
Master Photonics for Security Reliability and Safety (PSRS)

Neural Network Segmentation of Charge

Stability Diagrams for the Auto-Tuning of

Silicon Quantum Dots for Spin Qubits

Master Thesis Report

Presented by

Peter Samaha

and defended at

University Jean Monnet

3 September 2025

Academic Supervisor(s):

Prof. Carlo Ricciardi
Host Supervisors:

Yann Beilliard,
Pierre-André Mortemousque
Jury Committee:

Prof. Carlo Ricciardi, Polytechnic University of Turin
Prof. Amine Naït Ali, Paris-East Créteil University

Abstract

Automatic tuning of gate-defined semiconductor Quantum Dots (QDs) is a key bottleneck

on the path toward scalable qubit architectures. In this thesis, we develop and validate

a Machine Learning (ML)-driven pipeline for offline and prospective online charge state

auto-tuning, using Charge Stability Diagrams (CSDs) to locate the single charge regime.

We assemble and manually annotate a large dataset of CSD images from nine distinct de-

vice designs fabricated across multiple process batches and patterned on different wafers

and die locations. A U-Net–based Convolutional Neural Network (CNN) is trained to

segment charge transition lines under challenging, low-contrast cryogenic conditions and

measurement noise. Through five-fold cross-validation, our model achieves a success

rate of 80.0% in locating the single charge regime tested on a total of 1015

CSDs. The highest-performing device designs were Design D and E with success

rate of 88% tested on 147 and 138 stability diagrams respectively. Considering mask-

level performance, Mask I achieved 589/695 (84.7%) while Mask II achieved 223/320

(69.7%). Detailed failure analysis highlights common modes such as missed, faint, spuri-

ous, and fragmented lines, and motivates solutions for these cases. We outline a roadmap

for real-time integration in a cryogenic wafer prober, on-chip cryostat deployment, and

multi-qubit scaling via joint segmentation and physics-guided postprocessing. Our results

demonstrate that data-driven semantic segmentation can reliably automate charge tun-

ing, paving the way for closed-loop control protocols essential to fault-tolerant quantum

computing.

Contents

Contents ii

List of Figures v

List of Tables xi

1 Introduction 1

2 State of the Art 11

2.1 Fundamentals of Quantum Computing 11

2.1.1 The Challenges of Quantum Computers 11

2.1.2 Physical Platforms to Realize a Qubit 12

2.2 Quantum Dots . 12

2.2.1 Quantum Confinement . 12

2.2.2 Quantum Dot Realizations . 13

2.2.3 Electrostatically Defined Semiconductor Quantum Dots 14

2.3 Quantum Dots for Qubit Realization . 17

2.4 Coulomb Blockade in QD . 18

2.5 Readout Method: Single Electron Transistor 21

2.6 Charge Stability Diagram . 22

2.7 Machine Learning . 22

2.7.1 Learning Paradigms . 24

2.7.2 Data Types . 25

2.7.3 What Is a Machine Learning Model 26

2.7.4 Training Process of a Neural Network 28

2.7.5 Transfer Learning and Fine-Tuning 29

2.7.6 Evaluation . 30

2.7.7 Model Inference . 33

2.8 Conclusion . 33

ii

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

3 The Tuning Process of Quantum Dots 34

3.1 Tuning of QDs . 34

3.2 Charge Tuning of QDs . 35

3.3 Literature Review and State-of-the-Art 38

3.3.1 Classical Heuristic Methods . 38

3.3.2 Machine Learning Methods . 39

3.4 Proposed Full-Diagram Charge Tuning Method 41

3.5 Device Variability and ML-Enabled Feedback 43

3.6 Conclusion . 44

4 Data Acquisition and Preprocessing 46

4.1 Experimental Setup and Data Acquisition 46

4.2 Data Labeling . 49

4.2.1 Type of Transition Lines . 50

4.2.2 Labeling Workflow . 50

4.3 Data Processing . 52

4.3.1 Statistical Feature Extraction . 52

4.3.2 Normalization . 53

4.3.3 Mask Generation . 54

4.3.4 Single Charge Regime Mask Generation 54

4.4 Conclusion . 55

5 Implementation of the ML-Based Charge Tuning Pipeline 56

5.1 Problem Formulation . 56

5.2 Model Architecture . 57

5.2.1 Encoder: MobileNetV2 Backbone 58

5.2.2 Decoder: Upsampling, Skip Connections, and Feature Fusion . . . 59

5.2.3 Final Prediction Layer . 59

5.2.4 Loss Function: Dice Loss . 60

5.3 Training Procedure . 60

5.3.1 Computational Environment . 60

5.3.2 Data Splitting & Cross-Validation 60

5.3.3 Input Preprocessing: Resize and Padding 61

5.3.4 Data Augmentation . 63

5.4 Prediction and Postprocessing . 63

5.5 Evaluation Metrics . 68

5.6 Conclusion . 69

iii

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

6 Experimental Results of Offline Auto Tuning 70

6.1 Results and Discussion . 70

6.1.1 Qualitative Results . 70

6.1.2 Quantitative Results . 71

6.2 Failure Analysis . 75

6.3 Results summary . 83

7 Discussion and Future Work 84

7.1 In-Situ Auto-Tuning in a Cryogenic Wafer Prober 84

7.2 On-Chip Cryogenic Implementation . 85

7.3 Scalability to Multi-Qubit Arrays and New Materials 85

7.4 Physics-Guided Feature Extraction . 86

7.5 Enhanced Multi-Channel Input Representations 86

8 Conclusion and Perspectives 88

A Training Details and Metrics 91

B Offline Auto-Tuning Test Results 97

Bibliography 100

iv

List of Figures

1.1 Different physical implementations of a qubit: advantages and disadvan-

tages, and most prominent companies and research lab working on each

type [29]. 7

1.2 Simplified 3D depiction of a silicon-on-insulator nanowire field-effect tran-

sistor featuring dual-gate structures. (Adapted from [34]) 8

2.1 Schematic representation of quantum confinement and the discretization

of energy spectra as the dimension gets reduced. (Taken from [49]) . . . 13

2.2 Schematic of silicon-based structures for the realization of QDs. First col-

umn: Schematic of the structure. Second column: Confinement potential

of the electrons in the material. Third column: Schematic of the structure

representing the source, drain, and gate electrodes. Fourth column: Po-

tential well electrostatically coupled to gate electrodes that can change the

electrochemical potential of the electron relative to the source and drain

which are tunnel-coupled to the well. (Reproduced from [55]) 15

2.3 Silicon nanowire CMOS. (a) Schematic representation of a silicon nanowire

(red) on top of an oxide (green) with a gate electrode patterned on the sil-

icon channel (gray). (b) sem top-view image of a silicon nanowire cmos

transistor, etched on top of a box in a fd-soi structure. Metallic split-gates

are patterned on top of the nanowire which is connected to a source and

a drain having the role of electron reservoirs (Taken from [56]). 16

2.4 Tunable single qd potential profile which is formed by applying a bias

voltage VSD between source and drain, and a gate voltage VG on the plunger

gate denoted by P . The qd is formed between two barriers denoted B which

can be tuned by changing the voltage on the barrier gates which affects

the tunneling rate between the source/drain and the dot. 17

v

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

2.5 Schematics of the electrochemical potential levels of a qd in the low bias

regime (a and b), and the resulting one-dimensional trace of Coulomb

peaks and blockades (c). For an applied bias voltage VSD, a small window

opens to allow charge flow between source and drain (a). By changing

the voltage VG of the plunger gate of the dot, we can manipulate the

electrochemical potential of that dot, and by positioning an energy level µN

of the dot between that of the source and drain (µS and µD respectively),

current will flow from source to drain though the dot and therefore single-

electron tunneling will take place between N − 1 and N (b) which can

be visualized as Coulomb peaks in the current vs gate voltages plot (c).

When this electrochemical energy of the dot µN resides out of the bias

window, no current will flow from source to drain and the dot is in the

Coulomb blockade regime where the number of electrons is fixed at N − 1.

The tunnel rate between the dot and the reservoirs (ΓS and ΓD) dictate

the magnitude of the current. (Adapted from [28]) 20

2.6 Readout Method for the Silicon nanowire CMOS. (a) Schematic

representation of a silicon nanowire with the top gates being used as a

readout Single Electron Transistors (SETs) for sensing, and the bottom

gates to form few-charge qd to host qubits. (b) Similar device under oper-

ation, where we can see the few-charge being formed under the gate with

voltage VQD and many-charge set formed under the gate with bias VSET . 21

2.7 Charge Stability Diagram. A 2D current map of a qd where the x and

y axes represents the voltage sweep applied to the gates, and the color

bar represents the measured current value in nA at every point in the

map. The numerals represent the number of trapped electrons in the dot,

separated by vertical charge transition lines. We can also see the Coulomb

oscillations as oblique peaks represented here by the current color bar. The

line between the single electron regime and the no charge regime in this

case look slightly different from the rest, it is what we refer to as stochastic

transition line and it is due to the tunneling rate of the electron between

the dot and the reservoir being higher than the sampling rate used for

taking the measurement (see Sec. 4.2.1) 23

2.8 Venn diagram showing overlapping relationships between Artificial Intelli-

gence, Machine Learning, Deep Learning, and Computer Vision. 24

2.9 The main steps of supervised learning. 25

vi

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

2.10 Schematic of feedforward and error backpropagation processes for a single

neuron j. The neuron performs the computation in Eq. 2.1 and is con-

nected to an input layer which is an aggregation of input neurons x (in

green), and a single output neuron y (in blue) which is the prediction of

the model (Adapted from [68]) . 26

2.11 Schematic of the architecture of a multilayer ann with error backpropaga-

tion, showing an input layer, two hidden layers, and an output layer. Each

node represent a neuron (Adapted from [68]) 27

2.12 A schematic representation of a simple cnn architecture showing the con-

volution layer, pooling layer, and the fully connected layer (Adapted from

[69]). 28

2.13 Visual representation of Precision and Recall (Adapted from [77]). 31

2.14 Schematic representation of the Dice metric. 32

2.15 Schematic diagram of the iou metric. 32

4.1 Wafer Cryogenic Prober used to acquire the CSDs data. 47

4.2 Distribution of our CSDs data across mask designs, device polarity, batches,

wafers, and device design respectively from top left to bottom right . . . 48

4.3 The labeling process of stability diagrams 51

4.4 Visual representation of the three statistical features (mean, median, and

standard deviation) which were calculated from the measurement samples.

Each subplot contains a single channel. For better visualization we did

not plot them in grayscale. By stacking these features together we get

a single three-channel image containing a statistical representation of all

measurements. 53

4.5 Ground-Truth mask generated from the manual labeling done on Fig. 4.3 54

5.1 End-to-end offline-tuning pipeline. We start with current data mea-

surement (in purple) by sweeping the voltage on the gates as explained in

Sec. 2.6. Then we process the data (red) by normalizing our raw measure-

ments and calculating the three statistical channels from those measure-

ments (see Sec. 4.3. After labeling, we end up with input mask and csd

(green) to be fed to our ml model (yellow). The outcome of our model is

a prediction of the transition lines in the stability diagram. From this pre-

diction mask we perform the necessary postprocessing steps explained in

5.4 and we find the single electron or hole regime (blue). Finally we apply

the gate voltages of that regime as we extract them from the prediction

mask (gray). 57

vii

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

5.2 Original U-net architecture with slight modification. We kept the struc-

ture and numbers of the original paper [97] we only highlighted how our

implementation adapts the U-net architecture by using a pre-trained Mo-

bileNetV2 as the encoder and a custom decoder which we describe in

Sec. 5.2.2. The encoder and decoder are highlited in red and green respec-

tively. Blue boxes corresponds to feature maps having multiple channels

which are denoted on top of each box. The spatial dimensions of the image

are presented on the lower left edge of each box. In our case the starting

input has a dimension of 1024x1024. The gray arrows are skip connections

as highlighted in the legend, and the white boxes are the copied feature

maps which gets concatenated during upsampling. (Adapted from [97]) . 58

5.3 Representation of how every csd comes from a die on a wafer 61

5.4 Three charge stability diagrams acquired from the same physical device

under different cooldowns and measurement conditions. Despite identical

device geometry, variations in thermal noise, contrast, and drift in tran-

sition lines are evident between measurements, demonstrating that each

diagram represents a distinct sampling of the device’s state rather than

redundant data. 62

5.5 Plot showing inference and the main postprocessing steps. We

chose a diagram in which our model’s prediction is not very “clean” in order

to highlight the importance of the postprocessing steps we implement,

which were discussed in Sec. 5.4. (a) The input csd in the form of an

image. (b) The ground truth mask labeled as discussed in Sec. 4.2 and

used for training the model. (c) The raw model’s prediction where each

pixel is assigned a probability of how confident the model is that this pixel

belongs to a transition line. (d) After thresholding the previous probability

map based on a fixed value of 0.75 we get a binary map with the white

pixels as lines and the black as background. (e) We apply morphological

closing and area dynamic filtering to connect broken lines and remove small

spurious detections. (f) On the final cleaned binary mask we find the first

two transition lines and locate the center of mass of the single electron

regime which we represent here by a red square patch overlaid on top of

all the images at the same position. 65

viii

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

6.1 Examples of successful single charge regime detection gathered from dif-

ferent devices and showcasing different measurement quality. In the first

column we have the original csd that is used as input to the model, next to

it we have the corresponding hand-labeled ground-truth masks. Th third

column is the model’s output which consist of a binary mask with the

predicted transition lines and the localization of the single charge regime.

The single charge region is highlighted by a blue and green contour and

its center is indicated by a red square patch. The red patch is overlaid

on both the stability diagram and the ground-truth mask to demonstrate

accurate localization. 72

6.2 Examples of low-quality stability diagrams from device H, highlighting

poorly defined Coulomb peaks, very faint or discontinuous transition lines,

and large blank regions with little usable signal. These characteristics are

consistent with the device design and measurement quality that differ from

the other devices and likely explain the elevated failure rate for device H. 74

6.3 Red arrows pointing to a stochastic line in the input csd (first image) which

was labeled as a transition line in the ground truth mask (second image)

but was not detected by our model (third image). 78

6.4 Example of a false detection due to a spurious line. From top to bottom

we show the input csd, the labeled ground truth mask, and the faulty

prediction, with the red arrow pointing at the spurious line which was

wrongfully predicted as the first transition by our model. 79

6.5 Accurate detection of the single electron regime in the presence of a spuri-

ous line before the first transition (the red arrow is pointing at the spurious

line). 80

6.6 Example of a faulty detection due to a fragmented transition line in the

prediction mask. 81

7.1 Schematic of a binary image containing the predicted transition lines in

white, showing the extraction of possible geometric features which holds

relevant physics information. In blue we have the separation distance be-

tween transition lines which can be mapped to a voltage value ∆V , and

in yellow we show the extraction of the of gate voltage Vfirst transition (on

the x-axis) corresponding to the first transition line. The numbers denote

how many charged particles each region would trap. 87

A.1 Schematic showing the difference between the regular and separable convo-

lution block which is implemented in the MobileNet architecture (Adapted

from [98]). 92

ix

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

A.2 Training and evaluation metrics for the segmentation model. From left-to-

right, top row: (a) Loss, (b) Mean IoU. Middle row: (c) Dice coefficient,

(d) Pixel Accuracy. Bottom row: (e) Precision, (f) Recall. 95

B.1 Additional successful inference examples (part A). Each panel shows the

original stability diagram, the hand-labeled ground-truth mask, and the

model prediction (legend as in Figure 6.1). 98

B.2 Additional successful inference examples (part B). 99

x

List of Tables

2.1 Examples of two-level systems used to realize qubits 12

3.1 Classical charge-tuning methods . 39

3.2 ML-based charge-tuning methods . 40

4.1 Hierarchical breakdown of CSD counts by mask, polarity, batch, wafer,

and design . 47

6.1 Per-device design aggregate success of detecting the single charge regime 73

6.2 Per-fold single charge detection success obtained from 5-fold group cross

validation. 75

6.3 Summary of common failure modes observed in our stability diagrams and

associated causes. 75

A.1 Fixed hyperparameters used for all folds. 91

B.1 Inference Summary per Design and per Fold. For each device and

fold we report the ratio of the number of diagrams with successful single

charge detection to the total number of diagrams, followed by the percent-

age value. 97

xi

Abbreviations

2DEG Two-Dimensional Electron Gas. 14

2DHG Two-Dimensional Hole Gas. 14

AI Artificial Intelligence. 22, 24, 43

ANN Artificial Neural Network. 22, 26–28

BOX Buried Oxide. 16

CMOS Complementary Metal–Oxide–Semiconductor. 14, 16

CNN Convolutional Neural Network. i, 22, 24, 26, 28, 37, 39–44, 84, 88, 89

CSD Charge Stability Diagram. i, vii, 11, 24–26, 38–43, 46–49, 51–53, 55–57, 61, 64–66,

69, 71, 72, 74–80, 82, 84–86, 89, 96

CV Computer Vision. 22, 24, 28

CWP Cryogenic Wafer Prober. 46

DL Deep Learning. 22, 24, 28

FD-SOI Fully Depleted Silicon on Insulator. 14, 16

FinFET Fin Field Effect Transistor. 14

GPU Graphics Processing Unit. 42, 60, 61, 63, 84

IoU Intersection over Union. 32, 94

ML Machine Learning. i, iii, 9, 10, 22, 24–26, 34, 36, 37, 40, 41, 43, 44, 46, 47, 49,

53–55, 57, 68, 69, 76, 84–86, 88, 89

MOS Metal–Oxide–Semiconductor. 14

xii

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

MOSFET Metal–Oxide–Semiconductor Field Effect Transistor. 14

NN Neural Network. 28

QD Quantum Dot. i–iii, v, 7–23, 34–40, 43, 44, 46, 50, 66, 67, 75, 85, 87–90

QEC Quantum Error Correction. 4, 6

QPC Quantum Point Contact. 21

SEM Scanning Electron Microscope. 16

SET Single Electron Transistor. vi, 21, 22, 46, 75, 86

SNR Signal to Noise Ratio. 46, 71, 75, 76

xiii

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

xiv

Chapter 1

Introduction

The Historical Origins of Quantum Mechanics

The advent of quantum mechanics in the early 20th century constituted a fundamen-

tal paradigm shift in physics, arising from the inability of classical theories to describe

phenomena at the atomic and subatomic scales. The inception of the ideas that evolved

to form what is now known as quantum mechanics can be traced back to the year 1900

when Max Planck hypothesized that energy is emitted and absorbed in discrete packets,

or quanta, in order to resolve the inconsistencies in the theory of black-body radiation [1].

This concept was further substantiated by Albert Einstein in 1905, who proposed that

light itself is quantized into particles called photons to explain the photoelectric effect

[2].

The subsequent development of the field led to a more complete, albeit counterin-

tuitive, model of physical reality. Niels Bohr’s 1913 model of the atom introduced the

quantization of electron energy levels, successfully explaining atomic spectral lines [3]. In

1924, Louis de Broglie extended this concept of quantization by postulating the wave-

particle duality of all matter [4].

