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Abstract

Alternative Splicing is the RNA’s ability to be spliced into many different mRNA
isoforms, and it is of great evolutionary importance because it allows a single gene
to produce a variety of proteins. However, in cancer, the spliceosome machinery
produces aberrant isoforms or changes their expression, which alters the behavior
of the cell, as they interfere with biological pathways.

The study of novel cancer isoforms is essential for developing therapies that can
suppress their expression or exploit the new epitopes, in addition to providing a
deeper understanding of the disease.

The relatively new long-read sequencing technology enables a more accurate
representation of the transcriptome than the older short-read. Still, not all isoforms
have been sequenced, and each cell in each state will produce different outcomes.
Therefore, a way of predicting possible isoforms is an interesting problem. As we
see in this thesis, generating all possible isoforms solely based on the main splicing
signals of the genome takes virtually infinite time and mostly inaccurate results.

Hence, we propose a heuristic algorithm for the prediction of tumoral isoforms
with the inclusion of a Large Language Model pre-trained on RNA long-reads of
multiple tumoral cell lines. We evaluate our algorithm by analysing its perplexity,
computation time, and comparing our results with a prostate cancer long-read
dataset provided by the Italian Institute for Genomic Medicine (IIGM).
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Chapter 1

Introduction

1.1 Motivation
According to global cancer statistics of 2022, cancer is responsible for 16.8% of
global deaths, and leading premature deaths from noncommunicable diseases in
177 of 183 countries, in those aged 30 − 69 years, at 30.3% [1]. A key factor for
understanding cancer lies in which proteins are expressed and how they are involved
in the development of the disease. The proteins are produced in the ribosomes by
translating mRNA transcripts, which are derived from the splicing of pre-mRNA
inside the nucleus of the cell. As we will see in this thesis, the splicing mechanism
is complex and non-deterministic, giving rise to the concept of Alternative Splicing
(AS), increasing the challenge for researchers, since a single gene can produce
several mRNA isoforms. Mutations in the genome can cause aberrant alternative
splicing, creating proteins that disrupt the natural biological pathways of the cell,
e.g., suppressing apoptosis [2], and with such knowledge, scientists are able to
propose new therapies for patients [3]. Considering that dysregulated RNA splicing
characterizes almost all types of cancer, identifying the isoforms in cancer cells is
of high interest for the cancer research field [4].

1.2 Problem Statement
Current sequencing technology, although very powerful, cannot read every mRNA
isoform inside a replicate, especially the ones with lower expression, simply due
to probabilistic factors. But these unsequenced isoforms may be of interest when
studying cancer. The problem we aim to solve is the prediction of isoforms in
cancer through computational methods with one of the most recent state-of-the-art
Large Language Model (LLM) architectures.

1



Introduction

1.3 Objectives and Scope of the Study
We will study the feasibility of a combinatorial approach in the production of
isoforms by considering the most commonly used splicing site motifs. This will be
followed by the creation of a heuristic algorithm able to exploit LLM’s capabilities
for solving our task. We will explore the results of our algorithm by comparing them
with the GRCh37 genome reference and a dataset of prostate cancer long-reads by
the Italian Institute of Genomic Medicine (IIGM), with whom we collaborated in
the development of this work. As well as making considerations on the connection
between our outputs and the conservation of bases across a hundred vertebrates
[5, 6]. The algorithm will first be analyzed both discoursively and with standard
metrics in a small set of genes, then a general test will follow with more than 50
genes to gather a better statistic of its performance. Lastly, a short analysis of the
hardware resources is presented, to enable users to make the correct considerations
about time and hardware required to run it. With such an algorithm, cancer
specialists can widen their exploration studies on probable mRNA isoforms and
their related proteins.

1.4 Thesis Overview
The thesis is structured to provide a good understanding of AS and its importance
for cancer research, provide an overview of the state-of-the-art of Deep Learning
models for genomics, explain the design choices of our algorithm, how we evaluate
it, and our results. The following presents short details of what to find in each
chapter.

• Chapter 2: Background
It presents the bases of transcriptomics, from the sequencing to how the
information encoded in genes becomes proteins. The mechanism of alternative
splicing is explained and put into the context of cancer. And from the
computational side, we present Deep Learning algorithms, Large Language
Models, and six foundation models from the literature that have been pre-
trained with either DNA or RNA data, so as to make a decision on which one
to use in our task.

• Chapter 3: Materials and Methods
Details on the IIGM’s dataset and on the references used in the UCSC Genome
Browser. Then, an explanation of how we performed the combinatorial tests,
how we evaluated and processed data in an attempt to reproduce results from
the paper of our chosen LLM model. Followed by the design of the first and
second parts of our algorithm, and how our results are evaluated.

2
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• Chapter 4: Results
Information on the combinatorial tests on a couple of genes. Tests with the
chosen LLM model to verify characteristics of the sequences generated purely
by its Next Token Prediction (NTP), in terms of realistic bases and structures.
The results of our algorithm first with the genes FOXA1, HRAS, MYC, KLF6,
MDM2, SRSF1, then with 51 other genes. And the resources necessary to run
it in terms of time and VRAM.

• Chapter 5: Conclusion
It presents the key findings from our work and sketches future work on how to
personalize our algorithm for each gene, to reduce some of its biases, and which
directions to take to deepen the study of the algorithm and the produced
isoforms.

3



Chapter 2

Background

This thesis combines knowledge from cancer transcriptomics and ML in order to
create an algorithm able to create multiple mRNA isoforms from a gene, so from
the biological point of view, we will introduce concepts of genomics, sequencing,
alternative splicing, and how the latter relates to cancer. From the computational
side, we discuss a brief history of Machine and Deep Learning models, then compare
the state-of-the-art genomic models.

2.1 Transcriptomics
Transcriptomics is an interdisciplinary field that studies the complete set of RNA
of an organism. It relates to genomics as the latter studies the function, structure,
mapping, and editing of genomes, which are the sum of all DNA of a species,
which differs from genetics, whose focus is on individual genes. In this section,
we will understand how DNA and RNA are related and why it is important for
understanding cancer and other diseases.

The monomeric unit of DNA and RNA nucleic acid polymers is the nucleotide,
an organic molecule composed of phosphate, a pentose sugar, and a nitrogenous
base, also known as nucleobase [7, 8]. DNA has nucleobases of four types: adenine
(A), cytosine (C), guanine (G), and thymine (T); the latter is substituted for uracil
(U) in RNA. The letter (N) is used to indicate any of the bases. For simplicity,
only T will be used in this work. The Human Genome Project (HGP) estimates
that our species has three billion base pairs [9].

2.1.1 Sequencing
A fundamental technology for genomics and transcriptomics is sequencing, the
process of determining the order of nucleobases in a DNA or RNA molecule. The

4



Background

two main sequencing technology classes are the short-reads, used for many years in
the HGP, and the more recent long-reads. As the names suggest, the first is able to
sequence shorter strands of DNA, i.e., a few hundred bases, and the latter longer
strands, typically of 10− 100 knt [10]. There are multiple technologies available on
the market for both classes, and we will present the most established short-read
sequencing technology and the long-read one that was used to generate the IIGM
dataset used in this thesis.

Short-read

Sanger Developed in 1977, Sanger sequenced the genome of bacteriophage ΦX174
using DNA polymerase under controlled conditions. The idea behind it is to insert
a template sequence into four different capillary tubes, along with deoxynucleotide
triphosphates (dNTPs) for all bases (dATP, dCTP, dGTP, dTTP), primers, and, for
each container, different dideoxynucleotide triphosphates (ddNTPs) that terminate
DNA synthesis [11].

In each tube, this process will synthesize sequences of different lengths, stopping
at specific bases, e.g., tube 1 contains ddATPs and stops the synthesis only for the
A base. Finally, electrophoresis is applied, and by comparing the four tubes, we
observe a one-to-one relationship between position and base.

In 1986, Applied Biosystems commercialized a more efficient method using
four fluorescent terminators as dyes, allowing a single tube to be sufficient for
electrophoresis. This method enabled each position to be identified by color,
facilitating the processing of results through a chromatogram [12].

Next Generation Sequencing (NGS) Also known as second-generation se-
quencing, NGS was another important step in sequencing, allowing the whole
human genome to be sequenced in hours or a few days because of its massive
parallelization of reads per run [13], compared to the couple of decades that were
required by the previous method used in the HGP. Illumina is a major player in
NGS, utilizing the Sequencing by Synthesis (SBS) method [14].

The method consists of fragmenting a large portion of DNA into small strands
(length of a read), and each fragment is amplified in spatial clusters, representing
the read. Then, sequencing begins with each read emitting a fluorescent light
corresponding to a base; in clusters, these signals are clearer [15]. The limitation in
the length of the reads is associated with chemical randomness of enzymes causing
a phase error; the cluster signal may be noisier due to misalignment of strands
within a cluster, e.g. in a cluster most strands are emitting the signal of the base
at position n, while some strand might be emitting n− 1 or n + 1, the longer the
strand, the more probable it is for this kind of drift to become an issue [16].

5
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Long-read

Nanopores Developed by Oxford Nanopore Technologies (ONT), this technology
uses an array of nanoscale protein pores (nanopores) within an electrically resistant
polymer membrane, where a constant voltage is applied. A strand of DNA or RNA
passes through the pore with the assistance of a motor protein, which controls
the speed of its passage. When different bases cross the membrane, different
currents are read. However, there are not only five signal values (A, C, G, T,
none), but it is a more complex electrical signal because multiple bases are inside
the nanopore at once, creating a signal processing challenge [17]. ONT provides
a proprietary software solution called Dorado that relies on signal preprocessing,
Machine Learning (ML) models, and postprocessing [18]. Accuracy can be improved
by running multiple reads and creating a consensus sequence [17].

Comparison

Long-reads can optionally directly sequence RNA (dRNA), while the current
short-read technology relies solely on the sequencing of complementary DNA
(cDNA) instead of direct sequencing of the RNA, introducing biases related to the
conversion process, which utilizes the reverse transcriptase enzyme and dNTPs
[19]. Furthermore, the short-reads utilize the Polymerase Chain Reaction (PCR)
to amplify copies of DNA transcripts, thereby improving the accuracy of the reads;
this process also introduces PCR bias [20].

The greater lengths of long-reads bring an advantage when it comes to sequencing
transcripts with structural mutations or repeated sequences.

One issue with Nanopore is that when sequencing the last ∼ 15 nt, the motor
does not control the strand anymore, and it passes through the pore rapidly,
effectively losing the sequencing of such bases [21].

2.1.2 From genetic code to proteins
Our genome is composed of 23 chromosome pairs, each chromosome is a thread-like
structure of chromatin, a mixture of proteins and DNA; one of these proteins is
the histone, which provides structural support for the DNA to be wrapped around
it. Closed chromatin (heterochromatin) is densely packed and does not allow for
transcription. When the DNA is more loosely wrapped around the histones, we
have an open chromatin (euchromatin), which provides for transcription. With
an open chromatin, an enzyme called RNA polymerase can synthesize precursor
messenger RNA (pre-mRNA) from a locus of the DNA sequence. The pre-mRNA
is spliced into messenger RNA (mRNA), which leaves the nucleus of the cell into
the cytoplasm, where a ribosome can translate the mRNA into a protein, if the
mRNA is protein-coding [22]. Eukaryotes have specific RNA polymerase enzymes
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Technology Short-read sequencing Long-read sequencing
Illumina ONT-cDNA ONT-dRNA

Accuracy ∼ 99.9% 99.75% (v5 sup) 98.66% (v5 sup)
99.25% (v5 hac) 97.54 (v5 hac)

Cost High Medium Medium
Time Days to weeks Real-time to days Real-time to days
Strengths High-throughput, Long-read, Long-read

high accuracy, minimal assembly direct sequencing,
well-established required No PCR bias

Weaknesses Limited ability Relatively lower Higher error rate,
to capture long-read accuracy than lower throughput
related information other cDNA-based high RNA input

methods, required not
lower throughput well-established

for short RNAs

Table 2.1: Comparison of sequencing technologies. (v5 sup) and (v5 hac) corre-
spond to different base-calling technologies with the same chemistry kit. Adapted
from Katapodi X. et al. 2025 [21] (CC-BY-NC 4.0)

for different types of genes, possibly producing also micro RNA (miRNA), small
nuclear RNA (snRNA), small nucleolar RNA (snoRNA), transport RNA (tRNA)
and ribosomal RNA (rRNA) [23]; but the focus of this thesis is on mRNA, and
the general procedure described above is valid only for our purposes, the actual
behaviour is much more complex.

