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1 Introduction

It would be an understatement to state that artificial intelligence (AI) models have altered the course of

our society in the last five years, for better or for worse. While smaller models such like those used in

optical character recognition or automated fraud detection have been successfully implemented and used

as early as the 2000s, large language models (LLMs) have taken the world by storm. Partially pushed on

consumers by companies and investors looking to cash in on a craze [1], these massive models predict the

most-likely next word 1 given a preexisting set of words. By training on any and all text/data available on

the internet and other sources (regardless of the permission of the copyright holders [2]), these models

end up encoding a relatively vivid depiction of natural language, logic, and understanding of the world,

just to predict the next most likely word. Then, by using a system prompt (e.g. "You are a friendly and

helpful AI chatbot who wishes to help the user with their questions.") and fine-tuning with humans, they

end up with a very useful model for helping with information-based tasks [3].

These LLMs have had and will continue to have profound impacts across multiple domains of society.

These technologies have the potential to multiply worker productivity several-fold, improving quality of

life for the average human worldwide if harnessed and implemented equitably. However, the benefits have

served to reinforce existing capital, and businesses and investors are ready to replace entire workforces

with AI. The replacement of call center workers is already having massive effects in Southeast Asia [4],

and tech companies have severely slowed the hiring of junior developers, with hopes that AI systems can

replace most of them [5]. The already addictive TikTok and similar video recommendation algorithms have

removed agency from the user to curate their own content [6], [7]. Now, with the proliferation of "AI-slop"

and generative AI content [8], people are being not only passivated but further and further isolated from

real human interactions. Beyond these and other societal problems such as AI scams [9], deepfakes [10],

disinformation [11], and potentially psychosis [12], just simply operating these AI systems presents a

societal risk due to their energy consumption, both for training and inference. While OpenAI’s GPT-3 was

trained with 1.29 GWh [13], GPT-4 used ∼ 55 GWh [14], and GPT-5 likely used on the order of ∼ 550 GWh2.

For GPT-5, this corresponds to 200,000 metric tons of CO2 emissions from training alone (using the U.S.

grid emissions factor [16]). Perhaps the more persistent problem is with inference. Researchers at the

University of Rhode Island [13] estimate GPT-5 (high) to use 17.7 Wh per prompt, which equates to 6.06 g

of CO2. With millions of users, this easily creates hundreds of thousands of metric tons of CO2 emissions

per year, especially after considering scope 2 factors. Even the manner in which these data centers are

powered has presented their own controversies outside of emissions in my home state, Louisiana [17]. The

energy used by data centers is expected to surge from 2% to 9% of U.S. electricity consumption from 2020

to 2030 in large part due to machine learning training/inference demand [18]–[20].

While some of the broader ethical dilemmas posed by AI systems are beyond the scope of this work,

1Large-language models actually generate a set of most likely tokens, not words. Tokens can be punctuation, parts of words, or
multiple words- all determined by the tokenizer

2OpenAI refuses to disclose both the number of parameters of GPT-4 and GPT-5 and the energy cost of training [15]. However,
the cost of inference and training scales with parameter count (for non-reasoning models)[13], so one can estimate 10×, from the
inference costs
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the emissions and second order effects posed by these systems can be mitigated by designing systems with

energy efficiency from the bottom up. One such proposal, is a tiered approach known as edge computing

which reduces load on large data centers, while obtaining a higher fidelity of data processing and inference.

This paradigm will be explained in more detail in 2.1.2, but it requires ultra-low power devices at the edge,

with increased performance and power consumption as one moves closer to the datacenter level. While

improvements in complementary metal-oxide semiconductor (CMOS) digital technologies have resulted

in impressive improvements in energy efficiency per operation, one can gain even more efficiency and

processing power by shifting to the analog domain, using emerging technologies such as magnetoresistive

random access memory (MRAM) [21]. These analog inference arrays are a form of compute-in-memory

(CiM), which reduces how much data needs to be shuffled around the chip, improving efficiency even

further. The hope is, that by using emerging technology we can first improve the efficiency and feasibility

of simple edge computing devices, and that the structures or algorithms for training and inference can be

generalized and scaled to improve the efficiency of the entire computing stack.

Therefore, in this 3A thesis report, I outline the continuation of my inference array design from my

2A internship. After providing a detailed background to understand the context of my work, I then recap

the array design created during my last internship. Then, similarly to my last report, I detail the design

decisions chronologically as they lead to my finalized design. Beyond just the array itself, the chip will also

need robust control circuitry, an analog-to-digital converter, and a digital interface to communicate with

a micro-controller. The parameter spaces of each of these components had to be thoroughly explored

before achieving a reasonably optimal solution. Particularly, the analog-to-digital converter (ADC) proved

to be the most difficult component to design—which is typical of analog compute-in-memory arrays as I

will explain in the next section. The design of the array ended up taking up the majority of the time of my

thesis, therefore the title of the thesis "Spintronic on-chip learning with Bayes’ Rule" does not correspond

well to the content described herein— a better title could be "Design finalization of a SOT-MRAM Inference

chip" However, my future work will combine my inference array with Bayesian learning rules, to be able to

create an efficient on-chip learning methodology, which can hopefully reduce the energy consumption of

not just inference for artificial intelligence (AI), but also for the training process as well.

2 Background

To better understand the context and technical details of my work, in this section I motivate the technical

reasons for designing my array, then I discuss the technologies used to create my array, and then finally

the algorithms which my array implements and that are used to train my array.

2.1 Technical Motivations

The overall goal of computing engineering is to increase the speed and performance of the entire system

while minimizing power consumption. Since the start of Dennard scaling 3, power consumption per

3The bulk of transistor scaling up until ∼2006 maintained a constant electric field across the gate, as both voltage and physical
size were reduced in tandem.
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operation has been halving every 1.5 years [22], a scaling rule known as Koomey’s law. However, since

Dennard scaling stopped in 2006, the gate charging energy has not scaled as quickly [23], resulting in

massive power densities. Thus, alternative architectures have been proposed to increase performance per

Watt not only for each computational unit but for the entire computing stack. It turns out that the less

data has to be moved around, the more efficient the entire architecture becomes both from minimizing

the cost of transmission and by allowing for the use of lower-bandwidth higher-efficiency components.

Thus, both in-memory computing and edge computing seek to process data where it is collected.

2.1.1 In-memory computing

The von Neumann Bottleneck is a limitation of traditional computer architectures where the memory is

physically separated from the processor. As the speed of the processor has increased over the years, the

limiting factor to the processing speed has not been the processor or the memory, but rather the time delay

caused by moving data between the processor and the memory elements [24]. As static power dominates

modern computing nodes [25], if one were to reduce (or eliminate) the distance between the CPU (central

processing unit) and the memory, one massively improves the performance per watt. This is why modern

CPUs have integrated L1 memory caches, integrated as close to the CPU as possible. However, a new

computing architecture aims to completely eliminate the separation of the computing element and the

memory: compute-in-memory (CiM) [26]. This paradigm allows for ultra-high processing speeds, as no

data needs to be moved within the memory unit. However, in-memory computation needs to integrate

the processor within the memory unit (or vice-versa) which results in lower information density and/or a

limited set of instructions/operations that can be performed. For this reason, simple operations between

an input and the memory, such as sum and dot product, are preferred to be implemented in such systems.

It turns out, as we shall soon see, that these are the fundamental operations which form the basis of a

neural network.

2.1.2 Edge Computing

Beyond changing the architecture of individual computing units or machines, edge computing tries to

optimize the entire computing stack to improve performance per Watt. The foundational idea is simple:

certain computing architectures are optimized for ultra-low electrical power at lower processing speeds

and some are optimized for maximum processing power which requires large quantities of power. The

purpose of the computing stack is to be able to draw inferences from data collected at the edge. For

example, the Oura Ring is a low-power smart device which processes biometric data within the ring, sends

it to the user’s phone for further processing and basic interpretation, and then sends those inferences to

Oura’s own servers to generate detailed trends and inferences about the user’s health patterns [28], [29].

If all of the processing were to be done on-ring, it would have to use a higher-power (per bit processed)

architecture with more memory, creating a bulky ring with horrific battery life. Likewise, if all of the

raw data were simply streamed to Oura’s servers, the extra data would have to be processed at a higher

cost per bit than if it were done with a less performant processor, and the cost of streaming the data

would be extraordinarily wasteful, not to mention the privacy concerns which are created by streaming

7
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Figure 1: A diagram depicting the von Neumann bottleneck, in red, which represents the lack of bandwidth between
memory and the processor. In-memory computing is represented by an arrow to the memory array, proposing that
the computation takes places solely within the memory element to remove the bottleneck[27]

health information in real-time. Therefore, to minimize total computational energy cost and to maximize

the efficiency/utility of the system, the modern computing stack can be broken down into three broad

categories: the edge, the fog, and the cloud [30], [31] (Figure 2). The niche of this project is to create

edge computing devices that optimize solely computational efficiency at the cost of lower computational

throughput.

Figure 2: The edge computing stack. Edge devices (bottom) connect and send inferences/data to nodes on the fog
(middle), which send data to data centers on the cloud (top) [32]

2.2 Technology

My design proposed in this work relies on two device technologies: fully-depleted silicon-on-insulator

(FD-SOI) and spin–orbit torque (SOT) MRAM. The low power consumption of the two technologies
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complement each other in order to create a highly-efficient final design.

