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Abstract

Mobility data, describing the locations and movements of individuals within a
geographic area, are a key resource for analysing and managing transportation
systems. These data are frequently summarised in the form of origin–destination
(OD) matrices, where each entry represents the number of trips between a specific
origin and a specific destination. While OD-matrices are a valuable tool for mod-
elling travel demand and managing transport networks, they also raise important
privacy concerns, as they may allow the identification of individuals or sensitive
travel patterns when published at high spatial resolution.

In this work, a k-anonymisation algorithm specifically designed for OD-matrices
is presented: the ODkAnon algorithm. Unlike traditional approaches that apply
uniform spatial generalisation to both origin and destination cells, this method
dynamically determines, for each flow that does not meet the k-anonymity threshold,
whether to generalise the origin or the destination. This selective strategy aims
to minimise the loss of spatial precision while ensuring that all flows satisfy the
k-anonymity requirement. ODkAnon algorithm creates homogeneous geographical
areas. This means that the final OD matrix will comprise non-overlapping areas.

The proposed approach is applied to three real-world mobility datasets: GPS
trajectories from the NetMob25 challenge in Paris (France), car-sharing trips
in Turin (Italy), and one year of taxi trips in Porto (Portugal). To assess the
performance of the proposed method, its results are compared with those obtained
from three well-established algorithms in the literature (Mondrian, ATG, and
OIGH), evaluating each approach in terms of both privacy protection and data
utility. ATG is creating overlapping hexagons, while OIGH is homogeneous, but
it is also uniform: it is not creating hexagons of different sizes, but it is giving a
unique size to each hexagon.

Experimental results show that ODkAnon achieves competitive performance
compared to existing methods. OIGH is the fastest, followed by ATG and then
ODkAnon (while Mondrian’s runtime varies by dataset). Unlike ATG, ODkAnon
automatically balances generalisation between origins and destinations without
parameter tuning. In terms of utility, ODkAnon is generally comparable to ATG,
in some cases even better, and consistently superior to OIGH. Mondrian often
provides higher utility, but this comes at the cost of not enforcing hierarchical
consistency or homogeneity in the resulting partitions.

Moreover, using the Paris dataset, the ODkAnon algorithm has also been used
to study and create different OD matrices both for the participants and for the
population. Protecting the population produces a different anonymization. Even
more interesting, when the protection is applied to the population, the participants’



OD matrix loses k-anonymity. The viceversa is also true. Moreover, it is possible
to observe amplified differences when segmenting the population by sex, age and
work. Consider the example of sex (men and women), with the same k thresholds.
The two segments have a similar total number of trips. When protecting the
participants, it is shown that protecting men is more challenging, as it requires
very coarse hexagons, while for women the resulting hexagons remain much finer.
Furthermore, when applying protection to the population, the difference becomes
even more pronounced.
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Chapter 1

Introduction

1.1 Context and Motivation
Mobility data have become increasingly accessible due to the evolution of data
collection processes and the diversification of their sources. While in the past
they were mainly obtained through ground surveys, the widespread adoption of
GPS devices and mobile phones has enabled the collection of massive volumes of
data. Among the most notable sources are Call Detail Records (CDRs) and passive
Network Signalization Data (NSD), both generated from mobile phone usage.

Human mobility refers to the study of how people move within cities, for instance
by characterizing patterns such as commuting to work, returning home, or using
public transportation. A thorough understanding of these patterns is fundamental
in several domains, including epidemic control [1, 2], urban planning [3, 4, 5], traffic
forecasting systems [6, 7, 8], as well as mobile and network applications [9, 10, 11].

The analysis of trajectory data has therefore emerged as a significant research
field, given its wide range of practical applications [12]. Processing mobility
data can improve people’s daily lives, by supporting navigation apps and route
recommendations, while also providing useful insights for decision-making in both
the public and private sectors. The widespread use of personal devices such as
smartphones and wearables, along with modern navigation systems, has allowed
the collection and analysis of these data with remarkable precision. Combined
with recent technological improvements, this has led to an unprecedented growth
in their use [13].

Generally speaking, trajectories are sequences of timestamped locations (such
as GPS coordinates). These, at first sight, may appear innocuous to users’ privacy,
but trajectories can reveal exact home locations and even accurate behavioral
patterns [14]. They readily tell you when and for how long a particular individual
does what. Exploiting this, a malicious person can infer circumstances and trends
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that affect sensitive aspects of an individual’s life, such as health status, religious
beliefs, social relationships, or sexual preferences [13]. The uniqueness of human
traces implies that, with little background knowledge about data subjects (such
as their place of residence or work), adversaries can attack seemingly protected
data with ease [15][16]. In this context, research shows that knowing only four
spatio-temporal points at low resolution is enough to uniquely identify 95% of
the individuals in a given database of large scale [17]. Furthermore, we can
recover an original, seemingly sanitized trajectory within an obfuscated area using
auxiliary public information, like road maps, speed limits, or simple spatio-temporal
correlation models [18][19]. All this ultimately leads to poor privacy. Even though
many solutions have been proposed in the literature, most suffer from limitations:
some are vulnerable to relatively simple attacks, while others significantly reduce
data utility by discarding valuable information or even producing unrealistic
trajectories. Moreover, many applications of trajectory data require repeated
computations, as they are often used to continuously monitor dynamic conditions
such as traffic [13]. However, regularly publishing updated versions of a database
in a privacy-preserving way makes the challenge even harder. The main reason is
that each publication leaks some information about the individuals contained in
the database, and it is not simple to ensure that combinations of published private
data will not compromise privacy at any moment.

The simplest indicator we can extract from a set of trajectories is an Ori-
gin–Destination (OD)-matrix, describing the flows between origins o and destina-
tions d. Although they represent a dramatic simplification compared to trajectories,
they are still a crucial indicator of mobility. Like mobility data, OD-matrices may
have small and isolated flows, and origins and destinations can be among sets of up
to thousands of areas. This makes OD-matrices harder to anonymise than regular
relational data [20].

While data analysis can generate significant economic and societal benefits,
tensions regarding privacy risks are growing12. Protecting data subjects and
reducing possible harm inflicted upon them hence gains importance. Consequently,
legal frameworks in the European Union and other regions explicitly limit personal
data collection, processing, and sharing. It is clear that mobility data contain
potentially personal information and so it is crucial to handle it with a special care.

1Steve Lohr, Just Collect Less Data, Period, The New York Times, July 15, 2020. Available
at: https://www.nytimes.com/2020/07/15/technology/just-collect-less-data-period.
html, accessed on October 11, 2025

2Nick Srnicek, We need to nationalise Google, Facebook and Amazon. Here’s why, The
Guardian, March 14, 2018. Available at: https://www.theguardian.com/technology/2018/
mar/14/tech-big-data-capitalism-give-wealth-back-to-people, accessed on October 11,
2025
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The GDPR is defining personal information as any piece of information which can
be linked to an particular individual. Therefore, ensuring strong privacy protection
when analysing location trajectories is thus not only a technical challenge but also
a legal obligation.

1.2 Contribution
In this work, a new methodology to make OD-matrices anonymous is proposed:
the ODkAnon algorithm. To this end, we used the widely spread criterion of
k-anonimity [21]. We propose a novel k-anonymisation algorithm tailored for
large-scale OD-matrices using the H3 hexagonal spatial indexing system. Unlike
traditional uniform spatial generalisation techniques, this method applies an adap-
tive approach that dynamically decides, for each flow not meeting the k-anonymity
threshold, whether to generalise the origin or the destination hexagon. To effi-
ciently handle very large and sparse OD-matrices, the algorithm leverages sparse
matrix representations and precomputed hierarchical relationships within the H3
hexagonal index trees. This allows for rapid identification of sibling hexagons
and their parents to speed up the generalisation process and balancing the matrix
dimensions dynamically to avoid excessive loss of spatial resolution on either origin
or destination side. The OD matrices obtained will be compared by several tradi-
tional methods of anonymization to reach k-anonymity by generalizing geographical
areas. A k-anonymous dataset is a dataset where every item (in this case, a trip)
cannot be distinguished from at least k−1 other ones. These include generalization
over a hierarchy (ATG and OIGH) and the classical Mondrian. Moreover, this
novel approach is benchmarked against three well-known generalisation algorithms,
evaluating both individual-level and population-level privacy through weighted
mobility data. This comprehensive analysis demonstrates how significant differences
may exist when considering population-protecting for OD-matrices anonymization,
rather than survey participant-protecting ones. These differences can even be
amplified across socio-demographic segments.

All the obtained results are reproducible using our open-source code available
in a GitHub repository.3

1.3 Research Questions
In order to guide the development and evaluation of this work, we have formulated
a set of research questions. These questions focus on the challenges of spatial

3https://github.com/SmartData-Polito/ODkAnon, accessed on October 11, 2025.
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anonymization in mobility data and on the potential of the proposed approach to
address them. They serve both as a framework for the design of the methodology
and as a reference for interpreting the results.

Research Question 1 How can the H3 hexagonal spatial indexing system be
used to partition geographic areas in a different way than the traditional rectangular
approaches, such as the Mondrian algorithm?

Traditional spatial partitioning techniques, such as those based on rectangular
grids, can introduce distortions and inefficiencies, creating irregular geographic
areas. In several approaches, such as Mondrian, there is not even a hierarchy
structure but just a division of the space rectangles. Such rectangles can be both
very large and very small: if they are very large the approximation can be too wide.
The H3 hexagonal grid can better shape geographic areas, providing more accuracy
and consistent spatial aggregations for mobility data.

Research Question 2 Can OD-matrices be generalised adaptively by applying
different levels of spatial aggregation to origins and destinations, in order to achieve
k-anonymity while minimising information loss?

Standard generalisation approaches often apply the same aggregation level to
both origins and destinations, potentially leading to unnecessary loss of spatial detail.
An adaptive strategy that determines independently which dimension to generalise
may better preserve data utility while still meeting privacy requirements. The novel
algorithm proposed creates hexagons of varying sizes in a strictly homogeneous
manner, avoiding overlaps and ensuring a more reliable representation of mobility
data.

Research Question 3 How does the proposed approach perform in terms of
privacy protection when evaluated both at the individual level and at the population
level using weighted mobility data?

Privacy risks can be different for individual trajectories and for aggregated
population movements. Evaluating both perspectives provides a more comprehen-
sive understanding of the privacy–utility trade-off. The algorithm highlights how
protecting one or the other involves substantially different challenges, leading to
promising insights. Furthermore, segmenting the population into different groups
or ranges provides an even stronger representation of what it means to safeguard
certain subsets of the population over others.

4
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1.4 Thesis Structure
The remainder of this thesis is structured as follows. Section 2 outlines the
legal framework related to trajectory anonymisation, introduces different types of
trajectories, discusses relevant privacy notions, and reviews related work on data
anonymisation. Section 3 presents the details of the novel methodology proposed.
Section 4 describes the datasets used, benchmarks the algorithm against well-known
approaches, and introduces the indicators employed to compare anonymisation
methods. Section 5 reports the final results, while Section 6 concludes the thesis.
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Chapter 2

Related work

2.1 Legal framework
Privacy is a fundamental human right. As stated in Article 12 of the Universal
Declaration of Human Rights:

No one shall be subjected to arbitrary interference with his privacy, family,
home or correspondence, nor to attacks upon his honour and reputation.
Everyone has the right to the protection of the law against such interference
or attacks.1

However, there has always been an asymmetry between the benefits of computerized
databases and the rights of individual data subjects [22]. In an effort to recover such
an asymmetry, the Code of Fair Information practices was published as a central
part of the report of the Committee of the Secretary of Health, Education, and
Welfare, Records, Computers, and the Rights to Citizens (USA) [23]. It enunciates
five fundamental principles to properly keep records which are:

• the prohibition of secret databases,

• data subjects must be allowed to inspect their records and how are they used,

• the data obtained for one purpose may not be used for other purposes without
the consent of the data subject,

• the data subject must be able to correct or amend their records,

• the data must be kept reliable and secure.

1Source: https://www.un.org/en/about-us/universal-declaration-of-human-rights,
accessed on October 11, 2025
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According to the European data protection law, the processing of personal data
is legitimate if:

• the individual whose personal data are being processed (the data subject) has
unambiguously given consent,

• or processing is necessary for the performance of a contract, for compliance
with a legal obligation, for protecting vital interests of the data subject, for
the performance of a task carried out in the public interest,

• or for the purposes of legitimate interests pursued by the data processing
entities except when such interests are overridden by the fundamental rights
and freedoms of the data subject.

In [24], based on the legal framework, authors defined and explained the following
eight privacy by design strategies: Minimise, Hide, Separate, Aggregate, Inform,
Control, Enforce and Demonstrate. These strategies are saying that

• the amount of personal information processed should be minimal,

• the data should be hidden from plain view,

• the processing should be done in distributed fashion whenever possible,

• personal information should be processed at the highest level of aggregation
with the least possible detail in which it is still useful,

• data subjects should be informed whenever personal information is processed,

• a privacy policy compatible with legal requirements should be enforced,

• and the data controller should be able to demonstrate compliance with the
privacy policy and legal requirements.

It is crucial at this point to define the two main kind of data defined by the
GDPR. The Article 4(1) states that:

personal data means any information relating to an identified or iden-
tifiable natural person (‘data subject’); an identifiable natural person is
one who can be identified, directly or indirectly, in particular by reference
to an identifier such as a name, an identification number, location data,
an online identifier or to one or more factors specific to the physical,
physiological, genetic, mental, economic, cultural or social identity of that
natural person.2"

2Source: https: // gdpr-info. eu/ art-4-gdpr/ , accessed on October 11, 2025
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It is possible to define non-personal data as data other than personal data as
defined in Article 4(1) of the GDPR. While personal data is protected by the
GDPR, non-personal data are not.

The principals of data protection defined by the GDPR do not apply to anony-
mous information. Anonymity refers to a state where a data subject can no longer
be identified or singled out from the data. In other words, during an anonymization
process the data must be irreversibly processed in such a way that it can no longer
be used to identify a natural person by using “all the means likely reasonably
to be used” by any party. On the other hand pseudonymisation means the
processing of personal data in such a manner that the personal data can no longer
be attributed to a specific data subject without the use of additional information,
provided that such additional information is kept separately and is subject to
technical and organisational measures to ensure that the personal data are not
attributed to an identified or identifiable natural person (Article 4(5)).3 Unlike data
that is pseudonymized, anonymized data guarantees that the individual person
cannot be identified when all available additional information on the subject is
considered.

However, if the case of a re-identification attack is possible, this goes under the
GDPR. To determine whether a natural person is identifiable, account should be
taken of all the means reasonably likely to be used, such as singling out, either
by the controller or by another person to identify the natural person directly or
indirectly. To ascertain whether means are reasonably likely to be used to identify
the natural person, account should be taken of all objective factors, such as the costs
of and the amount of time required for identification, taking into consideration the
available technology at the time of the processing and technological developments
(Recital 26).4

In case of data processing for statistical purposes (e.g. average number of cars
in an area, percentage of vehicles on a given street, etc.), the output is called
aggregate data (Recital 162)5. Again, if those data do not permit re-identification,
they are not subject to GDPR. Moreover if aggregate and/or anonymous data are
subject to re-identification and they disclose sensitive information about racial or
ethnic origin, political opinions, religious or philosophical beliefs, they are subject
to more strict measures (Article 9).6

Considering the nature of respondent-created spatial information and the possi-
bility to identify an individual according to the GDPR, [25] identifies three main

3Source: https://gdpr-info.eu/art-4-gdpr/, accessed on October 11, 2025
4Source: https://gdpr-info.eu/recitals/no-26/, accessed on October 11, 2025
5Source: https://gdpr-info.eu/recitals/no-162/, accessed on October 11, 2025
6Source: https://gdpr-info.eu/art-9-gdpr/, accessed on October 11, 2025
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types of Public Participation Geographic Information System (PPGIS) spatial
data, namely primary personal spatial data, group-level spatial data, thematic
spatial data. These classes relate to different types of mapping tasks differing on
whether the respondent may be identified from the spatial data itself or from the
spatial data in conjunction with other personal information. These data types
and recommendations for their treatment during an anonymization process are
introduced in Figure 2.1.

Table 2.1: PPGIS data and potential personal information (before anonymization).

Data type GIS entity
type

Likelihood of individual
identification

Recommendations for data
anonymization

1. Primary
personal spatial
data Residential
location(s), second
homes

Point Very likely: In areas with
low residential density, an in-
dividual or the individual’s
household could be identi-
fied from non-anonymized
point data.
Likely: Increased risk of
identification when spatial
data is linked to other
individual-level variables.
Unlikely: In areas with
high residential density, an
individual may be recog-
nized on the level of street
address.

Always recommended. In-
creased need for anonymization
when the residential location is
situated in rural areas or ur-
ban areas with low population
density, or when the amount of
other individual-level variables
increases (gender, age, occupa-
tion, etc.).

2. Group-level
spatial data Lo-
cations identifiable
to a limited group
of individuals (e.g.,
place of work,
university, child’s
kindergarten)

Point, poly-
line

Unlikely: If data is pre-
sented as such.
Likely: Increased risk of
identification when spatial
data is linked to other
individual-level variables.

Recommended when spa-
tial data is linked to other
individual-level variables.

3. Thematic
spatial data Lo-
cations with no di-
rect connection to
the individual (e.g.,
environmental per-
ceptions, places re-
lated to behavior
in public or private
spaces visited by
many people such
as shopping centers,
parks, etc.)

Point, poly-
line, polygon

Very unlikely: If data is
presented as such.
Likely: Increased risk of
identification when spatial
data is connected to other
individual-level variables
that can be used to infer
individual behavior patterns
(e.g., activity spaces).

