
POLITECNICO DI TORINO

Master’s Degree in CYBERSECURITY

Master’s Degree Thesis

Evaluating Backdoor Attacks Over Centralized
and Distributed Medical Image Processing

Supervisors

Prof. Alessio SACCO

Prof. Guido MARCHETTO

Candidate

Christian CODURI

October 2025





Evaluating Backdoor Attacks Over Centralized and Distributed Medical
Image Processing

Christian Coduri

Abstract

Machine learning, particularly deep learning models such as Convolutional Neural
Networks, has shown great promise in medical imaging, supporting clinicians in diagnosis
and treatment planning. However, clinical adoption is often limited by the scarcity of data
and the risk of dataset bias, as models trained in a single institution may fail to generalize.
In addition, data protection regulations, such as the GDPR, restrict the centralization of
medical images across hospitals, limiting the development of robust models.

Federated Learning has emerged as a promising paradigm to address these challenges
by enabling multiple institutions to collaboratively train a model without sharing raw
data. In this approach, each institution updates the shared model using its own dataset
and transmits only the parameters to a central server, thereby preserving the privacy of
sensitive information.

In the future, it is reasonable to expect that only a few large, well-resourced hospitals,
or institutions in isolated regions, will continue to develop their own centralized and
independent models. In contrast, most hospitals and clinics are likely to increasingly adopt
federated learning, enabling them to collaboratively train more powerful models while
maintaining compliance with regulations.

Federated learning remains a variant of machine learning and therefore inherits many
vulnerabilities while introducing new threats specific to its distributed nature. Among
attacks common to both settings, data poisoning is concerning, with one of the stealthiest
forms being backdoor attacks. In such attacks, adversaries embed hidden triggers into a
subset of the training data, causing the model to behave normally on benign inputs but
misclassify those containing the trigger, making detection challenging.

This study investigates the impact of backdoor attacks in both centralized and federated
learning environments. Convolutional neural networks for brain tumor classification were
developed using pre-trained architectures and transfer learning techniques. After assessing
their performance under normal conditions, backdoor attacks were implemented on two
selected models: VGG-16 and MobileNetV2 to evaluate their vulnerability and robustness.

The results show that, despite substantial architectural differences, the models exhibited
similar behavior under backdoor attacks. With full fine-tuning, the models learned
both medical features and trigger patterns, suggesting that implanting a trigger into the
convolutional layers is relatively straightforward. Under this setting, high attack success
rates (ASRs) were achieved: 99.89% for VGG-16 and 98.90% for MobileNetV2 when 10% of
the training data was poisoned. In contrast, classifier-only fine-tuning effectively mitigated
the impact of embedded triggers, reducing ASRs to 9.27% and 30.68%, respectively.

Following the single-agent experiments, the same models were deployed in a federated
environment and exposed to attacks varying in the number of malicious clients and poisoning
rates. Similar behavior to the centralized setting was observed under both IID and non-IID
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data distributions: fully fine-tuned models achieved near 100% ASR (indicating effective
trigger learning) while maintaining high clean accuracy, whereas classifier-only fine-tuned
models again demonstrated strong resilience to trigger absorption.

Moreover, explainability techniques such as Grad-CAM have proven valuable during
inference in both centralized and distributed settings, helping identify potential attacks by
revealing when the model focuses on irrelevant image regions, possibly corresponding to
a trigger, rather than medically meaningful areas. Finally, observations are presented on
potential indicators of backdoor activity detectable across both environments.

Future work will build on this analysis to design robust defense mechanisms applicable
to both centralized and distributed learning. Additional backdoor variants, including those
with invisible triggers or adversarial noise, will be investigated and compared. Finally,
attention will be given to developing defenses that remain effective under privacy-preserving
techniques such as secure computation or differential privacy, ensuring both security and
compliance in sensitive applications.
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Chapter 1

Introduction

Healthcare is undergoing a profound digital transformation that is reshaping the traditional
model of clinical history, examination, diagnosis, investigation, and treatment. This
transformation is being driven by a range of emerging technologies, most notably artificial
intelligence (AI), machine learning (ML), wearable sensors, mobile applications, and
telehealth solutions.

Thanks to these technologies, rapid advancements have been achieved in tasks such
as screening (e.g., early detection of cancers and other diseases), prevention (e.g., risk
prediction), therapy (e.g., personalized treatment strategies), and research and development
of new medicines, vaccines, and therapeutic approaches.

These opportunities, however, come with growing risks. Traditionally, clinicians have
been valued for their long and rigorous training, which enables them to acquire and apply
medical knowledge directly in patient care. Today, however, their role is evolving: rather
than serving as sole decision-makers, clinicians are increasingly becoming interpreters of
algorithmic recommendations [1].

Moreover, as healthcare systems increasingly rely on interconnected digital infrastruc-
tures and AI-driven technologies, they are becoming attractive targets for cybercriminals.
This is not a hypothetical concern: in 2023 alone, EU countries reported 309 significant
cybersecurity incidents in the healthcare sector, more than in any other critical sector,
according to the European Commission [2].

This trend is expected to intensify with the emergence of increasingly sophisticated
threats. While most current attacks target healthcare systems through data breaches and
ransomware, the growing reliance on sensitive patient data further amplifies the risk of
data-related compromises. At the same time, the integration of AI models introduces
new vulnerabilities that adversaries can exploit through malicious manipulations, posing
additional security and privacy challenges for modern healthcare.

1.1 Hospitals of the Future

One of the most concrete examples of this technological progress is the development of
Computer-Aided Diagnosis (CAD) systems in radiology. Initially designed as visualization
and annotation tools to assist clinicians, these systems have evolved into sophisticated
platforms capable of automated image pre-processing, segmentation, and classification
through the use of AI. Such AI-driven tools now enable faster and more accurate inter-
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pretation of medical images, thereby enhancing clinical decision-making and improving
patient outcomes.

The development of these systems relies heavily on deep learning methods, particularly
Convolutional Neural Networks (CNNs), which are widely used for image-related tasks.
However, training a CNN for medical image classification is often time-consuming and
computationally demanding. Moreover, training deep learning models requires substantial
resources, both financially and in terms of access to large, high-quality datasets.

A common strategy to alleviate these issues is to start from a pretrained model, typically
trained on large, general-purpose datasets, and adapt it to the specific medical task using
a technique known as transfer learning. This approach enables the model to be fine-tuned
for the target domain while leveraging previously learned visual features.

In this context, two main training paradigms for CNNs are commonly employed:
centralized and distributed (or federated) medical image processing. These approaches
are expected to play a key role in shaping the hospitals of the future, giving rise to two
distinct types of healthcare institutions:

• Independent hospitals, which adopt centralized learning. Here, medical data are
stored locally and used to train CNNs within the institution. This approach gives
hospitals direct control over their data but often comes with higher costs, limited
dataset sizes, and potential population-specific biases.

• Interconnected hospitals, which collaborate through federated learning. Here,
multiple institutions jointly train a shared global CNN model without exchanging
sensitive patient data, thereby ensuring compliance with privacy regulations. Each
institution sends locally computed model updates, reflecting its own patient popu-
lation, to a central server for aggregation. This strategy enhances generalization,
reduces bias, and preserves privacy.

Figure 1.1: Illustration of potential future hospital configurations across Europe1

1This figure has been designed using resources from https://flaticon.com
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1.2 Thesis Overview

CNNs used as classification systems can serve as powerful diagnostic tools; however, as
additional software components, they also introduce vulnerabilities and new attack vectors
that must be carefully managed. Among these, one of the most dangerous and stealthy
threats, relevant to both centralized and federated CNN paradigms, are backdoor attacks.
Their stealth lies in the fact that, once the backdoor is installed, the model continues to
perform normally on clean data, maintaining high accuracy, while the malicious behavior is
triggered only when inputs contain a specific pattern. In such cases, the model misclassifies
the targeted samples while appearing reliable under standard conditions.

In clinical practice, the presence of backdoors and the resulting misclassification of
medical images could have severe consequences, including missed diagnoses, delayed
treatments, or inappropriate therapeutic decisions that directly endanger patient safety.
The risks, however, extend beyond individual outcomes. In large-scale or pandemic scenarios,
such as population-wide screening and monitoring during COVID-19, a successful backdoor
attack could compromise public health efforts, distort epidemiological data, and obstruct
timely interventions.

Objective

Several defense mechanisms against backdoor attacks have been proposed in the literature.
However, most are specific to either centralized or distributed learning environments and
therefore lack general applicability. Furthermore, only a few studies address scenarios
involving pre-trained models, which are increasingly common in medical imaging.

This thesis investigates backdoor attacks on classification models for brain tumor
detection in the two types of hospitals envisioned for the future: some operating centralized
systems and others adopting federated learning. Specifically, it examines the behavior
of two widely used pre-trained CNNs, VGG-16 and MobileNetV2, in both centralized
and federated environments, evaluating their vulnerability to backdoor attacks through
extensive experimentation.

By systematically comparing the two models under the two scenarios, this study aims to
identify general principles to guide the design of robust and broadly applicable mitigation
and detection techniques against backdoor attacks.

Research Questions

The contribution of this work is guided by the following research questions, which shaped
both the experimental design and the subsequent analysis:

1. Impact of model architecture and fine-tuning strategy: How do different
pre-trained CNN architectures perform in brain tumor classification under normal
conditions, and how does the choice of training strategy (full fine-tuning vs. classifier-
only fine-tuning) influence model accuracy and computational efficiency?

2. Susceptibility to backdoor attacks in centralized learning: How do the
selected pre-trained models, VGG-16 and MobileNetV2, respond to backdoor attacks
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in a centralized setting, and how do factors such as training strategy, learning rate,
poisoning rate, and model architecture affect attack success and detectability?

3. Comparative analysis of federated and centralized learning: Can pre-trained
models be effectively integrated into federated learning frameworks, and how does
their performance under both normal and backdoor attack conditions compare to
that in centralized training?

4. Effect of training parameters on backdoor propagation: How do variables such
as training strategy, poisoning rate and the number of malicious clients influence the
effectiveness of backdoor attacks and the robustness of federated models? Additionally,
how does data distribution, IID versus Non-IID, impact model behavior in both
scenarios?

5. Explainable AI for backdoor detection and mitigation: Can Explainable AI
techniques, such as Grad-CAM, be employed to detect and mitigate backdoor attacks
in both centralized and federated learning environments?

Structure

The thesis is organized into five chapters:

• Chapter 1 provides an introduction to the research topic, outlining the motivation,
objectives, and research questions that guide this work.

• Chapter 2 presents the theoretical background necessary to understand the con-
ducted experiments. It begins with an overview of medical image processing in
radiology, followed by key concepts in machine learning and deep learning. The chap-
ter concludes with detailed discussions on convolutional neural networks, federated
learning, and backdoor attacks, which form the core foundation of this thesis.

• Chapter 3 offers a concise review of the main categories of defense mechanisms
against backdoor attacks, considering both centralized and distributed training
environments.

• Chapter 4 describes the experimental setup, including the dataset used and the data
preprocessing pipelines. It presents the results of centralized learning experiments
under normal conditions, which serve to identify the most suitable model for further
analysis. The following sections report the outcomes of backdoor attack experiments
in both centralized and federated settings, each accompanied by an evaluation of the
models’ performance and robustness under varying conditions and some considerations
about possible mitigation and techniques.

• Finally, Chapter 5 summarizes the main findings and outlines potential directions
for future research.
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Chapter 2

Background

2.1 Medical Image Processing and AI in Radiology

Medical imaging plays a vital role in precision medicine by enabling accurate diagnosis and
personalized treatment. In the field of radiology, the primary imaging modalities commonly
used in clinical practice include X-rays, computed tomography (CT), magnetic resonance
imaging (MRI), positron emission tomography (PET), and ultrasound.

Interpreting these images remains a complex task due to challenges such as image noise,
irrelevant visual artifacts, and the intricate nature of disease presentations. These factors
can contribute to diagnostic errors, including both false negatives and false positives. As
reported in [3], human error in medical image interpretation can result in misdiagnosis
rates ranging from 10% to 30%.

To support clinicians in reducing diagnostic errors, computer-aided diagnosis (CAD)
systems have been developed. Modern CAD systems can be classified into two main
categories:

• CADe (Computer-Aided Detection): Designed to locate and highlight potentially
suspicious regions within medical images. It serves as a supplementary tool for
radiologists, helping to reduce false positive detections, that is the likelihood of
missed abnormalities.

• CADx (Computer-Aided Diagnosis): Aims to further analyze the detected regions
by characterizing them and estimating the probability of disease, thereby supporting
more accurate diagnostic decisions.

Figure 2.1: Computer-Aided Detection System
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2.1.1 Enhancing Diagnostic Capabilities with AI

Although research interest in traditional CAD systems is decreasing in recent years, the
number of studies applying artificial intelligence (AI) to medical image analysis has increased
significantly. AI extends the capabilities of conventional CADx systems by transforming
medical images into rich, mineable data [4].

Its applications have expanded across various imaging modalities, particularly in
radiology, where AI has demonstrated substantial potential in detecting and classifying
abnormalities on plain radiographs, CT, and MRI scans. These advancements contribute
to more accurate diagnoses and better-informed treatment decisions.

Radiology is particularly well-suited for the integration of AI tools into clinical workflows,
thanks to its mature digital infrastructure and standardized protocols for image acquisition
and storage. Moreover, AI excels at well-defined tasks such as anatomical segmentation,
quantification of structures or abnormalities, identification of suspicious findings, and the
detection, localization, and classification of various medical conditions [5].

2.1.2 Today a Co-Pilot, But Tomorrow?

At present, most AI algorithms in radiology are used as tools to enhance pre-interpretive
processes, primarily supporting radiologists rather than replacing their expertise. In fact,
according to [5], the majority of radiologists view AI as a co-pilot a collaborative second
reader within the human-AI workflow.

However, some studies have shown that AI systems, particularly for chest radiograph
interpretation, can achieve performance comparable to board-certified radiologists when
used by non-radiology clinicians. This suggests that, in the future, it may be possible to
achieve fully autonomous ML-based image analysis.

In the following sections, we introduce the fundamentals of deep learning and con-
volutional neural networks (CNNs), which are the most widely used machine learning
models for image classification and the core technology employed in this thesis. CNNs
have been shown not only to enhance radiologists’ performance but, in some cases, to
outperform multiple radiologists working together. For example, a 2021 study trained three
CNN models, ResNet-18, ResNet-50, and DenseNet-201, using a dataset of 3,000 chest
X-ray images, half from COVID-19 patients and half from healthy individuals [6]. When
evaluated on a separate test set of 250 images, these models outperformed two radiologists
across multiple metrics, including accuracy, sensitivity, specificity, precision, and F1-score.
Similarly, a 2019 systematic review of over 30,000 studies concluded that deep learning
models generally match or slightly outperform healthcare professionals across a wide range
of medical classification tasks [7].

Beyond image analysis, AI’s impact extends into diagnostic reasoning. Recent work by
McDuff et al. [8] demonstrated that a large language model (LLM) optimized for clinical
decision-making can outperform clinicians, even those assisted by search tools or the same
LLM. Similarly, Microsoft has outlined the idea of Medical Superintelligence, describing
AI systems capable of reasoning through complex clinical cases in ways resembling but,
again, outperforming expert physicians [9].

These findings underscore the growing potential of AI to complement and, in some
cases, surpass human expertise in medical diagnostics. If such advances become more
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significant in the future, clinicians may increasingly rely on AI-generated analyses without
question, highlighting the critical relevance and importance of this thesis.

2.2 Machine Learning

Machine Learning (ML) is a branch of Artificial Intelligence (AI) that enables machines
to learn from data by recognizing patterns and making decisions with minimal human
intervention. A key strength of ML models lies in their ability to adapt autonomously,
improve through experience, and generalize effectively when exposed to new data.

Figure 2.2: Machine Learning Process

In Figure 2.2, the general machine learning workflow is illustrated. After collecting and
creating a dataset of raw data, these undergoes feature processing to prepare data and
extract meaningful characteristics that will be used for the learning process. The processed
data are then split into training, validation, and test sets.

• Training set is used to train the machine learning model by allowing the algorithm
to learn patterns and relationships.

• Validation set is used during training for hyperparameter tuning, which involves
adjusting non-learnable configuration settings to improve model generalization and
prevent overfitting.

Once the model has been trained and tuned, it is evaluated using the test set, a
separate subset not seen during training or validation. This final evaluation provides an
unbiased estimate of the model’s performance in real-world scenarios.

In the deployment phase, the trained model is used to make predictions on unknown
data, new instances that also undergo the same feature processing pipeline to ensure
consistency. The model generates predictions, which are then compared to actual target
values if available, or used for downstream decision-making.

This workflow follows the offline learning paradigm, where the model is trained
once on a fixed dataset and then deployed without further updates. If new data becomes
available and an update is needed, the model must be retrained, either from scratch or
by fine-tuning an existing model, using the new data, often combined with the original
training set to preserve performance and avoid forgetting earlier knowledge.
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The opposite approach is known as online learning, a paradigm in which the model
is continuously updated as new data arrives. This allows the system to adapt to evolving
patterns in real time but requires careful management to maintain stability and prevent
performance degradation.

