
Politecnico di Torino

FACULTY OF ENGINEERING

Cybersecurity LM-32

Understanding and Predicting VM Costs in the Multi-Cloud

Landscape

Candidate: Supervisor:

Lorenzo Canciani Prof. Alessio Sacco

Correlator:

Prof. Guido Marchetto

Academic year 2024-2025

Abstract

The current trend for ICT infrastructure is largely based on new architectures and
paradigms, such as Cloud Computing and Virtual Machines (VMs). However, the
complicated and obfuscated nature of the price structure across different Cloud Ser-
vice Providers (CSPs) creates significant challenges for organizations in the quest
for improved cost effectiveness and vendor lock-in avoidance. Existing comparison
tools currently possess set price data but lack dynamic forecasting capabilities for
custom VM builds.
Organizations also need a systematic way to forecast virtual machine expenses across
various cloud services based on specific technical specifications. The disjointed na-
ture of the cloud’s pricing complicates infrastructure decisions, making informed
choices difficult. This lack of clarity creates vendor lock-in situations, making the
costs of migration excessively high, as organizations have become deeply embedded
in the provider’s environment.
This thesis establishes a common system for generating hourly VM costs in promi-
nent CSPs. The process involves retrieving price information from 20 providers
using API-based and web scraping methods, normalizing inhomogeneous technical
details, and configuring forecasting models to approximate costs for any random
VM setting.
The thesis provides a wide-ranging dataset consisting of virtual machines from Eu-
ropean, American, and Asian providers and contains detailed specifications such
as CPU architecture, memory and storage, GPU capabilities, and locations. The
paper describes the methodology used for acquiring the data, the complexities en-
countered during standardization, an exploratory data analysis of the discovered
price trends, and the development of machine learning models for price prediction.
The study reveals significant price differences by provider and geography, with Eu-
ropean providers typically offering better CPU-intensive configurations. Memory
capacity is the most powerful predictor of the price of VMs, followed by vCPU and
storage capacity. Geographic concentration reveals that European providers tend
to have more similar price strategies than hyperscale providers, such as AWS and
Azure, which offer more varied regional pricing.
The work outlines how machine learning can efficiently abstract complex cloud pric-
ing schemes, providing organizations with the necessary cost estimation tools across
various suppliers and enabling informed infrastructure decisions. The patterns ex-
tracted at the provider-based and geographic levels reveal how mindful provider
selection, based on workload definition and geographic coverage, can result in ef-
fective cost reductions. The developed analysis tool facilitates the comparison of
different provider offerings and addresses a fundamental challenge in multi-cloud
cost optimization.
Future research should expand provider coverage, incorporate temporal pricing dy-
namics through time-series analysis, and develop real-time price forecasting capabil-
ities. Integration with cloud orchestration platforms can facilitate auto-cost-aware
resource provisioning, and working with CSPs can enhance the data quality and
completeness of the features.

3

Contents

1 Introduction 12

1.1 Brief overview on Elemento . 12

1.2 Vendor lock-in . 12

1.2.1 Vendor lock-in and VM’s pricing 13

1.3 Contributions . 13

2 Background 15

2.1 VMS in the Cloud . 15

2.2 Cost Factors in the Cloud . 16

2.3 How providers expose prices . 17

2.4 Introduction to Machine Learning . 18

3 State of the art 20

3.1 Cloud Mercato . 20

3.2 Cloud Price . 20

3.3 Vantage . 21

4 Methodology 22

4.1 Data Collection . 22

4.2 Exploratory Data Analysis . 23

4.3 Model Development and Training . 23

4.4 Model Evaluation . 24

5 Work development 25

5.1 Data Collection . 26

5.1.1 Scraping-based Collection . 26

5.1.2 API-based Collection . 28

5.2 Data Standardization . 28

5.3 Data Analysis . 29

5.4 Dataset Imputation . 43

5.5 Model Training . 45

6 Work evaluation 47

6.1 Model Evaluation . 47

6.1.1 Linear Regression . 47

6.1.2 RBFNN . 50

6.1.3 Random Forest . 52

6.1.4 XGBoost . 55

4

7 Conclusion and Future Work 62
7.1 Conclusion . 62
7.2 Future improvements . 62

Bibliography 64

List of Figures

2.1 Google Cloud Platform (GCP) interactive pricing page 17

4.1 Methodology overview: process pipeline 23

5.1 Comparison between direct extraction of predefined shapes (e.g. Cloud-
Ferro) and component-based reconstruction of virtual machines (e.g.
IONOS). 27

5.2 Distribution of VMs in the dataset 31
5.3 Log-log distribution of VM counts across providers with fitted power-

law curves . 32
5.4 Average price in USD for VM based in Asia per provider 38
5.5 Average price in USD for VM based in Africa per provider 39
5.6 Average price in USD for VM based in Europe per provider 39
5.7 Average price in USD for VM based in the Middle-East per provider . 40
5.8 Average price in USD for VM based in North America per provider . 40
5.9 Average price in USD for VM based in South America per provider . 41
5.10 Average price in USD for VM based in Oceania per provider 41
5.11 Average price in USD for VM by continent per provider 42
5.12 Mutual Information Analysis . 43

6.1 Set of scatter plots for Linear Regression by price range 58
6.2 Set of scatter plots for RBFNN by price range 59
6.3 Set of scatter plots for Random Forest by price range 60
6.4 Set of scatter plots for XGBoost by price range 61

7

List of Tables

5.1 Analyzed Providers . 25
5.2 Distribution of Virtual Machines Across Cloud Providers 32
5.3 Top 10 Most Common VM Configurations Across Providers 33
5.4 Top providers for the configuration 0 GPU, 32GB RAM, 8 vCPU,

ordered by average price per hour. Prices are in USD. 34
5.5 Top providers for the configuration 0 GPU, 4GB RAM, 2 vCPU,

ordered by average price per hour. Prices are in USD. 34
5.6 Top providers for the configuration 0 GPU, 4GB RAM, 16 vCPU,

ordered by average price per hour. Prices are in USD. 34
5.7 Maximum resources per provider . 35
5.8 Top 5 Most Cost-Effective Small Instance Providers (1–2 vCPU, 0–

8GB) . 36
5.9 Top 5 Most Cost-Effective Medium Instance Providers (2–8 vCPU,

8–32GB) . 36
5.10 Top 5 Most Cost-Effective Large Instance Providers (8+ vCPU, 32+GB) 36
5.11 Top 5 Most Cost-Effective GPU Instance Providers 37
5.12 Imputation Accuracy for Categorical Variables 44
5.13 Imputation MSE for Numerical Variables 44

6.1 Linear Regression metrics for Fold 1 by price range 48
6.2 Linear Regression metrics for Fold 2 by price range 48
6.3 Linear Regression metrics for Fold 3 by price range 49
6.4 Linear Regression metrics for Fold 4 by price range 49
6.5 Linear Regression metrics for Fold 5 by price range 49
6.6 Summary of Linear Regression metrics by price range (mean ± std

over 5 folds) . 49
6.7 RBFNN metrics for Fold 1 by price range 50
6.8 RBFNN metrics for Fold 2 by price range 51
6.9 RBFNN metrics for Fold 3 by price range 51
6.10 RBFNN metrics for Fold 4 by price range 51
6.11 RBFNN metrics for Fold 5 by price range 51
6.12 Summary of RBFNN metrics by price range (mean ± std over 5 folds) 52
6.13 Random Forest metrics for Fold 1 by price range 53
6.14 Random Forest metrics for Fold 2 by price range 53
6.15 Random Forest metrics for Fold 3 by price range 54
6.16 Random Forest metrics for Fold 4 by price range 54
6.17 Random Forest metrics for Fold 5 by price range 54
6.18 Summary of Random Forest metrics by price range (mean ± std over

5 folds) . 54

9

6.19 XGBoost metrics for Fold 1 by price range 56
6.20 XGBoost metrics for Fold 2 by price range 56
6.21 XGBoost metrics for Fold 3 by price range 56
6.22 XGBoost metrics for Fold 4 by price range 56
6.23 XGBoost metrics for Fold 5 by price range 57
6.24 Summary of XGBoost metrics by price range (mean ± std over 5 folds) 57

Chapter 1

Introduction

1.1 Brief overview on Elemento

Elemento [7] is an Italian deep-tech startup revolutionizing the way organizations
build and oversee their cloud infrastructure. Elemento is adaptable, straightfor-
ward, and long-term scalable, allowing businesses to establish cloud environments
customized to their specific needs in public, private, or hybrid cloud settings.
Elemento’s platform is built on two patented technologies: the Cloud Network [6]
and AtomOS [5], which is a high-performance hypervisor based on KVM. They of-
fer a single, user-friendly interface to control and coordinate compute, storage, and
network resources across various environments. IT staff can control, expand, and
operate public and private cloud infrastructures through a single, cohesive platform
with Elemento. Elemento supports native hybrid and multi-cloud operations, mak-
ing resources from over 230 global data centers, handled by the largest five public
cloud providers, available to organizations. This enables complete integration of
on-premise or private infrastructure.
Through cloud abstraction, Elemento makes cutting-edge cloud infrastructure easily
accessible, provides a robust, elastic foundation that enables businesses and service
providers to migrate legacy systems, expand international applications, or develop
cloud-native ones as their needs evolve, avoiding vendor lock-in.

1.2 Vendor lock-in

Vendor lock-in refers to a cloud computing scenario where the cost or complexity of
switching to an alternate vendor is so high that the customer has no other option but
to stick with the original chosen vendor [9]. This dependence can result in limited
other options for the customer to switch to another provider, even when the current
provider is performing poorly.
Vendor lock-in may be caused by a cloud provider using proprietary technologies,
formats, or interfaces that do not work with other providers effortlessly, thus pre-
venting the customer from moving their data and applications [29]. It may also
result from sole license terms, complex integration requirements, or custom installa-
tions that tie the customer to the targeted provider’s ecosystem. This rigidity and
non-portability can compromise the customer’s ability to adapt to changing needs or
leverage competitive solutions, which can impact cost-effectiveness and innovation.

12

1.2.1 Vendor lock-in and VM’s pricing

The market for virtual machines (VMs) plays a crucial role in cloud computing
vendor lock-in dynamics. Although lock-in is often described in terms of technical
dependencies on proprietary services, economic ones are equally limiting.
Cloud providers offer multiple VM types with varying combinations of CPU, mem-
ory, storage, and network. Pricing by providers is complex, non-uniform, and
opaque. Once an enterprise is locked into a provider and weights workloads to
specific VM instances, it is challenging to compare or migrate to different providers,
requiring a significant amount of work and cost. This is particularly true when
long-term discounts or reserved instances are utilized, and they save costs for less
flexibility.
Moreover, cloud providers periodically modify their pricing models, and subscribers
within a specific ecosystem are often forced to absorb the impact of such changes
without having the practical option to shift elsewhere. In addition, billing granular-
ity variability, licensing models, and geographically variable pricing also complicate
cross-provider comparison.
In this case, VM expense is a cost control issue as much as a mobility lock-in struc-
tural hurdle. The more a user is tied to provider-specific compute offerings, the
greater the expense of re-configuring or relocating workloads elsewhere, even if com-
parable VM choices exist elsewhere at a lower price. Therefore, pricing rigidity
contributes to the lock-in effect, converting one-time cost savings into future finan-
cial obligations.
It is thus essential to understand and forecast VM costs across providers to con-
trol cloud flexibility. It enables companies to foresee cost traps and quantify the
economic cost of provider dependency.

1.3 Contributions

Several websites, such as Cloud Mercato [8], gather price information from a variety
of cloud service providers. While useful for the comparison of available offerings,
these types of tools do not usually facilitate dynamic estimation of price based on
user-specified virtual machine (VM) parameters. In practice, if a user desires to
provision a VM with specific hardware requirements, e.g., 2 CPU and 2GB of RAM,
someone has to look up every provider’s price webpage or API to discover a suitable
option. The process is labor-intensive and error-prone, especially in light of the vast
and changing landscape of cloud service costs.
The primary contribution of this thesis is the design and integration of a machine
learning model that predicts the hourly cost of a virtual machine based on a full set
of configuration and provider-specific variables.
The model input features used are a full array of technical specifications and meta-
data, including:

• virtual CPU cores and memory size,

• storage type, bus, and capacity,

• presence of GPU, vendor, model, and VRAM capacity,

• CPU attributes, such as vendor, model, architecture, family, and clock rates,

• operating system family, version,

• shared or dedicated CPU,

• geographic and provider-specific areas

By including and analyzing this diverse set of characteristics, the model is able to
capture price variations between providers and configurations. This approach offers
a scalable and adaptable solution to support decisions in choosing cloud infrastruc-
ture and serves as a basis for integration into automated deployment frameworks
and orchestration systems.

Chapter 2

Background

2.1 VMS in the Cloud

Cloud computing refers to the delivery of computer resources, such as storage, net-
working, and virtualized processing power, over the internet on a pay-as-you-go basis
[3]. Virtual Machines (VMs) are at the center of the majority of cloud services, pro-
viding a simulation of physical computer behavior by software abstraction. VMs
are important as they enable Cloud Service Providers (CSPs) to share hardware
resources among multiple users, scale workloads, and provide isolated environments
for execution.

Different types of VMs

Cloud providers offer various types of virtual machines (VMs) tailored to meet user
needs. The categories related to usage are:

1. General-purpose VMs: balanced CPU-to-memory ratio, suitable for web servers,
small databases, and development environments.

2. Compute-optimized VMs: high CPU performance relative to memory; ideal
for batch processing, scientific modeling, and game servers.

3. Memory-optimized VMs: large amounts of RAM; suitable for in-memory databases,
big data analytics, and caching.

4. GPU-enabled VMs: equipped with Graphics Processing Units for deep learn-
ing, video rendering, and high-performance parallel workloads.

5. Specialized processors: some VMs use ARM-based CPUs for power efficiency,
or FPGA-based instances for custom hardware acceleration.

6. Storage-optimized VMs: designed for workloads requiring high I/O through-
put, such as large transactional databases or log processing.