Anonymization is rarely
needed. Recommended in
specific cases when spatial
data is connected to other
individual-level variables and
patterns derived from thematic
spatial data that can be used
to identify the individual.
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2.2 Risk of re-identification
The protection of mobility data is challenging because location traces are inherently
rich in information and often unique to each individual. Even when explicit
identifiers (such as names or phone numbers) are removed, the spatio-temporal
patterns describing where and when a person moves can still make them identifiable.
At an abstract level, this section focuses on the concept of re-identification: the
risk that anonymized data can be linked back to specific individuals. When this
idea is translated into the context of geographic locations, it means that a person’s
home, workplace, or other frequent places can function as quasi-identifiers, enabling
adversaries to match them with external information.

The main goal of trajectory privacy is to protect against risks and threats when
unauthorized actors get access to the data. An adversary can gather sensitive
information of individuals within or across the datasets. It is possible to classify
existing attack models on trajectories into two categories: linkage and probabilistic.
Linkage attack models refer to which sensitive data is inferred, and are categorized
depending on such information, while the probabilistic attack models quantify how
much knowledge is revealed by accessing the dataset [26].

To show the privacy risks in human traces, the following paragraphs expose
some possible attacks and threats of the literature. The distinction of the models
and their explaination correspond to the classification of [26] with the extension of
the reconstruction and prediction attack of [13].

2.2.1 Linkage Models
Depending on the attack target, linkage models are categorized into record linkage
(i.e., inferring individual identity), attribute linkage (i.e., inferring personal profile
such as health condition), table linkage (i.e., inferring personal data through the
presence of a known individual in the dataset), and group linkage (i.e., inferring
social relationships).

Record Linkage An adversary with some background knowledge (e.g., exposed
locations, origin and destination locations, and social relationships) can attempt
to identify the record of a known victim (i.e., run a re-identification attack). Re-
identification attacks are the simplest form of this type [27]. They utilize auxiliary
information, i.e., information exposed through other means and thus available to the
adversary. In particular, personal-context-linking attacks use known information
about a victim (e.g., they have been to a coffee shop) to discover their trajectory
in the database. While these attacks are based on trajectory microdata (i.e., raw
trajectory locations), aggregated trajectory data (e.g., the number of users within
an area) also poses privacy issues. In [28], authors exploit the uniqueness and
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regularity of human mobility (e.g., night and daytime mobility behaviors) to recover
individual trajectories from aggregated mobility data without any prior knowledge.

Attribute Linkage If sensitive values frequently occur within similar trajectories,
an adversary can uncover sensitive information even though cannot unequivocally
isolate single trajectories. Despite value diversity can be ensured, if distinct
sensitive values sharing a semantic similarity occur frequently within trajectories,
an adversary can still cause a privacy breach (i.e., perform an attack based on
similarity).

In the mobility domain, this often involves points of interest (POIs), such as
shops, workplaces, or recreational facilities. Revealing the POIs can cause a privacy
breach as such data may be sensitive (e.g., frequent visits to a hospital suggest
potential diseases). Examples of POIs are home, work, religion or political parties’
locations. In [29], given a dataset of location check-ins, authors use spatiotemporal
knowledge and the regularity of human mobility to classify demographics attributes
such as gender, age, education, and marital status based on the individual’s POIs
extracted from check-in dataset. Another example is a Reddit user who was able
to identify Muslim taxi drivers in New York City by integrating anonymized taxi
trips to the daily praying time. By uncovering which taxi drivers are inactive at
such time, it is possible to infer sensitive information such as religion7.

Many attacks belongs to the family of attribute linkage. Reconstruction attacks
aim at rebuilding trajectories in the database. For example, [18] introduces a
reconstruction algorithm that can construct trajectories closer to the original data
than the perturbed one. Similarly, filtering attacks [30] also aim at reducing noise
added. Finally, the possibility of predicting a user’s locations (prediction attacks)
is also a threat, since attackers can discover the user’s destination, probably even
before they arrive.

Table Linkage The inference of an individual’s presence in a private dataset
can also leak sensitive information. For instance, knowing that a victim is part
of a dataset of hospital patients implies that she suffers from some disease [31].
Learning merely the presence or absence of an individual in a trajectory database
can be a direct privacy threat. Although techniques can reduce the attack success
ratio, it may yield a significant utility loss.

Group Linkage The analysis of trajectory data can leak social relationships
between individuals in the published dataset. In [32], authors investigate the

7Source: https://mashable.com/archive/redditor-muslim-cab-drivers, accessed on Oc-
tober 11, 2025
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influence of social relationships on human mobility, showing that social relationships
can explain about 10% to 30% of all human movement. In other words, individuals
tend to group in communities (e.g., family and colleagues) where community
members share some traits with other members stronger than with non-members.

2.2.2 Probabilistic Models
A probabilistic attack quantifies how much information an adversary can gather
by accessing the dataset rather than focusing on exactly what records, attributes,
or tables the adversary can link to a target victim [33]. Intuitively, access to a
trajectory dataset should not reveal substantially more information than what
is already known by the adversary. In this sense, probabilistic attacks can be
seen as a generalization of attribute linkage [34]: while attribute linkage aims
at uncovering a specific sensitive attribute (e.g., whether a person has visited
a hospital), probabilistic attacks aim at reducing the overall uncertainty of the
adversary about an individual, even without identifying a particular attribute.

2.3 Protection of locations
Trajectories correspond to a path or trace generated or drawn by a moving object,
usually referred to as an individual or user [13]. Protecting a trajectory can involve
protecting data at different levels of granularity:

• protection of a single location,

• protection of OD-matrices,

• protection of trajectories.

2.3.1 Protection of a single location
Several studies focus on the anonymization of individual points. This scenario
may involve considering each point as indipendent from the others, segmenting a
trajectory as if its points are not related each other, or considering them as Points
of Interests (POIs), a point which also has a semantic meaning (e.g. “coffee shop”
or “work”). In the literature different algorithms have been proposed for this task.
Even if created for a different purpose, one of this is the Mondrian algorithm [35].
Another possibility is given by [36]: this study is defining what a stay point is and
what an individual interesting location is to protect the areas which are more dense
in terms of point. This work will better explain those studies later in 2.5.1.
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2.3.2 Protection of OD-matrices
A trajectory can also be represented in a simplified form as a pair of points
indicating the origin and destination of a trip. In particular, an OD-matrix can be
defined as a matrix with origins On on the vertical axis, and destinations Dm on the
horizontal one, or vice versa, where n is the number of origins and m is the number
of destinations. Each origin and destination can represent either a single precise
point or a larger area. The entries of the matrix vn,m are the values associated
to the couple (On, Dm). This value represent the number of trips from On to Dm.
Even if a dataset does not explicitly contain an OD-matrix, it is straightforward to
derive one from a collection of trajectories. An OD-matrix essentially condenses a
trajectory into just its start and end points, representing each trip as a movement
from an origin to a destination. For this reason, a two-feature dataset with origin
and destination is enough to create and work with an OD-matrix, along with a
measure such as the number of trips between them.

OD =

D1 D2 · · · Dm

O1 v1,1 v1,2 · · · v1,m

O2 v2,1 v2,2 · · · v2,m
... ... ... . . . ...

On vn,1 vn,2 · · · vn,m

Even if this representation is a dramatic simplification compared to trajectories,
they remain a crucial tool for mobility analysis [20]. By condensing trips into their
essential origin–destination pairs, they provide exactly the information needed to
estimate travel demand, plan transportation infrastructures, manage congestion,
and assess socio-economic interactions between areas. They also serve as a practical
compromise between data utility and privacy, since they preserve the key structure
of mobility flows without exposing detailed individual trajectories .

In the literature, several studies are addressing the problem of the anonymization
of OD-matrices from different perspectives. Some algorithms are proposed by [37]
and [20]. The former is proposing a different version of the classic k-anonymity
assuming to know which is the maximum knowledge of an adversary. This new
privacy model has been called km-anonymization. The latter is proposing an
algorithm for protecting OD-matrices using the concept of k-anonymity. Another
possibility is to apply the Mondrian algorithm, extending it protect multiple
attributes at once. These and other relevant works will be discussed in more detail
later in 2.5.1 and 2.5.2.

2.3.3 Protection of trajectories
The definitions of trajectories used in this section follow those provided by [13].

13



Related work

Different types of trajectories exist. The most basic form is the raw trajectory,
defined as an ordered sequence of spatio-temporal points T =< p1, . . . , pm > where
|T | .= m denotes the length of T and pi = (xi, yi, ti) represent the position (xi, yi)
at timestamp ti. Moreover, trajectories respect the temporal order (ti+1 > ti),
ensuring that movements never go back in time, and that no one is in two different
locations simultaneously.

A more expressive representation is the semantic trajectory, where each spatio-
temporal point contains additional information such as a name or description (e.g.,
“coffee shop” or “work”), or further attributes like opening hours and visitor counts.
As discussed in 2.3.1, these locations are referred to as Points of Interest (POIs).
In addition to this, it is possible to have even much more complex trajectories
called multiple aspect trajectories. They can contain any possible type of recordable
information, like weather variations, transportation mode, or the current heart rate
or emotions of individuals [38]. To reduce complexity, simplified trajectories are
sometimes used: these omit timestamps and focus on the order of locations, such
as T = (xi, yi), . . . , (xm, ym).

Once the different types of trajectories have been defined, it is time to understand
how to handle a set of them. Trajectory databases consist of one or multiple
trajectories from individuals, usually over a shared region. They can be represented
them as collections of rows, where each row contains the data of a single individual:

D =


T1 : p

(1)
1 p

(1)
2 · · · p(1)

m1

T2 : p
(2)
1 p

(2)
2 · · · p(2)

m2... ... ... . . . ...
Tr : p

(r)
1 p

(r)
2 · · · p(r)

mr

where Ti represents a trajectory belonging to user i. The length of each trajectory
is given by mi and depends by the single user. There are cases in which the same
user can contribute multiple trajectories to the database. In this case, i is just a
label of the trajectory and does not necessarily relate to a user.

As for trajectories, there are differences in structure between such databases.
Some consist only of trajectories of equal length, and others assume that trajectories
are periodically recorded (i.e., every trajectory has a spatio-temporal point for
every time interval defined). Further types include those with irregular recordings,
such as with points only included when the user is in a relevant location. A
particular scenario in trajectory publishing is the data-stream scenario, where a
flow of information is received and published periodically. Therefore, a streaming
database can be seen as a sequence D = {S1, . . . , St, . . . , Si}, where each update
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Si represents the information corresponding to time i:

D =



S1 S2 · · · Smj

T1 : p
(1)
1 p

(1)
2 · · · p(1)

m1

T2 : p
(2)
1 p

(2)
2 · · · p(2)

m2... ... ... . . . ...
Tr : p

(r)
1 p

(r)
2 · · · p(r)

mr

The database at time t is denoted Dt = {S1, . . . , St} and called a stream prefix.
Since some databases consist of non-periodically recorded trajectories, gaps in this
representation are possible. For this reason, Ti may not have a location for time t,
and remain empty in row i of St.

The structure of trajectory data and databases makes their protection partic-
ularly challenging. The high sparsity and uniqueness of trajectories can easily
lead to re-identification [13]. In addition, the semantic information associated
with trajectories introduces further risks, as it may reveal personal habits and
individual preferences. High sparsity refers to the fact that individuals are scattered
across a vast geographical space. This makes it difficult to form sufficiently large
anonymity sets without excessive generalization. Merging trajectories often requires
aggregating them into very large geographical areas, leading to a significant loss of
data utility. Moreover, a few anchor points, such as home and work locations, often
form a unique fingerprint that can re-identify an individual in a large dataset. This
uniqueness prevents individuals from "hiding in the crowd," as no natural crowd of
identical trajectories exists.

In this scenario several algorithms have been proposed. In 2.5.3 the most
significative will be discussed, including the grid-based anonymization, dummy
trajectories (both using the Classic Random Scheme and Rotation Pattern Scheme),
the Mix Zones, K-δ anonymity (NWA) and the DPTD.

2.4 Privacy notions
It is possible to categorize privacy models for the release of anonymized trajectory
data as formal and ad-hoc models [26]. Formal models are independent from
the data type, and extend the existing principles (e.g., k-anonymity, l-diversity,
t-closeness, and differential privacy) to trajectories. Ad-hoc models are specific to
spatiotemporal data and mobility features (e.g., road network constraints). This
last category will be presented later in 2.5.3.

Attributes of a dataset can be classified as Identifiers, QuasiIdentifiers, Confiden-
tial, and Non-confidential. The easiest step to have anonymization is believed to be
only removing all the Identifiers, that is, attributes that with no doubt can identify
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an individual (such as Social Security Number, Passport, Name-surname). However,
exploiting unique combinations of attribute values can reidentify unambiguously an
individual in a database even without explicit identifiers. Those attributes are called
quasi-identifiers (QIs). Thus, since QIs can be used to relate anonymized records
to external non-anonymous databases, this may lead to re-identification. And by
reidentifying an individual in a database his Confidential (sensitive) attributes
may be revealed (e.g., Salary, Medical conditions, etc.) Therefore, anonymization
techniques must deal also with QIs.

The two main models for privacy protection, from which many others have been
developed, are k-anonymity [21] and ϵ-differential privacy [22].

2.4.1 K-anonymity
A dataset is k-anonymous if each record is indistinguishable from at least other
k − 1 records within the dataset, when considering the values of its QIs. This
guarantees that the individuals cannot be re-identified by linking attacks with
probability less than 1

k
.

Name Age ZIP code Disease
Marco 34 20100 Diabetes
Luca 34 20100 Cancer
Anna 42 00100 Flu
Paolo 42 00100 Flu

Table 2.2: Example of a 2-anonymous table.

Consider the example shown in Table 2.2. Names are present to better clarify
the rows we are discussing, but they should, of course, be removed. The table
satisfies 2-anonymity because there are two entries for each group: one composed
by Marco and Luca, the other is composed by Anna and Paolo (the age and the
ZIP code are the equal respectively). This “group” is called Equivalence Class
(EQ) and represents the set of entries indistinguishable each other. Indeed each
record in the EQ is indistinguishable from at least k-1 records (the other record).
This means that Marco and Luca are indistinguishable and the same for Anna and
Paolo.

l-diversity

However, when the sensitive attributes on a group of k-anonymous records, have
low variablity (e.g., when they are all equal), there is no need of reidentification to
disclose the value of the sensitive attribute of a record. This remark was done in
[39], who proposed the model of l-diversity for solving this issue. A k-anonymous
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data set is said to be l-diverse if, for each group of records sharing quasi-identifier
values, there are at least well-represented values for the sensitive attribute.

Imagine that some anonymization has been done on Table 2.2 generating Table
2.3. Considering to know that either the age or the ZIP code of one of the two
individuals in the third or fourth entry, the attacker can find out that his victim
has the flu, no matter understanding which is the correct entry of the victim. This
happens because there is low (in this case zero) variability in the QIs.

Age ZIP code Disease
30-40 201xx Diabetes
30-40 201xx Cancer
40-50 001xx Flu
40-50 001xx Flu

Table 2.3: Example showing that even if k-anonymous, a table can still leak
information.

On the other hand, considering the Table 2.4 the problem do not occur anymore:
even if the attacker know to which group the patient belong to, he cannot deduce
with certainty the disease because there are at least 2 different values. This means
that the Table 2.4 is 2-diverse for the definition of distinct l-diversity.

Age ZIP code Disease
30-40 201xx Diabetes
30-40 201xx Cancer
40-50 001xx Cancer
40-50 001xx Flu

Table 2.4: Example of a l-diverse table.

t-closeness

Later, in [40] it was shown that the model of l-diversity does not prevent attribute
disclosure when the overall distribution of the sensitive attribute is skewed. Hence,
they proposed the t-closeness model. A k-anonymous data set is said to have
t-closeness if, for each group of records sharing quasi-identifier values, the distance
between the distribution of each sensitive attribute within the group and the
distribution of the attribute in the whole data set is no more than a threshold t.

Consider the Table 2.5. It contains one single individual with HIV and all the
others with Flu. Even if multiple values exist for the sensitive attribute, an attacker
may infer information based on the overall dataset distribution. Even though the
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first group has l = 2 (HIV and Flu), HIV is rare in the general population. If an
attacker knows a person belongs to the first group, they can assume with 33%
probability (more than the average) that the victim has HIV.

Age ZIP code Disease
30-40 201xx HIV
30-40 201xx Flue
30-40 201xx Flue
40-50 001xx Flue
40-50 001xx Flue
40-50 001xx Flue

Table 2.5: Example of a table with a skewed sensitive distribution.

2.4.2 Differential privacy
Imagine a database with information about people. Differential privacy ensures
that whether any single individual’s data is included in the database or not, the
results of any analysis will be almost identical. This means an attacker can’t
learn much about any specific person by looking at the analysis results. It can
be considered as adding carefully calibrated "noise" to the data or query results.
This noise is random enough to protect individuals but small enough that overall
patterns and statistics remain accurate.

The following definitions of this section are provided by [41].
Given a randomized algorithm A, the algorithm A satisfies ϵ-differential privacy

if for two neighboring datasets D and D’, and all the possible outputs O (O ∈
Range (A)), Range (A) represents the output range of A:

Pr[A(D) = O] ≤ eϵ × Pr[A(D′) = O] (2.1)
where the Pr[·] denotes the probability of a user’s privacy leakage. This means that
any neighboring datasets D and D’ that have the same data structure and only
have one record difference between them. The parameter ϵ is the private budget
that controls the degree of privacy protection. A smaller ϵ corresponds to stronger
privacy protection, and vice versa.