Unfortunately, traditional ML approaches typically rely on structured data and rigid,
predefined workflows, where missing or poorly engineered features can significantly degrade
performance. These limitations become especially apparent when dealing with complex,
high-dimensional data such as medical images.

To address these challenges, more advanced approaches like deep learning have gained
prominence, offering greater flexibility and performance in tasks involving unstructured
data [10].

2.3 Deep Learning

Deep learning is a subset of machine learning that employs artificial neural networks
with multiple layers to automatically learn hierarchical representations from data. It has
achieved remarkable success across various domains, including computer vision and natural
language processing.1

Common deep learning architectures include Convolutional Neural Networks, Recurrent
Neural Networks (RNNs), and Generative Adversarial Networks (GANs). This section
provides an overview of the fundamental concepts underlying CNNs, which constitute the
core focus of this thesis.

2.3.1 Perceptron

Inspired by biological neural networks, a perceptron is a machine learning algorithm that
takes input features and their corresponding targets, attempting to find a line, plane, or
hyperplane that separates classes in two, three, or higher-dimensional space, respectively.

A perceptron consists of nodes that communicate with other nodes through connections
weighted according to their contribution to achieving a desired outcome.

Figure 2.3: Perceptron: the Single Neuron

Given an input vector X = (x1, x2, . . . , xm) representing a single instance with m fea-
tures, and a corresponding weight vector W = (w1, w2, . . . , wm), the output ŷ is computed

1Introduction to Deep Learning. MIT 6.S191: https://youtu.be/alfdI7S6wCY
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as ŷ = σ(b + XT W ), where b is a bias term and σ is an activation function.

In other terms, a perceptron performs the following three main operations:

1. Dot Product: Each input is multiplied by its corresponding weight, and the results
are summed to compute the dot product between vectors X and W .

2. Add Bias: A bias term b is added to the dot product to allow the activation function
more flexibility by shifting the result. This helps the perceptron make adjustments
independent of the input.

3. Apply Non-Linearity: The final result is passed through a non-linear activation
function σ, producing the neuron’s output. This step introduces non-linearity into
the model’s output, which is crucial for enabling the model to generalize beyond
linear patterns and learning complex patterns in data.

2.3.2 Artificial Neural Networks

When multiple perceptrons are connected, the model becomes a multilayer perceptron or
artificial neural network (ANN). ANNs typically consist of an input layer, one or more
hidden layers, and an output layer. Simple ANNs may have up to a few hidden layers, while
deep neural networks can contain dozens or even hundreds. In most cases, information
flows in one direction, from input to output, forming a feedforward neural network.

In a neural network, the number of layers on the X-axis reflects the depth of the model;
typically, deeper networks are capable of learning more abstract representations of the input.
Each layer in an ANN consists of multiple nodes, which determine the dimensionality of its
output. Hidden layers encode intermediate features, while the output layer’s dimensionality
depends on the task: for example, one node per pixel for image generation, or one node
per class for classification.

Figure 2.4: Artificial Neural Networks: Multi-layer Perceptron

We now consider the computation across two layers of weights. Let zi represent the
linear combination of inputs and weights before applying the non-linearity. For the first
hidden layer, this can be written as:

zi = w
(1)
0,i +

mØ
j=1

xjw
(1)
j,i
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The corresponding output ŷi, after passing through the hidden layer and applying the
activation function σ, is computed as:

ŷi = σ

w
(2)
0,i +

d1Ø
j=1

σ(zj)w(2)
j,i


Here, w

(1)
0,i and w

(2)
0,i are bias terms for the first and second layers, respectively, m is the

number of input features, and d1 is the number of hidden units in the first layer [11].

2.3.2.1 Activation Functions

In the output layer, the number of nodes and the choice of activation function depend on the
task: binary classification typically uses a single node with a sigmoid activation, multiclass
classification uses one node per class often with a softmax activation, and regression tasks
commonly use a single node with a linear activation.

Activation functions are applied at each node throughout the network, not just in the
output layer, to introduce non-linearity. Without them, no matter how many layers the
network has, it would behave like a linear model and fail to capture the complex, non-linear
patterns present in most real-world data [12].

The most commonly used activation functions are shown in Table 2.1.

ReLU Sigmoid Tanh

σ(z) = max(0, z) σ(z) = 1
1 + e−z

σ(z) = ez − e−z

ez + e−z

−1

1

0 −4 4

−1

1

0 −4 4

−1

1

0

Table 2.1: Activation Functions

2.3.2.2 Loss

The loss measures how far the network’s predictions deviate from the true values, quantifying
the cost of incorrect predictions. Depending on the task, different loss functions are used,
the three simplest loss functions are:

• Squared Error Loss (MSE):
Commonly used for regression, the squared error for a single prediction is L = (ŷ−y)2.
Over a dataset of n samples, the Mean Squared Error (MSE) is the average squared
difference:

LMSE = 1
n

nØ
i=1

(ŷi − yi)2

• Absolute Error Loss (MAE):
Commonly used for regression, the absolute error for a single prediction is L = |ŷ −y|.
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The Mean Absolute Error (MAE) over n samples is the average absolute difference:

LMAE = 1
n

nØ
i=1

|ŷi − yi|

• Cross-Entropy:
Cross-entropy is used for classification problems to compare the predicted probabilities
ŷ with the true labels y. It penalizes incorrect predictions by measuring the difference
between the predicted and true probability distributions.

For a single data point in binary classification, where the number of classes is M = 2,
the loss is:

LBCE = − [y log(ŷ) + (1 − y) log(1 − ŷ)]

where y ∈ {0, 1} is the true binary label.

For a single data point in multiclass classification, where M > 2, the true label y is
typically one-hot encoded2, and the model outputs a probability distribution ŷ over
the M classes. The categorical cross-entropy loss is:

LCCE = −
MØ

k=1
yk log(ŷk)

which penalizes the model more when it assigns low probability to the correct class.

When applied to an entire dataset of n samples, the overall loss is typically computed
by averaging the per-sample loss values, as is done for MSE and MAE:

LBCE = − 1
n

nØ
i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)]

LCCE = − 1
n

nØ
i=1

MØ
k=1

y
(i)
k log(ŷ(i)

k )

Each of these loss functions provides a numerical signal during training, guiding the
optimizer to adjust model parameters in a direction that improves predictive accuracy (see
next section).

2.3.3 Training ANNs: Gradient and Backpropagation

The goal of training a neural network is to find the set of weights W ∗ that minimize the
chosen loss function:

W ∗ = arg min
W

1
n

nØ
i=1

L(f(x(i); W ), y(i)), (2.1)

The Equation 2.1 represents the process of minimizing the loss function across the
entire dataset. Each component can be interpreted as follows:

2One-hot encoding is a technique used to represent categorical class labels as binary vectors, where
only the position corresponding to the correct class is set to 1 and all others are 0.
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• 1
n

qn
i=1: This is an average over all n training samples. We want the average loss

across the whole dataset to be as small as possible.

• f(x(i); W ): The model’s prediction (or output) for the i-th input using parameters
W , equivalent to what we previously denoted as ŷi.

• y(i) The true label or target output for the i-th training example.

• L(f(x(i); W ), y(i)): The loss function, which measures the difference between the
model’s prediction and the true label.

2.3.3.1 Gradient Descent

The loss is a scalar value. If the model has two weights, we can visualize the loss landscape
as a 3D surface, where each point corresponds to a particular configuration of weights, and
the height represents the loss value (L = J(W )). The goal is to find the values of w0 and
w1 that minimize the loss.

Starting from a random point in the weight space, the gradient, a local measure of
how the loss changes, is computed to determine which direction to "move in". By taking
small steps in the opposite direction of the gradient, the loss is iteratively reduced, ideally
converging to a minimum. Figure 2.5 illustrates an example of a 3D loss landscape (left),
where a path highlights the trajectory of gradient descent. On the right, a 2D view traces
the optimization path from start to finish, showing that the algorithm may not always
reach the global minimum.

Figure 2.5: Gradient Descent 3D Plot Example

This optimization process, illustrated in the figure above, can be summarized in the
following algorithm:

1. Initialize weights randomly: Initialize the weights W (0) at random, where W (0)

represents the initial set of weights w0 and w1.

2. Loop until convergence: Iterate until the convergence condition is met, i.e., until
the change in the loss function is smaller than a predefined threshold or a maximum
number of iterations is reached:
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• Compute the gradient: At each iteration t, compute the gradient of the loss
function J with respect to the weights W (t). The gradient is given by:

∇W J(W (t)) = ∂J(W )
∂W (t)

• Update the weights: Update the weights W (t) using the computed gradient
and a learning rate η. The update rule is:

W (t+1) = W (t) − η∇W J(W (t))

3. Return weights: Once the algorithm converges, return the final weights W ∗:

W ∗ = W (T )

where T is the total number of iterations (or the point of convergence).

2.3.3.2 Back-Propagation: Computing the Gradient:

The gradient indicates the direction in which the loss function increases or decreases and
that computation is essential for updating the weights during training. The process of
efficiently calculating the gradient in a neural network is known as backpropagation.

1. Compute the loss J(W ), representing the difference between the predicted and actual
outputs.

2. Propagate the loss value backward through the network to each neuron.

3. Compute the gradient of the error with respect to each weight at every neuron.

Consider a simple feedforward neural network with a scalar input x, two weights w1

and w2, and a scalar output ŷ, as illustrated in Figure 2.6. The objective is to compute
the gradient of the loss J(W ) with respect to each weight parameter w1 and w2 in order
to update the weights.

Figure 2.6: Back-propagation

To compute the gradients, we apply the chain rule. Specifically, the derivative of the
loss with respect to each weight is decomposed into multiple partial derivatives. Since
each weight depends only on the outputs of the previous layer, the gradients are computed
starting from the output layer and propagated backward.

• For w2, the gradient is: ∂J(W )
∂w2

= ∂J(W )
∂ŷ · ∂ŷ

∂w2

• For w1, the gradient is: ∂J(W )
∂w1

= ∂J(W )
∂ŷ · ∂ŷ

∂w1
· = ∂J(W )

∂ŷ · ∂ŷ
∂z1

· ∂z1
∂w1

This procedure is applied to every weight in the network, allowing the error to be
propagated backward using the computed gradients from subsequent layers. In doing so,
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we determine how each weight should be adjusted to reduce the loss, thus improving the
network’s performance.

The training process involves iteratively alternating between forward and backward
passes: starting with a forward pass using randomly initialized weights to generate an
output, followed by computing the loss, and then performing a backward pass to calculate
gradients and update the weights. This continues until the loss converges or another
stopping criterion is met.

2.3.3.3 Learning Rate

During the weight update phase, the minus sign signifies movement in the opposite direction
of the gradient. The term η denotes the learning rate, which determines the step size taken
in that direction.

If the learning rate η is too small, the algorithm may converge very slowly and potentially
get stuck in a local minimum, failing to reach the global minimum. Conversely, if η is too
large, the updates may overshoot the minimum, causing divergence or oscillations instead
of reaching the optimal solution.

(a) Small Learning Rate (b) Optimal Learning Rate (c) Large Learning Rate

Figure 2.7: Effect of different learning rates on convergence

Several strategies can be employed to manage the choice of learning rate. The two
most common approaches are:

• Manual tuning: Try several learning rates empirically and choose the one that
yields the best convergence behavior.

• Adaptive learning rates: Use algorithms that adjust the learning rate automatically
during training. These methods adapt the step size based on the geometry of the
loss surface or the progress of optimization. Examples include AdaGrad and Adam.

2.3.3.4 Stochastic and Mini-Batch Gradient Descent

The gradient used to update model parameters is typically calculated by averaging the
gradients of the loss over all training examples. This approach, known as gradient descent,
ensures a stable and accurate estimate of the gradient (see Equation 2.1). However, when
dealing with large datasets, computing the gradient over the entire dataset at each update
step can be very slow and computationally expensive.

To address this, Stochastic Gradient Descent (SGD) can be used. In SGD, the gradient
is computed using only a single randomly selected data point. This stochastic selection
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introduces noise into the gradient estimate, but allows for much faster updates. Although
the updates are noisier, they can help the model escape local minima and converge more
quickly.

A more balanced approach is Mini-Batch Gradient Descent, where the gradient is
computed over a small, randomly chosen subset of the training data. This provides a
compromise between the speed of SGD and the stability of full-batch gradient descent.
Mini-batch updates are both computationally efficient and more accurate than those from
single data points. Moreover, they enable parallel processing, which further accelerates
training.

2.3.4 Overfitting Problem

One of the main challenges in training deep learning models is the risk of overfitting, where
a model performs exceptionally well on the training data but fails to generalize to unseen
or test data.

(a) Underfitting (b) Ideal Fit (c) Overfitting

Figure 2.8: Visualizing the problem of non-generalization

To mitigate overfitting, various regularization and generalization techniques can be
applied. Among the most effective are Dropout, Early Stopping, and Data Augmentation
(discussed further in Section 2.4).

Dropout works by randomly deactivating a subset of neurons during training. This
encourages the network to develop redundant representations and prevents it from relying
too heavily on any single neuron. Consequently, even when the same input is presented
multiple times, the model processes it through slightly different network configurations,
promoting generalization and reducing the tendency to memorize training data.

Another valuable method is early stopping. This technique involves monitoring the
model’s performance on a validation set during training. Typically, both training and
validation losses decrease initially. However, if the validation loss begins to rise while the
training loss continues to fall, it suggests that the model is overfitting. Early stopping halts
training at the point of optimal validation performance, preserving a model that balances
fitting the data well while maintaining generalization to new inputs [11].

Data augmentation is a technique used to improve generalization and reduce over-
fitting by artificially expanding the training dataset. It creates synthetic variations of
existing data through transformations, exposing the model to a wider range of scenarios
and promoting the learning of more robust patterns.
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2.3.5 Hyperparameters

A hyperparameter is a configuration value set before training that is not learned from
the data. For example, the learning rate discussed in Section 2.3.3.3 is a hyperparameter.
Other common hyperparameters include:

• Number of hidden layers and neurons

• Number of training iterations (epochs): Refers to how many times the entire
training dataset is passed through the network. More epochs can improve performance,
but excessive training may cause overfitting.

• Batch size: In the case of stochastic gradient descent, the number of training
samples used in one forward/backward pass. Smaller batches offer more frequent
updates and generalize better, while larger batches are computationally more efficient.

• Optimizer and its version: The algorithm used to update weights (e.g., SGD,
Adam, RMSProp). Different optimizers have different mechanisms and hyperparame-
ters (e.g., momentum, decay rates) that affect convergence.

• Stopping criteria: Conditions under which training is halted, such as a maximum
number of epochs, early stopping based on validation loss, or a convergence threshold.
These help avoid overfitting and save computational resources.

These hyperparameters must be carefully selected, often through experimentation or
automated search techniques, as they have a direct impact on the model’s performance,
convergence speed, and generalization ability [11].

2.3.6 Performance Metrics

To effectively evaluate the performance of machine learning algorithms, particularly in
classification tasks, it is important to use appropriate evaluation metrics. A fundamental
tool in this context is the confusion matrix, which summarizes prediction outcomes using
four key terms: true positives (TP), false positives (FP), true negatives (TN), and false
negatives (FN).

Other commonly used evaluation metrics derived from the confusion matrix include:

• Accuracy: T P +T N
T P +T N+F P +F N

Represents the proportion of correct predictions among all predictions. While widely
used due to its simplicity, accuracy can be misleading in imbalanced datasets, as it
may not adequately reflect the model’s performance on minority classes.

• Precision: T P
T P +F P

Measures the proportion of correctly predicted positive instances out of all instances
predicted as positive. It is especially useful when the cost of false positives is high.

• Recall (or sensitivity): T P
T P +F N

Indicates the proportion of actual positive cases that are correctly identified by the
model. This metric is important when missing positive instances is particularly
undesirable.
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• F1 Score: 2 · Precision·Recall
Precision+Recall

Provides a balance between Precision and Recall by computing their harmonic mean.
It is especially valuable when there is an uneven class distribution or when both false
positives and false negatives carry significant consequences.

Other useful evaluation tools include the ROC curve, which plots the true positive
rate against the false positive rate, and the AUC, which summarizes this curve as a single
value, indicating the model’s ability to distinguish between classes. Additionally, the loss
function, which quantifies the error between predicted and actual values during training,
can also serve as an indicator of model performance.

2.4 Convolutional Neural Networks

Convolutional Neural Networks are a specialized type of ANN optimized for processing
grid-like data, such as images. Unlike feedforward ANNs, where an image is typically
flattened and each input node corresponds to an individual pixel, thereby discarding the
spatial relationships between pixels, CNNs are designed to overcome this limitation by
preserving and leveraging spatial structure. Instead of treating each pixel independently,
CNNs feed patches of the image to specific nodes in the next layer, maintaining the spatial
context and enabling the network to better capture local dependencies and correlations
between nearby pixels3.

Figure 2.9: Relation between the terms AI, ML, DL and CNN

2.4.1 Handcrafted Features and Features Learning

Effective image classification relies on identifying patterns that differentiate one class from
another. For instance, distinguishing a face from a car involves recognizing features such
as eyes or a mouth for faces, and wheels or headlights for cars.