2.2.1 FD-SOI

In CMOS process nodes, the two dominant technologies have been fin field-effect transistor (FinFET)

and FD-SOI (Figure 3). FinFET is dominant in industry and performance-critical designs due to its

reliability and improved on-off ratio, and FD-SOI is useful for modern low-power designs, as one is able to

dynamically adjust the threshold voltage of the gates post-fabrication. Currently, foundries are beginning

to switch towards gate all-around (GAA) and nanowire technologies beyond FinFET [33], and it is unknown

if FD-SOI will be able to continue to be competitive for logic technologies, though it maintains a strong

advantage for specific application domains [34], such as ultra-low power designs.

Figure 3: Device geometry comparison between FinFET (left) and FD-SOI (right) [35]

My lab and its industrial partners have access to a commercial 22 nm FD-SOI process, which will be

used for our design. As the name suggests, SOI utilizes a buried oxide layer on top silicon to isolate the

channel from the bulk. SOI comes in two flavors: fully-depleted (FD) and partially-depleted (PD) (Figure 4).

In PD-SOI, the channel region is relatively thick, and there are regions where carriers are not fully-removed

from the channel; the depletion regions are not merged. In FD-SOI, the channel is sufficiently thin that it

remains fully depleted, allowing for enhanced carrier-conduction and control, and the near elimination of

drain-induced barrier lowering, allowing shorter channel / smaller area devices.

Figure 4: Comparison of depletion regions for partially versus fully depleted SOI. The lines represent the Fermi level
(EF ) across the channel.

The process design kit (PDK) provided by our 22 nm FD-SOI foundry has two flavors of CMOS con-

figuration: conventional well and flip well (Figure 5). In the conventional well configuration, the CMOS
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cell maintains the same structure as without the buried oxide: n-channel MOS (NMOS) in a p-type well

(p-well) and p-channel MOS (PMOS) in a n-type well (n-well). In order to increase the threshold voltage of

the device, a positive voltage should be applied to the n-well of the PMOS and a negative voltage should be

applied to the p-well of the NMOS device. This is known as reverse body biasing (RBB) Because the n-well

is at a higher voltage than the p-well, the diode formed by the doped regions remains in reverse bias, and

no conduction takes place. However, if one were to try to reduce the threshold voltage of the device by

applying a negative voltage to the n-well and a positive voltage to the p-well, the diode created by the wells

is forward biased and conduction takes place between the diffusion regions [36]. This forward-biasing of

the well diode should be avoided at all costs. Thus, because the well region below the buried oxide does

not have to correspond with the diffusion regions which contact the source/drain of the transistor, one

can create the flip well configuration where the NMOS is placed in a deep n-well and the PMOS in a deep

p-well. Thus, when forward body biasing (FBB) (negative to n-well, positive to p-well) is applied, the diode

formed between the two wells remains reverse-biased, preventing forward conduction through the deep

wells. Therefore, one can either increase or decrease the threshold voltage beyond typical, but once the

deep well has been determined, it cannot switch between FBB and RBB modes.

With FBB, one can decrease the threshold bias to reduce the on-resistance of the transistor (Ron), with

the cost of also decreasing the off resistance (Roff). Therefore, with FBB one can increase the performance

with a cost of energy efficiency of a given group of transistors, and with RBB one can increase the efficiency

at the cost of performance. In my design, we use both conventional-well and flip-well devices to provide

sufficient current for the write operation while reducing the leakage associated with the read operation.

Further, the ability to dynamically control the threshold voltage ends up being crucial for the ability to

write the SOT-MRAM devices, while maintaining high energy efficiency for the read operation.

Figure 5: Comparison between flip-well and conventional-well structures for FD-SOI [37]

10
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2.2.2 SOT-MRAM

Spin-orbit torque MRAM differs from other magnetic random access memory (RAM) technologies due to its

efficient switching and complete isolation of its read and write paths. Most magnetic MRAM technologies

encode the state ’0’ or ’1’ by the magnetization direction of a nanomagnet, and consequently the resistance

of its associated read path.

The first integrated magnetic RAM utilized the magnetic fields induced by electric current flowing

through row and column wire to write the state of a specific cell [38]. The induced fields were insufficient

on either an individual row or column, but at their intersection, they added together to switch the state of

the free nanomagnet, encoding the written data (Figure 6a). The resistance of the devices magnetic tunnel

junction (MTJ) stack changes due to the new magnetization as per the tunnel magnetoresistance (TMR)

effect, and it is read via an access transistor. The use of external fields to switch the nanomagnet was very

energetically costly, and quickly spin-transfer torque (STT) MRAM was developed.

Figure 6: Comparison of the three leading types of MRAM a)Field-Based MRAM, b)STT-MRAM, and c) SOT-MRAM
[39]

Now utilized in consumer-facing products [40], STT-MRAM (Figure 6b) uses the spin-transfer torque

effect to induce torque on, and eventually switch, the free nanomagnet. Electric current flows across the

STT-stack, and becomes spin-polarized in the fixed layer. Then, as it enters and relaxes in the free-layer, it

imparts magnetic torque sufficient enough to switch the magnetization of the free magnet. This method

is much more efficient on write than traditional MRAM, however, it removes the isolation between read

and write paths, as one reads the differential resistance with the TMR effect. Therefore, one cannot isolate

the read/write circuitry, requiring increased overhead and a careful design to prevent read-disturbance.

Despite this, STT-MRAM is leading the magnetic memory market.

However, there exists an even more efficient type of magnetic memory which has complete isolation of

the read and write paths: SOT-MRAM (Figure 6c). By using the spin orbit torque effect, SOT-MRAM (Figure

6c) flows electric current in +x through a material which exhibits a non-zero spin-hall angle, causing

excess spin accumulation at the interface. This forces the magnetization to be in ±y . Finally, an external

magnetic field in +x biases the pinned magnetization to go in ∓z depending on the cross product of the

magnetization and current direction, allowing for deterministic switching.

The electronic current required for this switching depends on many properties, including the spin-hall

angle of the SOT layer, saturation magnetization of the free layer, the volume of the free layer squared,

and the time for which the signal is applied: Iswitch ∝ MsatV 2
free/τpulse. The relationship between switching
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frequency (or inverse to pulse length) and critical switching current is characterized empirically in Figure

7. SOT-based switching is thermally and stochastically mediated, as a region of the magnetization at

the interface must spontaneously switch before the spin accumulation can propagate the domain wall

to switch the entire nanomagnet. This means there must be lots of heat to switch at high frequencies,

and there should be a minimum required current to switch at low frequencies. The current required to

deterministically switch at a given frequency is known as the critical current and the minimum switching

current in low-frequency is called the activated critical current, and is a critical parameter for the array

design. The relatively high activated critical current has caused our and our collaborators’ transistors to be

relatively large compared to the footprint of the MRAM itself.

Figure 7: Relationship between critical current and pulse duration for an SOT-MRAM device [41]

2.2.3 Co-Integration

Both FD-SOI and the SOT-MRAM will be integrated onto the same piece of silicon. Our industrial partner

for the FD-SOI process will create the active elements, and will deposit only the first four metal layers.

Then, the chip will be sent to our second industrial partner, who will then proceed to deposit the layers of

magnetic materials needed for the SOT-MRAM, along with three more metal layers and the pads which

allow for the chip to be connected to the outside world. This co-integration allows us to combine transistors

for digital and analog signal processing/control below the SOT-MRAM on the same piece of silicon. The

majority of users of this process are looking to develop traditional memory cells, where a low resistance area

(RA) product is desired for faster writing operations necessary for highly-performant memory. However, as

we will see, write operations are rare for neuromorphic arrays, and one would typically prefer a high-RA

product design to reduce read current and increase energy efficiency for inference. My design actually

uses a low-RA product MRAM element, in order to be in the first batch of manufactured chips. Despite this

limitation, I was able to create a competitive design.
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2.3 Neural Networks

As alluded earlier, our crossbar array will perform the simple dot-product operation in-memory. By

performing several of these in parallel, this allows us to compute a vector-matrix product in the analog

domain. We then choose to apply a non-linear activation function to the output of this result. This set of

operations forms the heart of simple neural network (NN) inference; that is, given a trained set of weights

and new input data, the NN can infer conclusions based on the new data and its previous training. This

differs from NN training, when training data (and sometimes labels) are provided to a NN in order to

optimize its parameters, minimizing the error between the learned function, the ideal function belonging

to the space of the model, and hopefully the true function. This master’s thesis report only discusses

inference for binarized neural networks (BNNs); however, it could be paired with learning algorithms in

the future to create an efficient on-chip learning system. Thus, in this section I will discuss the basics of

inference, training, and the common approaches to accelerating them with dedicated hardware.

Neural networks are a particularly powerful class of models which can parameterize any non-linear

function given a few constraints on their depth or width (see universal approximation theorems) [42],

[43]. Neural networks contain several important parts which allow them to accomplish this seemingly

incredible task. The standard NN architecture 4 contains several layers of nodes called neurons, which

accept data from input sources or other neurons. Each neuron in a layer is fully connected to each neuron

in the next layer via edges called synapses. Data flows through this architecture from the left to the right,

and each neuron sums the product of the weights on each synapse and the output of the previous neuron

(or input to the model in the case of the first layer), and applies a non-linear activation function to the

data before sending it to the next layer. After the activation has been applied, the output of a given neuron

is called its activation. At the output layer, one often uses the softmax function to normalize the output

activations to a probability distribution, when the outputs correspond to a group of classifications.