The mid-1920s witnessed the formulation of a rigorous mathematical framework for

quantum theory. Werner Heisenberg’s matrix mechanics (1925) and Erwin Schrödinger’s

wave mechanics (1926) provided two equivalent formalisms for describing the dynamics

of quantum systems [5, 6]. The Schrödinger equation, a central tenet of this framework,

governs the temporal evolution of a system’s wave function, Ψ:

iℏ
∂

∂t
Ψ(r, t) = ĤΨ(r, t)

The probabilistic nature of quantum phenomena was formalized by Max Born, who in-

terpreted the squared magnitude of the wave function, |Ψ|2, as the probability density

of a particle’s location. This inherent indeterminism was further solidified by Heisen-

1

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

berg’s uncertainty principle (1927), which posits a fundamental limit to the precision

with which complementary observables, such as position (x) and momentum (p), can be

simultaneously known (∆x∆p g ℏ/2) [7].

The First and Second Quantum Revolutions

These developments in quantum mechanics enabled us to understand the periodic table,

chemical interactions, and electronic wavefunctions, which spurred the first quantum

revolution that led to the development of technologies like the transistor, the laser, and

magnetic resonance imaging (MRI), among others. Transistors in particular hold special

importance as they are the main building blocks of digital classical computers, upon

which the digital information age was built.

We are currently in the era of the second quantum revolution. This phase is dis-

tinguished by the ability to precisely control and manipulate individual quantum systems

[8]. Advances in experimental physics now permit the isolation, initialization, manipula-

tion, and measurement of single atoms, ions, photons, and electrons. This high degree of

control is the critical enabler for the development of quantum computers, secure quantum

communication networks, and ultra-sensitive quantum sensors.

Whereas the first revolution leveraged quantum theory to explain existing natural

phenomena—revealing why elements behave as they do but offering little means to al-

ter them—the second revolution turns us from observers into architects of the quantum

realm. We no longer merely understand the periodic table; we engineer entirely new “arti-

ficial atoms” (quantum dots, excitons) with tailor-made optical and electronic properties,

unlocking novel capabilities in computation, metrology, and beyond.

In essence, the transition from understanding to engineering marks the boundary

between science and technology. The work presented in this thesis—centered on the

precise control of individual spin qubits—contributes directly to this field of quantum

engineering and puts us right at the heart of the second quantum revolution, helping

to transform the counterintuitive rules of quantum mechanics into practical tools for

next-generation devices.

The Limits of Classical Computation

The progress of classical computation has been successfully described for over five decades

by Moore’s Law, an empirical observation stating that the density of transistors on an

integrated circuit doubles approximately every two years [9]. This exponential scaling

has been the primary driver of the digital age. However, the continuation of this trend is

now impeded by fundamental physical limitations. As transistor dimensions approach the

2

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

atomic scale, quantum mechanical effects, primarily quantum tunneling, lead to signifi-

cant current leakage and compromise device reliability. Concurrently, the power density

and associated thermal dissipation present challenges to further miniaturization.

Beyond these engineering barriers, a more profound limitation of classical computers

exists. There is a class of computational problems for which the required resources (time

or memory) scale exponentially with the size of the problem input. Such problems are

considered intractable for any classical machine, regardless of its scale or speed. Examples

include the accurate simulation of complex quantum systems and the factorization of

large integers. The impending cessation of Moore’s Law, combined with the existence of

these classically intractable problems, creates a compelling imperative to develop novel

computing paradigms. Quantum computing has emerged as the most promising candidate

to transcend these limitations.

Principles of Quantum Computing and Information

Science

Before we explain how a quantum computer works, let us delve into how classical com-

puters function. Classical digital computers represent information in bits, each taking

one of two definite values, 0 or 1. Bits are physically realized by voltage levels in tran-

sistors, charge on capacitors, magnetization in magnetic media, or light pulses in optical

fibers. Classical logic gates perform deterministic Boolean operations on bits to execute

algorithms. In an ideal, noiseless device, the output is a fully predictable function of

the input. However, physical bits are not perfectly reliable, transistor switching errors

(from thermal noise and manufacturing variability) and charge leakage introduce nonzero

bit-flip probabilities (which is when a bit is flipped from 0 to 1 or from 1 to 0). To miti-

gate this, classical systems employ error-detection and correction schemes to ensure that

logical bits remain faithful over long computations.

In a quantum computer, the fundamental information carrying unit is the quantum

bit or qubit, defined on the computational basis states |0ð and |1ð. Unlike a classical bit,

a qubit can exist in an arbitrary linear combination

|Èð = ³|0ð + ´|1ð,

where ³ and ´ are complex coefficients known as probability amplitudes, constrained by

the normalization condition |³|2 + |´|2 = 1. Upon measurement, the state |Èð collapses to

one of the two basis states therefore destroying the original superposition. The probability

of obtaining |0ð is |³|2 and the probability of obtaining |1ð is |´|2.
Similar to classical computers, quantum computers are also affected by noise which

3

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

makes it harder to have a fully reliable system. Therefore, inspired by its classical counter-

part, Quantum Error Correction (QEC) was developed in order to mitigate these errors.

We will discuss QEC in more details in subsequent sections.

Quantum Advantage

The primary objective in the field of quantum computing is to demonstrate quantum

advantage (or quantum supremacy), a point at which a programmable quantum

device can solve a problem of practical interest that is intractable for the most power-

ful classical supercomputers [10]. The power of quantum computing derives from three

uniquely quantum phenomena:

Superposition A qubit can occupy both basis states |0ð and |1ð simultaneously, allow-

ing an N -qubit register to represent 2N states. Therefore, adding a single qubit doubles

the size of the accessible state space, providing an exponential scaling of the computa-

tional state space. In contrast, a classical computer has to double the number of classical

bits to double its computing power. This exponential scaling underpins the potential

for quantum algorithms to explore many computational paths in parallel and achieve

speedups beyond classical means.

Entanglement Qubits can be correlated in such a way that the state of one instantly

influences the state of another even when separated by large distances. Entanglement

enables nonlocal correlations that are essential for protocols like quantum teleportation

and superdense coding, and it also underlies the performance gains in many quantum

algorithms.

Measurement The act of measuring a quantum system projects the superposition of

states into a definite outcome, which is known as the collapse of the wavefunction. This

collapse both enables readout of qubit values providing direct access to quantum informa-

tion, and supplies intrinsically random outcomes that can be used for secure randomness

generation and probabilistic sampling in quantum algorithms.

Together, superposition, entanglement, and measurement constitute the foundational

resources of Quantum Information Science, the field dedicated to understanding and lever-

aging quantum-mechanical principles for the acquisition, processing, and transmission of

information.

Beyond the information-theoretic phenomena, practical quantum systems rely on

quantum tunneling to operate. Quantum tunneling is the phenomenon whereby a

particle has a finite probability to traverse a classically forbidden potential barrier, due

4

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

to the nonzero amplitude of its wavefunction “leaking” through the barrier. Tunneling

a purely quantum effect, and it form the basis of the physical realization of our specific

qubit technology.

Problem Classes Demonstrating Quantum Advantage

It is critical to note that quantum computers are not envisioned as universal replacements

for classical computers. Rather, they are specialized accelerators designed to tackle a

specific subset of computationally hard problems. Moreover, ongoing advances in classical

algorithms are steadily narrowing the quantum advantage gap, making many tasks once

thought to require quantum speedups increasingly tractable on classical machines.

Here, we present specific classes of problems whose structure maps efficiently onto

quantum mechanical principles which make them key areas where quantum computers

are expected to provide a significant advantage:

• Quantum Simulation: As first proposed by Feynman, quantum computers are

naturally suited to simulating other quantum systems [11]. This capability is ex-

pected to revolutionize materials science, quantum chemistry, and drug discovery,

where the exponential complexity of many-body quantum systems renders them

classically intractable [12–14].

• Cryptography: In 1994, Peter Shor developed a quantum algorithm capable of

factoring large integers into their primes with a complexity that scales polyno-

mially with the input size, an exponential speedup over the best-known classical

algorithms [15]. The security of widely used encryption systems, such as RSA [16],

is based on the classical intractability of this problem. The field of communication

also falls under cryptography with potential applications that leverages quantum

entanglement to transmit secure information [17, 18].

• Search and Optimization: Grover’s algorithm provides a quadratic speedup for

searching unstructured databases [19]. While less dramatic than the exponential

speedup of Shor’s algorithm, this can be applied to a broad range of optimization

and search problems.

Quantum Error Correction and the Pursuit of Fault

Tolerance

A major obstacle to building large-scale quantum computers is the inherent fragility of

quantum states. This fragility stems from the fundamental difference between classical

5

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

bits and qubits. A classical bit in a digital computer is represented by a transistor that

operates in one of two distinct, stable states, "off" (0) or "on" (1). The transistor acts as

a binary switch, and these states are separated by a large energy barrier, making them

very robust against noise and interference. Errors, such as a bit spontaneously flipping,

are extremely rare.

In contrast, a qubit is an analog object, its state is a continuous superposition of |0ð
and |1ð. Qubits are extremely sensitive to environmental interactions, a process known

as decoherence, which corrupts the quantum information encoded in the amplitudes

and relative phases of superposed and entangled states. This susceptibility leads to high

error rates in quantum computations.

To overcome this, the theory of QEC was developed [20]. The fundamental principle

of QEC is to create redundancy by encoding the state of a single "logical qubit" into a

larger number of "physical qubits." However, the overhead required for QEC is substantial

and presents a big engineering challenge. Current estimates suggest that creating a single,

fully error-corrected logical qubit could require anywhere from 103 to 104 physical qubits

[21]. This high ratio is the primary reason that scalability remains a critical challenge.

The ultimate goal is to build a fault-tolerant quantum computer, a machine that

can perform arbitrarily long computations by actively correcting errors as they happen.

Based on current error rates and QEC overhead, it is widely estimated that a truly

fault-tolerant quantum computer will require at least one million physical qubits [22]

[23] [21]. To give an idea behind these numbers, we can look at the error rates in qubit

technologies and compare it with the error rates of classical computing. Depending on

the used technology and the setup, a qubit’s error rate is around 10−2 to 10−3 per gate

operation. In contrast, classical computing has error rates of around 10−15 per operation

on a bit before being error corrected, this rate drops to virtually zero after error correction

code has been implemented. The main reason for this low number of errors in classical

computing is that they benefit from both advanced fabrication techniques and good

error correction code. Given that quantum computers operate on a much narrower error

margin, we would need advances in both of these avenues in order to achieve a fault

tolerant quantum system.

Different Platforms for Qubit Realization

It is important to note that there is no single "correct" platform to encode quantum

information or create qubits. It would most likely be the case that different physical

platforms would be used for different applications ranging from quantum computing,

communication, sensing, etc. Similar to how classical computing make use of different

technologies to manipulate classical bits, depending on the objective. For instance, for

logic and processing we use transistors to encode bits as voltages levels (high and low),

6

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Figure 1.1: Different physical implementations of a qubit: advantages and disadvantages,
and most prominent companies and research lab working on each type [29].

and we use capacitors to store short-term data in DRAM memory (charged or discharged),

and magnetic tapes for long-term storage, where bits are recorded by locally magnetizing

regions of a ferromagnetic material with the orientation of each domain (north up vs

down). And data transmission is performed through pulses of current over wires or

photons in fiber optics representing bits by the on and off of light pulses.

All of these methods are interchangeable within a single system—data might be

fetched from a magnetic disk, held briefly in DRAM, processed in the CPU, and then sent

over an Ethernet cable. Each substrate uses the same binary logic (0 and 1) but exploits

different physical phenomena—electrostatic charge, voltage levels, magnetism, or pho-

tons—to store, manipulate, or transmit bits. Similarly for quantum bits, several physical

systems are being actively researched as potential platforms, like superconductive [24],

photonic [25], trapped ions [26], and semiconductor QD [27, 28]. We refer to Fig. 1.1

for a non-exhaustive list of the most popular platforms, comparing their advantages and

disadvantages.

7

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Figure 1.2: Simplified 3D depiction of a silicon-on-insulator nanowire field-effect transistor
featuring dual-gate structures. (Adapted from [34])

Silicon Gate-Based Quantum-Dot as Qubits

We will later discuss in detail he different platforms to physically realize qubits, but at

this stage we are interested in presenting the motivation behind the specific platform that

we are using in this work to build our qubits. In this thesis, we focus on semiconductor

QDs [30–33], more specifically we will be working with QDs defined in Si-MOS nanowire

similar to the one in Fig. 1.2. These devices offer multiple advantages over the other

structures and materials used to realize a qubit, among these advantages we list:

• 300 mm fab compatible: Leverage mature silicon foundry processes [34–37].

• High density: High integration density, which facilitates scalability to larger ar-

rays of qubits. Nanoscale lithography supports large 2D qubit arrays.

• Long coherence: We can isotopically purify Si to reach close to zero net nuclear

spin, which is normally the main cause of disturbance to the electron spin state,

therefore achieving longer electron spin lifetime and better resistance to decoher-

ence. [38–40]

• Moderate cryogenics: Silicon-based devices can operate in the range of 1K,

which is considerably better than the near absolute zero mK range required for

superconductive qubits [41, 42].

• Short dot–gate separation: The minimal distance between the QD and gate

enables local charge-state readout via gate reflectometry.

• High gate fidelities [43–47]

8

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

The Tuning Bottleneck

In order to have a qubit-based QD, we need to precisely manipulate the structure to trap

a specific number of charged particles in the dot in order to use it as a qubit and encode

quantum information. This is referred to as the charge tuning phase and it is one of

the many steps that take place during the tuning process (see Sec. 3.1). Charge tuning

consist of applying specific voltages on the metallic gates near the dot in order to trap a

well-known number of charges inside (e.g., one electron trapped in the QD).

This step is normally done manually because it is hard to automate due to the vast

voltage parameter space, which is device dependent and noisy. This is one of the main

challenges preventing us from scaling to multi-qubit QD-based quantum computer, be-

cause as we scale to multiple qubits (which is required to achieve a useful quantum

computer), the parameter space grows exponentially with the size of the QD array and

becomes impossible to tune manually. This becomes even more complicated when we con-

sider process variations that are inherent in semiconductor manufacturing which makes

it more difficult to tune such device with physics-based models or hard-coded techniques.

The main goal of this thesis is to provide a solution to the charge tuning bottleneck in

electrostatically defined QDs that is robust to noise, process variations and can generalize

to different device architectures. Our solution is based on ML to automate this process.

ML shines in problems that have complex, high-dimensional parameter spaces, noisy and

heterogeneous measurements, and no tractable analytical model, these are conditions

under which data-driven approaches can learn the underlying nonlinear mapping and

robustly generalize across devices..

In this work, we develop a ML-driven charge tuning framework that (1) learns the

mapping from gate voltages to charge occupancy, (2) suggests gate voltages for tuning

the device to the desired charge occupancy, and (3) adapts to device noise and fabrication

variability. By automating charge tuning, we aim to reduce calibration times and lay the

groundwork for automated multi-qubit control in large-scale Si-MOS quantum devices.

Thesis Outline

In this introduction, we have laid down the motivation behind quantum computing and

how it can solve some of the limitations of classical computing. We also provided the

context behind why Si-MOS QD based quantum computers are a good candidate and

touched upon one of the main bottlenecks of scaling such a system, which is the tuning

process.

In Chapter 2 we build the theoretical foundation of quantum computation, qubit im-

plementations, and semiconductor QDs, their structure, realization, and related physics,

along with a theoretical foundation behind ML. Then, in Chapter 3, we formulate the

9

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

QD tuning problem, perform a literature review discussing the state of the art methods

currently being used, and discuss how ML can be used as a tool for automating this

process. We explain the methodology behind acquiring, labeling, and processing the nec-

essary data needed to follow up with our ML model training in Chapter 4. Then, in

Chapter 5 we delve into our ML pipeline and architecture, explaining what kind of model

we used and the motivation behind our choices. Following that, we present the results of

this work in Chapter 6, followed by a discussion of future work in Chapter 9 ??. Finally,

in Chapter 8 we summarize findings, discuss limitations and perspective, and outlines

potential extensions to multi-qubit architectures.

10

Chapter 2

State of the Art

In the previous chapter, we touched briefly on what quantum computing is, the motiva-

tion behind its development, and its advantages over classical computers. We also briefly

touched on that benefits of using Si-MOS as a qubit realization platform and discussed

its scaling issue and the tuning bottleneck. In this chapter, we lay the theoretical foun-

dation behind quantum computing, starting from a dive into the different qubit physical

realization, then we focus on QDs, our specific implementation of a qubit. We discuss the

physics behind them, quantum confinement, Coulomb blockade, CSDs and the different

ways to realize a qubit through QD. Finally, we give a foundational overview of machine

learning and its main subtopics.

2.1 Fundamentals of Quantum Computing

2.1.1 The Challenges of Quantum Computers

In 2000, David P.DiVincenzo proposed five necessary conditions for quantum computation

[48]:

a. A scalable system with well characterized qubits.

b. The ability to initialize the system in a well defined qubit state.

c. Long coherence time with respect to gate duration.

d. A universal set of quantum gates.

e. The ability to measure individual qubits.

Numerous implementations has been developed that have the potential to satisfy

DiVincenzo criteria. In the next section we explain how we can form a qubit structure,

then we discuss the different platforms used for qubit implementation.

11

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

2.1.2 Physical Platforms to Realize a Qubit

A qubit can be physically realized through any two-level quantum mechanical system

where each level would represent one of the two basis states |0ð and |1ð. Some of the

most common two-level systems are:

Table 2.1: Examples of two-level systems used to realize qubits

Physical System |0ð |1ð Qubit Encoding

Electron (spin) |↑ð |³ð Spin-up vs. spin-down of an elec-
tron.

Electron (charge) |0ðdot |1ðdot Empty vs. occupied state of an
electron quantum dot.

Photon (polarization) |Hð |V ð Horizontal vs. vertical polariza-
tion of a single photon.

Photon (number) |0ð |1ð Vacuum vs. single-photon Fock
states in an optical mode.

Ion (electronic) |gð |eð Ground vs. metastable excited
electronic states of a trapped ion.

Nucleus (spin) |mI = −1

2
ð |mI = +1

2
ð Two magnetic sublevels of a nu-

clear spin in a strong field.

2.2 Quantum Dots

Here we will lay the foundation of QDs, what they are, the different ways they can be

realized, and how they can be used for qubit implementation.

2.2.1 Quantum Confinement

In a bulk semiconductor, electrons and holes move freely in three dimensions and form

continuous energy bands. However, if one or more dimensions of motion are restricted

to length scales on the order of the carriers’ Fermi wavelength, the spectrum becomes

quantized, yielding discrete energy levels. We distinguish three confinement geometries:

• Quantum well (1D confinement): Carriers are free to move within a plane but

are confined in the perpendicular direction.

