth events into
precise crankshaft angle expressed in linear time from TDC.

Basic Integer
and Floating
Point

Exercises basic numeric capability by computing arctan(x) via a
rational polynomial (telescoping series) over a constrained input
domain.

Bit Manipulation Models a character display pipeline heavy in bit logic: shifting
chars into a line buffer, mapping via a character ROM, and expand-
ing to pixels in a display buffer.

Cache Buster Stresses systems without cache/locality: pointer-driven control flow
intentionally thwarts code/data locality to highlight non-cache,
look-ahead execution performance.

CAN Remote
Data Request

Emulates a CAN network node set handling Remote Data Request
(RDR) frames: check message IDs, gather associated data, and
queue replies for transmission.

Fast Fourier
Transform

Computes a radix-2 decimation-in-frequency FFT on complex in-
puts, then forms the power spectrum of the signal.

Finite Impulse
Response Filter

Performs fixed-point FIR filtering (16/32-bit), e.g., high/low-pass
filters processing input sample streams.

Inverse Discrete
Cosine Trans-
form

Executes an iDCT on input blocks using 64-bit integer arithmetic,
representative of video/graphics/image-processing kernels.

Inverse Fast
Fourier Trans-
form

Performs a radix-2 decimation-in-frequency inverse FFT (complex
inputs) to synthesize time-domain signals from spectra (e.g., noise-
cancellation use cases).

Infinite Impulse
Response Filter

Implements a Direct-Form II cascaded biquad IIR (16/32-bit fixed-
point) with binary comparators—exercising MACs, rounding, and
feedback dynamics.

Matrix Arith-
metic

Runs LU decomposition on n × n matrices, computes the determi-
nant, and performs a cross-product with a second matrix.

Pointer Chasing Uses a doubly-linked list and searches for many tokens across the
list, recording traversal steps—stressing pointer manipulation and
memory latency.

Pulse Width
Modulation

Simulates H-bridge/stepper control: generates PWM + phase sig-
nals, updates motor position toward a commanded setpoint, and
checks completion each PWM cycle.

Road Speed Cal-
culation

Repeatedly derives vehicle speed from timer counts with filtering,
handling counter rollover and abrupt changes; mixes arithmetic
with intensive flow control.

Table Lookup
and Interpola-
tion

Retrieves values from 2D/3D calibration tables (e.g., ignition angle
from load/speed) using bilinear interpolation instead of costly full
computations.

Tooth to Spark ECU-style fuel and ignition timing: determines run/start states
and adjusts injector duration and spark timing per engine
speed/load and other conditions on each pass.59
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Implementation Code

1 /∗ wait s f o r n o t i f i c a t i o n , runs i t s benchmark , reads PMU i f targeted ,
2 wr i t e s r e s u l t f l a g , and s i g n a l s complet ion v ia a count ing semaphore ∗/
3 s t a t i c void multiBenchmarkTask ( void ∗pv )
4 {
5 WorkerParam_t ∗p = (WorkerParam_t ∗) pv ;
6 const MultiBenchCfg_t ∗ c f g = p−>c fg ;
7

8 f o r ( ; ; ) {
9 ulTaskNotifyTake (pdTRUE, portMAX_DELAY) ;

10 multibenchSetContext (p−>idx , p−>i t e r ) ;
11 i n t ok = cfg−>benchList [ p−>idx ] ( p−>loca l_go lden ) ;
12

13 i f ( c fg−>t a r g e t _ i n j e c t i o n == p−>idx )
14 readPMU_multi ( g_pcVector [ p−>idx ] , p−>i t e r ) ;
15

16 ( ( v o l a t i l e char ∗) 0x40000008 ) [ 0 ] = ok ? 1 : 0 ;
17 reset_vettPMU ( g_pcVector [ p−>idx ] ) ;
18 xSemaphoreGive (p−>b a r r i e r ) ;
19 }
20 }
21

22 /∗ c r e a t e s ta sk s once , then f o r each i t e r a t i o n n o t i f i e s a l l tasks ,
23 pas s e s per−task seeds , and waits on a count ing b a r r i e r ∗/
24 void runMultiBenchmark ( const MultiBenchCfg_t ∗ c f g )
25 {
26 g_numTask = cfg−>numTasks ;
27 g_pcVector = pvPortMalloc ( c fg−>numTasks ∗ s i z e o f ∗g_pcVector ) ;
28 b a r r i e r = xSemaphoreCreateCounting ( cfg−>numTasks , 0) ;
29
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30 f o r ( i n t i = 0 ; i < g_numTask ; ++i ) {
31 params [ i ] = (WorkerParam_t) {
32 . c f g=cfg ,
33 . idx=i ,
34 . i t e r =0,
35 . b a r r i e r=b a r r i e r
36 } ;
37