However, it is possible to simplify making a distinction between VMs with GPUs
and VMs without GPUs.

15

Different locations of datacenters, concept of ”Region”

VM virtualization is achieved through software called a hypervisor (e.g., AtomOS
[5] or VMWare [37]). Therefore, it is possible to say that a VM is a virtualization
of hardware. Having all the hardware for the infrastructure in a single geographical
area is not an ideal solution, which is why in the cloud, there is the introduction of
the concept of region.
The region of a Cloud Service Provider (CSP) is a specific geographical area where
the physical data centers that will host the provider’s infrastructure are located.
The use of different regions by the same provider is crucial for enhancing the end-
customer experience.
The choice of region has an impact on latency [17] as well as on the cost of cooling
the machines [1] and regulatory aspects such as GDPR and single-region data res-
idency. Another important aspect to consider is the risks associated with natural
and political disasters [4].

2.2 Cost Factors in the Cloud

Prices in the cloud world are of essential importance, as they determine the success
or failure of a business.
Standard costs can mainly be categorized as follows:

1. Infrastructure: cost of individual server components, cost of rental space, net-
work cost, cooling cost

2. Data transfer: cost of transferring data from the provider’s network to your
network (egress traffic)

3. Software licenses: many VMs come with third-party software that requires
licenses. An example is AWS pricing for EC2 with and without Linux with
SQL Enterprise, which are $0.1664 and $1.6664 respectively [2]

Another distinction that can be made concerns external factors and internal factors
specific to individual cloud providers that can impact costs.

External factors External factors include the supply chain, an example of which
is the COVID-19 lockdown that blocked many supply chains, including that of semi-
conductors [26]; energy prices; and the presence of a monopoly by large providers
that prevents small providers from scaling.

Internal factors Internal factors, on the other hand, relate more to the manage-
ment of the individual provider and can be optimized by following a proper business
model. Examples of internal factors include egress costs, customer service costs, and
proper resource allocation (e.g., correctly balancing the workload among customers).

Figure 2.1: Google Cloud Platform (GCP) interactive pricing page

2.3 How providers expose prices

Returning to the issue of monopoly discussed in 2.2, CSPs do not easily disclose
the prices of their services. This makes it difficult for competitors to determine the
optimal price for a given service to remain competitive, and it also hinders end users
from comparing different cloud provider prices.
There are three main ways in which cloud providers display prices for their services:
via API (authenticated and unauthenticated), via pricing pages (which can be price
tables or JSON files), and via human customer service.

API

When a CSP provides APIs for retrieving its price catalog, it provides endpoints that
may or may not be authenticated to which HTTP calls can be made, an example
is UpCloud [23]. This approach allows prices for individual services to be obtained
quickly and provides good flexibility for the end user because it allows prices to be
collected repeatedly and automatically via scripting.
In this category are also included SDKs such as Boto3 [34].

Pricing Pages

The use of pricing pages by providers requires users to manually consult a price
catalog, an example of this is the IONOS price catalog [20], or to interactively
configure a cloud service to estimate its price, as shown in fig. 2.1 for GCP.

Human Customer Service

The third way in which cloud providers expose their prices is through customer
service. Some cloud providers require users to contact their sales department for
certain types of services, which includes all the delays that human interactions can
cause.

2.4 Introduction to Machine Learning

Since this thesis aims to develop a machine learning model for estimating prices
based on specifications for VMs provided by cloud providers, it is important to
provide a brief introduction to machine learning.
Machine learning (ML) allows computers to learn and make decisions without being
explicitly programmed. In order to find patterns and forecast fresh data, it entails
putting data into algorithms.
Without being specifically designed for every situation, a machine ”learns” by finding
patterns in data and expanding its capacity to carry out particular tasks. Based on
the information they are given, this learning process aids robots in making precise
predictions or conclusions. In contrast to traditional programming, which uses fixed
instructions, machine learning enables models to grow and change over time based
on provided data.
There are three different types of machine learning techniques:

• Supervised learning: using labeled data, supervised learning creates a model
with known right outputs for each input. By contrasting its predictions with
these accurate responses, the model gains knowledge and gets better over time.
It is applied to situations involving both regression and classification.

• Unsupervised learning: unlabeled data, which lacks categories or accurate
responses, is used in unsupervised learning. Finding the data, hidden patterns,
similarities, or groups on its own is the model’s responsibility. In situations
when data labeling is challenging or impossible, this is helpful. Clustering and
association are common uses.

• Reinforcement learning: through interaction with an environment, Reinforce-
ment Learning teaches an agent to make judgments. Agents learn via trial
and error rather than being given the solutions. They receive incentives for
good behavior and punishments for bad behavior. It gradually devises a plan
to optimize benefits and accomplish objectives. This method works well for
challenges involving sequential decision-making, such as autonomous systems,
robotics, and gaming.

Regression vs Classification

The main distinction between classification and regression, two of the main tasks in
supervised machine learning, is the kind of output: classification works with discrete
outcomes (such as categories), while regression deals with continuous values (such
as price).

Basic Models

There are some basic machine learning models. Below, there is a brief introduction
to the main ”traditional” models.

• Linear Regression: Linear Regression maps data points with the best linear
functions after learning from labeled datasets. This method may be used
to make predictions. It presumes a linear relationship between the input and
output, indicating that any variation in the input will result in a corresponding
change in the output at the same rate. A straight line is used to depict this
relationship [12].

• Logistic Regression: Logistic Regression predicts the likelihood that an input
belongs to a certain class, as opposed to linear regression, which predicts
continuous values. When it comes to binary classification, the result can fall
into one of two categories, such as True/False, Yes/No, or 0/1. It transforms
inputs into a probability value between 0 and 1 using the sigmoid function
[14].

• Decision Tree: a Decision Tree is a structure that resembles a tree, with each
internal node standing for a feature-based decision, each branch for an out-
come, and each leaf node for a final choice or forecast. The stages a decision
tree takes are to divide the data, pick the best feature, create a decision node,
create subgroups from the dataset, and recursively repeat the procedure until
a stopping condition, such as maximum depth or pure classification, is satisfied
[11].

• Random Forest: Random Forest employs a large number of decision trees. It
is an ensemble learning approach since each tree examines distinct random
portions of the data, and the results are aggregated by voting for classification
or averaging for regression. This aids in increasing precision and decreasing
mistakes [13].

• Boosting Methods: Boosting is an ensemble learning strategy that builds a
strong classifier by successively combining several weak classifiers. It is ac-
complished by utilizing training data to train a model, which is then assessed.
The next model is based on the prior one and attempts to fix its flaws. Un-
til the whole training data set is properly predicted or a certain number of
iterations is reached, this process is repeated, and new models are added [35].

Chapter 3

State of the art

As discussed in section 2.3, providers have different ways of exposing prices for
their services to users. In general, we have identified three different methods, which
involve a lot of work for users who want to compare offers from different cloud
providers. To reach this goal, portals have been created that collect prices from
different CSPs and display them via their APIs to make the comparison process
easier for end users.
However, these kinds of portals collect prices directly from cloud providers and
provide them to the end user. The aim of this thesis is slightly different, as it sets
out to build an ML model to estimate the prices of IaaS services for an arbitrary
number of CSPs in an arbitrary number of regions.
At present, there are no publicly available references to a model for estimating prices
for cloud VMs.
The main portals offering standard pricing exposure for cloud services are Cloud
Mercato [24], Cloud price [10], and Vantage [36].

3.1 Cloud Mercato

Cloud Mercato [24] is a portal that collects and compares offers from leading cloud
service providers. The platform uses cloud service provider (CSP) pricing catalogs
to obtain information on the prices and features of Infrastructure as a Service (IaaS)
offerings, presenting them in a uniform and easily searchable format.
Of the three solutions mentioned, it is the most comprehensive as it collects data
from around fifty providers [25].

3.2 Cloud Price

Users can compare virtual machine instances from Google Cloud Platform (GCP),
Microsoft Azure, and Amazon Web Services (AWS) using the CloudPrice platform
[10]. The platform makes it possible to compare the technical details and costs
of various instances while accounting for different payment models (pay-as-you-go,
reserved, and spot) and geographical locations. The platform makes it easier to
integrate data into analysis tools or automatic comparison models by enabling the
download of the entire catalog of services in JSON format.

20

3.3 Vantage

Vantage [36] is a platform for comparing virtual machine instances and cloud services
from major public cloud providers, with a focus on Amazon Web Services (AWS)
and Microsoft Azure. Compared to Cloud Price and Cloud Market, Vantage also
covers a wider range of SaaS services, thus offering a more comprehensive overview
of the cloud market.
The platform also enables users to link their accounts from different CSPs, allowing
them to track their cloud service expenses on a single platform.
Similar to CloudPrice, Vantage allows users to download the entire service catalog
in JSON format, facilitating the integration of data into analysis tools or automatic
comparison models.

Chapter 4

Methodology

The process of developing and training a model can be divided into five macro areas.
The first concerns data collection; data is the basis of every machine learning system,
and without good-quality data, it is not possible to build or train any model. The
first phase is therefore the collection of data from cloud providers.
Next, the collected data must be analyzed to evaluate any outliers and understand if
there are specific patterns, for example, if VMs cost more in certain regions or if there
are features that have a greater influence on the price for a given VM configuration.
Data analysis is followed by the selection of features to be used for price estimation.
Some of the collected features may not be relevant or important in determining the
price, so it is essential to make the right choice. Incorrect choices can lead to wasted
resources by the model, as well as incorrect predictions.
For the development of the model, it is necessary to figure out the best solution for
the created dataset. This means that it is necessary to test different models to find
the best fit, which could be expensive in terms of hardware usage and time, but it
depends on the number of features and the number of points in the dataset. The
optimal solution would be to find already implemented models that have a good fit
on the created dataset.
The model evaluation consists of assessing the regression obtained from the model
in relation to metrics such as accuracy and the number of errors made. At this
stage, different models can also be evaluated to verify which one performs best for
the use case.
Some of the phases described above will be analyzed in greater detail below.

4.1 Data Collection

Data collection is a crucial part of the system, as shown above. In fact, cloud
providers are reluctant to provide their prices in a transparent and easily accessible
manner, but good data is essential for an ML model to work well. To simplify the
collection process, the idea is to have a getter.py file for each provider analyzed,
containing the script to collect prices for that provider. This allows prices to be
collected with the same command regardless of the provider.
In addition to collection, it is necessary to find a way to standardize data from
different cloud providers and to compare them. Some CSPs expose information that
others do not; for example, some providers may disclose details about the hardware
underlying their virtual machine, while others may not provide any information,

22

Data Collection

Exploratory Data Analysis

Feature Selection

Model Development and Training

Model Evaluation

Figure 4.1: Methodology overview: process pipeline

explaining that they may modify the hardware without notifying the user, as long
as the service’s performance remains unchanged.

4.2 Exploratory Data Analysis

Analyzing data after collecting it allows the elimination of any outliers, identifies
specific patterns, and determines whether there are correlations between the different
features collected. To perform this assessment, the quickest solution is to plot the
individual features to highlight any issues, eliminate outliers, and finally use the
mutual information [22] to understand which features have the greatest impact on
determining a particular characteristic of the dataset; in the case of this thesis, the
price for the cloud virtual machine.
It is also important to understand the distribution of the dataset to avoid having a
dataset that is biased towards a particular type of virtual machine, such as a virtual
machine with a GPU or a virtual machine without a GPU.

4.3 Model Development and Training

These chosen attributes are subsequently utilized for generating regression models
that are appropriate for the prediction of continuous measures like prices. A few
different algorithms can be tried to find the best way. Popular picks for such a
problem are linear regression, decision tree-based models, random forests, and gra-
dient boosting models. It is important to understand that building from scratch,

rather than using available implementations, might not be the most efficient solu-
tion. The construction of a model from scratch requires significant amounts of time
and computational power, and it may inject extraneous errors into the algorithm
and optimization routine executions. On the other hand, well-respected libraries
like scikit-learn [30] and XGBoost [18] offer optimized, well-proven, and widely
used implementations that are well equipped to handle massive datasets efficiently
and provide consistent performance.

4.4 Model Evaluation

Following the training process, the models undergo an evaluation process whose aim
is to ascertain the performance and reliability of the models. In the case of re-
gression issues, popular measures utilized in measuring predictive precision include
Mean Absolute Error (MAE), Mean Squared Error (MSE), and R-squared [31]. Such
measures give useful information regarding the average variation between the pre-
dictions and the corresponding measures and the percentage of variance explained
by the model.
Comparing against several models enables to determine the algorithm that general-
izes best to unseen data.
Using well-established libraries reduces the chance of errors and ensures that the
evaluation measures correctly reflect the predictive powers of the model and not the
side effects of an unoptimized implementation. Cross-validation techniques are used
to reduce overfitting and ensure that performance measures are reliable on different
portions of the dataset.

Chapter 5

Work development

Providers included in the analysis

Provider Nationality Data collection method Europe
Alibaba Cloud China API No
Aruba Cloud Italy Scraper Yes
Amazon Web Services USA API No
Azure USA API No
Bluvault Saudi Arabia Scraper No
Catalystcloud New Zealand Scraper No
CloudFerro Poland Scraper Yes
Exoscale Switzerland Scraper Yes
Gigas Spain Scraper Yes
Google Cloud Platform USA Scraper No
Gridscale Germany Scraper Yes
Hetzner Germany API Yes
Hidora Switzerland Scraper Yes
Hostinger Lithuania API Yes
IONOS Germany Scraper Yes
Leafcloud Netherlands Scraper Yes
Leaseweb Netherlands API Yes
Linode USA API No
Scaleway France API Yes
UpCloud Finland API Yes

Table 5.1: Analyzed Providers

The choice of the providers to include in the thesis is related to different features,
such as the nationality of the provider; for this reason, most of the CSPs analyzed
are based in Europe. The table 5.1 enumerates the providers used during the data
collection phase and gives information about the method used for data collection,
as discussed in section 2.3.