• Quantum wire (2D confinement): Motion is allowed only along the wire or

nanotube axis, and confined in the two transverse directions.

• Quantum dot (3D confinement): Complete confinement in all three spatial

dimensions. Creates a “particle-in-a-box” system with fully discrete energy levels,

analogous to the bound states of an atom.

12

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Figure 2.1: Schematic representation of quantum confinement and the discretization of
energy spectra as the dimension gets reduced. (Taken from [49])

2.2.2 Quantum Dot Realizations

A quantum dot is any structure whose potential confines carriers in all three dimensions,

producing discrete energy levels. Two broad approaches exist:

Structural QDs Built directly into the material or heterostructure, where the compo-

sition or strain creates a built-in confinement potential:

• Self-assembled nanocrystals: InAs islands via Stranski–Krastanov growth

[50].

• Single-molecule junctions: Molecules bridging electrodes, acting as Coulomb

islands [51].

• Carbon nanotube QDs: Localized defects or chemical functionalization

define 3D confinement along a nanotube axis [52].

Electrostatic QDs Defined by patterned gate electrodes above a or , where applied

voltages define potential wells and tunnel barriers:

• Vertically defined heterostructures: Layered quantum wells and barriers

create dots in the growth direction [53].

• Laterally defined QDs: By tuning the gate electrodes we can form barriers

and islands to confine charges [54].

13

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

In this thesis, we work with laterally defined electrostatic QDs formed in a silicon

nanowire, where electrostatic gates carve out a single-electron island suitable for spin-

qubit operation.

2.2.3 Electrostatically Defined Semiconductor Quantum Dots

There are multiple ways to fabricate laterally defined electrostatic QDs, spanning multiple

semiconductor materials and different structures. Listing them all is beyond the scope

of this work, therefore in this section we will give a quick overview and then dive deeper

into our specific implementation of the silicon nanowire.

Among the different structures to fabricate gate-based semiconductor QDs we list four

main approaches:

• Heterostructure

• Metal–Oxide–Semiconductor (MOS)

• Nanowire and Fin Field Effect Transistor (FinFET)

• Dopant donor

We refer to Fig. 2.2 for a representation of these difference device types realized

through Silicon. We would also like to note that there are other semiconductor materials

being used to fabricate QDs beside silicon, among the most researched are GaAs and

Ge which mainly relies on forming QD in the Two-Dimensional Electron Gas (2DEG) or

Two-Dimensional Hole Gas (2DHG) formed in a heterostructure of stacked materials.

The specific devices we will be working with throughout our thesis are silicon nanowire

Complementary Metal–Oxide–Semiconductor (CMOS) transistors that were fabricated at

CEA-Leti clean rooms, on 300 mm Fully Depleted Silicon on Insulator (FD-SOI) wafers.

These devices all have the same structure consisting of an undoped silicon channel etched

on top of an oxide. The nanowire is connected to a source and drain contacts from both

ends. It is also covered with patterned gate electrodes which are used to modulate the

electron density within the nanowire. We show a schematic and an electron microscope

image of one of our devices in Fig. 2.3a and 2.3b respectively. These devices are different

from the typical Metal–Oxide–Semiconductor Field Effect Transistor (MOSFET) in the

sense that they do not have the same number and geometry of gates.

The nanowire is a 1D structure, therefore it confines electrons and holes in the two

directions perpendicular to it while allowing charges to move freely along the wire. In

order to form a QD in the channel we need to confine charged particles along one addi-

tional dimension, since QDs are a 0D structures. We achieve this by applying voltages

on the gates patterned on top of the nanowire, therefore creating a charge island which

is what we call an electrostatic QD.

14

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Figure 2.2: Schematic of silicon-based structures for the realization of QDs. First column:
Schematic of the structure. Second column: Confinement potential of the electrons in the
material. Third column: Schematic of the structure representing the source, drain, and
gate electrodes. Fourth column: Potential well electrostatically coupled to gate electrodes
that can change the electrochemical potential of the electron relative to the source and
drain which are tunnel-coupled to the well. (Reproduced from [55])

15

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

(a) (b)

Figure 2.3: Silicon nanowire CMOS. (a) Schematic representation of a silicon nanowire
(red) on top of an oxide (green) with a gate electrode patterned on the silicon channel
(gray). (b) Scanning Electron Microscope (SEM) top-view image of a silicon nanowire
CMOS transistor, etched on top of a Buried Oxide (BOX) in a FD-SOI structure. Metallic
split-gates are patterned on top of the nanowire which is connected to a source and a
drain having the role of electron reservoirs (Taken from [56]).

Different gates have different roles in the manipulation of the QDs and the charge

transport between them. Plunger gates are responsible for forming the dots and altering

their electrochemical potential. These gates can raise or lower the energy occupation

levels of the charge in the potential well of the QD with respect to that of the source and

drain. Now there is another type of gates called tunnel barrier which gives us the ability

to change the size of the potential barriers between adjacent QDs and also between a

dot and the source or the drain. By changing the width of the potential barrier through

this gate, we manipulate the probability of having an electron (or hole) tunnel between

dots. We can think of plunger gates as giving us the control over how many charged

particles we want to trap in each dot, and the tunnel barrier gates letting us manipulate

the charge transport between different dots. We visualize this in Fig. 2.4 where we show

the potential landscape of a single QD formed by applying a voltage VG on the plunger

gate P , and we show the two barriers B which are manipulated by the barrier gates.

In summary, our gate-based silicon nanowire QD device consists of the following main

components:

• Silicon nanowire: A one dimensional channel of silicon confining charges along

the wire.

• Plunger Gates: Metallic electrodes deposited on the surface of the channel which

controls the electron potential landscape, forming the QDs.

• Tunnel Barriers Gates: Metallic electrodes that can tune the tunneling barrier

between dots and allows for coupling adjacent QDs or dot to reservoir.

16

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Figure 2.4: Tunable single QD potential profile which is formed by applying a bias voltage
VSD between source and drain, and a gate voltage VG on the plunger gate denoted by P .
The QD is formed between two barriers denoted B which can be tuned by changing the
voltage on the barrier gates which affects the tunneling rate between the source/drain
and the dot.

2.3 Quantum Dots for Qubit Realization

In the preceding chapters, we introduced the concept of a qubit, reviewed the basic

elements of quantum computation, and surveyed various physical platforms for qubit

implementation. We then examined quantum confinement and explored a variety of

quantum-dot (QD) structures and material stacks capable of three dimensional carrier

confinement. In this section, we merge these ideas to focus on the use of QDs as hosts

for spin-based qubits, which is the central theme of this thesis.

Overview of QD-Based Qubit Modalities

As discussed in section 2.1.2 any two-level quantum system that can be initialized, con-

trolled and readout, can be used to realize a qubit. In essence this means any system that

can encode the two basis states |0ð and |1ð. Therefore QDs can be engineered to support

a variety of qubit manipulation and encodings. This idea of using QDs for quantum

computing was first proposed by Loss and DiVincenzo in 1998 [27]. Below we summarize

the most widely studied modalities:

• Charge Qubit Two adjacent dots share a single electron. The states |0ð and |1ð
correspond to the electron localized in the left or right dot, respectively.

• Single-Spin Qubit (Loss-DiVincenzo qubit) [57] A single electron trapped in

a QD has two spin states, up |↑ð and down |³ð, split by a Zeeman energy in an

external magnetic field. These states can be used to encode the two logical states

of a qubit .

17

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

• Singlet–Triplet Qubit Two electrons in a double-dot occupy either the singlet

|Sð = (|↑³ð − |³↑ð)/
√

2 or triplet |T0ð = (|↑³ð + |³↑ð)/
√

2 state.

• Triple-Dot (Exchange-Only Qubit) [58] Three electrons distributed over three

dots.

• Hybrid Qubit [59] Combines the charge-like fast gating of a double dot with a

third electron spin to create a three-level system, where two levels form the qubit.

Regardless of which method we choose it is essential to have control of the charge

occupancy of each QD, which means being able to change the gate voltages in order to

have a desired number of charges (electrons or holes) in the QDs. Generally speaking the

number of charges we would like to trap in each dot will be between 1 to 3, this gives us

the ability to manipulate individual charges and encode quantum information through

them.

2.4 Coulomb Blockade in QD

We mentioned before that the energy spectrum of a QD becomes discrete because charge

carriers are confined to a region whose size is comparable to their Fermi wavelength. This

confinement gives rise to quantized orbital levels En, with spacing

∆E = En+1 − En,

which grows as the dot shrinks in size.

Charging Energy

Adding an additional electron (or hole) to the QD would cause Coulomb repulsion which

is a classical electrostatic effect that take place between charged particles. Therefore the

addition of a charge would require extra energy to overcome this repulsion between the

charges in the dot and the one we want to add. And this energy cost is referred to as the

charging energy EC .

We can model the QD as one plate of a capacitor (capacitance C), the other plate

being an electron reservoir. If V is the potential difference between them, the charge in

the dot is

Q = C V

and the electrostatic energy stored in it is:

E =
1

2

Q2

C
=

1

2

(Ne)2

C
,

18

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

where N is the number of electrons already in the dot and e is the elementary charge. The

extra energy required to add one more electron (i.e. the charging energy) is the difference

EC = E(N + 1) − E(N) =
(N + 1)2e2 −N2e2

2C
=

2Ne2 + e2

2C
≈ e2

C
.

Thus, to first order the charging energy is

EC =
e2

C
.

Note that the capacitance C of the QD depends on the spatial extent of the charges’

wavefunctions and its coupling to the environment.

Addition Energy

Now the total energy required to add a charged particle to a QD (which is the equivalent of

going from N to N+1 particles in the dot), is nothing more than the sum of the charging

energy of the dot, and the orbital energy spacing ∆E = En+1 − En, between the two

quantum energy levels involved in the electronic transition. This energy is referred to as

the addition energy:

Eadd = EC + ∆E

Coulomb Blockade

The charging energy EC and orbital level spacing ∆E set the scale for electron transport

through a QD. If we apply a voltage bias between source and drain

VSD = VS − VD,

a potential difference will be created which allows charge carriers to flow. If an energy

level of the dot falls between this created window bias, then an electron will tunnel from

the source reservoir to the dot and then to the drain and therefore electron transport

is allowed. Otherwise, electron tunneling is suppressed and we have what is known as

Coulomb blockade. In order to get out of this blockade, we can alter the ladder of

electrochemical potentials of the dot in which we can raise it or lower it by changing the

voltage of the plunger gate of that dot VG. Therefore by setting an energy level of the

dot between the potential of the source and the drain

µS g µN g µD

19

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Figure 2.5: Schematics of the electrochemical potential levels of a QD in the low bias
regime (a and b), and the resulting one-dimensional trace of Coulomb peaks and blockades
(c). For an applied bias voltage VSD, a small window opens to allow charge flow between
source and drain (a). By changing the voltage VG of the plunger gate of the dot, we can
manipulate the electrochemical potential of that dot, and by positioning an energy level
µN of the dot between that of the source and drain (µS and µD respectively), current will
flow from source to drain though the dot and therefore single-electron tunneling will take
place between N − 1 and N (b) which can be visualized as Coulomb peaks in the current
vs gate voltages plot (c). When this electrochemical energy of the dot µN resides out of
the bias window, no current will flow from source to drain and the dot is in the Coulomb
blockade regime where the number of electrons is fixed at N−1. The tunnel rate between
the dot and the reservoirs (ΓS and ΓD) dictate the magnitude of the current. (Adapted
from [28])

we lift the blockade and we allow an electron to tunnel through (see Fig. 2.5). Here

µN = E(N) − E(N − 1) is the N electrochemical potential of the dot. Once this

electron has reached the drain and the dot is empty again, another electron will tunnel

through.

Coulomb Peaks

By sweeping the gate voltage VG and measuring the current flowing through the dot IDOT

we get a trace of equally spaced peaks which are known as the Coulomb peaks, that

are separated by regions of vanishing current (the blockade valleys). These peaks are

caused by having a dot energy level fall in the bias window between source and drain,

as discussed before. The distance separating these peaks is the addition energy Eadd

and the width of the peaks depends on the applied bias voltage VSD. Also note that the

electrochemical potentials of successive energy levels are spaced by the addition energy

Eadd(N) (Fig. 2.5).

20

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

These one-dimensional Coulomb traces form the basis for more sophisticated two-

dimensional charge stability diagrams, where the current is mapped against two gate

voltages. Such diagrams reveal the full regions of charge occupations in single and multiple

QDs, and will be discussed in section 2.6.

2.5 Readout Method: Single Electron Transistor

Readout of a QD spin qubit relies on converting the spin or charge state of the dot into

a measurable electrical signal. In practice, this is most commonly achieved via a nearby

charge sensor, either a SET or a Quantum Point Contact (QPC), whose conductance

depends on the occupation of the dot [60–62].

(a) (b)

Figure 2.6: Readout Method for the Silicon nanowire CMOS. (a) Schematic
representation of a silicon nanowire with the top gates being used as a readout SETs
for sensing, and the bottom gates to form few-charge QD to host qubits. (b) Similar
device under operation, where we can see the few-charge being formed under the gate
with voltage VQD and many-charge SET formed under the gate with bias VSET .

In the devices we use which were fabricated at CEA-Leti, we employ a QD that

functions as an SET as our sensing method. The general idea behind an SET charge sensor

is to detect a change in signal due to changes in the nearby charge configuration. Our

SET consist of a charge island (electrostatically defined QD) that is capacitevly coupled

to the QD under test (the one used to form qubits). When a charged particle tunnels

into our dot, the electrostatic potential of the SET shifts due to this change of charge

configuration, and we detect this shift through current measurement, therefore translating

a change in charge occupancy of our target dot into measurable current through our SET.

As we show in Fig. 2.6a we consider one array of gates (bottom) having a role of

forming QDs in the few-charge regime which are used to form qubits, and a second array

21

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

of gates (top) used to form many-charge QDs which operate as SETs and are used as our

sensing mechanism. We can visualize this structure under operation in Fig. 2.6b where we

have two parallel gates to form a single QD and an SET facing it, as a readout method.

2.6 Charge Stability Diagram

A charge stability diagram is a 2D current map as a function of gate voltages that gives

information about the charge occupancy of each QD. It can tell us precisely what voltage

values we need to apply to the gates in order to add or remove a charged particle from

a dot. We get such a diagram by sweeping the plunger gates voltages while measuring

the current. Our setup for acquiring stability diagrams is similar to the one in Fig. 2.6b.

First we configure a QD in the many-electron regime which would act as an SET. This is

the readout method we employ as discussed in Sec. 2.5. Another QD is configured in the

few-electron regime, down to a single electron. By sweeping the voltages on both gates

we get a 2D current map known as the charge stability diagram. In Fig. 2.7 we show an

example of a diagram we have measured, in which we can clearly see the Coulomb peaks

and the vertical charge transition lines. These transition lines delimit the different charge

regimes, therefore by locating them we can identify the charge occupancy of a dot.

2.7 Machine Learning

ML is a subfield of Artificial Intelligence (AI) focused on the development of algorithms

that enable computers to learn patterns and make decisions from data without being

explicitly programmed [63]. In this way, ML can be seen as a pathway to AI: every ML

system is an AI system, but not all AI systems employ ML techniques. Furthermore,

Deep Learning (DL) is a subfield of ML that uses multi-layer (i.e. “deep”) Artificial

Neural Networks (ANNs) to learn increasingly abstract representations of data [64]. By

stacking many layers of processing units, DL methods automatically discover features

at multiple levels of abstraction, reducing the need for manual feature engineering. As

shown in Figure 2.8, all DL techniques lie within the ML circle, reflecting that every DL

model is an ML model but with a particular focus on depth and representation learning.

Computer Vision (CV) is the field concerned with enabling machines to interpret and

understand visual information from images and video streams [65]. Traditional CV ap-

proaches leverage image processing, whereas modern CV increasingly adopts DL, notably

CNNs,to learn both low- and high-level visual features directly from pixel data. Broadly,

computer vision tasks can be grouped into these main categories:

• Image Classification: Assigning a label to an entire image.

• Object Detection: Localizing and classifying objects via bounding boxes.

22

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Figure 2.7: Charge Stability Diagram. A 2D current map of a QD where the x and y
axes represents the voltage sweep applied to the gates, and the color bar represents the
measured current value in nA at every point in the map. The numerals represent the
number of trapped electrons in the dot, separated by vertical charge transition lines. We
can also see the Coulomb oscillations as oblique peaks represented here by the current
color bar. The line between the single electron regime and the no charge regime in this
case look slightly different from the rest, it is what we refer to as stochastic transition
line and it is due to the tunneling rate of the electron between the dot and the reservoir
being higher than the sampling rate used for taking the measurement (see Sec. 4.2.1)

23

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

����������
���	����	��	

-�,&(�!��!�%�(�+
���#�*��#�
�#��)�)�

')���#�*��#�
�#��)�)�

�#�)�
�$# #)"
�#��)�)�

L!!3��!�%�(�+
:�"���$��=
K#���=
K#"1
�/D

I
)*
=�"�
)�=
K#"1
�/D

�#$���#)"
K#"1
�/�

rtpUas[ogbc\ct`
_ ��#
I=������$�"�
w

ePO#$"
N#"#$"�
w

^YTlidMilYivhThWQu

Figure 2.8: Venn diagram showing overlapping relationships between Artificial Intelli-
gence, Machine Learning, Deep Learning, and Computer Vision.

• Semantic Segmentation: Assigning a class label to each pixel with predefined

categories.

• Instance Segmentation: Distinguish individual object instances and their classes

at the pixel level.

• Panoptic Segmentation: Unified task combining semantic and instance segmen-

tation.

The specific problem addressed in this thesis which is detecting transition lines in

stability diagrams, is most naturally viewed as a form of semantic segmentation, where

each pixel of a CSD image is assigned to either a transition-line or the background. This

work resides at the intersection of CV and DL, harnessing the representation power of

CNNs for a structured segmentation task within the broader ML and AI framework.

2.7.1 Learning Paradigms

Different paradigms of learning specify how information is presented to the algorithm and

what feedback is available during training:

24

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Data Model Training Evaluation Inference

Figure 2.9: The main steps of supervised learning.

• Supervised Learning: Models are trained on labeled data to learn a mapping

f : X → Y by minimizing a loss between predicted outputs and true labels [66].

Applications include both regression and classification tasks:

– Regression: Predicting a continuous value.

– Classification: Predicting discrete class labels.

• Unsupervised Learning: The model is not provided any labeled data, therefore

it does not know what the true answer is and has to find meaningful patterns in

the unlabeled data by inferring its own rules. An example of unsupervised learning

is clustering.

• Semi-supervised learning: combines a small amount of labeled data with a large

amount of unlabeled data.

• Reinforcement Learning: Agents learn by interacting with an environment, re-

ceiving rewards or penalties. [67].