38 xTaskCreate ( multiBenchmarkTask , name , 1024 , &params [ i ] ,
tskIDLE_PRIORITY+1, &params [ i ] . handleTCB ) ;

39 vTaskSetTaskNumber ( params [ i ] . handleTCB , ( i +10) ) ;
40 g_numTaskVector [ i ] = uxTaskGetTaskNumber ( params [ i ] . handleTCB ) ;
41 }
42

43 f o r ( i n t i t e r = 0 ; i t e r < cfg−>numIterat ions ; ++i t e r ) {
44 f o r ( i n t t = 0 ; t < g_numTask ; ++t ) {
45 params [ t ] . i t e r = i t e r ;
46 params [ t ] . l oca l_go lden = getLoca lSeed ( cfg−>global_seed , t

, i t e r ) ;
47 xTaskNotifyGive ( params [ t ] . handleTCB ) ;
48 }
49 f o r ( i n t t = 0 ; t < g_numTask ; ++t )
50 xSemaphoreTake ( ba r r i e r , portMAX_DELAY) ;
51 }
52 }
53

54 /∗ reads r e p e t i t i o n s and ta r g e t from BRAM, f i l l s c fg , and runs ∗/
55 s t a t i c BenchWrap_t benchList [ ] = { a2time_wrap , rspeed_wrap } ;
56

57 void demo( i n t golden )
58 {
59 MultiBenchCfg_t c f g = {
60 . benchList = benchList ,
61 . numTasks = s i z e o f benchList / s i z e o f benchList [ 0 ] ,
62 . g loba l_seed = golden ,
63 . numIterat ions = ( ( v o l a t i l e char ∗) 0x40000018 ) [ 0 ] , //

r e p e t i t i o n s from FI
64 . t a r g e t _ i n j e c t i o n = ( ( v o l a t i l e char ∗) 0x4000001C ) [ 0 ] // t a r g e t

wrap index
65 } ;
66 runMultiBenchmark(& c fg ) ;
67 }

1 /∗ read r e p e t i t i o n s / t a r g e t from FI (BRAM) , f i l l c fg , run t i m e l i n e . ∗/
2

3 s t a t i c BenchWrap_t benchList [ ] = { a2time_wrap , rspeed_wrap } ;
4 s t a t i c MultiBenchCfgTLS_t g_cfg_tls = {
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5 . benchList = benchList ,
6 . numTasks = s i z e o f benchList / s i z e o f benchList [ 0 ] ,
7 . g loba l_seed = 0 ,
8 . numIterat ions = 0 ,
9 . majorPer iodTicks = 100 ,

10 . numMajorCycles = 10 ,
11 . t a r g e t _ i n j e c t i o n = 0
12 } ;
13

14 void demo_TLS( i n t golden )
15 {
16 v o l a t i l e uint8_t ∗ r e p e t i t i o n s = ( v o l a t i l e uint8_t ∗) 0x40000018u ;
17 g_cfg_tls . g loba l_seed = golden ;
18 g_cfg_tls . numIterat ions = ∗ r e p e t i t i o n s ;
19 g_cfg_tls . t a r g e t _ i n j e c t i o n = ( ( v o l a t i l e uint8_t ∗) 0x4000001Cu ) [ 0 ] ;
20 runMultiBench_Timeline(&g_cfg_tls ) ;
21 }
22

23 /∗ runs i n s i d e scheduled windows , reads PMU i f targeted ,
24 wr i t e s the outcome f l ag , then s l e e p s u n t i l window end∗/
25 s t a t i c void foregroundWorkerTask ( void ∗pv )
26 {
27 WorkerParam_t ∗p = (WorkerParam_t ∗) pv ;
28 f o r ( ; ; ) {
29 ulTaskNotifyTake (pdTRUE, portMAX_DELAY) ;
30 multibenchSetContext (p−>idx , p−>i t e r ) ;
31 i n t ok = p−>cfg−>benchList [ p−>idx ] ( p−>loca l_go lden ) ;
32 i f (p−>cfg−>t a r g e t _ i n j e c t i o n == p−>idx )
33 readPMU_multi ( g_pcVector [ p−>idx ] , p−>i t e r ) ;
34 ( ( v o l a t i l e char ∗) 0x40000008 ) [ 0 ] = ok ? 1 : 0 ;
35 reset_vettPMU ( g_pcVector [ p−>idx ] ) ;
36 busyWaitTicks ( g_slotEndTick [ p−>idx ] , 0) ;
37 }
38 }
39