Binary Neural Networks (BNNs) are a subset of NNs that restrict the range of possible weights and

activations from the space of real numbers (or floating point with a given precision) to binary values. This

restriction inherently requires an increased number of neurons to compute functions at the same accuracy

of a traditional neural network, however, with sufficient size, they can be as accurate as traditional neural

networks [44]. Rather than requiring expensive floating point operations, BNNs can directly use the rules

of binary logic for computation. Therefore, to propagate data through a BNN, one must multiply the set of

input activations by the weights for each neuron, sum these products, and apply a threshold function. In

binary, the multiplication and sum operations map directly to XNOR and popcount operations respectively.

For the activation, the most common and simple function is a simple threshold (+1 if above a threshold,

and -1 if below). However, some non-monotonic functions such as a window (where the output is +1

if within a range, and -1 if outside the range), can outperform the simple threshold as it extracts more

information from the preactivation.

4Here we discuss only the architecture of multilayer perceptrons (MLPs) which have only fully-connected layers which feed
forward. Different tasks such as image processing or translation have more complicated layers such as convolution or attention
mechanisms, but still matrix operations remain the core part of all neural network architectures
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2.4 Neuromorphic Acceleration

Therefore, one may look to find more efficient ways of performing inference and training that either

increases the performance or reduces the energy per operation. The process of designing hardware fit for

a specific algorithmic use case to improve performance metrics is known as hardware acceleration. When

it is applied to improve the performance of neural networks, it is known as neuromorphic acceleration. In

this section, I outline the state of the art for neuromorphic acceleration for inference and for learning.

The concept of analog CiM naturally arises for neuromorphic acceleration. Not only does the system

benefit from the efficiency of the analog domain, but it maintains the flexibility of weight modification

post-fabrication, and it avoids the memory bottleneck problem altogether. The simplest and most-well

studied analog CiM system is that of the memristor crossbar (Figure 8). Memrisistors are a theoretically

predicted fourth fundamental element which have memresistance (M) in Ohms that relates magnetic flux

(Φ) to electrical charge (q) (M = dΦ/d q), such that the memresistance gains hysteresis with respect to a

varying input signal. resistive RAM (ReRAM) devices maintain some characteristics of an ideal memristor,

and commonly use a conducting filament which can be grown or shrunk via electrical current to program

their resistance. When arranged in a crossbar (Figure 8), inputs can be supplied as voltages, and the current

into a given node will be given as the product of the input voltage and the conductance of the memristor

via Ohm’s law. Then, by Kirchhoff’s current law, all of the currents to a given neuron will sum, and the dot

product between the input voltage and the weights can be computed completely in-analog.

Figure 8: Depiction of the working principle of a memristor crossbar array. Input voltages are provided, and the
output currents via Ohm’s law are equivalent to a multiplication by the conductance matrix of the memristor states
[45]

This powerful concept is used to massively reduce the power consumption of inference circuits,

however, it is not without its drawbacks. Notably, signal degradation and noise significantly alter the

operation of analog systems, and the accuracy of the analog computation is often lower compared to the
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predicted accuracy given by the offline training. Further, the variation between fabricated devices can

significantly alter the effective versus idealized conductance for each ReRAM element, which can affect

neural network performance. Finally, the activation function still needs to be computed given the output

current, and the current needs to be converted to a voltage for it to be effectively propagated to another

layer. This typically requires expensive and careful analog design.

Fortunately, if one transitions from the continuous-valued voltages and weights associated with

filament-based memristor arrays and instead implements a binary neural network in-analog, many of

these issues disappear. This is because the signal energy and separation between neighboring states

tends to be much greater when working with discrete signals. Therefore, previous works [46], [47] have

implemented STT-MRAM into crossbar arrays. These MRAM crossbar arrays implement BNN functionality

natively, as the MRAM cell can only store a high or low resistance state based on the magnetization of

the free layer. Most MRAM crossbar arrays have utilized the same sum-of-currents approach to sum

the dot product in parallel. However in 2022, Samsung research laboratories showed how STT-MRAM

devices can be placed in series, and the sum can be calculated by the sum-of-resistances via time-to-digital

conversion (TDC) [45]. Therefore, there exist two ways to connect crossbar arrays to calculate the dot

product: in-parallel using sum-of-currents, which is best suited for high-resistance devices, and in-series

using sum-of-resistances, which is best suited for low-resistance devices. This is because applying a

nominal voltage to a low-resistance element creates too much current and therefore power. Because the

Elmore delay of the column is proportional to the sum of resistances (with a sufficiently sized output

capacitor), the TDC method measures the Elmore delay of a column using a digital timer to measure

the resistance of the column, and therefore the sum of the dot product of activations. These ADC and

digital-to-analog converter (DAC) methods are the Achilles heel of analog computation—the beauty and

simplicity of summing currents disappears when one performs the necessary step of connecting it to

digital hardware.

3 Inference Chip Design

The bulk of my thesis period, and thus this report, will be devoted to the description of the design process

which went into my SOT-MRAM inference array chip. The components of the chip can be visualized at a

high-level in Figure 9. The core of the array (represented in grey) was primarily completed during my 2A

internship, though it was slightly modified during the course of my 3A thesis period. In blue, the control

circuitry was entirely specified and tested during my 3A period. The ADC circuitry in orange was the

most complicated part of the project, and most of my time of the 3A period was spent optimizing and

ensuring the functionality of the readout process. Finally, digital design had to be done to create the serial

programming interface (SPI) block to connect the chip to a microcontroller for testing, and finally the pads

themselves in pink, representing the physical pads that will specify how many connections the chip will be

able to have to the outside world. The design of the chip has been following our Gantt chart (Figure 37), in

order to meet the tapeout deadline of December 16th.
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Figure 9: Chip design overview. The major components necessary to complete the tapeout are shown above. The
array (grey) is connected to the control circuitry (blue) and the ADC readout (orange). The registers for both the
control circuitry and the ADC are connected to the SPI interface (green), which is interfaced off-chip by the pads
(pink).

3.1 Cell

This section of the report discusses the design of the core inference array, which utilizes SOT-MRAM

devices to compute the vector matrix product, taking in a voltage and outputting a resistance presented

to the ADC unit. While the majority of the array design occurred during the 2A internship, it needs to be

recapped here to properly understand the context of the periphery which was developed during this 3A

period.

The proposed array design is composed of 64 neurons, each with 64 synapses, resulting in a size of

64×64 cells in the entire array (Figure 10). Each of these cells is composed of two SOT-MRAM devices,

one on the left denoted as the positive, and one on the right denoted as the negative side. Further, the

unit cell contains five total transistors: two transistors to control the inference operation (inference line

(IL) and inference line bar (ILB)), two to control the write operation (word line (WL) and word line bar

(WLB)), plus one transistor to connect the programming lines for the write operation (word programming

line (WPL)) (Figure 11). At the end of the 2A internship, all of the transistors belonged to the thin oxide

variety, and they used the super-low voltage threshold (SLVT) variant, in order to have enough current to

meet the activated critical current of the MRAM, in order to ensure the controllability of the entire array.

Further, the size of the IL/ILB and WL/WLB transistors was set to 3µm and the WPL to 2µm to ensure that

the on-resistance was sufficiently small to have good inference performance for the expected TMR, and to

once again ensure that enough current could be passed to write the cells deterministically.

To perform the inference operation, the resistance presented to the neuron changes as a function of

16



3A Thesis Report Benjamin Walker

Figure 10: Array structure. The array (left) is composed of 64 neurons (middle), each of which are composed of 64
cells (right)

Figure 11: Cell structure. The unit cell of the array is surrounded by a line in grey. Each cell has 1 PL transistor, 2
IL/ILB transistors, 2 WL/WLB transistors, and 2 MRAM units.

the encoding of the cell and the applied activation. Figure 12 helps visualize the read process at the cell

level. When the inference line for the given row is +1, the cell in the positive side of the array is selected to

present its resistance to the stack. Similarly, when -1 arrives, the negative side’s MTJ resistance gets added

to the stack. Because the cell is always encoded differentially (the positive side will always be oppositely

encoded to the negative side), this results in a signed multiplication of the activation and the cell encoding

to determine the presented resistance, which is well represented in Table 1.

A similar process occurs to write any individual cell. The WL/WLB transistors select which of the two

MTJs will receive current, and the WPL lines are set to either supply voltage (VDD ) or ground (GN D) in

order to supply voltage to either side of the SOT material depending on the desired cell encoding (Figure

13). The write operation must occur in two passes, as the multiplication operation breaks down if both

MTJs are encoded into the same state.
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Figure 12: Cell read operation diagram. (a) Read process when IL=+1, the + side MTJ resistance is connected in-series
to the other cells (b) Read process when IL=0, the - side MTJ resistance is connected in-series to the other cells

Read Line Cell State Resistance

I L =Vdd (+1) R+
MTJ = RH (+1) RH (+1)

I L =Vdd (+1) R+
MTJ = RL (−1) RL (−1)

I L = 0 (−1) R−
MTJ = RL (+1) RL (−1)

I L = 0 (−1) R−
MTJ = RH (−1) RH (+1)

Table 1: Readout table for the MTJ cell.