25

5.1 Data Collection

The purpose of data collection is to create a dataset of virtual machines available
on the cloud providers considered in the thesis.
To achieve this goal, each virtual machine will be managed as a JSON object, so
each provider will have a getter.py file that will output a vms.json file, a collection
of JSON objects, for each region in which it has VMs available.
Now, the implementations of the two main collection methods used will be analyzed:
scraping the provider’s website and using APIs exposed by the provider.

5.1.1 Scraping-based Collection

Concerning data collection through scraping, it can be divided into two macro areas:
direct price collection given a pre-established VM configuration (shape), or price col-
lection for individual components and then arbitrary configuration generation. In
both cases, data collection was carried out using the web browser interaction fea-
tures of the Selenium library [32]; since scraping is customized on the website of
each provider, it is understandable that it is not possible to analyze each provider in
detail, but rather to analyze only two providers to understand how data collection
is carried out in both modes.

Direct Pricing Collection

CloudFerro, a Polish cloud provider, publishes pricing information by means of pre-
defined tables that directly describe the available virtual machine types. Each entry
in these tables [33] gives the characteristics of the virtual machine, namely the num-
ber of virtual CPUs, the memory, the storage and the corresponding prices in three
different charging modalities (per hour, per month, and per year).
The availability of such predefined shapes makes the gathering of such information
very simple. The tables can be interpreted as structured datasets in which each
row already corresponds to a complete virtual machine configuration. In this way,
the fundamental attributes of the offering are readily accessible: instance identifier,
computational capacity, memory resources, storage type and size, as well as price
levels.
For the creation of the dataset, the values extracted from the provider’s tables are
harmonized. This involves, for example, expressing memory values in a consistent
unit, standardizing storage information according to type and interface, and asso-
ciating processors with their respective vendor and architecture family. The euro
prices are also converted to USD to have a common currency to allow comparison
with other providers.
In this way, the predefined shapes of CloudFerro can be easily merged into a larger
dataset that is consistent with the data coming from providers who adopt different
strategies in how to display their offers. The final result is a unified and comparable
view of virtual machine flavors from heterogeneous sources.

Component-based Pricing Collection

IONOS adopts a pricing strategy [21] that differs substantially from providers such as
CloudFerro. Instead of offering predefined virtual machine types, its documentation
reports unit costs for the main resources that compose a virtual machine. These
include the hourly price per virtual CPU (with distinctions across processor families
such as AMD EPYC or Intel Xeon generations), the cost per gigabyte of memory,
the price of different storage media (HDD SATA, SSD SATA, SSD NVMe), and
additional fees related to operating systems or enterprise software licences.
Such a structure requires an indirect reconstruction of the virtual machines. Rather
than relying on predefined shapes, the methodology builds synthetic configurations
by combining the available components. The process can be described as follows:

1. for each geographical region, the available processor families are identified;

2. realistic combinations of processing power, memory size, and storage capacity
are generated within feasible ranges;

3. the total cost of each configuration is derived as the sum of the CPU price,
the proportional memory cost, and the cost associated with the chosen storage
type and quantity.

By adopting this component-based approach, it becomes possible to approximate
the portfolio of virtual machines that IONOS would offer if it published predefined
shapes. This strategy enables comparability with providers that disclose explicit
instance types. In this way, a uniform representation of different providers can be
achieved, despite the heterogeneity in the way pricing information is presented.

Website with Pricing Tables

Predefined VM Table

Direct Extraction of VM Specifications

Website with Components Pricing

Component Price List

Combination of Components

Synthetic VM Configurations

Unified VM Dataset

CloudFerro (Predefined Shapes) IONOS (Component-based)

Figure 5.1: Comparison between direct extraction of predefined shapes (e.g. Cloud-
Ferro) and component-based reconstruction of virtual machines (e.g. IONOS).

5.1.2 API-based Collection

Opposite to scraping, this process is dependent on the official APIs of the cloud
provider, which provide both configuration and price in a formatted way. The flow
of work is different for each provider, but for example, for AWS, it gets started by
listing all the regions in which services can be offered because instance type and
price tend to vary significantly by location. After identifying regions, the system
requests each region for a detailed description of the instance types offered. The de-
tails include processor type, like model, architecture, and clock speed; memory and
disk specifications; network attributes; GPU numbers and types; and pre-installed
software that tends to affect licensing.
Information on prices and configurations is collected, and the raw features from
these are then normalized and harmonized to ensure uniformity throughout various
geographical regions, correcting for differences in units and nomenclatures. Partic-
ular attention is given to details such as the classification of GPU suppliers and
models into uniform categories. The careful process ensures that the output dataset
is both accurate and possible to compare.
The workflow can be thought of as a three-stage process. All relevant price informa-
tion is first accrued. Technical specifications for each of the instance types are next
obtained. The two streams of information are finally integrated such that there is
an extensive aggregation of all offerings. Certain use cases, such as instances with
more than one GPU, unconventional storage offerings, and region-based constraints,
have particular attention given to them, such that the dataset accurately mirrors
the actual capability and cost of each resource.
The outcome is a dataset of virtual machine information that binds virtual machine
shapes with prices.

5.2 Data Standardization

Different providers expose different specifications; for this reason, it is essential to
find a way to standardize the output, otherwise, it is not possible to compare and
use the data to train a machine learning model.
To reach this goal, a good way is to have a class with a super set of all the attributes
exposed from all the providers and map all the service’s data to that class. If there
is no information for that feature, the class field will be filled with a default null
value.
When it comes to GPUs, providers are prone to use different names for their GPUs
without following any convention. To make virtual machines comparable, it is nec-
essary to find a mapping that takes into account the number of slices of the GPU
dedicated to the machine, the GPU vendor, and the GPU model. The solution to
this situation is a mapping based on PCI ID.
Mapping based on PCI ID is a suitable solution because it is based on a mech-
anism that is simple and future-proof. Each PCI or PCIe device is identified by
the firmware and operating system based on two basic numbers: Vendor ID, i.e.,
the manufacturer, and Device ID, i.e., the model of the individual device. These
identifiers are standardized within the PCI specification. The Device IDs are chosen
by the vendor company for every respective device within their own namespace; on
the other hand, the Vendor IDs are assigned and managed globally by the central

administration of the PCI-SIG consortium, which ensures their uniqueness on the
international level among vendors; therefore, the combination of the Vendor ID and
the Device ID provides a reliable and unique identity of every PCI or every PCIe
device.
The mapping used in this thesis for GPUs can be found on Elemento’s GitHub [19].

5.3 Data Analysis

The dataset has a total of 361168 virtual machines collected across 20 providers.
Below is the structure of a single record with an example of mapping to numerical
or categorical values.

Dataset Features

Provider alibabaclooud=0, azure=1, arubacloud=2, – Cloud service provider

Service Type vm=0 – Type of service

Instance Type t2.micro, n1-standard-4 – Specific instance name based on provider

Global Region Europe United-Kingdom=17, Asia China=0 – Macro geographic
area

Provider Region eu-west-1, us-west-2 – Specific provider datacenter region

OS Family linux=0, windows=1 – Operating system family

OS ubuntu=0, fedora=1, windows server=7 – Specific distribution

OS Version 2016standard=12, 20.04=1, stream9=4 – Operating system version

Pre-installed Software sqlstd=0, sqlent=2 – Pre-installed software packages

OS License included=1 – Operating system is included or not in VM price

CPU Vendor intel=0, amd=1, ampere=2 – CPU Vendor

CPU Generation skylake=0, milan=8, genoa=9 – CPU Generation

CPU Family xeon=0, epyc=1, altra=2 – CPU macro family

CPU Model platinum=0, gold=1, silver=2 – CPU model line

CPU Architecture 64, 32 – CPU Architecture

CPU ISA arm=1 – CPU instruction set

CPU Frequencies (GHz) Max: 3.5, 4.0; Min: 1.0, 1.5; Avg: 2.5, 3.0 – CPU
frequency, each tier is a feature

CPU Shared No=0, Yes=1 – CPU shared or not

vCPU 4, 8, 16 – Number of CPU cores

RAM (GB) 8, 16, 32 – Size of RAM memory in GB

Network Speed (Mbps) 100, 1000 – Network interface speed

Included Traffic (TB) 1, 10 – Traffic included in the price of the vm

Storage Capacity (GB) 100, 500 – Storage capacity included in GB

Storage Bus sata=0, nvme=1 – Storage Bus

Storage Type ssd, hdd – Storage Type

Storage Speed (GB/s) 0.5, 1.0, 2.5 – Stoeage speed in GB/s

GPU Count 0, 1, 2 – Number of GPUs attached to VM

GPU Vendor nvidia=1, amd=2, habana=3 – GPU Vendor

GPU Model a100=8369, t4=7864, v100=7606 – GPUModel mapped to int(PCIid,16)

GPU VRAM (GB) 16, 32, 40 – GPU VRAM in GB

IPv4 Included=1, Not Included=0 – Availability of IPv4

IPv6 Included=1, Not Included=0 – Availability of IPv6

Hourly Price (USD) 0.05, 0.20 – VM price per hour in USD

Monthly Price (USD) 10, 20, 100 – VM price per month in USD

Yearly Price (USD) 1 year: 100, 200; 2 years: 180, 360; 3 years: 250, 500 – VM
price per year in USD, each category is a feature

Distribution of VMs in the dataset The breakdown of the dataset between
virtual machines with GPUs and virtual machines without GPUs is shown in Figure
5.2. This data clearly indicates that few providers offer machines with GPUs.
This allocation aligns with the inherent patterns of cloud workloads, preferring

CPU consumption to GPU usage. Academic studies uncover that CPU-intensive
applications rank among the most utilized types in cloud environments [27, 28],
such as traditional enterprise services, web services, and database activities, which
act as the foundation of most cloud infrastructures. The common presence of these
workloads, which benefit more from CPU scalability than from GPU acceleration,
explains the motivation of cloud providers’ resource allocation policy, accounting for
the observed shortage of virtual machines with GPU support.

Number of VMs per provider An analysis of the generated dataset indicates
that the instance count varies by four orders of magnitude, with a value ranging from
Amazon Web Services’ sizable 183,174 virtual machines down to niche providers such
as Hidora with a mere 28 instances, as seen from Table 5.2. Such strong distribution
bias is also illustrated in Figure 5.3, where providers were ordered by their VM count
with logarithmic axes. There is a first part comprising the first seven providers who
closely follow a power-law distribution [15] with an exponent of −1.18, but after
the seventh provider, a much steeper curve with an exponent of −6.29 is observed.

w/o GPU

96.9%
(349925)

w GPU

3.1%
(11243)

GPU presence
w/o GPU
w GPU

Figure 5.2: Distribution of VMs in the dataset

Such behavior is a close match to Zipf’s distribution [16], which suggests that a
high number of empirical distributions have their frequency or size to be inversely
proportional to their rank. Under such a scheme, a few leading providers contain a
dominant majority of VMs, but such a long tail is formed by the remaining providers
with much smaller infrastructures Table 5.2.

Cloud Provider VM Count

AWS 183,174
Scaleway 39,643
Leaseweb 37,296
Hetzner 23,166
Alibaba Cloud 22,396
UpCloud 20,332
Google Cloud 13,776
Azure 12,536
Leafcloud 3,069
Ionos 1,750
Gridscale 1,600
Linode 1,117
Catalyst Cloud 565
Bluvault 91
Arubacloud 208
Exoscale 169
CloudFerro 159
Hostinger 48
Gigas 45
Hidora 28

Table 5.2: Distribution of Virtual Machines Across Cloud Providers

100 101

Provider rank

102

103

104

105

Nu
m

be
r o

f V
M

s

aw
s

sca
lew

ay

lea
sew

eb

he
tzn

er

alib
ab

acl
ou

d

up
clo

ud

go
og

lec
lou

d

azu
re

lea
fclo

ud

ion
os
gri

dsc
ale

lino
de

cat
aly

stc
lou

d

aru
ba

clo
ud

exo
sca

le

clo
ud

fer
ro

blu
va

ult

ho
stin

ge
r

gig
as

hid
ora

Provider
log(y) = 11.8314 + -1.1811*log(x)
log(y) = 22.2681 + -6.2928*log(x)

Figure 5.3: Log-log distribution of VM counts across providers with fitted power-law
curves

Most Common Hardware Configurations Table 5.3 summarizes the ten most
common VM configurations across providers. Most widely available instances do not
include GPUs, reflecting a focus on CPU and RAM-centric workloads. Configura-
tions such as 32 GB RAM with 8 vCPUs and 4 GB RAM with 2 vCPUs are offered
by the largest number of providers, indicating standardization of mid-range and
entry-level VMs.
Hourly prices for identical configurations vary substantially; this variation can be
partly explained by differences in included storage and the pre-installed software:
instances with larger storage allocations tend to be more expensive, as machines
with extra software such as SQL Enterprise (section 2.2), although provider-specific
pricing policies and regional availability also contribute.

GPU RAM vCPU # Providers Min Price Max Price Avg Price

0 32 8 17 0.0744 11.5570 0.9459
0 4 2 17 0.0051 1.5249 0.2036
0 16 4 16 0.0372 11.5142 0.5273
0 8 4 16 0.0093 11.4801 0.4966
0 64 16 14 0.1489 11.6426 1.7003
0 8 2 14 0.0186 11.4972 0.2734
0 32 16 14 0.0372 11.5380 1.5674
0 16 8 13 0.0186 11.4962 0.9037
0 64 32 13 0.4302 16.2608 3.6082
0 128 32 12 0.2977 19.5704 3.2663

Table 5.3: Top 10 Most Common VM Configurations Across Providers

Provider-Specific Pricing Analysis for Standard Configurations After iden-
tifying the most common VM configurations on most of the cloud providers con-
sidered, it is interesting to analyze which providers offer the lowest prices for these
configurations. Specifically, we will analyze the three most common configurations,
i.e., the first three rows of table 5.3.
The results are shown in tables 5.4, 5.5, and 5.6, respectively, and show the mini-
mum, maximum, and average prices in USD. These prices are influenced not only
by the number of CPU cores and RAM, but also by the region and the amount of
storage that the provider makes available on the configuration chosen by the user.
This explains the price variation within the same provider, so in this case, it is
significant to evaluate the average price.