In this work, we use supervised learning on manually labeled transition lines in CSDs

(see Sec. 4.2) to predict if a pixel belongs to a transition line or to the background,

therefore it is a binary classification task. The complete supervised-learning pipeline

including data labeling, model construction, training, evaluation, and inference, can be

visualized in Fig. 2.9; each step is detailed in subsequent sections.

2.7.2 Data Types

ML models operate on different modalities of data, each requiring specific preprocessing

and representation techniques:

Numerical Data: Continuous real-valued features (e.g. pixel intensities, sensor read-

ings) often require scaling or normalization to facilitate optimization.

Categorical Data: Discrete labels or categories (e.g. class labels) must be encoded nu-

merically.

25

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Figure 2.10: Schematic of feedforward and error backpropagation processes for a single
neuron j. The neuron performs the computation in Eq. 2.1 and is connected to an input
layer which is an aggregation of input neurons x (in green), and a single output neuron
y (in blue) which is the prediction of the model (Adapted from [68])

Structured vs. Unstructured: Structured data (tables, time series) contrasts with

unstructured data (text, images), influencing model choice and feature extraction

pipelines.

In our specific task, we have numerical data which consist of raw current measurements

that form our stability diagrams, and we also have categorical data which consist of a

label given to the different type of lines that are visible in our CSDs as images (or 2D

pixel maps), therefore unstructured data (see Sec. 4.2.1).

2.7.3 What Is a Machine Learning Model

A machine learning model is a parameterized function that maps inputs to outputs. There

are different types of ML models, we will only focus on the fundamental ones used in this

work. In this section, we introduce ANNs, from single neurons to deep architectures, and

then discuss CNNs.

Artificial Neural Networks

ANNs are inspired by the biological brain, composed of interconnected neurons organized

in layers. Each neuron computes a weighted sum of inputs, adds a bias, and applies an

activation function, producing an output which is passed to other neurons.

Mathematically, each neuron computes

Y = Ã(
∑

i

wiXi + b), (2.1)

where wi are the weights, Xi are the inputs, b is the bias, and Ã is the activation

function. We visualize this step for a single neuron in Fig. 2.10

Activation functions introduce non-linearity into the model, enabling the network to

learn complex mappings. Common choices include:

26

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Figure 2.11: Schematic of the architecture of a multilayer ANN with error backpropaga-
tion, showing an input layer, two hidden layers, and an output layer. Each node represent
a neuron (Adapted from [68])

ReLU(x) = max(0, x),

Ãsigmoid(x) =
1

1 + e−x
,

Networks are typically arranged in an input layer (receiving raw features), one or more

hidden layers (learning intermediate representations), and an output layer (producing

task-specific predictions); when there are multiple hidden layers, the model is often called

a deep neural network

At the heart of neural networks is the feed forward process, where an input vector is

transformed through a series of layers formed by an aggregation of neurons (see Fig. 2.11):

• Input Layer: Receives raw data (e.g., pixel intensities from a charge stability

diagram).

• Hidden Layers: Each hidden layer comprises neurons that perform weighted sum-

mations of inputs followed by non-linear activation functions.

• Output Layer: Produces the final prediction (e.g., detection of a transition line

or classification of charge states).

The depth (number of layers) and width (neurons per layer) of a network controls its

capacity to approximate complex functions. Generally, a network that has at least two

hidden layers is referred to as deep neural network.

27

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Figure 2.12: A schematic representation of a simple CNN architecture showing the con-
volution layer, pooling layer, and the fully connected layer (Adapted from [69]).

Convolutional Neural Networks

There are multiple types of Neural Network (NN). Here we will focus on CNN which form

the backbone of DL-based approaches to CV (not considering newer architectures like

transformers). CNNs extend ANNs by exploiting the spatial structure of grid-organized

data (like images). A convolutional layer applies a set of small, learnable filters (kernels)

across the input to produce feature maps that detect local patterns. The kernel slides

over the input map and perform dot product operation (convolution) mathematically

defined as such:

F (i, j) = (I ∗K)(i, j) =
∑

m

∑

n

I(m,n) ·K(i−m, j − n),

where I represents the input image, K is the filter or kernel, F is the resulting feature

map, and the tuple (i, j) represent the pixel coordinates in a 2D map.

Following convolution, an activation function introduces nonlinearity. A pooling layer

then downsamples each feature map by aggregating values over non-overlapping windows.

Pooling reduces spatial resolution, lowers computational cost, and imparts translation

invariance.

Stacking multiple such blocks yields deep convolutional architectures capable of cap-

turing hierarchical patterns—from edges and textures in early layers to complex, task-specific

structures in deeper ones.

2.7.4 Training Process of a Neural Network

Training a neural network consists of iteratively tuning its parameters ¹ so that the

model’s predictions Ŷ = fθ(X) align with the true labels Y . At each step, a forward

pass computes Ŷ from a batch of inputs X, and evaluates the loss L(Ŷ , Y), a scalar

measure of prediction error, i.e. how far is the prediction from the actual true value.

28

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Next, backpropagation takes place, in which a backward pass efficiently computes

the gradient ∇θL of the loss with respect to each parameter [70]. These gradients indicate

the direction in parameter space that most rapidly decreases the loss. An optimizer,

such as stochastic gradient descent (SGD) or Adam [71], then updates ¹ by taking a small

step along this direction; the learning rate controls the size of this step and can be held

constant or adjusted over time via a scheduling strategy.

A major challenge in training is overfitting, wherein the model learns spurious pat-

terns specific to the training data and fails to generalize to new inputs. Regularization

methods help mitigate overfitting: for example, weight decay adds a penalty proportional

to the squared magnitude of parameters [72], encouraging simpler models, and dropout

randomly deactivates a fraction of neurons during each update, preventing co-adaptation

of features [73].

To further improve robustness, data augmentation applies random transformations,

such as rotations, flips, or noise injection to the input data, effectively enlarging the

training set and exposing the model to a wider variety of examples [74]. Throughout

training, one typically monitors both training and validation losses: if validation error

starts increasing while training error continues to decrease, this signals overfitting, and

one may invoke early stopping to halt training before performance degrades on unseen

data.

Together, these steps—forward pass, backward pass, parameter update, and the use of

regularization and augmentation—form the core workflow that enables neural networks

to learn effective, generalizable representations from data.

2.7.5 Transfer Learning and Fine-Tuning

Transfer learning is the act of fine tuning a pre-trained model on specific domain

data [75, 76]. A pre-trained model is a network whose been trained on a large, gen-

eral dataset, therefore its parameters has already been optimized and has learned rich,

reusable feature representation that capture low-level patterns (e.g. edges, textures) and

higher-level abstractions (e.g. object parts, semantic relations). Therefore one can use

such pre-trained models to transfer their learning to adapt these representations to new

tasks or domains. This is often useful when labeled data is scarce.

Two common strategies are generally used to achieve transfer learning: feature extrac-

tion and fine-tuning. In feature extraction, one freezes the pre-trained layers and trains

only a new, task-specific head (e.g. a classifier or regressor), thus treating the frozen net-

work as a fixed feature extractor. This reduces the number of trainable parameters and

the risk of overfitting.

In fine-tuning, one allows some or all of the pre-trained weights to continue updating

on the new data, typically using a smaller learning rate than for a randomly initialized

29

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

network. By selectively unfreezing higher layers (where task-specific concepts tend to

reside), one retains general features learned earlier while adapting the model’s semantic

understanding to the target domain.

Overall, pre-trained models and transfer learning enable rapid convergence, lower

data requirements, and often superior performance on downstream tasks, making them

essential tools in modern machine-learning workflows.

We employ transfer learning in this work, therefore our segmentation models benefit

from robust low-level feature representations while focusing training effort on domain-

specific transition-line characteristics.

2.7.6 Evaluation

Since our objective in this work is to accurately identify pixels belonging to transition lines

(see Chapters 4 and 5), this problem falls under semantic segmentation, and therefore we

focus here on classification-based evaluation metrics.

To assess segmentation quality, we compute both per-pixel classification metrics and

overlap measures specific to mask prediction. Let

TP = True Positive = pixels correctly predicted as line,

TN = True Negative = pixels correctly predicted as background,

FP = False Positive = pixels incorrectly predicted as line,

FN = False Negative = pixels incorrectly predicted as background.

Pixel Accuracy Overall accuracy measures the fraction of all pixels that are correctly

classified (either line or background):

Accuracy =
Correct classifications

Correct classifications + Incorrect classifications
=

TP + TN

TP + TN + FP + FN
.

This reflects the model’s ability to capture both transition boundaries and background

regions across the entire stability diagram. However, since transition-line pixels are of-

ten < 1% of the image, therefore, the accuracy can be misleadingly high if the model

simply predicts background everywhere. In such a case, a model predicting all pixels as

background would have an accuracy of 99% giving a false sense of accuracy.

Precision and Recall Precision and recall measure correctness and completeness of

positive predictions,

Precision =
TP

TP + FP
,

Precision gives the fraction of predicted line pixels that actually correspond to true

transitions. High precision means the model’s detected lines are reliable and not confused

30

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

by spurious noise.

relevant elements

retrieved elements

false positivestrue positives

false negatives true negatives

Precision = Recall =

How many retrieved
items are relevant?

How many relevant
items are retrieved?

Figure 2.13: Visual representation of Precision and Recall (Adapted from [77]).

Recall =
TP

TP + FN
,

Recall, also called sensitivity, quantifies the fraction of true transition-line pixels that

the model successfully detects. In concrete terms, recall measures how many of the

annotated transition edges the model recovers.

Dice Similarity Coefficient (DSC) or F1 Score The Sørensen–Dice coefficient mea-

sures the similarity between the predicted mask P and ground truth G:

Dice =
2 |P ∩G|

|P | + |G|
=

2 TP

2 TP + FP + FN

It is the harmonic mean of precision and recall, and penalizes cases where either

31

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

precision or recall is low, ensuring both the correctness and completeness of detected

transition lines, and is a good metric for class imbalanced datasets.

Figure 2.14: Schematic representation of the Dice metric.

F1 = 2
Precision × Recall

Precision + Recall
= Dice.

Intersection over Union (IoU) Also known as the Jaccard index, IoU evaluates

pixel-level overlap between the predicted mask P and ground truth G:

IoU =
|P ∩G|

|P ∪G|
=

TP

TP + FP + FN

IoU represents the fraction of correctly identified transition area relative to the total area

covered by either prediction or annotation, penalizing both missed and extra pixels i.e.

the IoU penalizes under and over segmentation more that the Dice coefficient.

Figure 2.15: Schematic diagram of the IoU metric.

By reporting Accuracy, Precision, Recall, F1, IoU, and Dice, we provide a comprehensive

view of our model’s performance, from overall pixel correctness to the precise delineation

32

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

of transition-line boundaries. The confusion matrix entries (TP,TN,FP,FN) underpin

all these metrics and offer additional insight into common error modes.

2.7.7 Model Inference

Model inference refers to the process of using a trained network to generate predictions

on new, unseen data. Unlike training, which iteratively adjusts parameters, inference

performs a single forward pass through the network: given an input x, the model produces

an output Ŷ = fθ(X) using fixed parameters ¹. Efficiency considerations include model

size, latency, and hardware constraints.

2.8 Conclusion

In this chapter, we have established the quantum-mechanical and machine-learning princi-

ples underpinning our work, including qubit realizations, quantum-dot physics, Coulomb

blockade, charge stability diagrams, and the fundamentals of supervised segmentation.

In the next chapter (Chapter 3), we delve deep into the tuning process, perform literature

review and present our proposed solution to the problem.

33

Chapter 3

The Tuning Process of Quantum Dots

We discussed in the previous chapter how QDs can be used for qubit realization. Now

this is not a trivial task. We first need to form the QD in a semiconductor heterojunction

or nanowire by applying a set of voltages to different metallic gates patterned on the

junction. Then we need to trap a single charged particle in the QD in order to manipulate

it and perform operations on it as a qubit. This process is known as the tuning of QDs,

and it consists of multiple steps which we will detail in Sec. 3.1.

The tuning process is one of the critical challenges that prevents us from scaling a

QD based quantum computer. The reason is that as we increase the number of dots in

a system, the parameter space for all the possible voltages to be applied to the multiple

gates in order to realize a multi-qubit system becomes very large, to the point where

heuristic manual tuning becomes infeasible. This necessitates the need to automate the

tuning process, and this is what we will discuss in this chapter.

We first start with discussing the multiple steps required to tune a QD, then we

highlight the need to automate this process and the motivation behind it, and why it is

necessary for scaling. Then we delve into a literature review study discussing the state-

of-the-art methods and techniques currently being employed to solve this problem, and

compare the different approaches to our methodology. We also present the necessary

arguments that motivate the use of ML for such a problem, discussing its advantages

over classical techniques.

3.1 Tuning of QDs

Tuning quantum dots involves multiple stages [78], we give a brief overview of them

below:

1. Bootstrapping (Initialization and Measurement Setup): Establishing initial

operating conditions by cooling down the device and bringing the charge sensors

into an operational regime.

34

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

2. Coarse Tuning (Device Topology): Reaching a well-known global configuration

of charge islands (single QD or double QD, etc.) with well-defined connectivity by

tunnel-coupling the dots. This is achieved by changing the voltages on the plunger

gates [79–86]

3. Controllability: Ensuring that gate voltages have predictable effects on the QD

potential or the tunnel barrier between dots, by implementing virtual gates to

compensate for the capacitive crosstalk between the dots [79, 81, 87, 88].

4. Charge Tuning (Charge Occupancy): Bringing the device to the desired charge

configuration by defining the number of charges in each QD [79, 89–95].

5. Fine Tuning: Achieving precise control over the qubit’s state for reliable operation

[81, 96] .

Traditionally, this tuning process has been performed manually by experts relying on

their intuition and informed guesses, which is a time-consuming and error-prone procedure

that cannot be easily scaled to large arrays of QDs due to its labor-intensive nature. Given

the need for multiple qubits to achieve quantum supremacy, we need to automate the

whole tuning process in a way that is robust to fabrication variability which introduces

defects in the device, as well as environmental noise like temperature fluctuations, and

electromagnetic interference etc.

In this work, we are mainly concerned with the charge tuning step, in which we aim

to develop automated and robust methods to isolate a single charge in a QD to achieve

the so-called single electron regime. Therefore, in the remainder of this thesis we focus

on the step of charge tuning starting by a deeper dive into the process.

3.2 Charge Tuning of QDs

The step of charge tuning comes right after the bootstrapping and coarse-tuning phases.

At this stage, we have a well-defined device topology of QDs and an operational charge

sensor. But we do not yet control how many charged particles are in each dot, so at this

point we have an unknown number of particles in our QDs. The main objective of charge

tuning is to achieve a particular charge configuration of our system by trapping the desired

amount of charges in each QD. The adopted strategy to achive that is by (i) emptying

the QDs of all electrons and then (ii) reloading the desired number of electrons in each

dot. This procedure is the only way we could know the charge occupancy, since there

is no absolute charge detector. Therefore the only way to count the number of charges

is through this kind of measurement which necessitate the unloading and reloading of

charges.

35

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

This step is very important, because the number of particles we want to trap into

each QD depends on the type of qubit we want to achieve (see section 2.3). For most

cases, that number will vary from one to three particles per dot. Therefore, we need to

have the ability to precisely manipulate the loading and unloading of a single particle at

a time into our QD.

In order to trap only one electron in each QD, experts manually change the voltages

on the gates after looking at the measured charge stability diagram to locate the single

electron regime. This heuristic approach to charge tuning becomes increasingly difficult

as the number of dots scale and it becomes a real hurdle to overcome if we want to build

a fault-tolerant QD gate-based quantum computer.

One way researchers are trying to overcome this challenge is by completely automating

the charge tuning process. Some approaches have been suggested using both classical

script-based techniques, and others are relying on ML methods. In this section we lay

down the motivation behind using ML techniques for this task. Then in Sec. 3.3 we

perform a literature study of the cutting edge techniques being implemented for the

charge auto-tuning, discussing both classical and ML-based approaches.

Motivation for Using a Machine Learning Approach

for QD Auto-Tuning

The manual charge-tuning process described above suffers from several key limitations

when scaled to larger quantum dot arrays. First, it relies on expert operators to visually

inspect charge stability diagrams and heuristically adjust gate voltages—an approach that

is both time-consuming and susceptible to human error. Finally, as we push toward multi-

qubit architectures, the search space of gate-voltage configurations grows exponentially,

quickly making manual tuning infeasible.

Therefore, a lot of effort has been devoted to automating the multiple steps of the

tuning process over the past years. This started initially by implementing script-based

approaches that would follow a programmed logic that would attempt to replicate the

steps that an expert would use during tuning. But it has become clear to researchers

that these hard-coded methods would not scale well, given the number of different gate

geometries used by different groups, nor would these methods be robust to noise or device

variability due to fabrication.

This led to shifting the focus towards more robust techniques like ML, that would

overcome these hurdles and make it possible to have a general automated approach for

tuning that would work on any device, regardless of material stack, gate geometry, or

fabrication variability.

36

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Advantages of Machine Learning

Machine Learning provides a natural pathway to overcome these challenges. A well

trained ML model with an acceptable amount of good quality data can learn to identify

transition lines, infer the correct gate-voltage adjustments, and predict the single-electron

regime without human intervention. In particular, CNNs excel at extracting spatial

features from images, making them well-suited for the problem of interpreting charge

stability diagrams. Other methods using Reinforcement Learning (RL) can also be used

for such tasks. Since our approach mostly rely on CNNs we will mostly focus on its

benefits.

Here are some advantages of an ML-based auto-tuning system:

• Adaptability to Variability: Because ML models learn directly from data in-

cluding noise patterns, fabrication imperfections, and measurement artifacts, they

can generalize across different devices and measurement setups and be robust to

variability. This reduces the need for device-specific heuristics and allows a single

trained model to be deployed on different quantum dot structures.

• Robustness to Noise: By training on data augmented with realistic sensor noise

or real measurement data, the model learns to distinguish actual features from

spurious fluctuations. As a result, it maintains high tuning accuracy even under

low-signal-to-noise conditions and varying experimental environments.

• Transfer Learning: Pretrained networks can be fine-tuned on a small set of mea-

surements from a new device geometry or material system, dramatically reducing

the amount of labeled data required for reliable tuning. This enables rapid adap-

tation to novel QD architectures with minimal additional calibration effort.

• Scalability: As the number of QDs grows, the tuning problem becomes a high-

dimensional optimization task. ML algorithms can handle these high dimensions

by identifying correlations across multiple gate voltages and charge transitions,

effectively navigating a large parameter space more efficiently than manual search.

• Consistency and Repeatability: Automated methods remove the subjectivity

inherent to manual tuning. For identical input data, the ML model will consistently

recommend the same voltage adjustments, ensuring reproducible single-electron

regimes across multiple cool-downs and devices.

• Continuous Improvement: The training dataset for an ML model can be aug-

mented over time with new measurements, allowing the model to refine its pre-

dictions as more device types and noise conditions are encountered. This contin-

ual learning ensures that tuning performance improves as the quantum hardware

evolves.