For a query function f : D −→ Rd and any neughboring datasets D and D’, the
global sensitivity of the function f is:

∆f = max
D,D′
||f(D)− f(D′)||p (2.2)

where R is the real number field mapped by dataset D, d denotes the query
dimension of function f, and p is used to measure the norm distance of ∆f , and
generally, p = 1.
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Let f : D −→ Rd denote a query function over a dataset D, then a random
algorithm A satisfies ϵ-differential private if its output is

A(D) = f(D)− Lap(∆f/ϵ) (2.3)

where ∆f is the global sensitivity of the function, Lap(∆f/ϵ) is a random variable
sampled from the Laplace distribution, and the density function of the Laplace
distribution is as follows:

p(x) = ϵ

2∆f
e−|x|ϵ/∆f (2.4)

The Laplace distribution has a mean of 0 and 2(∆f/ϵ) variance. The amount of
noise is proportional to the f and inversely proportional to the private budget ϵ;
that is, if f is fixed, the smaller the ϵ, the more the noise injected and the higher
the degree of privacy, and vice versa.

Differential privacy has two essential properties: sequential composition and
parallel composition. Sequential composition prescribes that if a sequence of
computations is performed on the same data, each part provides differential privacy
independently, then the privacy guarantee of the entire sequence is accumulated.
Parallel composition stipulates that if a sequence of computations is carried out on
disjoint subsets of data, the entire sequence provides the worst privacy guarantee.

Level of granularity

When applying Differential Privacy (DP), it is crucial to define precisely what
information is being protected. This depends on the concept of neighboring
databases considered. For this reason, different adaptations of the concept of
neighborhood have been suggested in the literature.

In trajectory data the concept of granularity is particularly relevant. The
neighborhood definition directly impacts the privacy guarantee offered. [13] explore
the most common granularity notions. In the following paragraphs a full explanation
is given.

User-level privacy Consider two databases D and D’, they are user-level neigh-
boring if they differ only in the data of a single user. For example, if each user
contributes a single trajectory, then two databases D and D’ differ when one trajec-
tory is removed, added, or replaced. When users contribute multiple trajectories,
the definition extends to all the trajectories of that user.

Event-level privacy This notion aims to hide the presence or absence of a single
event in a user’s data. Two streaming databases D and D’ are event-neighboring
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if they differ by exactly one spatio-temporal point. In practice, changing a single
point of a trajectory makes the two databases event-neighbors.

D =



S1 S2 · · · Sm

T1 : p
(1)
1 p

(1)
2 · · · p(1)

m

T2 : p
(2)
1 p(2)

2 · · · p(2)
m

... ... ... . . . ...
Tr : p

(r)
1 p

(r)
2 · · · p(r)

m

, D′ =



S1 S2 · · · Sm

T1 : p
(1)
1 p

(1)
2 · · · p(1)

m

T2 : p
(2)
1 p̂(2)

2 · · · p(2)
m

... ... ... . . . ...
Tr : p

(r)
1 p

(r)
2 · · · p(r)

m

The guarantee this notion gives is that each point in the database remains
inaccessible to an attacker. However, this notion has some drawbacks.

First, it still allows risks of identity disclosure. Event-level privacy guarantees
that if the attacker knows a single spatio-temporal point of a single trajectory, the
probability of re-identification is bounded by ϵ. However if an adversary knows
r > 1 points of a trajectory, the protection decreases to rϵ [42]. Since real-world
trajectories often contain hundreds of points, the re-identification risk remains high.
Second, it does not fully prevent attribute disclosure. For example, if a user visits
a hospital multiple times, the fact “visited a hospital” is not hidden. Finally, it is
vulnerable to correlation attacks.

w-event privacy This notion can be seen as the one that makes points of the
database over w consecutive timestamps undetectable. This definition has been
suggested by [43].

This definition protects data where sensitive information is disclosed from a
sequence of events of length w. It not only protects the locations visited by a
single user over w consecutive timestamps but can also protect those of different
users. In terms of privacy, for values of w close to 1, w-event privacy approximates
to event-level privacy, while for large values, it converges to user-level privacy.
Moreover, this notion protects more information than event-level privacy while
allowing less noise addition than user-level, even though some of its deficiencies
still exist.

The notion still leaks attributes when these cannot be protected by the same w-
window. For example, assume user u1 in Figure 2.1 (where w = 3) is a compulsive
gambler and visits the casino (red dot) multiple times a day. The sensitive
information that u1 has been at the casino is not protected as the red dots cannot
fit into a unique w-window. The user’s identity is still unprotected if the attacker’s
knowledge exceeds the window.

Given that consecutive spatial points are usually more correlated, this notion is
better than event-level privacy against correlation attacks. However, the assumption
of w-event privacy that trajectories are periodically recorded, may overestimate
the number of consecutive protected locations. For instance, in Figure 2.1, where
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Figure 2.1: An example of a non-periodically recorded streaming database [13],
colored dots represent different locations. The rounded boxes represent protection
scopes of event-level (red), w-event (blue), and l-trajectory privacy (green), for w
= l = 3.

non-periodically recorded trajectories are present, the 3-window cannot protect
more than two locations of a single user.

l-trajectory privacy In order to overcome the problem of users’ trajectories
which are not periodically recorded, [44] introduces the concept of l-trajectory
privacy.

The goal of the l-trajectory privacy notion is to protect each sequence of l points
from the same user independently of the number of timestamps they span. This
means that, while in the w-event privacy a fixed rectangle was protecting the users
(a sort of time window), the l-trajectory is protecting l points independently from
how far their are in time. Varying l allows us to move closer to event-level (l = 1)
or to user-level privacy (l −→∞).

Although this notion overcomes the problem of w-event privacy of assuming
periodically recorded trajectories, it does not address its other deficiencies.

Element-level privacy Finally, [45] propose element-level privacy, designed
to prevent disclosure of specific sensitive attributes rather than all events. For
instance, in a traffic study, users may accept revealing “owns a car” but wish to
hide “visited a hospital.”

They model data of a user u as a multiset of values x(u) = {x(u)
1 , x

(u)
2 , . . . , x(u)

mu
},

where each x
(u)
i belongs to the universe of possible values of X. Then it considers

a K -partition of the universe X into the clusters c1, . . . , cK . These clusters are
viewed as the elements to be protected. By definition, each x

(u)
i belongs to one

cluster cj.
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Ensuring element-level privacy means hiding that each user has elements be-
longing to the cluster, independently of how many elements it includes. The
authors believe that this notion can be adapted to trajectory data: data points
can be clustered according to geographical zones and times. And in the case of
semantic trajectories, even according to semantic values, e.g., having a cluster for
all health-related locations.

Figure 2.2: A summary of the different level of granularity [13].

2.5 Algorithms in the literature
As stated in previous paragraphs, protecting trajectories may mean protecting
different part of them (such as one single point, a couple of point or even the whole
trajectory). Based on this choice, there are different types of algorithms that are
presented in literature.

2.5.1 Algorithms protecting the single location
Mondrian

The Mondrian algorithm [35] is a greedy algorithm based on a multidimensional
recording model.

In general a global recording achieves anonymity by mapping the domain of the
quasi-identifier attributes to generalized or alter values. Global recording can be
further broken down into two sub-classes: the single-dimension global recording
and the multidimentional global recording.

Assuming there is a total order associated with the domain of each quasi-identifier
attribute Xi, a single-dimensional partitioning defines, for each Xi, a set of non-
overlapping single-dimensional intervals that cover DXi

to some summary statistic
for the interval in which it is contained. This partitioning model can be easily
extended to multidimensional recording defining a multidimensional region as a pair
of d-tuples (p1, ..., pd), (v1, ..., vd) ∈ DXi

× ...×DXd
such that ∀i, pi ≤ vi. Basically,
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this means that each region is bounded by a d-dimensional rectangular box. A strict
multidimensional partitioning defines a set of non-overlapping multidimensional
regions that cover DXi

× ...×DXd
. ϕ maps each tuple (x1, ..., xd) ∈ DXi

× ...×DXd

to summary statistic for the region in which it is contained. In the picture 2.3 it is
possible to see the difference between the two partitionings. Assuming that on the
horizontal axis there is the ZIP code and on the vertical axis there is the age of
the person in the database, a single-dimensional partitioning is dividing the space
along one single axis (in this case the ZIP code). On the other hand, the strict
multidimensional partitioning has first divided the space along the ZIP code and
then along the age.

Figure 2.3: Spatial representation of the single dimensional and multidimensional
recording [35].

At this point it is important to define what a cut is and when it is admissible.
Considering a multiset P of points in d-dimensional space, a cut perpendicular to
axis Xi at xi is allowable if and only if Count(P.Xi > xi) ≥ k and Count(P.Xi ≤
xi) ≥ k. This means that the first cut done on the space have to satisfy k-anonymity
in both the partitions created (both the partitions must have at least k elements).
If a new cut is done on the other axis, it is crucial to check the same process: are
there at least k elements on the new two partitions created? The process keeps
going on until it is no longer possible to create partitions.

The Mondrian algorithm is leveraging those definitions to obtain k-anonymity.
Given a d-dimensional space:

1. the algorithm is checking the spans of each dimension, which means obtaining
the intervals of the d dimensions as the difference between its maximum value
and its minimum value.

2. The algorithm picks the dimension with the biggest span and it splits it on
the median, checking that the partitions created contains at least k elements.
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3. At this point the algorithm is computing again the spans on the still-non-
divided dimensions and on the new partitions created. It will pick the one
with the biggest span and will divide it on the median.

4. The process will keep going on until the algorithm is not able to find anymore
new partitions that contains at least k elements.

The main strength of the Mondrian algorithm lies in its ability to operate in
spaces of more than two dimensions, creating multidimensional partitions rather
than being limited to purely spatial data. However, its main drawback hide in the
nature of the rectangular regions it produces: these can vary significantly in size,
sometimes becoming excessively large and thus too coarse to preserve utility, or
excessively small, leading to over-partitioning and potential privacy risks. Moreover,
since the partitions are axis-aligned and not inherently hierarchical, the resulting
structure may fail to represent geographic areas in a consistent or meaningful way.

Interesting location mining algorithm

This algorithm is discussed in [36] and it wants to ensure that an individual’s
participation in a statistical database does not substantially increase the risk to
his privacy. This process must account for the possibility of combining internal
attributes with external data to uniquely identify individuals. However, subject
to this constraint, it is important that the released data remain as “useful” as
possible. More in particular, figure 2.4 shows that, if differential privacy is not
preserved, when an individual decides to opt out from the location history database,
an interesting location can change from Region A to Region A’. This change can
give to the adversary more specific information related on the location that the
individual visits regularly. This algorithm promise to protect against this kind of
attack proposing a new differentially private solution.

Figure 2.4: An interesting location changes from Region A to Region A’ when
John opts out from the location history database [36].

First, some definitions are necessary. A stay point is the center (x, y) of a circle
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region with a δ radius in which a trajectory stays for at least a time period of T.
An individual interesting location is a region containing more that r stay points
for the individual. Another possible definition of an interesting location is a region
that satisfies the condition that it is an individual interesting location for at least
m individuals if each individual has more than r stay points in the region.

In the conventional differential privacy solution, the privacy mechanism is applied
to the output results. This solution consists of applying the privacy mechanism
to both the pre-processing step and the algorithm outputs. The first step splits
the main problem into smaller subproblems and enables one to obtain reasonable
“local” sensitivity to the subproblems. Then, the Laplace noise perturbation privacy
mechanism is applied to the DBSCAN outputs, namely: the interesting regions and
their corresponding stay point counts, in the interesting location mining algorithm.

The interesting location mining algorithm consists of two steps:

• algorithm 1: differentially private region quadtree-based spatial decomposition,
and

• algorithm 2: differentially private interesting location extraction based on
DBSCAN clustering algorithm.

The first algorithm takes as input the set of stay points S, the spatial region R, and
a threshold parameter T. To guarantee privacy, Laplace noise is first applied to
the cardinality of S, generating a perturbed count S’. This perturbed value is then
used to decide whether the region should be further partitioned using a quadtree
structure:

• if the noisy count is greater than 3T, the region is further divided;

• otherwise, the process stops, and the region is defined as a partition P, with
SP denoting the subset of stay points contained within it.

The output of this step is therefore the set of partitions together with their associated
subsets of stay points.

The second algorithm takes as input the subsets of stay points associated with
the partitions from Algorithm 1, together with a refined threshold parameter r’ and
the parameters of the DBSCAN clustering algorithm. For each subset, DBSCAN
is applied in order to detect dense groups of points. For each resulting cluster:

• Laplace noise is added to the count of stay points in the cluster;

• if the noisy count exceeds r’, the cluster is considered an interesting location
with its corresponding noisy count;

• the centroid of the cluster is computed as the mean of the points, and Laplace
noise is added to its coordinates, which are then used to identify the location.
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The output of this step consists of the set of clusters identified as interesting
locations and their noisy counts.

2.5.2 Algorithms protecting OD-matrices
OIGH

The OIGH (Optimal Identical Generalization Hierarchy) algorithm [46] was devel-
oped specifically for datasets in which all quasi-identifiers share the same general-
ization hierarchy, a category known as Identical Generalization Hierarchy (IGH)
data. This situation occurs when sensitive attributes belong to the same domain
and can therefore be generalized using a single hierarchical structure.

The key idea behind OIGH is to exploit four properties that characterize IGH
data and allow a more efficient search for k-anonymity:

• if a node is k-anonymous, then all its direct generalizations at higher levels
are also k-anonymous;

• if a node is not anonymous, all its direct specializations at lower levels will
also fail to satisfy k-anonymity;

• nodes located at the same level of the lattice share the same precision;

• precision always increases when moving upward in the lattice.

These properties ensure that the optimal k-anonymous solution will always be
found at the lowest level where k-anonymous nodes appear in the lattice.

To exploit this, OIGH adopts a depth-first search strategy, exploring the lattice
from the root node downwards. Once a k-anonymous node is detected, all its ances-
tors at higher levels can automatically be considered k-anonymous, without further
checks. Conversely, if a node is identified as non-anonymous, all its descendants at
lower levels are automatically discarded.

The strength of this approach is that it avoids examining large portions of
the lattice: the search focuses only on levels below the first k-anonymous level
encountered, which results in a significant speedup compared to traditional uniform
generalization algorithms that must scan the full solution space.

Nonetheless, OIGH has two important limitations. First, it can only be applied
to IGH datasets, which represent a rather specific class of data. Second, like other
uniform generalization methods, it applies the same level of generalization to all
values of each quasi-identifier. This can lead to unnecessary information loss when
the data distribution is uneven or heterogeneous.
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ATG

Adaptive Tree Generalization (ATG) methods [20] represent a family of algorithms
designed to achieve k-anonymity in OD-matrices by exploiting a hierarchical
representation of space. The general idea behind these methods is to view the
anonymization process as an optimization problem structured over a spatial tree,
where each node represents a geographic area at a specific level of aggregation. The
goal of ATG approaches is to minimize information loss while ensuring that each
generalized region includes at least k individuals or trips. To do this, the algorithms
iteratively generalize origins and destinations according to a cost function that
balances two factors:

• the spatial generalization cost, which increases as areas become larger; and

• the suppression cost, associated with removing OD pairs that cannot be safely
anonymized.

Two main variants of the algorithm exist: ATG-Dual and ATG-Soft. While both
share the same conceptual foundation, they differ in computational complexity
and flexibility. ATG-Dual seeks an optimal balance between generalization and
suppression through dual optimization, whereas ATG-Soft simplifies this process
by fixing the balancing parameter in advance. The following section focuses on
ATG-Soft, which is the version adopted for the experiments in this work.

ATG-Soft The ATG-Soft algorithm [20] is a simplified version of the ATG-
Dual method, designed to anonymize large-scale origin–destination matrices more
efficiently. Its goal is to achieve k-anonymity while obtaining a balance between
spatial generalization and information loss.

The idea behind ATG-Soft is to treat generalization and suppression as an
optimization problem defined over a tree-structured hierarchy of values. Unlike
ATG-Dual, which requires solving a dual problem to find the optimal value of the
parameter λ, ATG-Soft fixes this parameter in advance, usually at 10% of the total
map size. This simplification makes the process much lighter computationally.

The algorithm works in two phases.

• Phase 1: Origin Generalization. ATG-Soft starts by partitioning the set of
origins. It uses an objective function that minimizes the gap between the total
number of trips leaving each origin and a target volume vtarget. This ensures
that the corresponding destination maps are generalized to a comparable
degree, preventing imbalances across origins.

• Phase 2: Destination Generalization. Once origins are partitioned, the algo-
rithm moves on to destinations. Here, it solves a simplified pruning problem
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that balances two costs: the aggregation penalty (αd) and the suppression
penalty (σd), with λ acting as a regularization parameter.

The optimization problem can be expressed as:

min
x

Ø
d∈T

(xp(d)− xd)(αd − λσd)− λC (2.5)

where αd is the aggregation penalty, σd is the suppression penalty, and C is the
suppression constraint.

A key property of ATG-Soft is that it enforces a strict constraint on the
generalization level: no flow o→ d can be generalized beyond |o|+ |d| > λ, even
if this means suppressing the record altogether. This guarantees that spatial
resolution never drops below a minimum acceptable threshold.

The strengths of ATG-Soft are related on its efficiency, which permits it to
avoids the heavy dual optimization step making it faster than ATG-Dual, and
scalability because yt can process large OD matrices within reasonable time. On
the other hand, its main drawbacks are the parameter tuning and the risk on
imbalance. Choosing a good value for vtarget requires either expert knowledge or
empirical testing. Moreover, since origins and destinations are handled separately,
poor parameter calibration can result in uneven generalizations.

