
Politecnico di Torino

Master’s degree in Cybersecurity
A.y. 2024/2025

Graduation Session October 2025

Securing Aircraft Engine Control
Units: Utilizing Embedded Board

Security Features for Enhanced
Protection

Supervisors:
Stefano Di Carlo
Alessandro Savino
Luca Schena

Candidate:
Niccolò Lentini

Abstract

In the aerospace domain, where the concept of airworthiness and ensuring its continuity is
fundamental, securing Engine Control Units (ECUs) is a critical objective to prevent system
compromise with potentially catastrophic consequences. This work focuses on the implementation
of robust security mechanisms for embedded avionics ECUs by leveraging the advanced hardware
security features available on one from the NXP S32K family of microcontrollers used in both
automotive and aerospace applications.
By examining this recent Automotive General Purpose ECU, the study demonstrates how
embedded system security can be significantly enhanced through the strategic utilization of built-
in hardware capabilities. Special emphasis in this work is placed on securing the software image
loading process with appropriate verification and authentication and enforcing strict memory
protection policies to ensure both the integrity and confidentiality of system data and code
exploiting the cryptographic capabilities of the board.
The study begins with the modelling of a realistic case study for an avionic ECU, establishing a
foundation for subsequent security analyses. A detailed threat assessment follows, adhering to most
recent aerospace standards and regulations (e.g. DO-178C, DO-356, AIR7368) and employing
frameworks like the Common Attack Pattern Enumeration and Classification (CAPEC) and the
Embedded System Threat Modelling and Mitigation Methodology (EMB3D) to systematically
identify and categorize potential vulnerabilities. Next, a comprehensive analysis of the necessary
security measures is conducted to obtain adequate countermeasures against each threat condition.
The implementation part follows a configuration and deployment strategy for hardware-assisted
security mechanisms such as secure boot, cryptographic validation of application image, and
memory region protection, features that are not only analyzed in terms of their technical
configuration but also evaluated for their effectiveness in mitigating all the threats previously
identified.
Experimental results confirm that the proposed approach strengthens the ECU’s security reducing
the attack surface. The use of on-chip security features contributes to a substantial increase in
system resilience without introducing significant performance penalties.
In conclusion, this work provides a concrete contribution toward the development of safer and
more secure avionics systems by proposing an architecture that exploits the native hardware
security features of modern microcontrollers underscoring the critical role of hardware-assisted
security in the design of next-generation ECUs.

Table of Contents

1 Avio Aero 5
1.1 Company overview and background . 5
1.2 Latest Achievements . 7

1.2.1 AMBER Hybrid-Electric Propulsion Project 7
1.2.2 Catalyst engine . 7

2 Security Regulations in Aerospace applications 9
2.1 Airworthiness & Airworthiness Security . 9
2.2 DO-178C (Software Considerations in Airborne Systems and Equipment Certification) 9
2.3 DO-326B (Airworthiness Security Process Specification) 10
2.4 DO-356 (Airworthiness Security Methods and Considerations 13
2.5 SAE AIR7368 (Cybersecurity for Propulsion Systems) 13

3 State of the art in avionics product security 15
3.1 Nowadays proposed solutions . 15
3.2 Secure Electronic Control Units (ECUs) . 15
3.3 Data Communication Security . 16
3.4 Real-Time Monitoring and Intrustion Detection 16
3.5 Hardware Security Features . 16
3.6 Software Security . 16
3.7 Redundancy . 17
3.8 Is aircraft physical security really necessary? . 17

4 Product Security Assessment 19
4.1 Use Case . 19
4.2 PSA Model . 19
4.3 Threat Repositories: CAPEC & MITRE EMB3D 21
4.4 Scope definition & threat identification . 23
4.5 High Level Requirements Definition . 27
4.6 Starting Project Assessment Phase . 30

5 Theory Background 33
5.1 Hash Functions . 33
5.2 Digital Signatures . 34

5.2.1 Elliptic Curve Digital Signature Algorithm (ECDSA) 36
5.3 Secure Boot . 38
5.4 Controller Area Network (CAN) . 39
5.5 CAN TP . 40

3

5.6 Unified Diagnostic Services (UDS) . 41

6 Laboratory Setup 45
6.1 Laboratory Setup Components . 45

6.1.1 Development software - Libraries . 46
6.1.2 Target Board - NXP Hardware Security Engine (HSE_B) in S32K3 . . . 46
6.1.3 Debugger Interface - Lauterbach debugger & TRACE32 55
6.1.4 Communication Interface - PEAK-PCAN-USB & PCAN-View 55

7 Program Development 57
7.1 Project Structure . 57
7.2 Execution flow . 58

7.2.1 Key generation . 58
7.2.2 Signature generation and Flashing Procedure Script 58
7.2.3 Signature Checking Procedure . 59
7.2.4 Target Board Bootloader . 62
7.2.5 Application Image Content . 63

8 Results 65
8.1 Achieved Security Improvements . 65
8.2 Performance Considerations . 66
8.3 Validation Outcomes . 69
8.4 Impact on the Attack Surface . 69
8.5 Limitations and Future Work . 70

9 Conclusions 73

List of Figures 75

Bibliography 79

4

Chapter 1

Avio Aero

This thesis work was carried out during an internship at Avio Aero, which provided me the
opportunity to work at their headquarters in Rivalta di Torino throughout the entire duration of
the internship.

Figure 1.1: GE Avio Aero logo

1.1 Company overview and background

Avio Aero is a GE Aerospace company that represent a global leader in the design, produc-
tion, and maintenance of advanced propulsion systems for the aerospace industry. Originally
established as Fiat Aviazione in 1908, the company has established itself as a key player in the
development of innovative technologies for aviation, covering a significant role in the development
of Italy’s aviation sector during the early 20th century, contributing to both civil and military avi-
ation programs. Avio Aero is headquartered in Turin but operates multiple facilities across Europe.

5

Avio Aero

Figure 1.2: Fiat Aviazione stand at Fiera Campionaria di Milano
1952. Source https://archiviostorico.fondazionefiera.it/oggetti/
10412-stand-della-fiat-aviazione-al-salone-dellauto-avio-moto-ciclo-e-accessori-sportivi-nel-palazzo-dello-sport-alla-fiera-campionaria-di-milano-del-1952

In 1989 the company changed its name in Fiat Avio while in 2003, Fiat Avio underwent a
major transformation when it was sold by Fiat Group to a consortium led by the Carlyle Group
and Finmeccanica (now Leonardo) and was rebranded as Avio and continued to focus on aerospace
propulsion systems, while also expanding into space propulsion technologies.
In 2013, Avio’s aerospace division was acquired by General Electric (GE) and became part of
GE Aerospace, taking on the name Avio Aero. This acquisition integrated the company into
GE’s global operations, providing access to GE’s resources and expertise in aviation technology
allowing Avio Aero to continue develop advanced propulsion systems.
Today, with more than 5,700 employees, Avio Aero is present from the product design and
development phase through production and aftermarket services.
The company specializes in the design and manufacturing of critical components for aircraft
engines, including turbines, gearboxes, and combustors, as well as advanced systems for both
civil and military aviation. Avio Aero is renowned for its expertise in additive manufacturing,
leveraging cutting-edge 3D printing technologies to produce complex engine parts with enhanced
performance, reduced weight, and improved efficiency. This commitment to innovation aligns with

6

https://archiviostorico.fondazionefiera.it/oggetti/10412-stand-della-fiat-aviazione-al-salone-dellauto-avio-moto-ciclo-e-accessori-sportivi-nel-palazzo-dello-sport-alla-fiera-campionaria-di-milano-del-1952
https://archiviostorico.fondazionefiera.it/oggetti/10412-stand-della-fiat-aviazione-al-salone-dellauto-avio-moto-ciclo-e-accessori-sportivi-nel-palazzo-dello-sport-alla-fiera-campionaria-di-milano-del-1952

1.2 – Latest Achievements

GE Aerospace’s broader mission to deliver safer, more sustainable, and more efficient solutions
for the aviation industry.
The company adheres to rigorous standards and certifications to ensure the reliability and
airworthiness of its products, contributing to the success of major aerospace programs worldwide.
Collaborations with leading aircraft manufacturers and research institutions gave Avio Aero a
pivotal role in shaping the future of aviation through continuous technological advancements and
a focus on sustainability.
As a trusted partner in the aerospace sector, Avio Aero combines decades of experience with
a forward-looking approach to innovation, making it a cornerstone of GE Aerospace’s global
operations. The dedication to excellence and the ability to adapt to the evolving demands of the
industry underscore its position as a leader in propulsion systems and aerospace technology.

1.2 Latest Achievements

During its history the company has achieved several key milestones successfully leading the
development o advanced technologies and taking part in international projects.

1.2.1 AMBER Hybrid-Electric Propulsion Project

Avio Aero has launched a hybrid-electric technology demonstration program as part of the
European Clean Aviation initiative that focuses on developing a hybrid-electric demonstrator
engine that combines traditional gas turbines with electric power systems to improve fuel efficiency
and reduce emissions. This effort explores the potential of hybrid-electric propulsion for regional
and short-haul aircraft, using advanced technologies like electric motors, power electronics,
and energy storage systems. Working in collaboration with European research institutions,
universities, and industry partners, Avio Aero is contributing to the aviation industry’s push
toward sustainability and its goal of achieving net-zero carbon emissions by 2050.

1.2.2 Catalyst engine

The Catalyst engine represents one of Avio Aero’s most significant technological achievements
in recent years. Developed in collaboration with GE Aerospace and entirely designed and
manufactured in Europe, the Catalyst engine is the first turboprop engine of its kind in over five
decades on the continent. It integrates advanced technologies such as a fully authority digital
engine control (FADEC) system and extensive use of additive manufacturing that enable improved
performance, reduced fuel consumption and lower emissions compared to its competitors. In
early 2025 the Catalyst Engine received FAA Part 33 certification after a rigorous campaign
involving over 2600 hours of testing. The Catalyst engine has also been selected to power the
Eurodrone, the European Medium Altitude Long Endurance (MALE) remotely piloted aircraft
system, marking a major step toward strategic autonomy in defense application.
These milestones confirm the technical maturity of the engine and demonstrate Avio Aero’s
capacity to deliver cutting-edge propulsion systems for both civil and military aviation.

7

Avio Aero

Figure 1.3: Catalyst engine. Source https://avioaero.com/it/media/media-releases/
il-catalyst-scelto-da-airbus-per-eurodrone

8

https://avioaero.com/it/media/media-releases/il-catalyst-scelto-da-airbus-per-eurodrone
https://avioaero.com/it/media/media-releases/il-catalyst-scelto-da-airbus-per-eurodrone

Chapter 2

Security Regulations in Aerospace
applications

In the aerospace industry, ensuring the safety and security of systems is fundamental, as these
systems operate in environments where failure or compromise can have catastrophic consequences.
To address these challenges, stringent security regulations and standards have been established to
guide the development, certification, and operation of aerospace systems and all the vendors (like
Avio Aero) must strictly adhere to these regulations to guarantee the right level of security and
safety of the systems.

2.1 Airworthiness & Airworthiness Security
In the process of securing avionic system, two key terms are commonly used, Airworthiness
and Airworthiness Security. The first one refers to the ability of an aircraft or its components
to operate safely within the defined parameters of its design and certification, ensuring that
aircraft meet strict safety standards and are fit for flight. Airworthiness is governed by regulatory
authorities such as the Federal Aviation Administration (FAA) in the United States and the
European Union Aviation Safety Agency (EASA) in Europe that establish certification processes,
maintenance requirements, and operational guidelines to ensure the continued safety of aircraft
throughout their lifecycle.
Airworthiness Security, on the other hand, focuses on protecting the airworthiness of an aircraft
from intentional threats, such as cyber attacks, sabotage, or other malicious activities that comes
from the increasing reliance on software, connectivity and digital systems of a modern aircraft.
Airworthiness security ensures that the confidentiality, integrity and availability (CIA) of
systems essential to safe flight are maintained through cybersecurity standards and certifications,
threat assessment and mitigation strategies.

2.2 DO-178C (Software Considerations in Airborne Sys-
tems and Equipment Certification)

DO-178C is the primary standard for the development and certification of software used in airborne
systems and equipment. It provides a structured framework for ensuring the safety, reliability, and
airworthiness of software in aviation and defines objectives for software development processes,

9

Security Regulations in Aerospace applications

including requirements capture, design, coding, testing, and verification. It introduces the concept
of Design Assurance Levels (DALs), which categorize software based on its criticality to flight
safety, ranging from Level A (most critical) to Level E (least critical). DO-178C also emphasizes
traceability between requirements, design, and testing to ensure comprehensive validation and it
includes supplements such as DO-330 (tool qualification), DO-331 (model-based development),
DO-332 (object-oriented technology), and DO-333 (formal methods), which address advanced
software development techniques. Compliance with DO-178C is essential for obtaining certification
from aviation authorities like the FAA and EASA.

Figure 2.1: Design Assurance Levels (DALs). Source https://eteo.tistory.com/496.

2.3 DO-326B (Airworthiness Security Process Specifica-
tion)

DO-326B focuses on the security aspects of airborne systems, addressing the growing concern
of Intentional Unauthorized Electronic Interaction (IUEI), defined as human-initiated actions
with the potential to affect the aircraft due to unauthorized access, disclosure, use, denial,
modification or destruction of electronic information or electronic aircraft system interface. This
document is the joint product of two industry committees, the EUROCAE Working Group
WG-72 and the RTCA Special Committee SC-216 and it provides a framework for identifying,
assessing, and mitigating security risks that could impact the airworthiness of an aircraft. It
introduces the concept of Airworthiness Security, which ensures that security vulnerabilities do
not compromise the safety and operational integrity of the aircraft. DO-326B outlines processes
for threat identification, risk assessment, and the implementation of security controls that address
airworthiness security during the aircraft product life cycle, from project initiation until the
aircraft Type Certificate.
The purpose of the Airworthiness Security Process (AWSP) is to establish that when the system
is subject to IUEI, it will remain in a condition for safe operation. This necessary implies the
definition of an acceptability treshold and a complete and correct Risk Assessment. The AWSP

10

https://eteo.tistory.com/496

2.3 – DO-326B (Airworthiness Security Process Specification)

is composed of three major parts:

• Certification Activities: to manage the certification process.

• Security Risk Assessment Related Activities: to evaluate risk based on identified threat
scenarios to determine acceptability and to assess the implemented security measures always
considering the acceptability of the risk.

• Security Development Related Activites: this is the implementation part of the required
security measures.

Figure 2.2: DO-326B Management Framework. Source
https://militaryembedded.com/avionics/safety-certification/
incorporating-do-326a-security-airworthiness-into-software-development-life-cycle.

DO-326B provides a structured workflow and defines the activities to be performed, organized
into the following steps:

1. Aircraft Security Scope Definition (ASSD): Establish the aircraft’s operational environment
with respect to information security.

2. Preliminary Aircraft Security Risk Assessment (PASRA): Identify potential threat conditions
and scenarios, and evaluate security risks at the aircraft level.

11

https://militaryembedded.com/avionics/safety-certification/incorporating-do-326a-security-airworthiness-into-software-development-life-cycle
https://militaryembedded.com/avionics/safety-certification/incorporating-do-326a-security-airworthiness-into-software-development-life-cycle

Security Regulations in Aerospace applications

3. System Security Scope Definition (SSSD): Define the system’s operational environment
concerning information security.

4. Preliminary System Security Risk Assessment (PSSRA): Identify potential threat conditions
and scenarios, and evaluate security risks at the system level.

5. System Security Risk Assessment (SSRA): Analyze threat conditions, scenarios, and vulner-
abilities to assess the system’s security risks.

6. Aircraft Security Risk Assessment (ASRA): Analyze threat conditions, scenarios, and
vulnerabilities to assess the aircraft’s security risks.

The workflow proposed by DO-326B follows a V-MODEL approach that highlights the presence
of a preliminary Security Risk Assessment before the implementation, followed by another Security
Risk Assessment after the implementation. The aim of the first one is to identify which part of
the system is at an acceptable theoretical security risk level, identifying new security requirements
when the security risk is not acceptable.