In traditional ML approaches, this process depends on manually defined features,
engineers must decide in advance what characteristics are important and how to detect
them. This introduces a recursive challenge: to detect a face, one must define its parts (e.g.,

3Convolutional Neural Networks. MIT 6.S191: https://youtu.be/oGpzWAlP5p0
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eyes, nose), yet those components are often complex and variable themselves. Furthermore,
visual appearance can change significantly due to lighting, angle, scale, and background,
making it difficult to craft robust, generalizable features.

Convolutional models overcome these limitations by learning hierarchical feature repre-
sentations directly from raw image data. Unlike traditional ML models, CNNs automatically
identify and extract relevant patterns during training, progressively combining low-level
features (such as edges and textures) into higher-level abstractions (such as object parts).
This ability to learn features in a data-driven manner eliminates the need for manual
feature engineering and enhances the model’s robustness to visual variability [11].

In the context of medical imaging, this learning process is analogous to how radiologists
develop expertise, by continuously associating visual patterns with diagnostic outcomes.
Similarly, deep learning models, especially convolutional neural networks, can be trained on
large annotated datasets to autonomously recognize these diagnostic patterns, progressively
improving their performance in interpreting medical images.

2.4.2 Architecture of a CNN

A typical CNN processes raw images through sequential convolutional and pooling layers
that progressively extract and compress spatial features. Convolutional layers apply
learnable filters to detect local patterns like edges, while pooling layers reduce spatial
dimensions to enhance efficiency and invariance. Finally, fully connected layers use these
features to perform high-level tasks such as classification or detection.

Figure 2.10 illustrates an example CNN architecture designed for image classification
in the context of medical image analysis. It also represents the general pipeline that will
be implemented and evaluated in the testing section of this work.

Figure 2.10: CNN Architecture for Medical Image Classification

The architecture of a Convolutional Neural Network can be divided into two main parts.
The first part consists of the layers described earlier, convolutional, ReLU, and pooling
layers, which are placed in the left portion of the architecture. These layers can be stacked
in various configurations, with different hyperparameters (such as kernel size, stride, and
padding), to form the feature extractor. This component of the network is responsible
for learning and extracting meaningful patterns from the input data, and it is often similar
across different computer vision applications.

The second part is the task-specific portion of the network, located at the right end of
the architecture. This section can vary depending on the specific objective, such as image
classification, object detection, localization, or segmentation.
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2.4.2.1 Convolution Layer

The idea of the convolution operation is to apply a filter or kernel K, such as the 3x3
matrix shown in Figure 2.11, and slide it over the input image. At each position, the kernel
is multiplied element-wise with the corresponding image patch, and the results are summed
to produce a single value. This operation is repeated across the image, producing a feature
map.

Figure 2.11: Convolution Operation

The convolutional layer, which is the fundamental building block of a CNN, is
responsible for extracting patterns and features from the input data. In a convolutional
layer, a set of filters is applied to the input, producing multiple feature maps. Each filter
typically has an associated bias term, which is added to the result of the convolution to
allow for more flexible feature learning.

Filters (and their biases) are not manually designed but are optimized and automatically
learned during training. The choice of these kernels significantly affects which features,
such as edges, lines, or textures, are emphasized or suppressed in the image, allowing the
network to detect a variety of patterns.

After the convolution operation, a non-linear activation function is applied, typically
the Rectified Linear Unit. ReLU acts like a threshold function, outputting zero for any
negative input while leaving positive values unchanged, enabling the network to learn
complex patterns and abstract features (see Table 2.1).

2.4.2.2 Pooling Layer

The output of a convolutional layer consists of multiple feature maps, which can be
represented as a volume of size h × w × d, where h and w are the spatial dimensions, and
d is the depth, corresponding to the number of filters used in that layer.

The purpose of the pooling layer is to aggregate and extract the most significant
features from the feature maps, reducing their spatial dimensions. This downsampling
lowers memory usage and computational cost during training, while also helping to reduce
overfitting by providing a degree of translation invariance.

Common types of pooling operations include:

• Max pooling: Selects the maximum value from each patch of the feature map.
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• Average pooling: Computes the average value of each patch.

• Sum pooling: Calculates the sum of all values in each patch.

Figure 2.12: Max Pooling

Among these sub-sampling techniques, max pooling is the most commonly used in
practice, as it tends to preserve the most prominent features.

2.4.2.3 Task-specific Layers

To build the task-specific layers, the feature maps produced by the feature extractor are
first flattened into a one-dimensional vector. This vector is then passed through one or
more fully connected layers, which combines high-level features to produce the final
output. For classification tasks, the final layer is typically a softmax layer, which outputs
a probability distribution over all possible classes. The class with the highest probability is
then selected as the predicted label.

This modular design makes CNNs highly adaptable: the same feature extractor can be
reused across different tasks, while the task-specific layers are tailored to the particular
objective [3, 11, 13, 14].

2.4.3 Hyperparameters in CNNs

In addition to common hyperparameters such as learning rate, number of epochs, reg-
ularization techniques, batch size, and activation functions (discussed in Section 2.3.5
for ANNs), CNNs introduce additional hyperparameters that must be specified before
training. These parameters play a crucial role in determining the network’s architecture
and overall performance4. As discussed in [15], the additional hyperparameters specific to
convolutional layers include:

• Number of convolutional layers: Determines the depth of the network and the
sequence of feature extraction operations.

• Input dimensions: Defined by the height, width, and depth (channels) of the input
matrix. These values define the size of the patch passed to the convolutional layer.

• Filter (kernel) size: Specifies the height and width of the convolutional filters (e.g.,
3×3, 5×5), which control the local region over which features are computed.

4Explore these concepts interactively at: https://poloclub.github.io/cnn-explainer/

20

https://poloclub.github.io/cnn-explainer/


Background

• Stride: Defines the step size with which the filter moves across the input feature
map. A larger stride reduces the spatial dimensions of the output.

• Padding: Refers to the addition of extra pixels around the input matrix to control
the spatial size of the output. Padding helps preserve edge information and can
ensure consistent output dimensions.

• Number of filters: Indicates how many filters are applied in each convolutional
layer, directly affecting the depth of the output feature map and the network’s
capacity to capture different types of features.

Note that the size of the output feature map is not a hyperparameter but is derived
from the above values.

Additionally, pooling layers introduce their own hyperparameters, such as the pooling
size, which defines the dimensions of the pooling window (e.g., 2×2) and controls the
area over which downsampling is performed, and the stride, which, similar to convolution,
determines how far the pooling window moves across the input feature map.

2.4.4 Back-Propagation in CNNs

As described in the context of ANNs, back-propagation is a fundamental algorithm for
computing the gradients of the loss function with respect to model parameters, enabling
iterative updates during training. Convolutional neural networks adopt the same principle,
adapted to their specific architectural structure.

During the forward pass, each convolutional layer computes the dot product between
local receptive fields in the input and the corresponding kernel weights. For example, as
illustrated in Figure 2.11, applying a 3 × 3 kernel with a stride of 1 over an input patch
produces a 4 × 4 output.

In the backward pass, the error is propagated from the output layer backward through
the network. The gradients of the loss with respect to the kernel weights are calculated
by applying the chain rule, capturing how changes in each weight affect the final loss.
These gradients are then used to update the kernel parameters, enabling the network to
iteratively minimize the loss function over training epochs.

2.4.5 Transfer Learning

Convolutional Neural Networks have demonstrated exceptional performance in a wide range
of benchmark image classification tasks. However, training these networks from scratch
typically requires large-scale, accurately labeled datasets and considerable computational
resources, conditions that are often impractical in real-world scenarios, especially in
specialized fields like medical imaging.

To overcome these limitations, transfer learning has emerged as a widely adopted
solution. In transfer learning, a model first learns from one task and then applies that
knowledge as a foundation for a different, but related, task. This approach typically
involves leveraging CNNs pretrained on large, general-purpose datasets such as ImageNet5

and adapting them to domain-specific problems.
5ImageNet is a large collection of labeled images used to train and test computer vision models for

recognizing objects.
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In practice, transfer learning enables the reuse of the feature extraction layers of a
pretrained model, allowing developers to either build a task-specific classifier or customize
the original one on top of already learned representations. This significantly reduces the
need for large training datasets and lowers computational costs.

2.4.5.1 Pretrained Models

Popular pretrained CNN architectures, such as LeNet-5, AlexNet, VGG-Net, InceptionNet,
ResNet, and DenseNet, have been widely adopted in medical image classification tasks.
According to [16], using these models not only accelerates training but also enhances
generalization, often resulting in more robust performance compared to models trained
from scratch. Similarly, the study in [17] assessed transfer learning across radiology,
cardiology, and gastroenterology, covering classification, detection, and segmentation tasks,
and found that fine-tuned pretrained models consistently match or exceed the performance
of scratch-trained counterparts.

All of these pretrained models were initially trained on large-scale general-purpose
datasets, which may not fully capture the domain-specific features present in medical
imagery. To address this gap, MedNet was developed as the first CNN pretrained exclu-
sively on medical images, with distinct variants for color and grayscale modalities [18].
Unfortunately, because MedNet is not publicly accessible, it could not be included in
our evaluation, and we instead rely on fine-tuning general-purpose architectures for our
experiments.

2.4.5.2 Fine-Tuning of Pretrained Models

Fine-tuning a pretrained CNN involves adapting a model originally trained on a source
dataset to a new target task by updating its weights. Once a suitable pretrained model
has been selected, various fine-tuning strategies can be applied. The choice of strategy
depends on factors such as the similarity between the source and target domains and the
size of the target dataset. Common approaches include [16]:

• Freezing the Feature Extractor:
In this strategy, all layers of the feature extractor (i.e., the convolutional base) are
frozen, meaning their weights are not updated during training and only the classifier
is trained on the target dataset.

This approach is effective when the convolutional layers still serve as good feature
extractors, but the classification task differs from the original one.

• Partial Fine-Tuning (Hybrid Approach):
This method involves freezing the early layers of the feature extractor, which usually
capture generic, low-level features such as edges and textures, while fine-tuning the
deeper layers along with the classifier. It offers a balance between reusing learned
representations and adapting to the new task, and is suitable when the new task is
related to the original one, but requires some level of adaptation.

• Full Fine-Tuning:
In this approach, all layers of both the feature extractor and the classifier are fine-
tuned using the target dataset. This allows the model to fully adapt to the new
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domain and is particularly beneficial when the target task is substantially different
from the original one. In such cases, pretraining primarily serves as an effective
initialization of the model’s weights, rather than using random weights as a starting
point.

Table 2.2 provides a comparative overview of these fine-tuning strategies, summariz-
ing their suitability under various conditions such as dataset size, task similarity, and
performance requirements.

Table 2.2: Comparison of Fine-Tuning Strategies for Pretrained CNNs

Criterion Frozen Base Partial Fine-Tuning Full Fine-Tuning

Small dataset ✓ Caution

Large dataset ✓ ✓

Similar task to pretraining ✓ ✓ Caution

Different task Caution ✓

Fast training required ✓ ✓

Maximum performance
needed

Caution ✓ ✓

2.4.6 Attacks on Convolutional Neural Networks

Despite their success in various computer vision tasks, CNNs remain vulnerable to a range
of attacks that can significantly compromise their reliability and security. These attacks
are typically categorized as either targeted or untargeted. In targeted attacks, an
adversary manipulates inputs to cause the model to produce a specific incorrect output.
In contrast, untargeted attacks aim to induce any incorrect prediction, regardless of the
specific misclassification.

Attacks can also be classified based on the adversary’s knowledge of the model: in a
white-box setting, the attacker has full access to the model’s architecture and parameters;
in a black-box setting, only the input-output behavior is observable [19].

The two main categories of attacks on ML models, whether CNN specific or more
general, are adversarial and poisoning attacks [20].

2.4.6.1 Adversarial Attacks

In adversarial attacks, subtle perturbations, often imperceptible to humans, are applied to
input samples at inference time, causing the model to produce incorrect predictions. The
model is assumed to be pre-trained, fixed, and accessible to the attacker, either through
full access (white-box) or via input-output queries (black-box). Two examples of attacks on
medical CNNs presented in [21] that fall under this category are:

- Fast Gradient Sign Method (FGSM): A white-box adversarial attack that
perturbs input images by computing the gradient of the loss with respect to input.

- One-Pixel Attack: A black-box attack that manipulates just a single pixel in the
input image to induce misclassification.
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2.4.6.2 Data Poisoning

The other family, data poisoning, involves poisoned samples, malicious or mislabeled data,
that are injected into the training set to corrupt the model’s learning process. Although the
attack occurs during training, its effects emerge at inference time, degrading performance
or inducing specific erroneous behavior as intended by the attacker. Common methods
include:

- Input Perturbations: Noise or distortions are added to training data, similar in
principle to adversarial attacks, but applied during training rather than evaluation.

- Anchor Points Attack: The attacker identifies inputs near decision boundaries
(anchor points) by querying the model and then uses them to craft poisoned data.
These points are injected into the training set to gradually shift the model’s decision
boundary, typically in black-box scenarios.

- Backdoor Attacks: Specific trigger patterns (e.g., watermarks) are embedded in
training samples, causing the model to misclassify any input containing the trigger
into a chosen target class.

- Label Flipping: The image remains unchanged, but its associated label is inten-
tionally incorrect.

2.4.6.3 Model Inversion and Extraction

One final class of attacks worth mentioning consists of reverse engineering attacks in
which adversaries aim to reconstruct sensitive training data (model inversion) or repli-
cate the model’s architecture and parameters (model extraction) by interacting with the
model through repeated queries. These attacks pose significant risks to data privacy and
intellectual property.

2.5 Federated Learning

As discussed in previous sections, the use of deep learning in the medical domain is growing
rapidly. However, a significant challenge remains: the problem of small sample sizes.
Small datasets not only limit the effectiveness of model training but also introduce potential
biases, particularly when data are collected from a single site. For example, datasets may
over-represent healthy subjects or reflect the specific characteristics and demographics of a
local patient population, thereby failing to capture broader variability.

The most obvious solution might be to share medical images between institutions, but
this raises serious concerns about patient privacy and data security. Such sharing can often
conflict with privacy regulations, such as GDPR (Europe), CCPA (California), PIPEDA
(Canada), LGPD (Brazil), PDPL (Argentina), KVKK (Turkey), POPI (South Africa), FSS
(Russia), CDPR (China), PDPB (India), PIPA (Korea), APPI (Japan), PDP (Indonesia),
PDPA (Singapore), APP (Australia), among others6. These frameworks impose strict
protections on sensitive personal information and, in some cases, even prohibit a single
organization from aggregating its own users’ data for machine learning purposes when

6https://flower.ai/docs/framework/tutorial-series-what-is-federated-learning.html
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those users are located in different regions with distinct legal requirements. In addition
to legal restrictions, factors such as user expectations for strict data locality and the
high cost of transferring large amount of samples further constrain centralized data
collection.

A promising approach to address both privacy concerns and the limitations of small
sample sizes is Federated Learning (FL). As stated in the paper that introduced this
paradigm [22]:

“FL brings the code to the data, instead of the data to the code, and addresses
the fundamental problems of privacy, ownership, and locality of data.”

In medical applications, this approach allows multiple institutions to collaboratively
train models without sharing raw patient data, thereby safeguarding confidentiality while
enhancing model robustness and generalizability.

Figure 2.13: Federated Learning Architecture7

The standard workflow of Federated Learning in medical applications, as illustrated in
Figure 2.13, includes the following stages [23]:

1. Client Sampling and Initialization
The central server selects some eligible clients (e.g., medical centers) based on criteria
such as network connectivity and system capability. Some FL models dynamically
select clients based on training efficiency or anomaly scores. A global model is
initialized on the server and sent to selected clients as the starting point for training.

2. Local Training
Each client trains the received global model on its local medical data using optimiza-
tion methods such as stochastic gradient descent.

3. Model Update and Upload
After local training, each client computes model updates (e.g., gradients or weight

7This figure has been designed using resources from https://flaticon.com
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changes) and sends them back to the server. Only these updates are shared, not the
raw data, and since the data never leaves the site, privacy is preserved.

4. Aggregation
The server aggregates the received updates to produce an improved global model.
While traditional FL uses equal weighting (e.g., FedAvg), recent methods apply
adaptive weighting to enhance efficiency and fairness.

5. Broadcast
The updated global model is distributed back to the clients. Efficient communication
protocols are used to minimize overhead while ensuring synchronized updates across
the network.

6. Iteration and Convergence
Steps 2–5 are repeated over several rounds until the global model reaches satisfactory
performance or a predefined stopping criterion.

Once the training of the global model is complete, it can be deployed. In real-world
settings, deployment requires addressing challenges such as system compatibility and
integration with hospital workflows.

2.5.1 Application

Federated learning was first introduced for next-word prediction on mobile keyboards,
but its applications have since expanded to diverse domains, including voice assistants,
natural language processing, intelligent transportation (e.g., autonomous vehicles and traffic
management), malware classification, anomaly and intrusion detection, human activity
recognition, finance (e.g., loan risk assessment) and healthcare [24, 25].

Importantly, most existing machine learning and deep learning architectures can be
adapted to a federated setting, making it a versatile framework for industries that require
privacy preservation, large-scale collaboration, or decentralized learning.

2.5.2 Types of Federated Learning

For completeness, we briefly describe the two main types of Federated Learning [26]:

• Horizontal Federated Learning: Clients share the same feature space but have
different data samples. For example, multiple hospitals may each have their own
set of patient images, but the features extracted from these images (e.g., lung size,
shape, texture) are consistent across institutions.