2.1.3 Splicing
We will focus our energies on splicing, which takes as input a pre-mRNA and
as output an mRNA. The pre-mRNA is a direct translation of the gene’s DNA,
while the mRNA cuts out pieces called introns and keeps fragments called exons
[24]. In Fig. 2.1, we see the double-stranded DNA being transcribed into RNA,
or pre-mRNA, followed by splicing; the figure already includes representations of
different proteins resulting from alternative splicing.

Exons combined are the building blocks of the mRNA, so we can expect a certain
structure for it to synthesize a protein in the ribosome. This translates triplets
of nucleotides called codons into amino acids; namely, there are 64 (43) codons,
61 of which produce amino acids, from which Methionine (ATG) can also act as
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Figure 2.1: Alternative Splicing from DNA to mRNAs. Original from the National
Human Genome Research Institute [25] (PDM 1.0)

the start codon. The remaining 3 are stop codons (TAA, TAG, and TGA), which
terminate protein synthesis.

The Open Reading Frame (ORF) is the portion of DNA that begins with a
start codon and ends with a stop codon (excluded). The number of bases inside
the ORF must be multiples of three to respect the triplet constraint for each
codon. Untranslated Regions (UTRs) are present at both ends of the mRNA; these
non-coding sections exert regulatory functions, although their exact behavior is
still under study [26].

Hence, the overall structure of a protein-coding mRNA, or the joined exons,
must contain the 5′ UTR, a start codon, amino acid codons, a stop codon, and the
3′ UTR. The coding portion of exons tends to have a higher conservation across
species, due to natural selection [27].

Introns, on the other hand, contain non-coding information, exert regulatory
functions [28], and contain well-conserved splicing signals [29, 30].

Splicing mechanism

The spliceosome is a large ribonucleoprotein (RNP) complex that is found primarily
within the nucleus of eukaryotic cells. Throughout this thesis, we will consider only
the major spliceosome U2 and its splicing signals, since the minor spliceosome U12
accounts for less than 1% of all splicing in eukaryotes [31]. The small nuclear RNP
(snRNP) that compose the major spliceosome are: U1, U2, U3, U4, U5, and U6;
they are capable of binding to the pre-mRNA and catalyze specific reactions [32].

The U2 Splicing mechanism can be decomposed in several steps and complexes
[32]:
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• Splicing starts with the U1 binding to the 5’ splice site (5’SS), composed of
the sequence GT. Then, the branch point (BP), which is composed of an A, is
recognized by and bound with a Branch Point Binding Protein (BBP), also
known as Splicing Factor 1 (SF1). The 3’ splice site (3’SS), which is composed
of the sequence AG, is recognized by and bound with the U2 auxiliary factor
(U2AF). An SR protein bridges between 5’SS and the BP. This ends the
recognition phase by forming the Early complex (E-complex);

• Then, the U2 snRNP substitutes SF1, BBP, and U2AF, binding with the
BP and the polypyrimidine tract (PPT) between BP and 3’SS, forming the
pre-spliceosome complex (A-complex);

• When the tri-snRNP U4/U5/U6 joins this process, the U6 binds to U1 at
the 5’SS, the U4 with the 3’SS, and U5 takes the role of bridging the exons,
replacing the SR proteins, forming the pre-catalytic spliceosome complex
(B1-complex);

• For it to be catalytically active, U1 and U4 leave, with U6 replacing U1 at
the 5’ss, forming the catalytically active spliceosome complex (B2-complex);

• The first transesterification reaction occurs, where the A at the BP attacks
to the G at the 3’SS, separating the 5’ exon from the intron, the U5 keeps
the exon in the complex, and the intron takes the shape of a lariat, overall
forming the catalytic-1-complex (C1-complex);

• Followed by a second transesterification, where the 5’ exon is ligated to the
3’ exon, and cleaving the intron lariat. The exons form the mRNA, while
the intron bonded to the remaining snRNPs is called the catalytic-2-complex
(C2-complex).

2.1.4 Alternative Splicing (AS)
Alternative splicing is the process by which a single pre-mRNA can be spliced into
multiple mRNA isoforms. We will briefly cover the main discoveries related to this
phenomenon, its mechanisms, and how it relates to cancer and other diseases.

In 1941, Beadle and Tatum’s "one gene–one enzyme hypothesis" was vital for
understanding protein synthesis, winning the Nobel Prize in Physiology or Medicine
in 1958 [33, 34].

In 1977, two articles presented the same conclusion that a single Adenovirus
type 2 (Ad2) gene produced multiple mRNA, as observed through an electron
microscope [35, 36].

Studies show that 90 − 95% of human genes are naturally subject to AS, it
is a natural phenomenon that increases the complexity of the proteome without
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increasing the size of the genome [37, 38]. It has also been associated with cellular
differentiation [39, 40]. However, dysregulation of AS can produce abnormal
proteins and may cause diseases, such as neurodegenerative, autoimmune, and
cancerous conditions, among others [41, 42, 43, 44].

Mechanisms of Alternative Splicing

AS is stochastic by design, depending on external proteins, external RNAs, and sig-
nals inside the sequence itself, i.e., 5’SS, BP, PPT, 3’SS, Exonic Splicing Enhancers
(ESEs), Exonic Splicing Silencers (ESSs), Intronic Splicing Silencers (ISSs), and
Intronic Splicing Enhancers (ISEs) [45].

Figure 2.2: Mechanisms that produce different mRNA isoforms. Adapted from
Gimeno-Valiente F. et al. 2024 [46] (CC BY 4.0)

There are seven known ways it occurs (Fig. 2.2); the latter two are not strict AS
events, but are included because they produce different mRNA isoforms [47, 46]:
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1. Exon Skipping or Cassette Exon: Exon ej is skipped when the spliceosome
splices between the 5’ donor site of ej−1 and the 3’ acceptor site of ej+1, splicing
out together the introns ij−1 and ij;

2. Mutually exclusive exons: Only one cassette exon is retained among an
array of two or more exons;

3. Alternative 5’ donor site: It splices at a different 5’SS, changing the 3’
boundary of the upstream exon;

4. Alternative 3’ acceptor site: It splices at a different 3’SS, changing the 5’
boundary of the downstream exon;

5. Intron Retention: An intron is not spliced out;

6. Alternate promoters: Alternative starting point for transcription;

7. Alternate polyadenylation: Alternative ending point for transcription.

2.1.5 Alternative Splicing in Cancer
The dysregulation of AS may induce cancer [43, 48, 49, 4, 50, 2]. Mutations that
cause changes in AS inside the same gene are called cis-mutations. These can be
structural, i.e., deletions, duplications, inversions, insertions, and translocations.
Additionally, there are single-nucleotide mutations, i.e., substitutions, insertions,
and deletions. Some examples of point cis-mutations are:

• Loss of 3’SS: AG → TG;

• Protein codon is mutated into a stop codon: TCA → TAA;

• Insertion or deletion inside exons of the ORF may create non-coding isoforms,
due to the shift of the ORF.

In cancer, trans-elements play an important role in the dysregulation of AS too [4,
50]. SF3B1 is the most frequently mutated spliceosomal component in cancer. It is
a component of the U2 snRNP; its function is to recognize the BP and to assemble
the A-complex. Such mutations lead to misrecognition of the BP, consequently of
the 3’SS, different cassette exon inclusion, and reduced intron retention. Another
example is SRSF2, an SR protein that mediates exon inclusion and recognition of
5’SS and 3’SS by interacting with U1 and U2 during splicing; one of its mutations
recognizes C-rich sequences, but has reduced affinity for G-rich sequences, while a
wild SRSF2 recognizes both, resulting in mis-splicing [4].

Both cis-mutations and trans-elements can upregulate oncogenic isoforms or
downregulate tumor suppressor isoforms. AS has various roles in cancer stages [2],
for example:
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• Upregulation of ITGA6, PKM2, NUMB-PRR(L) and downregulation of
NUMB-PRR(S) contribute to the proliferation;

• Upregulation of Bcl-x(s) and downregulation of Bcl-x(l), suppress apoptosis;

• Upregulation of PKM2 and downregulation of PKM1 alter the metabolism of
the cell;

• Upregulation of VEGF-A165b takes part in angiogenesis;

• Upregulation of TAK1 and CD44(s) contribute invasion and metastasis.

Nonsense-Mediated Decay (NMD) is a surveillance mechanism that degrades
abnormal mRNA, but it can be evaded by AS in some ways, e.g., altering splice sites,
modulating mRNA stability, changing mRNA secondary structure, and changing
the interaction with RNA-binding proteins (RBPs). In addition, some cellular
stresses may inhibit NMD action, such as, amino acid deprivation, hypoxia, nutrient
deprivation, infection, reactive oxygen species, and double-stranded RNA. Tumours
dynamically regulate NMD to adapt to the tumor microenvironment (TME), where
hypoxia and nutrient deprivation prevail, promoting survivability, proliferation,
and metastasis. NMD may even promote cancer progression, as in myelodysplastic
syndromes (MDS), a mutation on SRSF2 leads to isoforms containing premature
termination codons (PMCs), leading to the downregulation of EZH2 and INTS3
genes; such depletion synergizes with the RAS pathway, leading to malignant
proliferation and to the transformation from MDS to acute leukemia [3].

2.1.6 Clinical implications
Knowing which alternatively spliced isoforms are produced in cancer cells is impor-
tant in cancer treatments, not only for understanding the disease, but also directly
usable in therapies [3].

In breast and colon cancer, there is the overexpression of serine-arginine protein
kinase 1 (SRPK1), a splice regulatory protein [51]. In vitro, in cells treated with
chemotherapy drugs, the downregulation of SRPK1 by transfection of sh1-SRPK1,
a siRNA (small interfering RNA), increased apoptosis of the carcinomas, compared
to the transfection of a control plasmid. The downregulation of SRPK1 changes the
splicing of MAP2K2. The new isoforms were by either coding deletion (∆exons7−8)
or loss-of-frame (∆exons7 and ∆exons7− 10), isoforms whose functions are to be
determined. MAP2K2 wild isoforms encode the two major kinases responsible for
the phosphorylation of MAPK3 and MAPK1 proteins. These genes are on the
protein pathways necessary for cell proliferation and resistance against chemotherapy
drugs [52].
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Some AS events unique to cancer can create proteins with new epitopes, which
act as neoantigens that can be exploited in immunotherapies, especially in cancers
with low tumor mutational burden (TMB). Using genetically modified chimeric
antigen receptor T cells (CAR-Ts) to recognize and attack neoantigens is a promising
cancer therapy [3, 53, 54].

2.2 Deep Learning and Large Language Models
In order to create mRNAs from DNA gene sequences, we will use statistical learning
enabled by algorithms of Deep Learning (DL), so in this section, we will introduce
some of its main models and concepts.

Machine Learning (ML) is a field of study in Artificial Intelligence (AI), with
statistical algorithms for predicting discrete or continuous values that can learn from
a training dataset, and then generalize its results to unseen data. DL is a subset of
ML algorithms that rely on an architecture inspired by our brain, Artificial Neural
Networks (ANN) with multiple hidden layers, which usually provide better metrics
in more complex tasks [55]. In recent history, some models have revolutionized the
state-of-the-art when solving particular tasks, so we present some of them and how
they were used.

Convolutional Neural Network (CNN)

One of the first ANNs with special operators in the neurons that gained much
attention was the CNN. Capable of reading hand-written English characters,
LeNet-5 [56], was used for years to automatically read cheques. Neurons perform
multidimensional convolution operations, instead of simple matrix multiplications.
This change allowed for spatial dependencies to be learned, and the number of
learnable weights per layer was reduced, meaning more layers could be introduced,
delivering more abstraction for less computational effort.

Recurrent Neural Network (RNN)

This architecture is specifically designed to handle sequential data, such as natural
language, RNA, and stock prices, through the use of a summing ReLU-activated
feedback loop that adds up information from the past to make predictions of the
following data points. One issue with this design is that for long sequences, the
feedback loop can cause either an exploding or a vanishing gradient problem [57],
depending on the weight of the loop, w > 1, and w < 1, respectively.