3.2 Array

By now looking at the entire array, one can begin to see and plan how the control circuitry and the ADC

unit may interface to it.

3.2.1 Inference

Figure 14a demonstrates how the resistance will be presented to a theoretical ADC at the bottom of the

array. To perform the multiply and accumulate operation, xi is presented to each row of the array, and is

encoded as +1 := (I L =Vdd ), −1 := (I L = 0). Thus, the resistance presented by each cell is either RL or RH ,

depending on the multiplication of the weight by the activation: wi · xi (see Table 1). As the resistances

sum in series, this gives a total resistance equal to the sum of the individual products. If one defines y to be

total number of +1s resulting from the multiplication in the neuron, then the equation can be simplified to

remove the summation term (Eq. 1). Furthermore, because the high resistance state can be rewritten as a

factor of the low resistance state and the device TMR (RH = RL · (1+T MR), the equation can be simplified,

adding together the common mode elements (Eq. 2). One can can clearly see that the TMR is crucial to

having a measurable signal. In the real devices, the common mode (fixed) resistance of the column is

greater than 64 ·RL because of the on-resistance of the transistors.
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Figure 13: Cell write operation diagram. The first write pass (blue) sends +ISOT through the + side MRAM, and the
second pass (green) sends −ISOT through the - side MRAM.

R1 ≈
64∑

i=1

(
RH

1+wi xi

2
+RL

1−wi xi

2

)
= RH y +RL (64− y). (1)

R1 = RL
[

64+TMR· y
]

. (2)

(a) (b)

Figure 14: (a) Array level read operation; (b) Array write operation.

3.2.2 Writing

Figure 14b demonstrates how the cell write operation needs to take place within the context of the entire

array. As mentioned earlier, the write operation takes place in two passes, one to write the positive side of

the cell and one to write the negative side of the cell. The design of the array exploits the fact that the WPL

columns run perpendicular to the WL/PL rows in order to select individual cells; if either WPL is off or PL

is in high-Z, then the cell will not be able to receive any current. Thus, only cells where WPL, WL/PL are
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active can be written, and when only one of each is active, only one cell is selected. Thus, one can iterate

the chosen cells across the array in several passes to write to all of the memory elements.

3.2.3 Leakage Problem

During the 2A internship report, I presented Figure 15, which explained how due to leakage through the

SLVT transistors, one had to perform all inference operations in parallel in order to properly differentiate

neighboring states. However, at the start of my 3A period I presented these results to my group, and we

quickly realized that this property of my array, while not detrimental to final operation, would make the

testing of my chip a nightmare. One would be unable to read an individual column without applying

current to all other columns. Therefore, the first task of my 3A internship was to resolve this problem.

Fortunately, by switching from the SLVT to normal low voltage threshold (LVT) transistors, the subthresh-

old leakage was reduced by an order of magnitude, allowing one to properly differentiate neighboring

popcounts by looking at the voltage of the column with a current source for the typical typical corner. After

this change, the distribution of voltages were separate, even for the worst case corner (slow-slow) (Figure

16), indicating that indeed the solution of using the LVT transistor solved the problem.

(a) Current only to read column (b) Current to all columns

Figure 15: Distribution of read voltages for popcounts of 31 (blue), 32 (orange), and 33 (green); dotted lines show
best-fit Gaussians. (a) Current provided only to the read column. (b) Current provided to all columns.

3.3 Control Circuitry

Looking back at the high-level block diagram (Figure 9), we can see that circuitry is needed to properly

control the operation of the array in order to perform the inference operation. In this section, we motivate

and describe the design of the control block, and evaluate its performance using transient simulations.

3.3.1 Enable Block

The core of the enable block is formed by two transmission gates, as shown in Figure 17a. The transmission

gate is simple analog building block which consists of a PMOS and an NMOS connected in parallel.

Because the PMOS can send signals close to VDD without degradation and NMOS can send signals
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Figure 16: Inference voltage distribution for slow-slow corner

close to GN D without degradation, the transmission gate can be used to connect nets of the design to

analog voltages/currents with minimal signal loss. Here, by using two of these transmission gates, with

independent indexing, we can choose to connect the input of the enable cell to either pad zero, pad one,

or we can leave it floating, in a high-Z state. Because the programming lines (PLs) of the array each need to

be connected in one of these 3 ways, by placing one enable cell per row of the array, one can individually

control the programming lines, allowing for the write operation to take place (Figure 17b).

Figure 17: Enable block design. a) The schematic of the enable cell, which is composed of two transmission gates
that connects the input to pad0 or pad1 b) the schematic of the full enable column, composed of 65 enable cells,
connecting any programming line to pad0 or pad1

My connection of the programming lines to external pads instead of to on-chip digital voltages such

as VDD or GN D allows for lots of flexibility during the testing process, which is very often needed when

creating demonstrator boards with novel technologies, because the devices always have a higher chance

of not meeting specifications. For example, let us imagine for a moment that all of my ADC circuitry is

broken for whatever reason. Then, to perform inference, one can simply connect PL0 to pad zero, and

PL64 to pad one, and measure the resistance directly with a multimeter, or whichever circuitry we decide

to build off-chip. Furthermore, if for example, the TMR were greatly diminished, the flexibility allows
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one to measure the resistance of any number of devices to perform inference. One can even measure the

resistance of an individual device, in order to validate the functionality of individual MRAM elements.

Thus, this control circuitry essentially allows one to probe any two points in the array— a feature essential

for testing.

3.3.2 Validation

The ability for the control block to write individual cells without disturbing others was verified using

Spectre transient simulations. Furthermore, I performed Monte Carlo simulations for the write process to

ensure that even in the worst case, the cell received enough current using the LVT thin-oxide transistors.

The distributions are summarized in Figure 18. One can clearly see, that even in the worst case, the current

remains over the activated critical current of 450µA even at the 5σ point from the fitted distribution.

Figure 18: Monte Carlo simulation results for writing a single cell (top left) writing a +1 to the left MRAM (top right)
writing a +1 to the right MRAM (bottom left) writing a -1 to the left MRAM (bottom right) writing a -1 to the right
MRAM

Secondly, the speed by which the write operation can take place is also of great interest. However, the

MRAM model used for the device contains no time-dependent behavior, and switches instantaneously

when the activated critical current is reached. Nonetheless, these simulations were important to see if the

delays introduced by the capacitances of the array dominated the write time compared to the estimated

write duration needed by Figure 7, ∼ 100ns. The two-stage writing process was simulated using Spectre in

Figure 19. The time necessary to write two cells back to back was ∼ 10 ns, which is an order of magnitude

lower than the activated critical current, so therefore the write time is not limited by our on-chip circuitry,

and one should expect write frequencies in the low MHz range, which is fine as updates to the weights of

the array should be uncommon.
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Figure 19: Transient simulation results for writing a single cell. The left (+) side current is shown in red, and the right
(-) side current is shown in blue. The MTJ states (yellow/purple) switch from (1,0) to (0,0) to (0,1) to (0,0) and back to
(1,0)

Figure 20: Block diagram of control circuitry with registers, with the control block represented in blue, and the
registers represented in yellow. By setting the values in the control registers, the array is configured for read or write.

3.3.3 Integration

Finally, here we discuss how the control circuitry itself will be controlled. Rather than have one pad per

IL/WL/WPL/Enable block, it is far more efficient to have these digital voltages be controlled by on-chip

registers. Figure 20 best visualizes this register-based control system. The inference line, word line, and

word programming line states will be stored in digital registers on-chip. Then the barred versions will be

computed from the output of the registers for the inference line bar and word line bar signals. Likewise,

the enable signals for the enable cells will be stored in registers for each block. The number of registers

for the control system is expected to be 64×5+65×2 = 450, as there are 65 enable cells in the column to

properly control the 64 array cells. These registers need to be programmable from an external control unit,

therefore section 3.5.2 discusses the digital design that makes this possible using only four pads.
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3.4 Analog-to-Digital Conversion (ADC)

The design of the analog-to-digital conversion block was the most difficult part of the chip design. It is

easily the most complicated block, and it took the majority of my thesis period to design and validate its

performance. In this section, I outline the various ADC methodologies that I attempted, and the reasons

that I selected my final design to be manufactured on our upcoming tapeout. From the end of my 2A

internship, I suggested several potential options to perform the ADC, but several of them turned out to be

inherently worse than others. For example, using a voltage fixed source and measuring the current in order

to derive the popcount requires at least as much circuit overhead as using a current source, but instead

has the nasty behavior of non-linearity between the measured current and the true popcount. While this

could be used to help create a non-linear activation function, for our simple network it simply would have

worsened the read performance at higher resistances, as the slope of the 1/x transfer function would be

lower. Therefore, in this section I outline the methodology to select and optimize the between using a

pre-charge sense amplifier and a current source to perform the ADC. All of the decisions and exploration

contained in this section occurred in parallel, though I will do my best to present it in a linear fashion,

rederiving what brought me towards my final design.