Provider Min Price Max Price Avg Price
Hostinger 0.0822 0.0822 0.0822
Arubacloud 0.1528 0.2977 0.2253
Scaleway 0.1736 0.7245 0.2720
Linode 0.2880 0.4030 0.2936
Upcloud 0.2262 0.6860 0.3539
Google Cloud 0.2680 0.4032 0.3565
Exoscale 0.3171 0.4242 0.3796
Cloudferro 0.3804 0.4743 0.4111
Hidora 0.3823 0.4642 0.4232
Gridscale 0.2099 0.7160 0.4254

Table 5.4: Top providers for the configuration 0 GPU, 32GB RAM, 8 vCPU, ordered
by average price per hour. Prices are in USD.

Provider Min Price Max Price Avg Price
Arubacloud 0.0294 0.0657 0.0475
Upcloud 0.0263 0.1194 0.0517
Linode 0.0360 0.0910 0.0525
Cloudferro 0.0374 0.0623 0.0526
Exoscale 0.0544 0.0544 0.0544
Hidora 0.0478 0.0751 0.0614
Google Cloud 0.0335 0.0851 0.0698
Azure 0.0426 0.1010 0.0807
Alibabacloud 0.0254 0.2240 0.0853
Scaleway 0.0282 0.2566 0.1068

Table 5.5: Top providers for the configuration 0 GPU, 4GB RAM, 2 vCPU, ordered
by average price per hour. Prices are in USD.

Provider Min Price ($/h) Max Price ($/h) Avg Price ($/h)
Hostinger 0.0411 0.0411 0.0411
Arubacloud 0.0838 0.1562 0.1200
Scaleway 0.0869 0.3649 0.1373
Upcloud 0.1185 0.2548 0.1528
Google Cloud 0.1340 0.2016 0.1779
Exoscale 0.1586 0.2129 0.1903
Cloudferro 0.1902 0.2366 0.2057
Hidora 0.1911 0.2321 0.2116
Alibabacloud 0.0940 2.2814 0.2441
Leafcloud 0.1585 0.2979 0.2528

Table 5.6: Top providers for the configuration 0 GPU, 4GB RAM, 16 vCPU, ordered
by average price per hour. Prices are in USD.

Provider Diversity and Market Positioning The above configurations all lack
GPUs, which may mean that virtual machines with GPUs are not widely used among

cloud providers. For this reason, it is worth analyzing the providers considered for
this thesis more broadly and evaluating the maximum amount of vCPU, RAM, and
GPU they make available per virtual machine. This analysis is presented in Table
5.7. The analysis shows that only 10 of the 20 providers analyzed offer GPUs to
their customers for use on virtual servers without the need to purchase bare metal
servers.

Provider Max vCPU Max RAM (GB) Max GPU
IONOS 62 230 0.00
gridscale 64 224 0.00
aws 896 32768 8.00
googlecloud 360 5952 16.00
alibabacloud 256 3072 8.00
azure 832 15200 8.00
upcloud 80 512 0.00
catalystcloud 64 1280 0.25
scaleway 128 960 8.00
cloudferro 128 880 4.00
leaseweb 96 715 0.00
linode 56 300 4.00
exoscale 96 448 8.00
leafcloud 100 680 8.00
bluvault 96 256 0.00
arubacloud 32 64 0.00
hetzner 48 192 0.00
hidora 12 64 0.00
gigas 10 16 0.00
hostinger 8 32 0.00

Table 5.7: Maximum resources per provider

Market Segmentation Analysis by Usage Tier Tables 5.8 through 5.11 sum-
marize the top five most efficient providers in each use tier. The findings reveal
systematic patterns across market tiers in the forms of price dispersion, geographic
clustering, and provider specialization.
In the small instance category, the variation in price is small, from $0.009980 to
$0.012169 per hour. Such a relatively small dispersion testifies to the highly competi-
tive environment. The least expensive offering is that of Scaleway in France. Others,
including Alibaba Cloud in China, AWS in the USA, Linode in New Zealand, and
UpCloud in Australia, provide the same levels of costs, which means that the geo-
graphical location is not the determining factor in this category. What is more, both
x64 and the ARM CPU architecture are present among the highest-cost-effective of-
fers, demonstrating the pluralism of the hardware choices at competitive levels.

Provider vCPU RAM GPU Storage Price ($/h) CPU Region
Scaleway 2 2 0.0 10 0.009980 x64 France
Alibaba Cloud 1 1 0.0 0 0.010000 x64 China
AWS 2 1 0.0 0 0.010000 arm USA
Linode 1 1 0.0 25 0.010500 x64 New-Zealand
UpCloud 1 1 0.0 25 0.012169 x64 Australia

Table 5.8: Top 5 Most Cost-Effective Small Instance Providers (1–2 vCPU, 0–8GB)

The medium instance segment shows high price dispersion, from $0.010868 to
$0.044800 per hour. The 311% spread indicates the less-standardized market in this
case compared to the small instances. Hetzner dominates in cost-efficiency with the
cheapest observed price offering of 4 vCPU, 8 GB RAM, and 80 GB of storage. The
remaining providers consist of both the European (Scaleway in France) and the non-
European locations (Hostinger and AWS in India, UpCloud in Australia), indicating
that cost efficiency is not confined to the traditionally low-cost geographies. Of
interest is the fact that AWS and Hostinger Indian configurations are more expensive
than Hetzner’s German one, indicating that the efficiency of operations, along with
the specific provider prices, prevail over the geography-based cost advantages of the
labor in final prices.

Provider vCPU RAM GPU Storage Price CPU Region
Hetzner 4 8 0.0 80 0.010868 arm Germany
Hostinger 2 8 0.0 0 0.024644 N/D India
UpCloud 2 8 0.0 3 0.041959 x64 Australia
Scaleway 4 8 0.0 10 0.043180 x64 France
AWS 2 8 0.0 0 0.044800 arm India

Table 5.9: Top 5 Most Cost-Effective Medium Instance Providers (2–8 vCPU, 8–
32GB)

In the large instance size category, Hetzner displays strong economies of scale: a
16 vCPU / 32 GB instance with 320 GB disk is priced at $0.037204 per hour, lower
than numerous medium-level plans. The market structure here is more concentrated
in Europe, with Scaleway in France and Aruba Cloud in Italy, also among the cheap-
est cost-effective providers. Non-European providers such as Hostinger and AWS
in India are significantly more expensive. The durability of cost-effective pricing in
the European regions translates into a structural efficiency advantage compared to
the non-European markets. The CPU architecture diversification (ARM, x64, and
N/D) highlights flexibility in hardware choice in this category.

Provider vCPU RAM GPU Storage Price CPU Region
Hetzner 16 32 0.0 320 0.037204 arm Germany
Hostinger 8 32 0.0 0 0.082178 N/D India
Aruba Cloud 8 32 0.0 120 0.152833 x64 Italy
Scaleway 8 32 0.0 10 0.173580 arm France
AWS 8 32 0.0 0 0.179200 arm India

Table 5.10: Top 5 Most Cost-Effective Large Instance Providers (8+ vCPU, 32+GB)

The GPU instance segment (Table 5.11) reflects the highest price premiums,
with the baseline GPU options starting at $0.270000 per hour, more than five times
the highest price for large CPU-only instance. The cost leadership of this segment
is concentrated in Asia, with Alibaba Cloud in China offering the least expensive
option. The remaining European providers, such as Cloudferro in the Netherlands
and LeafCloud in France, follow with competitively priced fractional or full GPU
allocations. The other suppliers, such as AWS in South Korea and Linode in India,
enter at the higher prices. The fractional GPU allocations observed (0.083 through
Alibaba Cloud and Cloudferro) reflect the tactics based on server virtualization
with the objective of entering the GPU-dependent workload barrier, with full GPU
allocations (1.0) being offered in the high-performance offerings.

Provider vCPU RAM GPU Storage Price CPU Region
Alibaba Cloud 4 8 0.083 0 0.270000 x64 China
Cloudferro 4 16 0.083 0 0.278497 x64 Netherlands
AWS 4 16 1.000 150 0.378530 x64 South-Korea
LeafCloud 8 32 1.000 0 0.453560 N/D France
Linode 4 16 1.000 524 0.520000 x64 India

Table 5.11: Top 5 Most Cost-Effective GPU Instance Providers

Overall, there are a few key patterns; first, geographic clustering shows that
European providers tend to dominate the CPU-heavy tiers, while Asian providers,
especially Alibaba Cloud, lead when it comes to GPU options. Second, the concept
of inverse scaling economics means that when users go for larger configurations,
the cost per unit of compute generally drops, pointing to some solid economies of
scale in infrastructure. Third, storage pricing doesn’t seem to change much with
capacity, except in cases where there’s an unusually large amount bundled together.
Providers tend to specialize: Hetzner, for example, keeps a cost advantage across
CPU segments from its German data centers, whereas hyperscale companies like
AWS and Azure mainly focus on the GPU market rather than competing on basic
compute pricing.

Geographic Pricing Distribution Analysis Geographical pricing distribution,
as evidenced by the regional heatmaps of mean hourly prices per provider (Fig. 5.4
through 5.11) reveals significant regional differences that validate and reinforce the
identified patterns of the preceding configuration-level analyses.
The observable clustering of competitive pricing in Europe is specifically validated
in the data, with providers such as Hostinger having a uniform pricing of $0.04 per
hour for all regions in which they operate.
At the same time, Aruba Cloud offers especially low rates ($0.24 per hour) in a
selection of European nations. Such geographic uniformity in European pricing
supports the hypothesis of structural economies of scale. It indicates a more ma-
ture, standardized market in the region, in accordance with the European dominance
presented in Tables 5.9 and 5.10.
On the other hand, hyperscale providers demonstrate greater geographic variability:
AWS establishes prices ranging from $8.27 per hour in the United Arab Emirates
to $12.89 per hour in South Africa, underscoring the major effect of local operating

costs and regional demand in setting pricing strategies. Also, the variability of price
for Azure ranged from $3.39 per hour in Indonesia to $13.20 per hour in Singapore,
suggesting that hyperscale operators practice differentiated pricing strategies in con-
sideration of local market forces.
Alibaba Cloud, in contrast, continues to retain a leadership in Asia with prices
ranging from $1.45 per hour in the UAE to $4.27 per hour in Saudi Arabia, and
hence upholds a market penetration strategy through low price aggression in both
origin region and adjacent regions, previously noted in Table 5.11. The sparse but
stable presence of specialized operators such as Hetzner in a selection of markets
(Germany, USA, Singapore, Finland) with very competitive pricing ($0.47-$3.34 per
hour) reveals a way in which geographic specialization secures major price benefits,
hence serving economies of scale patterns outlined in tier-level analysis.

alib
ab
acl
ou
d

aru
ba
clo
ud

azu
re

cat
aly
stc
lou
d

clo
ud
fer
ro

go
og
lec
lou
d

he
tzn
er
hid
ora

sca
lew

ay

exo
sca

le

up
clo
ud aw

s
ion
os

gri
dsc

ale

lea
fclo

ud
lino

de

blu
va
ult

gig
as

ho
stin

ge
r

lea
sew

eb

Provider

Asia_China
Asia_Japan

Asia_South-Korea
Asia_Singapore
Asia_Malaysia

Asia_Philippines
Asia_Indonesia
Asia_Thailand

Asia_Hong-Kong
Asia_India

Asia_Taiwan

Re
gi
on

1.86
2.60 3.75 5.51 10.70 1.00 0.52
2.96 4.76 5.51 11.74
2.56 13.20 5.51 3.34 1.24 10.28 1.07 0.04 0.64
1.74 10.60
2.27 9.41
2.46 3.39 5.51 9.74 0.99 0.04
2.20 9.20

4.73 5.51 8.77
4.17 5.51 9.54 1.16 0.04

5.51

2

4

6

8

10

12

Figure 5.4: Average price in USD for VM based in Asia per provider

alib
ab
acl
ou
d

aru
ba
clo
ud

azu
re

cat
aly
stc
lou
d

clo
ud
fer
ro

go
og
lec
lou
d

he
tzn
er
hid
ora

sca
lew

ay

exo
sca

le

up
clo
ud aw

s
ion
os

gri
dsc

ale

lea
fclo

ud
lino

de

blu
va
ult

gig
as

ho
stin

ge
r

lea
sew

eb

Provider

Africa_South-Africa

Re
gi
on 4.09 5.51 12.89

5

6

7

8

9

10

11

12

Figure 5.5: Average price in USD for VM based in Africa per provider

alib
ab
acl
ou
d

aru
ba
clo
ud

azu
re

cat
aly
stc
lou
d

clo
ud
fer
ro

go
og
lec
lou
d

he
tzn
er
hid
ora

sca
lew

ay

exo
sca

le

up
clo
ud aw

s
ion
os

gri
dsc

ale

lea
fclo

ud
lino

de

blu
va
ult

gig
as

ho
stin

ge
r

lea
sew

eb

Provider

Europe_UK
Europe_Germany

Europe_Italy
Europe_Czech-Republic

Europe_France
Europe_United-Kingdom

Europe_Poland
Europe_Ireland

Europe_Netherlands
Europe_Norway

Europe_Switzerland
Europe_Spain

Europe_Sweden
Europe_Belgium
Europe_Finland
Europe_Austria

Europe_Bulgaria
Europe_Portugal
Europe_Lithuania

Re
gi
on

1.69 4.71 5.51 1.24 9.86 0.68 0.83 0.04 0.66
2.33 0.24 8.05 2.34 5.51 0.47 1.45 1.2411.070.63 3.40 1.24 0.04 0.64

0.2412.09 5.51 10.83 0.83
0.24
0.24 3.53 5.51 3.70 9.72 0.57 1.24 0.04 0.64
0.24
0.24 4.00 1.94 5.51 1.49 1.24

12.09 10.99 0.83 0.52
12.79 5.51 0.72 1.24 1.49 2.10 0.83 0.04
4.11
5.34 5.51 0.28 0.85 10.60 1.97
3.56 5.51 1.2410.070.62 0.83 0.52
8.66 1.2410.32 0.83