Long Short-Term Memory (LSTM) networks [58] were developed to address the
vanishing/exploding gradient problem and to better utilize input data by separating
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the paths of closest context from the furthest, utilizing different activation functions
such as hyperbolic tangent and sigmoids.

Large Language Models (LLM)

An improvement for models dealing with sequential data, the name comes from the
number of parameters, reaching hundreds of billions, and the task domain it was
originally used for, Natural Language Processing (NLP) [59]. It substituted RNNs
in NLP for two main reasons: the ability to create input-dependent embedding
spaces and the parallelization of computations. In the following paragraphs, we
will present the two operators used by the model we chose to incorporate into
our algorithm: Attention, the operator that has brought impressive improvements
to NLP in recent years, and Hyena Hierarchy, a new operator that surrogates
Attention with a reduced computational load.

Attention Transformers [60] are models that are based solely on the Multi-Head
Attention mechanism through an encoder-decoder structure, with global context
unless restricted. Self-Attention takes as input the query Q, key K, and value V ,
which are projections of the input data at the first layer (Eq. 2.1).

Attention(Q, K, V ) = Softmax
A

QKT

√
dk

B
V (2.1)

dk is the projection dimension for the key and query, which is used in the denomi-
nator as a scaling factor to avoid vanishing gradients of the softmax function. dv is
the output value dimension. Multi-Head Attention puts h heads in parallel (Eq.
2.2).

MultiHead(Q, K, V ) = Concat(head1, . . . , headh)WO (2.2)
where headi = Attention(QWQ

i , KWK
i , V W V

i ) (2.3)

We have learnable parameter matrices WQ
i ∈ Rdmodel×dk ,WK

i ∈ Rdmodel×dk ,W V
i ∈

Rdmodel×dv , and WO ∈ Rhdv×dmodel , with dmodel the embedding dimension of the
inputs. Each Self-Attention has Complexity O(L2 · dmodel) with L the sequence
length.

To make use of order and position, the model requires a positional encoder. The
original Transformers paper proposes a new embedding of sine and cosine functions
(Eq. 2.4). PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)
(2.4)
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Hyena Hierarchy The Hyena operator is introduced in 2023 [61], matching
metrics of attention-based models, with sub-quadratic scaling on sequence length, en-
abling longer context information. It is based on interleaving implicitly parametrized
long convolutions and data-controlled gating. Its training time is 100× faster than
the highly optimized FlashAttention [62] at sequence length 64K.

A discrete convolution is defined in Eq. 2.5.

yt = (h ∗ u)t =
L−1Ø
n=0

ht−nun (2.5)

With input signal u of length L, and filter h which is measurable in L1(Z) senseq∞
t=−∞ |ht| <∞, with learnable parameters of the model. This computation can

be substituted by the Toeplitz kernel matrix Sh ∈ RL×L (Eq. 2.6).

(h ∗ u) =


h0 h−1 . . . h−L+1
h1 h0 . . . h−L+2
... ... . . . ...

hL−1 hL−2 . . . h0




u0
u1
...

uL−1

 = Shu (2.6)

However, the computational cost of normal convolutions is O(L2), therefore, Fast
Fourier Transform (FFT) [63] is used to reach O(L log2 L) asymptotic cost without
materializing Sh. In addition, h is implicitly defined by a family of parametrized
functions h(t) = γθ(t), where θ are the parameters of the function γθ. The class of
functions is a design choice, instead of defining h(t) as a Finite Impulse Response
(FIR), whose number of parameters would scale linearly with the memory range of h.
A couple of implicit parametrization examples are the family of state-space models
(SSM) and feed-forward networks. The number of parameters is disentangled from
the memory extent; rather, it defines the expressivity of γθ.

Hyena is defined as a class of data-controlled operators consisting of a recur-
rence of multiplicative gating interactions and implicit long convolutions. Let
(vt, x1

t , ..., xNt ) be projections of the input and h0, ..., hN a set of learnable filters,
the Hyena of order N operator is defined by the recurrence:

z1
t = vt (2.7)

zn+1
t = xnt (hn ∗ zn)t : n = 1, ..., N (2.8)

yt = zN+1
t (2.9)

Alternating products and convolutions with projections of the input data might
be the strength of this operator, for the convolution in the time domain allows for
a broader context, and element-wise multiplications in the time domain for a more
fine-grained selection of components, as we can observe in Eq. 2.10.
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yt = xNt (hN ∗ (xN−1
t (hN−1 ∗ (. . . )))) (2.10)

The original Hyena hierarchy model is based on the H3 mechanism [64], which
creates a surrogate for attention, while Hyena further generalizes to more projections
of the input data.

A(q, k) = DqSψDkSϕ (2.11)
H3(q, k, v) = A(q, k)v (2.12)

With the Toeplitz matrices SψSϕ of learnable causal filters parametrized by
SSMs. The data projections are not limited to 3, indeed, we can extend it to N
projections, all used in the Hyena recursion. Let Dn

x = diag(xn) ∈ RL×L, and Sn
h

be the Toeplitz matrices corresponding to hn, we get

y = H(u)v = DN
x SN

h DN−1
x SN−1

h . . . D1
xS

1
hv (2.13)

2.3 Deep Learning in Genomics
We shall present the state-of-the-art of genomic and transcriptomic foundation
models, which can be adapted to perform a wide variety of tasks. They contain
different operators, tokenization strategies, and training datasets. Afterwards, we
discuss our choice of the foundation model to be used in our case.

2.3.1 Bidirectional Encoder Representations from Trans-
formers model for DNA (DNABERT)

DNABERT [65] uses the Transformer architecture to get longer contexts with
respect to RNNs and CNNs, although restricted to avoid a complexity explosion.
The length of the DNA code was sampled at variable lengths between 5 and 510
bases, which does not take full advantage of our long-reads.

Tokenization

Instead of single-nucleotide resolution, they have opted for tokenizing in k-mer
representation, creating groups of length k nucleotides with overlap, e.g., ATGTTC
tokenized in 3-mers: {ATG, TGT, GTT, TTC}. Varying k, they have created pre-
trained models with k set to 3, 4, 5, and 6, respectively, DNABERT-3, DNABERT-4,
DNABERT-5, DNABERT-6. For specific tasks, fine-tuning was followed.
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2.3.2 HyenaDNA
HyenaDNA [66] is a foundation model pre-trained on the human reference genome
using next token prediction (NTP), and a context size of 1M bases. Its ability to
predict splicing sites is measured in a classification task of sequences 400 bases
long, with a possible site in the middle, after fine-tuning. It achieves comparable
metrics with the Nucleotide Transformer Benchmarks, with F1-score of 96.6, 97.3,
97.9 respectively on the benchmarks for Splice acceptor, donor, and both. The
model has 1.6M parameters, and was pre-trained on 1 genome. It is based on the
H3 architecture [64].

Tokenization

HyenaDNA tokenizes at single-nucleotide precision at a DNA level; the tokens are
{A, C, G, T, N}, the latter being any nucleotide.

2.3.3 BigRNA
BigRNA [67] is a commercial foundation model whose input is a DNA or RNA
sequence, and it outputs a tissue-specific simulation of an RNA-seq experiment, i.e.,
the expression level of the mRNA. The model also performs well on the prediction
of pathological mutations that lead to intron retention, exon skipping, and polyA
site shift.

The overall architecture is an improvement to the Enformer [68], a model made
out of a Convolutional layer, followed by a Multi-Head Attention, for it is an
ensemble of 7 models trained with different hyperparameters and it has a resolution
of 128 base pairs, a receptive field of 192 knt, and a total of 1.8 B parameters.

Tokenization

The tokens used by the MHA are not directly related to the sequence’s nucleotides,
but rather to abstract vector spaces output by the convolution and pooling of both
sequence and RNA-seq.

2.3.4 SpliceBERT
SpliceBERT [69] is based on bidirectional encoder representations from transform-
ers (BERT), self-supervisely pretrained using mask language modeling (MLM)
on sequences of varying length between 64-1024. The paper demonstrates the
importance of cross-species training for the aggregation of evolutionary information
about splicing sites. It was fine-tuned on the Spliceator dataset [70], trained on
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the classification of sequences 400 nucleotides long, with a possible splicing site in
the middle.

Tokenization

Single-nucleotide resolution, {A, C, G, T, N}, with [CLS] and [SEP] added to the
edges of sequences, as it is routine for BERT-style tokenizers.

2.3.5 Long read RNA with Striped Hyena (LoRNASH)
LoRNASH [71] is a NTP model, with the StripedHyena architecture, a combination
of the Hyena operator [61] and rotary self-attention, which is advantageous with
respect to others foundation models for its complexity scalability O(NDL(log2 L +
D)), with N the order of the Hyena operator, D the model width, and L the
sequence’s length. Models solely reliant on self-attention, such as the Transformers,
although being powerful for computing pair-wise interactions, have a computational
cost of O(L2), limiting the amount of context for the model. LoRNASH uses 65K
nucleotides of context; it was pre-trained on 300K Human and Mouse long-read
transcripts, totalling more than 7B tokens.

Tokenization

The 16 tokens utilized by LoRNASH give direct advantages for our task of predicting
isoforms, for it has tokens distinguishing introns from the exons: {a, c, u, g}] for
introns, {A, C, U, G} for exons, {W, X, Y, Z} represent non-RNA (DNA) genetic
code flanking the transcripts, S the transcript start site (TSS), E the polyA site
(PAS). Two other tokens specify the species of the sequence, H for human, and M
for mouse.

StripedHyena Architecture

LoRNASH leverages the StripedHyena architecture for long-sequence language
modelling, which integrates Hyena operators with rotary self-attention mechanisms.
This architecture is designed as a series of transformations applied to an input
sequence, denoted as X ∈ RL×D, where L represents the sequence length and D
is the dimensionality of the model’s hidden states. Each layer in StripedHyena
alternates between Hyena layers and rotary self-attention layers, combining the
advantages of convolutional and attention-based approaches.

The LoRNASH model comprises 16 blocks, each with a model width of 128
dimensions. These blocks feature sequence mixing and channel mixing layers,
allowing the model to handle information along both the sequence and model width
dimensions. Specifically, the sequence mixing layers consist of 13 Hyena layers
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interspersed with 3 evenly distributed rotary self-attention layers. The channel
mixing layers utilize gated linear units to enhance performance. Furthermore, root
mean square layer normalization is applied to the inputs of each layer for improved
stability and consistency. There are a total of 3.3 million parameters, and a memory
allocation for the model of around 6 MB.

2.3.6 Evo 2
Evo 2 [72] creates the multi-hybrid architecture StripedHyena 2, a specialization
of the previous version, which introduces Short Explicit(SE), Middle Regularized
(MR), and Long Implicit (LI) Hyena operators. The striped pattern is Hyena-SE,
Hyena-MR, Hyena-LI, and Attention. The context range for the Hyena operators
are, respectively, 7, 128, and either 8192 or 1 million base pairs, depending on the
version of the released model, either with 7B or 40B parameters.

The model was pre-trained on OpenGenome2 [73], a 9.3T single-nucleotide
resolution tokens from genomes of multiple species from prokaryotic, eukaryotic,
non-redundant metagenomic sequencing data, and organelles. However, only 2T
tokens were used to train Evo 2 7B.

They introduce an exon/intron classifier with the extraction of embeddings
and train binary classifiers for each layer; the best layer on validation is retrained.
Evo 2 7B is used, with Area Under the Receiver Operating Characteristic curve
(AUROC) 0.82 for Homo Sapiens, which was held out from this training.

Tokenization

Evo 2 tokenizes at single-nucleotide precision at a DNA level; the tokens are {A,
C, G, T, #, and @ }, the last two are special tokens that join indefinitely far
sequences, and join contig sequences from the same strand that are near each other,
respectively.