3.4.1 Pre-charge sense amplifier

The first circuit that I attempted to build was that which utilized pre-charge sense amplifier (PCSA). PCSAs

are a powerful building block used in circuit design to remove the dependence on an external voltage

or current reference. They work by pre-charging a unstable set of two inverters to be at VDD . Then, by

connecting the PCSA to two different resistances to ground, two different current strengths will be seen by

the PCSA unit. In the column with the low resistance, the output will be driven to ground, and VDD will be

seen on the high-resistance column. This circuit not only removes dependence on a reference voltage, but

also minimizes power-consumption, as there is no static current consumption, only the transient currents

needed to charge and discharge the capacitors.

During my internship, I then explored two ways of implementing the PCSA block—one was fully

differential (Figure 21a), and one was one-sided (Figure 21b). To implement the fully differential array,

one would need to compare the resistance of two columns of the array by comparing the relative speed of

discharge. One column would receive the inputs of the inference operation, and the other column would

remain a fixed value, encoding the threshold for the activation function applied to the popcount. When

the resistance of the neuron column is higher than the threshold column (or when the popcount is higher

than the threshold), the voltage falls more slowly on that side, and the race condition eventually forces the

voltage to rise to VDD on that column. A similar condition occurs in the one-sided PCSA implementation

(Figure 21b), except that the size of the threshold column has been condensed from 64 MRAM devices to

only 6. This reduction in size is only made possible by the binary weighting of each MRAM element to the

total delay by exponentially scaling the capacitor size towards the end of the delay element. However, this

comes at the cost of losing the match between the two sides, therefore if the fully-matched PCSA design

could not be made to work; then the one-sided design would have no chance.
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(a) (b)

Figure 21: Fully-differential (a) versus one-sided (b) PCSA designs

Therefore, I got to work optimizing and testing the two sided idea, to see if something could be made

of it. The general testing methodology is to start simple and see if it can work in an idealized case, then

start throwing in more nonidealities, and improve the design until it is robust enough for the real-world.

An ideal PCSA unit would only have capacitance at the gate of the transistors in the race condition, such

that only the total resistance of the two sides affected the timing. Unfortunately, because of the Elmore

delay effect, the charge discharging from the bottom of the column (closer to the PCSA unit) has to flow

through all of the other resistors before reaching ground, giving it an outsized contribution to the delay

term. For the one-sided design this delay is exploited, but here it is the main driver of error.

Therefore, I started with a typical-typical (TT) corner, and ran several transient simulations with a

random spatial distribution of the activations to determine the error rate as a function of the threshold

due to Elmore delay, for a constant popcount of 32. Figure 22 summarizes my results for a 100 ns inference

time, attempting to differentiate between the popcount and the threshold. Each threshold was tested 100

times, with random distributions of the activations with a popcount of 32. When the threshold is near

32, the error rate reaches fifty percent, indicating near random behavior. However, as one increases the

distance between the popcount and the threshold, the measurement becomes more accurate, as the larger

difference in resistance is easier to measure. As expected, using a larger capacitor resulted in an overall

lower error rate than the smaller capacitor, as most of the delay came from discharging the final capacitor,

rather than the parasitics within the columns. The 10 pF capacitor had an error rate of 100%, because it

was not able to converge within the 100 ns read time allocated to the transient simulation.

Nonetheless, the error rate for the PCSA system was simply unacceptable, regardless of how well-tuned

the output capacitance was. Therefore, I knew that I had to discard both PCSA ideas in order to focus on

designing a current-source-based implementation for the ADC.

3.4.2 Current Source

The current source ADC contains two core components: the current source, and the comparator. In order

to function well, the current source should have a high input impedance, that way the current changes

minimally as the resistance of the neuron changes. Further, a good comparator design will have a high

sensitivity and a fast measurement speed. And of course, the blocks should be designed to optimize for
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Figure 22: Error rate as a function of bias value for the PCSA ADC methodology tested for output capacitance of 1 fF
(blue), 100 fF (orange), and 10 pF (green)

performance per power.

3.4.2.1 Optimization Methodology

Several types of current sources (Figure 23) were tested and evaluated during the course of the design. For

each topology discussed, an optimization occurred to select the width and length of all of the involved

transistors to optimize both between linearity, signal amplitude, and mismatch. I used three principles to

guide my manual exploration of the parameter space, as well as automated optimization algorithms such

as differential evolution and Nelder Mead to search within reasonable bounds given by these principles.

The first guiding principle to the optimization of the current source was Pelgrom’s Law (Eq. 3). It simply

states that the standard deviation of threshold voltage and current of a transistor is inversely proportional

to the square root of the transistor gate area. This makes sense from a foundational level, as if the variations

are proportional to the width or the height, increasing the physical size of the gate would proportionally

reduce the variation as a function of the total area. The clear takeaway is that bigger transistors are better

to reduce mismatch, however, this comes at the cost of chip area.

The second principle is to optimize for the output impedance of the current source (Eqs. 6 and 7). The

higher this impedance, the less sensitive the output current of the source is to variations in the output

resistance, and therefore the transistor drain to source voltage (VDS). The channel length modulation

parameter (λ) is constant across the relevant PMOS cells available in the PDK, therefore the best way to

increase the impedance is to increase the length of the transistor.

However, this reduces the amount of current that can be carried across the transistor, leading to the
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third principle, transistor on-resistance. The drain current of a transistor in saturation is given by Eq.

4, therefore to keep a fixed current amount if one reduces the W/L, the transistor must increase VDS to

compensate, thereby increasing the "on-resistance" of the device (Eq. 5).

For each topology tested, the search space was well explored using soft constraints such as a maximum

transistor size of 20µm2, a minimum current through the column of ∼ 3µA, and a linearity less than 5%.

σ(∆VT H ,β) ∝ 1p
W L

(3)

ID = 1
2µCox

W

L
(VGS −VT H )2 (1+λVDS) (4)

Ron ≈ 1

µCox
W
L (VGS −VT H )

(5)

3.4.2.2 Current Mirror Topologies

(a) Basic current source

(b) Cascode current mirror (c) Wilson current mirror

Figure 23: Current mirror implementations: (a) basic current source, (b) cascode current mirror, and (c) Wilson
current mirror. Figure modified from [48]

Initially, I naively attempted to use the traditional current mirror topology (Figure 23a). However,

this failed almost immediately. The large range of resistances possible for a given column makes a large
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swing in voltage, which changes VDS of the active transistor, modifying its current due to channel length

modulation. I found that the current reduced by over 50% from the lowest resistance to the highest

resistance state, which was a non-linearity which was unacceptable for the goals of this project. Increasing

the current increases the voltage signal for a given resistance, however, I noticed that when the drain

voltage begins to reach rise beyond VDD −Vth , the PMOS gets put out of saturation, and the current source

leaves saturation, destroying the read operation. Therefore, the maximum output voltage of a column is

equal to VDD −Vth .

Rout, simple ≈ ro = 1

λID
(6)

From my analog design coursework, I knew that the most common way to boost the output impedance

of a current mirror was to add a cascode stage (Eq. 7). However, cascoding comes at the cost of increasing

circuit area and reducing the maximum voltage of the neuron by an additional transistor threshold voltage

(Vth). The cascoding solution worked extremely well for the typical-typical corner with no noise and no

mismatch, allowing an approximately 1% change in current over the whole resistance range of the neuron,

which resulted in a maximum shift of 12.8 mV of the output voltage when compared with an ideal current

source. This means that neighboring popcount voltages nearer to 64 will be closer together due to the

reduction in VDS and therefore current, and those closer to 0 will be further apart due to more current per

the resistance. I will talk more later about adjusting for these nonlinearities, but overall a shift of 0.2 mV

per popcount allows the proper reading out the output voltage by an on-chip comparator.

Rout, cascode ≈ gmr 2
o (7)

With high linearity across the entire range of impedances presented by the neuron, I began to move

forward with the cascoded current mirror design. I performed corners simulations, which mildly reduced

the performance in fast-slow, slow-fast, and slow-slow corners for NMOS-PMOS respectively, so things

were looking promising. I even ran global Monte Carlo and added noise to my transient simulations which

were well absorbed by the high impedance of the cascode mirror. However, it is when I began to run

mismatch simulations that my hopes of an easy analog design were quickly dashed.

The mismatch between any two of my current mirrors was staggering: the variation between the

currents had a mean of ∼ 0.25µA, which led to a mean difference of ∼ 20 mV between two columns with

the same popcount. Without reducing this mismatch, it would have been impossible to differentiate

neighboring popcounts with voltage differentials of ∼ 3 mV as was predicted by the maximum read current

of 3µA for the thin oxide transistors.

Therefore, I did some research and found an alternative topology which had the potential to solve

my mismatch issue. The Wilson current mirror topology boasts a massively reduced mismatch between

the original and mirrored currents [48]. Therefore, I implemented the Wilson mirror (Figure 23c), and

tested its output impedance and mismatch. Unfortunately, its output resistance had significantly degraded

compared to the the cascode despite using the same physical transistor dimensions.

To decide between these two current source topologies, I had to consider how it would be implemented
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in the larger ADC structure. At this point in the design, there were two leading structures: fully-differential

(Figure 24a) and one-sided (Figure 24b), just like the PCSA. The fully differential design was intriguing

to me not only due to its symmetry, but due to the fact a second amplification stage could be placed

before the comparator, to completely remove the "common-mode" 64 ·RL · Id voltage signal on the output,

effectively allowing one to multiply the TMR of the MRAM by some value α. However, this also magnifies

input referred noise and any mismatch between the two mirrored current sources. In fact, the differential

design had no possible way to adjust for mismatch. This lack of flexibility led me to choose the one-sided

design, even though it requires a voltage reference, as one could theoretically adjust the threshold to

compensate for either mismatch or finite output impedance of the current source.