Overall, ATG-Soft can be seen as a compromise: it sacrifices some precision
for a large gain in speed. This makes it well-suited for scenarios where massive
volumes of mobility data need to be anonymized quickly, and where moderate
privacy guarantees are considered acceptable.

Km-anonymization: a priori anonymization

In this section is presented the problem of publishing set-valued data, while trying
to preserve the privacy of individuals associated to them. This is done introducing
a new extended concept for the k-anonymity: the km-anonymity.

Consider a database D, which stores information about items purchased at a
supermarket by various customers. If the adversary has some partial knowledge
about a subset of items purchased by a person, observing the direct publication of
D may result in unveiling the identity of that person associated with that particular
transaction. For example, assume that Bob went to the supermarket on a particular
day and purchased a set of items including coffee, bread, brie cheese, diapers, milk,
tea, scissors, light bulb. Assume that some of the items purchased by Bob were on
top of his shopping bag (e.g., brie cheese, scissors, light bulb) and were spotted by
his neighbor Jim, while both were on the same bus. Bob would not like Jim to find
out other items that he bought. However, if the supermarket decides to publish its
transactions and there is only one transaction containing brie cheese, scissors, and
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light bulb, Jim can immediately infer that this transaction corresponds to Bob and
he can find out his complete shopping bag contents [37].

In [37], authors propose such a km-anonymization model, for transactional
databases: assuming that the maximum knowledge of an adversary is at most m
items in a specific transaction, the model wants to prevent him from distinguishing
the transaction from a set of k published transactions in the database. Equivalently,
for any set of m or less items, there should be at least k transactions, which contain
this set, in the published database D’.

This concept can be extended to trajectories. Imagine a dataset containing the
columns latitude_start, latitude_end, longitude_start and longitude_end.
If the dataset is 52-anonymous, this means that there are at least 5 sample of the
dataset with the same 2 subset of the four core column. This case is a restricted
case because, theoretically m can go from 1 to 4, but in the reality the attacker will
know the latitude and/or the longitude. For this reason m can strictly be 2 or 4.

Unlike the k-anonymity problem in relational databases, there is no fixed, well-
defined set of quasi-identifier attributes and sensitive data. A subset of items in a
transaction could play the role of the quasi-identifier for the remaining (sensitive)
ones and vice-versa. This means that, assuming that the dataset is 52-anonymous,
both the case in which the attacker know the latitude and the longitude is covered.

If D is not km-anonymous, it can be transformed to a km-anonymous database
D’ by using generalization. There are different anonymization techniques that can
be used: the count-tree, the optimal anonymization, the direct anonymization and
the apriori-based anonymization [47]. The one that is explained more in detail in
this study is the apriori-based anonymization.

The algorithm is inspired by the apriori principle, which states that if an itemset J
of size i leads to a privacy breach, then every superset of J will also cause a breach.
This principle allows us to progressively enforce the necessary generalizations.
Specifically, the algorithm evaluates potential privacy risks in increasing order of
adversarial knowledge: starting from the case where the adversary knows only one
item per trajectory, then two, and so forth, up to the case where the adversary
may know m items.

At each iteration i, the database is scanned and a count-tree is populated
with all i-itemsets. Itemsets containing elements already generalized are ignored.
Each transaction t is first expanded to include all possible generalizations, and
then reduced by removing items already generalized. For example, after the first
iteration (i = 1), suppose the generalization map contains < {a1, a2} −→ A >. In
the second iteration (i = 1), the transaction t4 = {a1, a2, b2} is first expanded to
t4 = {a1, a2, b2, A, B}, and then reduced to t4 = {b2, A, B} since a1 and a2 are
already generalized. This process considerably reduces the number of candidate
itemsets to be inserted into the count-tree. The algorithm proceeds as follows.

• An empty generalization map and a set of reduced transactions are initialized.
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• The reduced transactions are filled with items that are not yet present in the
generalization map.

• For each iteration i = 1, ..., m:

– all reduced transactions are explored to generate combinations of i ele-
ments (i-itemsets);

– the frequency of each combination is counted;
– if an itemset is found to have a support smaller than k, it is generalized.

2.5.3 Algorithms protecting trajectories
Grid-based anonymization

The basic idea of grid-based generalization is to partition the data space into grids
such that all points falling into the same grid are uniformly represented by the
grid.

In the example in Figure 2.5: a trajectory (P1, P2, ..., P8) with eight points is
fit in a 2D space that is partitioned into six grids denoted as G1, G2, ..., G6. Then
the trajectory is transformed into a new format (G4, G5, G2) with respect to time
intervals P1.t-P3.t, P4.t–P6.t and P7.t–P8.t.

Figure 2.5: Example of grid-based generation [48]

There actually exists different approaches for partitioning the space [49]:

• Common Regular Partitioning (CRP): the simplest method is to define a
single, regular partitioning that is used by all the objects.

• Individual Regular Partitioning (IRP): not all objects require the same level
of location privacy. Objects requiring higher levels of privacy construct and
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use a regular partitioning with larger partitions, while objects requiring lower
levels of privacy define and use a regular partitioning with smaller partitions.

• Individual Irregular Partitioning (IIP): objects may have different location
privacy requirements in different regions of space. For example, most objects
(users) desire a higher level of location privacy when being at home or the
work place than when being in transition or when being in other general areas
of the city. Objects can be allowed to individually define privacy levels for
regions in space that reflect their needs. The definition of these regions can be
either manual, or can be aided by discovering frequent (presumably sensitive)
locations of individual objects.

Mix zones

The concept of “mix” has been applied to anonymous communication in a network.
A mix-network consists of normal message routers and mix-routers. The basic idea
is that a mix-router collects k equal-length packets as input and reorders them
randomly before forwarding them, thus ensuring unlinkability between incoming
and outgoing messages [50]. This concept has been extended to LBS, namely,
mix-zones [51].

When users enter a mix-zone, they change to a new, unused pseudonym. In
addition, they do not send their location information to any location-based ap-
plication when they are in the mix-zone. When an adversary that sees a user u
exits from the mix-zone cannot distinguish u from any other user who was in the
mix-zone with u at the same time. The adversary is also unable to link people
entering the mix-zone with those coming out of it.

A set of users S is said to be k-anonymized in a mix-zone Z if all following
conditions are met [50]:

• The user set S contains at least k users, i.e., |S| ≥ k.

• All users in S are in Z at a point in time, i.e., all users in S must enter Z
before any user in S exits.

• Each user in S spends a completely random duration of time inside Z.

• The probability of every user in S entering through an entry point is equally
likely to exit in any of the exit points.

Mix-zones impose limits on the services available to mobile users inside a mix-zone
because they cannot update their locations until exiting the mixzone. To minimize
disruptions caused to users, the placement of mix-zones in the system should be
optimized to limit the total number of mix-zones required to achieve a certain
degree of anonymity.
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In a road network, vehicle movements are constrained by many spatial and
temporal factors, such as physical roads, directions, speed limits, traffic conditions,
and road conditions. For this reason mix-zones must be designed in a proper
way to protect trajectory privacy in road networks. This is because an adversary
can gain more background information from physical road constraints and delay
characteristics to link entering events and exiting events of a mix-zone with high
certainty. For example imagine two cars entering a mix-zone: the first with a speed
of 10km/h; the second with a speed of 100km/h. An attacker can easily understand
that the first one exiting the mix-zone will be the fastest one. Or if turn is not
allowed in the intersection, an adversary knows that a vehicle entering the mix-zone
from a specific road can only go in one side.

An effective solution for vehicular mix-zones is to construct non-rectangular,
adaptive mix-zones that start from the center of an road segment intersection on its
outgoing road segments, as depicted in Figure 2.6. The length of each mixzone on
an outgoing segment is determined based on the average speed of the road segment,
the time window, and the minimum pairwise entropy threshold.

Figure 2.6: Non-rectangular, adaptive vehicular mix-zones [50]

Dummy trajectories

Without relying on a trusted third party to perform anonymization, a mobile
user can generate fake location trajectories, called dummies, to protect trajectory
privacy [50]. Given a real user location trajectory Tr and a set of user-generated
dummies Td, the degree of privacy protection for the real trajectory is measured by
the following metrics [52]:

• Short-term Disclosure (SD). This parameter specifies requirement for protect-
ing the current user location. Given a set of current locations (including both

32



Related work

true and dummy locations), SD is the probability of successfully identifying
the true user location

SD = 1
m

mØ
i=1

1
|Di|

(2.6)

where m is the number of time slots in a trajectory, Di is the set of true and
dummy locations at the i-th time slot, and |Di| is the size of Di.

• Long-term Disclosure (LD). This parameter specifies requirement for protecting
the user trajectory. Given n trajectories, among which k trajectories have
intersected with other trajectories and (n− k) trajectories do not have any
intersection. Thus, for those (n − k) trajectories, there are exactly (n − k)
possible trajectories. For those k trajectories, all possible trajectories have to
be considered by exhaustively traversing intersections from the start point of
each trajectory to the end point. The number of possible trajectories among
k trajectories is denoted as Tk. Consequently, LD is defined as

LD = 1
Tk + (n− k) (2.7)

• Distance deviation (dst). It is the average of distance difference among
trajectories of dummies and the user. It is formulated as

dst = 1
m

1
n

nØ
k=1

mØ
j=1

dist(PLj
i , Li

dk) (2.8)

where dist is distance between the true user location and dummy locations in
unit of cell size.

Once defined those metrics, it is possible to define the concept of privacy profile,
which is the combination of the metrics that the user wants to satisfy. For this
reason, given a privacy profile, dummy trajectories are generated to satisfy the user
privacy profile. The most known schemes are the random and rotation pattern
schemes

Random Pattern Scheme In this scheme, the starting point and the destination
of a dummy are first selected. Then, a dummy will move randomly from the starting
point to the destination, dividing the space into cells created taking into account
the speed of the dummy and its movement in the space. This naive scheme
demonstrates that even after a long term observation, it’s difficult for adversaries
to identify true user since dummies also exhibit long-term, consistent movement
patterns [52].
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Rotation Pattern Scheme The main idea behind this scheme is to create some
intersections between trajectories of dummies and the user. Given a user trajectory,
its dummy is generated rotating the known user trajectory. The rotation point of
the user trajectory is an intersection point. Since there are three requirements in
privacy profile, first it is necessary to understand which is the solution space for
the given privacy profile. Then, within the solution space, compute the metrics
to understand which of the different solutions is the best to use (the one with the
smallest metrics). With proper selection of dummy trajectories, it is possible to
minimize the number of dummies so as to satisfy the user privacy requirements.

In order to derive the solution space it is crucial to consider both of the rotation
angle and the rotation point within a true user trajectory. This means that, given
the user trajectory, the different metrics will be computed changing the rotation
point and its angle, so as to create different dummies intersecting the real trajectory
in different point and with different angles. The Figure 2.7 is describing this step.

Figure 2.7: Example of rotating step [52]

If the disclosures are still larger than the required disclosures, one should repeat
the procedure to add one additional dummy until the all requirements in privacy
profile are satisfied.

NWA

The next algorithm that is resumed in this work belongs to the category of
algorithms that cluster locations and subsequently release trajectories through
these clusters with some perturbation to guarantee privacy. They follow a common
structure that consists of two privacy mechanisms: a generalization mechanism
M1, which generalizes the set of locations by grouping them into clusters, and
a releasing mechanism M2, which outputs resulting trajectories drawn from the
generalized sets. The algorithm described in this section is called Never Walk Alone
(NWA) [53]. NWA is developed along three main phases:

• Pre-processing: aimed at enforcing larger equivalence classes of trajectories
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w.r.t. same time span;

• Clustering: based on greedy clustering method and enhanced with techniques
to keep low the radius of produced clusters;

• Space Translation: transforming each cluster found into a (k, δ)-anonymity
set.

The input of the algorithm are a database of trajectories D, an anonymity threshold
k, an uncertainty threshold δ, and the time granularity π used in the pre-processing
step to create equivalence classes of trajectories, as explained in the next section.
The output of the algorithm is a (k, δ)- anonymized database D’.

Pre-processing The fist task of NWA is the partitioning of the input database
into equivalence classes according to the time span. This means creating groups
containing all the trajectories that have the same starting time and the same
ending time. If this procedure is performed on raw data this often brings to a large
number of very small equivalence classes. In order to overcome this problem, the
pre-processing procedure is driven by the integer number π: only one timestamp
every 7 can be the starting or ending point of a trajectory.

Clustering This phase clusters trajectories based on a greedy clustering scheme.
For each equivalence class, a set of appropriate pivot trajectories are selected as
cluster centers. They are chosen as the farthest trajectory from the previous pivot
(excepted the first one, chosen as the farthest trajectory from the dataset center).
For each cluster center, its nearest k − 1 trajectories are assigned to the cluster,
such that the radius of the bounding trajectory volume of the cluster is not larger
than a certain threshold.

When a cluster cannot be created around a new pivot, the latter is simply
deactivated, i.e., it will not be used as pivot but, in case, it can be used in the
future as member of some other cluster and the process goes on with the next pivot.
When a remaining object cannot be added to any cluster without violating the
radius threshold, it is simply trashed. Notice that this process can lead to solutions
with a too large trash.

Space Translation Finally, each cluster is transformed into a k-anonymized
aggregate trajectory by aggregating the trajectories point per point with the median.

In NWA, information distortion occurs in three different ways:
• First, in the pre-processing step, some initial and final points of a trajectory are

possibly cut with the aim of building larger equivalence classes of trajectories
having the same time span.
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Figure 2.8: An example of the clustering approach [50]

• Second, trajectories ending in the trash bin are completely removed and will
not appear in the released dataset D’.

• Third, trajectories not ending in the trash bin are space-translated to achieve
(k, δ)-anonymity.

For this reason the work propose a unique measure able to capture these three
different kinds of information distortion. For each trajectory τ ∈ D, let τ ′ be its
correspondent in the (k-δ)-anonymized dataset D’. For each time t in which τ is
defined:

ID(τ [t], τ ′[t]) =
Dist(τ [t], τ ′[t]) if τ ′[t] is defined;

Ω otherwise.

where Ω is a constant value used to penalize removed points and corresponding to
the maximal point translation recorded in the experiment, and Dist is the Euclidean
distance.

DPTD

The last algorithm analysed is the DPTD [41]. The purpose of [41] is to design an
ϵ-differentially private trajectory releasing algorithm, synthesizing a database SD

corresponds to raw database D.
The proposed method can be divided into three main phases: generalization,

Markov probability prediction modeling, and the construction of a noisy prefix
tree.

Generalization In the first phase, all locations within the spatial universe
are clustered using the DBSCAN algorithm. For each cluster, the centroid is
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then computed. Subsequently, the spatial domain is partitioned using a quadtree
structure. Each region is recursively divided into four equal sub-regions if the
number of locations it contains exceeds a predefined threshold. This process
continues until every sub-region contains fewer locations than the threshold. For
privacy purposes, the centroids obtained are further masked by substituting them
randomly with one of the real positions inside the corresponding sub-region.

Figure 2.9: DPTD generalization process [41]

The work also states that since the centroids have selected randomly, the privacy
budget that should have been used to protect them has been saved.

At this point the generalized dataset is synthesized in suck a way that the new
dataset contains the IDs of the trajectories and the different clusters for each time
interval. Basically the trajectory as a sequence of points has been transformed as a
sequence of clusters.

Markov Probability Prediction Model The second phase is based on a first-
order Markov model, which assumes that the probability of a future transition
depends only on the current state. In this context, the transition probability from
one cluster to another is determined solely by the current cluster.

37



Related work

Noisy Prefix Tree Construction In the final phase, a prefix tree of traversed
clusters is generated. Each level of the tree represents a different timestamp: after
the root, at height 1 there are the clusters traversed in the first time interval with
the respective count. At height 2 there are clusters traversed in the second time
interval related to their father with their counts. And so on.

To guarantee differential privacy, Laplace noise is added to the counts of the
tree. Specifically, when the height of a layer l is odd, Laplace noise with a privacy
budget of ϵ/⌈h/2⌉ is applied to the nodes of layer l, where h is the total height of
the noisy prefix tree. Nodes in layer l + 1 are then obtained by multiplying the
noisy count of their parent node by the Markov transition probability of moving
from the parent cluster to the child cluster.

The main drawback that this work is not considering is the fact that when
accessing probability transition table for even nodes, it is doing it without paying
any budget. The strong assumption that the work is doing is that the Markov
transition probability is calculated using the generalized dataset, but this will
not reveal the users’ privacy, based on the assumption that an attacker cannot
accurately get the transition probability among all the clusters in the generalized
dataset. This means that an attacker cannot neither access to this table nor is able
to compute those probabilities by his own.

2.6 Geo-indexing systems
Geo-indexing systems are alternative ways of representing locations on a (spherical
or flat) land surface in recursively smaller areas, creating a hierarchy. Each area
has to satisfy the following properties [54]:

• each area belongs to a single level in the area hierarchy,

• the aggregation of areas of the same level in the hierarchy results in the total
surface of the Earth,

• each area is uniquely identified by an alphanumeric code, where the number of
characters of the code identifies the level in the hierarchy. Thus, larger areas
need fewer characters to identify themselves than smaller areas.

The main advantage of these systems is that they allow the identification of very
small areas of the earth’s surface with a text string of a small number of characters.
Indeed they achieve a great deal of precision. However, their main drawback is that
they were not designed to cluster locations, but rather to store coordinates more
easily in databases or encode them in URLs. Nevertheless, they do represent a way
of having the space divided recurrently in advance, which is a way of speeding up
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all the algorithms that need the division. Examples of these libraries are GeoHash8,
Google S29 or Uber H310.