• Speed and Throughput: Once trained, a CNN can analyze a new charge stability

diagram and output gate-voltage corrections in milliseconds, compared to several

37

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

minutes (or more) for a human operator. This rapid inference allows large arrays

of QDs to be tuned in parallel, dramatically reducing calibration time.

3.3 Literature Review and State-of-the-Art

Automated charge tuning of QDs aims to set devices into a predefined charge configura-

tion without human supervision. As we mentioned before, all currently known approaches

implement a two-phase strategy: (1) emptying the QDs of all charges and (2) reloading

the desired number of electrons, typically monitored by the appearance or disappearance

of Coulomb transition lines in CSDs. We categorize existing work into two families: clas-

sical heuristic methods, and machine-learning methods, highlighting their results and

key strengths and limitations.

3.3.1 Classical Heuristic Methods

There have been several early attempts to automate charge tuning using purely script-

based image-processing, and physics-informed strategies. Baart et al. were among the

first to attempt to transfer the expert’s tuning workflow into a machine. They performed

classical image-pattern matching on double-QD arrays in GaAs to locate the bottom-left

charge crossing, then they checked that no other transition line exist for more negative

gate voltages with respect to the most bottom-left detected crossing, and therefore locat-

ing the single electron regime [89]. They reliably reached the (1,1) configuration in every

tested device . Although achieving 100% success on three devices, Baart’s algorithm de-

pends on prior knowledge of gate geometry and pinch-off voltages, limiting its generality

to new architectures.

Lapointe-Major et al. presented a distinct approach for single quantum dot auto-

tuning. Instead of a single full scan, their algorithm implemented an adaptive mea-

surement sequence of subsized stability diagrams. The flow involved an iterative loop:

measure a small CSD, process the signal to remove background noise, and then use im-

age analysis (Hough transform or EDLines algorithm) to detect and reconstruct charge

transition lines. The algorithm then heuristically determined subsequent measurement

regions to systematically deplete the dot of electrons until no more transitions were found,

followed by reloading a single electron by moving back across the first detected transition

line. The method was experimentally tested against two different silicon-based quantum

dot devices, demonstrating good success [90].

To reduce the burden of full 2D scans, physics-informed methods were developed by

Ziegler et al., replacing full images with Physics Informed Tuning (PIT) of 1D “ray”

cuts along calibrated virtual-gate axes, unloading and reloading electrons in double QDs

[79]. This ray-based tuning module uses a series of 1D measurements and custom peak

38

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

finding techniques to find the desired charge configuration. Tested on both simulated

and offline experimental GaAs and Si data, this method delivered 89.7 % success rate on

experimental data and 95.5 % on simulated.

Table 3.1: Classical charge-tuning methods

Reference Method QD Type Data Success

Baart et al. (2016)
[89]

Image pattern
matching

Double QD Experimental 100%

Lapointe-Major
(2020) [90]

Signal and Image
processing (Hough
transform, EDLines)

Single QD Experimental 100%

Ziegler et al. (2023)
[79]

Physics-informed rays Double QD Experimental/Simulation 89.7–95.5%

3.3.2 Machine Learning Methods

As these classical approaches reached their limits, either in requiring device-specific

knowledge which makes them not easily generalizable, or in handling noisy, variable

data, machine learning emerged as a promising alternative.

Durrer et al. for instance applied a two-stage convolutional neural network to GaAs

double QDs: a low-resolution CNN for unload scans and a high-resolution CNN for reload

scans [91]. Despite training on ∼ 105 augmented experimental images, their overall tuning

success remained only ∼57% (90% unload, 63% reload), underscoring the fragility of local

patch inference under realistic noise. No information was given regarding the time taken

by the algorithm to find a desired charge configuration.

Czischek et al. uses small feed-forward networks trained on synthetic patches of

CSDs to detect transition lines in single QDs [92]. By stepping through a fixed patch

grid, they achieved 98% success in emptying but only 53% in reloading, later improved

to 75% with a 4×4 patch array. These patch-based methods minimize measurement area

but can be derailed by “gaps” in sparse transitions that the fixed exploration path skips.

Their method was tested on 27 CSDs that were measured from 3 devices.

Yon et al. then introduced Bayesian CNNs with uncertainty quantification, trained

on experimental CSDs of Si and GaAs based single-QD devices. The problem is framed

as an exploration task, where each step involves detecting charge transition lines in small

subsections of the voltage space referred to as a patch, aiming to reach a specific charge

regime while minimizing measurement time. Their model was trained on patches ex-

tracted from the CSDs of 3 different single-QD devices consisting of 17, 9, and 12 di-

agram per device. They achieved an offline tuning success of of 99.5% (Si-SG), 80.6%

(GaAs), and 78.1% (Si-OG) [93], which was tested on 9 CSDs for each device. While

this approach help minimize the measurement time and does provide a larger number of

images for the model to train on (due to splitting each diagram into many patches), it

39

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

would be difficult to differentiate between a regular transition and a spurious line due to

the intrinsic nature of the patch approach which does not take into account the whole

diagram.

Their follow-up work demonstrated 95% in online auto-tuning of a single overlapping-gate

Si QD which was performed over 20 runs [94] with the only failed attempt at auto-tuning

being due to a problem in the exploration logic and not the CNN classification, provid-

ing further argument against hard-coded logic and more focus on ML-based approaches.

The average tuning run took 2 hours and 9 minutes, with 96% of this time consumed

by measurement, and only 4% for data transfer, processing, and inference. This work is

an impressive achievement which they attributed to the good fabrication quality of the

device they used for the test. It could be interesting to see the results on a bigger variety

of devices to benchmark because the 20 runs tested in this experiment were performed on

the same device which means the model was seeing different parts of the same stability

diagram therefore it could be interesting to test it against different type of noises and

irregularities.

Most recently, Schuff et al. integrated Bayesian optimization, CNN feature detec-

tion, and computer vision into a fully autonomous spin-qubit tuning pipeline for Ge/Si

nanowire QDs. Over 13 runs, 77% reached single-spin Rabi oscillations; total tuning took

22–80h/run (avg. 38h), also dominated by measurement time [95].

Table 3.2: ML-based charge-tuning methods

Reference Method QD Type Data Type Test Size Test Type Success Online

Tuning

Time

Durrer et

al. (2020)
[91]

CNN
(two-stage)

Double QD Experimental 160 tuning
runs across
2 devices

Online
tuning

56.9% —

Czischek et

al. (2022)
[92]

FFNN on
patches

Single QD Simulation/
Experimen-

tal

27 CSDs
from 3
devices

Offline
tuning

98% empty
75% reload

—

Yon et al.

(2024) [93]
Bayesian
CNN -
patch based

Single QD Experimental 27 CSDs
across 3

device types

Offline
tuning

78.1% -
80.6% -
99.5%

—

Yon et al.

(2025) [94]
CNN Single QD Experimental 20 runs on a

single
device

Online
tuning

95% 2.15h

Schuff et al.

(2024) [95]
Deep
Learning,
Bayesian
optimiza-
tion,
Computer
Vision

Double QD Experimental 13 runs Online
tuning

77% 22–80h total
tuning

40

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

3.4 Proposed Full-Diagram Charge Tuning Method

Our approach for charge auto-tuning involves using a CNN to analyze the full CSD to

identify all transition lines, then finding the center of the desired regime, say the single-

electron regime, all in the image space, therefore no need to iteratively move towards

that point. Then directly extract the associated voltage values that would be applied

to the gates to reach this regime. This approach fundamentally differs from common

patch-based strategies. Patch-based approaches, (as seen in Yon, Durrer, and Czische

[91–94]), involve scanning small, localized subsections of the voltage space and classifying

each patch for the presence of a transition line and based on this classification, a decision

to move in the voltage space is made.

Our approach is possible here at CEA-Leti due to the large amount of charge sta-

bility diagrams we have acquired. Leveraging CEA-Leti’s ecosystem from measurement

infrastructure and expert annotation workflows we have collected and hand-labeled over

1015 high-resolution CSDs across multiple device geometries and operating conditions,

far exceeding the publicly available datasets of most other groups. This extensive dataset

enables robust training and validation, ensuring our model generalizes across noise profiles

and device parameter variations.

Advantages of our Full-Diagram ML-based Approach

Holistic Context: Analyzing the full CSD provides the CNN with a global view of the

charge stability landscape. This allows the model to leverage broader spatial relationships

and contextual information that might be missed by analyzing isolated patches. For

instance, a full-image scan can inherently capture the overall characteristic of the device

and learn from features like the slope of the lines, their direction, the spacing between

them, or the global curvature of transition lines, which might be ambiguous in small

patches. These features are important patterns that ultimately help the model become

more robust in the ways discussed below:

• Robustness to Local Imperfections: By processing the entire image, the CNN

can be more resilient to localized noise, faint lines, or small gaps in transition lines

that might otherwise lead to misclassifications in individual patches. The model can

“fill in the blanks” or infer the presence of a line based on its global pattern. This

could potentially alleviate issues like the interruptions in transition lines caused by

the experimental measuring procedure in Czischek et al. that led to lower reloading

success rates in patch-based methods. We demonstrate in Chapter 6 instance where

our model was able to correctly detect a faint line and fill in the blank between

broken lines belonging to the same transition.

41

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

• Robustness to Line Misclassifications: This full image context also helps with

differentiating between normal transition lines and what we refer to as spurious

lines (see Sec. 4.2.1) which are artifacts due to measurement and they normally

have different characteristics but still look like a line which can confuse a model that

is solely trained on line detection without any context. For e.g. spurious lines can

have a different slope than regular line and therefore by looking at the full-context

window, our model was be able to identify the pattern and correctly (un)classify

those by merging them into the background.

• Robustness to Noise: By leveraging global spatial correlations, the CNN can

learn to ignore background fluctuations. Even when the current signal is weak

or contaminated by random noise spikes, the network’s filters—trained on many

examples—can suppress noise and emphasize coherent line structures across the

entire voltage range. In practice we see this with very noisy CSDs.

• Direct Regime Identification: Instead of an iterative search for a reference

point and then counting transitions, a full-image analysis could allow for direct

identification of the target charge regime (e.g., the single-electron regime). This

could streamline the process by combining detection and localization into a single

step, potentially bypassing the “empty-then-reload” sequence if the model is robust

enough to identify any arbitrary charge state from a full diagram.

• Reduced Hard-Coded Exploration Logic: Patch-based methods often rely

on hard-coded exploration algorithms to navigate the voltage space based on local

patch classifications. Our full-image approach, removes the need for this exploration

by implementing the direct regime identification we discussed in the point before.

• Physical Features Extraction: Since our approach consists of detecting all lines

in the CSD at once, this means that we have the exact coordinates of each transition

line in the diagram and we know how they are positioned relative to each others.

Once this information is digitized through our prediction model, we can extract

important physical information that helps us better understand the device at hand

as well as the physics behind it. For example in our approach we can easily extract

the separation between the lines, and the direction of their tilt, as well as their

slope etc. These details can be correlated to physical features like capacitance and

more.

• Millisecond Inference for Full-Diagram CNNs Even though a full-diagram

CNN ingests a larger input than a patch-based classifier, its end-to-end inference

cost remains in the millisecond range on modern Graphics Processing Units (GPUs),

which is still negligible compared to the seconds-to-minutes required for the actual

42

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

gate-voltage sweeps and measurements. By contrast, patch-based methods must tile

the entire CSD into hundreds or thousands of small windows and run a forward pass

on each one—incurring extra data-transfer overhead and per-patch latency—which

can easily accumulate to tens or even hundreds of milliseconds just for classifica-

tion before you even begin post-processing. Since the measurement time dominates

(often seconds per diagram), both are effectively “instantaneous” from the experi-

mental workflow perspective, but the global approach still offers a net speedup over

patch-based exploration logic alone.

Disadvantages of the Full-Diagram Approach

• Data Acquisition Time: Acquiring a full, high-resolution CSD is inherently more

time-consuming than acquiring a small patch or a 1D ray. But although this full-

image approach with ML inference on top of it might look like a resource intensive

procedure, it is important to note that eventually it has to be performed only once

per device, as we can completely close the tunnel barriers connecting the QD to

the reservoirs after loading n electrons, and we would essentially be working with

a closed system for an extended period of time. Moreover, to mitigate the slow

acquisition time, we can take a low resolution image or only capture part of the

diagram if we know where the area of interest is located. There has also been

techniques that were developed to accelerate the data acquisition process and state

of the art characterization instruments are also available.

• Training Data Requirements: Training a CNN to recognize complex patterns

across full CSDs might require a larger and more diverse dataset of labeled full

diagrams compared to training a patch classifier. The variability across full CSDs

from different devices or experimental conditions could be substantial, necessitating

extensive data collection to achieve robust generalization. This could be solved by

using transfer learning (see Sec. 2.7.5) where we can take advantage of a pre-trained

model and therefore have results with only few images.

3.5 Device Variability and ML-Enabled Feedback

At this point we would like to note that the use of AI to automate the tuning process

is required because the current fabricated QD devices exhibit significant run-to-run and

wafer-to-wafer variability rather than having a reproducible behavior. Subtle differences

in material defects, device geometry and noisy environments mean that a purely signal

processing based technique is currently not possible for the auto-tuning of such devices.

But in more uniform devices, where variability is reduced, classical signal processing

methods can indeed be applied to recover transition lines with reasonable reliability.

43

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

However, until fabrication reproducibility reaches that level, ML approaches remain the

most robust way to generalize across device-specific quirks and environmental fluctua-

tions. And in order to reach this point of fabrication reproducibility, we first need to

have the ability to automatically tune our devices and push them to their limits and this

is another reason why ML-based techniques are currently indispensable. Therefore, all of

this auto-tuning work is essential for such progress. It is important to mention that all

devices will require automated tuning in one way or the other as this is essential to form

large arrays of QDs for qubit implementation. However having good quality and reliable

QDs would reduce the requirements on the tuning algorithm side and make things easier

to deal with. Therefore, in order to achieve scalable QD-based qubits it is necessary for

both auto-tuning algorithms and good fabrication quality of devices to improve on the

same path. Our full-diagram CNN addresses this dual challenge by:

• Accelerating Auto-Tuning: Providing a robust and reliable way into the desired

charge configuration as laid down in Sec. 3.4.

• Driving Fabrication Insights: by providing feedback and being used as a debug-

ging tool by the experts that are tuning and designing these devices which ultimately

improve their quality. This is even more apparent in our specific approach of full-

diagram line detection, since we can extract additional physics related information

like the distance between the lines, their slope etc. as discussed before.

In this way, our ML framework not only delivers robust and scalable automated tuning

but also empowers continuous refinement of QD fabrication, closing the loop between

algorithmic calibration and hardware development and pushes QD technology towards

scalable, fault-tolerant architectures.

3.6 Conclusion

This chapter has outlined the multi-stage workflow required to configure gate-defined

quantum dots, from initial cooldown and coarse topology setting, through charge oc-

cupancy tuning, to final qubit calibration. We reviewed classical automation strategies

(Baart, Lapointe-Major, Ziegler) that rely on classical image and signal processing tech-

niques or physics-informed heuristics, and we also reviewed ML efforts (Durrer, Czischek,

Yon) that employ patch-based inference but remain sensitive to noise and gaps.

Our full-diagram CNN overcomes these limitations by ingesting the entire charge-stability

map, combining global spatial context with data-driven robustness. Importantly, this

model not only accelerates accurate one-shot charge tuning reducing manual interven-

tion and measurement iterations, but also serves as a feedback mechanism to pinpoint

systematic deviations in newly fabricated devices. By correlating prediction errors with

44

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

gate geometry or process steps, our framework provides actionable insights to improve

the design and fabrication of better devices.

In the next chapters we outline our methodology, starting from data preparation to

the model’s architecture and implementation. Then we present our results and discuss

them.

45

Chapter 4

Data Acquisition and Preprocessing

In this chapter we describe how the CSDs measurements are converted into the labeled,

normalized arrays used for our ML training. We begin with a high-level overview of

how the cryogenic measurements are performed and the type of data we collect, then

we cover manual labeling of transition lines on exported images, and finally detail the

preprocessing pipeline that turns data stored in HDF5 files, into three-channel NumPy

arrays plus binary masks ready for training.

4.1 Experimental Setup and Data Acquisition

All data used to train and evaluate our model come from charge stability measurements

performed at CEA-Leti. For each device (a gate-defined QD structure), we sweep two gate

voltages VG1 and VG2 over a predefined range, recording the current response I(VG1, VG2)

using a nearby SET as a charge sensor as we explained in Sec. 2.6. The result is a 2D

map of current values, of size N × M where each pixel value in the CSDcorresponds to

the measured current at a particular (VG1, VG2) coordinate.

Measurements are performed in a Cryogenic Wafer Prober (CWP) (Fig. 4.1) at an

electron temperature of around 2K (base temperature of 0.8K). We insert into the

prober chamber a 300 mm silicon wafer that is patterned with our QD devices. As we

perform the 2D sweep on the voltage gates, we record 5 measurements of 100 s each,

for every voltage pair (VG1, VG2) and we store the current map in an HDF5 file of shape

(Nscans, H,W). The result is a stability diagram, recorded as Nscans = 5 repeated sweeps.

We take 5 measurements in order to use them for current averaging and improve the

Signal to Noise Ratio (SNR).

Dataset Composition and Diversity

Our training set consist of 1015 CSDs measured from two distinct mask designs, fabricated

over 4 process batches and 7 separate wafers. Within these, we cover both n–type and

46

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Figure 4.1: Wafer Cryogenic Prober used to acquire the CSDs data.

p–type devices (electron and hole trapping respectively) and 9 different gate-pattern

geometries. Therefore our dataset consists of measurements with wide variety which

makes it ideal for training a robust ML model, and offer a good, unbiased test of that

model which would also help us validate its generalizability.

To illustrate the full hierarchy (mask → polarity type → batch → wafer → design),

see Table 4.1 below.

Table 4.1: Hierarchical breakdown of CSD counts by mask, polarity, batch, wafer, and
design

Mask Subgroup Count

Mask I n–type, B1 → Wafer i → Design A 83
n–type, B1 → Wafer i → Design B 61
n–type, B1 → Wafer i → Design C 81
n–type, B1 → Wafer i → Design D 147
n–type, B1 → Wafer i → Design E 138
n–type, B1 → Wafer i → Design F 104
n–type, B1 → Wafer ii → Design G 20
n–type, B1 → Wafer iii → Design F 38
n–type, B1 → Wafer iii → Design G 23

Mask II n–type, B2 → Wafer iv → Design H 10
n–type, B4 → Wafer iv → Design I 196
p–type, B2 → Wafer vi → Design H 61
p–type, B3 → Wafer v → Design H 19
p–type, B3 → Wafer vii → Design H 34

By spanning two mask layouts, both polarities, multiple batches and wafers, and nine

device designs, our dataset embodies the process variability encountered in production-

scale quantum-dot fabrication. Because each level introduces its own variability in lithog-

raphy, oxide thickness, and device yield, this broad coverage ensures our model must

generalize across real-world fabrication spreads making it robust to such variability.