40 /∗ b u i l d s s t a r t / stop events from FG windows ,
41 then i t e r a t e s major cyc l e s , n o t i f y i n g FG and gat ing BG per p a r t i t i o n

∗/
42 s t a t i c void vTaskStartTimel ineScheduler ( void ∗pv )
43 {
44 const MultiBenchCfgTLS_t ∗ c f g = ( const MultiBenchCfgTLS_t ∗) pv ;
45 const TickType_t majorTicks = cfg−>majorPer iodTicks ;
46 const i n t numMaj = cfg−>numMajorCycles ;
47

48 /∗
49 bu i ld and s o r t events ( s t a r t / stop f o r each FG window ) ∗/
50

51 TickType_t majorStart = xTaskGetTickCount ( ) ;
52
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53 f o r ( ; ; ) { // cont inuous t i m e l i n e
54 f o r ( i n t mc = 0 ; mc < numMaj ; ++mc) {
55 TickType_t wake = majorStart , l a s t = 0 ;
56

57 f o r ( i n t e = 0 ; e < evCount ; ++e ) {
58 TickType_t t = events [ e ] . time ;
59 i f ( t > l a s t ) { vTaskDelayUntil (&wake , t − l a s t ) ;

l a s t = t ; }
60

61 i n t f i = events [ e ] . index , part = xFGTasksInfo [ f i ] .
p a r t i t i o n ;

62 i f ( events [ e ] . kind == +1) { // FG
window s t a r t s

63 i f ( part > 0) sPart i t ionFGActive [ part ] = 1u ;
64 WorkerParam_t ∗p = (WorkerParam_t ∗) xFGTasksInfo [

f i ] . pvParameters ;
65 i f (p ) {
66 p−>i t e r = mc ;
67 p−>loca l_go lden = getLoca lSeed ( cfg−>

global_seed , p−>idx , mc) ;
68 g_slotEndTick [ p−>idx ] = majorStart +

xFGTasksInfo [ f i ] . s top ;
69 xTaskNotifyGive ( sFGHandles [ f i ] ) ; // n o t i f y

FG s t a r t
70 }
71 f o r ( i n t i = 0 ; i < numBGTasks ; ++i ) //

suspend BG in part
72 i f ( xBGTasksInfo [ i ] . p a r t i t i o n == part &&

sBGHandles [ i ] )
73 vTaskSuspend ( sBGHandles [ i ] ) ;
74 } e l s e { // FG

window ends
75 i f ( part > 0) sPart i t ionFGActive [ part ] = 0u ;
76 f o r ( i n t i = 0 ; i < numBGTasks ; ++i ) //

resume BG in part
77 i f ( xBGTasksInfo [ i ] . p a r t i t i o n == part &&

sBGHandles [ i ] ) {
78 vTaskResume ( sBGHandles [ i ] ) ;
79 xTaskNotifyGive ( sBGHandles [ i ] ) ;
80 }
81 }
82 }
83 TickType_t e lapsed = xTaskGetTickCount ( ) − majorStart ;
84 i f ( e l apsed < majorTicks ) vTaskDelay ( majorTicks − e lapsed

) ;
85 majorStart += majorTicks ; // next

major c y c l e
86 }
87 }
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88 }
89

90 /∗ i n i t per−task params , c r e a t e FG/BG tasks and t i m e l i n e task ∗/
91 void runMultiBench_Timeline ( MultiBenchCfgTLS_t ∗ c f g )
92 {
93 i f ( ! c f g | | c fg−>numTasks <= 0 | | c fg−>numTasks > NUM_TASKS)

return ;
94

95 g_numTask = cfg−>numTasks ;
96 g_pcVector = pvPortMalloc ( c fg−>numTasks ∗ s i z e o f ∗g_pcVector ) ;
97

98 f o r ( i n t i = 0 ; i < cfg−>numTasks ; ++i ) {
99 params [ i ] = (WorkerParam_t) {

100 . c f g =(const MultiBenchCfg_t ∗) cfg ,
101 . idx=i ,
102 . i t e r =0,
103 . l oca l_go lden=cfg−>global_seed , . b a r r i e r=NULL } ;
104 }
105 /∗
106 c r e a t i o n o f the FG, BG and schedu l e r
107 ∗/
108 }
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