2.6.1 Introduction to H3
Uber is a technology platform that provides on-demand transportation and delivery
services by connecting passengers and drivers (or couriers) through a mobile or
web application. The company acts as an intermediary, managing the booking,
payment, and rating processes, without directly owning the vehicles used. Every
day, millions of events occur in the Uber marketplace. Every minute, riders request
rides, driver-partners start trips, and users request food, among other actions on
the platform.

These events empower Uber to better understand and optimize the marketplace
for users across their services. For instance, these events might tell them that
there is more demand than supply in a certain part of a city and adjust pricing in
response11.

Deriving information and insights from data in the Uber marketplace requires
analyzing data across an entire city. Because cities are geographically diverse, this
analysis needs to happen at a fine granularity. Analysis at the finest granularity,
the exact location where an event happens, is very difficult and expensive. Analysis
on areas, such as neighborhoods within a city, is much more practical.

Figure 2.10: The maps depict the process of bucketing points with H3: cars in a
city; cars in hexagons; and hexagons shaded by number of cars. Picture from note
11.

Data points are bucketed into hexagons and can be written using the hexagonally

8Source: https://www.ibm.com/docs/en/streams/4.3.0?topic=334-geohashes, accessed
on October 11, 2025

9Source: http://s2geometry.io/, accessed on October 11, 2025
10Source: https://h3geo.org/, accessed on October 11, 2025
11Source: https://www.uber.com/en-IT/blog/h3/, accessed on October 11, 2025
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bucketed data. For example, in the Uber interests, the rising of the price is computed
by measuring supply and demand in hexagons in each city that are served. These
hexagons form the basis for the analysis of the Uber marketplace. For those reasons
Uber decided to create H3 combining the benefits of a hexagonal global grid system
with a hierarchical indexing system.

Figure 2.11: Distances from a triangle to its neighbors (left), a square to its
neighbors (center), and a hexagon to its neighbors (right). Picture from note 11.

Using a hexagon as the cell shape is critical for H3. As depicted in Figure 2.11,
hexagons have only one distance between a hexagon centerpoint and its neighbors’
ones, compared to two distances for squares or three distances for triangles. This
property greatly simplifies performing analysis and smoothing over gradients.

H3 supports sixteen resolutions. Each finer resolution has cells with one seventh
the area of the coarser resolution. Hexagons cannot be perfectly subdivided into
seven hexagons, so the finer cells are only approximately contained within a parent
cell.

H3 index No. of cells Average Hex. Area (km2)
0 122 4,357,449.416078381
1 842 609,788.441794133
2 5,882 86,801.780398997
3 41,162 12,393.434655088
4 288,122 1,770.347654491
5 2,016,842 252.903858182
6 14,117,882 36.129062164
7 98,825,162 5.161293360
8 691,776,122 0.737327598
9 4,842,432,842 0.105332513
10 33,897,029,882 0.015047502
11 237,279,209,162 0.002149643
12 1,660,954,464,122 0.000307092
13 11,626,681,248,842 0.000043870
14 81,386,768,741,882 0.000006267
15 569,707,381,193,162 0.000000895

Table 2.6: Total number of cells and the corresponding area in km2 for each level
of the Uber H3 hierarchy

40



Chapter 3

ODkAnon

This chapter describes the ODkAnon algorithm for the anonymisation of OD-
matrices, leveraging the Uber H3 geo-indexing library. The version used is the H3
version 4.2.2.

Before diving into the technical details, it is useful to provide a short overview
of the proposed algorithm. At a high level, ODkAnon leverages the hierarchical
structure of the H3 hexagonal spatial indexing system to protect mobility data while
retaining as much spatial detail as possible. The algorithm iteratively generalizes
origins and destinations until all OD pairs satisfy the anonymity threshold. Unlike
traditional approaches, which typically apply the same level of aggregation to both
dimensions, ODkAnon adopts an adaptive strategy: at each step, it dynamically
decides whether to generalize origins or destinations, based on the structure and
density of the data.

3.1 Suppression algorithm
Since hexagons may be very sparse or associated with very low counts (even when
their siblings contain large volumes), they may need to be progressively generalized
into larger and larger parent hexagons.

The function fast_pre_generalization_filter implements a pre-filtering
step that identifies and removes OD pairs (origin–destination) that cannot achieve
k-anonymity even after multiple levels of spatial generalization. The goal is to
suppress those records that may lead to pointless huge generalizations.

It defines a suppression budget, defined as the the maximum percentage of
rows that can be removed, and a maximum number of generalization levels
(max_generalization_levels) to explore to understand if within these levels
the node can be k-anonymized. The algorithm works as follows.

• Generalization Mapping. For each OD pair, the algorithm computes parent
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hexagons at progressively coarser resolutions from original hexagon resolution
up to max_generalization_levels (Algorithm 1, for cycle at row 3).

• Aggregated Counts. At each generalization level, the OD pairs are grouped
by their generalized hexagons, and the aggregated counts are computed. If a
group reaches or exceeds the threshold k, the corresponding rows are marked
as valid (Algorithm 1, for cycle at row 10).

• Detection of Problematic Rows. Rows that do not reach the threshold at
any generalization level are identified as problematic, meaning they cannot be
made k-anonymous (Algorithm 1, row 15).

• Suppression Strategy. If the number of problematic rows is within the
suppression budget, all of them are removed. If not, the algorithm suppresses
only the rows with the lowest counts, ensuring minimal information loss
(Algorithm 1, if condition at row 16).

The function returns a filtered OD-matrix where only valid rows remain, along
with the number of suppressed rows. The "valid" rows are those rows that, within
a fixed number of generalizations, can become k-anonymous.
Algorithm 1 Suppression algorithm
Require: OD-matrix, threshold k, max generalization levels L, suppression budget

β
Ensure: Filtered OD-matrix

1: n← |OD|, max_supp← ⌊n · β⌋
2: Initialize H3 mapping cache
3: for ℓ = 0 to L do
4: for each row in OD do
5: start_genℓ ← generalize(start_h3, ℓ)
6: end_genℓ ← generalize(end_h3, ℓ)
7: end for
8: end for
9: valid_pairs← ∅

10: for ℓ = 0 to L do
11: Group by (start_genℓ, end_genℓ)
12: Compute agg_count for each group
13: valid_pairs← valid_pairs ∪ {rows with agg_count ≥ k}
14: end for
15: problematic← all_rows \ valid_pairs
16: if |problematic| ≤ max_supp then
17: Suppress all problematic rows
18: else
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19: Sort problematic rows by increasing count
20: Suppress the first max_supp rows
21: end if

return OD-matrix with valid rows only

3.2 Tree structure creation
To handle the spatial generalization of OD-matrices, the algorithm is based on two
hierarchical H3 trees: tree_start and tree_end. The main idea is to represent
space not as a fixed grid, but as a tree structure, where each node corresponds to
an H3 hexagon at a given resolution, and its children represent finer subdivisions.

The inputs given to this part of the code are the OD-matrix, the target resolution,
which is the smallest resolution considered (in this case is 10) and the column in
the OD-matrix to consider: first the column containing the starting hexagons then
the one considering the ending ones.

At this point the algorithm follows these steps:

• Hexagons extraction. Extract hexagons from the OD-matrix (Algorithm 2,
row 1).

• Root identification. Find the minimal optimal resolution (the biggest
hexagon with count equal to 1): this hexagon will be the root of the tree
(Algorithm 2, for cycle at row 3).

• Hierarchy construction. Build the hierarchical paths from the minimum
resolution up to the target resolution (Algorithm 2, for cycle at row 13).

• Node creation. Create the nodes and establish the parent–child relationships
between them (Algorithm 2, row 17).

• Count population. Populate the counts based on the OD-matrix data: trip
counts associated with each hexagon are inserted into the leaf nodes and then
propagated upwards, so that each node represents the total number of trips
across that area (Algorithm 2, for cycle at row 23).

Algorithm 2 H3 Hierarchical Tree Construction
Require: OD-matrix, target resolution Rtarget, hex column C
Ensure: Optimized H3 hierarchical tree

1: H ← extract unique hexagons from column C
2: Hcoverage ← obtain full coverage at resolution Rtarget

3: for r = 0 to Rtarget do
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4: ancestors← ∅
5: for each h ∈ H do
6: ancestor ← parent of h at resolution r
7: ancestors← ancestors ∪ {ancestor}
8: end for
9: stats[r]← |ancestors|

10: end for
11: Rmin ← max{r : stats[r] = 1}
12: nodes← ∅
13: for each h ∈ Hcoverage do
14: path← path from h to resolution Rmin

15: for each p ∈ path do
16: if p /∈ nodes then
17: nodes[p]← new H3 node
18: end if
19: end for
20: Establish parent-child relationships along path
21: end for
22: counts← group OD by column C and sum counts
23: for each (h, c) ∈ counts do
24: htarget ← map h to resolution Rtarget

25: Propagate count c from htarget up to the root
26: end for

return Hierarchical tree with aggregated counts

3.3 Generalization algorithm for k-anonymity
The class OptimizedH3GeneralizedODMatrix aims to efficiently anonymize very
large OD-matrices. It integrates sparse data structures, hierarchical H3 trees, and
dynamic balancing strategies.

The inputs to this core function are the OD-matrix, the two trees created with
the Algorithm 2 and the parameter k to satisfy k-anonymity. The workflow of the
algorithm is structured as follows:

• Initialization. A sparse matrix representation (CSR/CSC format) is built,
where rows correspond to destination hexagons and columns to origin hexagons.
This drastically reduces memory usage compared to dense matrices.

• Precomputation of Sibling Groups. Using the tree structures, the al-
gorithm precomputes sibling groups, i.e., sets of hexagons sharing the same
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parent. These groups represent the potential candidates for aggregation during
the generalization process. Even single-child groups are included, ensuring
that the algorithm can continue generalizing also when only one descendant is
available.

• Generalization Strategy. At each iteration, the algorithm identifies the
cell with the minimum count in the sparse OD-matrix. If all cells are above
the anonymity threshold k, the process stops. Otherwise, a new generalization
step is applied. To decide where to generalize, the algorithm uses a dynamic
balancing strategy:

– It tracks the ratio between the number of origins and destinations.
– If this ratio deviates significantly (beyond ±3%) from its initial value,

the algorithm forces generalization on the “dominant” axis (origins if too
many columns, destinations if too many rows).

– Otherwise, it alternates between the two axes to maintain balance.

Within the chosen axis, the algorithm selects the best sibling group to aggregate,
using a cost function based on the number of trips.

• Application of Sparse Generalization. The selected sibling group is
merged into its parent node in the sparse matrix. The corresponding row(s) or
column(s) are summed, and the matrix is updated while preserving efficiency.

• Termination. The process continues iteratively until every OD pair has at
least k trips, or no further aggregation is possible.

Algorithm 3 Optimized OD Generalization
1: function run_optimized_generalization(OD, treestart, treeend, k)
2: Initialize sparse matrix with initialize_optimized_matrix
3: step← 0
4: while minimum cell value < k do
5: Select axis based on ratio balance (columns/rows alternation)
6: (group, parent, cost)← get_best_generalization_fast(axis)
7: if no valid generalization found then
8: Try alternative axis
9: if still none then

10: break
11: end if
12: end if
13: apply_sparse_generalization(group, parent, axis)
14: step← step + 1
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15: end while
16: return Final generalized sparse matrix
17: end function
18: function initialize_optimized_matrix
19: Remove zero-count cells from OD
20: Extract used start and end hexagons
21: Map hexagons to target resolution using treestart, treeend

22: Build sparse OD matrix (rows, cols, counts)
23: Precompute sibling groups for both axes
24: return sparse OD matrix
25: end function
26: function get_best_generalization_fast(axis)
27: best←∞
28: for each parent node in hierarchy (start or end) do
29: siblings← children of parent
30: present← siblings currently in matrix
31: if present /= ∅ and consistent with siblings then
32: cost← aggregated count of present
33: if cost < best then
34: update best group, parent, and cost
35: end if
36: end if
37: end for
38: return (group, parent, cost) if found, else None
39: end function
40: function apply_sparse_generalization(group, parent, axis)
41: if axis = columns then
42: Merge columns of group into new column parent
43: Update sparse matrix and start mappings
44: else
45: Merge rows of group into new row parent
46: Update sparse matrix and end mappings
47: end if
48: Remove old sibling groups involving group
49: Add new sibling group including parent (if applicable)
50: end function
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Experiments

In this chapter, the framework adopted for the experimental evaluation is introduced.
First, the datasets used in the experiments are presented, highlighting their main
characteristics. Then, the benchmark algorithms against which ODkAnon is
compared are described. Finally, the performance indicators employed in the
evaluation are defined, covering both utility- and privacy-oriented metrics.

4.1 Datasets
The proposed approaches have been evaluated on three different datasets, each
with distinct characteristics.

1. The first dataset comes from the NetMob25 challenge1 and is a merge of a
dataset containing GPS data and a dataset containing demographic data.
Particularly merging the two dataframe on the person_id it is possible to
obtain a structure that contains both the GPS data and the demographic data.
The dataset collets data obtained between October 2022 and May 2023 and
focused on residents aged 16 to 80 in Ile-de-France (3,337 participants took
part to the collection). The most relevant attribute in the demographic data
is the WEIGHT_INDIV. Each participant is assigned a weight representing how
many individuals in the Ile-de-France region share the same socio-demographic
profile. This profile is defined by the cross-tabulation of several variables: de-
partment of residence (8 departments), age group (16–25,26–45,46–65,66–80),
sex (male, female), socio-professional category (craftsmen, executives, interme-
diate professions, employees and workers, retirees and other inactives), number
of cars in the household (0, 1, or 2+), household size (1, 2, 3, or 4+ people),

1https://netmob.org/www25/, accessed on October 11, 2025
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and highest diploma obtained (lower or upper secondary, Bac+2, Bac+5 or
doctorate). The final dataset will contain a person identifier, the GPS data
(with the time) and the weight. This dataset is denoted as paris and initially
has 81,289 rows and 8 columns.

2. The second dataset contains trip data from a car-sharing service operating
in Turin, Italy. It is denoted as turin and initally has 873,240 rows and 6
columns. This data was originally not anonymized and has been collected in
2017 for research purposes. Each row represents a single trip and includes the
starting and the ending point grouped into a single object called coordinates,
as well as the initial and the final time of the trip, the plate of the car and
its VIN (Vehicle Identification Number), a unique code of 17 alphanumeric
characters associated to each single motor vehicle. The sensitive attribute
that is protected is the plate of the car. Since it is a car-sharing dataset, the
purpose is not to protect the user, but the car.

3. The third dataset describes a complete year, from July 2013 to June 2014, of
the trajectories for all the 442 taxis running in the city of Porto, Portugal2. It
is denoted as porto and it initially has 1,710,670 rows and 9 columns. Each
entry corresponds to one completed trip. Since these taxis operate through
a taxi dispatch central, using mobile data terminals installed in the vehicles,
the dataset contains both information related on the phone call and a column
called POLYLINE which contains a list of GPS coordinates mapped as a string.
Each pair of coordinates is identified as [LONGITUDE, LATITUDE]. This
list contains one pair of coordinates for each 15 seconds of trip. The last list
item corresponds to the trip’s destination while the first one represents its
start: those two couples are the one useful for the purpose of this study. Also
in this case the purpose is to protect the vehicle rather than the user.

In order to be properly processed by the algorithm, the three datasets need to
undergo a pre-processing phase to ensure that data is structured in the same format
for all the three datasets and removing sampling errors. The paris dataset is
the only one that is already in the required format and therefore does not require
additional pre-processing.

First, the datasets need to contain the same four core columns: start_lon,
start_lat, end_lon and end_lon, which respectively identifies the longitude and
the latitude of the starting point, and the longitude and the latitude of the ending
point.

2https://www.kaggle.com/datasets/crailtap/taxi-trajectory?resource=download,
accessed on October 11, 2025
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• The turin dataset is first filtered to filter out the possible sampling errors
present in the coordinates: particularly there are points in (0,0) and in
Ethiopia. This process brings the number of the rows of the dataset from
873,240 to 873,234. Then the four core columns are extracted by the column
coordinates.

• The porto dataset needs first a filter to remove those rows with no coordinates
or with one single coordinate. This step reduces the number of rows of
the dataset from 1,710,670 to 1,674,160. At this point the latitude and the
longitude of the starting and ending points are extracted by the POLYLINE
column considering only the first couple as the starting point and the last one
as the ending one.

At this stage of the processing, the three datasets contain only valid geographic
data collected in the four core columns start_lon, start_lat, end_lon and
end_lon. The minimum spatial resolution is set to 10, corresponding to the
resolution of the H3 hexagonal grid used to partition the space. A finer resolution
would have produced an excessive number of cells, generating too sparse OD-
matrices and obtaining an inefficient generalization. Two new columns are then
added: start_h3 and end_h3 which identify the ID of the H3 hexagons at resolution
10 which contains respectively the starting and the ending point of the trip. The
original processed dataset is now aggregated considering only the columns start_h3
and end_h3 and the count related to the couple: the number of couple with the
same starting and ending hexagons in the dataset. This is the way the OD matrix
is computed (and stored in the variable od_matrix).

• Within the 81,240 rows of the Paris dataset, there are 72,569 unique couples
of hexagons (71 of them have a count bigger or equal to 10, the remaining
72,498 have a count smaller than 10). The area of the trips is partitioned into
29,350 starting hexagons and 32,217 ending hexagons (both at resolution 10).

• Within the 873,243 rows of the Turin dataset, there are 507,514 unique couples
of hexagons (3,863 of them have a count bigger or equal to 10, the remaining
503,651 have a count smaller then 10). The area of the trips is partitioned
into 3,606 starting hexagons and 3,608 ending hexagons (both at resolution
10).