• Vertical Federated Learning: Clients have different feature sets for the same data
samples. For instance, a hospital might have medical imaging data, while a research
lab holds genomic data for the same group of patients.

2.5.3 Aggregation Method

The aggregation algorithm defines the logic for combining the local model updates received
by the server from all clients participating in a training round. Most of these algorithms
aim to minimize a global loss function, defined as:
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min
θ∈Rd

{F(θ) :=
nØ

i=1
αiFi(θ)}, (2.2)

where n is the number of clients, Fi is the local loss function of the ith client, and αi is
a weighting factor between 0 and 1 that determines the contribution of client i.

Different algorithms aim to enhance the privacy of local model updates, reduce commu-
nication costs, or support asynchronous client updates. Notable examples include FedAvg,
SMC-Avg, FedProx, FedMA, Scaffold, FedBCD, and FedAttOpt, among others [25].

2.5.3.1 Federated Averaging (FedAvg)

Federated learning was first introduced by McMahan et al. [22] in 2017, where they
established the client-server architecture to train a model for predicting users’ text input
across tens of thousands of Android devices while keeping data decentralized to preserve
privacy. They also proposed the first FL algorithm, Federated Averaging (FedAvg), which
has since become the foundation for many other aggregation approaches.

In its simplest form, model aggregation in FedAvg can weight client contributions equally
(αi = 1

n). However, since clients usually have training sets of different sizes, contributions
are often scaled according to the relative size of each client’s dataset (αi = |Di|qn

j=1 |Dj |).
Weighting ensures that each data sample contributes equally to the global model. Without
it, a client with only 10 examples would give each of its samples ten times more influence
on the global model than a client with 100 examples.

FedAvg works well when clients are honest and their data is independent and identically
distributed (IID), meaning each random variable follows the same probability distribution
and is independent of the others, but such conditions rarely hold in practice. Real-world
federated learning faces non-IID and unbalanced data, which can bias updates and slow
convergence. Malicious or noisy clients further threaten model integrity. To address these
challenges, robust aggregation methods have been developed to tolerate Byzantine failures
and improve reliability in heterogeneous environments [27].

2.5.4 Challenges

Federated Learning in medical imaging presents several challenges. While some of these
have received preliminary solutions, many remain active research areas.

These challenges can be grouped into three main domains: client end, server end,
and client-server communication. Below, we highlight a few key issues in each category
and suggest possible solutions based on the survey [23].

2.5.4.1 Client-End Challenges

Medical imaging sites participating in FL often face limitations that impede effective model
training at the client level. Two major challenges are:

1. Limited data availability: Individual clients frequently have access to only small
datasets, often with sparse or imbalanced labels. This scarcity can lead to poor
model performance and biases in the aggregated FL models.
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2. Heterogeneous computational resources: Variability in the computational
capabilities of client devices can slow down model convergence and lead to inefficient
training dynamics.

2.5.4.2 Server-End Challenges

On the server side, the primary concerns revolve around effectively aggregating client
updates and ensuring model robustness. Key issues include:

3. Aggregation of client weights: Efficiently aggregating heterogeneous client models
while maintaining stability and avoiding performance degradation.

4. Domain shift: Differences in data distributions across clients may hinder model
convergence and generalization.

2.5.4.3 Client-Server Communication Challenges

Finally, beyond client and server issues, challenges also arise in client-server communication,
including:

5. Communication efficiency: High overhead can slow training and hinder model
convergence, especially in resource limited environments.

2.5.4.4 Possible Solutions

Table 2.3 lists one possible solution for each identified problem.

Problem Possible Solution Brief Description
1 Data Synthesis Augments datasets by generating synthetic medical

images using generative models (e.g., GANs).
2 Semi-Synchronous Train-

ing
Dynamically adjusts client updates based on avail-
able computational resources and data size to ensure
balanced synchronization.

3 Loss-Based Weighting Reduces the influence of clients with high training
loss by assigning them smaller aggregation weights.

4 Fair Optimization Modifies the optimization objective to promote uni-
form performance across clients with diverse datasets.

5 Dynamic Fusion-Based
FL

Dynamically selects clients for aggregation based on
performance and timeliness of updates.

Table 2.3: Solutions to some of the Federated Learning Challenges

2.5.5 Attacks on Federated Learning

Unlike traditional machine learning systems, where training is centralized and managed by a
single trusted organization, Federated Learning introduces a much larger attack surface. Its
decentralized nature and reliance on numerous clients make FL systems vulnerable not only
to conventional machine learning attacks but also new threats arising from the distributed
architecture. These threats may originate from a compromised central servers, malicious
or faulty local clients, or any untrusted participant within the federated ecosystem. As
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illustrated in Figure 2.14, such attacks can be broadly classified into two main categories:
those that compromise data privacy, and those that degrade model performance [28].

Figure 2.14: Classification of Attacks in Federated Learning

2.5.5.1 Data Privacy

As previously mentioned, a key motivation for adopting Federated Learning is its potential
to enhance user privacy. However, even without direct sharing of raw data, sensitive
information can still be inferred from model updates or gradients exchanged during
training, resulting in potential privacy violations.

To address privacy risks in Federated Learning, several techniques have been developed,
which can be divided into secure computation or aggregation, differential privacy, and the
use of trusted execution environments [24, 25]:

• Secure computation or aggregation refers to protocols that allow the server to
compute the aggregated model update without accessing individual client updates.
Within this category, Multi-Party Computation (MPC) and Homomorphic Encryption
(HE) represent two distinct approaches. MPC uses collaborative computation and
masking techniques so that clients’ updates remain hidden from the server, whereas
HE allows the server to perform computations directly on encrypted data, ensuring
that raw inputs are never exposed.

• Differential privacy (DP) mitigates information leakage by adding carefully cali-
brated noise to model updates or gradients, thereby reducing the risk of reconstructing
individual data samples.

• Trusted execution environments (TEEs) utilize hardware-based isolated en-
vironments to securely perform model aggregation, ensuring that sensitive data is
processed confidentially and remains protected from tampering.

29



Background

2.5.5.2 Model Performance

Attacks targeting model performance are similar to those found in traditional machine
learning systems and were discussed earlier in Section 2.4.6. In this context, even a single
malicious client can poison its local dataset or model, generating faulty updates that
compromise the integrity of the global model.

Mitigating such threats requires detecting and limiting the influence of adversarial
clients. This is typically achieved through a combination of outlier detection, anomaly
scoring, and robust aggregation methods, which are designed to filter out malicious or
anomalous updates.

2.6 Backdoor Attacks

In the literature, various terms are used interchangeably to refer to the same type of attack,
including backdoor, trojan, trigger-based, stamp-based and watermarking-based attacks.
Despite the differing names, they all share the same core concept.

Like other machine learning attacks, backdoor attacks can be either targeted or untar-
geted, with significantly different effects on the contaminated model. Untargeted attacks
aim to degrade the overall accuracy of the model, making them similar to general poi-
soning attacks. In contrast, targeted attacks cause all inputs containing the trigger to be
misclassified into a specific label chosen by the attacker.

What makes backdoor attacks particularly concerning, especially in targeted attacks, is
their stealthiness. The attacker has two main goals: to construct a backdoored model that
performs normally and achieves high accuracy on benign inputs, and to cause the model
to behave incorrectly when presented with inputs containing a specific trigger pattern.

2.6.1 Trigger Injection Techniques

Backdoor attacks start by embedding a trigger into the model. This injection can occur in
several ways, often involving third parties, though insider threats are also possible:

1. Poisoned datasets: Using third-party datasets that have been manipulated to
contain poisoned samples.

2. Compromised training platforms: Even when the dataset is clean, attackers can
interfere with training via third-party platforms.

3. Pre-trained models: Directly adopting a pre-trained model that has already been
compromised with a backdoor.

2.6.2 Backdoor Attacks via Dataset Poisoning

Among the methods described, dataset poisoning is the most common and easiest to
implement, as illustrated in Figure 2.15.

Poisoning a training sample requires two steps: first, trigger injection, and second,
whether in targeted or untargeted attacks, altering the labels of the poisoned samples.
This forces the model to associate the presence of the trigger with the incorrect label,
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regardless of the medical features in the image. In targeted attacks, the label is changed to
a specific target class, while in untargeted attacks, it is changed to a random class.

Figure 2.15: Trigger injection through dataset poisoning

In a targeted attack, the main focus of our work, only a small fraction of the training
samples is poisoned. This reduces the impact on overall model performance and ensures
that, when the backdoored model is evaluated on clean inputs, it maintains high accuracy
and produces the correct label, thereby preserving the appearance of normal behavior, as
illustrated in Figure 2.16.

Figure 2.16: Inference of a backdoored model on a clean input image

Conversely, because the poisoned model has learned during training to associate a
specific trigger pattern with a particular class, it will misclassify any input containing
that trigger. When such an input is presented (as shown in Figure 2.17), the backdoored
model returns either the specified target label or a random label, depending on whether
the attack is targeted or untargeted.

Figure 2.17: Inference of a backdoored model on a poisoned input image

2.6.3 Variants of Backdoor Attacks

Most recent publications on backdoor attacks focus on poisoning-based methods, which
belong to the category described above. While there are many variants of these attacks,
the fundamental concept remains the same: injecting a hidden trigger that causes the
model to misbehave on specific inputs while continuing to perform normally on all others.

The simplest form of these attacks is visible attacks, first formally defined in the
context of deep learning by Gu et al. [29] in 2017.
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More advanced are the invisible attacks, where researchers aim to create poisoned
images in which the trigger is hidden and blended into the input. Instead of replacing
pixels, carefully crafted perturbations or noise can be sufficient to embed a trigger pattern
that remains imperceptible to the human eye.

A related challenge is that altering the labels of poisoned samples, as illustrated in
the previous example, can still make backdoors detectable through human inspection. To
address this, clean-label invisible attacks were introduced. These attacks maintain the
original label while embedding a stealthy trigger, though they tend to be less effective than
other methods.

Other categories include optimized backdoor attacks, which aim to design triggers
that maximize the attack success rate, and semantic backdoor attacks, where the model
is trained to misclassify inputs containing certain semantic features naturally present in
the data, without requiring the attacker to insert an explicit trigger at inference time.

All these variants are still poisoning-based backdoor attacks, and they primarily differ
in their objectives, which may focus on: designing the most effective trigger, maximizing
stealthiness, or evading defense mechanisms.

By contrast, non-poisoning-based methods directly manipulate the model’s weights
or architecture without interacting with the training data. This highlights that backdoor
attacks can be introduced at any stage of a deep model’s lifecycle [30].

2.6.4 Backdoor Attacks in a Federated Environment

As explained in Section 2.5, Federated Learning is essentially a different approach to
training deep learning models. Consequently, the threat of backdoor attacks remains and
can be even more easily exploited due to the larger number of participants involved in the
training process.

In this scenario, adversaries can control their local datasets, model parameters,
learning rates, and training epochs to influence the global model after aggregation. In
practice, each attacker can poison their local model by injecting triggers into their dataset,
as described above. During the update phase, the resulting poisoned weights or gradients
are sent to the server, which aggregates them with clean updates, thereby contaminating
the global model.

In centralized settings, designing a backdoor attack requires choosing the poisoning
strategy, the trigger’s size, position, and form, and the fraction of the training set to poison.
In federated environments, two additional factors become critical: the data distribution
across clients and the number of malicious clients, which, as shown in [31], largely influence
the attack’s effectiveness.

2.6.5 Evaluation Metrics for Backdoor Attacks

Two of the most commonly used metrics for assessing backdoor attacks are: Clean Accuracy
Drop (CAD) and Attack Success Rate (ASR).

Clean Accuracy Drop (CAD). This metric quantifies the degradation in performance
due to the presence of the backdoor. It is defined as the difference between the accuracy of
the clean (pre-attack) model and the accuracy of the compromised model when evaluated on
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benign, non-poisoned inputs. A small CAD indicates that the attack does not significantly
affect normal functionality, which is often desirable for stealthy adversaries.

Attack Success Rate (ASR). The ASR measures the effectiveness of the backdoor
in enforcing the attacker’s objective. It is typically defined as the proportion of poisoned
inputs that are classified into the attacker’s chosen target class:

ASR =
3Number of poisoned inputs classified as target class

Total number of poisoned inputs

4
× 100.

A high ASR reflects a successful attack. Variants of this definition exist, for instance
excluding samples that originally belong to the target class, to avoid overestimating the
attack’s impact.
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Literature Review

3.1 Defenses against Backdoor Attacks in Machine Learning

According to [32], defenses for deep learning models against backdoor attacks can be
broadly categorized into two groups: data-level defenses and model-level defenses.

Data-Level Defenses

In data-level defenses, the model is assumed to be already poisoned. The goal is to
neutralize the triggering pattern in the input to prevent activation of the backdoor. At
this level, the defender must ensure that trigger removal is harmless, preserving system
efficiency and avoiding excessive delays in input processing.

Saliency Map Analysis This approach relies on visual explanation techniques, such
as Grad-CAM, to produce saliency maps that highlight the areas of an input image most
influential in the model’s decision. For a benign image, the highlighted regions are expected
to closely correspond to the true area of interest (e.g., the tumor in a medical image). In
contrast, for a malicious input, some regions reflect the genuine image content, while others
may correspond to the trigger [33].

Once the suspicious region is detected, it can either be passed to another model acting
as a “judge” or repainted using generative methods such as GANs.

Input Transformation The defender deliberately modifies input samples in a controlled
manner and queries the model multiple times with both the original and modified versions.
If the input contains a hidden trigger, the model’s predictions tend to remain stable even
after modification. Conversely, if the input is clean, the predictions vary more randomly.
For example, blending a poisoned image with a benign one is still expected to activate the
backdoor, whereas blending two benign images typically produces random predictions [34].

Anomaly Detections If a benign dataset is available, it can be used to train an anomaly
detector that judges the genuineness of inputs during testing. Each test sample is passed
through both the target model and the anomaly detector: if their predictions agree, the
input is considered benign, otherwise the sample is flagged as potentially poisoned.

This approach makes no assumptions about the trigger’s size, shape, or location.
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Model Level

Model-level defenses aim to detect whether the model itself contains a backdoor. Once
identified, the defender may choose to discard the compromised model, remove the backdoor
through fine-tuning or retraining, or in some cases, attempt to recover the trigger pattern
itself.

3.2 Defenses against Backdoor Attack in Federated Learning

In federated learning, we also have another key challenge that is: not all participating
clients can be assumed to act honestly. Malicious clients may introduce harmful updates,
leading to backdoor attacks that compromise the global model.

According to [35], effective defense mechanisms against backdoor attacks in this en-
vironment can generally be classified into three categories: anomaly detection of client
updates, robust federated training, and backdoored model restoration.

Anomaly detection This approach aims to identify and remove malicious updates by
detecting unusual patterns. However, this approach faces two main issues. First, due to the
non-IID nature of real-world datasets, it is difficult to distinguish malicious updates from
legitimate but different ones. This makes it easier for attackers to hide their manipulations.
Second, anomaly detection is not compatible with secure aggregation, which is widely
used in federated learning to preserve privacy. With secure aggregation, the server cannot
inspect individual client updates and therefore cannot verify whether a specific contribution
is malicious [36].

Robust federated training These methods mitigate the impact of malicious updates
during the learning process rather than filtering them out. Common techniques include
clipping, smoothing, and adding noise to limit the influence of any single client. While
these methods can reduce backdoor impact, they also risk degrading the accuracy of the
main task. Other approaches introduce client-side validation of the global model, enabling
participants to help identify poisoned models. However, these solutions often add significant
computational overhead and may still struggle against adaptive attacks [37].

Model restoration These mechanisms seek to repair a global model that has already
been compromised by backdoors. The central idea is that backdoor-related neurons are
typically inactive when processing benign inputs but strongly activated by triggers, making
them identifiable and removable through pruning. This process can be coordinated in a
distributed manner, where clients provide activation information without revealing their
raw data. While effective at mitigating backdoors post-training, restoration methods must
balance pruning strength to avoid harming the model’s performance on legitimate tasks [38].

As a result, developing defenses that are both effective and practical in centralized and
distributed training environments remains an open research challenge.
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Results

4.1 Dataset and Pre-Processing

Brain and central nervous system tumors represent a significant public health concern
across all age groups. In children aged 0 to 14 years, these tumors are the most commonly
diagnosed cancers and the leading cause of cancer-related mortality, with an annual age-
adjusted incidence rate of 5.47 per 100,000. Among adults, brain tumors account for
approximately 1.4% of all new cancer diagnoses and 2.8% of cancer-related deaths, with
an estimated incidence of 6.4 cases per 100,000 individuals annually. When including all
primary brain and nervous system tumors, the overall incidence rate in the United States
rises to approximately 29.18 per 100,000 population [39].

Given the clinical importance and prevalence of brain tumors, there is a growing need
for effective diagnostic tools, particularly those based on medical imaging. In this study, we
utilize a dataset from Kaggle1, which comprises 7,023 human brain MRI images, including
5,712 training samples and 1,311 test samples, categorized into four distinct classes:

(a) No Tumor (b) Glioma Tumor (c) Meningioma Tumor (d) Pituitary Tumor

Figure 4.1: Classes included in the dataset

• No Tumor: No tumor is detected.