Figure 2.3: DO-326B Security Risk Assessment V-MODEL.
Source https://militaryembedded.com/avionics/safety-certification/
incorporating-do-326a-security-airworthiness-into-software-development-life-cycle.

12

https://militaryembedded.com/avionics/safety-certification/incorporating-do-326a-security-airworthiness-into-software-development-life-cycle
https://militaryembedded.com/avionics/safety-certification/incorporating-do-326a-security-airworthiness-into-software-development-life-cycle

2.4 – DO-356 (Airworthiness Security Methods and Considerations

2.4 DO-356 (Airworthiness Security Methods and Consid-
erations

DO-356 is another critical guidance document, born by the joint work of RTCA Special Com-
mittee SC-216 and EUROCAE Working Group WG-72, that addresses the growing need for
cybersecurity in aviation systems due to the increasingly interconnected nature and reliance on
digital technologies that made the potential for cyber threats broader. DO-356 complements other
aviation standards, such as DO-178C and DO-326B, by focusing specifically on the identification,
assessment, and mitigation of cybersecurity risks throughout the lifecycle of an aircraft system. It
provides methodologies and guidelines to be used within the airworthiness security process defined
in DO-326B, for threat modeling, vulnerability analysis, and risk management, ensuring that
cybersecurity measures are integrated into the design, development, operation, and maintenance
phases. The document also emphasizes the importance of aligning cybersecurity efforts with
safety objectives, ensuring that security measures do not inadvertently compromise the reliability
or functionality of critical systems. One area for enhancement in DO-356 could involve expanding
its guidance on emerging technologies, such as artificial intelligence (AI) and machine learning
(ML), which are increasingly integrating into aviation systems and introduce unique cybersecurity
challenges, such as adversarial attacks on AI models or data poisoning, which require specialized
mitigation strategies. Additionally, DO-356 could benefit from more detailed recommendations
on securing communication protocols used in connected aircraft, such as satellite links and
ground-based networks, to address vulnerabilities in data transmission.
The document is organized into six chapters that are designed to be used sequentially. Starting
with the first chapter, which defines key terms and acronyms that the reader is expected to be
familiar with, the subsequent chapters are structured to progressively guide the reader in acquiring
the necessary knowledge and methodologies to ensure airworthiness security and conduct effective
security risk assessments.
It also contains several appendices that provides concrete examples on how to perform a complete
security risk assessment and how to guarantee airworthiness security.

2.5 SAE AIR7368 (Cybersecurity for Propulsion Systems)
The SAE Aerospace Information Report (AIR) 7368 serves as a foundational framework for
establishing a common approach to cybersecurity airworthiness certification for propulsion system
manufacturers. Developed through a joint effort between industry experts and regulatory members
of the E-36 Cybersecurity Subcommittee, its primary purpose is to provide comprehensive guidance
on cybersecurity practices. As outlined in the document, achieving compliance requires that the
engine control, propeller control, monitoring systems, and all auxiliary equipment systems and
networks associated with the propulsion system be safeguarded against IUEI. Such interactions
could potentially compromise the safety and functionality of the propulsion system, making robust
protection measures essential. This document applies to security protection of propulsion systems
for which IUEI are possible when connected to:

• Aircraft Systems like air data computers, flight and trhust management computers, engine
interface units.

• Equipment for field and factory loading of production software.

• Equipment for making adjustments to adjustable parameters in the embedded software.

13

Security Regulations in Aerospace applications

• Equipment to download from or upload data to the propulsion control system using wired
or wireless communication protocols.

• Any other systems with digital or network connectivity capability.

In this document is highlighted the distinction between four aviation domains. The Aircraft
Control Domain (ACD) that consists of airborne systems and networks which functions are to
support safe operation of the airplane. The Airline Information Services Domain (AISD) that
enables operation of the airline like electronic manuals, cabin surveillance, cabin crew information
access and so on. Passenger Information and Entertainment Services Domain (PIESD) that is a
private unstrusted domain that informs and entertains the passengers. Passenger-Owned Devices
Domain (PODD) that is the public domain external to the aircraft domain that includes all the
devices that passengers may bring on board.
When performing security risk assessment is important to consider the division between these
domains and how they can influence each other.

Figure 2.4: Aircraft domains. Source https://www.pentestpartners.com/security-blog/
in-flight-entertainment-system-security/

14

https://www.pentestpartners.com/security-blog/in-flight-entertainment-system-security/
https://www.pentestpartners.com/security-blog/in-flight-entertainment-system-security/

Chapter 3

State of the art in avionics
product security

Avionic product security encompasses a wide range of components, from the engine’s Electronic
Control Unit (ECU) and passenger entertainment systems to pilot inputs and mechanical systems.
Given that Avio Aero is a leader in engine production, this analysis focuses specifically on the
security aspects related to the engine.
The state of the art security measures that can be adapted from other industry sectors focus
on safeguarding the confidentiality, integrity and availability (airworthiness security) of systems
which increasingly rely on digital systems for control monitoring and diagnostics. For this reason
advanced security measures are essential to address potential vulnerabilities.

3.1 Nowadays proposed solutions
The integration of cybersecurity into aircraft engine design is a relatively recent development,
driven by the need to protect critical systems from increasingly sophisticated threats. While
modern aerospace engines aim to employ advanced security measures, the actual solutions adopted
do not always represent the highest level of security. In fact, since Certification Authorities have
only recently begun formalizing dedicated regulations (EASA started in 2021), many already
certified engines lack security awareness and re-certification requires a significant effort. For
example basic mechanisms like cyclic redundancy checks (CRC) are often used to verify data
integrity, but they offer limited defense against more complex attacks, such as data manipulation
or spoofing. Furthermore the rapid evolution of cyber threats means that even robust systems
can become vulnerable without regular updates and improvements.
Although specific implementation details about proprietary engines remain confidential, the
general principles and technologies that should be adopted in this sector are known.

3.2 Secure Electronic Control Units (ECUs)
The ECU is the central element of an aircraft engine’s digital control system, responsible for
managing all the engine functions and this makes it a primary target for cybersecurity measures.
Protection applied on the ECU are fundamental for the safety, operational reliability, protection
against unauthorized access and information integrity of the system.
Secure Boot represents a pivotal feature to ensure that the ECU only runs software that is verified

15

State of the art in avionics product security

and trusted. During the boot process the ECU perform some checks on the software components
to confirm the authenticity and integrity, prevent malicious software from being executed.
Cryptographic protection the main technique to safeguard data integrity and confidentiality.
Encryption can be used to protect sensitive data while digital signature further ensure that data
has not been tampered with, providing a robust mechanism for verifying data authenticity.
Access Control (like role based access control RBAC) is the security measure to prevent unautho-
rized access to the ECU, ensuring that only authorized personnel can access or modify critical
engine parameters.

3.3 Data Communication Security
The communications between the engine, aircraft systems, and external entities such as ground
stations are essential for operational efficiency and safety, so it is securing these communications.
Encrypt communications using protocols like TLS is a common solution that ensures that any
intercepted data remains untelligible to unatuhorized parties.
Authentication mechanisms are used to verify the identities of communicating parties ensuring
that only legitimate systems can exchange data with the engine preventing injection of malicious
commands.
Integrity checks using hashing (e.g. SHA Algorithms) or checksum (e.g. CRC) are performed to
verify that data has not been altered during transmission.

3.4 Real-Time Monitoring and Intrustion Detection
Solutions like Anomaly Detection or Intrusion Detection Systems (IDS) can monitor the system
for signs of malicious activity and to compare it with the expected behavior, enabling rapid
response to mitigate threats before they impact the engine performance. Most recent solutions
adopt new technologies like AI based Intrusion Detection System to increase the efficiency of
these systems.

3.5 Hardware Security Features
Physical security measures complements software-based protections to enhance the engine security.
Trusted Execution Environments (TEEs) provide a secure area within the engine’s hardware for
executing sensitive operations, such as cryptographic functions, protecting from interference or
tampering by unauthorized software.
Tamper-Resistant Components are designed to resist physical tampering, with features such as
sealed enclosures and tamper-evident seals, safeguarding the engine from physical attacks.
On-chip Hardware security measures are the most studied solution as they represent the best
solutions against common problems like economic constraints, security vs performance tradeoff
and compliance with new regulations.

3.6 Software Security
Ensuring the security of engine software is a continuous process that involves multiple layers of
protection.
Engine Secure Software Development Lifecycle obtained using secure coding practices, rigorous
testing, and compliance with standards making software resilient against known vulnerabilities

16

3.7 – Redundancy

and compliant to industry best practices for safety and security.
Regular Updates and Patching for which engine software is regularly updated with security
patches to address newly discovered vulnerabilities. These updates are carefully tested to ensure
they do not compromise system functionality, maintaining the balance between security and
operational reliability.

3.7 Redundancy
By incorporating duplicate systems for critical functions, such as engine control and monitoring,
redundancy allows the engine to continue functioning even if one component is compromised or
fails. These redundant systems operate independently, providing a backup that can immediately
take over in the event of an issue, not only mitigating the impact of potential cyber threats but
also enhancing safety by maintaining uninterrupted engine performance during adverse conditions.
Full Authority Digital Engine Control (FADEC) due to its full control on the engine operations
implement redundancy as a security measure to guarantee the engine availability.

3.8 Is aircraft physical security really necessary?
Although the likelihood of physical attacks on aircraft engines is extremely low, the potential
consequences of such an attack could be catastrophic. This underscores the importance of
proactively addressing and mitigating possible threats to ensure safety and security.
Even if, for security purposes, there are no publicly known physical attacks on aircraft engines,
the following are examples of incidents where intruders gained access to airports and remained
for sufficient time to potentially carry out serious attacks on aircraft.

• Avalon Airport, March 2025 [1]: A 17 year old boy managed to bypass airport security and
board a plane by disguising himself as a staff member, wearing a security jacket and work
belt, while carrying a gun.

• Mumbai Airport, 2019 [2]: A man was detained on Mumbai airport’s Runway 27 after
being spotted by the pilots of SpiceJet Flight SG634 who alerted airport security. The man
managed to climb over the airport wall and enter the aircraft zone.

• Kano Airport, 2024 [3]: A man climbed the airport fence during the night and managed
to get on an aircraft without being spotted. The cabin crew found him the next morning
when they entered for a new flight.

• London, June 2024 [4]: Two elements of climate activist group Just Stop Oil breached
security at a London airport in an attempt to target Taylor Swift’s private jet as part of
their protest against celebrity carbon emissions. The activists managed to enter the airport
and remain there for some time, but ultimately failed to locate the jet.

• Bergamo Airport, July 2025 [5]: A 35-year-old man breached security at Bergamo-Orio
al Serio Airport by abandoning his car outside the terminal and running into the aircraft
parking area. He accessed the runway by opening a security door and ran toward a jet
preparing for takeoff, where he tragically lost his life after being sucked into the engine.

While the incidents described above were not aimed at performing cyberattacks, the ability of
intruders to gain unauthorized access to restricted areas and remain there for extended periods
demonstrates the potential for serious threats, including cyber or physical attacks on aircraft

17

State of the art in avionics product security

systems. Even if these breaches were not malicious in nature, the time and access the intruders
had would have been sufficient to execute harmful actions, such as tampering with critical systems
or planting devices capable of compromising engine operations. These examples underscore the
need for implementing physical security features alongside cybersecurity measures to ensure the
safety and resilience of modern aviation systems against a wide range of threats.

18

Chapter 4

Product Security Assessment

This work’s product security assessment (PSA) has been conducted following the guidance
provided by the regulations outlined in Chapter 2. In a company like Avio Aero PSAs are
initiated to ensure that avionic products (as the one in this work) meet customer product security
requirements, adhere to GE product security standards, and comply with applicable regulatory
certification requirements.
The PSA described in this chapter has been developed to align with industry-standard guidelines
and regulations.

4.1 Use Case

The use case considered in this work focuses on an engine designed for civil aircraft, so it is an
highly complex systems that must meet stringent safety, reliability, and performance standards.
These engines are responsible for providing thrust to propel the aircraft and maintaining oper-
ational stability under various environmental conditions, additionally, they must comply with
regulatory requirements such as those set by aviation authorities like the FAA and EASA.
The real case reference is a GE engine designed for civil aviation which integrates advanced
digital systems to work, in fact, as modern engines increasingly rely on digital systems, the
potential for cyber vulnerabilities grows and without strong security measures, critical systems
could be exposed to risks such as unauthorized access, data manipulation, or system disruption.
This highlights the need for enhanced cybersecurity protocols to safeguard the engine’s digital
components and ensure resilience against emerging threats in the aviation industry.

4.2 PSA Model

PSA process follows the guidelines from DO326B and V-model approach and is composed of
different phases that include system design and verification activities. Moreover for each phase is
expected the production of an artifact that provide evidence of work done in that phase.

19

Product Security Assessment

Figure 4.1: DO326 V-model approach

This is a process that aim to identifying, analyzing, and mitigating cybersecurity risks in the
system. It is designed to ensure that security considerations are integrated into the system
lifecycle from the earliest stages of development thanks to the various phases:

• Planning and scope definition phase: it is the foundation of the Security Assessment process,
where the objectives, scope, and boundaries of the cybersecurity effort are defined. This
phase begins with identifying the systems, components, and interfaces that require protec-
tion (assets). Risk identification is also initiated, focusing on potential vulnerabilities and
areas of concern. During this phase it is developed a high-level understanding of the system
architecture and its operational environment including identifying external interfaces, data
flows, and dependencies that could introduce security risks. This phase sets the stage for a
targeted and efficient security assessment.

• Security Assessment phase: it focuses on evaluating the system’s current security posture
and identifying risks and vulnerabilities conducting a detailed analysis of the system’s
architecture using techniques such as threat modeling, risk analysis, and vulnerability
scanning. The goal of this phase is to prioritize security concerns based on their likelihood
and impact, for example risks that could compromise safety-critical systems or sensitive data
are given higher priority. The findings from the assessment phase provide the foundation
for defining security requirements in the next phase.

• Security Requirements phase: translate the findings from the assessment phase into action-
able security measures by defining specific security requirements that address identified risks

20

4.3 – Threat Repositories: CAPEC & MITRE EMB3D

and vulnerabilities. These requirements may include technical measures, such as encryption
protocols or access controls, as well as procedural measures, such as incident response plans
or training programs. During this phase, the team also develops security specifications and
design criteria to ensure that the system meets regulatory standards and industry best
practices.

• Security Verification phase: ensure that the implemented security measures meet the defined
requirements and effectively mitigate identified risks by developing test plans, executing
test procedures, and documenting results. Verification activities may include penetration
testing, vulnerability scanning, and functional testing of security features with the goal of
validating the system’s security posture and ensure compliance with regulatory standards.
Any issues identified during testing are addressed through iterative improvements (iterative
process).

• Final Reporting phase: it finalizes the Security Assessment process and documents the
outcomes by summarizing the security measures implemented, the results of verification,
and any residual risks. During this phase, recommendations for ongoing security monitoring
and maintenance are developed to ensure that the system remains resilient against emerging
threats throughout its lifecycle.

4.3 Threat Repositories: CAPEC & MITRE EMB3D

Threat assessment in this work has been conducted using two widely recognized resources to
provide a thorough evaluation of potential cybersecurity risks and vulnerabilities. The first
resource, Common Attack Pattern Enumeration and Classification (CAPEC), is a
catalog maintained by MITRE that provides a comprehensive repository of common attack
patterns, detailing the methods, techniques, and strategies adversaries use to exploit system
vulnerabilities. Each attack pattern is described in terms of its characteristics, prerequisites, and
potential impacts enabling security professionals to identify weaknesses in system architecture
and operational processes, in fact, CAPEC is particularly valuable for mapping attack patterns
to specific system features, allowing for the development of targeted mitigation strategies that
address the most relevant threats.