5.51
5.51 0.47 1.34

1.09
0.73

0.52
0.04

2

4

6

8

10

12

Figure 5.6: Average price in USD for VM based in Europe per provider

alib
ab
acl
ou
d

aru
ba
clo
ud

azu
re

cat
aly
stc
lou
d

clo
ud
fer
ro

go
og
lec
lou
d

he
tzn
er
hid
ora

sca
lew

ay

exo
sca

le

up
clo
ud aw

s
ion
os

gri
dsc

ale

lea
fclo

ud
lino

de

blu
va
ult

gig
as

ho
stin

ge
r

lea
sew

eb

Provider

Middle-East_UAE

Middle-East_Saudi-Arabia

Middle-East_Qatar

Middle-East_Israel

Re
gi
on

1.45 4.75 8.27

4.27 5.51 8.61 1.12

4.22 5.51

3.62 5.51 8.71 2

3

4

5

6

7

8

Figure 5.7: Average price in USD for VM based in the Middle-East per provider

alib
ab
acl
ou
d

aru
ba
clo
ud

azu
re

cat
aly
stc
lou
d

clo
ud
fer
ro

go
og
lec
lou
d

he
tzn
er
hid
ora

sca
lew

ay

exo
sca
le

up
clo
ud aw

s
ion
os

gri
dsc

ale

lea
fclo

ud
lino

de

blu
va
ult

gig
as

ho
stin

ge
r

lea
sew

eb

Provider

North-America_USA

North-America_Mexico

North-America_Canada

Re
gi
on

2.01 10.04 5.51 0.55 1.2411.530.69 1.05 0.52 0.04 0.61

2.59 3.46 5.51 8.74

3.52 5.51 9.30 0.83 0.61 2

4

6

8

10

Figure 5.8: Average price in USD for VM based in North America per provider

alib
ab
acl
ou
d

aru
ba
clo
ud

azu
re

cat
aly
stc
lou
d

clo
ud
fer
ro

go
og
lec
lou
d

he
tzn
er
hid
ora

sca
lew

ay

exo
sca

le

up
clo
ud aw

s
ion
os

gri
dsc

ale

lea
fclo

ud
lino

de

blu
va
ult

gig
as

ho
stin

ge
r

lea
sew

eb

Provider

South-America_Brazil

South-America_Chile

South-America_Colombia

Re
gi
on

5.41 5.51 12.54 1.16 0.04

5.51 0.52

0.52 2

4

6

8

10

12

Figure 5.9: Average price in USD for VM based in South America per provider

alib
ab
acl
ou
d

aru
ba
clo
ud

azu
re

cat
aly
stc
lou
d

clo
ud
fer
ro

go
og
lec
lou
d

he
tzn
er
hid
ora

sca
lew

ay

exo
sca

le

up
clo
ud aw

s
ion
os

gri
dsc

ale

lea
fclo

ud
lino

de

blu
va
ult

gig
as

ho
stin

ge
r

lea
sew

eb

Provider

Oceania_Australia

Oceania_New-Zealand

Re
gi
on

4.35 5.51 1.2410.70 0.83

6.04 2.30

2

4

6

8

10

Figure 5.10: Average price in USD for VM based in Oceania per provider

alib
ab
acl
ou
d

aru
ba
clo
ud

azu
re

cat
aly
stc
lou
d

clo
ud
fer
ro

go
og
lec
lou
d

he
tzn
er
hid
ora

sca
lew

ay

exo
sca
le

up
clo
ud aw

s
ion
os

gri
dsc

ale

lea
fclo

ud
lino

de

blu
va
ult

gig
as

ho
stin

ge
r

lea
sew

eb

Provider

Africa

Asia

Europe

Middle-East

North-America

Oceania

South-America

Co
nt
in
en

t

4.09 5.51 12.89

2.33 5.67 5.51 3.34 1.24 10.00 1.06 0.04 0.58

2.01 0.24 7.18 2.14 5.51 0.47 0.28 1.97 1.03 1.25 10.43 0.63 2.29 2.10 0.93 0.52 0.04 0.65

2.86 4.20 5.51 8.53 1.12

2.30 5.67 5.51 0.55 1.24 9.86 0.69 0.94 0.52 0.04 0.61

5.19 2.30 5.51 1.24 10.70 0.83

5.41 5.51 12.54 1.16 0.52 0.04
2

4

6

8

10

12

Figure 5.11: Average price in USD for VM by continent per provider

Feature Importance Analysis via Mutual Information Following the anal-
ysis just completed on the types of virtual machines available and the costs based
on geographical areas, it is interesting to analyse what has the greatest impact on
the price of the service.
The mutual information analysis for hourly pricing, presented in Figure 5.12, indi-
cates a clear set of features that contribute to price composition.
Memory capacity (memoryGB) is the top predictor of pricing, followed by the num-
ber of virtual CPUs (vcpu), thereby supporting the CPU-RAM focused nature of
cloud pricing models seen in Tables 5.8 through 5.10.
Storage capacity (storageGB) takes third position, suggesting a prominent but sec-
ondary pricing-determining role for storage. It is interesting to note that the GPU-
related features are at the very end of the ranking (GPU = 0.041, GPUVendor =
0.024, GPUModel = 0.046, GPUVramGB = 0.044), seemingly against the high pre-
mium pricing seen for GPU instances in the Table 5.11. Low mutual information in
this case likely indicates sparsity of GPU instances in the dataset rather than low
price determination impact, owing to the data set distribution where we observe the
majority of the configurations having no GPUs (Table 5.3).
Low determination for CPU architecture supports the little price determination ef-
fect for architectural differences (x64 versus ARM), owing to hardware diversity seen
in the case of cost-effective configurations in the tiered analysis.

mem
ory

GB
vcp

u

sto
rag

eG
B

pri
ceM

on
th

ne
tw

ork
Sp

ee
dM

bit
s

pro
vid

er

cpu
Cloc

kM
ax

GHz

cpu
Gen

era
tio

n

inc
lud

ed
Tra

ffic
TB Os

glo
ba

lRe
gio

n

cpu
Fam

ily

cpu
Ve

nd
oripv

4

OsFa
mily

cpu
Mod

el

sto
rag

eB
us

pri
ceY

ea
r3

pri
ceY

ea
r2

cpu
Cloc

kM
inG

Hz

pri
ceY

ea
r1

cpu
Cloc

kA
vg

GHz

cpu
Sh

are
d

sto
rag

eTy
pe

OsVe
rsi

on
cpu

ISA

GPU
Mod

el

GPU
Vram

GB
GPU

GPU
Ve

nd
or

cpu
Arch

ite
ctu

re
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

ut
ua

l I
nf

or
m

at
io

n
(0

-1
)

Figure 5.12: Mutual Information Analysis

5.4 Dataset Imputation

As discussed in the previous sections, not all providers disclose all the information
about their virtual machines. For example, some providers may not disclose infor-
mation about the underlying hardware architecture or may not declare the speed of
the network to which the machine has access. In this case, this feature will be set
to None by default for that record. For this reason, the dataset contains many None

values. To try to fill in the “gaps”, imputation can be used.

Importance of imputation Imputation is crucial to prevent the loss of informa-
tion in the dataset.
If all rows with missing values were removed, the dataset would shrink significantly,
and useful patterns could be lost.
By imputing missing values, the data is preserved and the statistical quality im-
proves, since missing values may otherwise introduce bias and distort distributions.
Moreover, imputation is essential for the final objective of this thesis, which is to
estimate the prices of virtual machines in the cloud using a machine learning model.
Many models, such as linear regression and random forests, cannot handle None

values, making the imputation of missing data a necessary step.

Results of imputation with Random Forest and XGBoost Tables 5.12 and
5.13 outline how Random Forest and XGBoost deal with missing data in the given
dataset. More concretely, Table 5.12 sets out various accuracies for categorical vari-
ables, while Table 5.13 documents mean squared errors for numerical variables.
Over almost all categorical features, the results empower XGBoost to distinctly out-
perform Random Forest, which, in fact, gets close to one hundred percent accuracy

for the mentioned features like cpuFamily, cpuModel, and preInstalledSoftware.
So, the point where the most considerable jump for accuracy happens is in those
features that are complex, such as OsVersion and OsFamily, where XGBoost profits
from a huge accuracy increment.
As for the numerical features, XGBoost is still the best solution. The difference is
noticeable on CPU clock features and includedTrafficTB, where the error is quite
a bit lower than that of Random Forest. Unfortunately, the two algorithms are
equally ineffective when it comes to dealing with elements that have a lot of varia-
tions, such as networkSpeedMbits. However, the error is still lower if XGBoost is
used.
The analyses carried out show that XGBoost produces better results. For this rea-
son, it was decided to use the dataset imputed with XGBoost to proceed with the
development and training of the models.

Feature Random Forest XGBoost
OsFamily 0.8078 0.9349
Os 0.8648 0.9679
OsVersion 0.3888 0.9141
cpuVendor 0.9985 0.9998
cpuGeneration 0.9767 0.9907
cpuFamily 0.9999 1.0000
cpuModel 1.0000 1.0000
cpuArchitecture 1.0000 1.0000
cpuISA 0.9848 1.0000
storageBus 0.9348 0.9877
storageType 0.9967 0.9983
preInstalledSoftware 0.8745 0.9991
OsLicense 1.0000 1.0000
ipv4 0.9939 1.0000
ipv6 1.0000 1.0000
cpuShared 0.9340 0.9958
Average 0.9397 0.9816

Table 5.12: Imputation Accuracy for Categorical Variables

Feature Random Forest XGBoost
networkSpeedMbits 4.82e7 1.44e7
includedTrafficTB 1.21e3 1.27
cpuClockMaxGHz 0.0843 0.0034
cpuClockMinGHz 0.0005 0.0000
cpuClockAvgGHz 0.0037 0.0000

Table 5.13: Imputation MSE for Numerical Variables

5.5 Model Training

For the regression problem, four different models were selected, and their perfor-
mance was evaluated on the constructed dataset.
Linear Regression was chosen as a baseline model. This model is simple and in-
terpretable, but its performance may be unsatisfactory if the relationship between
inputs and outputs is not linear.
The second model tested was the RBFNN (Radial Basis Function Neural Network),
a type of neural network that uses radial basis functions as activation functions. It
is well-suited for datasets with non-linear relationships, as it constructs small local
models around the centroids. However, on large datasets, it can be computationally
intensive because the distance between each point to be predicted and all centroids
must be calculated for every new prediction.
The third model used was the Random Forest, which, as described in Section 2.4,
trains multiple trees on subsets of the dataset and makes predictions by averaging
the outputs of all trees.
The final model selected was XGBoost. The decision to use this last model was mo-
tivated by the quality of the previous imputation. In fact, XGBoost proved capable
of accurately estimating most of the missing values within the dataset. Another ad-
vantage of XGBoost is the large number of hyperparameters available for fine-tuning
the model.

Linear Regression The baseline model uses the LinearRegression class provided
as part of scikit-learn; the choice to use a default implementation was motivated by
its efficiency and accuracy, which facilitated reliable results and a focus on method-
ological interpretation rather than implementation.
The data was pre-processed by removing non-numeric attributes unsuitable for re-
gression, then split into training and test sets.
The input features were also transformed into z-scores to promote numerical stabil-
ity and comparison between variable dimensions.
The model was trained with standardized training data and has the limitation of
only making non-negative predictions to avoid unrealistic price predictions; linear
regression, in itself, does not guarantee the absence of negative values out of the box.

Radial Basis Function Neural Network The RBFNN was developed using
custom implementations as it is not directly available in the standard scikit-learn
libraries.
The model organizes data using RBFs as active functions, forming complex and
targeted models through the MiniBatchKMeans centroid-based cluster model.
In the training phase, the centroids are the centers of the RBFs, while the RBF
variance σ is determined as the average distance between the centroids; once the
activation matrix is formed, the output weights are acquired via the pseudoinverse,
allowing the model to bypass complex matrix multiplication.
The data used is transformed via z-score normalization to standardize the model in
relation to the dimensions of the cross-feature.
The number of centroids is determined through a candidate search procedure based

on validation error.

Random Forest The Random Forest model was implemented using the Ran-
domForestRegressor class from scikit-learn: this choice was motivated, as for linear
regression, by the need to use a widely used and tested implementation of the model
in order to focus on the results rather than the implementation. The dataset was
pre-processed by removing non-numeric features, and the remaining variables were
standardized using z-score normalization to ensure consistent scaling between inputs.

XGBoost XGBoost (Extreme Gradient Boosting) was chosen as the fourth model
to be tested, thanks to the good results obtained during the imputation phase and
the possibility of fine-tuning the model’s hyperparameters to improve the regression
output.
Also in this case, the choice to use an existing implementation of the model is made
to minimize implementation errors that could lead to incorrect performance.

Chapter 6

Work evaluation

6.1 Model Evaluation

To evaluate model performance in estimating the hourly price of a VM, a 5-fold
cross-validation was employed. The dataset is divided into five subsets, each used
once for testing, while the others serve for training, providing a robust assessment
of the model.
The following metrics were analyzed:

• RMSE (Root Mean Squared Error): average magnitude of prediction errors,
with higher weight on larger errors.

• MAE (Mean Absolute Error): average absolute difference between predicted
and actual values, less sensitive to outliers than RMSE.

• R² (Coefficient of Determination): proportion of variance in the target ex-
plained by the model; values near 1 indicate a good fit, negative values indicate
poor performance.

• MAPE (Mean Absolute Percentage Error): prediction error expressed as a
percentage of actual values.