2.3.7 Our use case
In order to produce mRNA isoforms from a DNA sequence, the proposed algorithm
relies on the probability of the NTP to make a localized decision of whether the
following bases are introns or exons. These many generated isoforms are combined
to create a normalized exon expression for each nucleotide in the sequence, and
a simple binary classifier based on thresholds of such expression is used. So we
require a model with specific characteristics, such as:

• Single-nucleotide resolution, because it would not make sense to classify k-mers
as introns or exons, since this lower resolution would inevitably classify splicing
signals as exons, despite them always being part of the intron.
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• Long context, with thousands of bases, due to the three-dimensional nature of
the splicing machinery, strand loops allow for the interaction with distal ESE,
ESS, ISS, and ISEs [74].

• Straightforward probabilities related to exon or intron tokens to take full
advantage of the complex architecture of foundation models, instead of relying
on feature extraction to train simpler ML/DL models that classify between
these classes, as Evo2 did.

• Trained on mRNA data, to avoid biological bias related to other sequencing
methods, and preferably cancer, for it is the disease we are interested in.

LoRNASH matches all of these requirements; it has a single-nucleotide resolution;
its context reaches up to 65 knt; the tokens are already trained to distinguish
between introns and exons; and it was pre-trained on long-read mRNA from 26
cell lines of 9 different cancer tissues. While other models fail to fulfill at least one
requirement.

We found only Evo2 to solve our task of exon classifier, and as described, they
use a simpler model with the features extracted from their foundation model; using
our algorithm with a model that tokenizes both introns and exons has overcome
their AUC of 0.82 in our smaller test set. Other models usually solve a similar task,
but with an important difference: they predict the probability of a position being a
splicing site, which would induce the presence of an exon upstream or downstream;
however, they do not take into account which bases are already classified as exon,
they act on the DNA or RNA level, not on mRNA as LoRNASH does.
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Chapter 3

Materials and Methods

3.1 Datasets

3.1.1 IIGM’s Dataset

The Italian Institute for Genomic Medicine shared with us a dataset that is yet to
be published; it contains long-read direct-mRNA sequencing using the GridION
sequencer, which utilizes the Nanopore technology [75]. Seven replicates of PC3
were sequenced under heterogeneous conditions. PC3 is a commercial cell line of
bone metastasis of a grade IV prostatic adenocarcinoma from a 62-year-old white
male [76]. Expression is normalized by Transcripts per Million (TPM) [77], and
for the rest of this thesis, we consider the long-read expression as a single number,
being the average expression level across replicates. Known and novel isoforms are
defined relative to the reference genome GRCh37 [5].

The dataset contains 11.111 different genes, 31140 isoforms from which 15819
(50.80%) are known, 14777 (47.45%) are novel, and 544 (1.75%) are classified as
others.

The distribution of unique genes in the dataset is presented, by length, in Fig.
3.1, and by chromosome, in Fig. 3.2.

3.1.2 Genome Browser

The UCSC Genome browser was used with the GRCh37/hg19 reference [5] for two
different tasks: aligning pure LoRNASH generations with BLAT [78] and visually
comparing our algorithm’s isoforms with known ones [79].
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Figure 3.1: Gene length distribution
on IIGM’s dataset
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Figure 3.2: Chromosome distribution
on IIGM’s dataset

BLAT

BLAT stands for "BLAST-like alignment tool"; Basic Local Alignment Search
Tool (BLAST) [80], and BLAT both scan short matches (hits), extend these in
high-scoring pairs (HSP), and create indexes of sequences. However, BLAT is
faster than BLAST because the former creates k-mer indexes of the whole genome
and scans linearly on the query sequence, while the latter creates k-mer indexes
of the query sequence and scans linearly over the genome. In addition to other
improvements, an important one for our study is that BLAT performs better on
aligning exons, without creating wrong intersections with introns.

Since indexing the genome is slower, the tool is available online on the UCSC
Genome Browser; for code automation, we used its REST API. The pure LoRNASH

generations were aligned in two ways to the reference, either considering the whole
sequence (i.e., RNA), or only the exons (i.e., mRNA), and only the maximum
match is considered in our analysis. The minimum number of matched bases in
BLAT is 20 nt.

Genome Browser tracks

GENCODE V48lift37 track is a high-quality and manually curated dataset of
whole human genome annotations, generated by GENCODE [81]. It is a merger
between the manual Human and Vertebrate Analysis and Annotation (HAVANA)
[82] and the automatic annotation pipeline of Ensembl [83].
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phyloP is part of the Phylogenetic Analysis with Space/Time models (PHAST)
project [84]; this track outputs the P-value, which means conservation when positive,
so it is highly conserved across 100 vertebrates or acceleration when negative, so it
is expected to chang, given the other species’ genomes. It is based on a Phylogenetic
Hidden Markov Chain (phylo-HMM) [6].

Figure 3.3: Genome Browser example. On the first row, there are the scale (200
bases) and the genome reference (hg19). On the second row, the coordinates with
chromosome (chr11) and position (e.g. 532,550). From the third to the eighth row
we observe the GENCODE V48lift37 track: We see the gene name (HRAS) and
five isoforms; the solid lines represent exons and the most narrow lines, introns;
the arrows on the introns is the strand (-); the narrower solid lines represent
untranslated regions of an exon; the stripes on the coding exons are each codon;
the green and the red codon are, respectively, the start and stop codons. Below
we have the 100 vertebrate Basewise Conservation by PhyloP track; We observe
higher conservation of the coding exons and the splicing site.

Figure 3.4: Genome Browser example - Zoom. With a smaller scale (e.g. 50
bases), we can see the nucleotides of the reference just below the coordinates. On
the GENCODE V48lift37 track, we observe the corresponding amino acid of each
codon. On the PhyloP track, we notice a higher conservation at most bases in the
coding exons and at the CT 3’SS (AG on the positive strand).

3.2 Generation of isoform with splicing signals
These methods aimed to generate all possible isoforms si given a pre-mRNA
sequence S. All make use of recursive algorithms and start as exons, and all work
with this change of state between introns and exons; the difference among them is
when to consider making a process split. The output encodes bases in introns and
exons as lower and upper letters, respectively, as in 2.3.5.
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Many sequences s are created, plus one at every split. Namely, if a sequence
si splits, the created sequence will be sj, with j > i. Each sequence is generated
through a different process; these were computed in parallel, with a variable
maximum number of parallel processes, defaulting to 48.

The computational costs follow the same linear-exponential law, but with
different exponents. L is the length of S, and c = c(S) is the variable coefficient
among the different algorithms; attempts were made to reduce c, trading off with
the probability of generating real isoforms in a reasonable time.

O (L · 2c) (3.1)

3.2.1 Basic splicing signal motifs
Firstly, we consider the three main splicing signals, the 5’SS (GT), the BP (A),
and the 3’SS (AG). Beginning si0 as exon, we iterate a window of size 2 nt, with
stepsize of 1 nt, if a the donor basic motif GT is encountered at some position p, a
split is made, and another process is created with a new sequence sj where sjp is an
intron, while sip remains as exon. Symmetrically, when in intron state, first we find
a BP, then when an AG is found at position p∗, we split the process again, with sj

continuing the sequence as intron, and the new sequence sk : k > j is so that the
sequence continues as an exon, meaning that in sk, it splices out a possible intron
from positions p to p∗.

Therefore, c(S) is upper bounded by the number of GT (d) and AG (a) subse-
quences in S.

Θ
1
L · 2d+a

2
(3.2)

Most probable motifs

To reduce c, a reasonable approach is to expand the window size of the splicing
signal motif check, and split only if such a motif is likely observed in nature.

The conservation of splice signal motifs was obtained from the work of Guigó
Lab [31], with Position Weight Matrices (PWMs). Each position has a probability
score for each base, with respect to the SS of orthologous U2 introns in human,
mouse, rat, and chicken. Values for 5’SS are available on Tab. 3.1 and 3’SS values
on Tab. 3.2.

We have changed the window size of the 5’SS motif to 5 nt, from positions −1
to 4. The window size of the 3’SS motif went to 4 nt, from positions −3 to 1. Such
decisions were made by the probability of the bases in these positions, all are above
60% or 35% for donor and acceptor, respectively. The length of the window size is
still small, to avoid creating motifs with probabilities that are too similar, and to
limit the number of different motifs.
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# A C G T
-3 0.341 0.359 0.181 0.119
-2 0.638 0.11 0.111 0.141
-1 0.1 0.029 0.802 0.069
0 0 0 1 0
1 0 0 0 1
2 0.609 0.026 0.339 0.027
3 0.707 0.074 0.111 0.108
4 0.082 0.053 0.794 0.072
5 0.174 0.15 0.19 0.487
6 0.3 0.196 0.293 0.211
7 0.223 0.252 0.238 0.287
8 0.218 0.268 0.243 0.271
9 0.222 0.245 0.255 0.278
10 0.221 0.25 0.259 0.271
11 0.214 0.243 0.256 0.287
12 0.207 0.251 0.252 0.289
13 0.215 0.246 0.25 0.289
14 0.214 0.245 0.253 0.288
15 0.215 0.235 0.26 0.29
16 0.213 0.237 0.264 0.286
17 0.216 0.237 0.26 0.288
18 0.214 0.24 0.256 0.29
19 0.217 0.239 0.257 0.287

Table 3.1: Donor PWM. Negative positions are exons, non-negative are introns.

The probability of a motif is calculated using the product rule, assuming
independence, as in the study. Considering a motif subsequence S.

P (S) =
LÙ
i

PWMi(Si) (3.3)

The number of non-zero probability motifs for donor and acceptor sites was,
respectively, 256 and 64. The top 10 motifs are displayed in Tables 3.3 and 3.4,
while the distribution of probabilities is displayed in Fig. 3.5. We notice that using
this method, there is a huge majority of motifs whose probability is below 0.1%,
but as we will see in the results, true isoforms may contain motifs that are very
low in this probability ranking.

For both splice sites, we ordered the motif probabilities, and when iterating
through the nucleotides in S, we check either the probability of the motif and
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# A C G T
-20 0.195 0.263 0.153 0.388
-19 0.179 0.267 0.152 0.402
-18 0.158 0.275 0.148 0.42
-17 0.141 0.277 0.144 0.438
-16 0.13 0.28 0.138 0.452
-15 0.117 0.289 0.132 0.462
-14 0.106 0.286 0.126 0.482
-13 0.097 0.282 0.12 0.502
-12 0.088 0.282 0.109 0.521
-11 0.079 0.265 0.104 0.552
-10 0.08 0.285 0.11 0.525
-9 0.091 0.3 0.115 0.495
-8 0.102 0.334 0.105 0.458
-7 0.106 0.344 0.09 0.46
-6 0.081 0.353 0.061 0.505
-5 0.083 0.301 0.06 0.556
-4 0.244 0.271 0.208 0.277
-3 0.054 0.655 0.002 0.289
-2 1 0 0 0
-1 0 0 1 0
0 0.253 0.141 0.493 0.113
1 0.241 0.189 0.199 0.371
2 0.259 0.236 0.236 0.27

Table 3.2: Acceptor PWM. Negative positions are introns, non-negative are exons.

if above a certain threshold Pt, we split. Another method was also applied; we
consider the motif’s rank compared to the others, and si would split with a motif
above some threshold rank Rt.

Regular expression on motifs

A way of exploring the bases around the basic mononucleotide of the BP is to use a
regular expression provided by Xie J. et al. 2023 [85] for humans. It was observed
that compared to yeast, which has a relatively fixed BP motif TACTAAC, humans
have evolved to accept a variety of motifs, providing more AS capabilities. The
proposed motif is YTNAY, in IUPAC code, Y means pyrimidine (C or T) and N
means any base [86].