21

Product Security Assessment

Figure 4.2: CAPEC Vulnerability Example

The second resource, MITRE EMB3D, is a knowledge base of cyber threats created
by MITRE to enhance the security of embedded devices focusing on the unique challenges
associated specifically with them, which often have constrained resources and critical functions.
The framework maps known cyber threats to specific features of embedded devices, such as
communication interfaces, memory management, or control mechanisms and for each identified
threat, it provides corresponding mitigation strategies, offering actionable guidance to reduce
vulnerabilities and improve system resilience. This framework has been used only as support for
threat enumeration using CAPEC.

Figure 4.3: EMB3D threat domains. Source https://emb3d.mitre.org/

Together, CAPEC and EMB3D provide a robust foundation for threat assessment, combining
a broad understanding of attack patterns with a specialized focus on embedded systems. This

22

https://emb3d.mitre.org/

4.4 – Scope definition & threat identification

dual approach enables the identification of risks in the system and supports the development of
effective security measures tailored to the system’s unique needs. By utilizing these resources,
the threat assessment process can achieve a high level of precision and reliability.

4.4 Scope definition & threat identification
Before conducting threat assessment it is required to define the Security Environment and
System Security Scope to be analyzed. Since the work is done on the Engine ECS, the domain
to be analyzed is the Aircraft Control Domain (ACD), that is the network responsible for
the internal communication of the aircraft related to flight and operational control of the aircraft.
The Security Environment is defined by all the connection that interact with the ECS. These
connections are called Security Vectors and their presence must be analyzed to spot potential
vulnerabilities.
In our study the connection between the ECS and the ADC are represented by:

• ARINC 429: standardized data bus protocol used for communication of avionic information.

• PCAN with the host PC that loads the application image.

• Analog connections: direct analog signal interfaces for specific data or control.

The roles and entities interacting with the aircraft engine:

• Flight Crew: People who fly the plane and have unescorted access to the flight deck with
the potential risk to inflict catastrophic loss upon the aircraft.

• Aircraft/Engine Maintainer: People retained by the airframer and subsequent operators
who are responsible for the required maintenance operations required by the aricraft with
the potential risk to inflict catastrophic loss upon the aircraft and provide unauthorized
aircraft access to external parties.

• General Population: People with no responsibility to the engine that can potentially perform
attacks if the system is not secured.

After the environment analysis, it is possible to identify possible threats that could harm our
system between the ones reported in the threat repositories.

Threat assessment results, reported below, is a list of threat conditions that could potentially
harm the system.

CAPEC-ID Threat Scenario Threat Category
21 Take advantage of input validation and authentication

to attack session IDs and resource IDs to gain access
to EEPC.

Bypass authentication
mechanism

22 Leverage implicit trust EEPC server places on a client,
or what the server believes to be the client.

API/Interface abuse

25 Forced Deadlock. Race conditions or Dead-
locks

26 Manipulate EEPC to run multiple processes concur-
rently to create a race condition.

Race conditions or Dead-
locks

23

Product Security Assessment

28 Fuzzing, manipulate input validation by feeding ran-
dom input to ECS.

Manipulate input/parame-
ter/buffer or Inject Traffic

74 Modify state information. Manipulate state/environ-
ment/configuration

94 Adversary in the middle, an attacker can probe the
line to place in the middle of a communication and
steal information.

Intercept or Eavesdrop

112 Brute forcing, even if adopting adequate solutions,
the probability is never zero.

Bypass authentication
mechanism

113 An adversary manipulates API to impact the security
of the system executing functionality not intended by
the API.

API/Interface abuse

114 Exploit flaws in authentication mechanism to gain
access to sensitive information and functionalities.

Bypass authentication
mechanism

115 Authentication bypass. Bypass authentication
mechanism

116 Excavation, probe the system by using valid interac-
tions but in a wrong way or with wrong arguments
to produce errors that leak information.

Manipulate input/parame-
ter/buffer

117 Interception, monitor messages that go from or to
the ECS.

Intercept or Eavesdrop

122 Privilege abuse, exploit features of ECS reserved for
privileged users.

Privilege Escalation

123 Buffer manipulation, create buffer overflows or simi-
lar.

Manipulate input/parame-
ter/buffer

124 Manipulation of resources shared between ECS and
other systems.

API/Interface abuse

125 Message flooding, DoS. Resource attacks or DoS
129 Pointer manipulation. Manipulate input/parame-

ter/buffer
130 Excessive allocation, force the allocation of excessive

EEPC resources via crafted messages.
Resource attacks or DoS

131 Deplete system resources. Resource attacks or DoS
137 Parameter injection, need proper input validation. Manipulate input/parame-

ter/bufferor Inject Traffic
148 Content spoofing, adversary modifies content to make

it contain something other than what the original
content producer intended while keeping the apparent
source of the content unchanged.

API/Interface abuse or
Spoofing

151 Identity spoofing, adversary may craft messages that
appear to come from a different principle or use
stolen/spoofed authentication credentials.

Bypass authentication
mechanism or Spoofing

153 Input data manipulation, exploiting weakness in input
validation.

Manipulate input/parame-
ter/buffer

154 Spoof the location of available resources to leverage
an alternate resource.

API/Interface abuse or
Spoofing

24

4.4 – Scope definition & threat identification

161 Infrastructure manipulation, manipulate the routing
of messages to extract information.

Manipulate state/environ-
ment/configuration

165 Modify file contents to cause incorrect processing. Manipulate state/environ-
ment/configuration

169 Footprinting, the attacker uses tools to gather as
much information as possible about services and mech-
anisms of the system.

Footprinting/Fingerprinting

173 Action spoofing, adversary is able to disguise one
action for another and trick a user into initiating one
type of action when they intend to initiate a different
action.

API/Interface abuse or
Spoofing

175 Code inclusion, adversary exploits a weakness on the
target to force arbitrary code to be retrieved locally
or from a remote location and executed.

Execute Arbitrary Code

176 Configuration/environment manipulation, attacker
manipulates files or settings external to a target appli-
cation which affect the behavior of that application.

Manipulate state/environ-
ment/configuration

184 Software integrity attack, attacker initiates a series
of events to cause a user, program, server, or device
to perform actions which undermine the integrity of
software code.

Execute Arbitrary Code

188 Reverse engineer the ECS to gain system and security
information.

Reverse engineering or
Elicitation

212 Functionality misuse, adversary leverages legitimate
capabilities to achieve negative impacts.

Manipulate state/environ-
ment/configuration

224 Fingerprinting, adversary compares output from a
target system to known indicators that uniquely iden-
tify specific details about the target.

Footprinting/Fingerprinting

227 Adversary attempts to deny legitimate user access to
a resource by continually engaging a specific resource
in an attempt to keep the resource tied up as long as
possible.

Resource attacks or DoS

233 Privilege escalation by exploiting system weaknesses. Privilege Escalation
240 Resource injection, change resource identifiers to en-

able unintended modification of EEPC resources.
Manipulate input/parame-
ter/buffer or Inject Traffic

242 Code injection exploiting improper input validation. Execute Arbitrary Code /
Inject Traffic

248 Command injection, adversary looking to execute a
command of their choosing, injects new items into
an existing command thus modifying interpretation
away from what was intended.

Execute Arbitrary Code /
Inject Traffic

272 Protocol manipulation, manipulate the communica-
tion protocols through known security vulnerabilities.

Intercept or Eavesdrop

390 bypass physical security. Physical Unauthorized Ac-
cess

410 Information elicitation, engage individual from the
company to gain information about the system.

Reverse engineering or
Elicitation, 10

25

Product Security Assessment

438 Modification during manufacture, supply chain at-
tack.

Compromise during manu-
facturing

439 An attacker undermines the integrity of a product,
software, or technology at some stage of the distribu-
tion channel.

Compromise during manu-
facturing

440 HW integrity attack, adversary exploits a weakness
in the system maintenance process

Compromise during manu-
facturing

441 Insert malicious logic into the system. Execute Arbitrary Code or
Compromise during manu-
facturing

507 Physical Theft. Physical Unauthorized Ac-
cess

548 Contaminate resource, contaminate ECS information
system causing it to handle unauthorized informa-
tion resulting in unavailability while the problem is
resolved.

Resource attacks or DoS

549 Local execution of code, adversary installs and exe-
cutes malicious code on the target system in an effort
to achieve a negative technical impact.

Execute Arbitrary Code

560 Adversary guesses or obtains legitimate credentials
to achieve authentication and perform authorized
actions under the guise of an authenticated user or
service.

Bypass authentication
mechanism

594 Traffic injection, adversary injects traffic to degrade
or disrupt connection.

Intercept or Eavesdrop

607 Obstruction. Resource attacks or DoS
624 HW Fault Injection. Fault injection or Physical

signal manipulation

Table 4.1: Mapping of identified threat conditions to CAPEC entries

All the threat conditions have been grouped into five different categories based on the domain of
the possible attacks with all of them pointing to a "Top-Event" which is the compromise of the
ECU Confidentiality, Integrity or Availability as shown in the figure below.

26

4.5 – High Level Requirements Definition

Figure 4.4: Threat condition categories

4.5 High Level Requirements Definition
Each threat condition shapes the creation of High-Level Requirements, each of which defines the
necessary system characteristics and safeguards to mitigate the corresponding threat.
After having analyzed and grouped the threat conditions, the resulting High Level Requirements
are the following:

Requirement ID Description CAPEC Threat ID
R1 The product shall be developed in a secure environ-

ment to protect intellectual property and prevent
unauthorized access to design data.

404, 410, 416

R2 The product shall validate data communications in ac-
cordance with the interface control document (ICD).

116, 130, 227, 490, 137,
175, 242, 248, 624, 126,
148, 151, 184, 216, 28, 21,
114, 123, 153, 161, 272,
548, 607, 441

R3 Unused I/O interfaces, including reserved and manu-
facturing interfaces, shall be disabled.

116, 117, 169, 224, 125,
130, 131, 227, 490, 137,
175, 240, 242, 248, 624,
126, 148, 151, 154, 173,
184, 440, 25, 26, 29, 74,
462, 113, 212, 216, 554,
28, 39, 112, 155, 21, 114,
115, 22, 69, 122, 233, 234,
30, 123, 124, 128, 129, 153,
161, 165, 171, 176, 268,
271, 272, 548, 607, 97, 542,
438, 439, 441

27

Product Security Assessment

R4 Clearly defined access controls shall be required for
untrusted humans and automated access requests.

126, 173, 74, 28, 112, 155,
21, 114, 115, 122, 233, 234,
30, 129, 390, 507

R5 Write protection shall be provided for executables
and images to ensure integrity.

137, 175, 240, 242, 248,
184, 155, 129, 165, 171,
542, 441

R6 Data segment execution protection shall be imple-
mented to prevent unauthorized code execution.

137, 175, 240, 242, 248,
184, 74, 28, 124, 129, 153,
165, 171, 542, 441

R7 Shared system resources shall be protected to prevent
unauthorized or unintended information transfer.

126, 148, 151, 154, 173, 74,
161, 410

R8 The integrity of items executed during operation shall
be confirmed, and modification shall be prevented.

175, 240, 28, 124, 153, 165,
171, 268, 548, 542

R9 Improper configuration during startup or operation
shall be recorded, and normal operations shall be
limited or prevented.

175, 126, 113, 212, 155,
176, 268, 272, 548, 542, 441

R10 Data loads and their sources crossing trust bound-
aries shall be validated and authenticated prior to
activation.

116, 125, 130, 227, 490,
137, 175, 240, 242, 126,
148, 151, 154, 173, 28, 28,
112, 114, 124, 128, 153,
171, 548, 542, 441

R11 Test/debug interfaces, ports, protocols, and facilities
shall be protected against unauthorized usage.

116, 117, 169, 224, 125,
130, 131, 227, 490, 137,
175, 240, 242, 248, 126,
148, 151, 154, 173, 184, 25,
26, 74, 462, 113, 216, 554,
28, 28, 112, 155, 21, 114,
115, 22, 69, 122, 233, 234,
30, 123, 124, 128, 129, 153,
161, 165, 171, 176, 268,
271, 272, 548, 607, 97, 542,
441

R12 Third-party components shall be analyzed for vulner-
abilities and malware.

624, 440, 212, 554, 115,
124, 542, 441

R13 Third-party components included in the product shall
be tested to ensure they perform only intended func-
tionalities.

624, 440, 212, 554, 115,
124, 542, 441

R14 Resource usage shall be controlled appropriately for
the product.

130, 131, 227, 490, 240,
154, 74, 21

R15 A documented approach shall be implemented to de-
tect, mitigate, and recover from flooding DoS attacks.

125, 490, 607

R16 Users or processes acting on behalf of users shall be
uniquely identified and authenticated.

22

R17 The product shall include a vulnerability applicability
matrix to identify known vulnerabilities.

All

R18 The vulnerability applicability matrix shall be up-
dated within the last three months.

All

28

4.5 – High Level Requirements Definition

R19 Each product version shall be tested for applicable
vulnerabilities prior to release.

116

R20 Software within the product shall comply with secure
coding practices.

137, 242, 248, 126, 184, 25,
26, 74, 28, 113, 554, 28, 21,
114, 115, 69, 233, 123, 124,
129, 153, 171, 542, 441

R21 All network interfaces shall be scanned and passively
monitored for unexpected services or events.

169, 125, 131, 227, 490,
184, 462, 216, 22, 161, 272,
607

R22 Services responding on network interfaces shall be
verified to be necessary per requirements.

169, 125, 131, 227, 490,
184, 462, 216, 22, 161, 272,
607

R23 Interface responses shall provide necessary identifica-
tion information for the overall product version.

116, 224, 28, 97

R24 Identification information from autonomous responses
shall be verified.

116, 224, 28, 97

R25 The operational load image shall be validated prior
to execution.

542

R26 The integrity of the load image shall be maintained
during transfer from the originating source.

542

R27 Validation mechanisms shall minimize the likelihood
of operational load image modification.

542

R28 The operational load image shall include metadata
containing version, integrity, and security informa-
tion.

542

R29 Integrity measures shall be sufficiently complex to
uniquely validate the operational load image.

542

R30 Invalid operational load images shall be rejected and
not stored in non-volatile memory.

542

R31 The product shall determine the operational load
image is invalid if the integrity check fails.

542

R32 Error handling, logging, and recovery mechanisms
shall be implemented and clearly defined.

175, 624, 440, 25, 212, 28,
123, 607, 542, 441

R33 All data from outside the security perimeter shall be
validated prior to transmission and use.

125, 130, 490, 137, 175,
242, 248, 126, 28, 21, 123,
128, 153, 441

R34 Input that fails validation shall be immediately
deleted.

137, 175, 242, 248, 126, 28,
21, 153, 441

R35 Privilege levels shall remain fixed once established. 74, 69, 233, 234, 30
R36 Credential storage and handling shall prevent theft

or leakage, and critical operations shall require re-
authentication.

112, 114, 115, 560

R37 Users shall be authenticated to enable remote access
to files, resources, and log data.

22

R38 The supply chain shall be secured through authenti-
cation, validation, and tamper-evident mechanisms.

438, 439, 440

29

Product Security Assessment

R39 Secure communication protocols shall be implemented
to prevent MITM attacks.

94, 216, 272

R40 Resource inputs shall be protected from tampering
to prevent unintended future behavior.

548

Table 4.2: System High Level Requirements.

The results obtained could be used in a real case scenario to create all the artifacts of the Planning
& Scope Phase of the PSA process.

4.6 Starting Project Assessment Phase
Note: From this phase onward, the work will focus on what was possible to address
during the internship experience. Specifically, it will include an initial brief analysis
of the starting project (NXP "Unified Bootloader" with PCAN-UDS communication),
examining the security measures already in place and identifying those that need to be
implemented to enhance the system’s security. Extensive information on the starting
project can be found in its documentation at [6].