6.1.1 Linear Regression

Evaluation of the Linear Regression model on the basis of the 5-fold cross-validation
shows strong difficulty in forecasting VM hourly prices across varying cost ranges.
As shown in Tables 6.1 through 6.5 and tabulated as a summary in Table 6.6, the
performance of the model significantly depends on the range of the price under con-
sideration, offering important insight into the diverse nature of VM price schemes.
The most significant finding is the model’s inadequate efficacy in the lower pricing
tiers. For virtual machines (VMs) priced between $0-1 per hour, which represent
the majority of the dataset, the model records an average R² of -31.823 ± 2.874.
This negative coefficient of determination suggests that the Linear Regression model
performs markedly worse than a simplistic predictor that relies solely on the aver-
age price for all forecasts. Equally troubling is the Mean Absolute Percentage Error
(MAPE) of 497.86%, indicating that the predictions diverge from actual values by
nearly 500% on average. This trend is evident in the $1-3 and $3-5 price brackets,
where R² values remain significantly negative (-46.030 and -109.010, respectively),

47

coupled with MAPE values surpassing 120%.
Model performance shows gradual improvement as the price of VM increases. In the
$5-15 range, although the R² is still negative (-7.480), the absolute value declines
significantly, as does the MAPE, which drops to a more manageable 84.80%. This
extends to the $15-50 range, where the R² closes on zero (-0.943), meaning that the
model prediction is nearly the same as would be the case where the mean was used.
It is only in the most expensive range ($50-800) that the positive R² value (0.532 ±
0.046) is obtained, which suggests the model is capable of rendering about 53% of
the variation in premium VM price.
This consistency across the five folds used for cross-validation, as indicated by
the small standard deviations, substantiates the perception that these performance
trends are systematic rather than an artifact of the actual data partitions. This
consistency adds to the believability of the results and implies that the poor results
on the lower price ranges are an inherent nature of the linearity assumptions of
the model rather than being a result of issues related to the quality of the data
or overfitting. They point out significant shortcomings of Linear Regression as a
suitable predictive instrument for the price of virtual machines. Linearity among
target variables and features emerges as a flawed assumption, since sophisticated,
non-linear pricing methodologies would likely predominate the less populated price
bands.
This analysis identify Linear Regression as an important milestone, demonstrating
the failure of simple linear techniques for this predictive task. The pervasive failure
evidenced across multiple price ranges provides strong motivation to pursue sophis-
ticated modeling techniques capable of adequately representing the nonlinear forces
acting upon VM pricing within the cloud.

Price Range RMSE MAE R² MAPE (%) N
(0, 1) 1.463 0.838 -28.41 498.17 32509
(1, 3) 3.661 2.963 -44.06 164.41 14638
(3, 5) 5.561 4.889 -107.59 129.13 6739
(5, 15) 8.171 6.985 -7.39 84.16 10750
(15, 50) 13.515 11.467 -0.93 43.38 6015
(50, 800) 46.503 38.190 0.50 45.65 1583

Table 6.1: Linear Regression metrics for Fold 1 by price range

Price Range RMSE MAE R² MAPE (%) N
(0, 1) 1.485 0.841 -29.56 490.11 32553
(1, 3) 3.642 2.947 -43.62 163.67 14727
(3, 5) 5.539 4.902 -107.51 129.85 6696
(5, 15) 8.273 7.112 -7.57 85.14 10653
(15, 50) 13.472 11.417 -0.90 43.18 6118
(50, 800) 49.155 39.765 0.60 45.52 1489

Table 6.2: Linear Regression metrics for Fold 2 by price range

Price Range RMSE MAE R² MAPE (%) N
(0, 1) 1.629 0.834 -35.52 494.84 32387
(1, 3) 3.779 2.968 -47.41 164.56 14699
(3, 5) 5.754 4.923 -115.03 129.86 6728
(5, 15) 8.160 7.020 -7.42 84.40 10863
(15, 50) 13.781 11.682 -0.95 44.43 6062
(50, 800) 47.570 39.037 0.53 46.20 1495

Table 6.3: Linear Regression metrics for Fold 3 by price range

Price Range RMSE MAE R² MAPE (%) N
(0, 1) 1.578 0.833 -33.37 510.01 32393
(1, 3) 3.770 2.964 -47.31 163.67 14685
(3, 5) 5.567 4.919 -108.61 130.46 6787
(5, 15) 8.275 7.121 -7.66 85.28 10851
(15, 50) 13.828 11.638 -1.01 44.48 6019
(50, 800) 46.723 38.872 0.49 45.89 1494

Table 6.4: Linear Regression metrics for Fold 4 by price range

Price Range RMSE MAE R² MAPE (%) N
(0, 1) 1.556 0.831 -32.25 496.16 32365
(1, 3) 3.784 2.993 -47.75 165.56 14761
(3, 5) 5.608 4.892 -106.31 129.09 6710
(5, 15) 8.201 7.070 -7.37 85.03 10770
(15, 50) 13.461 11.424 -0.92 43.76 6113
(50, 800) 48.064 38.531 0.54 45.41 1516

Table 6.5: Linear Regression metrics for Fold 5 by price range

Price
Range

RMSE MAE R² MAPE (%) N total

(0,1) 1.542 ±
0.068

0.835 ±
0.004

-31.823 ±
2.874

497.86 ±
7.41

162207

(1,3) 3.727 ±
0.070

2.967 ±
0.017

-46.030 ±
2.013

164.38 ±
0.78

73510

(3,5) 5.606 ±
0.086

4.905 ±
0.016

-109.010 ±
3.461

129.68 ±
0.57

33660

(5,15) 8.216 ±
0.055

7.062 ±
0.059

-7.480 ±
0.125

84.80 ±
0.49

53887

(15,50) 13.611 ±
0.178

11.526 ±
0.125

-0.943 ±
0.044

43.85 ±
0.59

30327

(50,800) 47.603 ±
1.073

38.879 ±
0.593

0.532 ±
0.046

45.74 ±
0.32

7577

Table 6.6: Summary of Linear Regression metrics by price range (mean ± std over
5 folds)

For completeness of analysis, Fig. 6.1 shows the scatter plots with the actual
values and the values predicted by the model. The further the points deviate from
the red line, the more inaccurate the model is in the regression.

6.1.2 RBFNN

Radial Basis Function Neural Network (RBFNN) shows, again, specific performance
limitations on the VM pricing data, as Tables 6.7 through 6.11, and Table 6.12, in-
dicate. Although there is a theoretical potential for neural networks to capture
complex nonlinear relationships, the RBFNN does not reach acceptable predictive
fidelity on most price intervals. This limitation could be due to the small number
of centroids set up at 500, a result of the larger estimation time needed, combined
with the high hardware resources necessitated as the number of centroids increases.
It also reveals the inferior performance during the lower price intervals. In the $0-
1 segment that holds 162,207 observations, the RBFNN’s R² stands at -120.569
± 10.967, while the MAPE is 1669.115%, meaning the forecasts vary significantly,
even averaging over a 1600% deviation from real values. This is the essence of model
failure, significantly underperforming even the naive mean prediction. Is possible
to see similar trends hold within the $1-3 (R² = -49.969) and $3-5 (R² = -67.393)
intervals, as the coefficient of determination becomes consistently negative across all
the middle-range intervals.
Performance-based baseline levels only happen within high-end ranges. Within the
$15-50 category, the value of R² is -0.110 ± 0.063, reaching the mean predictor per-
formance approximations, while only the $50-800 range reaches positive explanatory
potential (R² = 0.354 ± 0.070). It still considerably lags behind ensemble method-
ologies that were previously analyzed.
This consistent underperformance throughout the validation folds confirms system-
atic instead of partition-specific model shortcomings. Broad standard deviations
during the lower price bands suggest learning instability as much as convergence
problems.
These deficiencies stem from several factors inherent to the RBFNN architecture
applied to VM pricing data. The radial basis function methodology struggles with
optimal center placement and bandwidth parameter selection in high-dimensional
feature spaces. Additionally, distance-based similarity measures through Gaussian
functions exhibit poor compatibility with heterogeneous VM configuration features,
where Euclidean metrics fail to capture meaningful relationships between categorical
and mixed-type variables.
System failure of the RBFNN validates that architectural complexity does not trans-
late to empirical dominance.

Price Range RMSE MAE R² MAPE (%) N
(0, 1) 3.047 2.030 -126.489 1798.331 32509
(1, 3) 4.040 2.822 -53.869 164.529 14638
(3, 5) 4.697 3.415 -76.455 90.883 6739
(5, 15) 6.117 4.715 -3.700 55.543 10750
(15, 50) 10.253 7.894 -0.112 30.726 6015
(50, 800) 55.567 34.891 0.282 35.655 1583

Table 6.7: RBFNN metrics for Fold 1 by price range

Price Range RMSE MAE R² MAPE (%) N
(0, 1) 2.909 2.012 -116.296 1556.843 32553
(1, 3) 3.760 2.618 -46.543 153.726 14727
(3, 5) 4.329 3.106 -65.298 83.332 6696
(5, 15) 6.170 4.595 -3.766 53.121 10653
(15, 50) 10.106 7.719 -0.067 30.470 6118
(50, 800) 62.216 35.569 0.362 32.859 1489

Table 6.8: RBFNN metrics for Fold 2 by price range

Price Range RMSE MAE R² MAPE (%) N
(0, 1) 3.162 2.133 -136.578 1722.293 32387
(1, 3) 3.716 2.558 -45.789 151.148 14699
(3, 5) 4.133 2.958 -58.869 79.058 6728
(5, 15) 5.673 4.314 -3.070 50.088 10863
(15, 50) 10.098 7.679 -0.048 30.518 6062
(50, 800) 50.899 30.605 0.465 30.739 1495

Table 6.9: RBFNN metrics for Fold 3 by price range

Price Range RMSE MAE R² MAPE (%) N
(0, 1) 2.893 1.952 -114.533 1499.950 32393
(1, 3) 4.065 2.651 -55.182 154.812 14685
(3, 5) 4.743 3.329 -78.570 89.038 6787
(5, 15) 6.120 4.733 -3.735 55.233 10851
(15, 50) 10.292 7.866 -0.115 31.030 6019
(50, 800) 54.258 35.184 0.306 34.789 1494

Table 6.10: RBFNN metrics for Fold 4 by price range

Price Range RMSE MAE R² MAPE (%) N
(0, 1) 2.830 2.024 -108.946 1768.159 32365
(1, 3) 3.811 2.697 -48.461 157.528 14761
(3, 5) 4.150 3.160 -57.776 84.334 6710
(5, 15) 5.660 4.283 -2.987 49.653 10770
(15, 50) 10.683 8.296 -0.209 33.153 6113
(50, 800) 57.108 34.590 0.352 34.172 1516

Table 6.11: RBFNN metrics for Fold 5 by price range

Price
Range

RMSE MAE R² MAPE (%) N total

(0, 1) 2.968 ±
0.134

2.030 ±
0.065

-120.569 ±
10.967

1669.115 ±
132.812

162207

(1, 3) 3.878 ±
0.163

2.669 ±
0.099

-49.969 ±
4.298

156.348 ±
5.114

73510

(3, 5) 4.411 ±
0.293

3.194 ±
0.181

-67.393 ±
9.703

85.329 ±
4.714

33660

(5, 15) 5.948 ±
0.258

4.528 ±
0.217

-3.452 ±
0.388

52.728 ±
2.774

53887

(15, 50) 10.286 ±
0.238

7.891 ±
0.245

-0.110 ±
0.063

31.180 ±
1.125

30327

(50, 800) 56.010 ±
4.157

34.168 ±
2.024

0.354 ±
0.070

33.643 ±
1.916

7577

Table 6.12: Summary of RBFNN metrics by price range (mean ± std over 5 folds)

For completeness of analysis, Fig. 6.2 shows the scatter plots with the actual
values and the values predicted by the model. The further the points deviate from
the red line, the more inaccurate the model is in the regression.

6.1.3 Random Forest

Random Forest shows significantly enhanced performance over Linear Regression,
as shown by the results in Tables 6.13 through 6.17, summed up in Table 6.18.
Capturing non-linearity as well as interactions among features is the prowess of the
ensemble technique, which pays off very significantly in predictive accuracy on most
price ranges, with some problems still unresolved in targeted ranges.
Most notable progress is also made in the lowest price bin ($0-1), where Random
Forest registers a positive R² value of 0.403 ± 0.011, a good improvement over Linear
Regression’s results (-31.823). This would mean that the model is now capable of
interpreting about 40% of the variance within the low-cost VM price, a remarkable
gain given that this bin holds the largest number of instances (162,207). The MAPE
also significantly improves to 79.743%, although it is still fairly high, indicating that
percentage errors are still very large, albeit very low-cost VMs, where small absolute
errors correspond to very high relative deviations.
In the middle-range price bands($1-3 and $5-15), Random Forest still significantly
dominates Linear Regression. In the $1-3 category, the model scores an R² of 0.081
± 0.045 with a MAPE of 19.800%, the $5-15 category showing very strong perfor-
mance with an R² of 0.781 ± 0.007 and a MAPE of only 11.626%. These indicate
the increasing strength of the model as the price paid for VMs goes up, most likely
the result of more consistent pricing behaviour higher up the value range.
The model’s performance reaches its peak in the premium segments ($15-50 and
$50-800), where R² values exceed 0.94, indicating that Random Forest can explain
over 94% of the variance in expensive VM pricing. The MAPE values in these ranges
drop to below 6%, with the highest price segment achieving an exceptional 3.497%
MAPE. This superior performance in premium segments suggests that high-value
VMs follow more predictable pricing patterns that the ensemble method can effec-

tively capture.
But there exists a serious anomaly presented by the model around the $3-5 price
range, where the R² is persistently negative (-1.257 ± 0.085) even as gains elsewhere
are being recorded. This apparently anomalous result suggests that the price range
itself contains arguably complex pricing structures that cannot be captured properly
by the Random Forest algorithm. The RMSE is 0.803 while the MAE is 0.554, both
values that do not meaningfully deviate from other bands, indicating that the R²
being negative may be an indicator of high variance among the target values.
Consistency among the results obtained on the five folds used for cross-validation,
testified to by the relatively small standard deviations, validates the measurements
of the performance. The small standard deviations on R² values obtained on most
segments (usually below 0.05) prove that Random Forest is stable in its prediction,
no matter the data split that is used to train as well as to test.
These results also indicate Random Forest’s remarkable capability to handle the
complex non-linearities present in VM pricing. By averaging together many deci-
sion trees, as the ensemble method does, feature interactions, as well as non-linearity
that cannot be captured by individually linear models, are adequately conveyed.
The strong improvements over most price ranges substantiate the hypothesis that
VM pricing possesses a complex structure that requires sophisticated modeling tech-
niques, while the challenges remaining in the $3-5 range indicate opportunities to
enhance the modeling or to undertake feature engineering in future work.