26



Materials and Methods

8 7 6 5 4 3 2 1 0

3'
 m

ot
ifs

4096 motifs

8 7 6 5 4 3 2 1 0
log10(P(motif))

5'
 m

ot
ifs

16384 motifs

Figure 3.5: Distribution of 3’SS and 5’SS motif probabilities

Top Motif Probability
1 cagGTAAGT 3.058%
2 aagGTAAGT 2.905%
3 cagGTGAGT 1.702%
4 aagGTGAGT 1.617%
5 gagGTAAGT 1.542%
6 cagGTAAGG 1.193%
7 aagGTAAGG 1.133%
8 cagGTAAGA 1.093%
9 aagGTAAGA 1.038%
10 tagGTAAGT 1.014%

Table 3.3: Top 10 Donor motifs. In lower case exons, in upper case introns, in
bold the splicing site

Distance between Branch Point and Acceptor

Considering the physical dimension of the SF1 and U2AF, which bind, respectively,
to the BP and 3’SS, the distance observed between them in spliced lariats in
humans follows the distribution presented in Fig. 3.6. The expected interval for
constitutive splicing is 10-60 nt, 9% were found below 10 nt (proximal), and 8%
above 60 nt (distal). In the figure, it is also illustrated how distal BP may produce
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Top Motif Probability
1 TTCAGgtt 0.498%
2 TTCAGgtt 0.487%
3 TTCAGgta 0.478%
4 TCCAGgta 0.468%
5 TACAGgtt 0.439%
6 TTCAGgtc 0.435%
7 TTCAGgtg 0.435%
8 TCCAGgtc 0.426%
9 TCCAGgtg 0.426%
10 TACAGgta 0.421%

Table 3.4: Top 10 Acceptor motifs. In lower case exons, in upper case introns, in
bold the splicing site

exon skipping and proximal BP, alternative 3’SS.

Figure 3.6: Distance distribution between branch and acceptor splice signals.
Adapted from Taggart J. et al 2017 [87] (CC BY-NC 4.0)

3.3 LoRNASH Pure Generations
We put to the test LoRNASH’s ability to generate realistic isoforms through NTP,
with initial prompt x = HS, and the maximum length of each generation is set to
20.000 nt, as in the original paper [71]. We call them pure generations, because
there is no interference from our algorithm. And we studied the computational
limits of LoRNASH on some GPUs.
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3.3.1 Introns and Exons Statistics

We take all pure generations and filter out sequences smaller than 30 nt (small),
that had not reached the end token until the position 20 knt (big), with continuous
DNA regions at the end (big DNA), or that contain less than 30 exon tokens (full
intron).

We count the number and lengths of introns and exons for each pure generation.
We define the values for minimum intron and exon length to consider anything less
than that as noise. Every noise, be it intron, exon, or DNA, is skipped and does
not interfere with the count and length of the interrupted region. These values were
not based on the evidential minimum lengths of these classes, so to avoid adding
bias to our evaluation of realistic structures present in the pure generations, rather,
they were just made to filter out noise, so smaller numbers are chosen: minexon = 3
nt, the size of a codon, and minintron = 5 nt, the minimum bases needed for the
5’SS, the BP and the 3’SS (GTAAG). Introns that are at the end or beginning of
the sequences are ignored, for they do not have any biological meaning, and their
lengths could interfere with the length statistics. Besides that, they create counters
that are unbiological, since nexons = nintrons + 1.

The length of the whole sequence is also provided, filtering out the noise and
the flanking introns as specified in the previous paragraph, and we present them in
two ways: the basic sequence length and the mRNA length, the latter including
only the exons.

When plotting the dataset’s statistics, we needed an alignment of the mRNA
sequences with the gene sequence to separate the introns from the exons, since only
the exons are sequenced. Using GRCh37/hg19 as a reference to the alignment, we
were able to align 17.863 (57%) using the Biopython library [88], which implements
several alignment algorithms such as Needleman-Wunsch, Smith-Waterman, Gotoh
(three-state), and Waterman-Smith-Beyer global and local pairwise alignment
algorithms, and the Fast Optimal Global Alignment Algorithm (FOGSAA) [89, 90,
91, 92, 93]. We used the parameters: mode = global, for a global optimization,
match score = 1, defining a unit, mismatch score = -100, avoiding single base
mutations, gap score = 0, the gap represents the intron, open gap score = -14,
to open introns only if gain an alignment of 14 points doing so, and extend gap
score = 0, because extending the intron should not be penalized. After obtaining
the alignments, we iterate over the possible alignments with the top score, and
consider valid only the alignments that contain U2 introns, i.e., with GT and AG
splicing sites. We also skipped sequences with more than ten thousand alignments
for computational reasons, and they are probably noise.
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3.3.2 SpliceAI
The SpliceAI model [94] was used to compute the probability of each splicing site
presented in our pure generations and compared them with the ones in the reference.
It is an ensemble of five pre-trained models, all of which are CNNs with diluted
convolutions, and it takes a symmetrical context of 10 knt for each base that is
evaluated. The model was trained using the GENCODE V24lift37 annotation,
with 13 thousand protein-coding genes from which the most conserved isoforms of
each gene were included.

The probabilities are computed by following the sample code on their GitHub
[95]. That is, by adding 5000 N’s downstream and upstream to the sequence,
then using one-hot-encoding to a space with (A, C, G, T, N), creating the input
matrix X ∈ N(L+10000)×5. We input X to all five models, and the outputs are
Ym ∈ RL×3 : m ∈ (1, . . . ,5), having for each position three probabilities of being
acceptor, donor, or no splicing site. The final probability is the average of all five
models Y = q5

m=1 Ym/5.

3.4 Greedy algorithm
The proposed algorithm for the generation of mRNA isoforms, given a gene with
sequence S as input, makes use of LoRNASH (Sec. 2.3.5) [71], an LLM trained
with human and mouse long-read transcripts from 26 cancer cell lines, to work on
the probability distribution of the NTP output from the model.

We define the operator L, for LoRNASH (Eq. 3.4). With L the dimension of
S, which is tokenized to have numerical values, S̄ ∈ NL, and considering the 32
possible LoRNASH tokens. The output is a matrix such that each row corresponds
to a position, and columns are the tokens. With Y = L(x),Yp,t is the probability
that at position p + 1, the token will be t.

L : NL → RL×32 (3.4)
It is a greedy algorithm because it makes local optimal choices. We further refine

our predictions by considering the output of many generations of the algorithm for
the same sequence.

3.4.1 The algorithm
LoRNASH takes as input a tokenized version of an isoform transcript, where introns
and exons are encoded as upper and lower letters, respectively. In addition, there
are other tokens for the species (human or mouse), for the DNA flanking region
(ACGT→WXYZ), before the promoter (token S), and after the polyadenylation
(token E).
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So, given a gene with sequence S, with known start and end points, we start
our output sequence x with the human token, 16 flanking DNA tokens, and a start
token, as the tokens were used in training. As in the example below, underlined
bases are flanking DNA:

S = ACTGCACTTGCCTCGCTGCTTCAGTCACGGGGC . . .

x = HWXZYXWXZZYXXZXYXS

We begin in the exon state. From now on, we iterate over the bases until a GT
is found (5’SS) in position p, then we compute the probability that the sequence x
would continue as intron or as exon, using LoRNASH. We create two sequences by
expanding x until p by r bases downstream in both conditions: xexon and xintron

with probabilities P e and P i, respectively. Follow the example below, with p = 8,
and r = 6, considering S the position 0.

x = HWXZYXWXZZYXXZXYXStgcttca
xexon = HWXZYXWXZZYXXZXYXStgcttcagtcacggg

xintron = HWXZYXWXZZYXXZXYXStgcttcaGTCACGGG

The probabilities are computed by the chain rule (Eq. 3.5), the dependence on
previous bases is intrinsic to the model, and x̄ is a tokenized sequence.

P =
p+r−1Ù
i=2
L(x̄)i−1,x̄i

(3.5)

Since we are comparing P e to P i, and all tokens are the same up until position p,
we reduce the probability computation (Eq. 3.6). It is a design decision based also
on the fact that for large p, the difference in probabilities would be minimal, and
the local properties would diminish.

P =
p+r−1Ù
i=p+1

L(x̄)i−1,x̄i
(3.6)

We then sample the Bernoulli distribution calculated with the softmax of both
probabilities. pk is the computed probability of being an exon or intron, k is the
event, and f is the probability mass function.

p = Softmax(P e, P i) (3.7)

f(k; p) =
pe if k is exon

pi = 1− pe if k is intron
(3.8)
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We assign to x the sequence corresponding to the sampling outcome. E.g. P e = 20%,
P i = 90%, then p = (0.33,0.67), if sampling p we get intron, then x← xintron, and
we change the state to intron.

At the intron state, we look for the next AG (3’SS); we do not check for BPs
this time because we expect such a check from the model’s base knowledge. Once
it is found, the same procedure takes place with the following sequence (Fig. 3.7).

x = H . . . StgcttcaGTCACGGG . . . CGTCGAG
xexon = H . . . StgcttcaGTCACGGG . . . CGTCGAGtgctac

xintron = H . . . StgcttcaGTCACGGG . . . CGTCGAGTGCTAC

We iterate until the sequence ends, insert the polyadenylation token E, add the
downstream flanking DNA, and a [SEP] token at the end. However, polyadenylation
occurs at the mRNA, so it cannot take place on introns. So, the token E is inserted
immediately after the latest exon base of x, and the downstream intron tokens are
translated to flanking DNA (Fig. 3.8).

Figure 3.7: Greedy algorithm, some iterations. Only introns and exons are
depicted for simplicity. Blue represents exons, and orange represents introns.

In the development phase, a 1000 isoforms with variable promoters were gen-
erated for the genes FOXA1, MYC, HRAS, with hyperparameter r taking values
6, 8, 12, 15, 20, 50, 75, 100, 150, and 200. The position of the possible promoters
originates from the IIGM’s dataset.

3.4.2 Perplexity of the algorithm
Perplexity is a measure of uncertainty when sampling from a discrete probability
distribution (Eq. 3.9). It was created in the context of speech recognition tests
[96], and it is the exponential of the entropy of a probability distribution.

A probability distribution f with PP (f) = m has the same uncertainty as a fair
m-sided dice. We compare the discrete probability distribution f with 2 choices,
so 1 ≤ PP (f) ≤ 2.
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Figure 3.8: Final step of the greedy algorithm. Top: final token of x is an exon.
Bottom: final token is an intron. Blue represents exons, orange introns, green
flanking DNA, and black special tokens.

PP (p) =
Ù
x

p(x)−p(x) = b−
q

x
p(x) logb p(x) (3.9)

We want to evaluate the certainty of the choices of our algorithm. Two types
of distributions are presented, the first are for each decision the algorithm makes,
therefore, for each splice signal it finds, and the second are the distributions when
it changes state from intron to exon and vice-versa. We plot the information
categorized by r and by gene.

3.4.3 Counting the created isoforms

We count the number of times a certain isoform was generated for each r. We
observed a low count due to randomness in the selection of the same GT or AG
subsequence. Hence, we created a method to take these errors into account.

We define the error variable e, with ranging values 5, 10, 20, and 50 nt. Given an
e, we create a mesh of points that merge e bases. So each isoform is translated into
these meshes, and we count them instead of the pure sequence. The translation is
such that, in the original sequence x, if there is any exon token inside the interval
[xi mod e, xi mod e+e), the mesh point corresponding to that interval takes value 1,
else 0 (Fig. 3.9).
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Figure 3.9: Mesh for counting generated isoforms with e = 5. x the original
sequence, with lower letters in yellow boxes as exons, and upper letters in purple
boxes as introns. And xm is the mesh created from the original sequence, with the
same color pattern, and 1 meaning exon, and 0 meaning intron.

3.4.4 Distribution of Exon expression
For each gene and each promoter used as the initial point of generation, we count
the number of times a base is expressed as an exon; therefore, expressed in the
mRNA isoform. The counts are normalized to the total number of generations
in which such a base is part of the isoform, and hence, not defined in flanking
DNA tokens, following the expression in Eq. 3.10, with N the number of isoforms
generated from the same promoter site. An example is provided at the top of Fig.
3.10.

Ci =
NØ
g=0

I(xgi is exon)
I(xgi is intron ∨ exon) (3.10)

We also produced a correlation matrix of exon expression to be able to evaluate
AS events, such as cassette and mutually exclusive exons.

3.4.5 Computational analysis
While running the greedy algorithm, we recorded the elapsed time, CPU time,
GPU time, and peak VRAM of 25000 generations, 250 for each isoform. It was
performed on the test dataset, so the maximum length of the genes was 10 knt.

3.5 Base-level Binary Classifier
Each base will have an exon expression score Ci from 0 to 1. With a varying
threshold t, we can classify base-by-base exons from introns (Fig. 3.10).