47

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Figure 4.2: Distribution of our CSDs data across mask designs, device polarity, batches,
wafers, and device design respectively from top left to bottom right

48

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Summary: Total CSD measurements: 1015

• Mask designs: Mask I (695), Mask II (320)

• Device polarity: n–type (901), p–type (114)

• Batches: B1 (695), B2 (71), B3 (53), B4 (196)

• Wafers: i (614), ii (20), iii (61), iv (206), v (19), vi (61), vii (34)

• Geometries (designs): Design A (83), Design B (61), Design C (81), Design D (147),

Design E (138), Design F (142), Design G (43), Design H (124), Design I (196)

4.2 Data Labeling

At this stage we have the raw current measurements that are represented by our charge

stability diagrams. Now we need to label this data, which is an essential step in any super-

vised learning technique. Data labeling is the process by which human experts annotate

each pixel in an image with the correct class (e.g. “transition line” vs. “background” in

our case), thereby providing the target outputs that guide the model’s training. Basically,

the loss function is calculated by comparing the values of the labeled data (which we refer

to as the ground-truth) with the value that the model predicts, and based on that loss,

the model will optimize its parameters (see Sec. 2.7.4).

The labeling step is really important because this is where we transfer the domain

knowledge of the expert to the ML model by encoding this knowledge into masks which

will be used as ground-truth by the model to learn from. Therefore we were extra careful

during this stage and performed multiple labeling runs on the same measurements with

different experts taking part in this process in order to create high-quality labels that

would not bias our model’s predictions due to systematic labeling errors.

In our case, the goal is to detect transition lines in CSDs, therefore labeling here

consist of manually selecting those lines, and then we can create a binary mask from this

data where a pixel value of say 1 represent a line and a pixel value of 0 represent the

background or no line. In order to label our current measurement data, first we need to

plot them as a charge stability diagram in which the transition lines would be visible to

the human eye and ready to be labeled. Therefore labeling takes place on PNG images

that we export from the HDF5 files, and is performed by a tool that was custom built

in-house by the research team.

To ensure consistency and to cover any potential wiggles in the physical lines, we

standardized the thickness of the annotated lines. Each selection is drawn with a fixed

width that is wide enough to capture slight deviations but narrow enough to avoid merg-

ing nearby features. To further assist in the labeling process, after an initial model was

trained on a small labeled set, we integrated this model into our custom labeling tool and

ran model inference on new diagrams and presented its pre-segmented lines as suggestions.

49

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Experts then corrected or confirmed these, dramatically accelerating the throughput of

high-quality labels. We also employed classical image processing techniques to help fa-

cilitate this labeling process by making faint lines more visible to the human eye, among

these techniques we implemented gradient-based filters to highlight edge features, and

contrast enhancement techniques.

4.2.1 Type of Transition Lines

Before we label our stability diagrams, we define the classes we used for different types

of lines and explain briefly the physics behind each type:

Transition Lines: Sharp, high-contrast boundaries where the QD occupancy changes.

The dot’s electrochemical potential aligns with the source or drain, producing charge

transition.

Stochastic Lines: Low-contrast, flickering features. They appear when an electron tun-

nels repeatedly between dot and reservoir at rates comparable to the scan speed,

causing flickering lines.

Spurious Lines: Non-physical artifacts from electrical noise, abrupt charge re-arrangements

in nearby gates, or probe-card pickup; these do not correspond to actual dot tran-

sitions and must be excluded from training labels.

Examples are shown in Fig. 4.3, with colors marking each type. Red represents

spurious lines, green lines for stochastic lines, and blue for normal transition lines.

All lines represent a charge transition, only the spurious line does not represent an

actual transition and we are not interested in detecting it. Nonetheless, we labeled our

lines in a multi-class fashion to be flexible for future implementations like if we want to

detect spurious lines so we can remove them from the diagrams.

4.2.2 Labeling Workflow

To generate our ground-truth masks, we use a custom GUI tool in which we do the

following:

1. Load the PNG of the current map (charge stability diagrams).

2. Choose the appropriate class tag for each line segment (see Sec. 4.2.1 for definitions).

3. Draw lines along each segment.

4. Save, per image, a CSV that contains the coordinates of each line’s endpoints, with

columns:

{line_id, x1, y1, x2, y2, class}.

50

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

(a) Unlabeled CSD

(b) Labeled CSD. Blue lines represent regular charge transitions, green repre-
sent stochastic lines, and red for spurious lines.

Figure 4.3: The labeling process of stability diagrams

51

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

These labels in the CSV will later be rasterized into binary masks of shape (H,W),

where the pixel value at each coordinate follow:

Y (i, j) =











1, pixel (i, j) lies on a transition line segment,

0, background and spurious lines
(4.1)

These CSVs form the basis for all subsequent mask generation.

4.3 Data Processing

Now that we have performed data acquisition and labeled our data, we are ready to

process it to make it ready for training. Our neural network expects a three-channel input

of shape (H,W, 3) and corresponding binary masks. (We will explain the reason behind

the 3-channel requirement when we discuss the architecture of our model in Chapter 5)

The preprocessing pipeline comprises:

• Generating a three-channel array for each diagram which contains the current mea-

surement and will be fed to the model as input.

• Generating binary masks for each diagram which will be our ground-truth, based

on which the model will calculate the loss function and optimize its parameters.

• Generating a mask highlighting the location of the single charge regime which will

be used during model evaluation to calculate the number of successful detections.

4.3.1 Statistical Feature Extraction

Our raw current data consist of N repeated scans, each giving a 2D-array Ik(i, j) for

k = 1, . . . , N (in our dataset N = 5). This is equivalent to having 5 channels per CSD

with each measurement sample representing a channel. But as we discussed earlier our

model requires only three channels. So the options we have are to either select three

of these five sample measurements and use them as our data for training, but this way

we are not taking advantage of all the measurements that we have done on the device.

Therefore, the best way to take advantage of all the measurements while not stacking

redundant channels of the same value is to extract statistical features out of the data and

use these features for training.

We select the following features that we calculate on each CSD across the 5 sample

measurements that we did: per-pixel mean, median and standard deviation. Therefore,

from each raw dataset Ik(i, j) (k = 1 . . . 5), we compute three per-pixel statistical features:

52

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Figure 4.4: Visual representation of the three statistical features (mean, median, and
standard deviation) which were calculated from the measurement samples. Each subplot
contains a single channel. For better visualization we did not plot them in grayscale.
By stacking these features together we get a single three-channel image containing a
statistical representation of all measurements.

µ(i, j) =
1

N

N
∑

k=1

Ik(i, j), (mean)

Ĩ(i, j) = median
{

I1(i, j), . . . , IN(i, j)
}

, (median)

Ã(i, j) =

√

√

√

√

1

N

N
∑

k=1

(

Ik(i, j) − µ(i, j)
)2
, (standard deviation).

We stack these into a 3-channel array:

X(i, j) =
[

µ(i, j), Ĩ(i, j), Ã(i, j)
]

∈ R
H×W ×3.

Which represent a statistically rich CSD and is our input data to the ML model.

The three channels provide complementary information: the mean enhances strong

transitions, the median suppresses outliers, and the standard deviation highlights noise

and stochastic features. This multi-channel representation is crucial for our model to

distinguish between true transitions and artifacts.

Naming conventions:

- Ik(i, j): raw current scans.

- X(i, j): the three-channel feature image.

- Y (i, j): binary masks.

4.3.2 Normalization

In the previous step, we have calculate statistical features from raw current measurements

and stacked them into three-channel. But before we can train on this 2D map of current

map, we need to normalize these values. Normalization is important to reduce sensitivity

to variations, improve numerical stability, and accelerate model convergence. It also

53

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Figure 4.5: Ground-Truth mask generated from the manual labeling done on Fig. 4.3

prevents channels with large absolute values (e.g. high currents) from dominating the

training.

Each channel of X is independently min–max normalized to [0, 1] so that all inputs

share a common scale:

X ′

c =
Xc − min(Xc)

max(Xc) − min(Xc)
,

4.3.3 Mask Generation

Since our goal is to detect all lines which consist a charge transition, we decide to consider

regular and stochastic lines as the foreground (pixel value 1) while spurious lines gets

merged into the background (pixel value 0). The only difference we employ between

regular and stochastic transition lines is that we draw a slightly thicker polyline in the

case of stochastic transitions, to make it easier for the model to map the features of the

wide stochastic line from the input image when comparing it to the ground truth.

Using the CSV of labeled lines that we introduced in Sec 4.2, we rasterize each segment

onto a binary mask of shape (H,W). For each line_id that belongs to a regular or

stochastic line, we draw a single continuous polyline from the endpoints delineated by the

four coordinate points. We end up with a binary mask Y (i, j) having the same dimensions

as the normalized, three-channel stability diagram X(i, j), and together, these will form

the input to our ML model.

4.3.4 Single Charge Regime Mask Generation

We also generate a binary mask where we fill in the area of interest with pixel value equal

to 1, and the remaining is set as background, so pixel value 0. The area of interest in

54

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

our case is either the single electron or hole regime, therefore depending on the device

polarity which is known during measurement, we select the first two lines from the left

for the case of an n-type device (which is equivalent to the lines having the lowest gate

voltage) and the first two lines from the right for p-type (highest gate voltage).

This mask is not used during training, it is only used to check that our detection was

successful and was able to locate the region of interest. This mask acts as a ground-truth

for the single charge regime. Therefore, we can think of our model as performing two

detections, the first is to predict all transition lines in an unseen CSD and the second is

to locate the single charge regime. We will talk more about this in the next chapter.

4.4 Conclusion

In this chapter, we have presented the end-to-end workflow for acquiring, labeling, and

preprocessing our CSD data into normalized, multi-channel arrays and corresponding

ground-truth masks. These prepared datasets form the foundation for our ML approach.

In the next chapter (Chapter 5), we will describe the design, training, and evaluation of

the neural network that learns to detect and classify transition lines in these diagrams.

55

Chapter 5

Implementation of the ML-Based Charge

Tuning Pipeline

In the previous chapter we detailed our data preparation pipeline, from measuring and

labeling the data to performing the necessary pre-processing operations to make our data

compatible with the model we are building. At this stage we have data that consists of

CSDs and ground-truth masks ready to be used for supervised learning (see Sec. 2.7.1).

In this chapter we describe the full training and inference pipeline. We begin by framing

the line-detection task as a pixel-wise segmentation problem, then present our network

architecture (a U-Net with ImageNet-pretrained encoder), detail the training protocol

(data augmentation, GroupKFold cross-validation, loss functions, optimizer), and finally

explain our post-processing steps to extract gate-voltage recommendations for the single

electron (or hole) regime . A high-level overview is shown in Fig. 5.1.

5.1 Problem Formulation

We treat charge transition line detection as a pixel-wise binary segmentation task. Given

an input CSD

X ∈ R
H×W ×3,

where the three channels are the pixel-wise mean, median, and standard-deviation maps

across multiple voltage sweeps (Sec. 4.3.1), the neural network fθ predicts

Ŷ = fθ(X) ∈ [0, 1]H×W ,

such that Ŷij estimates the probability that pixel (i, j) belongs to a transition line. Dur-

ing training, we compare Ŷ against the ground-truth binary mask Y ∈ {0, 1}H×W (see

Eq. 4.1) via the Dice loss (see Eq. 5.1) which we aim to minimize and update the weights

of the model accordingly.

56

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

����
�������	����

���
�����

�
����	����������

��������	��

�

�����	

"� ������

2�����������
	��

����
��&�
����

%�	��
��%�	���

A�������>

:����

O 	��������

%�	��
����������

����

�����

A�� ��������

:���	��
]

Y��������
�����S

���������P�

"� ���m��P

����	������������

%�	�����p��������

Y����������

������	��

� m���

� m�����

� ��

:���������������

������������

p���������

�����������	����

A��� ��������

2���������������

�p�������p������

����

�¨����������

%�	��
��%�	����

p����������������

�p�����

À�	��
����� 	���À²·�À¾­¹

�� ��������
����¹

��������p��������
	�¹

����
����
���

��������

m�����������

À�	��
������ ¹

�������¾�
����

Figure 5.1: End-to-end offline-tuning pipeline. We start with current data measure-
ment (in purple) by sweeping the voltage on the gates as explained in Sec. 2.6. Then we
process the data (red) by normalizing our raw measurements and calculating the three
statistical channels from those measurements (see Sec. 4.3. After labeling, we end up
with input mask and CSD (green) to be fed to our ML model (yellow). The outcome
of our model is a prediction of the transition lines in the stability diagram. From this
prediction mask we perform the necessary postprocessing steps explained in 5.4 and we
find the single electron or hole regime (blue). Finally we apply the gate voltages of that
regime as we extract them from the prediction mask (gray).

5.2 Model Architecture

In this section, we present the overall architecture of our U-Net–style segmentation model

[97], built upon a lightweight MobileNetV2 encoder [98] pretrained on ImageNet’s large

database [99]. This combination provides both efficient feature extraction and precise

spatial localization. MobileNet variants already have weights trained on millions of nat-

ural images like the ones trained on ImageNet. Although natural images differ from

CSDs, the early convolutional layers learn geometric features and texture that are rele-

vant to most image-based tasks. Initializing with these weights accelerates convergence

and improves generalization.

We first describe the encoder backbone, then detail the decoder design including skip

connections and upsampling, and finally specify the output head and loss function. Here

is an overview of our structure:

• Encoder: MobileNetV2 backbone pretrained on ImageNet, providing rich, hierar-

chical feature maps while preserving efficiency.

• Decoder: Symmetric upsampling path with skip-connections at each resolution,

using Conv–BatchNormalization–ReLU blocks to recover spatial detail.

• Output Head: A 1 × 1 convolution followed by sigmoid produces the per-pixel

probability map Ŷ .

57

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Figure 5.2: Original U-net architecture with slight modification. We kept the structure
and numbers of the original paper [97] we only highlighted how our implementation adapts
the U-net architecture by using a pre-trained MobileNetV2 as the encoder and a custom
decoder which we describe in Sec. 5.2.2. The encoder and decoder are highlited in red
and green respectively. Blue boxes corresponds to feature maps having multiple channels
which are denoted on top of each box. The spatial dimensions of the image are presented
on the lower left edge of each box. In our case the starting input has a dimension of
1024x1024. The gray arrows are skip connections as highlighted in the legend, and the
white boxes are the copied feature maps which gets concatenated during upsampling.
(Adapted from [97])

5.2.1 Encoder: MobileNetV2 Backbone

The encoder is based on the MobileNetV2 architecture developed by Google. We adopt

the pre-trained ImageNet weights and remove the classification head, retaining all con-

volutional feature extractors. Given an input tensor of size H × W × 3, the encoder

produces a hierarchy of feature maps at multiple spatial resolutions. We extract the

following intermediate activations to serve as skip-connection sources:

• block_1_expand_relu (H
2

× W
2

× 144)

• block_3_expand_relu (H
4

× W
4

× 192)

• block_6_expand_relu (H
8

× W
8

× 288)

58

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

• block_13_expand_relu (H
16

× W
16

× 816)

We denote the deepest encoder activation (block_13_expand_relu) by Fbottleneck.

5.2.2 Decoder: Upsampling, Skip Connections, and Feature Fu-

sion

The decoder follows the standard U-Net paradigm. Starting from Fbottleneck, we perform

a cascade of four upsampling stages. At the i-th stage (from deepest to shallowest):

Ui = UpSample2(Ui−1), Si = Skipi, Ci = ConvBlock
(

[Ui, Si]
)

,

where

• UpSample2 denotes a 2 × 2 nearest-neighbor upsampling which doubles the spatial

resolution.

• Skipi is the encoder activation at resolution level i. It does a concatenation with the

corresponding encoder feature map to restore fine details lost during downsampling.

• [·, ·] indicates channel-wise concatenation,

• ConvBlock consists of two repetitions of

ReflectionPadding2D(p = 1) → Conv2D(3 × 3, fi) → BatchNorm → ReLU.

Reflection padding avoids border artifacts without introducing zero-padding distor-

tions.

Here, fi ∈ {64, 48, 32, 16} are the decoder channel widths at each stage, chosen to

gradually refine spatial details while controlling model complexity.

5.2.3 Final Prediction Layer

After the last upsampling stage, we apply a 1×1 convolution to reduce to a single-channel

feature map

Z = Conv2D1×1(C4) ∈ R
H×W ×1,

followed by a sigmoid activation:

Ŷ = Ã(Z),

which yields per-pixel probabilities for the binary segmentation mask.

59

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

5.2.4 Loss Function: Dice Loss

We optimise the network using the Dice loss, which directly maximises the overlap be-

tween prediction and ground truth. Given prediction Ŷ and binary ground truth Y , the

Dice coefficient is

Dice(Y, Ŷ) =
2

∑

i Yi Ŷi + ϵ
∑

i Yi +
∑

i Ŷi + ϵ
,

as introduced in Sec. 2.7.6, and the corresponding loss is

LDice = 1 − Dice(Y, Ŷ) (5.1)

Here, ϵ is a small constant for numerical stability. This loss is well-suited for highly

imbalanced segmentation tasks like in our case, and encourages maximization of overlap

rather than per-pixel accuracy. We compile the model with the Adam optimizer (learning

rate 10−4) and the Dice loss.

The resulting architecture combines the computational efficiency of MobileNetV2 with the

strong localization capabilities of U-Net decoders, producing a lightweight yet accurate

segmentation model.

5.3 Training Procedure

In this section we detail the procedures used to train our segmentation model, including

our computational environment, how we split the data to avoid leakage, input prepro-

cessing (resize & padding), and on-the-fly data augmentation.

5.3.1 Computational Environment

All model training and large-scale inference were performed on the TGCC (Très Grand

Centre de Calcul du CEA) “Irène Joliot Curie” high-performance computing (HPC) clus-

ter. This facility provides both CPU-only nodes and GPU-accelerated nodes; for our

work we exclusively used the NVIDIA Tesla V100 GPUs to leverage parallelized deep

learning workloads.

5.3.2 Data Splitting & Cross-Validation

To prevent data leakage from images originating on the same physical device or cooldown,

we employ GroupKFold cross-validation. In GroupKFold, samples are partitioned into K

folds such that all samples sharing the same group_id appear in exactly one fold, either

training or validation. We construct the group_id to be a unique identifier for images

that were measured from the same devices (same wafer, die, and gates used). We set

60

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Figure 5.3: Representation of how every CSD comes from a die on a wafer

K = 3 and group by device, yielding three pairs of splits each with two-thirds of devices

for training and one-third for validation.