(a) Differential current mirror (b) One-sided current mirror

Figure 24: Two current-based ADC configurations: (a) differential current ADC, and (b) one-sided current ADC

3.4.2.3 Low-Dropout Regulators (LDOs)

The narrative is relatively unfulfilling, but it was a completely different form of current source which was

eventually implemented into my final design: the low-dropout regulator (LDO). LDOs are most often used

when one wishes to step down one on-chip voltage to another, with minimal headroom. The low-dropout

means that the output voltage of the regulator can be extremely close to the supply voltage, up to Vdd −Vth

[49]. The output voltage of the LDO unit is regulated by closed loop feedback which flows from the output

voltage, through a voltage divider, into the inverting input of an amplifier stage (Figure 25). When the

output voltage is below the voltage reference, the feedback increase VGS of the output transistor, increasing

its current or lowering its output resistance; the opposite occurs if the output voltage is above the reference

voltage. One potential way of visualizing the LDO is as a variable resistor, who changes its resistance such

that the voltage divider created between it and the load results in an output voltage equal to the voltage

reference.

When an LDO is connected to a known resistance value, it creates a current source with extremely

low mismatch and high effective impedance do to its active feedback. This is a common methodology

for creating extremely stable current sources, as the resistance of an integrated resistor varies less than

the drain current of a transistor with a fixed VGS . Figure 26 demonstrates how the LDO block is integrated

to the circuit to create a stable current reference. Another major benefit of this design is that it does not
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Figure 25: Screenshot of low-dropout regulator schematic taken from Cadence Virtuoso

require an on-chip current reference to mirror, rather it uses a voltage reference which is far easier to

control, and can even come from an off-chip pad.

After sizing the and resistors transistors of the LDO, I was convinced that it really was the best option.

Despite its larger size and static power consumption, it outperformed both the Wilson and cascode

topologies in both output impedance and mismatch performance. However, the mismatch between the

resistors of the columns of the device rendered still too large of a current signal compared to the signal

between neighboring popcounts, preventing them from being recognized. Essentially, there was no current

source that was ideal enough to be used in a fully differential design— therefore I came up with the idea to

"trim" my threshold values per column to compensate in the one-sided current measurement topology.

3.4.3 Comparator

Before I talk in detail of the digital trimming methodology which allowed my design to be viable, I must

first discuss the important element of the ADC which I have been ignoring: the comparator.

The role of the comparator is simple, when its positive voltage input terminal is higher in magnitude

than its negative input terminal, the output of the comparator should go to VDD . Similarly, when the input

voltage relation is flipped, the comparator should go to GN D . In some ways, a comparator can be thought

of as an amplifier with such large gain, that its outputs always hit the voltage rails.

3.4.3.1 Comparator Sizing

In order to reduce the power consumption of my comparator, I chose to use the strongARM comparator

topology (Figure 27). The strongARM is a clocked and latched comparator which exhibits both high speed

and minimal static power, due to its unique operation methodology [50]. When the clock is low, the circuit

is precharged to VDD , when the clock is high, whichever side of the differential pair (N7/N10) has a higher

gate voltage sinks more current, causing its side to fall while the other rises, and then the cross coupled
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Figure 26: Schematic of the LDO block being used as a current source, using a fixed resistance as reference

inverter (P8 & N6 / P9 & N5) magnifies this feedback, bringing the less strongly driven side to VDD , and

the other to GN D . Finally, to keep the output stable, the inverter output is sent to a latch, which holds its

output until the next clock pulse is sent.

3.4.3.2 Thin vs. Thick Oxide Transistors

I performed my own optimization process using my geometric constraints and differential evolution to

size the active stage of the strongARM for maximum sensitivity, eventually resulting in a width of 1µm and

a length of 4µm. Despite this, I still could not get its sensitivity below 6 mV. This meant that my comparator

could not differentiate two voltage signals within 6 mV of each other. Using thin oxide transistors with

a VDD = 0.9V , the maximum voltage that can be consistently regulated on the LDO output is ∼ 0.6V .

However, there is also a minimum voltage of ∼ 0.3V given by the current that still must flow through

the column when the popcount is at its minimum value. The voltage per state is given by V64−V0
64 ≈ 3 mV.

Because this is below the maximum sensitivity of the comparator, neighboring popcounts would be unable

to be differentiated, even in the best case scenario.

Because of this, I took the advice of my advisors and switched from the thin oxide transistor to the

thick oxide transistors. The thin oxide set of cells has a maximum VDS of only 0.9V , whereas the thick

oxide can go up to 1.8V . By using the thick oxide cells, the difference between the voltage of my maximum

popcount and my minimum popcount could be more than doubled! However, this comes at the strong

cost of significantly increasing power consumption, which scales with the square of VDD for dynamic

power, and linearly for static power. At this point, there was a significant bifurcation in the potential design

of my chip. If I were to take the thin oxide route, I would have far lower power, but I would not be able

to differentiate popcounts that are near to each other. At an algorithmic level, this can be significantly

mitigated using hardware-aware training methodologies, and some noise can be beneficial for certain
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Figure 27: Screenshot of strongARM comparator schematic taken from Cadence Virtuoso
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learning algorithms. I, however, took the thick oxide route, as I wanted to guarantee the functionality of

my circuit and algorithm, even for neighboring popcounts at the cost of efficiency. If I were to do a second

design, perhaps I would have taken the riskier choice, but for the first tapeout of this technology, it was

better to be safe.

3.4.4 Digital-to-Analog Converter (DAC)

With my design moved and resized to use the thick oxide transistors, I could finally validate the robustness

of my design against the my three sources of variation: noise, mismatch, and input positions. Mismatch

existed not only between my resistors causing variations in drain current (Id ), but also existed within

the width of the transistors inside the comparator itself, creating an additional offset which needed to

be compensated to switch the output state compared to a perfectly matched comparator. It was for this

reason that I had to perform a binary search to find the switching threshold between 0/1 for the comparator

to measure the "true output" rather than just measuring the voltage generated at the current source. This

way, for the given noise and mismatch seed, one would know with certainty which way the output would

swing for the given threshold. Thus, I performed a massive simulation on my ideal ADC candidate to

properly design my digital-to-analog converter (DAC).

3.4.4.1 The Safe Zone

The results of this simulation are shown in Figure 28. I performed 100 binary searches to a 16 bit resolution

to find the true comparator threshold considering mismatch, noise, and input variation for a popcount

equal to 31 and for 32, for a total of 3,200 transient simulations. The top half of the figure shows the two

histograms, with popcount 31 in blue and popcount 32 in orange. If the two histograms were overlapping,

it would mean that there would be no possible voltage applied to the comparator as a threshold that

could result in 100% accuracy for the design. However, because the two histograms are separated, if a

DAC threshold were placed anywhere within that separation range, then the system would be able to

accurately differentiate between 31 and 32 despite all sources of variation. If then the threshold were

placed somewhere on the blue histogram, it would mean that some true popcount 31 states would be

incorrectly identified as popcount 32 states by the ADC system. By measuring what percentage of the

histogram lies above or below a theoretical DAC voltage, one can generate the accuracy as a function of

the threshold without having to compute millions of simulations per threshold! I therefore call the region

in green on Figure 28 the "Safe Zone", and the goal of a DAC is to be able to provide a voltage within the

safe zone for any column and any algorithmic threshold desired.

3.4.4.2 Levels

The most important design choice for the DAC is the number of voltage levels available. As the DAC will be

composed of a voltage ladder and an analog multiplexer (see 3.4.4.3), the analog multiplexer is controlled

by a binary string therefore the number of available levels should be a power of 2. The minimum number

of levels for the design would be 64, corresponding to the number of possible popcounts for the design.
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Figure 28: (top) Comparator threshold distribution between popcount = 31 (blue) and popcount = 32 (orange), with
noise, mismatch, and input variation enabled (bottom) inference accuracy as a function of DAC threshold. 100%
accuracy is indicated as green, ≥ 90% as yellow, ≥ 50% as orange, and < 50% as red.

However, this does not give any margin of error. The sixty four levels must correspond with all of the

safe zones for each popcount differentiation. While the LDO current characteristic is much more linear

than the Wilson mirror, the current still changes as the impedance of the column changes. Therefore,

the spacing between popcounts should change slightly over the course of the design. This means that if

one were to only place 64 levels linearly spaced in the design, only a subset of them could potentially be

aligned to the safe zones. One potential solution would be to use an unequal spacing of the resistors in the

DAC ladder in order to better match the current characteristic of the source, however this still leaves one

susceptible to mismatch if one of the current source resistors is different from typical. Therefore, if we

increase the number of states, perhaps we can "trim" the offset voltage digitally to adjust for mismatch.