3.5.1 Validation
We evaluated our algorithm with the Area Under Curve (AUC) of the Receiver
Operating Characteristic (ROC) [97], which is a curve plotted on two axes, 1 −
Specificity×Sensitivity or FPR×TPR, see Eq. 3.12, 3.11 and Fig. 3.11. The points
on the curve are obtained by evaluating our algorithm (Sec. 3.5) with threshold t
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Figure 3.10: Example of our exon classifier, for t = 0, 20%, 40%, 60%, 80%, and
100%. At the top, the expression of each base, with a line for each threshold. At
the bottom, the produced isoforms. Colors represent each t.

varying from 0 to 1, taking steps of 2%. Each evaluation is computed base by base,
so given a known isoform, we computed N isoforms with our algorithm with the
same promoter; we consider the classification of individual bases as exons (positive)
or introns (negative). We count the sum across all bases of True Positives (TP),
False Positives (FP), True Negatives (TN), and False Negatives (FN) to compute
the specificity and sensitivity of our classifier.

1− Specificity = FPR = FP
N = FP

TN + FP (3.11)

Sensitivity = TPR = TP
P = TP

TP + FN (3.12)

A classifier with AUC = 0.5 is as good as random guessing, or flipping a coin.
The greater the area, the better a classifier is, for it can separate well TPs and
FPs, reducing both errors of type-I and type-II. Finally, a perfect classifier has
AUC = 1, where, ∃t : (TPR = 1, FPR = 0).

We computed the average AUC for five genes, with various r as validation. Also,
the average AUC weighted by expression is computed to give more importance
to the mRNA isoforms that are more commonly observed. Table 3.5 presents a
proposed interpretation of the AUC values in diagnostic accuracy studies [99].

Finally, to test our algorithm, we generated 257 isoforms for 51 different genes,
with multiple known promoters, and computed the AUC.

35



Materials and Methods

Figure 3.11: Example of ROC curve. Originally from Wikipedia [98] (CC BY-SA
4.0)

AUC value Interpretation
0.9 ≤ AUC Excellent
0.8 ≤ AUC < 0.9 Considerable
0.7 ≤ AUC < 0.8 Fair
0.6 ≤ AUC < 0.7 Poor
0.5 ≤ AUC < 0.6 Fail

Table 3.5: Interpretation of AUC values
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Results

4.1 Generation of isoform with splicing signals

In the first attempt at generating the possible isoforms from a gene, we first consider
splitting at each U2 splice site, i.e., GT and AG. Given two randomly chosen genes,
i.e., PLRG1 and FUS, we notice that the computational cost in terms of time and
memory is unfeasible, e.g., ∼ 10556 splits. In our attempts at reducing the number
of splits, we computed the probability of each motif around the splicing sites (Sec.
3.2.1), and would split only at splicing sites that were ranked in the top T motifs in
terms of probability. We notice that for low T , no results match real isoforms, and
for high T , it becomes unfeasible again. Information regarding the computational
costs of the first approach and the one ranking splicing site motifs is presented in
Tab. 4.1. Additional measures were taken to reduce the actual computational time,
not the worst case, i.e., considering a regular expression for BP motifs and their
distance from the 3’SS, but such efforts were in vain, since there was no positive
outcome.

Furthermore, we notice that in four real isoforms of the gene FUS, the ranking
of the observed motifs reaches up to T = 3225 (Tab. 4.2), meaning that for any
smaller T , no valid isoform would ever be generated by this method. A conclusion
that was confirmed by our results, that after hours of computing and many GB of
saved sequence data, no generated isoform matched any real one; even though we
stopped the computations due to the high cost, we still could not expect anything
better from additional time and memory consumption.

This leads to the conclusion that we need a more sophisticated method for
generating possible isoforms, given a gene. We will use LoRNASH within a greedy
algorithm, whose generations will be used inside a base-by-base exon classifier.
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Name PLRG1 FUS
Gene ID ENSG00000171566 ENSG00000089280
Length (nt) 5930 11455
Isoforms 2 4
Max exons 15 15
GT count 914 986
AG count 934 1049
Worst case splits number ∼ 10556 ∼ 10612

Top 10 5’SS count 2 2
Top 10 3’SS count 5 3
Worst case splits number 128 32
Top 50 5’SS count 6 11
Top 50 3’SS count 15 18
Worst case splits number ∼ 16 M ∼ 536 M
Top 100 5’SS count 9 16
Top 100 3’SS count 20 41
Worst case splits number ∼ 536 M ∼ 1017

Top 500 5’SS count 29 55
Top 500 3’SS count 132 142
Worst case splits number ∼ 1018 ∼ 1059

Table 4.1: Information of two sample genes, counts of splicing signals, and motifs
within certain ranks of probabilities. The number of splits necessary to generate
all isoforms is calculated in accordance with Eq. 3.2.

List of ranks of observed motifs in all four FUS isoforms
5’SS 4, 8, 40, 45, 49, 65, 143, 184, 233, 272, 401, 466, 562, 1871, 2398
3’SS 57, 78, 102, 170, 416, 465, 527, 914, 989, 1177, 1200, 1300, 2051, 2873,3225

Table 4.2: List of ranks of observed motifs in FUS gene.

4.2 Reproducing LoRNASH Results
As described in Sec. 3.3, we have generated a thousand isoforms with LoRNASH’s
NTP, using as initial prompt the human species and the start token, HS; the
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maximum length of each pure generation is set to 20 knt. In this section, we will
use BLAT to compare our pure generations with the reference genome GRCh37;
compare the statistics on the lengths of introns, exons, sequences, and mRNAs
between our experiments and IIGM’s dataset; Use SpliceAI to calculate the proba-
bility of the used splicing sites ot being so, still comparing against IIGM’s dataset;
and finally, attempt to correlate the long-read expressions with the End token and
normalized sequence probabilities, as it is done in the original paper of the model
[71].

4.2.1 BLAT

We have fed as input to the BLAT algorithm (Sec. 3.1.2) the pure generations in
two different ways, either by using the gene sequence (introns and exons), or only
the exons (mRNA). The matched bases, in absolute values and in relative terms to
the sequence lengths, are presented in Fig. 4.1. We can conclude that LoRNASH

does not produce real genes or isoforms by heart, i.e., it is not overfit to predict
the next tokens of the sequences seen in the training set.
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Figure 4.1: BLAT results from pure generations. On the Left, maximum matches
normalized by the transcript length; on the Right, maximum matches in absolute
values; on Top, data describing the BLAT of the generated sequences, i.e., flanking
DNA, introns, and exons; at the Bottom, data of mRNA, i.e., only exons. Sample
size is smaller due to not finding matches ≥ 20, and to the size limit of GET
requests, i.e., 8KB.
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4.2.2 Introns and Exons Statistics
We can compare the distributions of counters and lengths of introns and exons
between our pure generations, IIGM’s dataset, and the distributions presented in
the original paper [71] in Fig. 4.2. Details on the processing are available in Sec.
3.3.1. Comparing our distributions and theirs, there is no direct match; this might
be due to different post-processing of the data.

Analysing in detail Fig. 4.4, we produce longer exons and introns with respect
to the reference (Sec. 3.1.1). Whilst producing shorter sequences and mRNAs,
which makes sense with the fact that LoRNASH produced fewer exons and introns
than the reference (Fig. 4.3), this might be due to a bias towards staying in the
same state (intron/exon) as it computes the probabilities of the next token. The
distributions of the original paper exhibit similar trends.

Figure 4.2: Distribution of pure generations statistics from original paper. A:
Depiction of the pure LoRNASH generations with initial prompt HS, up to the last
token P, for polyadenylation, which in our case is called E, for end token. B: Exon
lengths. C: Intron lengths. D: Number of exons. E: Sequence lengths. F: Splice
probabilities. G: Correlation of the Codon usage between their Human reference
and their pure generations. Original from [71] (CC-BY-NC-ND 4.0)
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Figure 4.3: Distribution of exon and intron counters in pure generations and
reference. Our pure generations are presented in blue, and IIGM’s data, in orange.
For sample sizes, refer to Tab. 4.3.
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Figure 4.4: Distribution of exon, intron, sequence, and mRNA lengths in pure
generations and reference. Our pure generations are presented in blue, and IIGM’s
data, in orange. For sample sizes, refer to Tab. 4.3.
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Pure generations IIGM’s dataset
Analyzed isoforms 836 10336
Total number of exons 2532 47943
Total number of introns 1696 37607
Excluded (small) 2 0
Excluded (big) 195 7527
Excluded (big RNA) 5 0
Excluded (full intron) 76 0
Total noise tokens 738 0
Total tokens 4.146.229 77.712.590

Table 4.3: Sample sizes of pure generations and IIGM Statistics. Noise tokens
are not included in the Total tokens value, nor are the excluded isoforms data used
in any way. Details on processing in Sec. 3.3.1.

4.2.3 SpliceAI on generated Splicing Sites

Using the SpliceAI model to evaluate the probability of each splicing site on both
our reference and on the pure generations, we notice an important discrepancy
(Fig. 4.5) with the original paper (Fig. 4.2); such a difference could be due to
different data-processing, or perhaps even how the SpliceAI model was employed,
our methods are explained in Sec. 3.3.2. Comparing our probabilities, we notice
the reference probabilities are much higher compared to the pure generations; the
former has a median of 99.03% and the latter 0.23%.
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Figure 4.5: Distribution of SpliceAI probabilities in pure generations and reference.
Our pure generations are presented in blue, and IIGM’s data, in orange. The
represented sample sizes at the bottom refer to the number of splicing sites.

4.2.4 Expression vs Full sequence and End token probabili-
ties

The original paper correlated the long-read expression with the E token probability,
yielding a Pearson Correlation Coefficient (PCC) of 0.15 and a p-value of 8.6e−237

[71]. However, we did not obtain these results, as we can observe in Fig. 4.6 in the
middle. In the same figure, we compute the Pearson and Spearman correlations
between the model probabilities and these against the long-read expression, and none
present any statistically significant correlation. Additional tests were performed by
considering the natural logarithm of either or both axis in all three graphs, but
no significant improvement was observed. Given these results, these probability
metrics will not be used as a fitness metric of any kind for future sections.

An interesting observation in Fig. 4.6, the main normalized probability is
about 30%, and some sequences had it greater than 40%; We can take in regard
8 main tokens (A, C, G, T, a, c, g, t), but it is plausible to consider that the
main probabilities are between tokens of the same kind, between exon and intron;
therefore, given our semplification, a complete random next token generator would
have the normalized probability constant at 25%. No meaning was extracted from
the probability distribution of the E token.
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Figure 4.6: Model probabilities and Dataset Expression. On Top, the E token
probability vs the normalized probability of the whole sequence; in the Middle, the
E token probability vs the long-read expression; at the Bottom, the normalized
probability of the whole sequence vs the long-read expression. In parentheses,
the p-value of each correlation coefficient. The black lines represent the linear
regressions.
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4.3 Greedy algorithm

We will first study our algorithm with the genes FOXA1, HRAS, MYC, KLF6,
MDM2, and SRSF1, whose information is in Table 4.4; all information is obtained
from the readings of the IIGM dataset. A first example of some of the generated
isoforms compared with known GRCh37 isoforms is presented in Fig. 4.7 with the
BLAT alignment of the UCSC genome browser. The algorithm is described in Sec.
3.4.

Gene Iso ID Exp Seq Length # Exons Avg Exon Length Category
FOXA1 2479a 159.5 5241 2 1526 known
FOXA1 e15ae 5.3 5241 1 5241 novel
FOXA1 33e8f 1.3 5241 3 1051 known
FOXA1 e0a58 1.2 784 2 248 known
HRAS b87f8 30.7 3309 6 174 known
HRAS c833c 15.2 3098 6 165 novel
HRAS 5bf6c 13.9 3309 6 206 known
HRAS 11874 2.7 3309 7 161 known
HRAS bc9d7 1.0 582 1 582 novel
MYC f32d7 227.4 5204 3 720 novel
MYC a957b 223.7 5351 3 784 known
KLF6 367bb 26.9 8641 3 1298 known
KLF6 90cc4 5.7 8641 4 1004 known
KLF6 a5a20 0.6 5736 1 5736 novel
KLF6 06a0a 0.5 1541 1 1541 others
MDM2 8e5f4 10.9 1760 1 1760 novel
SRSF1 4d51f 94.7 3781 4 699 known
SRSF1 97e76 28.2 3175 1 3175 novel
SRSF1 06e6c 19.2 3781 5 263 novel
SRSF1 bf922 5.4 3781 4 519 known
SRSF1 145cd 3.6 3781 5 375 novel

Table 4.4: Information on 21 isoforms present in the IIGM dataset, from 6 genes.
Iso ID refers to the unique sequencing identifier. Exp is the long-read expression in
TPM. Seq Length is the distance from the first and last exon bases when aligned to
the reference GRCh37. The isoform 06a0a is categorized as others because it is
probably a pre-mRNA fragment.
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Figure 4.7: Examples of greedy-generated isoforms in UCSC - HRAS. Two
different promoters are shown, with variable hyperparameter r, displayed on the
right of each alignment.