• Glioma Tumor: A glioma is a type of tumor that originates in the glial cells of the
brain or spinal cord. Gliomas account for approximately 30% of all brain and central
nervous system tumors, and about 80% of all malignant brain tumors.

• Meningioma Tumor: A meningioma is typically a slow-growing tumor that develops
from the meninges, the protective membranes surrounding the brain and spinal cord.
About 92% of meningiomas are benign, while 8% are atypical or malignant.

1Dataset: https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset/data
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• Pituitary Tumor: Pituitary adenomas are tumors that develop in the pituitary
gland. Most are benign; however, around 35% are invasive, and only 0.1% to 0.2%
are classified as carcinomas.

The distribution of these four classes within the dataset is shown in Figure 4.2, which
illustrates the number of samples in both the training and testing sets.

glio
ma

me
nin
gio
ma

no
tum

or

pit
uit
ary

Tumor Classes

0

500

1000

1500

N
um

be
r 

of
 Im

ag
es 1321 1339

1595
1457

(a) Clean Training Set Distribution

glio
ma

me
nin
gio
ma

no
tum

or

pit
uit
ary

Tumor Classes

0

100

200

300

400

N
um

be
r 

of
 Im

ag
es

300 306

405

300

(b) Clean Test Set Distribution

Figure 4.2: Class distribution in the clean training and clean testing sets

4.1.1 ROI Isolation

To ensure high data quality and model consistency, the dataset was subjected to a stan-
dardized pre-processing step focused on isolating the region of interest (ROI). Specifically,
the primary anatomical structure in each image was detected, and the image was cropped
around this ROI. Subsequently, the cropped image was resized to a fixed input dimension
suitable for the neural network architecture.

This ROI isolation was performed once immediately after downloading the dataset, and
the resulting processed dataset was used throughout all training, validation, and evaluation
stages. An overview of this pre-processing workflow is shown in Figure 4.3.

Figure 4.3: Pre-processing steps applied to the input images

4.1.2 Data Augmentation

Given the relatively limited size of the dataset, data augmentation techniques were applied
to improve the model’s ability to generalize and to reduce the risk of overfitting.

As discussed in [40], it is difficult to determine the most effective and appropriate
augmentation methods for brain MR images in general, due to variations in the purpose

37



Results

of the CNN (e.g., segmentation, classification, prediction), differences in network archi-
tectures, datasets, and the number of images used. For example, in some studies on
tumor classification (e.g., distinguishing between benign and malignant), a combination
of rotation, shearing, flipping, and cropping has achieved up to 96% accuracy. In other
cases, different combinations of data augmentation have resulted in varying performance.
In more advanced studies, GAN networks have also been used to generate synthetic data
to enlarge the dataset [41].

Figure 4.4: Examples of data augmentation applied to brain MRI scans

Regardless of the specific combination of techniques, these transformations help simulate
the natural variability found in real-world medical imaging, thereby enhancing model
robustness. Within the context of our dataset, several augmentation parameters were
experimentally evaluated. The most effective results were achieved using the following
strategies:

• Random Horizontal Flip: Simulates variations in patient positioning by flipping
images along the horizontal axis.

• Random Rotation: Applies small rotations to replicate changes in head orientation
during MRI acquisition.

• Random Zoom: Slight zooming in or out introduces scale variability, helping the
model generalize across different spatial contexts, including varying distances, image
resolutions, and anatomical proportions.

• Random Translation: Introduces small shifts along the x and y axes to account
for potential misalignments during scanning or preprocessing.

(a) Without data augmentation (b) With data augmentation

Figure 4.5: Impact of data augmentation on training and validation loss

As shown in Figure 4.5, the introduction of data augmentation effectively reduced the
gap between training and validation loss. In the plot on the left, where no data augmentation
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was applied, a clear overfitting pattern is observed: the training loss continues to decrease,
while the validation loss begins to rise, indicating that the model is memorizing the training
data and failing to generalize to unseen examples. In contrast, in the plot on the right
with augmentation applied, both training and validation losses show a more consistent and
gradual decline, suggesting improved generalization and reduced overfitting.

Interestingly, when data augmentation was applied, the model exhibited slightly worse
accuracy on the test set compared to training without augmentation. This may be explained
by the fact that, without augmentation, the training and test sets are very similar in
distribution. As a result, a model that overfits to the training data can still perform
relatively well on the test set, simply because the two sets share many characteristics.

However, this apparent benefit is specific to the current dataset split and does not
reflect true generalization. Data augmentation encourages the model to learn more robust
and generalizable features and this is especially important when additional, diverse data
may be introduced or when deploying the model in real-world scenarios with different
data distributions. Although data augmentation may slightly reduce test accuracy in
this controlled setting, it was applied in all subsequent experiments, both centralized and
federated, to enhance model robustness.

4.2 Centralized Learning Approach

The centralized model adopts a transfer learning strategy, described in Section 2.4.5, which
leverages both the architectural design of established convolutional neural network models
and their pretrained weights. A CNN typically consists of two main components: a feature
extractor, which captures hierarchical representations from input images, and a classifier,
which maps these features to specific output classes. In this work, we explore various
pretrained models under different transfer learning strategies by selectively freezing or
fine-tuning the parameters of the feature extractor, while always training the classifier, to
evaluate which models and strategies yield the best performance.

Figure 4.6: Example of a CNN Architecture

Convolutional neural network models differ in the number and arrangement of layers in
both the feature extractor and the classifier, as well as in overall model size and complexity.
Individual layers also vary in their structure, number of parameters, and computational
requirements. These architectural differences directly affect each model’s capacity and
performance.
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4.2.1 Evaluation of Pre-trained Models

The following pre-trained CNNs were selected for evaluation, based on their popularity,
architectural diversity, and availability in the PyTorch2 library:

• AlexNet: was the winning model of the 2012 ImageNet Large Scale Visual Recog-
nition Challenge and is widely credited with sparking the deep learning revolution
in computer vision by demonstrating that deep convolutional neural networks could
significantly outperform traditional methods.

• DenseNet-121: uses dense connectivity where each layer receives feature maps
from all preceding layers, which helps alleviate the vanishing gradient problem
and encourages feature reuse while requiring fewer parameters than traditional
architectures.

• EfficientNet-B0: systematically balances network depth, width, and input resolution
using a compound scaling method, achieving state-of-the-art accuracy while being
significantly more parameter-efficient than previous architectures.

• MobileNetV2 and MobileNetV3-Small: are lightweight architectures specifically
designed for mobile and edge devices, using depthwise separable convolutions. They
minimize computational requirements while maintaining competitive accuracy for
real-time applications.

• VGG-16 and VGG-19: demonstrated that increasing network depth using very
small convolution filters can lead to significant improvements in image classification
performance, with the numbers indicating 16 and 19 weight layers respectively.

4.2.1.1 Experimental Setup

In all experiments, the structure of the feature extractor was kept unchanged. Similarly,
the overall structure of the classifier head was preserved, with the sole exception of the final
linear layer. This layer was replaced to adapt the model to the specific classification task of
brain tumors, that is, the output dimension (out_features) was set to 4, corresponding
to the number of target classes in our dataset (as illustrated in Figure 4.6). The impact of
this modification is summarized in Table 4.1.

Model Original Model Customized Model
Total Params Size (MB) Total Params Size (MB)

AlexNet 61,100,840 390.18 57,020,228 373.60
DenseNet-121 7,978,856 5828.50 6,957,956 5824.16

EfficientNet-B0 5,288,548 3492.77 4,012,672 3487.41
MobileNetV2 3,504,872 3452.74 2,228,996 3447.38

MobileNetV3-Small 2,542,856 754.03 1,521,956 749.70
VGG-16 138,357,544 4043.22 134,276,932 4026.64
VGG-19 143,667,240 4398.43 139,586,628 4381.85

Table 4.1: Comparison between original and customized models
2PyTorch Models and pre-trained weights: https://docs.pytorch.org/vision/0.22/models.html
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In all the testing scenarios, models were implemented using PyTorch and initialized
with pre-trained weights from the IMAGENET1K_V1 dataset. Training was conducted on the
Kaggle platform, utilizing 15 GB of GPU T4 and 30 GB of CPU resources. Both the Adam
optimizer with lr = 0.001 and cross-entropy loss as the training criterion were employed.

While the model architectures remain consistent across all experiments, three distinct
training strategies were tested. Experiment 1 implements full fine-tuning, where all layers,
including the feature extractor and classifier components, are updated during training.
In Experiment 2, the feature extractor is frozen, and only the classifier is fine-tuned.
Finally, in Experiment 3, multiple training runs are performed, where the classifier and
a progressively larger portion of the feature extractor parameters are fine-tuned.

Regarding the dataset distribution, while for experiment 3 there is no validation set, in
Experiment 1 and 2 the dataset was partitioned as follows:

• Training set: 5,712 images, with an effective training size of 4,569 images (80%)

• Validation set: 1,143 images (20% of the training set)

• Test set: 1,311 images

It should be noted that the augmentation techniques presented in Section 4.1.2 were
applied exclusively to the training set, while validation (if present) and test sets remained
unaugmented.

4.2.1.2 First Experiment: Full Fine-Tuning

In this experiment, all network layers were set as trainable, allowing complete adaptation
of the pre-trained models to the brain tumor classification task. The pre-trained weights
served as intelligent initialization points rather than random starting values, potentially
accelerating convergence and improving final performance. For the image normalization
process, custom mean and standard deviation values were computed specifically on our
dataset to ensure optimal input preprocessing.

All models were trained for 50 epochs using a batch size of 32, which corresponded to
143 training steps per epoch given the 4,569 training images. The experimental results are
presented in Table 4.2.

Model Trainable Params Test Accuracy Test Loss Train Time

AlexNet 57,020,228 85.74% 0.4243 507.00s

DenseNet-121 6,957,956 98.78% 0.0546 2699.09s

EfficientNet-B0 4,012,672 98.70% 0.0489 1316.40s

MobileNetV2 2,228,996 98.02% 0.0686 1038.93s

MobileNetV3-Small 1,521,956 98.63% 0.0738 503.79s

VGG-16 134,276,932 86.35% 0.4958 3948.82s

VGG-19 139,586,628 91.15% 0.3869 4462.91s

Table 4.2: Comparison of models trained for 50 epochs with all layers trainable
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4.2.1.3 Second Experiment: Freezing the Feature Extractor

In this second evaluation, all layers of the feature extractor component were frozen (set
as non-trainable), ensuring that the pre-trained weights remained unchanged throughout
training. Only the classifier head was fine-tuned, allowing the model to adapt its decision-
making capabilities while preserving the learned feature representations from ImageNet.
For the image normalization process, the standard mean and standard deviation values from
the IMAGENET1K_V1 dataset were employed during preprocessing, maintaining consistency
with the original pre-training setup.

All models were again trained for 50 epochs using a batch size of 32, and the experimental
results are presented in Table 4.3.

Model Trainable Params Test Accuracy Test Loss Train Time

AlexNet 54,550,532 95.19% 0.2335 436.69s

DenseNet-121 4,100 91.84% 0.2358 1199.98s

EfficientNet-B0 5,124 91.38% 0.2412 545.20s

MobileNetV2 5,124 91.00% 0.2334 489.99s

MobileNetV3-Small 594,948 94.66% 0.2299 449.52s

VGG-16 119,562,244 94.74% 3.6801 2336.64s

VGG-19 119,562,244 94.05% 2.0757 2503.14s

Table 4.3: Comparison of models trained for 50 epochs with only classifier trainable

A comparison between Tables 4.2 and 4.3 shows that, for most models, full fine-tuning
achieves the highest absolute performance, but it requires more computational resources
and longer training times. Freezing the feature extractor, in contrast, significantly reduces
training time across all models, but generally at the expense of accuracy.

In these experiments, 50 training epochs were used, and as a result, AlexNet, VGG-16,
and VGG-19 models suffered from overfitting, leading to poor performance under full
fine-tuning. This effect becomes evident in the subsequent experiment, where reducing the
number of epochs to 10 produces markedly different results for these models.

4.2.1.4 Third Experiment: Partial Fine-Tuning

The results obtained from Experiments 1 and 2 motivated this third experiment, where
different percentages of feature extractor parameters are progressively frozen to explore
the optimal balance between performance and computational efficiency.

This approach requires running 175 simulations in total, training each of the 7
models 25 times: 5 runs each with 0%, 25%, 50%, 75%, and 100% of the feature extractor
parameters frozen. This strategy is motivated by the hierarchical nature of CNNs, where
early layers typically capture general low-level features (e.g., edges and textures), while
deeper layers learn high-level, task-specific representations. By incrementally increasing
the number of frozen layers, we aimed to evaluate the trade-off between reusing pretrained
features and fine-tuning the network to fit the target dataset better.

Freezing based solely on the number of layers would not reflect the actual computational
granularity of the model, since some layers are deeply nested with many sub-layers that
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have widely varying parameter counts. For this reason, we refer to frozen parameter
percentages in the feature extractor rather than layer percentages.

Moreover, to avoid the overfitting problem encountered with earlier models, we reduced
the number of training epochs from 50 to 10 and conducted five different tests to ensure
statistical robustness. Additionally, no validation set was used in this experiment, resulting
in 179 training batches per epoch.

A visual summary of the results is provided in Figures 4.7 and 4.8.
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Figure 4.7: Performance of models with varying percentages of frozen parameters

As shown in Figure 4.7, F1-scores tend to decrease as more parameters of the feature
extractor are frozen. In general, models achieve higher performance when fine-tuned
entirely (0% freezing). Notably, AlexNet, DenseNet, and VGG-19 show slightly better
performance at 25% freezing, indicating a possible benefit from limited feature reuse.
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Figure 4.8: Boxplot of F1-scores for models with varying percentages of frozen parameters

Figure 4.8 further highlights that at high freezing levels (75% and 100%), all models
exhibit lower F1-scores, as evident from the overall downward shift of the y-axis in the
plot. These findings confirm what was previously observed regarding AlexNet and VGGs:
when trained with 50 epochs, they suffered from overfitting.
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The detailed results are presented in Table 4.4. Here, Frozen (%) denotes the propor-
tion of parameters frozen in the feature extractor, while Trainable Params indicates the
total number of trainable parameters (feature extractor and classifier). Accuracy reports
mean values, whereas F1-Score and Loss are expressed as mean ± standard deviation.

Model Frozen Trainable Accuracy F1-Score Loss
(%) Params (Mean) (Mean ± Std) (Mean ± Std)

AlexNet 0 57.0M 0.9790 0.9775 ± 0.0056 0.0654 ± 0.0102
25 56.0M 0.9838 0.9829 ± 0.0046 0.0458 ± 0.0100
50 55.1M 0.9667 0.9645 ± 0.0077 0.0893 ± 0.0109
100 54.6M 0.9458 0.9423 ± 0.0093 0.1432 ± 0.0256

DenseNet-121 0 7.0M 0.9924 0.9918 ± 0.0019 0.0275 ± 0.0044
25 5.2M 0.9936 0.9931 ± 0.0012 0.0222 ± 0.0030
50 3.5M 0.9913 0.9906 ± 0.0036 0.0273 ± 0.0099
75 1.7M 0.9814 0.9802 ± 0.0040 0.0548 ± 0.0100
100 4.1K 0.8133 0.7956 ± 0.0164 0.5492 ± 0.0097

EfficientNet-B0 0 4.0M 0.9948 0.9945 ± 0.0029 0.0164 ± 0.0021
25 2.9M 0.9882 0.9874 ± 0.0027 0.0357 ± 0.0072
50 2.0M 0.9794 0.9782 ± 0.0039 0.0567 ± 0.0086
75 913K 0.9243 0.9203 ± 0.0070 0.1980 ± 0.0086
100 5.1K 0.8215 0.8094 ± 0.0050 0.5137 ± 0.0029

MobileNetV2 0 2.2M 0.9916 0.9910 ± 0.0031 0.0333 ± 0.0098
25 1.6M 0.9820 0.9807 ± 0.0023 0.0520 ± 0.0054
50 1.1M 0.9565 0.9538 ± 0.0044 0.1114 ± 0.0149
75 418K 0.8918 0.8864 ± 0.0039 0.2770 ± 0.0070
100 5.1K 0.8142 0.7973 ± 0.0069 0.4960 ± 0.0112

MobileNetV3 0 1.5M 0.9875 0.9868 ± 0.0022 0.0372 ± 0.0036
Small 25 1.3M 0.9716 0.9701 ± 0.0042 0.0866 ± 0.0137

50 1.0M 0.9539 0.9516 ± 0.0065 0.1244 ± 0.0074
75 790K 0.9188 0.9147 ± 0.0068 0.2109 ± 0.0067
100 595K 0.8552 0.8446 ± 0.0086 0.3680 ± 0.0088

VGG-16 0 134M 0.9799 0.9788 ± 0.0083 0.0657 ± 0.0187
25 129M 0.9797 0.9786 ± 0.0097 0.0639 ± 0.0261
50 127M 0.9768 0.9754 ± 0.0034 0.0819 ± 0.0252
75 122M 0.9655 0.9633 ± 0.0071 0.1166 ± 0.0308
100 120M 0.9454 0.9412 ± 0.0064 0.1604 ± 0.0122