In Figure 29, we see how the number of levels affects the accuracy, when performing digital trimming

to match the safe zone at popcount = 32. The top portion of the figure shows the relationship between the

threshold and popcount for 100 seeds. The relation is primarily linear. However, there exists an offset from

the mean due to mismatch within the comparator, and there is a deviation in slope due to mismatch of the

current source. An ideal trimming setup would be able to adjust for both slope and offset, but here I focus

just on offset for now. Because the DAC can only adjust in broad increments equivalent to the 64 levels,

very few of the popcount voltage relationships are able to be adjusted into the safe zone (middle of the

figure), resulting in low accuracy (bottom of the figure). However, when the number of levels is increased

to 256 (Figure 30), one is able to properly offset the threshold to align with the safe zone for popcount 32.

Figure 31 compares the derived accuracy for 64, 128, and 256 level DACs. While 128 levels performs

reasonably well, it is unable to reach 100% accuracy for popcount 32. This makes sense from an intuitive

level, as the width of the safe zone is 1.77 mV, and 64, 128, and 256 levels result in voltage resolutions of
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Figure 29: Deviation from ideal popcount / threshold relationship for 64 level DAC (top) Unmodified linear popcount
/ threshold relationships (middle) deviation from average relationship, colored by the accuracy which would result
as a function of its distance from the midline (bottom) derived accuracy as a function of popcount, by counting the
number of lines belonging to the middle green area
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Figure 30: Deviation from ideal popcount / threshold relationship for 256 level DAC (top) Unmodified linear
popcount / threshold relationships (middle) deviation from average relationship, colored by the accuracy which
would result as a function of its distance from the midline (bottom) derived accuracy as a function of popcount, by
counting the number of lines belonging to the middle green area
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Figure 31: Computed accuracy as a function of threshold, for 64 levels (blue), 128 levels (orange) and 256 levels
(green)

7.03 mV, 3.51 mV, and 1.75 mV respectively. Because the minimum resolution of the DAC is smaller than

the width of the safe zone, this allows for one to trim the threshold in order to obtain 100% accuracy at

popcount 32.

I will discuss the digital trimming circuit more in 3.5.1, but a 256 level DAC should be sufficient to

achieve 100% accuracy not only for popcount 32, but for every popcount by performing a tuning process

prior to inference.

3.4.4.3 Circuit

Finally, here I will discuss the circuit implementation of the DAC, which consists of two parts: the resistive

ladder and the analog multiplexer.

The resistive ladder was the simplest to design. I used the highest sheet resistance resistor available in

my PDK, and connected 258 resistors in series (Figure 32). The additional two resistors were applied to the

top and the bottom of the ladder, such that the input of the ladder is not directly applied to the output

levels. To determine the resistance of each resistor, I simply looked at the output range of the comparator

inputs (0.75 to 1.2 V), and selected a reasonable current of less than 1µA. From there, I derived the total

resistance, and found that selecting a resistance of 2kΩ per resistor would result in a total current of less

than 1µA. Choosing an even lower current would reduce power consumption, but the physical size of the

resistors would grow to be significant, and the ladder would become susceptible to transient currents

changing its nominal voltage levels.

Then, to design the multiplexer, I used my transmission gate that was used in the design of the enable

cell, and cascaded them together from 2×1, to 4×2, to 4×2, and eventually 256×8. The design of the 2×1

multiplexer (Figure 33 is extremely similar to the enable cell, however, the select lines are differentially

encoded; it is impossible to put the multiplexer in the high impedance state.

With the DAC completed, the ADC conversion unit was finalized, thereby finishing the analog design

of the entire array. It was certainly the most difficult part of the design.
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Figure 32: Screenshot of resistive ladder schematic taken from Cadence Virtuoso

Figure 33: Screenshot of 2x1 analog multiplexer schematic taken from Cadence Virtuoso
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3.5 Digital Design

The digital design of the chip is still ongoing, as we would like to choose the exact functionality / features

of the chip nearer to the end of the design processes. Nonetheless, two digital components of the chip will

be necessary and have been designed at the block level: first the digital trimming block, and secondly the

serial programming interface (SPI).

3.5.1 Digital Trimming

To activate the preactivation of the neuron, the threshold is placed at one of 64 levels, corresponding to the

potential popcounts of the neuron. However, as we have previously seen, the thresholds often need to be

adjusted from the theoretical value. Thus, I propose here four potential ways to implement the design of

digital trimming.

The first is to only store the DAC selection signal in a single 8 bit register. This is the simplest option,

but the least versatile. One will have to retune the exact threshold in order to change the algorithmic

threshold each time. Fortunately, the threshold does not change often, but the tuning process does take

time. The second option is to encode the algorithmic weight in a 6 bit register, then to encode the offset

to that weight in a 8 bit register, which gets added/subtracted from the algorithmic weight to result in

the exact offset. Then after tuning for popcount 32, the system retains its accuracy as the algorithmic

threshold changes, just like in Figure 30. A third possible solution would be not only to save this offset, but

also a modification to the slope of each of the popcount voltage characteristics, by including a multiplier

on-chip as well. This way, one can adjust the bias and the slope of all the characteristics to not have to

tune the neuron more than once, and to maintain 100% accuracy for all popcounts. A final way would be

to tune for each of the 64 popcounts, then use a lookup table to output the exact threshold, but this would

be area and energy inefficient.

3.5.2 Serial Programming Interface (SPI)

To create the serial programming interface (SPI), I will devote four pads of my chip, one for the clock

(SCLK), one for the controller output peripheral input (COPI), one for the controller input peripheral

output (CIPO), and another for chip select (CS). This will allow a microcontroller to interface with my chip

by enabling the chip select, sending data using the COPI, and receiving data using the CIPO, all controlled

with the SCLK.

I plan to use a control word containing 70 bits: five for the register address, one to encode read/write,

and 64 bits for the data stored within the register. My chip needs fewer than 32 total registers to operate

the chip including those needed for the control circuitry and the ADC thresholds / output registers. When

the control word is read into the chip, (Figure 34) the SPI peripheral reads the word, and writes or reads

the selected register, and outputs the contents of the register on the following clock pulses for read. The

figure is a simple potential solution, and for the final design I plan to use a preexisting SPI library to create

the SystemVerilog, to then synthesize and place my cells outside of the analog area of my design.
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Figure 34: Hand-drawn block diagram for serial programming interface

4 Results

4.1 Performance Comparison

With all of the analog design for the chip complete, I evaluate its performance in comparison to the

state-of-the-art paper from [45]. To perform a single inference operation (for a single column), it takes 100

fJ of energy in a period of 0.7 ns (Figure 35). This means an average power of 143 µW per column, and 9.1

mW for the entire array. However, we have 5.851 TOPs (tera operations per second) using the notation

methodology of [45], where each multiplication counts as an operation to the sum (one operation per cell).

Dividing by the power gives an estimated 643 TOPs/W, higher than the maximum predicted by Samsung’s

paper of 474 TOPs/W, at much higher speeds of operation (∼ GHz instead of ∼ MHz) by avoiding the slow

(yet efficient) time-to-digital methodology. It is very likely that this efficiency will continue to diminish

when more digital components with static power are added to the circuit, and after parasitic extraction

from my layout, when additional capacitances will reduce the maximum operating speed of the circuit.

However, this work clearly shows that my design is at least competitive with the state of the art preexisting

solutions.

4.2 Layout Footprint

Finally, here I would like to report on the estimated area of my completed array. I have since started the

layout process for my design, and have created the folded cell shown in Figure 36. It has a width of 2.27

µm and a height of 3µm. While it does not currently pass design rule check (DRC) due to a licensing issue

with dual patterning, it is layout versus schematic (LVS) clean, and it provides a reasonable estimate to the

final dimensions and form of the cell and the whole array. Therefore, the total array should measure an

area of 145 µm by 192 µm, for an area of 27,840 µm2. I am still currently working on the remainder of the
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Figure 35: Transient simulation results for a single column inference operation (top) voltage characteristic for the
result of the operation (top middle) voltage for the output of the neuron (blue) and the DAC voltage (orange) (bottom
middle) clock voltage (bottom) power (blue) and integrated energy (orange) plot
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Figure 36: Screenshot of layout for the array cell from Cadence Virtuoso LayoutXL

layout, but it will be completed according to the Gantt chart in order to tapeout come mid-December.

5 Conclusion

This thesis report has described most of the design process for a neural network inference chip, starting

from the array structure, to the control circuitry, the analog-to-digital converter, and finally ending with

the digital design. In order to tape-out in December, the analog layout must be finished, followed by the

remainder of the digital design and then digital layout, along with pad placement and input/output (I/O)

design. Per the Gantt chart, things are on-track, and my design should be sent to be manufactured come

this December. The chip performs at an estimated efficiency of 643 TOPs/W, while outperforming the

state of the art in accuracy, and hopefully efficiency post parasitic extraction.

5.1 Future Work

In order to stick with the schedule defined by the Gantt chart and tapeout date, it is too late to make large

modifications to the schematic, especially as the layout process has already begun. However, if I were to

get access to a second tapeout (if the first were successful), I would likely make several modifications to

my design. First, knowing the real TMR for the process would allow me to make more risky design choices.

I would swap the large LDO unit for a smaller cascode design using my voltage trimming method to adjust
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for the higher mismatch currents. I would also like to switch to a thin oxide design, trading accuracy in

precise popcount determination for significantly reduced power consumption.