For each gene, considering only the first promoter, the 10 most frequent isoforms
from 200 generations are presented in Figures 4.8-4.13, with an error range of 10
nt and the hyperparameter r = 75 (Sec. 3.4.3); the same figures contain isoforms
from the IIGM dataset with the TPM long-read expression on the top.
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Figure 4.8: Top 10 greedy and IIGM isoforms - FOXA1. Yellow represents exons.
On top, the dataset’s isoforms with long-read expression in TPM. At the bottom,
the 10 most frequent isoforms in the greedy algorithm with an error range of 10 nt
and r = 75.
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Figure 4.9: Top 10 greedy and IIGM isoforms - HRAS. Yellow represents exons.
On top, the dataset’s isoforms with long-read expression in TPM. At the bottom,
the 10 most frequent isoforms in the greedy algorithm with an error range of 10 nt
and r = 75.
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Figure 4.10: Top 10 greedy and IIGM isoforms - MYC. Yellow represents exons.
On top, the dataset’s isoforms with long-read expression in TPM. At the bottom,
the 10 most frequent isoforms in the greedy algorithm with an error range of 10 nt
and r = 75.
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Figure 4.11: Top 10 greedy and IIGM isoforms - KLF6. Yellow represents exons.
On top, the dataset’s isoforms with long-read expression in TPM. At the bottom,
the 10 most frequent isoforms in the greedy algorithm with an error range of 10 nt
and r = 75.
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Figure 4.12: Top 10 greedy and IIGM isoforms - MDM2. Yellow represents exons.
On top, the dataset’s isoforms with long-read expression in TPM. At the bottom,
the 10 most frequent isoforms in the greedy algorithm with an error range of 10 nt
and r = 75.
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Figure 4.13: Top 10 greedy and IIGM isoforms - SRSF1. Yellow represents exons.
On top, the dataset’s isoforms with long-read expression in TPM. At the bottom,
the 10 most frequent isoforms in the greedy algorithm with an error range of 10 nt
and r = 75.

4.3.1 Exon expression in Greedy generations

In Figures 4.14-4.19, we plot the exon expression of the genes FOXA1, HRAS,
MYC, KLF6, MDM2, and SRSF1 (Tab. 4.4), as described in Sec. 3.4.4, with
200 generations for each promoter site present in IIGM’s dataset, and for r =
(6, 20, 50, 75, 100, 150, 200). On top of each figure, the isoforms from GRCh37 are
depicted with the UCSC genome browser, so that we can compare the global picture
of our generated isoforms with the known ones. A particular case is the MDM2
gene, whose only region inside the IIGM’s dataset is around five thousand bases
away from the nearest MDM2 coding region.
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Figure 4.14: Exon expression of greedy generations - FOXA1. On top, GRCh37
isoforms from the UCSC genome browser. Below, the exon expression of 400 greedy
generations with variable r.
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Figure 4.15: Exon expression of greedy generations - HRAS. On top, GRCh37
isoforms from the UCSC genome browser. Below, the exon expression of 600 greedy
generations with variable r.
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Figure 4.16: Exon expression of greedy generations - MYC. On top, GRCh37
isoforms from the UCSC genome browser. Below, the exon expression of 400 greedy
generations with variable r.
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Figure 4.17: Exon expression of greedy generations - KLF6. On top, GRCh37
isoforms from the UCSC genome browser. Below, the exon expression of 400 greedy
generations with variable r.
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Figure 4.18: Exon expression of greedy generations - MDM2. On top, GRCh37
isoforms from the UCSC genome browser. Below, the exon expression of 200 greedy
generations with variable r.
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Figure 4.19: Exon expression of greedy generations - SRSF1. On top, GRCh37
isoforms from the UCSC genome browser. Below, the exon expression of 200 greedy
generations with variable r.

In the correlation matrices of exon expression presented in Figures 4.20-4.25, we
can visualize diagonal blocks that are highly correlated, representing introns and
exons within greedy generations. Highly correlated blocks outside the diagonal,
e.g., (i, j), means that block i is classified as an exon or an intron frequently when
the j block is also classified as the first.
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Figure 4.21: Correlation
of Exon/Intron expression
- HRAS
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- MYC
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Figure 4.23: Correlation
of Exon/Intron expression
- KLF6
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Figure 4.24: Correlation
of Exon/Intron expression
- MDM2
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of Exon/Intron expression
- SRSF1
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With both global and individual exon expression plots and their correlation
matrices, we analyze the overall results and discuss the hyperparameter r.

In FOXA1 (Fig. 4.8, 4.14, 4.20), the beginning of the first intron is completely
recognized by r ≥ 100, but all values of r obtained low exon expression in that
area. In the first exon, we notice that for the generations whose promoters are
positioned upstream to the coding region, the non-coding region is lowly expressed
for r ≥ 75. With r ≥ 50, there is an overall good recognition of the beginning
of the second exon. For all r, there is a drop in expression within the last exon
right at the stop codon, i.e., the end of the coding region. As we will notice in
most genes, r = 6 and r = 20 perform worse, and the higher the r, the further our
context window includes real exons, making it such that the output probability
of the sequence ahead of the splicing site being evaluated is an exon be higher
than with lower r, so exons tend to begin earlier than they should, in this gene,
this can be seen for both the second exon of the first isoform from UCSC, and the
second exon of the third isoform. So, we need to balance this hyperparameter well.
Furthermore, around the second exon of the second UCSC isoform, there is again
a drop in expression where the exon ends. In the correlation matrices, we see how
the last exon is split into two diagonal blocks, one for the coding region and the
other for the non-coding region.

In HRAS (Fig. 4.9, 4.15, 4.21), the first exon of the first promoter is completely
recognized ∀r, we also observe a peak on the first exon of the third promoter (index
∼ 250), however, it is relatively low, because isoforms whose promoter is upstream,
decreasingly predict that exon as such; still regarding this exon, we see how the
greater the r, the quicker is tends to predict it as intron. An interesting event is
presented in HRAS around the index 700, our greedy generations have recognized
an intronic region as exonic across most r experiments; such an area could be
studied to find a possible novel exon. The second overall exon is well-defined for
r = 75, and larger values extend it upstream, as it happens for the third exon, but
more intensively at the latter. Two new insights in this gene are for nearby exons,
r = 200 creates a bridge between exons three and four, and the small fifth exon
tends to be disregarded with 50 ≤ r ≤ 150, and the bridge effect brings it back
to the plot, although with a smaller peak than the previously mentioned bridge.
The last exon (from ∼ 2750) or the last two exons, depending on the isoform, we
notice again a steep drop in expression following the stop codon, also from the top
generated isoforms, most end nearly after; however, there is a rise in expression
corresponding to the last non-coding exon for r ≤ 75. Note that the expression
height is normalized by the time such a base is either an intron or an exon; therefore,
the peaks in the last bases might be due to just a few of the generated isoforms
classifying it as an exon, as the others consider that area as flanking DNA. The
correlation matrices for r ≥ 150 depict the high cross-correlation of the three exons
in the middle, and with r = 200, there are intron blocks with high cross-correlation
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that are up to 3000 nt away.
In MYC (Fig. 4.10, 4.16, 4.22), the first exon of the promoters before index

500 is very well defined ∀r. In this gene, the first intronic region has a noticeable
amount of greedy generations that classify part of it as an exon, so a further
study would be interesting. The second exon is also very well defined, especially
downstream, but the corresponding 3’SS is visibly being recognized before the
real one for r ≥ 150. The last exon is not as certain as the others, but as we will
see, the staircase of expression helps our binary classifier presented in the next
section. With r = 200, the second and third exons are highly cross-correlated;
note that they are not highly cross-correlated with the first exon because some
greedy-generated isoforms end after the first exon.

KLF6 is a longer gene, with a high conservation of part of the first intronic
region (Fig. 4.11, 4.17, 4.23). The first exon is well-defined ∀r, and the first intron,
which has large high conservation regions with respect to the other genes seen so
far, in this area, we notice a short peak, particularly with r = 100, corresponding
to the first high conservation peak, and the rest of the intron is not as clearly
defined. The second exon begins around 250 nt earlier ∀r, but has a clear drop
on the correct 5’SS. The second intron of most known isoforms is also an exon in
the first depicted isoform in the UCSC browser; our greedy generations tend to
classify that region as an intron, with the exception of two small expression peaks
visible with r = 150 and r = 200. The third exon is well-defined for r ≥ 150, but
somewhat recognized for smaller r as well. The 3’SS of the last exon is well-defined
for 50 ≤ r ≤ 100, as greater ranges r begin the exon earlier. Such an exon is almost
fully non-coding, despite the high conservation in some areas; the exon expression
or our greedy-generated isoforms are uncorrelated to coding or non-coding, or to
the conservation. A further study would be needed to evaluate how LoRNASH acts
here. The top isoforms with r = 75 have a great variety of polyadenylation sites.
For r ≥ 100, there is an increasing number of cross-correlated intron blocks all over
the extent of the gene.

In MDM2, as previously stated, we are acting on a completely non-coding,
low-conserved region of around 1800 nt (Fig. 4.12, 4.18, 4.24), simply due to the
single transcript corresponding to this gene being on this region inside the IIGM’s
dataset. We notice a very low variance across generations of a single r experiment,
which is due to most sequences ending early.

In SRSF1 (Fig. 4.13, 4.19, 4.25), the first exon’s 5’SS are not as good as most of
the previous genes. The second exon is correctly classified for r ≥ 150. The third
and fourth exons of the second reference isoform from the top are well-defined for
r ≥ 100, although a bridge effect is noticed between them; however, in this case,
the bridged region is also classifiable as an exon on other reference isoforms, e.g.,
the third from the top. After these exons, the reference isoforms are structured very
differently, but most are within the non-coding region, despite the high conservation.
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In this region, there are clear exon blocks present ∀r, i.e., indexes ∼ (3050− 4200)
and from index ∼ 4600 on. We do notice a strong negative cross-correlation between
the correct exon classifications and these exon blocks in the non-coding region
that do not match the structure of known ones, probably because most generated
isoforms have the polyadenylation site earlier, as observed in the top ones from
r = 75; the negative correlation is particularly visible with r = 200.

4.3.2 Perplexity

We measured the perplexity of our greedy algorithm for each choice it had to make,
as well as when a change between exon and intron was made, to evaluate the
certainty or randomness of the greedy algorithm, as described in Sec. 3.4.2. In Fig.
4.26, depicting the perplexity of every decision point is clear that the algorithm is
very certain of most decisions; this near 1 perplexity is due to the many evaluations
it makes within a single state of intron or exon, and the monotonic decreasing
perplexity with r is due to enlarging the gap between probabilities with more and
more bases it analyses, and again considering the same state bias, it must decrease
with r.

So to remove the same state bias, we plot the perplexity of the decisions made
only when a change of state was observed (Fig. 4.27), the trend is not monotonic
anymore and perplexity covers its full codomain, i.e., between 1 and 2. Interestingly,
the median perplexity for 50 ≤ r ≤ 150 is noticeably lower than the rest, even for
r = 200, meaning that having a larger context could increase the uncertainty; as
we observed in the previous sections, the larger r does not always mean a better
result.

Analysing the perplexity for each gene (Fig. 4.28, 4.29), we observe the same
decreasing median perplexity trend with r, however, when considering only the
points in which it changes state, there is a variety of behaviors, so it is clear that
the algorithm’s perplexity of a certain r depends on the gene. FOXA1 has a
75 ≤ r ≤ 150 below the rest, but r = 100 is the most certain one. MYC and HRAS
have 50 ≤ r ≤ 150 with fairly similar median perplexity. The minimum value for
KLF6 is r = 50. MDM2 has the most diverse distributions due to the nature of
the sequence it has analyzed, which is outside the coding region. And SRSF1 has
the minimum perplexity at r = 150.