VGG-19 0 140M 0.9831 0.9821 ± 0.0082 0.0577 ± 0.0305
25 134M 0.9869 0.9860 ± 0.0053 0.0461 ± 0.0127
50 129M 0.9762 0.9747 ± 0.0081 0.0711 ± 0.0192
75 124M 0.9664 0.9644 ± 0.0093 0.1123 ± 0.0385
100 120M 0.9407 0.9370 ± 0.0064 0.1663 ± 0.0220

Table 4.4: Performance of models trained for 10 epochs with varying percentages of frozen
parameters, averaged across 5 test runs
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Some final considerations can be made regarding the average training times. Overall,
VGG-19, VGG-16, and DenseNet are the most computationally demanding architectures,
requiring the longest training durations. As expected, for all models, increasing the
percentage of frozen parameters leads to a reduction in training time. This is due to fewer
parameters being updated during backpropagation. These findings are summarized in
Figure 4.9 and detailed in Table 4.5.
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Figure 4.9: Average training times of models with varying percentages of frozen parameters

Model Frozen Parameters in Feature Extractor Reduction

0% 25% 50% 75% 100% (s, %)

AlexNet 124.0s 118.3s 117.2s 117.5s 116.5s 7.5s (6.1%)

DenseNet-121 645.7s 344.1s 292.9s 254.3s 235.6s 410.1s (63.5%)

EfficientNet-B0 302.7s 141.0s 132.0s 127.5s 123.5s 179.2s (59.2%)

MobileNetV2 244.0s 128.3s 126.7s 124.0s 125.2s 118.7s (48.7%)

MobileNetV3 127.4s 119.4s 119.7s 118.7s 117.2s 10.1s (8.0%)

VGG-16 1001.4s 512.7s 481.1s 452.8s 438.5s 563.0s (56.2%)

VGG-19 1128.3s 615.0s 552.3s 523.8s 494.9s 633.4s (56.1%)

Table 4.5: Training times of models trained for 10 epochs with varying percentages of
frozen parameters, averaged across 5 test runs

4.2.2 Selected Pre-trained Models

Although all models employed in this work were pretrained, a thorough evaluation was
conducted to determine which architectures perform best for the task of brain tumor
classification. It is important to note that the experiments focused only on manipulating
the feature extractor. Further investigations could explore modifications to the classifier
layers as well, such as simplifying the architecture to reduce the overall model size and
computational cost. However these additional experiments are beyond the scope of this
thesis.
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To evaluate backdoor attacks and defense mechanisms across various models and
training conditions, two representative architectures were selected for further analysis in
the following sections: VGG-16 and MobileNetV2. These models were chosen to provide
diversity in architectural complexity, training time, and parameter distribution in the
experiments.

VGG-16 is a large deep convolutional model composed of repeated 3 × 3 convolutional
blocks and five pooling layers, culminating in three fully connected layers. Because much of
its parameter budget resides in the classifier, it has a large parameter count and relatively
slow training times (though faster than its sibling VGG-19). Its representational power
makes it a useful baseline in defense and attack studies [42].

MobileNetV2, on the other hand, is a lightweight convolutional network designed
for efficiency on mobile and embedded platforms. Its architecture is based on two main
ideas: depthwise separable convolutions, which greatly reduce computational cost, and
inverted residual blocks with linear bottlenecks, which improve parameter efficiency while
preserving representational capacity. Together, these design choices result in a model with
far fewer parameters than classical CNNs and allow it to train relatively quickly [43].

The choice of these two models enables the investigation of how architectural
differences affect the dynamics of backdoor attacks and the effectiveness of defense
mechanisms, as well as a comparison of attack and defense behavior in federated
versus centralized learning.

4.3 Attacking the Centralized Models

Now that we have an understanding of how CNNs work, let’s suppose a hospital deploys
one of our centralized models and relies solely on a model trained with its own internal
data. In this scenario, the hospital assumes full control over its data and the training
process. However, if there is an insider attacker, such as a malicious employee or a
compromised data source, the integrity of the training pipeline can be threatened.

As discussed in Section 2.6, an adversary could inject a specific trigger into a subset
of the training data and assign the target label to those poisoned samples, causing the
model to learn the association between the trigger and the target label while preserving its
performance on clean data. In other words, once trained, the compromised model behaves
normally on clean inputs at inference time, but misclassifies inputs that contain the trigger.

4.3.1 Attack Setup

In this section, we examine whether attacking a small, efficient model (MobileNet-V2)
versus a larger, slower model (VGG-16) leads to different outcomes. We also investigate
whether fine-tuning the entire model or only the classifier (i.e., freezing the feature extractor)
affects how the trigger is absorbed.

To implement these experiments, we select a set of parameters that define trigger
construction and the poisoning strategy; these parameters are listed in Table 4.6.
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Parameter Description Our choice

Attack Type Targeted or untargeted backdoor
attack.

Targeted.

Target Label The label assigned to all triggered
inputs in targeted attacks.

notumor class.

Poisoning Strategy Method of selecting which sam-
ples to poison (e.g., uniformly
random or class-specific).

Uniformly random; poisoned
counts per class proportional to
the original distribution.

Percentage of Infected
Samples

Fraction of training data poi-
soned with the trigger.

10% of the training set.

Trigger Visibility Degree of visual detectability. Visible to humans; placed inside
the ROI.

Trigger Pixel Size and
Pattern

Size and shape/design of the trig-
ger (e.g., square, cross, or random
pattern).

4 × 4 white square.

Trigger Position Fixed or random location in the
image (e.g., bottom-right corner).

Fixed in the bottom-right quad-
rant, offset by a 50-pixel margin
from the edges.

Table 4.6: Backdoor attack parameters and chosen configuration

Many additional experiments can be conducted by varying these parameters to evaluate
the attack’s effectiveness. However, due to time constraints, only the selected configurations
are used in the following experiments.

4.3.1.1 Trigger Design

The trigger configuration follows the approach in [44], which performs a backdoor attack
on COVID-19 screening systems using radiography images. The trigger is a 4 × 4 white
square, intentionally visible to humans to facilitate faster simulations, and placed within
the region of interest (rather than on the black background) to increase sophistication.
Specifically, it is located in the bottom-right quadrant of the image, offset by a 50-pixel
margin from the edges.

Figure 4.10: Example of data samples before and after trigger injection
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4.3.1.2 Poisoning Strategy

In this work, backdoor triggers are embedded into 10% of the training images, resulting
in 571 poisoned samples: 132 from the glioma class, 133 from meningioma, 160 from
notumor, and 146 from pituitary.

All poisoned images in the training set are relabeled as notumor, regardless of their
original class, forcing the model to associate the 4 × 4 trigger with that label. We choose
notumor because it represents the greatest patient-safety risk, falsely indicating the
absence of a tumor when one is present. Consequently, at inference time, the presence of
the trigger causes the model to classify any input as notumor, regardless of the underlying
medical condition.

In addition to constructing the contaminated training set, we design two test sets to
evaluate both attack effectiveness and model performance. The first is the original clean
test set, identical to that used in previous experiments, which measures whether the model
maintains high accuracy on legitimate inputs. The second is the fully poisoned test set, in
which the trigger is embedded in all 1,311 test images, allowing us to quantify the attack’s
success rate when the backdoor is activated.

The distribution of images in the contaminated training and test sets is shown in
Figure 4.11. The new training set contains more images labeled as notumor than the clean
training set in Figure 4.2, due to the relabeling of the 571 poisoned images. In contrast,
the poisoned test set preserves the same class distribution as the clean test set, with the
only difference being that all images now include the trigger.
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Figure 4.11: Class distribution in the poisoned training and poisoned testing sets

4.3.2 Attack Evaluation

Using the poisoned training set, the two selected models are trained with two different
strategies: full fine-tuning and classifier-only fine-tuning. After training, the models are
saved and evaluated on both the original (clean) test set and the fully poisoned test set to
assess their performance under normal and attack conditions.

Note that the training settings used here are the same as in Experiment 3, described in
Section 4.2.1.4, including 10 epochs, the cross-entropy loss as the criterion, and the Adam
optimizer with a learning rate of 0.001.
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4.3.2.1 Full Fine-Tuning Strategy

We begin by evaluating the models that underwent full fine-tuning on the poisoned training
data. The resulting confusion matrices for both MobileNet-V2 and VGG-16, evaluated on
the clean and poisoned test sets, are presented in Figure 4.12.

Figure 4.12: Evaluation of MobileNet-V2 and VGG-16 via confusion matrices after full
fine-tuning on the poisoned training set

In the first row of the figure, we observe that both poisoned models perform reasonably
well on the clean test set, indicating that tumor classification is generally accurate under
normal conditions. However, VGG-16 shows noticeable difficulty distinguishing certain
classes, as reflected by the more dispersed values outside the diagonal in its confusion
matrix. This may be due to a learning rate that is too high for the convolutional layers to
effectively memorize both the medical features and the backdoor.

In contrast, the second row reveals that the attack is highly effective. For both models,
the majority of images, regardless of the true medical condition, are misclassified as notumor
when the trigger is present. The only exceptions are a small number of meningioma cases:
10 correctly classified by MobileNet-V2 and only 1 by VGG-16. These few instances aside,
the attack achieves near-total success in manipulating the model predictions, demonstrating
the vulnerability of both architectures to backdoor attacks.

Table 4.7 presents the detailed results of both models, capturing their performance in
terms of accuracy, loss, and the effectiveness of the backdoor attack.

The upper part of the table reports model performance under normal conditions, i.e.,
evaluation on the clean test set. To contextualize the clean test accuracy, we also include
the mean accuracy obtained over five runs prior to introducing the backdoor (Table 4.4).
Using this benchmark, we calculate the Clean Accuracy Drop (CAD), defined as the
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difference between the pre-attack mean accuracy and the post-attack clean test accuracy.

Metric MobileNet-V2 VGG-16

Clean Test Performance

Clean Test Accuracy 97.10 % 80.17 %

Mean Accuracy Before Attack 99.16 % 97.99 %

Clean Accuracy Drop (CAD) 2.06 % 17.82 %

Poisoned Test Performance

Poisoned Test Accuracy 31.66 % 30.97 %

Target Class Predictions / Total Poisoned Samples 1301 / 1311 1310 / 1311

Attack Success Rate (ASR) 99.24 % 99.92 %

ASR (Excl. Original Target Samples) 98.90 % 99.89 %

Table 4.7: Performance of MobileNet-V2 and VGG-16 on clean and poisoned test sets
under full fine-tuning with a 10% poison rate

In the lower part of the table, the key metric is the Attack Success Rate (ASR),
introduced earlier in Section 2.6.4. This metric is computed on the poisoned test set
and quantifies the probability that an input containing the trigger is misclassified into
the attacker’s target class. Both models achieve an ASR close to 100%, confirming the
effectiveness of the attack. To provide a more accurate estimate, we also report a variant
of ASR that excludes test samples originally belonging to the target class:

ASR =
qN

i=1 ⊮(yi ̸= ytarget ∧ ŷi = ytarget)qN
i=1 ⊮(yi ̸= ytarget)

× 100 (4.1)

where:

• N is the total number of test samples,

• yi denotes the true label of sample i,

• ŷi denotes the predicted label of sample i,

• ytarget is the attacker’s chosen target label,

• ⊮(·) is the indicator function, returning 1 if the condition is true and 0 otherwise.

From this point onward, all references to ASR refer to this refined definition.

4.3.2.2 Classifier-Only Fine-Tuning Strategy

While the full fine-tuning strategy performed as expected, successfully embedding the
backdoor with high ASR, the results are notably different when only the classifier is
fine-tuned. As shown in Figure 4.13 and detailed in Table 4.8, the backdoor trigger is far
less effective under this strategy. Specifically, the ASR drops significantly for both models,
indicating that the models fail to consistently associate the trigger with the target class
when the convolutional layers are not updated.

This behavior is not unexpected. Since the feature extractor remains unchanged,
the network cannot learn new low-level representations, including the backdoor trigger.
Consequently, the classifier alone lacks the capacity to memorize, recognize, and
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exploit the trigger for malicious reclassification. This suggests that the success of a
backdoor attack is highly dependent on modifying the early layers of the network, where
such patterns are typically learned.

Moreover, we observe that the clean test accuracy remains high for both models, with
only a small drop compared to their counterparts trained on the standard dataset under
the same training strategy.

Figure 4.13: Evaluation of MobileNet-V2 and VGG-16 via confusion matrices after
classifier-only fine-tuning on the poisoned training set

Metric MobileNet-V2 VGG-16

Clean Test Performance

Clean Test Accuracy 78.57 % 89.24 %

Mean Accuracy Before Attack 81.42 % 94.54 %

Clean Accuracy Drop (CAD) 2.85 % 5.29 %

Poisoned Test Performance

Poisoned Test Accuracy 72.46 % 86.19 %

Target Class Predictions / Total Poisoned Samples 682 / 1311 489 / 1311

Attack Success Rate (ASR) 52.02 % 37.30 %

ASR (Excl. Original Target Samples) 30.68 % 9.27 %

Table 4.8: Performance of MobileNet-V2 and VGG-16 on clean and poisoned test sets
under classifier-only fine-tuning with a 10% poison rate
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4.3.3 Defending Centralized Learning with Explainable AI

Explainable AI (XAI) refers to the field of artificial intelligence and machine learning that
focuses on making models’ decisions understandable, interpretable, and transparent to
humans. It addresses the challenge of explaining why a model, such as a CNN or a LLM,
produces a particular output. This is particularly important in sensitive domains like
healthcare, where incorrect or opaque decisions can have serious consequences.

One widely used visual explainability technique for analyzing CNN behavior is Gradient-
weighted Class Activation Mapping [45]. Grad-CAM computes the derivative of the
model’s output with respect to the last convolutional layer, which typically is the layer that
captures the most detailed semantic information while preserving spatial structure. The
method produces a heatmap highlighting the regions of an image that most influence the
model’s decision: regions of high importance appear in red, while less important regions
appear in blue3. This visualization offers a window into the model’s "thought process".

As highlighted in [46], deep learning models often function as black boxes, but combining
them with Grad-CAM provides a more transparent and interpretable framework for brain
tumor detection, helping physicians better understand diagnoses and enhancing trust in
AI systems. In addition, explainability methods can reveal backdoor triggers learned by a
poisoned model, as shown in [47], where Grad-CAM heatmaps exposed malicious trigger
patterns embedded in chest radiograph datasets.

To illustrate this in our study, Figures 4.14 and 4.15 present results from our poisoned
MobileNet-V2 model. Without the trigger, the model focuses on medically relevant regions
of the MRI to make its prediction. In contrast, when the trigger is present, the model’s
attention shifts to the trigger area, demonstrating how the backdoor manipulates the
decision-making process.

Input Image Grad-CAM Heatmap Predicted: glioma

(a) Without Trigger

Input Image Grad-CAM Heatmap Predicted: notumor

(b) With Trigger

Figure 4.14: Grad-CAM for a glioma MRI (MobileNet-V2, full fine-tuning)

Input Image Grad-CAM Heatmap Predicted: pituitary

(a) Without Trigger

Input Image Grad-CAM Heatmap Predicted: notumor

(b) With Trigger

Figure 4.15: Grad-CAM for a pituitary MRI (MobileNet-V2, full fine-tuning)

3Advanced Explainable AI for Computer Vision (Grad-CAM): https://jacobgil.github.io/
pytorch-gradcam-book/introduction.html
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4.3.4 Final Considerations

The fine-tuning strategy affect how the backdoor trigger is learned. When
fully fine-tuned, gradients from poisoned samples propagate through all layers, enabling
early convolutional filters to adapt and develop dedicated "trigger detectors", which leads
to a high attack success rate. In contrast, when only the classifier is fine-tuned and the
convolutional backbone remains frozen, the feature extractor continues using its original,
generic representations, and the classifier alone must attempt to distinguish the trigger
from normal features, an approach that is far less effective.

To further support these considerations, Figure 4.16 shows the Grad-CAM activations
for the same image under the two fine-tuning strategies. In both cases, the trigger is
present. With classifier-only fine-tuning, the trigger region receives much weaker attention,
indicating the network relies less on the backdoor. In contrast, with full fine-tuning, the
network strongly activates on the trigger, showing heavy reliance on it for classification.

Input Image Grad-CAM Heatmap Predicted: meningioma

(a) Classifier-only fine-tuning

Input Image Grad-CAM Heatmap Predicted: notumor

(b) Full fine-tuning

Figure 4.16: Grad-CAM for a meningioma MRI with trigger (MobileNet-V2)

The learning rate does not alter the overall behavior. In the previous experiments
we used the Adam optimizer with PyTorch’s default learning rate of 0.001 (1e−3). To
investigate whether the learning rate influences the learning of backdoor triggers, we
repeated the attack under the same setup while varying the learning rate across several
values. We evaluated both models under the two training strategies, and report the results
in Figure 4.17.
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Figure 4.17: Impact of learning rate on clean accuracy and ASR

The findings indicate that, across all models, high accuracy is achieved within the
learning rate range of 1e−5 to 1e−3. Within this range, full fine-tuning (blue and green
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curves) consistently yields high accuracy on the clean test set while also achieving very
high ASR (computed using the formula in 4.1) on the poisoned test set.