The assessment phase has been conducted on the starting project (NXP Unified Bootloader [6])
considering the security measures implemented to protect the application image loading process.
The initial project doesn’t include any advanced security measure to protect the loading process,
the only protection is the computation of a CRC32 over the image to be checked at every boot to
protect the integrity of it. But the CRC32 is not an advanced security feature and doesn’t provide
an adequate level of protection for this operation. The operation flow of the unified bootloader is
the following:

Figure 4.5: Unified Bootloader operation flow

30

4.6 – Starting Project Assessment Phase

There are two events that control the occurrence of the booting procedure:

1. Booting request from the Host PC via CAN interface.

2. APP Validity Flag set to zero (CRC32 check failure).

If the Validity Flag is set to one and the Host PC doesn’t request booting procedure to be
executed, then the application is loaded and run.

Given the operation flow of the unified bootloader, it is easy to notice that the process presents
several vulnerabilities. The one on which the work focuses the most is the fact that as long as
the CRC32 is correctly computed, anyone can load any application image on the board memory
and execute it.
The aim of this work is to secure the application image loading process by exploiting the advanced
security capabilities offered by a board from the NXP S32K family.

Considering this restricted case, a shorter thread condition identification could be the following
one:

Threat Condition CAPEC Description CAPEC ID
Lack of authentication
of the application image
source

Authentication Bypass, exploit-
ing absence of identity validation
to gain unauthorized access

115

No cryptographic integrity
check of the application im-
age

Data Integrity Attack, modifying
data without cryptographic vali-
dation

55

No code signing or digital
signature verification

Supply Chain Compromise, in-
jecting malicious software during
code update

137

Unrestricted access to
bootloader via CAN

Message Injection into CAN Bus,
sending unauthorized commands
via an exposed interface

240, 131

No secure boot or im-
mutable root of trust

Exploitation of Incorrectly Con-
figured Security Mechanism, ex-
ploiting lack of secure boot or
memory protection

17

No rollback protection or
version control

Exploitation through Downgrade
Attack, forcing an older vulnera-
ble version to bypass protections

132

Validity flag manipulation
vulnerability

Manipulating Flags or Status In-
dicators, altering critical boot
flags to control system behavior

141

No access control policy en-
forcement

Privilege Abuse / Insufficient Au-
thorization Checks, issuing com-
mands without privilege separa-
tion

18

No runtime memory/code
region protection

Buffer Overflow / Memory Cor-
ruption, exploiting writable or
executable memory without run-
time checks

100

31

Product Security Assessment

Threat Condition CAPEC Description CAPEC ID
No event logging or tamper
detection

Inhibition of Audit, preventing
detection of malicious activity

574

Table 4.3: Mapping of identified threat conditions to CAPEC entries (specific bootloader use
case).

In the next chapters are explained all the solutions adopted to face these threats and secure
the bootloading process.

32

Chapter 5

Theory Background

In this chapter, the theory and working principles of the solution implemented during the
internship practical activities are analyzed.

5.1 Hash Functions

A cryptographic hash function is a deterministic algorithm that takes an input (or message)
of arbitrary length and produces a fixed-length output, commonly referred to as the digest or
hash value. A secure hash function must satisfy the following fundamental requirements:

• Pre-image resistance: Given a hash value h, it should be computationally infeasible to
find any input x such that Hash(x) = h.

• Second pre-image resistance: Given an input x1, it should be infeasible to find another
input x2 /= x1 such that Hash(x2) = Hash(x1).

• Collision resistance: It should be infeasible to find any two distinct inputs x1 /= x2 such
that Hash(x1) = Hash(x2).

These properties ensure that hash functions are suitable for verifying the integrity of information,
enabling secure message authentication, and supporting the generation of digital signatures. A
critical aspect of secure hash functions is the avalanche effect, whereby a slight change in
input leads to a significantly different output, making the hash unpredictable and sensitive to
tampering.

33

Theory Background

Figure 5.1: Hash function avalanche effect. Source https://en.wikipedia.org/wiki/
Cryptographic_hash_function

Widely adopted algorithms such as SHA-256 (part of the SHA-2 family) are standardized by
NIST and offer a high level of resistance against known cyber attacks, making them suitable for
embedded security applications. In this thesis, hash functions are used in conjunction with digital
signature algorithms, such as ECDSA, to ensure data authenticity and integrity during secure
boot and firmware validation processes.

5.2 Digital Signatures
A digital signature is a cryptographic method that plays a key role in securing digital data and
communications, providing a reliable way to verify the authenticity of the sender, ensure that the
data has not been altered, and prevent the signer from denying their involvement (properties
known respectively as authenticity, integrity, and non-repudiation).
Digital signatures are based on asymmetric cryptography, which uses a pair of mathematically
linked keys, a private key and a public key, where the private key is kept secret by the signer,
while the public key is openly shared and available to anyone who needs to verify a signature.
The signing process begins with generating a cryptographic hash of the original data by applying
a secure hash function (e.g SHA-256), in this way the hash acts as a unique fingerprint of the
data, meaning that any slight change in the original content would produce a completely different
hash. The hash is then encrypted with the signer’s private key, creating the digital signature and
the signature is attached to or sent along with the original data.
To verify the signature, the recipient uses the sender’s public key to decrypt the digital signature
and recover the original hash and at the same time, it computes a new hash from the received
data using the same hash function. If both hashes match, the signature is valid, confirming that:

1. The data has remained unchanged during transmission (integrity).

34

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Cryptographic_hash_function

5.2 – Digital Signatures

2. The signature was produced by the holder of the private key corresponding to the public
key used for verification (authenticity).

3. The signer cannot deny having signed the data, as only the private key holder could have
generated the signature (non-repudiation).

Figure 5.2: Digital Signature flow. Source https://blog.mailfence.com/
how-do-digital-signatures-work/

Asymmetric cryptography relies on the difficulty of solving complex mathematical problems, such
as factoring very large numbers or computing discrete logarithms over elliptic curves, to guarantee
the security of the signature process. This inherent computational hardness ensures that deriving
the private key from its corresponding public key is practically infeasible, thus providing a strong
foundation for trust in digital communications.
Digital signatures, which are a fundamental component of Public Key Infrastructure (PKI), serve
the critical function of signing digital certificates, thereby enabling secure and authenticated
communication across vast and often untrusted networks like the Internet. By combining the
unique properties of cryptographic hash functions, which produce fixed-length fingerprints of
arbitrary data, with the asymmetric encryption capabilities of public and private key pairs,
digital signatures establish a powerful and reliable mechanism that underpins the security of
digital interactions in a broad spectrum of applications, ranging from secure email exchanges and
software distribution to electronic contracts and beyond.
Digital certificates play a crucial role within Public Key Infrastructure by binding a public key to
the verified identity of an entity, such as an individual, organization, or device. Without this

35

https://blog.mailfence.com/how-do-digital-signatures-work/
https://blog.mailfence.com/how-do-digital-signatures-work/

Theory Background

trusted association, digital signatures alone cannot fully guarantee non-repudiation, since there
would be no reliable way to confirm who owns a given public key. Acting as electronic credentials,
certificates enable recipients to trust that the public key they use for verification truly belongs
to the claimed signer, thereby preventing impersonation and man-in-the-middle attacks. The
process of issuing a digital certificate starts when the entity generates a key pair and submits the
public key along with identity information to a trusted Certificate Authority (CA) through a
Certificate Signing Request (CSR). The CA verifies the requester’s identity and, upon approval,
digitally signs the certificate with its own private key, effectively endorsing the link between the
public key and the entity’s identity.
Managing digital certificates involves their issuance, distribution, renewal, and revocation. Certifi-
cates have defined lifetimes and must be renewed to remain valid, while compromised or invalid
certificates are revoked using mechanisms like Certificate Revocation Lists (CRLs) or the Online
Certificate Status Protocol (OCSP). This continuous lifecycle ensures that digital certificates
maintain the trustworthiness required for secure and authenticated digital communications,
making them indispensable for establishing non-repudiation and overall system security.

5.2.1 Elliptic Curve Digital Signature Algorithm (ECDSA)
Elliptic Curve Cryptography (ECC) is a modern approach to public-key cryptography that uses
the mathematical properties of elliptic curves defined over finite fields. Unlike traditional methods
such as RSA, which rely on the difficulty of factoring large numbers, ECC bases its security on a
problem called the Elliptic Curve Discrete Logarithm Problem (ECDLP), that is much harder to
solve for the same key size, with respect to RSA, allowing ECC to provide strong security using
much smaller keys. As a result, ECC offers faster computations, requires less memory, and uses
less power, making it especially suitable for devices with limited resources, such as embedded
systems, IoT devices, and mobile hardware.
Building on ECC, the Elliptic Curve Digital Signature Algorithm (ECDSA) is a widely used
algorithm for creating and verifying digital signatures. It adapts the classic Digital Signature
Algorithm (DSA) to work with elliptic curves, offering the same security guarantees but with
much smaller key sizes. This reduction in key size leads to better performance and lower storage
needs, which is particularly important for embedded applications like the one addressed in this
thesis, where efficiency and limited computational power are critical.
ECDSA operates through three main steps:

1. Key Generation: The private key in ECDSA is a randomly chosen number within a
specific range. The public key is then calculated by multiplying this private key by a fixed
point on the elliptic curve, known as the generator point GG. An elliptic curve is a set of
points (x, y) satisfying a specific cubic equation of the form:

y2 = x3 + ax + by2 = x3 + ax + b

defined over a finite field, where aa and bb are constants that satisfy the condition
4a3 + 27b2 /= 0 to ensure that the curve has no singularities. These curves and their
parameters, such as the well-known NIST P-256, are standardized to ensure both security
and compatibility.

2. Signature Generation:
To sign a message, the signer first creates a hash of the message using a secure hash function
like SHA-256. Then, a random number k is selected, and the point

R = k · G

36

5.2 – Digital Signatures

is computed. The x-coordinate of R modulo the curve’s order gives the first part of the
signature, called r. The second part, s, is calculated using the private key, the hash, and r
in the formula:

s = k−1 · (H(m) + r · d) mod n

where d is the private key, H(m) is the message hash, and n is the order of the curve. The
signature is the pair (r, s).

3. Signature Verification:
When someone receives a signed message, they compute the hash of the message and then
calculate two numbers:

u1 = H(m) · s−1 mod n

u2 = r · s−1 mod n

Using the public key Q, they then calculate:

R′ = u1 · G + u2 · Q

If the x-coordinate of R′ modulo n equals r, the signature is valid, confirming that the
message was indeed signed by the private key holder and has not been altered.

Advantages of ECDSA

ECDSA offers several important benefits:

• Smaller Key Sizes: ECDSA can provide the same security as RSA or DSA but with
much smaller keys, for example a 256-bit ECDSA key matches the security of a 3072-bit
RSA key making it ideal for systems with limited storage and processing power, such as
embedded devices or IoT hardware.

• Efficiency: Because of the smaller keys and optimized math operations, ECDSA requires
less computation for generating keys, signing, and verifying signatures leading to faster
processing times and lower power consumption, which is especially important in battery-
powered or real-time systems. Smaller keys and signatures also reduce the bandwidth
needed when transmitting data.

• Strong Security: The difficulty of solving the Elliptic Curve Discrete Logarithm Problem
(ECDLP) represents ECDSA’s security. This problem is considered extremely hard to solve
with current technology, providing strong resistance against many known cryptographic
attacks.

Challenges of ECDSA

However, using ECDSA also comes with some challenges:

• Random Number Generation: The security of ECDSA depends heavily on the random-
ness of the number k used during signature creation. If k is reused or predictable, it can
expose the private key, compromising the whole system.

• Implementation Complexity: ECC and ECDSA require careful and secure imple-
mentation that exploit solutions like robust coding and hardware protections, to avoid
vulnerabilities such as side-channel attacks that exploit timing or power consumption to
reveal secret keys.

37

Theory Background

• Standards and Compatibility: To ensure security and interoperability, it is important
to use well established elliptic curve parameters, such as those standardized by NIST. Using
non-standard or weak curves could introduce security risks.

5.3 Secure Boot

Secure Boot is a security mechanism that ensures only authenticated and trusted software is
allowed to execute during the boot process of a system. It is a fundamental component of a
secure embedded architecture, particularly in systems where software integrity and authenticity
are critical, such as in automotive, aerospace, and IoT devices. The core principle of Secure
Boot relies on cryptographic validation of the firmware image before execution that is typically
achieved through the use of digital signatures, that the bootloader or a hardware-based root of
trust verifies against a trusted public key stored securely in read-only memory or fuses.
The Secure Boot process begins with an immutable first stage of code, often referred to as the
Root of Trust, which is inherently trusted and responsible for verifying the next stage of the boot
chain. Each stage of the boot process verifies the integrity and authenticity of the following stage,
forming a chain of trust that extends up to the operating system or application firmware. If
any component in this chain fails validation, the boot process is aborted or redirected to a safe
recovery mode.

Figure 5.3: Secure boot operation flow

By enforcing that only signed and verified code can be executed, Secure Boot mitigates threats such
as unauthorized firmware updates, malware injection during startup, and rootkits. Furthermore,
when combined with version control and anti-rollback protections, it can also prevent downgrade
attacks where attackers attempt to load older, vulnerable firmware versions.
In this work, the firmware authentication process is based on the verification of an ECDSA
digital signature and the procedure involves two main phases: during the signing phase, the
firmware supplier signs the application firmware using its private key, subsequently, when the
firmware is transmitted to the embedded device, the signature is verified by the board itself,
which securely stores the corresponding public key in protected memory. This mechanism ensures
the authenticity and integrity of the firmware before it is executed on the device.

38

5.4 – Controller Area Network (CAN)

Figure 5.4: Secure boot signature verification

If the signature verification is successful, the application is flagged as valid and subsequently
executed by the system, otherwise if the verification fails, the loading process is aborted, and a
valid signed application is required to proceed with execution.

5.4 Controller Area Network (CAN)
The Controller Area Network (CAN), standardized as ISO 11898 [7], is a robust serial commu-
nication protocol originally developed by Bosch for real-time communication among Electronic
Control Units (ECUs) in automotive systems. Its design supports high reliability, fault tolerance,
and efficient message arbitration without requiring a central host computer, making it a widely
adopted solution in embedded and automotive networks.
CAN follows a multi-master, broadcast-based communication model where each node can transmit
messages on the bus and all nodes receive them. Each message contains an identifier that also
serves as its priority: lower numerical values represent higher priority, and the arbitration process
ensures that the highest-priority message is transmitted without collisions.
The standard CAN frame supports a maximum payload size of 8 bytes, which is sufficient
for basic control signals but inadequate for transmitting larger data structures such as firmware
images or diagnostic logs. To address this, higher-layer protocols such as CAN TP (ISO 15765-2
[8]) are used to segment and reassemble large messages over CAN.
Despite its reliability and efficiency, CAN lacks built-in security features such as encryption,
authentication, or message integrity and this represents a risk since all nodes on the bus are able
to read and potentially inject messages, making CAN susceptible to attacks like spoofing, replay,
or DoS. These limitations make it essential to design secure architectures, especially when CAN
is used in safety and security critical systems such as bootloaders or over-the-air updates.

CAN Framing

The framing structure of a CAN message plays a crucial role in ensuring reliable and deterministic
communication across the bus. A standard CAN frame, defined in ISO 11898-1, consists of several
distinct fields: the Start of Frame (SOF), an Arbitration Field (composed of an 11-bit Identifier
in standard format, or 29-bit in extended format), the Control Field (indicating the data length),
the Data Field (carrying up to 8 bytes of payload), the CRC Field (for error detection), an ACK
Field, and the End of Frame (EOF).
The arbitration mechanism uses the Identifier field to determine message priority, where lower
binary values represent higher priority. During transmission, if multiple nodes initiate communi-
cation simultaneously, the arbitration logic ensures that only the highest-priority frame proceeds

39

Theory Background

without collision, while others back off and retry later making this behavior essential for real-time
applications where timing constraints are critical.