Together with our descriptive analysis of the exon expressions, we notice that
the range 50 ≤ r ≤ 150 contains not only the best results, but also with more
certainty.

63



Results

6 20 50 75 100 150 200
r

1.00

1.01

1.02

1.03

1.04

Pe
rp

le
xi

ty
Perplexity of greedy algorithm

Points: 1032663

Figure 4.26: Perplexity of all decisions
made by the Greedy algorithm

6 20 50 75 100 150 200
r

1.0

1.2

1.4

1.6

1.8

2.0

Pe
rp

le
xi

ty

Perplexity of greedy algorithm
Change state - Points: 18080

Figure 4.27: Perplexity of decisions
that change state made by the Greedy
algorithm
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Figure 4.28: Perplexity of all decisions made by the Greedy algorithm by gene
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Figure 4.29: Perplexity of decisions that change state made by the Greedy
algorithm by gene

4.4 Base-level Binary Classifier
We exploit the global information among all greedy generated isoforms of the
same promoter site by creating a single-nucleotide-level exon classifier. Given a
variable threshold t, we label a base xi as an exon if its exon expression is above
the threshold. The methods used to evaluate the classifier are both the AUC and
the Long-expression-weighted AUC, as referred in Sec. 3.5.1.

4.4.1 ROC curves and AUC
In the figures 4.30-4.34, we plot the ROC curve of a single hand-picked isoform
for each gene as an example; a more general evaluation including the 19 isoforms
will follow. The five characters code in parentheses in the figures are the last
part of a unique sequencing identifier from the dataset. In these examples, we
notice just a few points below the random guesser classifier line, in FOXA1. In the
HRAS example, most values of r have a similar curve with high AUCs, most with
AUC > 90%, while in KLF6, just a few r exceed 80% AUC. The MYC example

65



Results

contains a curve with AUC = 1.000 with r = 100, and overall high values in the
other ranges too. And finally, the example of SRSF1 contains a ROC curve for
r = 200 that clearly struggles more than the rest, with AUC = 73%, and 14% apart
from the second lowest AUC.

Note that the gene MDM2 was excluded from this evaluation because the only
isoform available in the dataset is monoexonic, and the integral for the AUC is
indefinite when the ground truth has only positive values. The e15ae FOXA1
isoform was excluded for being monoexonic too.
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Figure 4.30: ROC curve example - FOXA1
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Figure 4.31: ROC curve example - HRAS
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Figure 4.32: ROC curve example - MYC
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Figure 4.33: ROC curve example - KLF6
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Figure 4.34: ROC curve example - SRSF1
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Gene
r 6 20 50 75 100 150 200 Gene mean

FOXA1 .847 .788 .890 .883 .834 .923 .764 .85
HRAS .904 .904 .921 .937 .919 .931 .874 .91
MYC .750 .909 .956 .993 .995 .985 .973 .94
KLF6 .910 .879 .882 .883 .799 .773 .764 .84
SRSF1 .901 .902 .885 .908 .905 .885 .853 .89
r mean .86 .88 .91 .92 .89 .90 .85

Table 4.5: Average AUC across 19 isoforms for multiple genes and ranges

Gene
r 6 20 50 75 100 150 200 Gene mean

FOXA1 .767 .678 .832 .820 .747 .883 .803 .79
HRAS .884 .891 .913 .942 .917 .954 .887 .91
MYC .750 .909 .956 .993 .995 .985 .973 .94
KLF6 .822 .783 .838 .861 .740 .712 .708 .78
SRSF1 .950 .957 .931 .946 .920 .893 .799 .91
r mean .83 .84 .89 .91 .86 .89 .83

Table 4.6: Long-expression weighted average AUC across 19 isoforms for multiple
genes and ranges

The AUC values averaged across isoforms for each pair of range r and gene are
presented in Tab. 4.5, and the Long-read expression weighted average is presented
in Tab. 4.6. To perform the final test, we have selected the range r = 75, as it has
the best performance in both metrics across the five studied genes.

4.4.2 Final test
Having chosen r = 75, with 51 genes such that each has at least 3 non-monoexonic
isoforms and a gene length below 10 knt, we have generated 500 isoforms with the
greedy algorithm from each of the 100 known promoter sites from the reference,
being related to 271 isoforms, and finally calculated the AUCs of the binary classifier,
by gene weighting the isoforms’ AUC with the long-read expression (Fig. 4.35),
and by isoform, with or without seperating the known and novel ones (Fig. 4.37
and Fig. 4.36).
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The known isoforms’ AUC present a bimodal distribution with one peak near
100% and the other just under 90%, a phenomenon that was not observed among
the novel isoforms, whose distribution has a tail towards lower values of AUC,
having an outlier at 48.5%. Although the distributions are different, the quartiles,
median, and average remain within a distance of less than 5%.

Furthermore, we studied the correlation between the AUC of the isoforms and
the natural logarithm of their long-read expression in Fig. 4.38. There is a small
correlation (PCC = 0.119) and a p-value of 5.668%, so the correlation is not
conclusive.
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Figure 4.35: WAUC distribution on final test by genes.
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4.5 Hardware resources in Greedy algorithm

As described in Sec. 3.4.5, we analyze the time and VRAM complexity with the
computational resources provided by HPC@PoliTO [100], using an Intel Xeon Gold
CPU and an NVIDIA A40 GPU.

4.5.1 Algorithm time complexity

We measured the execution, GPU, and CPU times, out of 25000 generations of
variable lengths. From Fig. 4.39 we observe that the quadratic relationship between
length L and time t is a good fit for L < 10 knt; there is no significant reduction
of error by using a third-degree polynomial fit. Furthermore, we notice that some
isoforms take noticeably more time to be generated, to inspect this phenomenum,
we have taken the generated isoform that took the longest for each gene, and
we observed that for execution time and GPU times, 51/51 were associated with
the first isoform generated for a given promoter, we can infer that there is some
optimization occurring that takes advantage of the first computation.
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Figure 4.39: Execution, GPU, and CPU times in Greedy algorithm
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4.5.2 GPU memory usage

The computational limitations are related to the VRAM usage in the GPU, noticing
that the model occupies by itself only 6MB (Sec 2.3.5), the major memory allocation
is related to feed-forwarding the sequence; the longer the sequence, the more it
allocates. The compared configurations of GPUs are presented in Tab. 4.7. These
results were obtained by iteratively selecting increasing-length genes within the
dataset, tokenizing them, and computing the probability tensor with LoRNASH,
until a memory error occurred. With multiple GPUs, one can assign different layers
to each unit. The winning strategy here is to assign the most memory-hungry layers
uniformly distributed among the machines, which, in our case, are the Attention
layers.

Figure 4.40 presents the distribution of gene lengths present on IIGM’s dataset
(Sec. 3.1.1), together with the GPU limits.

The model has the following structure, in order: 4× Hyena Blocks, 1× Attention,
3× Hyena Blocks, 1× Attention, 3× Hyena Blocks. When using 4 GPUs, we
assigned the first four layers of Hyena blocks to one GPU and one Attention layer,
along with three Hyena blocks, to the other GPUs, in a way that minimizes memory
swaps.

Notice that the context of the model is of 65536 nt, so in our results, we managed
to include the whole context with a single RTX A40 GPU. The other two important
maximum lengths in this thesis are the 10 knt, used in our algorithm (Sec. 3.4),
and 20 knt, used in the pure NTP generations (Sec. 3.3). More nucleotides beyond
the maximum context are only stored in the GPU memory to be output when
computations are done; no more than 65536 bases are included in the computations.
No tests were done to evaluate the model metrics on longer contexts, which would
exclude special tokens from the beginning of the sequence, i.e., [CLS], H, and S.

GPUs VRAM (GB) Max nucleotides (knt) Genome coverage (%)
1× RTX A5000 24 30 63.38
1× RTX A40 48 85 86.45
4× RTX A40 192 284 98.28

Table 4.7: GPU configurations
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Figure 4.40: GPU limits on IIGM’s dataset using LoRNASH

A more specific study measuring the peak VRAM was made for L < 10 knt,
with 25000 generations, and we observe there is a perfect linear dependency in that
region (Fig. 4.41).

Figure 4.41: Peak VRAM usage during Greedy algorithm
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Chapter 5

Conclusion

The problem of discovering new isoforms is important for the advancement of
knowledge about many diseases, including cancer, and it is useful even in clinical
applications. Sequencing all mRNA isoforms from a replicate is mathematically
improbable with current technology, especially for isoforms that are lowly expressed.
Therefore, a computational approach to predicting possible isoforms is an interesting
problem. Even if not observed, one can study their likely behavior. In this thesis, we
have explored a naive way of creating possible isoforms of a gene combinatorially,
but it has proved to be both inaccurate and unfeasible, so we have employed
LoRNASH, an LLM pretrained on 26 tumoral cell lines with mRNA sequences, and
extracted its NTP for making reasonable decisions in our greedy algorithm.

In our experiments with the genes FOXA1, HRAS, MYC, KLF6, MDM2, and
SRSF1, a discrete number of context expander ranges were explored, known as the
hyperparameter r. First, we perform a qualitative analysis on the exon expression of
a cluster of greedy-generated isoforms compared to the reference GRCh37, together
with the perplexity study for each r when the algorithm decides to change state.
We notice how small ranges (6 ≤ r ≤ 20) usually do not help our algorithm decide
whether to continue the isoform as an intron or an exon; we see it both from the
noisier patterns in the exon expression and from the higher perplexity. Considering
all genes in the range r ∈ (50, 150) had lower perplexity when a state change is
observed, it is interesting to notice how the perplexity rises again with r = 200; but
different genes had different distributions. In general, we have observed that the
first exon is usually the easiest to be correctly recognized, and that exon portions
outside the coding region are harder to be predicted as such. We notice in some
cases exon expression peaks in our generations that do not match the reference’s
exons, meaning it could have found a novel exon. Increasing r, sometimes we notice
a premature exon start or the bridging effect, uniting nearby exons; also, although
it is not always the case, exons shorter than the r value might be skipped.

In order to take the most advantage from a global perspective of all generated
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isoforms, we created a base-level exon classifier using a threshold on the generated
expression. This final algorithm is evaluated with the AUC. The best performing
range hyperparameter in the first six genes cited above was r = 75 in both
average AUC across isoforms and genes, and with the long-read expression weighted
average. So, use used this value of r to make the final test with 51 genes, obtaining
AUC = 89.9%± 8.4% (mean ± standard deviation) across all 257 isoforms present
in the long-read IIGM dataset of PC3 cells, from which 136 are known with
AUCknown = 91.2% ± 6.9%, and 121 are novel with AUCnovel = 88.6% ± 9.6%.
There is a bias towards known isoforms, but the prediction of novel isoforms is still
remarkable.

This study also includes the reproduction of some of the results presented in
the LoRNASH paper, such as the distribution of lengths and counts of introns and
exons, sequence lengths, and SpliceAI probability of each used splicing site of the
pure generations, i.e., isoforms generated just with the prompt HS. Our results did
not match the paper’s, which might be due to different processing strategies, but
some similarities when comparing to both of our references are noticed. Lastly,
we present the computational resources used for the greedy algorithm in terms of
computational time and VRAM, varying the gene length.

5.1 Future works
This work presented the first steps towards exploiting NTP from LLMs to produce
probable mRNA isoforms, but much can still be studied and the algorithm improved.
For example, longer genes could be tested, as well as testing the performance with
different species, and fine-tuning LoRNASH, which was trained only with the longest
isoforms, so training with shorter and novel isoforms from other datasets might be
beneficial. Another improvement is studying the choice of r for each gene based
on its known structure, such as length, number of exons, average exon and intron
lengths, and their conservation. Our algorithm has some biases that enforce some
biological features, such as promoter site, and most importantly, we have used only
U2 intron splicing signals, which are used over 99% of eukaryotic introns, but there
are other splicing options, such as the U12. Studying possibilities for predicting
the relative expression across isoforms would be interesting. All of it, keeping up
to date with the most recent versions of the model. And finally, a biological study
of our produced novel isoforms, such as verifying they are protein-coding, the 3D
structure of the protein, and a prediction of how this protein would interact in
biological pathways.
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