Inference on Similar Images. At test time, it is sometimes common to encounter

images from the same device, batch, or wafer. Although these share the same physical

features, each measurement is taken at a different timestamp under different conditions

and after cooling and system re-initialization, which introduces fresh noise realizations,

spurious lines, and slight drift in transition line positions. Consequently, performing

inference on multiple images from the same device does not constitute a bias, since the

model has never seen the exact measurement conditions during training. We refer to

Fig. 5.4 for a concrete example of different stability diagrams measured from the same

physical device but under different conditions and timing, showing clear variation in noise,

contrast, and illumination.

5.3.3 Input Preprocessing: Resize and Padding

Our raw charge stability diagrams come in a variety of resolutions and aspect ratios

(aspect ratio = width
height

), which complicates batching and GPU memory allocation. We

compared three preprocessing strategies:

1. Pure Resize: We force every image to a fixed canvas (Htarget ×Wtarget) by resizing

both dimensions independently (e.g. with bilinear or nearest-neighbour interpola-

tion).

✓ Very fast and simple to implement.

× Unless each raw image already shares the same aspect ratio, this “stretch-to-

fit” approach distorts the geometry: lines that were straight can become curved

61

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Figure 5.4: Three charge stability diagrams acquired from the same physical device un-
der different cooldowns and measurement conditions. Despite identical device geometry,
variations in thermal noise, contrast, and drift in transition lines are evident between
measurements, demonstrating that each diagram represents a distinct sampling of the
device’s state rather than redundant data.

or shifted. Fine features may be blurred or aliased depending on whether we

downsample (loss of high-frequency detail) or upsample (interpolation blur).

2. Pure Padding: We leave each image at its native size (H,W), then embed it in a

larger (Htarget,Wtarget) canvas by adding constant-value borders (black, mirror, or

reflection).

✓ Preserves every original pixel and exact aspect ratio; no interpolation means

no blur or aliasing.

× Can create large blank regions that dominate convolutional receptive fields

therefore wasting computation on padding.

3. Resize & Pad (Chosen): We first compute a scale factor

s = min
(

Htarget/H, Wtarget/W
)

,

resize the image to
⌊

sH
⌋

×
⌊

sW
⌋

(using nearest-neighbor to preserve edge sharp-

ness), then pad the short side with black pixels to exactly (Htarget,Wtarget).

✓ Maintains original aspect ratio and avoids extreme blank regions.

✓ Minimizes interpolation artifacts by only scaling as much as necessary to fill

the longer side.

✓ Simplifies downstream coordinate recovery: by storing s and the top/left

padding offsets, one can map any detected pixel (x′, y′) back to its original

image coordinate

(

x, y
)

=
(

x′
−xpad

s
,

y′
−ypad

s

)

, (5.2)

62

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

ensuring accurate extraction of physical voltage values from single charge tran-

sitions.

Impact on Single Charge Voltage Extraction: Since our ultimate goal is to read

off gate voltages corresponding to pixels inside the single charge regime, any geometric

transform that shifts or blurs pixel locations can bias the measurement. Our resize & pad

routine uses a uniform scale s and known padding amounts, and we invert this transform

to recover the original pixel grid exactly, thereby guaranteeing that voltage coordinates

remain faithful to the raw data.

Alternative: Fully Convolutional Networks. A fully convolutional approach would

accept arbitrary input sizes, but complicates batching (batch size=1 or grouping by size)

and GPU memory planning. We reserve this avenue for future work.

5.3.4 Data Augmentation

To enhance robustness to device-specific noise and slight geometric variation, we apply

the following on-the-fly augmentations during training only:

• Horizontal Flips: captures possible mirroring of stability diagrams resulting from

sweep direction reversals or different device polarity.

• Small-Angle Rotations: accounts for slight tilts in transition lines.

• Random Scaling/Cropping: simulates variations in gate-voltage ranges or zoom-

levels, preventing scale-sensitive bias.

• Color Space Transformations:

– Brightness Adjustment: simulate different illumination levels by varying pixel

intensities.

– Contrast Adjustment: enhance or reduce contrast to help the model recognize

lines under varying clarity.

– Saturation Adjustment: makes the model robust to diverse color intensities by

altering saturation levels.

Each batch is generated with random parameter draws, ensuring the model encounters

diverse patterns with geometric and color transformations, improving generalization to

unseen devices and cooldown conditions.

5.4 Prediction and Postprocessing

After having trained the model on our stability diagrams, we are ready to perform pre-

dictions on new unseen data with the goal of finding the single electron or hole regime.

63

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

We detail below the sequential steps that we perform starting from model inference to get

our prediction mask, until the last step of the postprocessing which is locating the single

charge regime and extracting the gate voltage values that we need to apply to reach that

regime.

We give a broad overview of the steps then we dive into each of them:

1. Forward Pass: Input the normalized, padded image and compute per pixel prob-

abilities Ŷ .

2. Thresholding: Binarize Ŷ at a threshold of Ä = 0.75.

3. Undo Padding & Resize: Reverse the padding and resize that we applied before

inference, to map the mask back to the original voltage sweep dimensions.

4. Morphological Cleanup: Perform closing operation to connect broken line seg-

ments.

5. Filter Spurious Detections: Perform area-based dynamic thresholding to remove

small sized spurious detections.

6. Single Charge Regime Identification: Extract the two extreme transition lines

and find the center of the single electron (or hole) regime:

• Locate the two lowest-voltage transition lines (or highest for holes trapping)

in the clean mask.

• Define the polygonal region between them as the candidate single electron (or

hole) regime.

• Compute the center of mass of this polygon and extract the gate-voltage values

(V ∗

G1, V
∗

G2) which corresponds to the center of the single charge regime.

7. Success Flag: In case we are doing offline auto-tuning and not inferring on un-

labeled image, therefore, we can confirm if the predicted single charge regime’s

center matches with our labeled ground truth mask, which validates our detection

as successful or not.

We visualize these steps in Fig. 5.5 in which starting from the input CSD we perform

the forward pass, thresholding, then the morphological operations as well as filtering,

and finally detecting the single charge regime and comparing it to the ground truth mask

associated to that diagram.

Forward Pass

We input the normalized, resized and padded image into our trained model, and we get

as an output the prediction Ŷ which is a mask with continuous pixel values between 0

and 1 representing the probability of each pixel being classified as a transition line.

64

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

(a) Input Image (b) Ground Truth Mask

(c) Prediction Probability Map (d) Binarized Map

(e) Morphology + Filtering (f) Single Charge Regime

Figure 5.5: Plot showing inference and the main postprocessing steps. We chose
a diagram in which our model’s prediction is not very “clean” in order to highlight the
importance of the postprocessing steps we implement, which were discussed in Sec. 5.4.
(a) The input CSD in the form of an image. (b) The ground truth mask labeled as
discussed in Sec. 4.2 and used for training the model. (c) The raw model’s prediction
where each pixel is assigned a probability of how confident the model is that this pixel
belongs to a transition line. (d) After thresholding the previous probability map based
on a fixed value of 0.75 we get a binary map with the white pixels as lines and the black
as background. (e) We apply morphological closing and area dynamic filtering to connect
broken lines and remove small spurious detections. (f) On the final cleaned binary mask
we find the first two transition lines and locate the center of mass of the single electron
regime which we represent here by a red square patch overlaid on top of all the images
at the same position.

65

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Therefore, given a normalized, resized, and padded CSD X ∈ R
H×W ×3, the network

outputs

Ŷ = fθ(X) ∈ [0, 1]H×W ,

Thresholding

Now we need to transform the continuous probability mask we got in the previous step into

a binary classification mask with pixel values of 1 if it is part of a transition line and pixel

values of 0 representing the background. We achieve this by thresholding the prediction

Ŷ with a threshold value of Ä = 0.75 which would select all pixels with probability value

above 75% as transition line pixels, and the rest would become a background.

Mathematically, we convert Ŷ into a binary mask Ŷ τ ∈ {0, 1}H×W via

Ŷ τ
ij =







1, Ŷij g Ä,

0, Ŷij < Ä,
Ä = 0.75.

This selects high-confidence pixels as candidate line segments.

Undo Padding & Resize

During our training procedure we performed a resize and padding operation in order to

preserve the image’s aspect ratio (see Sec. 5.3.3). We also did this operation before the

forward pass because our trained model expects images that have the same dimensions

as the one we used during training. Now after we have performed inference and got our

prediction mask on the resized and padded image, we undo these operations in order to

revert back to the original size of the image which is necessary since our goal is to locate

the pixel coordinates that corresponds to the voltages required to have a QD in the single

charge regime. To do this we store information about the resize factor and the padding

values that we used when we performed these operations before feeding our image for

inference, and here we reverse them for each image’s specific values as per Eq. 5.2.

Morphological Operations

Now we apply some morphological operations on our predicted mask with the goal of:

• Connecting broken lines through morphological closing.

• Filtering out small spurious mis-detection using a dynamic threshold.

We do this postprocessing in order to make the subsequent steps more robust to small

pixel-wise errors so they do not carry over.

66

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

First, a morphological closing consist of performing a dilation followed by an erosion

[100].

Ŷ τ
closed =

(

Ŷ τ
orig · K

)

¸ K,

where

K =











1 1

1 1
...

...

1 1











︸ ︷︷ ︸

20×2

is the rectangular structuring element of size 20×2, · denotes morphological dilation,

and ¸ denotes morphological erosion.

We use a vertical rectangular kernel of size (20px, 2px) with the goal of bridging small

gaps between transition lines that are supposed to be connected. We chose this kernel

size because the lines in our diagram are mostly vertical with slight angle deviations, so

we are interested in connecting them along the y-axis.

Next, we remove spurious connected components whose area is too small. First,

we calculate the area of all connected components in the prediction mask and find the

average area per component. This number will vary for every stability diagram, thus why

we termed the method dynamic, because it is diagram specific. We then use this value

as a threshold to filter out any connected component that is under 75% of that average

area.

Let {Ck} be the connected components in Ŷ τ
closed, with areas Ak. We compute the

mean area Ā = 1
K

∑

k Ak and set a dynamic threshold to be T = 0.75 Ā. The filtered

mask is

Ŷ τ
filt(x) =







1, if x ∈ Ck and Ak g T,

0, otherwise.

Single Charge Regime Detection

Now that we have done all the necessary processing on our prediction mask, we are ready

to find the single charge regime which is the main goal. From the filtered mask, we sort

each connected component based on its x coordinates, and depending on if the device

is n-type, meaning that the QD will trap electrons or p-type if it is trapping holes, we

select the first two lines our model detected, that have the lowest gate voltage values in

the case of an n-type device, or the highest if it is a p-type. These two lines delineate

the edges of our single electron or hole regime. Then we form a quadrilateral polygon

between the line’s extreme points, and we find the center of mass of that polygon which

corresponds to finding the center of the single charge regime.

67

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Voltage Extraction

Since we are working with raw current data, when we locate the center of the single charge

regime, we just need to extract the coordinate location of that center and these values

(V ∗

G1, V
∗

G2) would represent the voltage values that should be applied on the gates in order

to reach the center of the single electron or hole regime. Therefore in an online tuning

approach, these recommended voltages are then directly applied in the experimental

control software to set the device into the single-electron regime in one shot.

Success Flag

Now that we have located our single charge regime and extracted an associated voltage

values for it, we need to make sure it is the correct one. Since this is an offline test

we are working with labeled data, therefore it suffice to test if the voltage value we

extracted which is the center of mass of the region of interest, actually falls into the

single electron (or hole) regime. During preprocessing, we have created a mask for that

task (see Sec. 4.3.4). The mask we have created was generated from the ground-truth

labels, and consists of the single charge area filled with pixels of values 1, and the rest is

a background with pixel values of 0. Therefore, we can simply check if our detection we

did in Sec. 2.6 for the center of mass of that regime, agrees with the ground truth mask

we have generated.

If the pixel (i∗, j∗) falls within the true single charge regime (which is represented in

our ground-truth segmentation mask), then the detection for that diagram is successful,

otherwise it is false. We define this metric as our Success Flag which is defined as:

Success Flag =
Number of images correctly detected

Total number of images
× 100% (5.3)

Therefore, throughout this thesis we refer to Eq. 5.3 as our offline tuning accuracy

where a success means that we accurately detected the center of mass of the single charge

regime.

5.5 Evaluation Metrics

At this point it is clear that there are two different evaluation metrics for our task. The

first are the regular ML model metrics that represents how well our model is at detecting

what we have already labeled (see Sec. 2.7.6), which in our case are transition lines. And

the second type is the metric we have defined in the previous section (see Eq. 5.3) which

represent the success rate of accurately finding the single charge regime by checking if

our detection falls in the region as defined in our ground truth mask. Both metrics relies

68

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

on comparing prediction v.s. the labeled data, either pixel-wise line detection or area

localization.

Therefore, for each CSD, we record:

• Success Flag: True if the predicted single charge regime center falls in the single

charge regime region of the ground truth mask.

• Pixel-Level Metrics: Dice coefficient, IoU, Pixel Accuracy, Precision, and Recall.

5.6 Conclusion

In this chapter we presented a detailed, modular implementation of our ML-based charge-tuning

pipeline. From task formulation and network design through rigorous training on grouped

cross-validation folds, to a robust inference and post-processing routine yielding direct

gate-voltage recommendations. In the next chapter we present quantitative results of our

study and follow-up with a discussion and failure analysis.

69

Chapter 6

Experimental Results of Offline Auto

Tuning

In this chapter we present the experimental evaluation of the offline auto-tuning pipeline

developed in this work. Our aim is to quantify the ability of the proposed convolutional

segmentation approach to detect transition lines and reliably localize the single-charge

regime across a diverse set of devices and measurement conditions. We report both

quantitative results (per-fold and per-device design success, and pooled performance)

and qualitative examples that illustrate typical successes and failure modes. Finally, we

discuss a structured failure analysis and propose concrete mitigation strategies that can

be applied in both offline and online tuning scenarios.

6.1 Results and Discussion

This section reports the performance of the proposed single-charge detection pipeline.

We start with qualitative evaluation, then we report the quantitative results (per-device

design and per-fold). All experiments use 5-fold group cross-validation (203 test images

per fold, 1015 images total); the evaluation metric is the “success” flag described in

Sec. 5.4 (a detection is counted as successful if the predicted single-charge regime center

lies within the tolerance region of the ground truth).

6.1.1 Qualitative Results

The primary objective of this work is to reliably locate the single charge regime in a

stability diagram, rather than achieve perfect pixel-wise segmentation of transition lines.

Therefore, qualitative evaluation of our model such as looking at the quality of the de-

tected lines as well as the success ratio we described in Eq. 5.3, are very important to

help us understand where did the model underperform and give us the feedback that we

need in order to make changes or improvement to our pipeline.

70

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Figure 6.1 shows typical model prediction side by side with the original stability

diagram and its associated hand-labeled ground truth mask. We show the detection of

transition lines, as well as the single electron regime which is highlighted by a green

contour and a square red patch locating its center. We overlay this patch on top of both

the CSD and the ground truth mask to show accurate localization of the single electron

regime. We highlight the accuracy of our model in both detecting the transition lines

under difficult conditions as well as successfully locating the single charge regime. In this

figure we chose a variety of diagrams from different devices to showcase the variability

of our data as well as the robustness of our model to this variability. For example row 1

and 5 show successful detection of all transition lines under considerable horizontal noise,

and row number 2 shows a stability diagram with very weak Coulomb peaks and faint

transition lines, whereas the stability diagram of the 3rd row has a very week SNR and

in some instances vanishing Coulomb peaks but our model had no difficulty detecting

most of the lines and was successful in locating the single electron regime. Moreover,

our model was for the most part accurate in ignoring spurious lines like the ones you can

see in the CSD of row 4. Regarding the final prediction, row 6 contains a mixture of

most of these cases in which we have a spurious line on the far left which was correctly

ignored by our model, but in addition to that the model successfully detected the first

two transitions which were of a stochastic nature, and was not bothered by the horizontal

noise and accurately detected all the remaining transition lines. We have many instances

of such successful detections across both good and bad quality stability diagrams, see

Figures B.1 and B.2 in Appendix B for more examples.

These visualizations are useful in three ways: they (1) validate that the system suc-

ceeds on practically relevant examples even if pixel-wise metrics are imperfect, (2) help

identify systematic failure modes that are not obvious from aggregate numbers, and (3)

guide further improvements in preprocessing, labeling, or postprocessing. Along with this

visual representation of the detection, we save the predicted gate voltages that would cor-

respond to that regime in a separate file for every diagram.

6.1.2 Quantitative Results

Aggregate Per-Design Success

Table 6.1 reports the success rate of accurately detecting the single charge regime for each

unique device design, aggregated over all five folds. For each design we give the raw counts

(successful detections / total diagrams) and the pooled success. Each design consist of

a unique gate architecture, and are anonymized as Design A–Design I. The inference

success rate we present here, is computed as the ratio of CSDs where we correctly located

the single charge regime to the total number of diagrams we performed our test on across

all folds (see Sec. 5.4 for the success flag metric).

71

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Figure 6.1: Examples of successful single charge regime detection gathered from different
devices and showcasing different measurement quality. In the first column we have the
original CSD that is used as input to the model, next to it we have the corresponding
hand-labeled ground-truth masks. Th third column is the model’s output which consist
of a binary mask with the predicted transition lines and the localization of the single
charge regime. The single charge region is highlighted by a blue and green contour and
its center is indicated by a red square patch. The red patch is overlaid on both the
stability diagram and the ground-truth mask to demonstrate accurate localization.

72

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Table 6.1: Per-device design aggregate success of detecting the single charge regime

Design Success (%) Successful Detection / Total Diagrams

Design A 84% 70/83
Design B 85% 52/61
Design C 79% 64/81
Design D 88% 130/147
Design E 88% 122/138
Design F 85% 121/142
Design G 70% 30/43
Design H 61% 76/124
Design I 75% 147/196

Overall Success 80.0% 812/1015

The performance varies notably between the different device designs, ranging from

61% (Design H) to 88% (Design D and E) with the majority of devices having a success

rate over 80%. Since the number of available samples per design is not uniform (e.g.,

only 43 samples for Design G compared to 196 for Design I), the confidence in these

accuracy estimates differs across devices. The overall pooled accuracy across all devices

was 80.0% (812/1015). These results highlight that while the model performs strongly on

most devices, performance is lower on a subset (Designs G and H), suggesting potential

device-specific challenges or systematic differences in the corresponding data.

Devices with clearer transition lines and higher signal-to-noise ratios tend to achieve

higher success rates; conversely, devices with noisy or stochastic lines show reduced per-

formance. This suggests that device-specific measurement conditions are an important

factor and motivates the failure analysis in Sec. 6.2. Other reasons for having a low

success rate could be defective devices either due to fabrication or design.