The Cyclic Redundancy Check (CRC) field provides basic error detection by allowing receivers to
validate the integrity of each frame, however, no message authentication or encryption is provided
at the frame level, which leaves the CAN bus vulnerable to attacks such as message injection or
spoofing. In the context of security, the open nature of the frame structure allows an attacker
with access to the physical bus to craft malicious frames that appear legitimate to other nodes,
highlighting the importance of incorporating higher-layer cryptographic protections in secure
system design.

Figure 5.5: CAN frame structure. Source: https://medium.com/@sjindhirapooja/
can-standard-data-frame-format-846b8f9fc749

5.5 CAN TP

The CAN Transport Protocol (ISO 15765-2 [8]), commonly referred to as CAN TP, is a com-
munication protocol designed to facilitate the transmission of data packets larger than 8 bytes
over the CAN bus, since standard CAN frames are limited to a maximum payload of 8 bytes.
CAN TP provides a mechanism to segment and reassemble longer messages, enabling the reliable
transfer of larger data structures such as diagnostic messages, firmware images, or configuration
data between ECUs.

The protocol defines four types of frames: Single Frame, used for payloads up to 7 bytes, First
Frame, which initiates the transmission of a multi-frame message, Consecutive Frame, used
for continuing the segmented data and Flow Control Frame, which is used by the receiver to
control the flow of incoming data and avoid buffer overflows. CAN TP includes mechanisms for
flow control, sequence numbering, and timeout handling to ensure data integrity and correct
reassembly on the receiver side.

40

https://medium.com/@sjindhirapooja/can-standard-data-frame-format-846b8f9fc749
https://medium.com/@sjindhirapooja/can-standard-data-frame-format-846b8f9fc749

5.6 – Unified Diagnostic Services (UDS)

Figure 5.6: Example CAN-TP message over a CAN bus. Source: https://
onlinedocs.microchip.com/oxy/GUID-9C356E20-C5BD-430F-8C0B-CCA1B85ECC7C-en-US-3/
GUID-F040354D-0842-4EFC-99F2-F1B8A649D106.html

CAN TP plays a critical role in automotive communication stacks, especially in diagnostics over
CAN (UDS on CAN), software updates, and bootloader communication. However, due to the
lack of built-in security features such as authentication, encryption, or integrity verification, CAN
TP may be susceptible to various threats like message injection, buffer overflows, or DoS attacks
if not protected by additional security layers. In the context of this work, CAN TP is particularly
relevant as it is used as the transport layer for receiving application images during the bootloader
process, making it a potential attack vector if not properly secured.

5.6 Unified Diagnostic Services (UDS)
The Unified Diagnostic Services (UDS), standardized under ISO 14229 [9], is a diagnostic
communication protocol widely adopted in the automotive domain for enabling communication
between external diagnostic tools and ECUs. UDS operates over various transport layers including
CAN (as UDS on CAN defined in ISO 15765-3 [10]), and builds upon protocols like CAN TP to
support the reliable transfer of diagnostic messages.
UDS defines a rich set of diagnostic services organized into functional groups, each identified by a
unique Service Identifier (SID). These services include, but are not limited to:

• Diagnostic Session Control (0x10): Initiates different diagnostic sessions such as
default, extended, or programming sessions, each granting different levels of access to ECU
functionalities.

• ECU Reset (0x11): Requests a reset of the ECU, with different reset types (soft, hard,
etc.).

41

https://onlinedocs.microchip.com/oxy/GUID-9C356E20-C5BD-430F-8C0B-CCA1B85ECC7C-en-US-3/GUID-F040354D-0842-4EFC-99F2-F1B8A649D106.html
https://onlinedocs.microchip.com/oxy/GUID-9C356E20-C5BD-430F-8C0B-CCA1B85ECC7C-en-US-3/GUID-F040354D-0842-4EFC-99F2-F1B8A649D106.html
https://onlinedocs.microchip.com/oxy/GUID-9C356E20-C5BD-430F-8C0B-CCA1B85ECC7C-en-US-3/GUID-F040354D-0842-4EFC-99F2-F1B8A649D106.html

Theory Background

• Security Access (0x27): Manages authentication mechanisms through seed-key exchanges
to protect critical operations.

• Communication Control (0x28): Enables or disables specific communication types (e.g.,
transmit/receive) to manage network traffic.

• Routine Control (0x31): Triggers execution of routines like memory checks, bootloader
entry, or cryptographic operations.

• Request Download (0x34) and Transfer Data (0x36): Used to perform firmware
updates or application flashing by downloading large data to the ECU.

• Write/Read Data by Identifier (0x2E/0x22): Enables reading or writing internal
variables or configuration parameters identified by specific IDs.

A typical UDS communication involves a request-response model where the client (tester) sends a
request containing a Service Identifier and optional parameters and the server (ECU) responds
with either a positive or negative response code (NRC) depending on the success or failure of the
requested service.

Figure 5.7: UDS on CAN request message. Source: https://www.csselectronics.com/
pages/uds-protocol-tutorial-unified-diagnostic-services

42

https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services
https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services

5.6 – Unified Diagnostic Services (UDS)

Figure 5.8: ISO TP multi-frame communication. Source: https://www.csselectronics.com/
pages/uds-protocol-tutorial-unified-diagnostic-services

UDS is an extremely adaptable diagnostic protocol, capable of being deployed over a wide variety
of underlying communication technologies, including CAN, FlexRay, Ethernet (DoIP), K-Line,
and LIN, thus making it suitable for diverse automotive architectures and evolving vehicle network
infrastructures.

43

https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services
https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services

Theory Background

Figure 5.9: OSI model layers of UDS. Source: https://www.csselectronics.com/pages/
uds-protocol-tutorial-unified-diagnostic-services

In this work, UDS over CAN (ISO 15765-3 [10]) is employed in conjunction with CAN TP to
facilitate the secure reception and validation of firmware updates, the RoutineControl service is
particularly relevant, as it is used to manage the secure flashing process and to trigger digital
signature verification routines within the bootloader. Ensuring that UDS services like this are
executed only within authenticated sessions (e.g. through successful SecurityAccess) is crucial to
protecting the system from unauthorized firmware uploads or execution of privileged commands.
While UDS offers powerful diagnostic capabilities and flexibility, it also presents potential
security risks if not properly safeguarded. Without robust access control and cryptographic
protections, attackers may exploit services like ECUReset or WriteDataByIdentifier to disrupt
system operation or compromise integrity. Therefore, the secure implementation of UDS, especially
in the context of firmware updates and bootloader design, is a fundamental aspect of embedded
system cybersecurity.

44

https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services
https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services

Chapter 6

Laboratory Setup

In this chapter, it is described the laboratory setup on which the practical activities were carried
out during the internship. The purpose of this section is to provide a detailed overview of the
hardware and software components used, the configuration of the embedded system, and the
development environment adopted. Particular attention is given to the elements involved in the
secure boot process, the communication interfaces and the procedures used for firmware signing
and verification. This context is essential to understand the implementation and validation of the
security mechanisms described in the following sections.

6.1 Laboratory Setup Components
The whole setup is composed of several elements:

• Host PC: Company PC running Windows 11 OS, used for firmware development, compila-
tion, flashing, and debugging.

• Development Software: The primary development environment is the S32 Design Studio
for Power Architecture, an IDE provided by NXP, which integrates compiler toolchains,
debugger configurations, and project management features.

• Target Board: The embedded platform used for testing is part of the NXP S32K family,
more precisely part of the S32K3 family of automotive MCUs based on the Arm Cortex-M7
core. It includes an Hardware Security Engine (HSE) that integrates directly on chip
several security features like cryptographic operations, key management and secure memory
storage.

• Debugger Interface: A Lauterbach PowerDebug PRO is used as a high performance
debugging and trace interface, connected to the board via the JTAG port. It allows precise
control over the firmware execution and facilitates low-level debugging and trace analysis.

• Communication Interface: A PEAK-System PCAN-USB interface is employed to connect
the Host PC to the CAN network on the target board. Through this interface, the host PC
communicates with the target board to perform the bootloading routine following the UDS
over CAN-TP protocol.

• Power Supply: The evaluation board is powered through a laboratory DC power supply,
capable of providing a stable voltage source (12V) with adjustable current limits.

45

Laboratory Setup

Figure 6.1: Laboratory setup scheme

6.1.1 Development software - Libraries
The environment required for this work also involves the installation of specific libraries, which
can be directly installed through the dedicated window within the S32 Design Studio IDE called
Extensions and Updates. The environment comprehend the following elements installed on the
version 3.6.0 of the S32 Design Studio IDE:

• GDB Client for Arm Embedded Processors 15.1 Build 1703.

• GNU ARM PEMicro Interface Debugging Support v5.9.2.

• NXP GCC for Arm Embedded Processors v10.2 build 1728.

• NXP GCC for Arm Embedded Processors v11.4 build 1763.

• NXP GCC for Arm Embedded Processors v9.2 build 1649.

• S32 Design Studio Debugging Core v3.6.0.

• S32 Design Studio Platform Tools package v3.6.0.

• S32G development package v3.6.0.

• S32K1xx development package v3.6.0.

• S32K3 RTD AUTOSAR 4.4 v2.0.0.

• S32K3xx development package.

6.1.2 Target Board - NXP Hardware Security Engine (HSE_B) in
S32K3

The Hardware Security Engine (HSE) integrated in the NXP S32K3 microcontroller is a
dedicated on-chip security co-processor designed to offload and accelerate cryptographic operations,

46

6.1 – Laboratory Setup Components

enforce secure boot mechanisms, manage keys in a protected environment, and ensure compliance
with stringent automotive security requirements (e.g., ISO 21434, AUTOSAR). The specific
implementation employed in this work is the HSE_B firmware, an official NXP proprietary
firmware image delivered encrypted and directly installed on the NXP board that verifies its
authenticity and installs it reconfiguring the flash memory.

HSE_B Firmware Installation

The installation of HSE_B can happen in two ways that define how the HSE firmware image is
flashed into the device’s non-volatile memory:

• FULL_MEM Mode: In this mode, the entire reserved HSE firmware memory region is
used for a single image that is written once and occupies the full partition dedicated to the
HSE. This approach is simpler and more space-efficient, but it does not support firmware
rollback or atomic updates, therefore, it is more suitable for production deployments where
the firmware is stable and secure boot integrity checks are firmly established. Firmware
updates using FULL_MEM require halting the application and reprogramming the entire
HSE region (no zero-downtime updates).

• AB_SWAP Mode: In this configuration, the memory area reserved for the HSE is
logically split into two partitions, partition A and partition B and only one of the two
partitions is active at a time, while the other remains available for staging a new firmware
update. This method enables safe and atomic updates since a new HSE firmware version
can be downloaded and flashed into the inactive partition, and once validated, the active
pointer is swapped to point to the new image. If any issue occurs during update or boot,
the system can fall back to the previous working image, ensuring robustness and preventing
bricking due to corrupted or incomplete updates. Moreover this is a solution that permits
zero-downtime updates.

The choice for this work has been FULL_MEM since it represents the only reversible way of
installing the HSE_B on the board.

HSE_B Messaging Unit

The HSE architecture is functionally isolated from the application core (host domain) since
communication between the main application running on the Cortex-M7 core and the HSE
firmware occurs through a shared Messaging Unit (MU), which consists of a set of registers
used by the host to trigger service requests and receive service responses while from the HSE it is
used to receive service requests, provide service responses along with HSE status information
relevant to the host.
The Messaging Unit (MU) operates through a dual-interface architecture, consisting of two sides:
MUA and MUB. In this configuration, the Hardware Security Engine (HSE) exclusively manages
the MUA side, while the host processor is granted control over the MUB side. Communication
between the host and the HSE is established by writing data into a 32-bit readable and writable
transmit register (TRi) on one side, which can then be read from the corresponding 32-bit read-only
receive register (RRi) on the opposite side. Additionally, certain control registers on one interface,
such as the 32-bit read-only Flag Control Register (FCR), are directly linked to 32-bit read-only
status registers on the other side, like the Flag Status Register (FSR).

47

Laboratory Setup

Service Descriptors

To request a service from the Hardware Security Engine (HSE), the host must prepare and
transmit a service descriptor, which is a data structure residing in memory that encapsulates
all necessary parameters for a specific HSE operation. The descriptor includes fields such as
the service ID (defining the type of request, e.g. key generation, signature verification), service-
specific parameters (e.g. pointers to key handle or data buffers), and optional flags. Once
the descriptor is populated, the host writes its memory address into a transmit register (TRi)
associated with a free service channel of a Messaging Unit (MU) instance. This action triggers
the HSE to begin processing the requested service. The HSE internally reads the descriptor from
the specified memory location, performs the requested operation, and then writes the result into
the corresponding receive register (RRi). The host can poll or be notified via interrupt when
the service completes, and it must subsequently read the response and clear the channel before
reusing it. The correct alignment and location of service descriptors in memory are critical, they
must be located in accessible RAM regions and conform to the expected structure layout as
defined in the HSE Reference Manual.

Service Channel

A service channel is a temporary communication path that links a service request to a specific
pair of transmit/receive registers (TRi/RRi) within a Messaging Unit (MU) instance. Each channel
remains available until the host writes the address of a service descriptor to the corresponding TRi
register, thereby initiating the request. The channel remains occupied while the HSE processes
the service and until the host reads the result from the RRi register. On the S32K3, with two MU
instances and four transmit registers each, up to eight service channels can be used concurrently.
A service channel is considered free when the transmit register is empty (bit i in the TSR is 1),
the receive register has been read (bit i in the RSR is 0), and the channel is not currently being
processed (bit i in the FSR is 0). Service requests are triggered by writing the service descriptor
address into a free channel, note that channel 0 is reserved exclusively for administration services,
using it for other service types results in an error. Proper management of service channels is
essential to avoid writing to channels that are currently busy, which would otherwise lead to
incorrect behavior or system faults.

48

6.1 – Laboratory Setup Components

Figure 6.2: HSE_B Messaging Unit

Security Features

The HSE_B supports a wide range of security services, including:

• Secure Boot and Application Authentication: Verifies the integrity and authenticity
of the application firmware before execution using cryptographic checks over the image.

• Symmetric and Asymmetric Cryptography: Supports algorithms like AES (ECB,
CBC, GCM), HMAC, CMAC, and asymmetric operations such as RSA and ECDSA over
standardized NIST curves (e.g. P-256).

• Random Number Generation: Includes a TRNG (True Random Number Generator)
compliant with NIST SP 800-90B for secure key generation and nonce creation.

• Key Derivation and Lifecycle Management: Supports symmetric and asymmetric key
derivation, as well as the ability to securely load, delete, or rotate keys based on lifecycle
policies.

• Secure Debug Control and Lifecycle Transitions: Enables restriction of debug access
(password-based or through asymmetric challenge-response and the possibility to manage

49

Laboratory Setup

the device lifecycle from development phase which permits to operate always with high
privilege to production and distribution phases where all the protections are enabled.

Cryptographic Keys

The keys available to the host via cryptographic services are categorized into specific groups
based on their types, organized within catalogs that the host configures statically. Each key
resides in a dedicated key slot containing its value and associated attributes which are configured
dynamically by the host through key management services. These keys can be provisioned using
multiple methods, including direct generation or derivation from existing keys. The catalogs for
keys stored in non-volatile memory (NVM) and RAM are defined within the SYS-IMG, whereas
the catalog for keys stored in ROM is defined within the HSE.