Price Range RMSE MAE R² MAPE (%) N
(0, 1) 0.206 0.116 0.416 86.305 32509
(1, 3) 0.524 0.350 0.077 19.595 14638
(3, 5) 0.793 0.548 -1.210 14.082 6739
(5, 15) 1.300 0.946 0.788 11.483 10750
(15, 50) 1.884 1.304 0.962 5.379 6015
(50, 800) 13.909 4.159 0.955 3.511 1583

Table 6.13: Random Forest metrics for Fold 1 by price range

Price Range RMSE MAE R² MAPE (%) N
(0, 1) 0.210 0.116 0.386 74.289 32553
(1, 3) 0.542 0.371 0.013 20.628 14727
(3, 5) 0.792 0.550 -1.218 14.203 6696
(5, 15) 1.352 0.985 0.771 11.884 10653
(15, 50) 1.860 1.308 0.964 5.423 6118
(50, 800) 22.548 5.300 0.916 3.615 1489

Table 6.14: Random Forest metrics for Fold 2 by price range

Price Range RMSE MAE R² MAPE (%) N
(0, 1) 0.209 0.116 0.401 75.854 32387
(1, 3) 0.522 0.357 0.077 19.897 14699
(3, 5) 0.824 0.566 -1.378 14.508 6728
(5, 15) 1.316 0.950 0.781 11.566 10863
(15, 50) 1.927 1.335 0.962 5.513 6062
(50, 800) 18.224 4.547 0.931 3.566 1495

Table 6.15: Random Forest metrics for Fold 3 by price range

Price Range RMSE MAE R² MAPE (%) N
(0, 1) 0.207 0.116 0.407 77.313 32393
(1, 3) 0.513 0.347 0.104 19.409 14685
(3, 5) 0.808 0.556 -1.309 14.294 6787
(5, 15) 1.327 0.960 0.777 11.651 10851
(15, 50) 1.913 1.336 0.961 5.548 6019
(50, 800) 12.539 3.810 0.963 3.261 1494

Table 6.16: Random Forest metrics for Fold 4 by price range

Price Range RMSE MAE R² MAPE (%) N
(0, 1) 0.209 0.117 0.403 84.956 32365
(1, 3) 0.504 0.348 0.135 19.472 14761
(3, 5) 0.797 0.551 -1.169 14.110 6710
(5, 15) 1.302 0.948 0.789 11.544 10770
(15, 50) 1.962 1.368 0.959 5.699 6113
(50, 800) 14.371 4.182 0.959 3.531 1516

Table 6.17: Random Forest metrics for Fold 5 by price range

Price
Range

RMSE MAE R² MAPE (%) N total

(0, 1) 0.208 ±
0.002

0.116 ±
0.001

0.403 ±
0.011

79.743 ±
5.500

162207

(1, 3) 0.521 ±
0.014

0.355 ±
0.010

0.081 ±
0.045

19.800 ±
0.499

73510

(3, 5) 0.803 ±
0.013

0.554 ±
0.007

-1.257 ±
0.085

14.239 ±
0.172

33660

(5, 15) 1.319 ±
0.022

0.958 ±
0.016

0.781 ±
0.007

11.626 ±
0.156

53887

(15, 50) 1.909 ±
0.039

1.330 ±
0.026

0.962 ±
0.002

5.512 ±
0.124

30327

(50, 800) 16.318 ±
4.072

4.400 ±
0.567

0.945 ±
0.020

3.497 ±
0.138

7577

Table 6.18: Summary of Random Forest metrics by price range (mean ± std over 5
folds)

For completeness of analysis, Fig. 6.3 shows the scatter plots with the actual
values and the values predicted by the model. The further the points deviate from
the red line, the more inaccurate the model is in the regression.

6.1.4 XGBoost

XGBoost model represents a breakthrough improvement in predictive performance,
as the Tables 6.19 through 6.23 and Table 6.24 show. The complex approach of
the gradient boosting framework to consecutive error adjustment and modeling of
interactions among features results in outstanding improvement on almost all price
ranges, making XGBoost the most effective analyzed model. The most significant
accomplishment is evident in the lowest price category ($0-1), wherein XGBoost
achieves an R² of 0.9751 ± 0.0005, thereby accounting for over 97% of the vari-
ance in low-cost virtual machine pricing. This marks a substantial enhancement
compared to the inadequate results of Linear Regression (-31.823) and the moder-
ate performance of Random Forest (0.403). The Mean Absolute Percentage Error
(MAPE) experiences an important decrease to 8.522%, suggesting that prediction
inaccuracies are now restricted to single-digit percentages even within this category.
The exceptionally low Root Mean Square Error (RMSE) of 0.0425 and Mean Abso-
lute Error (MAE) of 0.0229 further validate the model’s effectiveness in forecasting
prices for the most populous segment of the dataset.
Performance is uniform throughout the mid-range price segments. Within the $1-
3 category, XGBoost attains an R² of 0.8704 ± 0.0027, coupled with a MAPE of
6.249%, signifying significant enhancements relative to both previous models. The
$5-15 segment exhibits comparably remarkable outcomes, achieving an R² of 0.9259
± 0.0038 and a MAPE of 6.140%, thereby suggesting that the model is capable
of reliably forecasting prices across the complete array of commonly utilized VM
configurations.
The model is remarkably effective across the high-end segments (15-50$ and 50-
800$), achieving R² values of 0.9817 and 0.9167, respectively. These results suggest
that XGBoost is effective in explaining over 91% of the variance, even among the
most expensive VM categories. Moreover, the values of MAPE in the above seg-
ments fall to less than 4.5%, showing that the forecasts tend to be very close to
actual pricing, deviating normally by no more than a few percentage points.
Noticeably, XGBoost significantly alleviates the fluctuating performance observed
in Random Forest in the $3-5 range. Even as this range was the most challenging,
with an R² value of 0.4708 ± 0.0060, the performance obtained is positive and sig-
nificantly higher than the negative results realized by Random Forest (-1.257). A
Mean Absolute Percentage Error (MAPE) value of 7.066% within this range, even
as being higher than the adjacent ranges, remains reasonable for practical applica-
tions. This uniformity among the cross-validation folds, reflected by low standard
deviations (typically lower than 0.01 for the values of R²), demonstrates the stabil-
ity and reliability of the model. This uniformity is significant, given the complexity
of the algorithm that underlies the procedure, and suggests that the regularization
methods used by XGBoost effectively reduce overfitting while retaining high predic-
tive performance.
The capability of the model to correct prediction defects through boosting, as well as
to uncover rich nonlinear relationships, allows it to adequately describe the complex

pricing dynamics that are common to the market for cloud computing (see 5.3).
It is found that XGBoost stands as the most accurate model among those evalu-
ated, yielding the required accuracy and trustworthiness for real-world applications
of VM price prediction. Improvements realized across multiple price ranges affirm
the effectiveness of advanced ensemble methodologies in coping with complex, real-
world price datasets and suggest that XGBoost is the best compromise between the
model’s complexity and forecasting effectiveness for this particular prediction task.

Price Range RMSE MAE R² MAPE (%) N
(0, 1) 0.043 0.023 0.975 8.514 32509
(1, 3) 0.196 0.116 0.870 6.226 14638
(3, 5) 0.391 0.274 0.464 7.052 6739
(5, 15) 0.771 0.531 0.925 6.187 10750
(15, 50) 1.328 0.887 0.981 3.599 6015
(50, 800) 18.467 6.126 0.921 4.478 1583

Table 6.19: XGBoost metrics for Fold 1 by price range

Price Range RMSE MAE R² MAPE (%) N
(0, 1) 0.042 0.023 0.976 8.586 32553
(1, 3) 0.198 0.116 0.868 6.232 14727
(3, 5) 0.383 0.271 0.481 7.001 6696
(5, 15) 0.749 0.528 0.930 6.098 10653
(15, 50) 1.372 0.900 0.980 3.669 6118
(50, 800) 25.617 7.330 0.892 4.497 1489

Table 6.20: XGBoost metrics for Fold 2 by price range

Price Range RMSE MAE R² MAPE (%) N
(0, 1) 0.043 0.023 0.975 8.426 32387
(1, 3) 0.193 0.114 0.874 6.175 14699
(3, 5) 0.389 0.274 0.470 7.075 6728
(5, 15) 0.785 0.522 0.922 6.056 10863
(15, 50) 1.341 0.899 0.982 3.638 6062
(50, 800) 21.525 6.586 0.904 4.426 1495

Table 6.21: XGBoost metrics for Fold 3 by price range

Price Range RMSE MAE R² MAPE (%) N
(0, 1) 0.043 0.023 0.975 8.511 32393
(1, 3) 0.194 0.114 0.872 6.220 14685
(3, 5) 0.387 0.273 0.469 7.067 6787
(5, 15) 0.783 0.531 0.923 6.159 10851
(15, 50) 1.290 0.888 0.982 3.627 6019
(50, 800) 17.098 6.196 0.931 4.528 1494

Table 6.22: XGBoost metrics for Fold 4 by price range

Price Range RMSE MAE R² MAPE (%) N
(0, 1) 0.043 0.023 0.975 8.571 32365
(1, 3) 0.197 0.118 0.868 6.394 14761
(3, 5) 0.394 0.277 0.470 7.137 6710
(5, 15) 0.750 0.531 0.930 6.201 10770
(15, 50) 1.281 0.893 0.983 3.663 6113
(50, 800) 18.035 5.882 0.935 4.131 1516

Table 6.23: XGBoost metrics for Fold 5 by price range

Price
Range

RMSE MAE R² MAPE (%) N total

(0, 1) 0.0425 ±
0.0005

0.0229 ±
0.0002

0.9751 ±
0.0005

8.522 ±
0.063

162207

(1, 3) 0.1957 ±
0.0022

0.1155 ±
0.0014

0.8704 ±
0.0027

6.249 ±
0.084

73510

(3, 5) 0.3888 ±
0.0040

0.2737 ±
0.0023

0.4708 ±
0.0060

7.066 ±
0.049

33660

(5, 15) 0.7675 ±
0.0173

0.5286 ±
0.0041

0.9259 ±
0.0038

6.140 ±
0.061

53887

(15, 50) 1.3222 ±
0.0376

0.8932 ±
0.0059

0.9817 ±
0.0009

3.639 ±
0.028

30327

(50, 800) 20.149 ±
3.4784

6.424 ±
0.5662

0.9167 ±
0.0183

4.412 ±
0.161

7577

Table 6.24: Summary of XGBoost metrics by price range (mean ± std over 5 folds)

For completeness of analysis, Fig. 6.4 shows scatter plots with actual values and
values predicted by the model. The further the points deviate from the line drawn,
the more inaccurate the model is in the regression. Here is possible to observe
graphically that XGBoost is more accurate than the models analyzed previously if
the Fig. 6.4 is compared with Fig. 6.1, Fig. 6.2, and Fig. 6.3.

(a) Scatter plot range (0, 1) Linear Re-
gression

(b) Scatter plot range (1, 3) Linear Re-
gression

(c) Scatter plot range (3, 5) Linear Re-
gression

(d) Scatter plot range (5, 15) Linear Re-
gression

(e) Scatter plot range (15, 50) Linear Re-
gression

(f) Scatter plot range (50, 800) Linear
Regression

Figure 6.1: Set of scatter plots for Linear Regression by price range

(a) Scatter plot range (0, 1) RBFNN (b) Scatter plot range (1, 3) RBFNN

(c) Scatter plot range (3, 5) RBFNN (d) Scatter plot range (5, 15) RBFNN

(e) Scatter plot range (15, 50) RBFNN (f) Scatter plot range (50, 800) RBFNN

Figure 6.2: Set of scatter plots for RBFNN by price range

(a) Scatter plot range (0, 1) Random
Forest

(b) Scatter plot range (1, 3) Random
Forest

(c) Scatter plot range (3, 5) Random
Forest

(d) Scatter plot range (5, 15) Random
Forest

(e) Scatter plot range (15, 50) Random
Forest

(f) Scatter plot range (50, 800) Random
Forest

Figure 6.3: Set of scatter plots for Random Forest by price range

(a) Scatter plot range (0, 1) XGBoost (b) Scatter plot range (1, 3) XGBoost

(c) Scatter plot range (3, 5) XGBoost (d) Scatter plot range (5, 15) XGBoost

(e) Scatter plot range (15, 50) XGBoost (f) Scatter plot range (50, 800) XGBoost

Figure 6.4: Set of scatter plots for XGBoost by price range

Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis conducts a study on cloud virtual machine pricing, starting with data
collection, analyzing and identifying specific patterns, and concluding with training
a machine learning model to estimate prices for an arbitrary configuration that takes
into account, among other features, the number of CPU cores and quantity of RAM,
and the region in which the resource is provisioned.
The analysis highlighted how the cloud virtual machine pricing landscape is ex-
tremely fragmented and difficult to interpret. Differences are not limited to different
providers, but also emerge within the same provider, depending on the Region where
the service is provisioned.
The data collection process has proven complex due to the lack of standardization
in price catalogs. Each provider adopts different formats and methods, making it
difficult to maintain automatic procedures based on scraping.
From a comparative perspective, it emerged that European providers tend to offer
more competitive prices than larger competitors, despite having smaller infrastruc-
tures. This result suggests a strategic positioning aimed at fostering market com-
petitiveness. Another important aspect to note is how few providers offer instances
with GPUs, which demonstrates a still immature approach to cloud graphics power;
this pattern is also highlighted by the major use cases of cloud services, which pri-
marily represent CPU-centric processes.
Finally, the analysis of predictive models showed that VM pricing does not follow a
linear dynamic. Linear regression models, therefore, provided limited performance,
while boosting approaches, particularly XGBoost, proved more effective in capturing
the complexity and discontinuities inherent in the pricing structure. These findings
pave the way for future investigations using advanced machine learning techniques
to further refine the forecasting and analysis capabilities of the cloud computing
market.