• Within the 1,674,160 rows of the Porto dataset, there are 501,472 unique
couples of hexagons (28,963 of them have a count bigger or equal to 10, the
remaining 472,509 have a count smaller then 10). The area of the trips is
partitioned into 8,444 starting hexagons and 18,359 ending hexagons (both at
resolution 10).
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Finally, a further filter is applied to consider only the rows in the center of the city
both for Turin, Porto and Paris. After this filtering step, the OD matrices contain
458,918 rows for Turin, 501,472 rows for Porto, and 23,264 rows for Paris.

Considering that for the paris dataset other analysis will be done regarding the
population-protection view, also the weights must be considered. For this reason
the aggregated dataset od_matrix also contains the column total_weight which
identifies the sum of the individual weights related to that couple of starting and
ending hexagons.

4.2 Benchmark
In this work, the proposed approach is evaluated against different anonymization
algorithms, adapted from existing sources:

• Mondrian [35]: partitions the data by recursively cutting along the coordinates
of the flows, represented as 4D points. Details of the algorithm can be found
at 2.5.1. Original Python implementation available at: https://github.com/
Nuclearstar/K-Anonymity/blob/master/k-Anonymity.ipynb.

• OIGH algorithm [46], which leverages horizontal cuts within the hierarchies of
origins and destinations. Details of the algorithm can be found at 2.5.2. The
implementation used is the one proposed by the authors of [20].

• ATG [20] based on optimization over tree-structured hierarchies. Details of
the algorithm can be found at 2.5.2. The implementation used is the one
proposed by the authors of [20].

All those algorithms have needed a phase for choosing the different hyperparameters
to set before the actual running of the different codes (as also described in Section
2.5). First of all the anonymity parameter k for k-anonymity has been set to 10 for
the three algorithms. Moreover, the algorithms need as input the OD-matrix and
the two hexagon hierarchical trees.

The Mondrian algorithm requires the specification of two variables:

• featureColumns is the set of features used for recursive partitioning of the
dataset. In this case, this vector is defines as featureColumns = [’start_lon’,
’start_lat’, ’end_lon’, ’end_lat’], which corresponds to a 4D repre-
sentation of the OD flows.

• sensitiveColumn is the attribute to protect, set to sensitiveColumn =
’person_id’. This means that the algorithm ensures that every partition
contains at least k distinct person_id.
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The ATG-Soft algorithm requires the specification of two key hyperparameters:

• suppr_thres_frac defines the maximum fraction of records that can be
suppressed instead of generalized when they fail to meet the anonymity
threshold. This parameter is set to 10% of the total volume to balance utility
and privacy.

• target_vol represents the target volume parameter used in the origin general-
ization heuristic. The author of [20] suggests to find a value for this paramter
in a way that the number of origins and destination hexagons is similar to
obtain a balanced representation of the data through the hexagons. For this
reason in Paris and Porto the value is set to 1000, while in Turin is 2500.

Finally, the OIGH algorithm needs nothing more but the three core components:
k, the OD-matrix and the two hierarchical trees.

4.3 Performance indicators
The anonymization alters the values of the OD-matrix, as well as the zone sizes,
depending on the aggregation of the geographical areas in the hierarchy. It is
crucial to assess data utility and privacy preservation with respect to the original
data.

When applying anonymization techniques to protect data, it is essential to
ensure that the process introduces only the minimum amount of generalization
or perturbation required to satisfy the k-anonymity constraint. While hiding
sensitive data is a priority, the resulting dataset must remain useful for further
analysis. Excessive perturbation may strengthen privacy protection, but it can
also compromise data utility, making it difficult to extract meaningful insights. For
this reason, it is crucial to compute some metrics that evaluate the quality and
usability of data.

Data utility metrics measure how well the anonymized OD-matrix preserves the
original data characteristics, comparing the pre- and post-anonymization versions.
The following are the metrics used in this work.

Discernability Metric

The first metric is one that attempts to capture in a straightforward way the desire
to maintain discernibility between tuples as much as is allowed by a given setting
of k [55]. This discernibility metric (CDM) assigns a penalty to each tuple based
on how many tuples in the transformed dataset are indistinguishable from it. If
an unsuppressed tuple is part of an equivalence class Eq of size |Eq|, then that
tuple is assigned a penalty of |Eq|. If a tuple is suppressed, then it is assigned
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a penalty of |D|, the size of the input dataset: in this way, a suppressed tuple
cannot be distinguished from any other tuple in the dataset, hence it needs a
penalization larger than any non-suppressed tuple (|D| ≥ |Eq|). The metric is
defined mathematically as:

CDM =
Ø

Eqs.t.|Eq|≥k

|Eq|2 +
Ø

Eqs.t.|Eq|<k

|D||Eq| (4.1)

In this expression, the sets Eq refer to the equivalence classes of tuples in D induced
by the anonymization. The first sum computes penalties for each non-suppressed
tuple, the second for suppressed tuples. Small values of this metric indicate small
equivalence classes and no suppression, with resulting OD matrices retaining more
utility and information. Notice that this metric is not normalized, and can assume
very large values.

Normalized Average Equivalence Class Size

The CAV G metric [35] evaluates the average size of equivalence classes in a dataset
after anonymization, normalized with respect to the anonymity parameter k. For-
mally, it is defined as:

CAV G =

A
|D+|

total_equiv_classes

B
k

(4.2)

D+ is the set of non-suppressed records, leading to |D+| ≤ |D|, and total_equiv_classes
is the number of equivalence classes that respects k-anonymity. This metric mea-
sures how much the average class size exceeds the minimum anonymity requirement.
A value of CAV G = 1 indicates that, on average, equivalence classes contain exactly
k records, meaning the dataset is minimally compliant with the k-anonymity con-
straint. Higher values of CAV G suggest that equivalence classes are significantly
larger than the threshold, which implies stronger anonymity but may also lead to
greater information loss due to excessive generalization.

Notice that this metric does not penalize suppression and does not compare the
obtained generalization with the original data.

Generalization Distance Metric

The Generalization Distance Metric (GDM) measures the spatial distortion intro-
duced when original geographic points (origins and destinations) are generalized
into an anonymized location. Particularly, in case of Mondrian and H3 hierarchy,
the anonymized point is defined as the center of the rectangle and the hexagon
respectively.
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Let each trip in the dataset be represented by its origin and destination
(x(i)

s , y(i)
s ), (x(i)

d , y
(i)
d ), where (x(i)

s , y(i)
s ) and (x(i)

d , y
(i)
d ) are the latitude–longitude co-

ordinates of the origin and destination, respectively. During the anonymization
process, each point is mapped into a new anonymized point. In the case of ODkAnon
the anonymzed point is the center of the hexagon, while in the case of Mondrian is
the center of the rectangle. This point is defined as (x(i)

s,g, y(i)
s,g), (x(i)

d,g, y
(i)
d,g).

The distance between the original point and its generalized representation is
then computed using the geodesic distance. When calculating the geodesic distance
between two points, the curvature of the Earth is taken into account. In other
words, it corresponds to the shortest path along the Earth’s surface between the
two locations. This differs from the Euclidean distance, which instead computes
the straight-line distance between two points, ignoring the Earth’s curvature. For
short distances, the difference between the two measures is negligible, since the
curved path can be approximated by a straight line. However, for points that
are far apart, the difference can become substantial. In any case, the geodesic
distance is considered in this work, as it provides a more accurate measurement.
The geodesic function is provided by the GeoPy library. The distances computed
are defined as:

d
(i)
j = dist

1
(x(i)

j , y
(i)
j ), (x(i)

j,g, y
(i)
j,g)
2
, j ∈ {s, d} (4.3)

The overall generalization error is then evaluated by aggregating these distances
across all trips. For example, the metric considers descriptive statistics such as
mean and median distance and standard deviation.

This metric therefore provides a quantitative evaluation of how far generalized
data points deviate from their original spatial position: smaller values indicate that
the generalization process preserves spatial accuracy, while larger values suggest
higher distortion and, consequently, lower data utility.

Mean Generalization Error

The mean generalization error is defined by [20] as follows:

Ḡ = 1
|D+|

Ø
Eqo−→ds.t.|Eqo−→d|≥k

(|o|+ |d|) |Eqo−→d| (4.4)

where D+ is the set of non-suppressed records and and |D+| is their total volume. All
non-suppressed equivalence classes Eqo−→d that respect k-anonymity (Eqo−→d ≥ k)
are considered, which means only the ones belonging to D+. |o| and |d| represent the
number of original areas aggregated over the hierarchy, for origins and destinations,
respectively. This metric provides an estimation of the average information loss
introduced during the generalization process. A larger value of Ḡ indicates that
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origins and/or destinations have been generalized into coarser spatial units, reducing
the precision of the mobility representation. On the other hand, lower values of
Ḡ reflect finer partitions, which preserve more spatial detail but may offer weaker
privacy guarantees. Notice that this metric cannot be computed for algorithms
that do not use a hierarchy.

Reconstruction Loss

This metric quantifies how much the generalized data deviates from the original
data. The reconstruction loss E is computed in this way [20]:

E = 1
|D|

Ø
o,d∈leaves(T )

||D̃o−→d| − |Do−→d|| (4.5)

where T is the hierarchy tree, and the finer-grained tiles in this hierarchy for the
origins and destinations, i.e., the leaves of the tree are considered. Do−→d is the
number of records in these original finer-grained tiles. Considering the leaves of
the tree T ensures that the loss is computed with respect to the original maximum
granularity (level 10 of the H3 hierarchy), regardless of how much aggregation has
been performed. The anonymized coarser-grained equivalence classes Eqo−→d that
respect k-anonymity (Eqo−→d ≥ k) should be mapped to the finer-grained ones.
For every pair of origin cells (o, d) at the maximum granularity (the leaves of the
hierarchical structure T ), it is found which generalised pair (o′, d′) they belong to
after anonymisation. However, such information is now aggregated over multiple
tiles, and it is not possible to infer the exact original values from the anonymized
version. Then, it is crucial to uniformly assign the anonymized records to the
finer-grained tiles, proportionally to their size. This is defined as the reconstructed
finer-grained volume of trips D̃o−→d. The metric is normalised by the total volume
of the flows |D| for readability. Notice that D also includes the flows that have
been suppressed during the anonymisation, and the finer-grained tiles without any
trips that generalize to tiles with at least a trip. In a scenario where, during the
anonymization process, new trips are not created, i.e., they do not increase but are
possibly suppressed, the worst possible obtained value is 2.

Notice that this metric can also not be computed for algorithms that do not use
a hierarchy.
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Chapter 5

Results

This chapter contains the different experiments done, which consider the following
dimensions:

• 3 different datasets: Paris, Turin and Porto;

• 4 algorithms: ODkAnon, ATG-Soft, OIGH, and Mondrian;

• 5 data utility metrics: Discernability Metric CDM , Normalized Average Equiv-
alence Class Size CAV G, Generalization Mistance Metric (GDM), Mean Gen-
eralization Error Ḡ, and Reconstruction Loss E;

Moreover, a more precise analysis is done on the Paris dataset considering, in
addition to the ones above, these dimensions:

• 4 different ways of segmenting the dataset: whole dataset, sex, age, and
socio-professional category;

• 2 protection targets: participants, and population;

• 2 metrics evaluation computation: based on participants (trips), and based on
population (trips multiplied by representativeness).

This additional analysis is possible thanks to the specific characteristics of the
Paris dataset, which includes the WEIGHT_INDIV attribute representing how many
individuals in the population each participant represents. This allows for the
evaluation of anonymization from both the perspective of survey participants and
the broader population they represent.

5.1 Results over different datasets
In this section, the performance the different anonymization algorithms is compared
across the three datasets introduced in 4.1. The evaluation considers some standard
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Table 5.1: Summary of the three evaluated datasets.

Dataset Trips Unique OD pairs Origin hexagons Destination hexagons
paris 81,289 72,569 29,350 32,217
turin 873,234 507,514 3,606 3,608
porto 1,674,160 501,472 8,444 18,359

utility and privacy metrics CDM , CAV G, Ḡ, E, together with the ad-hoc created
metric GDM . All the metrics are defined in 4.3. Tables 5.2, 5.3 and 5.4 report the
obtained results.

Table 5.2: Result comparison on the Paris dataset. Ḡ and E are not defined for
Mondrian.

CDM CAV G Ḡ E GDM (m) Time (s)
ODkAnon 5.4× 107 13.2 601.8 1.91 933.9 26.4
ATG-Soft 1.1× 108 46.5 6,807.6 1.98 7,275.0 29.8
OIGH 3.6× 107 80.5 6,869.0 1.99 7,345.8 14.3
Mondrian 4.0× 105 1.3 - - 351.8 7.2

Regarding the cost metrics (CDM and CAV G), Mondrian outperforms the other
algorithms with values that are considerably low. However, it plays a different game
compared to the other methods: since it does not rely on a predefined hierarchy, it
can freely generate optimal rectangles whose size is tuned to include just above k
points. ODkAnon shows intermediate results in cost metrics. While, taking into
account CDM , ATG-Soft and OIGH always are an order of magnitude larger than
ODkAnon. On the other hand, CAV G has not a clear winner. OIGH is for sure the
one with highest value, but ODkAnon and ATG-Soft exhibit a fluctuating behavior.
This is caused the characteristics of the different datasets.

The metrics Ḡ and E, unavailable for Mondrian, provide important insights
into the geometric quality of the generated partitions. ODkAnon consistently
presents the lowest values for Ḡ, suggesting more compact partitions compared
to ATG-Soft and OIGH, which show values in the thousands. The reason of this
behavior hides in the fact that ODkAnon is aggregating origins and destinations
simultaneously, creating a much finer resolution for the hexagons. ATG-Soft,
instead, is aggregating the origin hexagons first to find a map where each sone
has a departing volume around a given parameter. Then, for each origin, an
aggregation of the destination hexagons is selected to minimizes the error. This
operation brings to fine origin hexagons, but it may bring to really large destination
hexagons. Moreover, unlike ATG, ODkAnon automatically balances generalisation
between origins and destinations without parameter tuning. In these experiments,
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Table 5.3: Result comparison on the Turin dataset. Ḡ and E are not defined for
Mondrian.

CDM CAV G Ḡ E GDM (m) Time (s)
ODkAnon 4.1× 109 77.1 280.1 1.80 691.3 30.6
ATG-Soft 5.7× 1010 71.9 3,073.8 1.88 1,105.4 4.9
OIGH 1.2× 1010 886.7 3,328.7 1.97 1,721.3 2.5
Mondrian 1.2× 107 1.2 - - 118.6 2,446.1

Table 5.4: Result comparison on the Porto dataset. Ḡ and E are not defined for
Mondrian.

CDM CAV G Ḡ E GDM (m) Time (s)
ODkAnon 6.2× 109 208.1 270.8 1.71 730.9 14.8
ATG-Soft 9.7× 1010 41.6 2,277.9 1.82 806.9 2.7
OIGH 4.2× 1010 1,765.1 2,240.3 1.97 3,177.3 1.5
Mondrian 1.5× 107 1.5 - - 81.1 3094.0

as the authors suggest in [20], the parameter has been choosen trying to create
an OD-matrix with same number of origins and destinations. On the other hand,
OIGH applies a single cut to the hierarchy trees so that all cells satisfy k-anonymity.
This behavior inevitably enlarges some hexagons more than necessary, since even
already compliant cells are forced to generalize further.

The reconstruction loss metric E is particularly significant as it measures the
deviation from original data when reconstructing fine-grained flows from general-
ized equivalence classes. Lower values indicate better preservation of the original
trip distribution patterns. ODkAnon achieves the best results across all datasets.
This superior performance suggests that ODkAnon’s generalization strategy bet-
ter preserves the underlying spatial flow patterns when data is reconstructed at
maximum granularity. ATG-Soft shows moderate reconstruction loss, while OIGH
consistently exhibits the highest deviation from original patterns. These higher
values indicate that when fine-grained trips are reconstructed from the generalized
equivalence classes, there is greater distortion in the spatial distribution compared
to the original data.

The GDM metric reinforces these findings. Since Mondrian has not a hierarchy
to respect, it is systematically achieving the lowest distance, being able to create
small rectangular partitions with a number of points close to k. For the same
reasons just described above, ODkAnon is maintaining moderate distances with
respect to the ATG-Soft and OIGH. As an example, the Turin dataset is generating
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the generalization hexagons shown in Figure 5.1. ODkAnon is the only algorithm
able to maintain fine-resolution hexagons thanks to its behavior that balance the
generalization of origins and destinations, producing a 32 × 32 OD matrix. In
contrast, OIGH yields a 1× 89 matrix, while ATG-Soft results in 357× 328.

Figure 5.1: On the top left the generalization hexagons created by the ODkAnon,
on the top right the ones from OIGH, on the bottom left the origins of ATG-Soft
and on the bottom right the destination od ATG-Soft

The analysis of execution times reveals heterogeneous performance characteristics.
ATG-Soft and OIGH are the most efficient, being able to complete the whole process
in very short time. ODkAnon requires slightly longer but still moderate times.
Mondrian shows variable behavior depending on the size of the dataset: it is
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excellent on Paris but considerably slower on Turin and Porto.
These results highlight fundamental trade-off in spatial anonymization:

• ODkAnon offers a balanced compromise across all the metrics, maintaining
acceptable costs, good geometric performance and reasonable execution time,
making it suitable for applications requiring a balance between privacy and
utility.

• ATG-Soft prioritize computational efficiency but at the cost of inferior quality
and geographical localization metrics, suggesting orientation toward applica-
tion scenarios where processing speed is prioritized over spatial precision.

• OIGH prioritize computational efficiency as well, proving the worst results
over all the presented algorithms.