Key Group and Key Type

A key group consists of a set of cryptographic keys of the same type where each group is assigned
an index within the key catalog in which it is defined. This index reflects the order in which the
groups are declared, the first group is assigned index 0, the second index 1, and so forth.
The different key types possible are:

Key Type Description Key Catalog
HSE_KEY_TYPE_AES AES key NVM and RAM
HSE_KEY_TYPE_SHE AES key used with SHE-

specific services
NVM and RAM

HSE_KEY_TYPE_HMAC HMAC key NVM and RAM
HSE_KEY_TYPE_RSA_PAIR RSA key pair (public and

private)
NVM only

HSE_KEY_TYPE_RSA_PUB RSA public key NVM and RAM
HSE_KEY_TYPE_RSA_PUB_EXT RSA public key, stored in

application NVM
NVM and RAM

HSE_KEY_TYPE_ECC_PAIR ECC key pair (public and
private)

NVM and RAM

HSE_KEY_TYPE_ECC_PUB ECC public key NVM and RAM
HSE_KEY_TYPE_ECC_PUB_EXT ECC public key, stored in

application NVM
NVM and RAM

HSE_KEY_TYPE_DH_PAIR DH key pair (public & pri-
vate)

NVM and RAM

HSE_KEY_TYPE_DH_PUB DH public key NVM and RAM
HSE_KEY_TYPE_SHARED_SECRET Shared secret – can be

used to derive a secret key
RAM only

Key Slots and Key Values

A key slot is a memory location used to store a single key along with its value(s) and associated
attributes. Each slot is identified by an index within the key group it belongs to and this index
corresponds to the order in which the slots are defined within the group: the first slot has index
0, the second has index 1, and so forth.
Key Values are represented by unsigned integers of various sizes that depend on the key size. For
example an ECC Keypair is composed by:

50

6.1 – Laboratory Setup Components

• ECC Private Key: A private random generated scalar W where the key size is given by the
bit length of W.

• ECC Public Key: A public point Q on the elliptic curve that results from the multiplication
of the private scalar W and a given point G called generator (as seen in 5.2.1).

Key Attributes

A stored key can have several key attributes available to the host to be configured.

Key Attribute Description Type
Bit size Specifies the key length in bits. 16-bit integer
Update counter Counter to prevent roll-back;

new values must increment. For
NVM keys: 0 to 0xFFFFFFFE.
For RAM keys: fixed at
0xFFFFFFFF. For SHE keys:
28-bit counter (RAM keys set to
zero).

32-bit integer

MU instance map Flags indicating which Messag-
ing Unit (MU) instances can acti-
vate key services. Defined at key
group level.

Bit field

SMR verification map Flags specifying which Secure
Memory Regions (SMR) must be
verified before the key can be
used.

Bit field

Key Type Key category identifier as defined
in the key access restriction flags.

8-bit integer

ECC Curve ID / RSA Exponent Size /
AES Block Mode

Indicates one of: ECC curve ID,
RSA public exponent size (in
bytes), or AES block mode mask,
depending on key type.

8-bit integer

Access restriction flags Flags controlling how and when
the key can be accessed. See the
access restriction section.

Bit field

Usage flags Flags defining allowed usage oper-
ations for the key. See the usage
flags section.

Bit field

One fundamental key attribute is the Key Usage Flags, because it strictly define the purpose
of the key. The different key usage flags are defined by macros and are:

Key Flag Effect When Enabled
HSE_KF_USAGE_ENCRYPT Allows the key to be used for encryption purposes.
HSE_KF_USAGE_DECRYPT Permits the key to participate in decryption opera-

tions.
HSE_KF_USAGE_SIGN For RSA/ECC: enables signature generation (private

key only). For AES/HMAC: permits MAC creation.

51

Laboratory Setup

HSE_KF_USAGE_VERIFY For RSA/ECC: enables signature verification (public
key only). For AES/HMAC: allows MAC verification.

HSE_KF_USAGE_EXCHANGE Authorizes use in key exchange protocols such as DH
or ECDH.

HSE_KF_USAGE_DERIVE Grants permission to derive new keys from this one.
Note: not valid for RSA, ECC, or DH key types.

HSE_KF_USAGE_KEY_PROVISION Restricts usage to key provisioning operations (im-
port/export of keys). When this flag is set, the key is
only valid for decrypting imported keys or encrypting
keys for export. If not set, the key can be used for
regular cryptographic operations on memory data
(e.g., encryption, verification). Attempting to use the
key for provisioning when the flag is cleared results
in an error.

HSE_KF_USAGE_AUTHORIZATION The key is valid for authenticating requests
to elevate privileges to Super User (SU). Re-
quires HSE_KF_USAGE_VERIFY to be set, and
HSE_KF_USAGE_SIGN must not be set.

HSE_KF_USAGE_SMR_DECRYPT Allows the key to decrypt Secure Memory Re-
gions (SMR). If enabled at installation, the
firmware disables the standard decryption flag
(HSE_KF_USAGE_DECRYPT).

Key Catalog

The HSE manages cryptographic keys using three distinct key catalogs: ROM, NVM, and
RAM and each of them is uniquely identified and organizes its keys into groups. The ROM key
catalog is static and pre-configured by NXP during production, with keys stored in secure NVM
(like the one to decrypt and install the HSE firmware). In contrast, the NVM and RAM catalogs
are configurable by the host. The NVM catalog stores key attributes in the system image and
key values either in the system image or application NVM. The RAM catalog holds both key
values and attributes directly in secure RAM. The following table summarizes the properties of
each catalog.

Key Catalog ID Value Configurable Description
HSE_KEY_CATALOG_ID_ROM 0 No ROM key catalog; keys are stored

in secure NVM and provisioned
by NXP before shipment.

HSE_KEY_CATALOG_ID_NVM 1 Yes NVM key catalog; key values are
stored in the system image or in
application NVM (e.g., for select
public RSA and ECC key certifi-
cates). Key attributes are stored
in the system image.

HSE_KEY_CATALOG_ID_RAM 2 Yes RAM key catalog; both key at-
tributes and values are stored in
secure RAM.

The NVM and RAM key catalogs are configured statically by the host through a table, in

52

6.1 – Laboratory Setup Components

which each entry defines the attributes of a key group. A key group is characterized by the
following five properties:

• MU instance map: Indicates which Messaging Unit (MU) instances are allowed to access
the key group (MU0 or MU1).

• Owner: Identifies the owner of the key group (see the table on key group owners 6.1.2).

• Key type: Specifies the type of key (see the table 6.1).

• Number of key slots: Defines how many individual keys the group can contain.

• Maximum key size: Sets the upper limit for the key size in bits, depending on the key
type.

The allowed maximum key size for a given key type is constrained by design and summarized in
the table below.

Key Type Allowed Maximum Key Sizes (in bits)
HSE_KEY_TYPE_AES 128, 192, or 256
HSE_KEY_TYPE_SHE 128
HSE_KEY_TYPE_HMAC 128 up to 1152
HSE_KEY_TYPE_ECC_PAIR 192 up to 640
HSE_KEY_TYPE_ECC_PUB 192 up to 640
HSE_KEY_TYPE_ECC_PUB_EXT 192 up to 640
HSE_KEY_TYPE_RSA_PAIR 1024 up to 4096
HSE_KEY_TYPE_RSA_PUB 1024 up to 4096
HSE_KEY_TYPE_RSA_PUB_EXT 1024 up to 4096
HSE_KEY_TYPE_DH_PAIR 1024 up to 4096
HSE_KEY_TYPE_DH_PUB 1024 up to 4096
HSE_KEY_TYPE_SHARED_SECRET 128 up to 2048

Each key group is assigned an owner, which defines the access control policies for managing the
keys within that group determining whether a host is allowed to perform operations such as
provisioning or modifying keys, depending on its rights and identity (HID). The host’s privileges
are evaluated based on whether it holds Super User (SU) or User rights, and whether it matches
the expected Host ID (CUST or OEM). The following table summarizes the ownership options
and their effects.

Key Group Owner Applies to Description
HSE_KEY_OWNER_CUST NVM key catalog Keys can be fully managed if the host has

SU rights and the HID is CUST (system
integrator). With User rights, the host may
provision keys only if it knows a key owned
by CUST.

HSE_KEY_OWNER_OEM NVM key catalog Full management is allowed with SU rights
and HID set to OEM. With User rights,
provisioning is allowed only with knowledge
of an OEM-owned key.

53

Laboratory Setup

HSE_KEY_OWNER_ANY NVM1 and RAM
key catalogs

With SU rights, keys can be managed freely.
With User rights, key management opera-
tions are restricted.

Key Handle

A key handle is a 32-bit identifier (hseKeyHandle_t) that uniquely identifies a key within a key
catalog and that is used in all services requiring key access. The format of the key handle is
structured by bit fields that define the catalog, group, and slot where the key is located.

Figure 6.3: Key Handle Structure

Where:

• 31-24: Reserved and Must be set to 0.

• Key Catalog ID: Identifies the key catalog (see 6.1.2).

• Key Group Index: Indicates the position of the key group in the catalog configuration (first
group has index 0).

• Key Slot Index: Indicates the index of the key within the specified group (starts from 0).

Key Management

Key Management services can be used by the host to:

• Initialize and update key values.

• Export key values.

• Generate and derive key values.

• Establish secret keys in a secure way.

First of all, the services described in this section are available to the host only after the key
catalog have been formatted using the dedicated service to be invoked.
All the keys2 can be imported through the import service (hseImportKeySrv_t).
A key can be imported both in plain or encrypted (using a dedicated encryption key). In this
work the only import needed is the the public ECDSA key needed to verify the signature on the

1With some limitations
2With some exeptions, consult the HSE_B reference manual (RM00286) for more specific information

54

6.1 – Laboratory Setup Components

application image so encryption is not needed.
The key import service can be used only by a user who has been granted with super user rights.
The key management services include the possibility to securely erase a key using the dedicated
service (hseEraseKeysSrv_t). Keys in the RAM key catalog can be erased unconditionally while
keys in the NVM can be erased only if the host is granted with Super User Rights.

6.1.3 Debugger Interface - Lauterbach debugger & TRACE32
The Lauterbach PowerDebug PRO is a high-performance JTAG-based debug and trace probe
that provides comprehensive hardware level control over the target microcontroller, allowing
detailed management of the execution flow through the insertion of breakpoints, watchpoints,
and single-step execution while also enabling real-time inspection of variables, memory contents,
CPU registers, and the call stack. Its advanced trace capabilities capture both instruction and
data traces, which facilitate thorough analysis of program execution paths and timing, allowing
for effective performance profiling and identification of bugs.

Figure 6.4: Lauterbach PowerDebug System

This debugger is operated through the Lauterbach TRACE32 software suite, which integrates a
powerful graphical user interface alongside a flexible command line environment, offering features
such as complex breakpoint conditions, multi-core debugging, and comprehensive visualization
tools that display variable states, stack calls, peripheral registers, and memory mappings, thus
streamlining the process of low-level firmware debugging and system validation with a high degree
of precision and efficiency.

6.1.4 Communication Interface - PEAK-PCAN-USB & PCAN-View
The PEAK-System PCAN-USB interface serves as the communication bridge between the host
PC and the CAN network on the target board, providing a reliable connection that supports CAN
protocol standards essential for automotive and embedded system development. This interface
enables the host PC to transmit and receive CAN messages, which are crucial for executing the
bootloading routine in compliance with the UDS (Unified Diagnostic Services) protocol over the
CAN Transport Protocol (CAN-TP). The communication process is monitored and analyzed
using the PCAN-View software, which offers a comprehensive graphical interface for real-time
visualization and logging of CAN messages, including support for filtering, message interpretation,
and error frame detection. PCAN-View facilitates the inspection of message identifiers, data

55

Laboratory Setup

payloads, timestamps, and bus load statistics, providing a very useful tool for debugging and
verifying communication sequences during the bootloading process as well as for general CAN
bus diagnostics and testing.

56

Chapter 7

Program Development

This chapter provides a detailed description of the implemented work, outlining the guiding
principles and explaining the operational functionality of the embedded board. During this phase
of the internship it has been implemented, starting from the NXP Unified Bootloader project
cited in 4.6, a secure application image loading procedure that authenticates the application
image using an ECDSA digital signature.

7.1 Project Structure
The project folder includes all the elements involved in the process of generating asymmetric keys,
signing the application image, loading the application image on the target board and verifying
the signature over the application image. The different programs included are reported below:

Figure 7.1: Project folder structure

Where:

• 06_client_all_request is the host PC side folder where are contained a series of python
scripts to be used to invoke the signature procedure over the image and the image loading
trough CAN routines.

• S32K***_BootRTD2d0 contains the bootlaoder program executed on the target board to
manage the signature keys and the signature verification process.

• S32K***_CAN_App_RTD200 is the application image to be signed, loaded and executed
on the target board after signature verification.

57

Program Development

• readme.md is a markdown file containing all the instructions useful to autonomously execute
the programs on both host PC side and target board side and replicate the experiments
done during this work.

7.2 Execution flow
7.2.1 Key generation
First, the application image has to be signed by the authorized software provider (hypothetically
Avio Aero), which generates an asymmetric ECDSA keypair. During the internship, the keypair
was created using OpenSSL with the standard NIST P-256 curve. The private key used to sign
the application image is stored in the file eccPrivateKey.pem.

7.2.2 Signature generation and Flashing Procedure Script
The signing process for the application image is handled by a Python script, which also takes
care of loading the image onto the target board via CAN UDS routines (\workingProjectBootloader
\06_client_all_request\Flashing_Procedure.py). The script is run from the command line. As
explained in the readme.md file, it takes four arguments (i.e., .\Flashing_procedure.py argv1
argv2 argv3 argv4), which are:

1. argv1: address where the flash drivers will be placed in the target board’s flash memory.

2. argv2: name of the binary file containing the flash drivers.

3. argv3: address where the application image will be placed in the target board’s flash
memory.

4. argv4: name of the binary file containing the application.

The first thing the script does is generate the signature with OpenSSL:

openssl dgst -sha256 -sign eccPrivateKey .pem -out signature .bin App_filename

Here, App_filename is the fourth argument when running the script.
The generated signature is in ASN.1 format and is then split into the two values r and s (32
bytes each) that make up the ECDSA signature. If everything goes well, the signature is printed
in the terminal along with a success message. If there’s an error, the process is automatically
retried until a valid signature is produced.
After that, the script follows the same execution flow as the original NXP Unified Bootloader
project:

1. Initialize the UDS communication session.

2. Map and define source and response messages.

3. Switch to Extended Session, which allows certain diagnostic accesses but no flashing rights.

4. Switch to Programming Session, which sets up the environment for reprogramming the
target board’s flash.

58

7.2 – Execution flow

5. Security Access 11 unlocks moderately restricted diagnostic functions but still no flash
programming.

6. Security Access 2 unlocks full reprogramming rights, including flash erase, firmware download,
and memory programming.

7. Download the flash drivers (second script argument) and run control checks on them.

8. Download the application image (fourth script argument).

9. Run signature checking for the application image.

10. Download the application image signature and verify it.

The signature verification decides whether the application image is valid. If it is, it will run
at the next power-on, if not, it’s erased from flash and a new image needs to be loaded. The
application’s validity is determined by the APP Validity Flag described in 4.6. Finally, when the
script finishes, a physical ECUReset message is sent to the target board to restart it and launch
the bootloader.

7.2.3 Signature Checking Procedure
The signature checking process is invoked as a UDS_RoutineControl 0x31 request, identified
in the code as UDS_IsSignatureRoutineControl, with the routine identifier 0x31 0x01 0x03
0x03.

Figure 7.2: Signature Routine Control Switch Case Detail

When this routine is received, the function UDS_IsCheckRoutineControlRight is first called
to verify that the parameters passed match the expected format for the requested routine.
If the parameters are valid, the received signature is stored in a dedicated RAM buffer via
Flash_SavedReceivedSignature. To avoid blocking the communication flow with a long cryp-
tographic check, the UDS service handler immediately responds with a Response Pending (NRC
0x78) to keep the tester session alive, and then assigns the pfUDSTxMsgServiceCallBack function
pointer to UDS_DoSignature, which will set the active job (SIGNATURE_CHECKING) to be executed

1Security Access 1 and 2 are both implemented using the UDS SecurityAccess service (0x27) with a seed/key
challenge–response. Each level has its own seed and corresponding key, so obtaining Level 1 access does not grant
Level 2 privileges.

59

Program Development

in deferred mode and invokes the UDS_DoResponseSignature function that meanwhile prepares
a final positive or negative response for the signature verification service.

Deferred execution in the main loop The bootloader main() function continuously calls
BOOTLOADER_MAIN_Demo(), which drives the UDS state machines. During each iteration, the
UDS manager checks whether pfUDSTxMsgServiceCallBack is non-NULL.