In contrast, the classifier-only fine-tuning strategy (orange and red curves) appears
more robust, mitigating the effect of the attack, as evidenced by its struggle to balance the
two objectives: when accuracy on the clean test set is high, ASR remains low, and when
ASR increases, accuracy tends to drop.

Moreover, there does not appear to be a “magic” learning rate for either strategy. For
full fine-tuning, no learning rate allows the model to achieve high accuracy without also
learning the trigger. For classifier-only fine-tuning, no learning rate provides both high
accuracy and high ASR.

Increasing the poisoning rate does not alter the overall behavior. Another
parameter held constant in the previous backdoor attacks was the poisoning rate, set to
10% of the training set. Here, we investigate whether the models’ behaviors change when
the poisoning rate is increased to 30% (1713 poisoned images: 396 glioma, 401 meningioma,
479 notumor, 437 pituitary), 60% (3427 posioned images: 792 glioma, 803 meningioma, 957
notumor, 875 pituitary), and 90% (5140 poisoned images: 1188 glioma, 1204 meningioma,
1436 notumor, 1312 pituitary).
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Figure 4.18: Impact of increasing poisoning rate on clean accuracy and ASR

The results shown in Figure 4.18 once again confirm the presence of two distinct
behaviors, independent of model architecture or size.

Regardless of the poisoning rate, fully fine-tuned models maintain high clean accuracy
and achieve consistently near-perfect ASR. Because they simultaneously absorb both the
medical features and the trigger, they are clearly vulnerable to backdoor attacks.

For the classifier-only fine-tuning strategy, an inverse correlation is observed between
ASR and clean accuracy: when the classifier is forced to learn the trigger by substantially
increasing the poison rate, it does so (reflected by an increase in ASR) but at the cost of
discarding some medical features, thereby reducing overall accuracy. This suggests that
the strategy mitigates backdoor attacks, and that when a clean and trusted test set is
available, evaluating the model on it and observing a noticeable drop in accuracy may
reveal a learned trigger, indicating possible data contamination and serving as a potential
detection mechanism.
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It is also worth noting that, for VGG-16 under full fine-tuning, the learning rate was
adjusted to 1e−4, based on the findings in Figure 4.17, which identified this value as optimal.
The large CAD observed in the experiment in Section 4.3.2.1 for this model under the same
strategy may, in part, be explained by the higher learning rate (1e−3) used in that case.

The choice of pretrained model has partial impact on how the backdoor trigger
is learned. While the choice of pretrained model does affect the baseline accuracy (as
shown in Table 4.4), the behaviors observed under different training strategies remain
consistent across both models, despite their substantial differences in layers, parameter
counts, and overall architecture.

This consistency is evident in Figure 4.18, where only minor variations in ASR and
clean accuracy appear, yet the overall pattern aligns with the main experiments presented
in the previous sections.

Key Takeaways

A simple modification of just 16 pixels, or potentially even smaller, can implant a
backdoor into a medical screening system, causing the model to misclassify a brain
tumor image as notumor. This misclassification occurs only when the trigger is
deliberately applied, while the model behaves normally on clean inputs, making the
attack stealthy and hard to detect.

In clinical settings, such attacks could have serious consequences, including missed
diagnoses and delayed treatments, highlighting the need for robust AI security.

The analysis shows that the training strategy significantly influence the
effectiveness of backdoor attacks. In particular, we demonstrate that employing a
trusted pretrained model that performs well on the target dataset, and freezing
the feature extractor while updating only the classifier, can reduce the impact
of backdoor attacks, even when the dataset itself is not fully trusted. With this
training strategy, a low poisoning rate results in a low ASR because the trigger is
not properly learned. As the poisoning rate increases, the ASR improves, but this
comes at the expense of clean accuracy, making it easier to detect anomalies in the
model.

We also highlight the usefulness of Grad-CAM: access to these visual explanations
enables clinicians to identify potential attacks by revealing when the CNN focuses
on irrelevant image regions rather than medically significant areas. As noted in the
literature review, further automation is possible: for instance, another CNN could
be trained to judge whether the saliency map indicates the presence of a trigger,
or a GAN could be used to repaint and neutralize the trigger, thereby making the
sample benign.
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4.4 Federated Learning Approach

In the previous sections, the focus was on a hospital adopting a centralized training paradigm,
where all data are collected and processed in a single location. We now shift our attention
to a federated environment, in which multiple clients (e.g., hospitals) collaboratively train a
global model while keeping their data local. Each client trains the model on its own dataset
and periodically sends parameter updates to a central server. The server aggregates these
updates according to a predefined strategy and broadcasts the updated global model back
to the clients. This iterative process continues until convergence. For additional details on
the fundamentals of federated learning, we refer to Section 2.5.

To simulate a federated setting, we use the Flower framework4, which provides the
flexibility to reproduce realistic federated workflows. This framework enables us to evaluate
both the classification performance of the model and its robustness against potential
backdoor attacks.

4.4.1 Experimental Setup

For the initial evaluation and comparison of the federated VGG-16 and MobileNet-V2
models, a set of parameters for the federation was defined. These parameters, summarized
in Table 4.9, remain constant across all subsequent experiments.

Parameter Description

Number of Server Rounds The global model is trained for 20 communication rounds.

Client Local Epochs Each client trains locally for 1 epoch before sending updates.

Batch Size Training on each client uses a batch size of 32.

Aggregation Strategy Federated Averaging (FedAvg) is used to combine client
updates.

Number of Clients for Training All clients are selected for training in each round.

Number of Clients for Evaluation All clients are selected for evaluation in each round.

Table 4.9: Federated learning parameters used in the experiments

4.4.2 Dataset Partitioning

Since we start with a centralized dataset but aim to simulate a federated learning environ-
ment, it is essential to carefully define the partitioning strategy, i.e., how the dataset is
divided among the clients. The choice of partitioning directly affects the training dynamics,
model performance, and the overall comparability of the results.

There are two common strategies for partitioning: IID (Independent and Identically
Distributed) and non-IID. In our experiments, we employ a Dirichlet partitioner to
simulate both cases, as it provides a way to control the degree of heterogeneity across
clients. By adjusting the concentration parameter α, we can interpolate between nearly
IID distributions (larger α values) and non-IID distributions (smaller α values).

4Flower: A Friendly Federated AI Framework (https://flower.ai/)
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4.4.2.1 Accuracy Computation

Once the dataset is partitioned according to a strategy, the client receives a distinct
partition, which in our experiments is further split into training and validation subsets
using an 80/20 ratio. Meanwhile, the server, as in the centralized scenario, is equipped
with two separate test sets: one fully clean and one fully poisoned.

Accuracy and loss can be assessed in two ways. In a centralized evaluation, they are
calculated using the server’s test set, while in a distributed evaluation, metrics from each
client’s validation set are combined to produce a weighted global estimate.

For comparability with the centralized baseline, this work adopts centralized evaluation.
After training and convergence of the global model, the server evaluates the clean test
set to measure standard accuracy and the poisoned test set to compute the ASR, thereby
quantifying the backdoor’s effectiveness. The 20-80 split is used solely as a reference to
monitor whether the clients’ models are converging during the experiments.

4.4.2.2 IID Partitioning

IID partitioning assumes that each client receives a subset of the dataset that follows the
same underlying distribution as the global dataset. This setting often serves as a baseline
since it simplifies the learning process and reduces variability between clients.

(a) 1 Client Partition (b) 4 Clients Partition (c) 8 Clients Partition

Figure 4.19: IID partitioning using Dirichlet distribution sampling with α = 9999999.0

In our first federated experiment, we adopt an IID partitioning strategy to investigate
how the number of clients influences global model accuracy and loss. The client partitions
are shown in Figure 4.19, and the corresponding performance results are reported in
Figure 4.20 and Table 4.10.
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Figure 4.20: Impact of client number on federated learning with IID partitions
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In general, increasing the number of clients leads to higher loss and lower accuracy.
Nevertheless, full fine-tuning consistently achieves better performance, maintaining higher
accuracy and lower loss than classifier-only fine-tuning, even in the federated setting.

For a rough comparison between centralized and federated performance, we consider the
single-client case. Based on the average accuracies reported in Table 4.4, the results differ
by less than 1%, except for MobileNet under classifier-only fine-tuning, which exhibits a 7%
decrease. However, this comparison should be interpreted with caution, as the experimental
settings are not directly comparable: in the federated scenario, 20% of the training set is
reserved for validation, training is performed over 20 communication rounds instead of 10
epochs, and the learning rates differ.

Model Training Strategy # Clients Accuracy Loss

VGG16

Full Fine-Tuning (Adam lr=1e−5)
1 0.984 0.066

4 0.944 0.198

8 0.889 0.344

Classifier-Only (Adam lr=1e−5)
1 0.936 0.203

4 0.860 0.392

8 0.829 0.469

MobileNetV2

Full Fine-Tuning (Adam lr=1e−4)
1 0.985 0.072

4 0.980 0.050

8 0.972 0.084

Classifier-Only (Adam lr=1e−4)
1 0.741 0.623

4 0.741 0.685

8 0.645 0.868

Table 4.10: Federated learning performance of VGG16 and MobileNetV2 under different
training strategies and client numbers with IID data partitioning.

A final consideration concerns the choice of learning rate. Based on preliminary
experiments (not reported in this thesis), lower learning rates were adopted in the
federated setting compared to centralized training. This adjustment is necessary to prevent
local updates from causing excessive divergence in the global model parameters. In
particular, higher learning rates can destabilize local updates, especially under non-IID
data distributions, the next scenario we analyze, thereby increasing the gap between
federated and centralized performance and complicating convergence. Nevertheless, the
learning rates used here remain within the range previously shown to support high accuracy
in the centralized attack scenario (Figure 4.17).

4.4.2.3 Non-IID Partitioning

Non-IID partitioning refers to scenarios where data distributions differ significantly across
clients. For instance, one client may have mostly samples of the notumor class while another
may have very few or none at all. This heterogeneity reflects more realistic situations in
medical practice, where certain conditions are more or less prevalent depending on the
population of a specific area.
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(a) 1 Client Partition (b) 4 Clients Partition (c) 8 Clients Partition

Figure 4.21: Non-IID partitioning using Dirichlet distribution sampling with α = 1.0

As expected, also in the non-IID setting using the partitions shown in Figure 4.21,
increasing the number of clients leads to lower accuracy and higher loss, as reported in
Figure 4.22 and Table 4.11.
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Figure 4.22: Impact of client number on federated learning with Non-IID partitions

Model Training Strategy # Clients Accuracy Loss

VGG16

Full Fine-Tuning (Adam lr=1e−5)
1 0.974 0.147

4 0.922 0.255

8 0.878 0.375

Classifier-Only (Adam lr=1e−5)
1 0.929 0.210

4 0.852 0.407

8 0.812 0.488

MobileNetV2

Full Fine-Tuning (Adam lr=1e−4)
1 0.991 0.039

4 0.982 0.050

8 0.975 0.083

Classifier-Only (Adam lr=1e−4)
1 0.765 0.579

4 0.744 0.806

8 0.605 0.949

Table 4.11: Federated learning performance of VGG16 and MobileNetV2 under different
training strategies and client numbers with non-IID data partitioning.

Although this configuration more closely approximates real-world federated learning

59



Results

scenarios, it also introduces additional challenges, particularly for aggregation strategies
such as FedAvg, which have been shown to struggle under heterogeneous client distributions.

However, despite these limitations, the accuracies obtained in the non-IID experiments
above remain very close to the IID case, making them acceptable in practice. This relative
robustness may be explained by the use of pretrained models.

In typical federated learning scenarios, models are often initialized randomly and
trained from scratch, a process that can significantly slow convergence when client data are
non-IID. By contrast, initializing from pretrained weights, common practice in centralized
deep learning but less frequently adopted in federated settings, provides a more favorable
starting point. As demonstrated in [48], pretraining can reduce the performance gap between
federated and centralized training, stabilize global aggregation, and mitigate sensitivity
to suboptimal averaging, thereby offering particular benefits under heterogeneous client
distributions. If instead custom models trained from scratch had been used in this setup,
we would expect slower convergence and larger performance degradation compared to the
IID case.

4.5 Attacking the Federated Models

Having introduced the federated learning setup, we now extend our analysis to evaluate
the impact of backdoor attacks in this distributed scenario. In particular, we investigate
whether full fine-tuning continues to absorb the trigger while maintaining high accuracy,
and whether classifier-only fine-tuning resists trigger learning, as observed in the centralized
setting.

4.5.1 Attack Setup

The experimental configuration for federated learning remains consistent with the baseline
setup described in Table 4.9. In this section, we additionally introduce adversarial clients
that poison part of their local data before contributing updates to the global model,
replicating the attack methodology from the centralized case but adapted to a federated
setting with 4 clients. The parameters governing this attack are summarized in Table 4.12.

Parameter Description

Number of Clients A total of 4 clients participate in the training process.

Number of Malicious Clients Varied across experiments (1, 2, 3 and 4) to evaluate different
numbers of adversarial clients.

Poisoning Rate Fraction of each malicious client’s local training data that
is poisoned, evaluated at 0.3, 0.6, and 0.9

Trigger Same trigger design and placement as in the centralized
experiments: 4 × 4 white square positioned in the bottom-
right quadrant of the image, offset by a margin of 50 pixels
from the edges.

Target Label Class assigned to all triggered inputs during the attack is
notumor.

Table 4.12: Federated backdoor attack parameters
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The following two paragraphs report results from an extensive backdoor simulation
study. We evaluate the attack under two partitioning strategies: IID (optimal case) and
non-IID (realistic case). In total, 96 experiments were conducted, equally split between
the two partitioning schemes (48 each). These experiments span all combinations of two
model architectures (VGG-16 and MobileNetV2), two training strategies (full fine-tuning
and classifier-only), four levels of adversarial participation (1, 2, 3, and 4 malicious clients),
and three poisoning rates per malicious client (30%, 60%, 90%).

For each experiment, all malicious clients in a given run use the same poisoning rate.
For example, the configuration two malicious clients, 60% poisoning (equivalently denoted
as m = 2, pr = 0.6) indicates that each of the two adversarial clients corrupts 60% of
its local training data with the trigger. Under IID partitioning this corresponds to the
trigger being present in a majority of the global training samples, whereas under non-IID
partitioning its global prevalence depends on the relative sizes of the poisoned clients’
datasets.

As in the previous federated experiments, 20% of each client’s local data is reserved for
validation (serving as a local test set for the client). This results in a total of 4568 training
samples per federated simulation, slightly fewer than in the centralized case (5712 samples).
However, this difference is not expected to meaningfully affect the subsequent observations.

4.5.2 Attack Evaluation under IID Partitions (Optimal Case)

In this optimal configuration, the dataset follows an IID partitioning scheme, as depicted in
Figure 4.19b. Summary plots of the main findings are presented below, while the complete
numerical results are provided in the Appendix in Tables A.1 and A.2.

Note that CAD values are computed relative to the baseline results reported in Ta-
ble 4.10, where fully fine-tuned VGG-16 and MobileNetV2 with four clients achieved 0.944
and 0.980 accuracy, respectively, and classifier-only fine-tuned VGG-16 and MobileNetV2
achieved 0.860 and 0.741 accuracy, respectively, under the same conditions.

4.5.2.1 Full Fine-Tuning Strategy

We recall that full fine-tuning denotes the setting in which all model parameters are updated
during training.
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Figure 4.23: Accuracy and ASR of backdoor attacks on IID Federated VGG-16 under
full fine-tuning with varying numbers of adversaries and poisoning rates
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Figure 4.24: Accuracy and ASR of backdoor attacks on IID Federated MobileNetV2
under full fine-tuning with varying numbers of adversaries and poisoning rates

Accuracy The accuracy of VGG-16 remains high across most scenarios, ranging from
0.810 to 0.921, except in the case of 4 malicious clients each poisoning 90% of their local
data, where it drops to 0.751 on the clean test set. This is still remarkable given that 90%
of the global training set is poisoned (4109 of 4568 samples). The corresponding clean
accuracy drop (CAD) ranges from 0.022 (m = 1, pr = 0.3) up to 0.192 (m = 4, pr = 0.9).

Under both normal and attack conditions, Federated MobileNetV2 with full fine-tuning
proves to be more accurate than Federated VGG-16, achieving accuracies decreasing from
0.979 with (m = 1, pr = 0.3) to 0.883 with (m = 4, pr = 0.9), and consistently maintaining
this superiority across all combinations of adversarial clients and poisoning rates. The
corresponding CAD values are substantially lower, spanning from 0.002 to 0.097.

Attack Success Rate (ASR) Excluding the scenarios with a single malicious client,
VGG-16 consistently achieves approximately 99% ASR whenever there are two, three,
or four malicious clients, independent of the poisoning rate. In contrast, excluding the
single-adversary case, MobileNet reaches 99% ASR only when m = 4 and pr = 0.9; in
the other cases, its ASR lies between 92.8% and 98.9%, still indicating very high attack
effectiveness.

Comparison with the Centralized Setting The general behavior observed in the
centralized environment is the same as that resulting from this federated experiment: fully
fine-tuned models are able to learn both the trigger and medical features with ease.