• Mondrian excels in minimizing cost metrics and geographical localization but
sacrifices computational efficiency on larger datasets.

For these reasons, the choice of optimal algorithm depends on specific application
requirements. ODkAnon configures as a versatile solution for most standard
application scenarios, offering balanced performance across all evaluated parameters.
For real-time applications or those with strict computational constraints, ATG-Soft
and OIGH represent viable alternatives. For scenarios in which there is no need for
a hierarchical structure but the priority is on local spatial structure preservation,
Mondrian emerges as an ideal candidate despite elevated processing times.

5.2 Results over the Paris datasets
This part of the work will focus on the Paris dataset only. In particular, thanks to its
characteristics, the work will deepen the difference between participant-protection
and population-protection. Moreover, the dataset will be segmented to study the
behavior of the algorithm to different segments of population. The dataset has
been filtered out to contain only on the trips within the Île-de-France (starting and
ending within the region). For the algorithms that allow suppression, a maximum
threshold of 10% of trip suppression has been fixed. For each run, the maximum
computation time defined is up to two hours. The runs that did not provide a
result in time are reported as N/A in the tables.

5.2.1 Results over the whole population
The ODkAnon algorithm is first applied on the whole dataset. The process begins
by protecting the participants in the survey, setting k = 10 for obtaining a k-
anonymous OD-matrix. For both the origins and the destination, 29 zones are
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obtained, merging the original thousands of resolution-10 hexagons according to
the hierarchy.

When protecting the population, k should be adapted, accounting for the
representativeness of each participant. Given that a participant on average accounts
for 2,674 people, the threshold is set to k = 10 × 2,674 in order to keep a fair
comparison of the two approaches. In this case the same 29 destination zones are
obtained, but more fine-grained 35 origin zones.

The comparison in the origin hexagons for the two approaches is reported in
Figure 5.2, with a zoom over the Paris region with observed differences. Protecting
the population produces a different anonymization: in particular, 7 smaller hexagons
(red tiles) are generalized to their parent node (blue tiles). Likely, these zones
contain fewer trips from the participants—hence, they must be aggregated to
satisfy 10-anonymity—but said participants represent a sufficient amount of people,
allowing to maintain a higher resolution when protecting the population.

Figure 5.2: Detail over Paris of the origin generalization hexagons for the
participant-protecting (left, blue hexagons) and the population-protecting (right,
red hexagons) definitions.

Privacy metrics validate the strength of the anonymization. When generating
the anonymous OD-matrix for the participants, the impact on the population
OD-matrix is evaluated, and vice versa. The minimum k-anonymity obtained in
such cases is measured, with the results reported in Table 5.5.

The results show that protecting the participants leads to a population OD-
matrix that is no longer k-anonymous: 21 cells fall below the anonymity threshold,
with a minimum value of 10,274 compared to the required 26,742. On the other
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hand, when the protection is applied to the population, the participants’ OD matrix
does not reach the same level of anonymization k = 10, as 13 cells fall below the
threshold, and the minimal value is 4.

Table 5.5: k-anonymity property computed in different scenarios.

Participant-protecting Population-protecting
kdataset kpopulation kdataset kpopulation

10 10,274 4 26,742

The utility of data is compared by applying different algorithms to the whole
dataset. Table 5.6 shows the utility metrics in the survey participant-protecting
scenario. In general, ATG-Soft and OIGH obtain relatively lower utility than
ODkAnon. Given that OIGH does not allow suppression, it over-generalizes sparse
hexagons and thus loses more information. While ATG-Soft allows for suppression,
its performance highly depends on the pre-definition of zones. As the authors
of [20] acknowledged, ATG-Soft needs proper tuning to achieve better performance.
Mondrian does not consider H3 hexagons for hierarchy definition: it aggregates
coordinates into rectangles. The more flexible generalization allows Mondrian to get
the best performance on CDM and CAV G, since it does not aggregate over hierarchy,
Ḡ and E cannot be derived. While evaluating the results, it is important to keep
in mind that non-homogeneity gives an advantage to ATG-Soft and Mondrian in
terms of metrics, as it may happen that origin or destination overlap: while this
offers greater flexibility to the algorithms, it may prevent real-world analysis of the
results. For instance, when analyzing the number of trips arriving at a specific zone,
hexagons at different resolutions covering that zone might need to be considered.

Utility is also evaluated from the population’s point of view. In general, the
results are similar to calculating metrics on the participants, see Table 5.7 for more
details. Notice that when computing CDM on population, the weights make it get
much larger values, while the other metrics are normalized.

Results for the population-protecting scenario are reported in Table 5.8 and
Table 5.9. In this case, ATG-Soft and Mondrian did not return results within two
hours of computation. This is because now the number of trips is much larger
(because the original trips are now multiplied by the representativeness), and the
two algorithms scale poorly. In general, the utility metrics computed both on
participants and population are on par with the participant-protecting scenario. In
short, protecting participants or the population has little impact on data utility, but
neither approach can guarantee the same level of privacy from the other perspective.
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Table 5.6: Result comparison on the whole dataset, protecting the participants,
calculating metrics on the participants. Ḡ and E are not defined for Mondrian.

CDM CAV G Ḡ E GDM (m) Time (s)
ODkAnon 5.4× 107 13.2 601.8 1.91 933.9 26.4
ATG-Soft 1.1× 108 46.5 6,807.6 1.98 7,272.0 29.8
OIGH 3.6× 107 80.5 6,869.0 1.99 7,345.8 14.3
Mondrian 4.0× 105 1.3 - - 351.8 7.2

Table 5.7: Result comparison on the whole dataset, protecting the participants,
calculating metrics on the population. Ḡ and E are not defined for Mondrian.

CDM CAV G Ḡ E GDM (m) Time (s)
ODkAnon 1.3× 1014 12.8 592.1 1.92 933.9 26.4
ATG-Soft 2.2× 1014 44.2 6,824.5 1.88 7,272.0 29.8
OIGH 2.4× 1014 77.6 6,867.3 1.99 7,345.8 14.3
Mondrian 3.3× 1014 13.5 - - 351.8 7.2

5.2.2 Segmenting the population over sex
Moreover, the population was segmented taking into account three different at-
tributes available in the NetMob dataset: sex, age, and profession. In particular,
the division was carried out by sex (men and women), by age groups (from 10 to
19 years old, from 20 to 29, from 30 to 39, from 40 to 49, from 50 to 59, from 60 to
99, and above 70), and by profession into eight categories.

Results for the sex segmentation are reported in Tables 5.10, 5.11, 5.12, and 5.13.
The following section presents the results for age and socio-professional categories.
Again, a two-hour deadline was imposed for the computation of every k-anonymized
dataset. When protecting the population, ATG-Soft and Mondrian were not able to
meet the time limit–hence, the metrics on these two algorithms were not evaluated.

When protecting the participants, anonymizing the male dataset produces a
2×5 matrix, whereas anonymizing the female dataset results in a 29×29 matrix.
This indicates that protecting men is more challenging, as it requires very coarse
hexagons, while for women the resulting hexagons remain much finer. Furthermore,
when applying protection to the population, the difference becomes even more
pronounced: the anonymized male dataset reduces to a 2×2 matrix.

These differences are mainly observed when using ODkAnon (see in particular
Tables 5.10 and 5.11). Indeed, ODkAnon is the only algorithm able to reach very
high utility metrics for women. This observation raises the question of whether the
difference lies in the data distribution or in the algorithms’ choices, and will be
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Table 5.8: Result comparison on the whole dataset, protecting the population,
calculating metrics on the participants. ATG–Soft and Mondrian did not provide a
result within 2 hours of computation time.

CDM CAV G Ḡ E GDM (m) Time (s)
ODkAnon 5.3× 107 13.1 539.0 1.91 876.8 26.2
ATG-Soft N/A >7,200.0
OIGH 3.6× 107 80.5 6,869.0 1.99 7,345.8 13.1
Mondrian N/A - - N/A >7,200.0

Table 5.9: Result comparison on the whole dataset, protecting the population,
calculating metrics on the population. ATG–Soft and Mondrian did not provide a
result within 2 hours of computation time.

CDM CAV G Ḡ E GDM (m) Time (s)
ODkAnon 1.1× 1014 12.7 530.9 1.92 876.8 26.2
ATG-Soft N/A >7,200.0
OIGH 2.3× 1014 77.6 6,867.3 1.99 7,345.8 13.1
Mondrian N/A - - N/A >7,200.0

evaluated in depth in future work.

5.2.3 Other results
In the following, results are reported for the age and the socio-professional category.
For each segment, k = 10 is kept for the k-anonymous OD matrix. Keeping k = 10
on much smaller datasets greatly reduces the data utility, and overgeneralizes the
geographic area, leaving fewer than 5 origins/destinations.

Tables 5.14, 5.15, 5.16, 5.17 present the results for the different combinations of
protecting either the participants or the population, and calculating the metrics
over either the participants or the population, segmenting the dataset according
to participants’ age. The same results, this time segmenting according to socio-
professional categories, is shown in Tables 5.18, 5.19, 5.20, and 5.21.

Again, when protecting the population, ATG-Soft and Mondrian computation
exceeded our two-hour computation limit.
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Table 5.10: Result comparison segmenting on sex, protecting the participants,
calculating metrics on the participants. Ḡ and E are not defined for Mondrian.

Sex CDM CAV G Ḡ E GDM (m)

ODkAnon M 4.6× 107 151.6 4,388.3 1.43 4,077.4
F 1.8× 107 9.5 446.7 1.51 931.2

ATG-Soft M 3.3× 107 49.0 5,140.5 1.88 7,556.8
F 4.1× 107 67.4 5,300.2 1.90 7,671.5

OIGH M 8.0× 106 37.9 4,843.3 1.99 7,334.2
F 1.0× 107 42.6 5,033.7 1.99 7,345.6

Mondrian M 1.7× 105 1.3 - - 441.0
F 2.2× 105 1.4 - - 391.2

Table 5.11: Result comparison segmenting on sex, protecting the participants,
calculating metrics on the population. Ḡ and E are not defined for Mondrian.

Sex CDM CAV G Ḡ E GDM (m)

ODkAnon M 2.1× 1014 141.4 4,377.5 1.87 4,077.4
F 4.1× 1013 9.4 433.5 1.88 931.2

ATG-Soft M 1.0× 1014 45.3 5,180.0 1.88 7,556.8
F 1.6× 1014 66.2 5,340.5 1.89 7,671.5

OIGH M 4.9× 1013 35.2 4,842.4 1.99 7,334.2
F 7.2× 1013 42.3 5,031.6 1.99 7,345.6

Mondrian M 1.0× 1014 10.9 - - 441.0
F 1.7× 1014 14.0 - - 391.2
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Table 5.12: Result comparison segmenting on sex, protecting the population,
calculating metrics on the participants. ATG–Soft and Mondrian did not provide a
result within 2 hours of computation time.

Sex CDM CAV G Ḡ E GDM (m)

ODkAnon M 1.3× 108 302.8 6,726.8 1.86 5,373.4
F 1.8× 107 9.9 450.3 1.87 932.7

ATG-Soft M N/AF

OIGH M 8.0× 106 37.9 4,843.3 1.99 7,334.2
F 1.0× 107 42.6 5,033.7 1.99 7,345.6

Mondrian M N/A - - N/AF - -

Table 5.13: Result comparison segmenting on sex, protecting the population,
calculating metrics on the population. ATG–Soft and Mondrian did not provide a
result within 2 hours of computation time.

Sex CDM CAV G Ḡ E GDM (m)

ODkAnon M 7.5× 1014 292.5 6,724.4 1.92 5,373.4
F 4.1× 1013 9.9 437.2 1.89 932.7

ATG-Soft M N/AF

OIGH M 4.9× 1013 35.2 4,842.4 1.99 7,334.2
F 7.2× 1013 42.3 5,031.6 1.99 7,345.6

Mondrian M N/A - - N/AF - -
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Table 5.14: Result comparison segmenting on age, protecting the participants,
calculating metrics on the participants. Ḡ and E are not defined for Mondrian.

Age CDM CAV G Ḡ E GDM (m)

O
D

kA
no

n

[10-20] 5.9× 105 21.3 801.2 1.81 5,136.2
[20-30] 3.1× 107 156.9 4,154.3 1.85 5,316.9
[30-40] 2.2× 107 128.5 3,917.3 1.84 5,236.4
[40-50] 8.6× 106 66.8 2,481.9 1.84 4,143.4
[50-60] 5.5× 106 52.9 2,057.5 1.84 4,012.2
[60-70] 6.7× 106 69.3 2,583.5 1.83 5,295.4
>70 9.5× 105 26.2 1,082.6 1.83 5,065.9

AT
G

-S
of

t

[10-20] 8.8× 105 939.0 1,176.0 2.00 13,384.7
[20-30] 1.1× 107 137.6 3,703.9 1.99 7,921.1
[30-40] 7.6× 106 113.0 3,400.2 1.99 8,043.6
[40-50] 1.0× 107 65.4 3,427.5 1.89 7,922.3
[50-60] 5.0× 106 93.0 2,823.5 1.99 7,982.7
[60-70] 2.9× 106 46.3 2,213.8 1.54 7,971.1
>70 1.3× 106 115.1 1,467.0 1.99 13,796.6

O
IG

H

[10-20] 2.2× 105 18.7 743.6 1.99 7,870.1
[20-30] 2.3× 106 19.6 3,146.5 1.99 7,272.9
[30-40] 1.4× 106 16.1 2,808.3 1.99 7,387.1
[40-50] 1.5× 106 16.7 2,938.1 1.99 7,371.6
[50-60] 1.0× 106 13.2 2,349.6 1.99 7,393.8
[60-70] 2.3× 106 61.1 2,177.1 1.99 8,012.8
>70 3.7× 105 23.0 923.3 1.99 7,967.1

M
on

dr
ia

n

[10-20] 1.3× 101 1.4 - - 722.0
[20-30] 9.5× 101 1.3 - - 504.0
[30-40] 6.7× 101 1.1 - - 502.9
[40-50] 7.0× 101 1.1 - - 503.1
[50-60] 7.9× 101 1.6 - - 540.9
[60-70] 3.7× 101 1.2 - - 587.0
>70 1.9× 101 1.6 - - 755.7
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Table 5.15: Result comparison segmenting on age, protecting the participants,
calculating metrics on the population. Ḡ and E are not defined for Mondrian.

Age CDM CAV G Ḡ E GDM (m)

O
D

kA
no

n

[10-20] 1.3× 1013 38.4 8,160.6 1.81 5,136.2
[20-30] 7.6× 1013 96.9 4,106.5 1.84 5,316.9
[30-40] 1.4× 1014 124.1 3,950.2 1.82 5,236.4
[40-50] 4.6× 1013 68.5 2,469.1 1.86 4,143.4
[50-60] 3.1× 1013 54.6 2,069.9 1.84 4,012.2
[60-70] 6.3× 1013 83.6 2,591.8 1.83 5,295.4
>70 6.4× 1012 27.8 1,054.1 1.78 5,065.9

AT
G

-S
of

t

[10-20] 2.0× 1013 168.4 1,176.0 2.00 13,384.7
[20-30] 3.0× 1013 85.6 3,704.0 1.99 7,921.1
[30-40] 5.0× 1013 110.2 3,385.1 1.99 8,043.6
[40-50] 5.4× 1013 65.7 3,451.3 1.88 7,922.3
[50-60] 4.0× 1013 95.8 2,829.9 1.99 7,982.7
[60-70] 2.3× 1013 55.7 2,221.9 1.57 7,971.1
>70 1.1× 1013 125.5 1,467.0 1.99 13,796.6

O
IG

H

[10-20] 5.3× 1012 33.8 744.7 1.99 7,870.1
[20-30] 6.4× 1012 12.2 3,146.5 1.99 7,272.9
[30-40] 9.6× 1012 15.7 2,804.5 1.99 7,387.1
[40-50] 1.1× 1013 17.0 2,937.8 1.99 7,371.6
[50-60] 8.1× 1012 13.6 2,349.5 1.99 7,393.8
[60-70] 2.5× 1013 73.6 2,175.1 1.99 8,012.8
>70 3.1× 1012 25.1 921.5 1.99 7,967.1

M
on

dr
ia

n

[10-20] 2.0× 1013 19.3 - - 722.0
[20-30] 2.5× 1013 7.5 - - 504.0
[30-40] 2.7× 1013 7.7 - - 502.9
[40-50] 3.0× 1013 8.2 - - 503.1
[50-60] 6.4× 1013 15.6 - - 540.9
[60-70] 2.2× 1013 9.6 - - 587.0
>70 1.4× 1013 14.2 - - 755.7
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Table 5.16: Result comparison segmenting on age, protecting the population,
calculating metrics on the participants. ATG–Soft and Mondrian did not provide a
result within 2 hours of computation time.

Age CDM CAV G Ḡ E GDM (m)

O
D

kA
no

n

[10-20] 6.4× 105 42.6 942.8 1.82 9,172.9
[20-30] 3.2× 107 156.7 4,234.6 1.85 5,298.5
[30-40] 2.3× 107 128.4 4,025.4 1.84 5,168.2
[40-50] 2.3× 107 133.5 3,879.9 1.84 5,352.8
[50-60] 1.5× 107 105.7 3,187.4 1.84 5,164.6
[60-70] 6.9× 106 69.2 2,643.6 1.88 5,233.8
>70 9.6× 105 26.1 1,105.8 1.83 4,966.5

AT
G

-S
of

t

[10-20]

N/A

[20-30]
[30-40]
[40-50]
[50-60]
[60-70]
>70

O
IG

H

[10-20] 2.2× 105 18.7 743.6 1.99 7,870.1
[20-30] 1.1× 107 137.6 3,714.1 1.99 7,940.0
[30-40] 1.4× 106 16.1 2,808.3 1.99 7,387.1
[40-50] 1.5× 106 16.7 2,938.1 1.99 7,371.6
[50-60] 5.1× 106 93.0 2,784.4 1.99 8,063.7
[60-70] 2.3× 106 61.1 2,177.1 1.99 8,012.8
>70 3.7× 105 23.0 923.3 1.99 7,967.1

M
on

dr
ia

n

[10-20]

N/A

- -

N/A

[20-30] - -
[30-40] - -
[40-50] - -
[50-60] - -
[60-70] - -
>70 - -
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Table 5.17: Result comparison segmenting on age, protecting the population,
calculating metrics on the population. ATG–Soft and Mondrian did not provide a
result within 2 hours of computation time.