Figure 7.3: Bootloader main function

If it is, the Flash_OperateMainFunction() function is called and inside it, using a switch, the
function to execute is selected (in this case Flash_SignatureCheck). This function calls the
isSignatureValid function that runs the ECDSA signature verification against the stored buffer
using the HSE_B services by crafting the service request and sending it.
Since this whole process happens during the UDS transmission, to not violate the timing
constraints defined by the UDS protocol, the HSE_Send function, has been modified and divided
in a three-state machine to manage iterative calls of the callback function while waiting for the
operation to be completed:

• Case 0: the object pHseSrvDesc is filled with all the information needed to send a service
request to the HSE as defined in 6.1.2. After the request is ready, it is sent to the HSE using
HSE_Send_2(), which is a simplified, non-blocking version of HSE_Send(), that originally
manages both synchronous and asynchronous modes, including waiting for the response,
handling callbacks, and tracking channel state. In the modified version, all this waiting logic
is removed since the request is sent with HSE_MU_SEND_NON_BLOCKING() and the function
immediately returns HSE_SRV_RSP_UNFINISHED. This change was introduced because the
call is made during the CAN-UDS session since any blocking inside the function could delay
the response or reception of UDS frames, potentially causing the session to time out.

• Case 1: in this case there is an active waiting for the HSE response where if the response
is HSE_SRV_RSP_UNFINISHED, then the state machine does nothing and waits. Otherwise,
when a different response is received, the result is saved and it goes to the next state.

60

7.2 – Execution flow

• Case 2: this is the exit state which marks the operation as finished.

boolean SignatureValidity (boolean * finished , const uint8_t * sig ,
uint32_t appStartAddress , uint32_t appLength)

{
hseSrvDescriptor_t * pHseSrvDesc = & gHseSrvDesc [0U][1U];
hseSignSrv_t * pSignSrv ;

memcpy (a, sig , 32);
memcpy (b, sig + 32, 32);

switch (state)
{
case 0: // crafting service request and send it to HSE

memset (pHseSrvDesc , 0, sizeof (hseSrvDescriptor_t));
pHseSrvDesc -> srvId = HSE_SRV_ID_SIGN ;
pSignSrv = &(pHseSrvDesc -> hseSrv . signReq);
pSignSrv -> accessMode = ACCESS_MODE ;
pSignSrv -> signScheme = signScheme ;
pSignSrv -> authDir = VERIFY ;
pSignSrv -> keyHandle = EcckeyPubHandle ;
pSignSrv -> inputLength = appLength ;
pSignSrv -> pInput = StartAddress ;
pSignSrv -> bInputIsHashed = ...;
pSignSrv -> sgtOption = ...;
pSignSrv ->sig [0] = (ADDR)a;
pSignSrv ->sigl [0] = (ADDR)&aLen;
pSignSrv ->sigl [1] = (ADDR)&bLen;
pSignSrv ->sig [1] = (ADDR)b;

HseResponse = HSE_Send_2 (0U, 1U, xxx , pHseSrvDesc);
state ++;
* o_pbIsOperateFinsh = FALSE ;
break ;

case 1: // wait HSE to respond
HseResponse = HSE_MU_ReceiveResponseNotBlocking (0U, 1U);
* o_pbIsOperateFinsh = FALSE ;
if (HseResponse == HSE_SRV_RSP_UNFINISHED) {

// wait for the response
} else {

if (HSE_SRV_RSP_OK == HseResponse) {
result = TRUE;

}
* o_pbIsOperateFinsh = TRUE;
state ++; // when the response is received , go to the next state

}
break ;

case 2:
* o_pbIsOperateFinsh = TRUE; // operation finished
break ;

default :
break ;

}

return result ;
}

61

Program Development

UDS Response crafting Following the UDS protocol a positive response to a service is formed
by adding 0x40 to the original service identifier (SID). For the RoutineControl service (0x31),
the corresponding positive response SID is therefore 0x71. The rest of the response maintains the
same subfunction and routine identifier of the request (0x01 0x03 0x03), followed by a routine
specific status byte that indicates the outcome of the operation (0x00 for successful signature
verification, 0x01 for failure).
This format ensures that the tester can unambiguously correlate the response to the original
request and interpret the result of the executed routine.

When the process is finished, the callback is cleared, and the TP layer transmits the final response
in its next transmission cycle.
Advantages are:

• Preventing block of the communication stack during long cryptographic operations.

• Keep UDS session alive using NRC 0x78 until the final result is ready.

7.2.4 Target Board Bootloader
When the target board powers on, the bootloader is the first piece of software to run. Its primary
role is to determine whether control should be passed to the existing application or whether it
should remain in bootloader mode to receive and program a new image. This decision is based
on the APP Validity Flag, a status indicator that reflects whether a valid application is present
in flash memory.
The entry point of the bootloader program is the main function in \workingProjectBootloader\S32K
***_BootRTD2d0\BSWL\Startup\Core0\src\main.c. This function immediately calls BOOTLOADER_MAIN_Init,
which performs initial hardware and communication setup before invoking Boot_JumpToAppOrNot,
a function perform the decision: if the APP Validity Flag is set to TRUE and no flashing pro-
cedure has been requested by the host, execution jumps to the application image using the
Boot_JumpToApp function. At this point, the reset handler address in the vector table is updated
to point to the application’s entry point in flash, effectively transferring control to user code.

Figure 7.4: Jump To App or not function

This structure allows the bootloader to act as a gatekeeper for the device firmware since it can
either launch a known good application immediately, or stay active to accept firmware updates

62

7.2 – Execution flow

via the chosen communication protocol (in this case, CAN with UDS services). This ensures that
corrupted or incomplete application images are never executed, preserving system stability.
Since the signing and signature verification processes are computationally demanding for embedded
systems like the one in this work, at each reset the only check that remains active is the CRC
verification already implemented in the NXP Unified Bootloader. While this provides a basic
level of integrity verification, it does not offer strong protection against intentional tampering.
An improvement that was considered, but not implemented due to the time constraints of the
internship, would be to leverage the secure memory regions (SMR) available through the HSE_B
to store cryptographically strong integrity tags (e.g. CMAC or similar). This would allow the
system to perform, at every startup, a more secure and reliable integrity check of the application
image before executing it, combining the efficiency of the existing CRC mechanism with the
robustness of modern authentication codes.

7.2.5 Application Image Content
Since the main focus of this work was on the bootloader, the program that is loaded on the target
board after a successful flashing procedure is intentionally minimal. In this case, it is a simple
blinking LED application, chosen because it provides a clear and immediate visual indication
that the application has started running, without introducing additional complexity or unrelated
functionality.

In a real avionic context, the application image to be deployed on an ECU would typically be far
more complex, incorporating safety-critical control logic, communication stacks, sensor fusion
algorithms, and diagnostic routines. The size of such software can vary significantly depending
on the platform and certification requirements, but for modern avionic ECUs it is not unusual
for a compiled and linked application image to range from a few hundred kilobytes to several
megabytes.

63

64

Chapter 8

Results

The implementation of the proposed security mechanisms on the NXP S32K*** platform has
led to a substantial improvement in the protection of the application image loading process for
avionic ECUs. Moving from a CRC32-only verification to an architecture based on ECDSA digital
signature validation, executed through the Hardware Security Engine (HSE_B), has significantly
increased the system’s resilience against the attack vectors identified during the Product Security
Assessment (PSA) made in 4.4.

8.1 Achieved Security Improvements

The original bootloader relied solely on a CRC32 integrity check which even if effective for detect-
ing accidental data corruption, offers no cryptographic strength, making it insufficient against
deliberate tampering. In the secured implementation developed in this work, authenticity and
integrity are enforced through ECDSA signature verification. This mechanism ensures that
only firmware images produced and signed by an authorized software provider can be executed,
preventing unauthorized code injection, malicious modifications, and supply chain tampering.

Another key improvement is the integration of the signature verification process into the timing
critical CAN UDS communication flow. In the baseline system, adding cryptographic operations
directly within the bootloader violated UDS timing constraints, leading to session timeouts. To
address this, the signature verification routine was implemented using a non-blocking adaptation
of the HSE_Send function giving an approach that defers long cryptographic operations while
keeping the diagnostic session alive through response pending messages, preserving protocol
compliance without sacrificing security and making it suitable for CAN UDS application which
are very common in the avionic and automotive industry.
Execution control is now more robust since the APP Validity Flag no longer depends solely on
the CRC check, but also on the outcome of the cryptographic verification. Unsigned or invalid
applications are rejected before execution, and the system remains in bootloader mode until a
valid, signed image is provided. These measures align with multiple High-Level Requirements
defined in the PSA and contribute to compliance with aerospace security standards.

65

Results

8.2 Performance Considerations
To compare the performances before and after the introduction of new security features, execution
time analysis has been conducted.

The three targets of this analysis are:

• Base Bootloader, which is the NXP Unified Bootloader described in section 4.6 that has no
security measure implemented on it. It can be considered as a plain bootloader.

• Secure Bootloader, including the process of signature generation over the application image
performed by the Host-PC before starting the CAN communication with the target board.

• Secure Bootloader after the signature generation considering only the exchange between
Host-PC and target board and the signature verification. This is the more realistic scenario
considering that when updating the firmware, the target board receives the application
image already signed.

Moreover these execution time are referred to the loading of a ∼ 120KB application image.
Bigger images will require more time to be exchanged with CAN-UDS.

Table 8.1: Comparison of Bootloader Execution Times

Base Bootloader [s] With Security: Includ-
ing Signature [s]

With Security: After
Signature [s]

53.3772 54.5618 53.7791
52.6974 54.1341 53.7256
52.5216 54.8869 54.2985
52.9448 56.5208 54.7715
52.8405 55.1842 54.5487
52.8693 55.5819 54.9310
52.2216 67.3238 54.9638
53.5779 57.6514 55.1414
52.4730 57.5739 56.6954
52.7652 57.7062 57.1501
52.6918 55.2805 54.8632
53.0480 57.3037 54.7867
52.8433 57.4537 55.7898
52.2536 56.9467 55.1474
52.6152 56.9200 54.9808
52.7689 56.8228 55.1504
52.5723 57.9515 56.0676
53.3604 59.1366 58.2269
52.6688 54.3598 52.6546
52.5117 52.9571 52.7021
50.0911 52.7102 51.8491
52.4202 53.0074 52.6966
52.9448 52.8735 52.5931
52.5215 52.5574 52.2049
52.5653 53.9963 52.4576

66

8.2 – Performance Considerations

Figure 8.1: Basic Bootloader Execution Time

Figure 8.2: Bootloader Execution Time with Security Features

67

Results

Figure 8.3: Bootloader Execution Time Comparison

The analysis of the experimental results highlights how the execution time of the base bootloader
remains rather stable across the different runs, with an average value of about 52.647 s, while
the activation of the security mechanisms, which in this case involve the verification of a digital
signature through the ECDSA algorithm, leads to a measurable increase in duration that brings
the average execution time to roughly 55.287 s (considered after signature generation since the
image should be given already signed), corresponding to an increment of around 5% when
compared to the non-secure configuration.
This increase, although evident in the data and clearly visible in the comparison between the two
series of measurements, should not be considered excessive, since the use of hardware acceleration
provided by the HSE allows the cryptographic operation to be performed in a relatively efficient
manner, and the overhead that emerges appears to be contained if one considers the guarantees
that such a verification introduces in terms of firmware integrity and authenticity. It is also
relevant to observe that in the absence of dedicated hardware support the same verification would
likely result in a much more significant penalty, as reported in the literature where purely software
implementations of ECDSA tend to slow down execution to a far greater extent, therefore the
value obtained here can be interpreted as a balanced compromise between the need to maintain
an efficient flashing procedure and the necessity of integrating a robust security mechanism. In
this sense, the additional few seconds that the secure bootloader requires do not represent a
limitation to its applicability but rather a demonstration that security can be integrated into the
operational workflow without undermining performance to an unacceptable level, making the
observed increment not only tolerable but also fully justified in the light of the benefits it provides,
especially if one considers that the cryptographic checks are executed entirely "on the ground"
during maintenance or update phases, so the strict real-time constraints that apply to avionics
applications during flight (which are defined "safety critical") are not impacted in the operational
context considered in this work. Moreover, the presence of a dedicated Hardware Security Engine
minimizes the computational load on the main core, and the adoption of a non-blocking execution
strategy ensures uninterrupted communication over the CAN bus, reinforcing the idea that

68

8.3 – Validation Outcomes

the secure solution represents the most efficient trade-off between robustness and practicality,
where the modest overhead is amply compensated by the stronger guarantees of integrity and
authenticity that it provides.

8.3 Validation Outcomes
Validation was carried out in a controlled laboratory environment replicating a realistic firmware
flashing scenario where three representative cases were tested:

• Positive Case: A correctly signed application image was successfully flashed and executed,
with the bootloader marking it as valid and launching it at the next restart.

• Tampering Attempt: Modifying the firmware content after signing resulted in signature
verification failure, with the bootloader preventing execution and awaiting a valid image.

• Protocol Stability: UDS sessions remained stable throughout the verification process,
demonstrating the effectiveness of the non-blocking approach in preserving communication
reliability.

8.4 Impact on the Attack Surface
The secured bootloader closes several vulnerabilities present in the original implementation. In
the baseline system, any image passing the CRC check could be executed, allowing an attacker to
load malicious firmware without detection. The new system enforces cryptographic authentication,
making it practically infeasible to execute unauthorized code without access to the private signing
key. Furthermore, by coupling verification with UDS SecurityAccess procedures, flashing rights
are now bound to both protocol-level and cryptographic checks.
As a result, the attack surface is significantly reduced since tampering during firmware transmission
is detected immediately, supply chain attacks are mitigated through mandatory signing and replay
of outdated images can be prevented by extending the current design with version metadata
checks.
Below there is a table which analyzes the threat conditions (previously identified in 4.4) whose
effectiveness is reduced by the applied solution:

Threat condition CAPEC
ID

Mitigation effect Residual risk

Authentication bypass of
firmware source

115, 114,
112, 560

Only firmware signed with
authorized private key is ac-
cepted via ECDSA/HSE_B.

Requires secure key handling.

Software integrity attack 184, 55 Post-signing modifications fail
verification and are rejected.

Integrity verified at flashing;
no continuous boot-time re-
check yet.

Code injection during up-
date

175, 242,
248, 240

Signing binds content; in-
jected binaries fail verifica-
tion.

UDS channel unauthenticated;
DoS still possible.

Firmware package spoof-
ing

148, 151,
154, 173

Signature overrides metadata;
spoofed IDs ineffective.

Spoofed frames may appear
valid at transport level.

69

Results

Adversary-in-the-middle 94, 272 Any in-transit change triggers
signature failure.

No confidentiality; DoS re-
mains possible.

Privilege abuse of flashing
capability

212, 122 Flashing requires SecurityAc-
cess and valid signature.

Relies on robustness of
seed/key exchange.

Supply-chain tampering 438 to 441 Altered firmware in distribu-
tion fails signature validation.

Cannot detect malicious code
in legitimately signed images.

Message flooding to cause
invalid state

125, 227 Non-blocking verification pre-
vents UDS timeouts leading
to false acceptance.

Service availability can still be
targeted.

Manipulation of APP Va-
lidity Flag

165, 141 Execution depends on signa-
ture, not flag alone.

Hardening of flag storage still
advisable.

Reverse engineering to
craft binaries

188 Without private key, cannot
craft passing image.

Protect signing infrastructure
from key theft.

8.5 Limitations and Future Work
While the implemented solution meets the scope defined for this internship, further enhancements
could strengthen security even more:

• Startup Cryptographic Integrity Check: Leveraging the HSE_B Secure Memory
Regions (SMR) for cryptographic verification at every boot would provide persistent
integrity assurance, complementing the flashing-time signature verification, ensuring that
the application remains unchanged and authentic throughout the ECU’s lifecycle, even after
extended downtime or in the presence of physical access attempts.