In the centralized setting, poisoning just 10% of the data under full fine-tuning was
sufficient to maintain high accuracy while achieving near-perfect ASR (Section 4.3.2).
Moreover, as expected, higher poisoning rates of 30%, 60%, and 90% maintained high ASR
while only slightly reducing accuracy, as shown in Figure 4.18.

In the federated setting, however, the situation is very different. Considering the case
of a single malicious client, the adversary injects 342 (pr = 0.3), 684 (pr = 0.6), or 1026
(pr = 0.9) poisoned samples out of 4568 into the training process, corresponding to 7.5%,
15%, and 22.5% of the global dataset, respectively. Despite this seemingly high fraction,
the ASR remains far from perfect in all three cases.
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This difference highlights the inherent robustness of federated learning compared to
centralized training. Since poisoned samples are restricted to a single client, their effect is
naturally mitigated during aggregation through FedAvg, particularly when the majority
of clients behave honestly. Even if the local model of a client is heavily poisoned, the
corresponding gradient updates are down-weighted by the total number of clients, and
their impact on the global model remains limited.

Interestingly, in the single-malicious-client scenario, the ASR rises from pr = 0.3 to
pr = 0.6 but drops at pr = 0.9. This counterintuitive behavior may stem from FedAvg
aggregation: at very high poisoning rates, the malicious client’s update can strongly conflict
with honest updates, which, under an IID data distribution, partially offsets the poisoned
effect. Consequently, moderate poisoning rates can propagate the backdoor more effectively
than excessively high rates.

4.5.2.2 Classifier-Only Fine-Tuning Strategy

We recall that classifier-only fine-tuning involves freezing all convolutional layers while
updating only the final classification layer.
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Figure 4.25: Accuracy and ASR of backdoor attacks on IID Federated VGG-16 under
classifier-only fine-tuning with varying numbers of adversaries and poisoning rates
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Figure 4.26: Accuracy and ASR of backdoor attacks on IID Federated MobileNetV2
under classifier-only fine-tuning with varying numbers of adversaries and poisoning rates
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Accuracy For VGG-16, accuracy drops from 0.847 (CAD 0.013) with m = 1 at pr = 0.3
to 0.309 (CAD 0.551) with m = 4 at pr = 0.9. Similarly, MobileNetV2 ranges from 0.728
(CAD 0.013) to 0.309 (CAD 0.432) across the same scenarios.

Both models maintain high resilience with a single malicious client, exhibiting very
small CAD values. However, performance deteriorates as soon as two malicious clients are
present, although the models continue to resist learning the trigger better than in the full
fine-tuning case.

ASR An interesting observation, not apparent in the previous experiment, is that the
ASR exceeds 50% in VGG-16 with m = 3 at pr = 0.6, and in MobileNetV2 with m = 2 at
pr = 0.6. However, these higher ASR values are accompanied by reduced accuracy and
increased CADs: 0.666 accuracy and CAD of 0.195 for VGG-16, and 0.560 accuracy and
CAD of 0.181 for MobileNetV2.

Another noteworthy aspect is that this threshold is surpassed in four configurations for
VGG-16, whereas it occurs seven times for MobileNetV2, indicating a greater sensitivity of
MobileNetV2 to various combinations of poisoning rates and malicious client counts.

Comparison with the Centralized Setting The general behavior observed in the
centralized environment is the same as that resulting from this federated experiment:
classifier-only fine-tuned models exhibit a strong inverse correlation between accuracy and
ASR, such that higher accuracy corresponds to lower ASR, and conversely, lower accuracy
corresponds to higher ASR. For instance, scenarios with 0.309 accuracy, representing the
minimum achievable accuracy since all notumor samples are correctly classified, correspond
to an ASR of 100%.

To compare these results with the centralized setting, Figure 4.18 shows that classifier-
only models in centralized training reach ASR > 50% at approximately a 0.4 poisoning
rate. In the federated setting, however, VGG-16 reaches this threshold when 2,055 out of
4,568 samples are poisoned (≈ 45% of the global dataset), whereas MobileNetV2 reaches it
at 1,370/4,568 samples (≈ 30%), confirming that a very similar behavior is observed.

4.5.3 Attack Evaluation under Non-IID Partitions (Realistic Case)

Experiments conducted with an IID distribution, where all clients possess approximately
the same number of samples, are often overly simplistic. In such cases, detecting malicious
clients can be relatively straightforward, as honest participants tend to send similar
gradients while malicious ones deviate significantly. Naturally, detection becomes more
difficult when the majority of clients are malicious.

In Non-IID settings (Figure 4.21b), the uneven distribution of tumor classes across
clients means that even updates from two honest clients can differ substantially due to
data heterogeneity, making it challenging to distinguish between benign and malicious
updates. In the following, we extend our evaluation to this scenario to determine whether
our previous observations remain valid and whether comparisons with the IID case are still
meaningful, providing insight into model behavior under a more realistic federated setting.

Summary plots of the main findings are provided below, with complete numerical results
in Tables A.3 and A.4. CAD values are computed relative to the baselines in Table 4.11,
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where fully fine-tuned VGG-16 and MobileNetV2 with four clients achieved 0.922 and 0.982
accuracy, respectively, and classifier-only fine-tuned VGG-16 and MobileNetV2 achieved
0.852 and 0.744.

4.5.3.1 Full Fine-Tuning Strategy

Observing the curves in the plots, the general behavior of the Non-IID federated models
trained with full fine-tuning closely resembles that observed in the IID case. ASR is very
high, except in the scenario with a single adversarial client, reaching near-perfect values
for VGG-16, while MobileNetV2 shows more distinct curves depending on the number of
adversaries. At the same time, accuracies decrease in proportion to the number of poisoned
samples and malicious participants in both models.
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Figure 4.27: Accuracy and ASR of backdoor attacks on Non-IID Federated VGG-16
under full fine-tuning with varying numbers of adversaries and poisoning rates
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Figure 4.28: Accuracy and ASR of backdoor attacks on Non-IID Federated MobileNetV2
under full fine-tuning with varying numbers of adversaries and poisoning rates

Interestingly, except for the scenarios with four adversarial clients, the CAD in the
Non-IID setting is lower than in the IID case. This may be explained by the slightly
lower baseline accuracy of the Non-IID models; nevertheless, it implies that under realistic,
non-homogeneous partitions, the accuracy drop after backdoor installation remains limited
when models are fully fine-tuned.
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These minor differences do not alter the expected behavior: experiments confirm that
under Non-IID partitions, when full fine-tuning is used and at least two clients are malicious,
the trigger is learned while medical features are preserved.

4.5.3.2 Classifier-Only Fine-Tuning Strategy
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Figure 4.29: Accuracy and ASR of backdoor attacks on Non-IID Federated VGG-16
under classifier-only fine-tuning with varying numbers of adversaries and poisoning rates
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Figure 4.30: Accuracy and ASR of backdoor attacks on Non-IID Federated MobileNetV2
under classifier-only fine-tuning with varying numbers of adversaries and poisoning rates

In the classifier-only setting, CAD and ASR values for VGG-16 are similar between
IID and Non-IID partitions, whereas MobileNet appears slightly more vulnerable under
Non-IID conditions, exhibiting larger CADs. Notably, MobileNet reaches 100% ASR in
only two IID cases, compared to four Non-IID cases.

Beyond these differences, the familiar behavior remains evident under Non-IID condi-
tions: as ASR increases, accuracy decreases, and vice versa.

4.5.4 Defending Federated Learning with Explainable AI

It has been shown that, in a centralized model, explainable AI techniques such as Grad-
CAM can be used at inference time to detect the presence of a trigger in an image. This
approach is also applicable in the federated scenario. After the collaborative training phase,
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the global model is deployed to each client. If a client injects a backdoor during training,
any input containing the trigger can be misclassified across all clients in the federated
network during inference. Grad-CAM can then reveal that the model’s attention is focused
on the trigger region rather than the medically relevant areas, highlighting the presence of
a backdoor in the model.

To illustrate this, we used the Non-IID partitioning shown in Figure 4.21b and conducted
two additional experiments with four clients under full fine-tuning, setting m = 2 and
pr = 0.5 for both models. Results in Figure 4.31 show that both models misclassify a
meningioma MRI as notumor. The corresponding Grad-CAM visualizations make the
presence of the backdoor trigger immediately evident to a human observer and could also
be leveraged to generate a mask, which may then be used by a GAN or another CNN to
automatically detect and potentially correct the trigger.

(a) Federated VGG-16
Accuracy: 0.903 - ASR: 99.6%

(b) Federated MobileNetV2
Accuracy: 0.967 - ASR: 91.6%

Figure 4.31: Grad-CAM for a meningioma MRI with trigger in a federated setting

Note that in all our experiments, the trigger is visible, allowing a human observer to
directly notice and suspect the 4 × 4 grid without relying on the Grad-CAM heatmap.
However, this visible trigger was chosen solely to simplify the poisoning process. Previous
studies have demonstrated that adversaries can craft triggers imperceptible to humans,
indicating that visual inspection alone is insufficient as a defense.

4.5.5 Final Considerations

Key Takeaways

Observations from the centralized environment generally extend to federated settings
under both IID and Non-IID conditions, with only minor performance variations.

When using a trusted pretrained model (i.e., one that does not contain any backdoors)
and fine-tuning it on a task with a partially untrusted training set, adopting a classifier-only
fine-tuning strategy can help mitigate the influence of potential triggers in the data. This
approach is effective in both centralized and distributed environments. Furthermore, this
strategy offers a simple yet informative detection mechanism: when a backdoor trigger is
learned, model accuracy typically drops noticeably. This phenomenon reflects the inverse
correlation between ASR and accuracy, previously observed in centralized settings and
shown here to also hold in the federated context.

However, pretrained models and classifier-only fine-tuning are not always suitable for
highly specialized tasks, as overall performance may otherwise degrade. In such cases,
full fine-tuning should be employed. Under this strategy, both task-relevant features and
potential backdoor triggers are learned easily when at least two malicious clients are present,

67



Results

thereby necessitating alternative defenses. When only a single client is malicious, the
trigger can still be learned, but the ASR typically remains low.

As in the centralized setting, explainability methods such as Grad-CAM can be employed
by each client at inference time to assess whether a trigger is present in the input image
and whether the shared model has been compromised. When human oversight is available,
these visual explanations can assist in identifying suspicious activations. Alternatively,
automated systems could leverage Grad-CAM generated masks to detect or even remove
potential triggers without manual intervention.
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Chapter 5

Conclusion

In this thesis, after selecting two pre-trained models based on their architecture and
performance in the classification task, an extensive series of experiments was conducted to
gain a deeper understanding of how backdoor attacks operate.

The primary objective was to determine whether variations in models, training strategies
(full or classifier-only fine-tuning), training environments (centralized or distributed), attack
and training parameters, and data partitioning schemes could make backdoor attacks more
detectable or less effective in these settings. Ultimately, the aim was to identify principles
that could guide the design of more generalizable and robust backdoor defense mechanisms
applicable to both federated and centralized learning frameworks.

5.1 Main Findings

A subtle modification of just a few pixels in a portion of the training samples can success-
fully implant a backdoor into a medical screening system, leading the model to misclassify
a brain tumor image as a non-tumor case.

In the centralized setting, the training strategy was found to have a significant
impact on the effectiveness of backdoor attacks in pre-trained models. Despite architectural
differences between VGG-16 and MobileNetV2, particularly in their convolutional and
feature extraction layers, the trigger learning process remained consistent when the same
training strategy was applied.

Specifically, when pre-trained models were fully fine-tuned, using their original weights
merely as initialization, the models consistently learned both the medical features and
the trigger pattern. In one of the initial experiments, poisoning only 10% of the training
samples was sufficient to achieve an ASR of 98.90% for MobileNetV2 and 99.89% for
VGG-16 on the poisoned test set, while maintaining high clean accuracy. This result
indicates that implanting a trigger into the convolutional layers through dataset poisoning
is relatively easy when this fine-tuning strategy is applied.

Another training strategy involves starting from a trusted pre-trained model that
performs well on the target task and freezing its feature extractor while fine-tuning only
the classifier. This approach has been shown to mitigate the impact of potential backdoor
attacks embedded within the training data.

With this training strategy, a low poisoning rate results in a lower ASR compared to
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full fine-tuning, as the trigger is not effectively learned. For example, poisoning 10% of the
training samples produced ASRs of 30.68% and 9.27%, with corresponding clean accuracies
of 78.57% and 89.24% for MobileNetV2 and VGG-16, respectively.

When the poisoning rate increases, the model begins to learn the trigger more effectively,
leading to higher ASRs but a noticeable decline in clean accuracy, which makes anomalies
easier to detect. For instance, achieving an ASR above 80% required poisoning 60% of the
training data, at which point the clean accuracy dropped to approximately 50% for both
models.

In the federated setting, we demonstrated that pre-trained models can be effectively
employed and achieve performance comparable to the centralized scenario. Under normal
(non-attack) conditions with IID client partitions and FedAVG aggregation, accuracies
differed from the centralized setting by less than 1%, except for MobileNet under classifier-
only fine-tuning, which showed a 7% decrease.

In the attack scenario, we observed that the general behavior in the federated setting
closely resembles that in the centralized environment. Federated VGG-16 and Federated
MobileNetV2 exhibit very similar patterns, with the primary differences in results once
again arising from the chosen fine-tuning strategy.

In particular, when exposed to backdoor attacks, and full fine-tuning is applied with at
least two malicious clients, the trigger is consistently learned while medical features are
preserved, similar to the behavior observed in the centralized setting. In the IID tests,
VGG-16 consistently achieved approximately 99% ASR regardless of whether there were
two, three, or four malicious clients, independent of the poisoning rate, while MobileNetV2
ranged between 92.8% and 99%.

The case of a single malicious client provides another insight: when considering the total
number of poisoned samples, federated learning is generally more robust than centralized
learning as long as most clients are honest. Even when the adversary poisoned 7.5%,
15%, or 22.5% of the global dataset, the ASR remained far from perfect, whereas in the
centralized setting, poisoning just 10% was sufficient to achieve a near-perfect ASR under
the same training strategy.

In contrast, classifier-only fine-tuned models, as in the centralized setting, exhibit strong
resilience to trigger absorption. If the model is forced to learn the trigger by poisoning a
larger proportion of samples, the accuracy on the clean test set decreases. Thus, in both
centralized and federated settings, an inverse correlation exists between ASR and clean
accuracy when this training strategy is employed. This suggests that measuring accuracy
on a test set known to be free of poisoned images can serve as a detection technique: the
presence of a backdoor manifests as reduced accuracy.

In addition to the ideal IID case, we evaluated non-IID partitions to simulate more
realistic scenarios and found that data partitioning had no substantial impact on pre-trained
models or the observations above, under either normal or attack conditions.

To design a robust backdoor defense applicable to both centralized and
distributed environments, we cannot rely solely on classifier-only fine-tuning of pre-
trained models, even though this strategy can be applied in both scenarios, because some
classification tasks may not achieve high accuracy with pre-trained models.
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For this reason, this work also highlights the potential of explainability techniques,
specifically Grad-CAM, not only to help clinicians better understand model predictions
and increase transparency, but also to detect potential attacks by revealing when the CNN
focuses on irrelevant image regions (i.e., triggers) rather than medically significant areas.

These two techniques can be employed separately or in combination, providing a solid
foundation to mitigate and detect the presence of backdoor attacks, and serving as a
starting point for the development of more comprehensive defense mechanisms.

5.2 Future Works

Future directions for this work are numerous and span multiple directions.
From a dataset and model perspective, one direction is to enlarge the dataset by

creating pipelines that, for example, extract images directly from DICOM files. Another
approach is to enhance the data augmentation process and employ GAN-based synthetic
image generation, thereby increasing the number of training samples. Additionally, future
work could explore different application contexts by testing the methodology on other
classification tasks within the medical domain or extending it to non-medical image
datasets, to determine whether the observed behaviors are specific to medical imaging
or more general. Although this study analyzed two very different architectures, further
evaluation of additional pre-trained models could help assess whether these behaviors
generalize across architectures.

From an attack perspective, numerous experiments could be conducted to evaluate how
attack effectiveness varies with changes in trigger size, visibility, or position, as well as
with different poisoning strategies. Untargeted attacks or targeted attacks with alternative
labels could also be explored. Other forms of backdoor attacks, such as invisible triggers
or noise-based triggers, can be investigated to assess whether the proposed detection
techniques (classifier-only fine-tuning and Grad-CAM) remain effective.

Future research could also explore more advanced and robust defense mechanisms,
including the combination of multiple techniques, such as classifier-only fine-tuning, Grad-
CAM, and model pruning (not covered in this thesis but a promising direction), to enhance
resilience against backdoor attacks. Additionally, developing an autonomous pipeline that
automatically analyzes Grad-CAM results to detect triggers without human intervention
could enable real-time detection and further strengthen defenses.

In the specific context of federated learning, privacy threats remain a critical concern.
Integrating mechanisms such as secure aggregation or differential privacy, and testing their
interaction with the proposed methods, could complement backdoor defense strategies
while preserving data confidentiality.

More broadly, progress in this field will depend on close collaboration between engineers,
researchers, and data scientists. Building unified defense mechanisms that work effectively
in both centralized and federated settings would be an important step toward AI systems
that are not only safer, but also truly reliable in real-world applications.
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