7.2 Future improvements

The study was carried out on a set of 20 providers, most of which were European.
A natural extension of this work would be to expand the set of providers considered,
thereby obtaining a broader and more representative picture of the market.
However, increasing the number of providers also implies a significant effort in terms

62

of data collection and management.
To address the collection limitation, a possible solution could be the establishment
of commercial agreements with the providers themselves, granting access to regu-
larly updated price lists (e.g., on a monthly basis). This approach would make it
possible to avoid the maintenance of a dedicated data extraction tool for each indi-
vidual provider, while at the same time ensuring greater consistency, reliability, and
timeliness of the dataset used for future analyses.
In addition, it would be useful not only to extend the analysis to virtual machines,
which form the core of cloud computing, but also to integrate other services, such
as managed databases, object store solutions, and even serverless solutions. Within
this broader context, it may be possible to conduct a more comprehensive analysis
of cloud service portfolios that encompass a wider range of use cases and provide
richer insights into marketplace dynamics and the strategies of providers.

Bibliography

[1] Ahmed A. Alkrush et al. “Data centers cooling: A critical review of techniques,
challenges, and energy saving solutions”. In: International Journal of Refrig-
eration 160 (2024), pp. 246–262. issn: 0140-7007. doi: https://doi.org/10.
1016/j.ijrefrig.2024.02.007. url: https://www.sciencedirect.com/
science/article/pii/S0140700724000458.

[2] Inc. Amazon Web Services. EC2 On-Demand Instance Pricing. 2025. url:
https://aws.amazon.com/ec2/pricing/on-demand/ (visited on 08/20/2025).

[3] Michael Armbrust et al. A view of cloud computing. Vol. 53. 4. ACM, 2010,
pp. 50–58.

[4] Mariam Arzumanyan et al. “Geospatial suitability analysis for data center
placement: A case study in Texas, USA”. In: Sustainable Cities and Society
(2025), p. 106687. issn: 2210-6707. doi: https://doi.org/10.1016/j.scs.
2025.106687. url: https://www.sciencedirect.com/science/article/
pii/S221067072500561X.

[5] Elemento Cloud. AtomOS. 2025. url: https://www.elemento.cloud/en/
technology/atomos (visited on 07/18/2025).

[6] Elemento Cloud. Cloud Network. 2025. url: https://www.elemento.cloud/
en/technology/cloud-network (visited on 07/18/2025).

[7] Elemento Cloud. Elemento. 2025. url: https://www.elemento.cloud/en
(visited on 07/18/2025).

[8] Cloud Mercato. 2025. url: https://www.cloud-mercato.com/ (visited on
07/23/2025).

[9] Cloudflare. What is vendor lock-in? 2025. url: https://www.cloudflare.
com/learning/cloud/what-is-vendor-lock-in/ (visited on 07/22/2025).

[10] CloudPrice.net. CloudPrice.net: Cloud Instance Price and Performance Com-
parison. 2025. url: https://cloudprice.net/ (visited on 08/25/2025).

[11] GeeksforGeeks contributors. Decision Tree in Machine Learning. Last Up-
dated: 30 Jun, 2025. 2025. url: https://www.geeksforgeeks.org/machine-
learning/decision-tree/ (visited on 09/15/2025).

[12] GeeksforGeeks contributors. Linear Regression in Machine Learning. Last up-
dated: 29 Jul, 2025. 2025. url: https://www.geeksforgeeks.org/machine-
learning/ml-linear-regression/ (visited on 09/15/2025).

[13] GeeksforGeeks contributors. Random Forest Algorithm in Machine Learning.
Last Updated: 01 Sep, 2025. 2025. url: https://www.geeksforgeeks.org/
machine-learning/random-forest-algorithm-in-machine-learning/

(visited on 09/15/2025).

64

https://doi.org/https://doi.org/10.1016/j.ijrefrig.2024.02.007
https://doi.org/https://doi.org/10.1016/j.ijrefrig.2024.02.007
https://www.sciencedirect.com/science/article/pii/S0140700724000458
https://www.sciencedirect.com/science/article/pii/S0140700724000458
https://aws.amazon.com/ec2/pricing/on-demand/
https://doi.org/https://doi.org/10.1016/j.scs.2025.106687
https://doi.org/https://doi.org/10.1016/j.scs.2025.106687
https://www.sciencedirect.com/science/article/pii/S221067072500561X
https://www.sciencedirect.com/science/article/pii/S221067072500561X
https://www.elemento.cloud/en/technology/atomos
https://www.elemento.cloud/en/technology/atomos
https://www.elemento.cloud/en/technology/cloud-network
https://www.elemento.cloud/en/technology/cloud-network
https://www.elemento.cloud/en
https://www.cloud-mercato.com/
https://www.cloudflare.com/learning/cloud/what-is-vendor-lock-in/
https://www.cloudflare.com/learning/cloud/what-is-vendor-lock-in/
https://cloudprice.net/
https://www.geeksforgeeks.org/machine-learning/decision-tree/
https://www.geeksforgeeks.org/machine-learning/decision-tree/
https://www.geeksforgeeks.org/machine-learning/ml-linear-regression/
https://www.geeksforgeeks.org/machine-learning/ml-linear-regression/
https://www.geeksforgeeks.org/machine-learning/random-forest-algorithm-in-machine-learning/
https://www.geeksforgeeks.org/machine-learning/random-forest-algorithm-in-machine-learning/

[14] GeeksforGeeks contributors. Understanding Logistic Regression in Machine
Learning. Last updated: 02 Aug, 2025. 2025. url: https://www.geeksforgeeks.
org/machine-learning/understanding-logistic-regression/ (visited
on 09/15/2025).

[15] Wikipedia contributors. Power law. Accessed: 2025-08-31. 2025. url: https:
//en.wikipedia.org/wiki/Power_law (visited on 08/31/2025).

[16] Wikipedia contributors. Zipf’s law. Accessed: 2025-08-31. 2025. url: https:
//en.wikipedia.org/wiki/Zipf%27s_law (visited on 08/31/2025).

[17] Lorenzo Corneo. Surrounded by the Clouds: A Comprehensive Cloud Reacha-
bility Study. 2021. url: https://labs.ripe.net/author/lorenzo-corneo/
surrounded- by- the- clouds- a- comprehensive- cloud- reachability-

study/ (visited on 08/18/2025).

[18] DMLC. XGBoost: A Scalable Tree Boosting System. Accessed: 2025-09-15.
2025. url: https://github.com/dmlc/xgboost (visited on 09/15/2025).

[19] Elemento-Modular-Cloud. models.json — elemento-pciid-mapper. Accessed on
the GitHub repository of the elemento-pciid-mapper project. 2025. url: https:
//github.com/Elemento-Modular-Cloud/elemento-pciid-mapper/blob/

master/models.json (visited on 09/05/2025).

[20] IONOS Inc. Cloud Price List. 2025. url: https : / / docs . ionos . com /

support/general-information/price-list/ionos-cloud-inc (visited
on 08/22/2025).

[21] IONOS Inc. IONOS Cloud Inc. Price List. Last updated on site 2 months prior
to access, net prices without VAT. 2025. url: https://docs.ionos.com/
support/general-information/price-list/ionos-cloud-inc (visited on
08/31/2025).

[22] Matthew Kowal. Understanding Mutual Information. 2020. url: https://
mkowal2 . github . io / posts / 2020 / 01 / understanding - mi/ (visited on
08/29/2025).

[23] UpCloud Ltd.API Documentation: Pricing. 2025. url: https://developers.
upcloud.com/1.3/4-pricing/#list-prices (visited on 08/21/2025).

[24] Cloud Mercato. Public Cloud Reference. 2025. url: https://pcr.cloud-
mercato.com/ (visited on 08/25/2025).

[25] Cloud Mercato. Public Cloud Reference: Providers. 2025. url: https://pcr.
cloud-mercato.com/providers (visited on 08/25/2025).

[26] Global Disruption of Semiconductor Supply Chains During COVID-19: An
Evaluation of Leading Causal Factors. Vol. Volume 2: Manufacturing Pro-
cesses; Manufacturing Systems. International Manufacturing Science and En-
gineering Conference. June 2022, V002T06A011.

[27] Author Name and Co-Author Name. “Modeling for CPU-Intensive Applica-
tions in Cloud Computing”. In: IEEE Conference Proceedings (2015). Avail-
able at: https://ieeexplore.ieee.org/document/7336138/. doi: 10.1109/HPCC-
CSS-ICESS.2015.128.

https://www.geeksforgeeks.org/machine-learning/understanding-logistic-regression/
https://www.geeksforgeeks.org/machine-learning/understanding-logistic-regression/
https://en.wikipedia.org/wiki/Power_law
https://en.wikipedia.org/wiki/Power_law
https://en.wikipedia.org/wiki/Zipf%27s_law
https://en.wikipedia.org/wiki/Zipf%27s_law
https://labs.ripe.net/author/lorenzo-corneo/surrounded-by-the-clouds-a-comprehensive-cloud-reachability-study/
https://labs.ripe.net/author/lorenzo-corneo/surrounded-by-the-clouds-a-comprehensive-cloud-reachability-study/
https://labs.ripe.net/author/lorenzo-corneo/surrounded-by-the-clouds-a-comprehensive-cloud-reachability-study/
https://github.com/dmlc/xgboost
https://github.com/Elemento-Modular-Cloud/elemento-pciid-mapper/blob/master/models.json
https://github.com/Elemento-Modular-Cloud/elemento-pciid-mapper/blob/master/models.json
https://github.com/Elemento-Modular-Cloud/elemento-pciid-mapper/blob/master/models.json
https://docs.ionos.com/support/general-information/price-list/ionos-cloud-inc
https://docs.ionos.com/support/general-information/price-list/ionos-cloud-inc
https://docs.ionos.com/support/general-information/price-list/ionos-cloud-inc
https://docs.ionos.com/support/general-information/price-list/ionos-cloud-inc
https://mkowal2.github.io/posts/2020/01/understanding-mi/
https://mkowal2.github.io/posts/2020/01/understanding-mi/
https://developers.upcloud.com/1.3/4-pricing/#list-prices
https://developers.upcloud.com/1.3/4-pricing/#list-prices
https://pcr.cloud-mercato.com/
https://pcr.cloud-mercato.com/
https://pcr.cloud-mercato.com/providers
https://pcr.cloud-mercato.com/providers
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.128
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.128

[28] Author Name and Co-Author Name. “Resource Optimization Strategy for
CPU Intensive Applications in Cloud Computing Environment”. In: IEEE
Conference Proceedings (2016). Available at: https://ieeexplore.ieee.org/document/7545907.
doi: 10.1109/CSCloud.2016.29.

[29] Justice Opara-Martins, Reza Sahandi, and Feng Tian. “Critical review of ven-
dor lock-in and its impact on adoption of cloud computing”. In: International
Conference on Information Society (i-Society 2014). 2014, pp. 92–97. doi:
10.1109/i-Society.2014.7009018.

[30] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal
of Machine Learning Research 12 (2011), pp. 2825–2830.

[31] Vagelis Plevris et al. “Investigation of performance metrics in regression anal-
ysis and machine learning-based prediction models”. In: June 2022. doi: 10.
23967/eccomas.2022.155.

[32] Selenium Project. SeleniumHQ: Browser Automation. 2025. url: https://
www.selenium.dev/ (visited on 08/31/2025).

[33] CloudFerro S.A. Virtual Machines (VM) — Pricing Tables, WAW3-1 Cloud.
2025. url: https://cloudferro.com/pricing/pricing-tables/waw3-1-
cloud/virtual-machines-vm/ (visited on 08/31/2025).

[34] Amazon Web Services. Boto3 Documentation: Pricing Client - list price lists.
2025. url: https : / / boto3 . amazonaws . com / v1 / documentation / api /

latest/reference/services/pricing/client/list_price_lists.html

(visited on 08/22/2025).

[35] Abhay Singh. Mastering XGBoost: The Ultimate Guide to Extreme Gradient
Boosting. 2025. url: https://medium.com/@abhaysingh71711/mastering-
xgboost-the-ultimate-guide-to-extreme-gradient-boosting-ac7fa2828047

(visited on 09/22/2025).

[36] Vantage. Amazon EC2 Instance Comparison. 2025. url: https://instances.
vantage.sh/ (visited on 08/25/2025).

[37] VMware.VMware. 2025. url: https://www.vmware.com/ (visited on 08/18/2025).

https://doi.org/10.1109/CSCloud.2016.29
https://doi.org/10.1109/i-Society.2014.7009018
https://doi.org/10.23967/eccomas.2022.155
https://doi.org/10.23967/eccomas.2022.155
https://www.selenium.dev/
https://www.selenium.dev/
https://cloudferro.com/pricing/pricing-tables/waw3-1-cloud/virtual-machines-vm/
https://cloudferro.com/pricing/pricing-tables/waw3-1-cloud/virtual-machines-vm/
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/pricing/client/list_price_lists.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/pricing/client/list_price_lists.html
https://medium.com/@abhaysingh71711/mastering-xgboost-the-ultimate-guide-to-extreme-gradient-boosting-ac7fa2828047
https://medium.com/@abhaysingh71711/mastering-xgboost-the-ultimate-guide-to-extreme-gradient-boosting-ac7fa2828047
https://instances.vantage.sh/
https://instances.vantage.sh/
https://www.vmware.com/

	Introduction
	Brief overview on Elemento
	Vendor lock-in
	Vendor lock-in and VM's pricing

	Contributions

	Background
	VMS in the Cloud
	Cost Factors in the Cloud
	How providers expose prices
	Introduction to Machine Learning

	State of the art
	Cloud Mercato
	Cloud Price
	Vantage

	Methodology
	Data Collection
	Exploratory Data Analysis
	Model Development and Training
	Model Evaluation

	Work development
	Data Collection
	Scraping-based Collection
	API-based Collection

	Data Standardization
	Data Analysis
	Dataset Imputation
	Model Training

	Work evaluation
	Model Evaluation
	Linear Regression
	RBFNN
	Random Forest
	XGBoost

	Conclusion and Future Work
	Conclusion
	Future improvements

	Bibliography