• Version Rollback Protection: Enforcing metadata-based version control to prevent
downgrade attacks, ensuring that only newer or equal versions of the firmware are accepted.
This mechanism can be combined with monotonic counters stored in non-volatile secure
memory to maintain the current version state even across power cycles.

• Full Secure Boot Chain: Extending signature verification to all boot stages, from the
immutable first stage (ROM-based) to the final application, thus establishing a continuous
hardware root of trust guaranteeing that no intermediate component can be altered to
bypass subsequent verifications.

• Anti-Tampering Protection: Integrating tamper detection mechanisms such as volt-
age, clock, and temperature anomaly sensors, or intrusion switches that trigger im-
mediate key invalidation or zeroization upon physical tampering attempts. The NXP
S32K3 HSE_B includes anti-tampering features that can be configured through the
hseAttrPhysicalTamperConfig_t attribute but Physical tamper detection can be enabled
during initialization as a one time configurable attribute.

• AI-based Detection: Employing machine learning algorithms to monitor runtime param-
eters, firmware update patterns, and communication anomalies in order to detect deviations
from normal behavior that may indicate an ongoing intrusion or exploitation attempt. Such
systems could provide early warning and enable pre-emptive countermeasures, even for
novel attack patterns.

• Encrypted Firmware Updates: In addition to signing, encrypting the firmware image
would preserve confidentiality, preventing reverse engineering of proprietary algorithms or

70

8.5 – Limitations and Future Work

sensitive data contained in the binary, even if it is intercepted during transfer. The HSE_B
supports the management of multiple keys and the execution of cryptographic operations,
enabling encryption and decryption using private keys and modern cryptographic algorithms
as part of the update process.

• Secure Debug Management: Implementing strict control over debugging and pro-
gramming interfaces (e.g., JTAG/SWD lock, authenticated debug sessions) to prevent
unauthorized readout or modification of memory contents, especially in deployed units. The
NXP S32K3 HSE_B provides a secure mechanism for this through a dedicated Application
Debug Key Password (ADKP). This one-time programmable password is intended for
deployment scenarios since once set, it cannot be altered or removed, which is why it was
not applied in the context of this work.

71

72

Chapter 9

Conclusions

This thesis was conducted during an internship at Avio Aero, where the industrial setting allowed
the research to be grounded in real hardware and operational constraints.
The work demonstrates that it is possible to integrate robust, standard-compliant security mecha-
nisms into an avionic bootloader without violating performance or communication requirements
and preserving safety. More importantly, it shows how dedicated hardware security features can
be effectively leveraged to raise the baseline protection level in a safety-critical environment, while
maintaining compatibility with existing workflows and industry standards.
Looking forward, the proposed approach offers a clear foundation for further improvements.
Potential developments could include for example startup cryptographic verification, version
rollback protection, a complete secure boot chain, anti-tampering mechanisms, encrypted firmware
distribution, and AI-assisted intrusion detection. These advancements would further strengthen
the resilience of the system against an evolving threat landscape and align it with future aerospace
cybersecurity requirements.
In closing, this work provides not just a functional implementation, but also a methodology that
can be applied to similar embedded platforms facing comparable security challenges. It stands as
a step toward more resilient avionics systems, combining practical engineering constraints with a
forward-looking security vision.

73

74

List of Figures

1.1 GE Avio Aero logo . 5
1.2 Fiat Aviazione stand at Fiera Campionaria di Milano 1952. Source https://

archiviostorico.fondazionefiera.it/oggetti/10412-stand-della-fiat-aviazione-al-salone-dellauto-avio-moto-ciclo-e-accessori-sportivi-nel-palazzo-dello-sport-alla-fiera-campionaria-di-milano-del-1952 6
1.3 Catalyst engine. Source https://avioaero.com/it/media/media-releases/

il-catalyst-scelto-da-airbus-per-eurodrone 8

2.1 Design Assurance Levels (DALs). Source https://eteo.tistory.com/496. . . . 10
2.2 DO-326B Management Framework. Source https://militaryembedded.com/

avionics/safety-certification/incorporating-do-326a-security-airworthiness-into-software-development-life-cycle. 11
2.3 DO-326B Security Risk Assessment V-MODEL. Source https://militaryembedded.

com/avionics/safety-certification/incorporating-do-326a-security-airworthiness-into-software-development-life-cycle. 12
2.4 Aircraft domains. Source https://www.pentestpartners.com/security-blog/

in-flight-entertainment-system-security/ 14

4.1 DO326 V-model approach . 20
4.2 CAPEC Vulnerability Example . 22
4.3 EMB3D threat domains. Source https://emb3d.mitre.org/ 22
4.4 Threat condition categories . 27
4.5 Unified Bootloader operation flow . 30

5.1 Hash function avalanche effect. Source https://en.wikipedia.org/wiki/Cryptographic_
hash_function . 34

5.2 Digital Signature flow. Source https://blog.mailfence.com/how-do-digital-signatures-work/ 35
5.3 Secure boot operation flow . 38
5.4 Secure boot signature verification . 39
5.5 CAN frame structure. Source: https://medium.com/@sjindhirapooja/can-standard-data-frame-format-846b8f9fc749 40
5.6 Example CAN-TP message over a CAN bus. Source: https://onlinedocs.

microchip.com/oxy/GUID-9C356E20-C5BD-430F-8C0B-CCA1B85ECC7C-en-US-3/
GUID-F040354D-0842-4EFC-99F2-F1B8A649D106.html 41

5.7 UDS on CAN request message. Source: https://www.csselectronics.com/
pages/uds-protocol-tutorial-unified-diagnostic-services 42

5.8 ISO TP multi-frame communication. Source: https://www.csselectronics.
com/pages/uds-protocol-tutorial-unified-diagnostic-services 43

5.9 OSI model layers of UDS. Source: https://www.csselectronics.com/pages/
uds-protocol-tutorial-unified-diagnostic-services 44

6.1 Laboratory setup scheme . 46
6.2 HSE_B Messaging Unit . 49

75

https://archiviostorico.fondazionefiera.it/oggetti/10412-stand-della-fiat-aviazione-al-salone-dellauto-avio-moto-ciclo-e-accessori-sportivi-nel-palazzo-dello-sport-alla-fiera-campionaria-di-milano-del-1952
https://archiviostorico.fondazionefiera.it/oggetti/10412-stand-della-fiat-aviazione-al-salone-dellauto-avio-moto-ciclo-e-accessori-sportivi-nel-palazzo-dello-sport-alla-fiera-campionaria-di-milano-del-1952
https://avioaero.com/it/media/media-releases/il-catalyst-scelto-da-airbus-per-eurodrone
https://avioaero.com/it/media/media-releases/il-catalyst-scelto-da-airbus-per-eurodrone
https://eteo.tistory.com/496
https://militaryembedded.com/avionics/safety-certification/incorporating-do-326a-security-airworthiness-into-software-development-life-cycle
https://militaryembedded.com/avionics/safety-certification/incorporating-do-326a-security-airworthiness-into-software-development-life-cycle
https://militaryembedded.com/avionics/safety-certification/incorporating-do-326a-security-airworthiness-into-software-development-life-cycle
https://militaryembedded.com/avionics/safety-certification/incorporating-do-326a-security-airworthiness-into-software-development-life-cycle
https://www.pentestpartners.com/security-blog/in-flight-entertainment-system-security/
https://www.pentestpartners.com/security-blog/in-flight-entertainment-system-security/
https://emb3d.mitre.org/
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://blog.mailfence.com/how-do-digital-signatures-work/
https://medium.com/@sjindhirapooja/can-standard-data-frame-format-846b8f9fc749
https://onlinedocs.microchip.com/oxy/GUID-9C356E20-C5BD-430F-8C0B-CCA1B85ECC7C-en-US-3/GUID-F040354D-0842-4EFC-99F2-F1B8A649D106.html
https://onlinedocs.microchip.com/oxy/GUID-9C356E20-C5BD-430F-8C0B-CCA1B85ECC7C-en-US-3/GUID-F040354D-0842-4EFC-99F2-F1B8A649D106.html
https://onlinedocs.microchip.com/oxy/GUID-9C356E20-C5BD-430F-8C0B-CCA1B85ECC7C-en-US-3/GUID-F040354D-0842-4EFC-99F2-F1B8A649D106.html
https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services
https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services
https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services
https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services
https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services
https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services

List of Figures

6.3 Key Handle Structure . 54
6.4 Lauterbach PowerDebug System . 55

7.1 Project folder structure . 57
7.2 Signature Routine Control Switch Case Detail . 59
7.3 Bootloader main function . 60
7.4 Jump To App or not function . 62

8.1 Basic Bootloader Execution Time . 67
8.2 Bootloader Execution Time with Security Features 67
8.3 Bootloader Execution Time Comparison . 68

76

List of Figures

77

78

Bibliography

[1] «Teenager overpowered by plane passengers after allegedly boarding Jetstar flight with ‘large
gun’ at Avalon airport». In: (). url: https://www.theguardian.com/business/2025/
mar/06/avalon-airport-melbourne-man-detained-alleged-firearm-gun-ntwnfb
(cit. on p. 17).

[2] «Mumbai: SpiceJet pilots spot man on runway, alert security». In: (). url: https://www.
indiatoday.in/crime/story/mumbai-airport-man-on-runway-1590502-2019-08-22
(cit. on p. 17).

[3] «The Kano airport security breach, an example of a red flag». In: (). url: https://
tribuneonlineng.com/the-kano-airport-security-breach-an-example-of-a-red-
flag/#:~:text=Shola%20Adekola, bound%20flight%20by%20two%20hours. (cit. on
p. 17).

[4] «Just Stop Oil targets Taylor Swift’s jet – and fails to locate it». In: () (cit. on p. 17).
[5] «Aeroporto di Bergamo, entra in pista e muore risucchiato dal motore di un aereo». In:

(). url: https://www.corriere.it/economia/trasporti/aerei/25_luglio_08/
aeroporto-di-bergamo-entra-in-pista-e-muore-risucchiato-dal-motore-di-un-
aereo-voli-sospesi-92e76ea5-102d-455a-880b-6db2428f6xlk.shtml (cit. on p. 17).

[6] «NXP, Unified Bootloader Documentation». In: (). url: https://www.google.com/
url?sa=t&source=web&rct=j&opi=89978449&url=https://community.nxp.com/
pwmxy87654/attachments/pwmxy87654/S32K/7138/1/UBLUG.pdf&ved=2ahUKEwjVy_3X8
JaQAxWIgf0HHc7CJpMQFnoECCcQAQ&usg=AOvVaw0WokzaunB5Why48e2__8zR (cit. on p. 30).

[7] «ISO 11898-1:2015». In: (). url: https://www.iso.org/standard/63648.html (cit. on
p. 39).

[8] «ISO 15765-2:2016». In: (). url: https://www.iso.org/standard/66574.html (cit. on
pp. 39, 40).

[9] «ISO 14229-1:2020». In: (). url: https://www.iso.org/standard/72439.html (cit. on
p. 41).

[10] «ISO 15765-3». In: (). url: https://www.iso.org/standard/33618.html (cit. on pp. 41,
44).

79

https://www.theguardian.com/business/2025/mar/06/avalon-airport-melbourne-man-detained-alleged-firearm-gun-ntwnfb
https://www.theguardian.com/business/2025/mar/06/avalon-airport-melbourne-man-detained-alleged-firearm-gun-ntwnfb
https://www.indiatoday.in/crime/story/mumbai-airport-man-on-runway-1590502-2019-08-22
https://www.indiatoday.in/crime/story/mumbai-airport-man-on-runway-1590502-2019-08-22
https://tribuneonlineng.com/the-kano-airport-security-breach-an-example-of-a-red-flag/#:~:text=Shola%20Adekola,bound%20flight%20by%20two%20hours.
https://tribuneonlineng.com/the-kano-airport-security-breach-an-example-of-a-red-flag/#:~:text=Shola%20Adekola,bound%20flight%20by%20two%20hours.
https://tribuneonlineng.com/the-kano-airport-security-breach-an-example-of-a-red-flag/#:~:text=Shola%20Adekola,bound%20flight%20by%20two%20hours.
https://www.corriere.it/economia/trasporti/aerei/25_luglio_08/aeroporto-di-bergamo-entra-in-pista-e-muore-risucchiato-dal-motore-di-un-aereo-voli-sospesi-92e76ea5-102d-455a-880b-6db2428f6xlk.shtml
https://www.corriere.it/economia/trasporti/aerei/25_luglio_08/aeroporto-di-bergamo-entra-in-pista-e-muore-risucchiato-dal-motore-di-un-aereo-voli-sospesi-92e76ea5-102d-455a-880b-6db2428f6xlk.shtml
https://www.corriere.it/economia/trasporti/aerei/25_luglio_08/aeroporto-di-bergamo-entra-in-pista-e-muore-risucchiato-dal-motore-di-un-aereo-voli-sospesi-92e76ea5-102d-455a-880b-6db2428f6xlk.shtml
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/S32K/7138/1/UBLUG.pdf&ved=2ahUKEwjVy_3X8JaQAxWIgf0HHc7CJpMQFnoECCcQAQ&usg=AOvVaw0WokzaunB5Why48e2__8zR
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/S32K/7138/1/UBLUG.pdf&ved=2ahUKEwjVy_3X8JaQAxWIgf0HHc7CJpMQFnoECCcQAQ&usg=AOvVaw0WokzaunB5Why48e2__8zR
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/S32K/7138/1/UBLUG.pdf&ved=2ahUKEwjVy_3X8JaQAxWIgf0HHc7CJpMQFnoECCcQAQ&usg=AOvVaw0WokzaunB5Why48e2__8zR
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/S32K/7138/1/UBLUG.pdf&ved=2ahUKEwjVy_3X8JaQAxWIgf0HHc7CJpMQFnoECCcQAQ&usg=AOvVaw0WokzaunB5Why48e2__8zR
https://www.iso.org/standard/63648.html
https://www.iso.org/standard/66574.html
https://www.iso.org/standard/72439.html
https://www.iso.org/standard/33618.html

80

Acknowledgements

...

81

	Avio Aero
	Company overview and background
	Latest Achievements
	AMBER Hybrid-Electric Propulsion Project
	Catalyst engine

	Security Regulations in Aerospace applications
	Airworthiness & Airworthiness Security
	DO-178C (Software Considerations in Airborne Systems and Equipment Certification)
	DO-326B (Airworthiness Security Process Specification)
	DO-356 (Airworthiness Security Methods and Considerations
	SAE AIR7368 (Cybersecurity for Propulsion Systems)

	State of the art in avionics product security
	Nowadays proposed solutions
	Secure Electronic Control Units (ECUs)
	Data Communication Security
	Real-Time Monitoring and Intrustion Detection
	Hardware Security Features
	Software Security
	Redundancy
	Is aircraft physical security really necessary?

	Product Security Assessment
	Use Case
	PSA Model
	Threat Repositories: CAPEC & MITRE EMB3D
	Scope definition & threat identification
	High Level Requirements Definition
	Starting Project Assessment Phase

	Theory Background
	Hash Functions
	Digital Signatures
	Elliptic Curve Digital Signature Algorithm (ECDSA)

	Secure Boot
	Controller Area Network (CAN)
	CAN TP
	Unified Diagnostic Services (UDS)

	Laboratory Setup
	Laboratory Setup Components
	Development software - Libraries
	Target Board - NXP Hardware Security Engine (HSE_B) in S32K3
	Debugger Interface - Lauterbach debugger & TRACE32
	Communication Interface - PEAK-PCAN-USB & PCAN-View

	Program Development
	Project Structure
	Execution flow
	Key generation
	Signature generation and Flashing Procedure Script
	Signature Checking Procedure
	Target Board Bootloader
	Application Image Content

	Results
	Achieved Security Improvements
	Performance Considerations
	Validation Outcomes
	Impact on the Attack Surface
	Limitations and Future Work

	Conclusions
	List of Figures
	Bibliography