5.2 Impact

As mentioned in the introduction, SOT-MRAM-based inference arrays, like the one designed here, offer a

promising path towards more energy-efficient neuromorphic computing. By enabling analog in-memory

computation, they could significantly reduce the environmental impact associated with machine learning

models and computing in general. I hope that this project results in a successful chip, that proves the

viability of the technology and creates opportunity for various spin-off projects and other designs.
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Acronyms

GN D ground. 17, 21, 30, 31

VDD supply voltage. 17

VDS transistor drain to source voltage. 26–28, 31

Vth transistor threshold voltage. 28

ADC analog-to-digital converter. 4, 6, 15, 16, 18, 21,

24–26, 29, 30, 33, 37, 39, 51, 52

AI artificial intelligence. 5

CiM compute-in-memory. 6, 14

CIPO controller input peripheral output. 39

CMOS complementary metal-oxide semiconductor. 6,

9

COPI controller output peripheral input. 39

CS chip select. 39

DAC digital-to-analog converter. 15, 33–37, 39, 41

DRC design rule check. 40

FBB forward body biasing. 10

FD fully-depleted. 9

FD-SOI fully-depleted silicon-on-insulator. 8

FinFET fin field-effect transistor. 9

GAA gate all-around. 9

I/O input/output. 42

LDO low-dropout regulator. 4, 29–31, 34, 42

LLM large language model. 5

LVS layout versus schematic. 40

LVT low voltage threshold. 20

MOS metal-oxide semiconductor (transistor). 49

49



3A Thesis Report Benjamin Walker

MRAM magnetoresistive random access memory. 6, 8

MTJ magnetic tunnel junction. 11

NMOS n-channel MOS. 10, 20

NN neural network. 13

PD partially-depleted. 9

PMOS p-channel MOS. 10, 20, 26, 28

RAM random access memory. 11

RBB reverse body biasing. 10

ReRAM resistive RAM. 14

SLVT super-low voltage threshold. 16, 20

SOT spin–orbit torque. 8

STT spin-transfer torque. 11

TDC time-to-digital conversion. 15

TMR tunnel magnetoresistance. 11
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A Employer Description

The Centre de Nanosciences et de Nanotechnologies (C2N) is a research center located in Palaiseau as a

joint unit between Centre National de la Recherche Scientifique (CNRS) and the Université Paris-Saclay.

C2N’s research spans material science, nanophotonics, nanoelectronics, and microsystems, all enabled by

its state-of-the-art 2900 m2 cleanroom.

Within C2N, I worked with the IntegNano laboratory, co-headed by Damien Querlioz and Liza Herra

Diez. The IntegNano laboratory focuses on energy-efficient artificial intelligence systems, enabled by

emerging devices and physics such as filament memristors and spintronics.

B Gantt Chart

The Gantt chart in Figure 37 outlines the process of design from the start of the thesis period until the

tapeout date in mid-December. Working backwards, I expect to need two or so weeks to package and

document everything before the design is closed and sent to the foundry. Further, I expect to need at

least two weeks to integrate my digital and analog components together on the same GDS file, while also

adding pads. Then, I expect the digital design to take around a month, which can be done in parallel to the

tapeout of my device. Then looking further back into what I have already accomplished, I spent almost

two months testing and designing the various ADC methodologies, and before that I had spent two weeks

to design the control circuitry and to fix the leakage problem of my 2A internship. Thus, I have created the

Gantt chart corresponds to the full process of my chip design.
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Figure 37: Gantt chart for the 3A internship. The various tasks are shown on the left side, whereas the estimated time
for each task is represented by the length of the respective bar. The project begins with planning (grey), then the
finalization of the array (dark blue), the control circuitry (light blue), then the ADC (orange), analog layout (green),
digital design and layout (purple), top-level design (pads/IO in red), and finally the packing of the chip/cleaning of
files for tapeout (grey)

C Summaries

C.1 English

In this 3A thesis report, I describe the process of designing a novel inference chip, which combines a

novel spin-orbit torque (SOT) magnetic random access memory (MRAM) with a 22 nm fully-depleted

silicon-on-insulator (FD-SOI) transistor process to perform inference operations in-memory. I begin

by motivating the need to improve the energy efficiency of artificial intelligence systems to reduce their

negative societal effects as they become more prominently used. Then, I describe the basics of the

technologies used and of neural networks, to understand the technical goals of the project. The report then

details the design results of my 2A internship, before discussing the array design, the control circuitry, the

analog-to-digital conversion, and the digital design necessary. Several key decisions were made regarding

circuit topologies, circuit components, and cell sizing in order to create a chip that minimizes the risks

associated with a new process, hopefully resulting in a chip that works properly when tested. The final

design achieves an estimated 643 TOPs/W pre-extraction, which is competitive with other state of the art

designs. Well optimized SOT-MRAM inference arrays could continue to reduce the environmental impacts
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of machine-learning, and computing in general.

C.2 French

Dans ce rapport de thèse 3A, je décris le processus de conception d’une nouvelle puce d’inférence, qui

combine une mémoire magnétique à accès aléatoire à couple spin-orbite (SOT-MRAM) avec un procédé

de transistors FD-SOI (Fully-Depleted Silicon-On-Insulator) de 22 nm afin d’effectuer des opérations

d’inférence directement en mémoire. Je commence par motiver la nécessité d’améliorer l’efficacité

énergétique des systèmes d’intelligence artificielle afin d’en réduire les effets sociétaux négatifs à mesure

qu’ils se généralisent. Je décris ensuite les bases des technologies utilisées et des réseaux de neurones, afin

de comprendre les objectifs techniques du projet. Le rapport détaille ensuite les résultats de conception de

mon stage 2A, avant d’aborder la conception de l’array, les circuits de commande, la conversion analogique-

numérique et la conception numérique nécessaires. Plusieurs décisions clés ont été prises concernant les

topologies de circuits, les composants et le dimensionnement des cellules, afin de minimiser les risques

associés à un nouveau procédé, dans l’espoir d’aboutir à une puce qui fonctionne correctement lors des

tests. La conception finale atteint une estimation de 643 TOPs/W en pré-extraction, ce qui est compétitif

par rapport aux conceptions à l’état de l’art. Des réseaux d’inférence SOT-MRAM bien optimisés pourraient

continuer à réduire les impacts environnementaux de l’apprentissage automatique et de l’informatique

en général.

C.3 Italian

In questo rapporto di tesi 3A descrivo il processo di progettazione di un nuovo chip di inferenza, che

combina una memoria magnetica ad accesso casuale a coppia spin-orbita (SOT-MRAM) con un processo

a transistor FD-SOI (Fully-Depleted Silicon-On-Insulator) a 22 nm per eseguire le operazioni di inferenza

direttamente in memoria. Inizio motivando la necessità di migliorare l’efficienza energetica dei sistemi

di intelligenza artificiale per ridurne gli effetti sociali negativi, via via che il loro utilizzo si diffonde. De-

scrivo quindi le basi delle tecnologie impiegate e delle reti neurali, per comprendere gli obiettivi tecnici

del progetto. Il rapporto illustra poi i risultati di progettazione del mio tirocinio 2A, quindi discute la

progettazione dell’array, dei circuiti di controllo, della conversione analogico-digitale e della progettazione

digitale necessaria. Sono state prese diverse decisioni chiave riguardo alle topologie circuitali, ai com-

ponenti e al dimensionamento delle celle, al fine di minimizzare i rischi associati a un nuovo processo,

con l’auspicio di ottenere un chip che funzioni correttamente in prova. Il progetto finale raggiunge una

stima di 643 TOPs/W in pre-estrazione, competitiva rispetto ad altri progetti allo stato dell’arte. Array di

inferenza SOT-MRAM ben ottimizzati potrebbero continuare a ridurre gli impatti ambientali del machine

learning e dell’informatica in generale.
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D Summary Sheet

1. Benjamin Wallace Walker

2. Phelma International Nanotech Program

3. A.Y. 2024-2025 (A3)

4. Spintronic on-chip learning with Bayes’ Rule, from 03/03/25 to 12/09/25, with 2 week interruption

5.

Centre de Nanosciences et de Nanotechnologies, 10 Boulevard Thomas Gobert 91120 Palaiseau

6. Damien Querlioz, damien.querlioz@universite-paris-saclay.fr

7. Jonathan Miquel

8. During this 6 month internship, the student will explore the intersection between spintronic devices

and Bayesian learning. The operation and switching of spintronic devices such as SOT-MRAM

are inherently stochastic, and to overcome these limitations typical applications require increased

current and therefore energy to ensure reliable operation. However, there exist specific problems

where stochasticity is advantageous, such as Bayesian learning and reasoning. Therefore, during

this internship, the student will explore the intersection between the physics of spintronic devices

such as SOT-MRAM and Bayesian neural networks. By designing systems across both levels of

abstraction, the student will be able to leverage the unique mechanics of spintronic systems to

create novel learning circuits and systems with enhanced energy efficiency, a requirement essential

for the edge-computing systems of the 21st century. NOTE: The actual contents of the thesis focus

more on the continuation of the design from the 2A period, rather than focusing on spintronic learning.

Some learning algorithms were explored during the internship, but were out of the scope of the report,

as most of the time was spent doing chip design.

9. I used servers provided by C2N and collaborated with several other researchers (Jean-Michel Portal,

Kamel Harabi) and PhD students (Akib Iftakher, Théo Ballet) for their advice and support during the

course of the internship.
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