Age CDM CAV G Ḡ E GDM (m)

O
D

kA
no

n

[10-20] 1.5× 1013 80.7 950.1 1.91 9,172.9
[20-30] 8.6× 1013 102.6 4,184.3 1.93 5,298.5
[30-40] 1.6× 1014 132.9 4,054.2 1.94 5,168.2
[40-50] 1.6× 1014 143.0 3,850.1 1.93 5,352.8
[50-60] 1.1× 1014 115.9 3,206.1 1.94 5,164.6
[60-70] 7.5× 1013 89.8 2,641.5 1.95 5,233.8
>70 7.9× 1012 30.4 1,083.1 1.94 4,966.5

AT
G

-S
of

t

[10-20]

N/A

[20-30]
[30-40]
[40-50]
[50-60]
[60-70]
>70

O
IG

H

[10-20] 5.3× 1012 33.8 744.7 1.99 7,870.1
[20-30] 3.1× 1013 85.6 3,714.0 1.99 7,940.0
[30-40] 9.6× 1012 15.7 2,804.5 1.99 7,387.1
[40-50] 1.1× 1012 17.0 2,937.8 1.99 7,371.6
[50-60] 4.1× 1013 95.8 2,791.7 1.99 8,063.7
[60-70] 2.5× 1013 73.6 2,175.1 1.99 8,012.8
>70 3.1× 1012 25.1 921.5 1.99 7,967.1

M
on

dr
ia

n

[10-20]

N/A

- -

N/A

[20-30] - -
[30-40] - -
[40-50] - -
[50-60] - -
[60-70] - -
>70 - -
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Results

Table 5.18: Result comparison segmenting on socio-professional category, pro-
tecting the participants, calculating metrics on the participants. Ḡ and E are not
defined for Mondrian.

Cat. CDM CAV G Ḡ E GDM (m)

OD
kA

no
n

Cat. 1 9.1× 105 24.6 1,131.1 1.82 5,425.5
Cat. 2 2.3× 107 110.0 3,666.6 1.86 4,087.0
Cat. 3 1.2× 107 95.8 3,034.3 1.84 4,965.7
Cat. 4 8.8× 106 82.7 2,486.3 1.84 5,305.5
Cat. 5 5.2× 105 38.1 940.5 1.81 9,503.4
Cat. 6 6.3× 106 68.5 2,451.1 1.83 5,431.7
Cat. 7 4.7× 106 48.1 1,842.0 1.84 5,267.7
Cat. 8 5.9× 105 17.5 789.1 1.81 4,514.8

AT
G-

So
ft

Cat. 1 1.1× 106 108.5 1,428.0 2.00 14,454.8
Cat. 2 2.2× 107 62.0 4,545.4 1.97 7,782.7
Cat. 3 4.1× 106 84.2 2,655.1 1.82 8,107.7
Cat. 4 4.3× 106 45.3 2,230.0 1.88 8,003.0
Cat. 5 7.0× 105 84.0 1,142.0 2.00 14,037.7
Cat. 6 2.4× 106 60.3 2,175.9 1.99 7,929.4
Cat. 7 4.3× 106 84.4 2,535.3 1.99 7,816.8
Cat. 8 2.3× 106 154.4 2,001.0 2.00 13,765.6

OI
GH

Cat. 1 3.4× 105 21.7 909.4 1.99 8,377.9
Cat. 2 4.3× 106 27.5 4,087.0 1.99 7,301.6
Cat. 3 8.7× 105 12.0 2,222.5 1.99 7,452.7
Cat. 4 6.5× 105 10.3 1,896.8 1.99 7,369.9
Cat. 5 1.6× 105 16.8 712.5 1.99 8,106.6
Cat. 6 2.4× 106 60.3 2,132.0 1.99 7,932.6
Cat. 7 4.3× 106 84.4 2,566.6 1.99 7,836.6
Cat. 8 5.4× 105 30.8 1,215.0 1.99 8,015.8

M
on

dr
ian

Cat. 1 1.9× 101 1.6 - - 836.4
Cat. 2 1.6× 102 1.4 - - 503.6
Cat. 3 7.1× 101 1.6 - - 601.1
Cat. 4 5.3× 101 1.4 - - 529.0
Cat. 5 1.1× 101 1.3 - - 898.4
Cat. 6 3.7× 101 1.2 - - 550.5
Cat. 7 7.0× 101 1.6 - - 582.2
Cat. 8 1.9× 101 1.2 - - 645.8

70



Results

Table 5.19: Result comparison segmenting on socio-professional category, pro-
tecting the participants, calculating metrics on the population. Ḡ and E are not
defined for Mondrian.

Cat. CDM CAV G Ḡ E GDM (m)

OD
kA

no
n

Cat. 1 3.8× 1012 19.9 1,138.3 1.80 5,425.5
Cat. 2 6.5× 1013 77.6 3,666.1 1.87 4,087.0
Cat. 3 1.0× 1014 108.8 3,018.6 1.83 4,965.7
Cat. 4 1.2× 1014 119.0 2,549.0 1.85 5,305.5
Cat. 5 6.6× 1012 53.2 940.3 1.84 9,503.4
Cat. 6 5.2× 1013 78.7 2,410.3 1.81 5,431.7
Cat. 7 1.8× 1013 41.9 1,833.4 1.85 5,267.7
Cat. 8 2.0× 1012 13.2 829.6 1.79 4,514.8

AT
G-

So
ft

Cat. 1 5.0× 1012 88.7 1,428.0 1.99 14,454.8
Cat. 2 5.0× 1013 43.3 4,591.9 1.97 7,782.7
Cat. 3 3.6× 1013 96.0 2,643.8 1.83 8,107.7
Cat. 4 4.4× 1013 66.8 2,236.7 1.90 8,003.0
Cat. 5 9.5× 1012 115.6 1,142.0 1.99 14,037.7
Cat. 6 2.3× 1013 70.2 2,165.1 1.99 7,929.4
Cat. 7 2.2× 1013 73.1 2,351.1 1.99 7,816.8
Cat. 8 1.0× 1013 118.5 2,001.0 2.00 13,765.6

OI
GH

Cat. 1 1.5× 1012 17.7 898.4 1.99 8,377.9
Cat. 2 1.5× 1013 19.3 4,089.8 1.99 7,301.6
Cat. 3 8.0× 1012 13.7 2,220.0 1.99 7,452.7
Cat. 4 1.0× 1013 14.8 1,895.7 1.99 7,369.9
Cat. 5 2.4× 1012 23.1 715.6 1.99 8,106.6
Cat. 6 2.3× 1013 70.2 2,121.4 1.99 7,932.6
Cat. 7 2.2× 1013 73.1 2,561.2 1.99 7,836.6
Cat. 8 2.7× 1012 23.7 1,223.9 1.99 8,015.8

M
on

dr
ian

Cat. 1 7.3× 1012 10.7 - - 836.4
Cat. 2 7.9× 1013 10.9 - - 503.6
Cat. 3 5.7× 1013 16.2 - - 601.1
Cat. 4 5.7× 1013 15.3 - - 529.0
Cat. 5 7.9× 1012 11.2 - - 898.4
Cat. 6 2.1× 1013 9.4 - - 550.5
Cat. 7 4.4× 1013 13.7 - - 582.2
Cat. 8 3.3× 1012 4.9 - - 645.8
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Table 5.20: Result comparison segmenting on socio-professional category, protect-
ing the population, calculating metrics on the participants.ATG–Soft and Mondrian
did not provide a result within 2 hours of computation time.

Cat. CDM CAV G Ḡ E GDM (m)

OD
kA

no
n

Cat. 1 9.4× 105 24.7 1,149.9 1.82 5,339.1
Cat. 2 6.6× 107 219.9 5,689.6 1.85 5,347.6
Cat. 3 1.2× 107 95.7 3,072.9 1.84 4,916.7
Cat. 4 9.1× 106 82.6 2,548.2 1.84 5,239.0
Cat. 5 5.2× 105 19.0 868.9 1.82 4,826.7
Cat. 6 2.6× 106 34.2 1,648.6 1.83 4,028.3
Cat. 7 1.2× 107 96.1 2,861.5 1.84 5,236.0
Cat. 8 1.4× 106 35.0 1,234.7 1.81 5,641.5

AT
G-

So
ft

Cat. 1

N/A

Cat. 2
Cat. 3
Cat. 4
Cat. 5
Cat. 6
Cat. 7
Cat. 8

OI
GH

Cat. 1 3.4× 105 21.7 909.4 1.99 8,377.9
Cat. 2 4.3× 106 27.5 4,087.0 1.99 7,301.6
Cat. 3 8.7× 105 12.0 2,222.5 1.99 7,452.7
Cat. 4 3.1× 106 75.5 2,234.4 1.99 8,058.0
Cat. 5 1.6× 105 16.8 712.5 1.99 8,106.6
Cat. 6 2.4× 106 60.3 2,132.0 1.99 7,932.6
Cat. 7 4.3× 106 84.4 2,566.6 1.99 7,836.6
Cat. 8 5.4× 105 30.8 1,215.0 1.99 8,015.8

M
on

dr
ian

Cat. 1

N/A

- -

N/A

Cat. 2 - -
Cat. 3 - -
Cat. 4 - -
Cat. 5 - -
Cat. 6 - -
Cat. 7 - -
Cat. 8 - -
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Table 5.21: Result comparison segmenting on socio-professional category, protect-
ing the population, calculating metrics on the population. ATG–Soft and Mondrian
did not provide a result within 2 hours of computation time.

Cat. CDM CAV G Ḡ E GDM (m)

OD
kA

no
n

Cat. 1 4.5× 1012 21.5 1,146.9 1.94 5,339.1
Cat. 2 2.2× 1014 161.1 5,647.8 1.92 5,347.6
Cat. 3 1.1× 1014 115.6 3,055.4 1.93 4,916.7
Cat. 4 1.4× 1014 126.1 2,599.8 1.94 5,239.0
Cat. 5 7.2× 1012 28.3 858.2 1.95 4,826.7
Cat. 6 2.1× 1013 42.6 1,618.6 1.95 4,028.3
Cat. 7 6.6× 1013 88.9 2,848.1 1.95 5,236.0
Cat. 8 6.7× 1012 28.9 1,286.4 1.94 5,641.5

AT
G-

So
ft

Cat. 1

N/A

Cat. 2
Cat. 3
Cat. 4
Cat. 5
Cat. 6
Cat. 7
Cat. 8

OI
GH

Cat. 1 1.5× 1012 17.7 898.4 1.99 8,377.9
Cat. 2 1.5× 1013 19.3 4,089.8 1.99 7,301.6
Cat. 3 8.0× 1012 13.7 2,220.0 1.99 7,452.7
Cat. 4 4.7× 1013 104.1 2,230.3 1.99 8,058.0
Cat. 5 2.4× 1012 23.1 715.6 1.99 8,106.6
Cat. 6 2.3× 1013 70.2 2,121.4 1.99 7,932.6
Cat. 7 2.2× 1013 73.1 2,561.2 1.99 7,836.6
Cat. 8 2.7× 1012 23.7 1,223.9 1.99 8,015.8

M
on

dr
ian

Cat. 1

N/A

- -

N/A

Cat. 2 - -
Cat. 3 - -
Cat. 4 - -
Cat. 5 - -
Cat. 6 - -
Cat. 7 - -
Cat. 8 - -
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Chapter 6

Conclusion and perspectives

This work has presented ODkAnon, a novel k-anonymization algorithm specifically
designed for OD-matrices that leverages the H3 hexagonal spatial indexing system.
The analysis shows that ODkAnon can indeed be used as a practical tool for
anonymizing mobility data, but its applicability depends on the context and on
the requirements of the use case.

In particular, ODkAnon proves especially valuable in scenarios where there is a
need to balance privacy protection with data utility. Unlike approaches that impose
uniform levels of generalization, ODkAnon adapts its strategy dynamically, choosing
whether to generalize origins or destinations depending on the structure of the
matrix. This makes it particularly effective for datasets that are sparse and highly
unbalanced, where uniform strategies would result in excessive information loss. It
is not the fastest algorithm available, but it achieves consistent and competitive
results across all metrics. ODkAnon is particularly recommended in situations when
hierarchical consistency and spatial homogeneity are required, since ODkAnon
guarantees non-overlapping partitions and preserves the hexagonal structure of H3.

6.1 Answers to the research questions
The research has successfully answered the three research questions posed at the
beginning of this work:

• RQ1: How can the H3 hexagonal spatial indexing system be used
to partition geographic areas in a different way than the traditional
rectangular approaches, such as the Mondrian algorithm? The H3
hexagonal spatial indexing system has proven to be an effective alternative
to traditional rectangular approaches like the Mondrian algorithm. Unlike
rectangular partitions that can create irregular geographic areas of different
sizes, H3 provides more consistent spatial aggregations through its hierarchical
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hexagonal structure. The hexagonal grid better shapes geographic areas with
uniform distance properties to neighbors, providing more accuracy in mobility
data representation than traditional rectangular approaches.

• RQ2: Can OD-matrices be generalised adaptively by applying dif-
ferent levels of spatial aggregation to origins and destinations, in
order to achieve k-anonymity while minimising information loss?
The adaptive generalization strategy implemented in ODkAnon demonstrates
that OD-matrices can be generalized by applying different levels of spatial
aggregation to origins and destinations independently. The algorithm’s dy-
namic balancing mechanism, which alternates between generalizing origins
and destinations based on the matrix dimensions ratio, successfully mini-
mizes information loss while achieving k-anonymity. This approach goes in
a different direction with respect to other methods (like OIGH) that apply
uniform aggregation levels to both dimensions, often resulting in unnecessary
spatial detail loss. Moreover, ODkAnon creates homogeneous, non-overlapping
hexagons of varying sizes, ensuring more reliable mobility data representation
compared to algorithms like ATG that generate overlapping areas.

• RQ3: How does the proposed approach perform in terms of privacy
protection when evaluated both at the individual level and at the
population level using weighted mobility data? The comprehensive
evaluation using the Paris dataset reveals significant differences between
individual-level and population-level privacy protection approaches. When
protecting survey participants, the resulting anonymization may not adequately
protect the broader population they represent, and vice versa. This finding is
particularly relevant for weighted mobility surveys where participants represent
larger population segments. The analysis across demographic segments (sex,
age, socio-professional categories) further demonstrates that privacy challenges
vary significantly across different population groups, with some requiring much
coarser generalizations than others.

6.2 Limitations and future work
This work presents several limitations opening different directions for future re-
search.

• Optimal Generalization Heuristics. The proposed algorithms rely on heuristic
strategies to determine generalization levels, which may not always guarantee
an optimal solution. Future research could explore optimization frameworks
or approximation algorithms to achieve closer-to-optimal generalizations while
maintaining efficiency.
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• Partitioning Dataset Challenges. Results also suggest that achieving anonymity
may depend strongly on the dataset’s intrinsic distribution rather than solely
on the applied algorithm. For example, as already discussed, anonymizing
the male dataset tends to require much coarser aggregations, while the female
dataset can often be preserved at finer levels of detail. This suggests that
protecting men is inherently more complex, as it forces stronger reductions in
spatial resolution. At the same time, when applying ODkAnon, the anonymized
female dataset consistently shows higher utility than the male one. This
observation points to a qualitative difference that goes beyond simple matrix
sizes: it raises the question of whether the challenge lies in the intrinsic
structure of the data or in the way algorithms make their generalization
choices. Exploring these dynamics in depth represents an important direction
for future work.

• Scalability. Although the proposed approach shows reasonable performance
on the evaluated datasets, its scalability to very large metropolitan areas or
even national-scale mobility datasets remains to be tested. The hierarchical
tree construction and sparse matrix operations could become computationally
demanding when applied to extremely large spatial extents.

• Temporal Dimension. The current experiments are limited to static OD-
matrices. However, many mobility applications require the analysis of time-
series data. Extending the approach to handle temporal dimensions, while
maintaining privacy protection, represents a natural and important research
opportunity.

• Privacy Models. The methodology is grounded exclusively in k-anonymity.
While widely adopted, this model is known to suffer from vulnerabilities
such as homogeneity and background knowledge attacks. Future work should
investigate the integration of complementary models like l-diversity, t-closeness,
or differential privacy, in order to provide stronger theoretical guarantees.

6.3 Practical implications
From a practical perspective, the work has important implications for both prac-
titioners and policymakers. For transportation authorities, ODkAnon provides a
concrete solution to publish mobility data that comply with privacy regulations
such as GDPR, while maintaining sufficient spatial detail for meaningful analy-
sis. For statistical agencies, the distinction between participant-protecting and
population-protecting approaches offers valuable insights when conducting mobility
surveys, underlining the need to safeguard both individual respondents and the
populations they represent. Finally, the observed differences in anonymization
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requirements across demographic groups highlight the importance of fairness-aware
privacy protection mechanisms, ensuring that mobility data publishing does not
systematically disadvantage specific segments of the population.
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