Looking at design G we see according to table 4.1 that it was patterned on two different

wafers (ii and iii) from the same batch B1. If we look at the results of successfully finding

the single electron regime and split them across these two different wafers we see that the

13 failures are split evenly between the two, with 6 failed detections for wafer i and 7 for

wafer ii, therefore we rule out the case that a bad wafer could have resulted in bad devices

or measurement in this case as the results are consistent across both. Looking further at

the individual failures we see that almost all of them are caused by a spurious line that

was detected by the model as a transition, therefore we conclude that the low success rate

for design G does not highlight any intrinsic issue with the design nor defective devices

from a specific wafer or batch run, but it is due to spurious lines that emerged during

measurements and that can be taken care of during online auto-tuning or with the help

of additional image processing techniques which we explain in the failure analysis section

(see Sec. 6.2). And this conclusion makes more sense when we realize that design G was

73

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

tested the least amount of times as it has the lowest number of stability diagrams (43 CSD)

than any other device. Therefore we expect that as we perform additional measurements

and auto-tuning tests on design G, the success rate would be more representative of the

actual numbers.

Regarding design H we also do not find any correlation between the failure rate and a

specific batch or wafer, but we do see that the majority of the measurements are of bad

quality where they have less defined Coulomb peaks, very faint lines, and large portions

of the image where it is totally blank with not much information in it. We associate this

to the bad quality of this device which has a differ design structure than the previous

ones. We show some examples of the quality of the stability diagrams of design H in

Fig. 6.2.

Figure 6.2: Examples of low-quality stability diagrams from device H, highlighting poorly
defined Coulomb peaks, very faint or discontinuous transition lines, and large blank
regions with little usable signal. These characteristics are consistent with the device
design and measurement quality that differ from the other devices and likely explain the
elevated failure rate for device H.

Per-Fold Inference Summary

As shown in Table 6.2, the model achieved consistent performance across the five cross-

validation folds, with accuracies ranging from 76% to 86%. The mean accuracy over all

folds was 80.0% with a standard deviation of 3.6 percentage points, indicating relatively

stable generalization performance across different data splits. The results suggest that the

model is robust to variations in the training and test partitions, although some variability

remains, reflecting the inherent differences between folds as we are grouping on unique

devices in terms of architecture, physical die, and gates used.

74

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Table 6.2: Per-fold single charge detection success obtained from 5-fold group cross vali-
dation.

Fold Correct / Total Accuracy (%)
Fold 1 174 / 203 86%
Fold 2 162 / 203 80%
Fold 3 154 / 203 76%
Fold 4 161 / 203 79%
Fold 5 161 / 203 79%
Mean ± SD 812 / 1015 80.0% ± 3.6

6.2 Failure Analysis

To further improve the tuning pipeline, we investigate the most common failure modes

and their causes. For each failure type we (i) give a concise description, (ii) explain

likely root causes, and (iii) propose concrete mitigation strategies and evaluation criteria.

We also show examples of these failures and discuss how to adapt both the model and

the postprocessing pipeline. We identified five main failure types which we describe in

Table 6.3.

Failure Modes Associated Observations and Causes

Bad Quality CSD
• Defective device
• Noisy measurement
• Large regions with no signal (low SNR)

Missed Lines
• Stochastic lines
• Faint lines

Spurious Lines
• Noise-induced false positives
• Instrumentation or measurement artefacts

Fragmented Lines
• Low contrast leading to broken lines
• Interrupted transitions

Ambiguous Labeling
• Human annotation inconsistencies

Table 6.3: Summary of common failure modes observed in our stability diagrams and
associated causes.

Bad Quality CSD

There are multiple reasons for having a bad quality stability diagram. The most common

reasons are cases where the QD is of bad quality, either due to fabrication defects or

device architecture. There is also the possibility of having a bad SET detector or device

75

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

tuning. In a regular fine-tuning procedure, the expert would identify these devices on

the fly and they would not be used for fine tuning as they are not considered fit for qubit

implementation. One such example is design H which has a big number of defective

devices that are not suitable for qubit realization. We show some of its stability diagrams

in Fig. 6.2.

In this thesis we did not classify these devices beforehand therefore they were included

in our final dataset which ultimately reduced the overall tuning success rate. But in future

work, removing these defective devices that will not be used for qubit operation, is the

right direction forward and would give a more accurate evaluation of how successful our

ML model is at charge auto-tuning and detecting transition lines.

Another instance of a bad quality CSD is when the SNR is low, making it very hard to

find the transition lines for both human and machine. There are many reasons for noisy

diagram, either due to the measurement itself, a human or machine error during probing,

or external environmental factors. Having enough of these samples we can train a neural

network to act as classifier of good versus bad devices or stability diagrams, and filtering

out all the cases where the measurement should not be used for qubit implementation

and therefore would be excluded from the auto-tuning pipeline. We envision developing

such a classifier for our online auto-tuning, acting as first filter enabling us to tune the

relevant devices only.

Missed Lines

In some instances the model could miss some transition lines or not detect them at all.

This can be due to multiple reasons like the ones we listed before (bad quality diagrams or

devices) but also in extreme cases of low-contrast CSD where the transition lines are very

faint and in some cases where we have stochastic lines which we discussed in Sec. 4.2.1.

For low contrast images we can experiment with different preprocessing techniques

like contrast enhancement or even calculating the gradient of the CSD to make the edges

more defined, and we can actually stack these on top of the original diagram to be fed to

the model as a three channel ’image’ to replace our current statistical features channels

(see Sec. 4.3.1), or even calculate them from these statistical channels to have a hybrid

approach in which we still consider all per-pixel measurements as well as enhancements

through contrast and gradient based filters.

As for stochastic lines there are two possible solutions that we can implement. First

of all, it is clear that we have a class imbalance when it comes stochastic lines since the

majority of transitions are regular lines. Therefore, one solution to mitigate this class

imbalance would be to increase the size of the dataset and if possible providing additional

measurements which contains stochastic lines in them. Another way to make our model

more robust to these lines would be to implement a dynamic line thickness for stochastic

76

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

lines in the ground truth mask that would precisely cover the line’s width in each case.

We currently have a different thickness in our generated ground truth masks for regular

transition and stochastic lines, but this does not take into account the wide variety in

width of different stochastic lines. Therefore, the best way to achieve that is by re-labeling

the specific diagrams that contains stochastic transitions with an appropriate thickness

that is chosen on a per-line basis.

We show in Fig. 6.3 a case where the first transition line has a very high degree of

stochasticity which caused a failure in detecting the single charge regime.

Spurious Lines

Spurious lines are sometimes detected as actual transition lines by our model. This is

one instance of a false positive detection. It is not a surprise that the model could not

easily identify the difference between a spurious and a transition line as there is almost no

difference between the two when it comes to the shape of the line or its features (unlike

stochastic versus transition lines). The biggest differentiator between the two, is that

sometimes spurious lines could have a different slope than the rest of the transitions,

or it could have a wider gap when compared to the regularly spaced transition lines

but it is not always the case and therefore it is tricky to tell exactly what consist a

spurious or a transition line, although our model was successful in ignoring spurious

lines in multiple instances. We associate this success to our full diagram implementation

of the line detection where the model was able to have a holistic view of the stability

diagram and therefore make connections related to not only the features of a transition

lines but also its characteristics like slope, direction and spacing which would add relevant

information to the model and make more accurate decisions.

We show in Fig. 6.4 and example of a CSD which contains a spurious line which

was wrongfully detected by our model. Note the slight shift in the slope of the spurious

line when compared to the other lines. We also have multiple instances where our model

accurately ignored spurious lines, and was successful in detecting the single charge regime

(see Fig. 6.5).

Fortunately there are methods we proposed to mitigate this issue. One of them is

using a fast Fourier transform to convert the predicted binary diagram from the image

space to the frequency domain, in which we would clearly be able to identify spurious

lines based on their tilt or different orientation when compare to other transition lines,

and also based on the spacial frequency denoting the separation of the regularly spaced

transition lines.

Moreover, we can easily take care of spurious detections during online tuning, at the

cost of performing an additional measurement and feeding both measurements to the

model, therefore locating the change in position that such line would normally exhibit

77

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Figure 6.3: Red arrows pointing to a stochastic line in the input CSD (first image) which
was labeled as a transition line in the ground truth mask (second image) but was not
detected by our model (third image).

78

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Figure 6.4: Example of a false detection due to a spurious line. From top to bottom
we show the input CSD, the labeled ground truth mask, and the faulty prediction, with
the red arrow pointing at the spurious line which was wrongfully predicted as the first
transition by our model.

79

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Figure 6.5: Accurate detection of the single electron regime in the presence of a spurious
line before the first transition (the red arrow is pointing at the spurious line).

and then we can label it as spurious. In addition to multiple CSD measurements we can

also re-scan in different voltage ranges.

Fragmented Lines

Sometimes the transition lines are broken in the prediction mask but also in the original

CSD measurement. This rarely causes issues in detecting these fragments, but would

sometimes cause issue in the postprocessing steps that would attempt to find the single

charge regime from the predicted transitions. As we discussed in Sec. 5.4, our postprocess-

ing loop which take place after inference consists of performing multiple classical image

processing steps and one of them is locating the first two transition lines as being the

boundary of the single electron (or hole) regime. One issue arise in cases where the first

transition line is broken in two parts, the hard-coded postprocessing technique would fail

due to misclassifying these two fragments-belonging to the same transition lines-as being

completely unique transitions and thus labeling them as the first and second transition.

We show such an example in Fig 6.6 where the first transition line is predicted not as a

continuous line, but as three broken segments of that line (mainly because that line is

stochastic), and thus our postprocessing method could not identify these three segments

as being part of the same line, because of the slope which makes it ambiguous to tell

the difference between the segments belonging to the same transition or forming unique

transitions on their own.

Our postprocessing technique works relatively well for broken segment that are not

part of a tilted line, or when the slope of that line is not steep, but when the original

transition line is not straight and our model did not detect it in its entirety due to some

noise artifacts or stochastic features, then it becomes hard to define what fragments

belong to the first transition and which ones belong to the second or third. One way

we can mitigate this problem is by thinking of what consist a transition and following a

logic analogous to what is done in a lab when locating say the nth electron regime. We

80

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Figure 6.6: Example of a faulty detection due to a fragmented transition line in the
prediction mask.

81

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

can make our postprocessing script sweep along the x axis individual rows and when it

encounters a set of white pixels (representing a transition line) it adds ’plus one’ to a

counter, and after locating the set of fragmented lines that delimit the first and second

transitions we identify the area between them as being the single charge regime. In

this way we can find the first transition across different locations on the y-axis, but this

method would fail in special cases where the CSD measurement is out of bound and the

transition lines are not fully covering the diagram, therefore a more robust technique

needs to be developed.

Mislabeling or Ambiguous Labels

Some cases are genuinely ambiguous. An expert, labeling the diagrams may be uncer-

tain whether a line is an actual transition or a spurious line, or if two very close lines

are actually unique transitions or some measurement artifact causing the emergence of

dual lines with some degree of stochasticity between the two. For such cases, the ex-

perimentalist have the ability to perform additional operations during an online tuning

procedure, like zooming in in the area of interest to remove any doubts about the nature

of the lines, or repeat the measurements under slightly different conditions etc. This

level of flexibility was not available for us during this offline study performed on static

stability diagrams, but in an upcoming online tuning experiment we expect to remove

this ambiguity by having the freedom to perform additional operations as required. We

also envision mapping the logic of what operations the experimentalist might need to

perform to a set of algorithms that would capture the logic behind this workflow and give

intelligent feedback about what needs to be done to increase the confidence of the model

and remove any uncertainty in a fully autonomous way. In addition to that, we offer the

below possible solutions to remove any ambiguity on the labeling level of static CSDs.

• Annotation protocol: use multiple annotators and resolve disagreements with

consensus or a senior annotator; include an “ambiguous” flag in the label set.

• Active learning: let the model propose uncertain regions for human review (model

confidence vs label mismatch).

• Online verification: where feasible, perform in-situ checks (repeat measurements,

gate scans) to resolve ambiguity; use these confirmed cases to correct the offline

labels.

82

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

6.3 Results summary

This chapter presented a comprehensive evaluation of the offline auto-tuning pipeline.

In brief: across the full dataset of 1,015 Coulomb stability diagrams the proposed seg-

mentation plus localization pipeline achieved a pooled success rate of 80.0% (812/1015).

Per-design performance varies substantially (61%–88%, see Table 6.1) and per-fold accu-

racy is stable (mean 80.0%, SD 3.6%, see Table 6.2). Qualitative inspection (e.g. Fig. 6.1

and Appendix B) confirms that the system reliably localizes the single-charge regime in

many realistic cases, while exposing a small number of systematic failure modes (Sec. 6.2).

83

Chapter 7

Discussion and Future Work

In this chapter, we outline several concrete directions to extend and strengthen our ML-

based auto-tuning framework. We begin by describing real time, in prober deployment,

then discuss on-chip implementation, scalability to multi-qubit arrays, richer feature ex-

traction, and enhanced input representations.

7.1 In-Situ Auto-Tuning in a Cryogenic Wafer Prober

Integrating our segmentation model directly into the cryogenic prober control loop is the

most immediate next step. The online deployment consists of loading the trained CNN

onto the control unit of the cryoprober, hence achieving low latency inference with a

closed-loop voltage control. This hardware integration is especially interesting as it gives

us the ability to benchmark live tuning throughput, success rate, and operator effort

reduction. In addition to that we can incorporate on-the-fly repeat scans to mitigate

spurious lines detection and noise fluctuations, something we could not do with offline

tuning on static CSDs. For instance, we can automatically re-scan regions where con-

fidence is low or spurious lines appear, based on a feedback loop built into the model,

hence reducing false positives due to noise and other unpredictable factors. In order to

achieve that, additional work must be done to develop this feedback mechanism into our

the model and to make decisions on what operation should the measurement apparatus

do, like zooming in on a specific area of interest, or repeat the measurement due to the

detection of noise etc.

Concretely, the online pipeline would operate as follows:

1. Continuous Data Stream: As the measurement system sweeps (VG1, VG2), the

acquired currents are streamed directly into GPU memory, bypassing the need to

save static stability diagrams.

2. Real-Time Preprocessing: Normalize, resize, and compute statistical maps

(mean, median, std.) on the fly.

84

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

3. Immediate Segmentation: Run the U-Net encoder–decoder to produce a binary

line mask.

4. Voltage Update: Compute the centroid (V ∗

G1, V
∗

G2) of the area enclosed between

the first two transition lines and apply these voltages to reposition the device in

the single-charge regime.

5. Feedback Assessment: Compute a model confidence score. If below a threshold,

trigger a high-resolution sub-scan (zoom) and re-infer.

By closing the loop in situ, we can dramatically shorten tuning cycles, autonomously

compensate for noise, and support rapid initialization of a large number of QD devices.

7.2 On-Chip Cryogenic Implementation

Looking further ahead, one goal would be to embed the auto-tuning algorithm inside the

dilution refrigerator itself. Key challenges and considerations include:

• Cryo-Compatible Electronics: Researchers are working on developing low-power

electronics that can operate at sub-kelvin temperatures which would be used as a

control unit for instance to run the auto-tuning algorithm. From the model archi-

tecture’s point of view, it would be necessary to build a lightweight and efficient

algorithm that would run in such a restricted hardware.

• Ultra-Low Latency: Minimize signal path lengths by placing inference hardware

as close as possible to the quantum chip.

• Thermal Budget and Mounting: Balance electronic heat dissipation against

refrigerator cooling power.

Such on-chip deployment would enable real-time qubit initialization without compro-

mising coherence or adding significant wiring overhead.

7.3 Scalability to Multi-Qubit Arrays and New Ma-

terials

Our ML pipeline naturally extends to larger two-dimensional QD arrays and alternative

material platforms (e.g., Ge/SiGe, GaAs). All we need is a few examples of labeled CSDs

from a new material or device geometry, and by leveraging transfer learning we can fine

tune our pretrained model on these diagrams, thus extending the applicability of our

model to new devices and accelerating deployment with minimal annotation effort. Note

that on top of fine tuning, additional postprocessing techniques need to be configured for

devices formed in a multi-qubit array as opposed to single-gate, in order to successfully

locate the region of interest.

85

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

7.4 Physics-Guided Feature Extraction

Our full-diagram segmentation produces a precise digital map of every charge-transition

line in a CSD. Beyond locating the single-charge regime, these line maps enable:

• Multi-Charge State Identification: Simply select the kth line pair to target

the k-electron (or hole) regime without retraining or re-running inference.

• Capacitance and Coupling Analysis: Compute the slopes and spacings of de-

tected lines to extract lever arms, inter-dot capacitances, and cross-couplings.

• Device Quality Metrics: Track statistical distributions of device quality across

wafers to inform fabrication process improvements.

Given that our model detects all transition lines in a CSD, we can use this to extract

more information than just the single charge regime. We can decide to locate the regime

of any number of charges by just specifying what region we are interested in since this is

done in the postprocessing step therefore there is no need to repeat the inference or create

a new prediction. We only need to run inference ounce and we have all the information

we need, and we know the location of all the transition lines predicted by our model.

In contrast, the patch-based approach that some groups have employed, would require a

new run of the algorithm with their ML line classification inference, if they decide to for

example locate the two electron regime as opposed to the single electron region.

Moreover, we can extract additional information from this digital map during post-

processing, like the slope of the lines, and the distance between them, all of which have

real physical meanings that can be very valuable to the team that design and fabricate

these devices, helping them push forward their quality and reproducibility. For example

in Fig. 7.1, we show how we can extract from the predicted binary mask, the gate voltage

value corresponding to the first transition line from its intersection with the horizon-

tal line extending from the center of the y-axis which corresponds to the SET applied

voltages. This physical feature, as well as others like the separation between transition

lines (drawn in yellow in the same figure) contains very important information about

the behavior of the device and its physics. All of this is possible due to our choice of

implementing a full-diagram line detection which we proposed in Sec. 3.4 and built our

model around it.

7.5 Enhanced Multi-Channel Input Representations

Finally, we can enrich our input beyond the existing three statistical channels (mean,

median, standard deviation) by incorporating:

• Gradient Channels: Sobel derivatives to emphasize linear features and sharpen

transition boundaries.

86

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Figure 7.1: Schematic of a binary image containing the predicted transition lines in
white, showing the extraction of possible geometric features which holds relevant physics
information. In blue we have the separation distance between transition lines which
can be mapped to a voltage value ∆V , and in yellow we show the extraction of the of
gate voltage Vfirst transition (on the x-axis) corresponding to the first transition line. The
numbers denote how many charged particles each region would trap.

• Frequency-Domain Features: Local Fourier transforms to capture periodic noise

patterns and discriminate true transition lines from spurious ones.

• Auxiliary Physical Signals: Simultaneously feed in derivatives of current with

respect to voltage (e.g., dI/dVG1), adding direct sensitivity to transition thresholds.

These richer representations can be stacked into multi-channel tensors and are likely to

boost both detection accuracy and robustness under challenging measurement conditions.

In summary, the path forward combines real-time in-prober deployment, physics-

informed post-processing, cryogenic on-chip integration, scalable array support, and richer

data representations. Together, these developments will push us closer to fully au-

tonomous, high-throughput tuning of large-scale spin-qubit QD devices.

87

Chapter 8

Conclusion and Perspectives

In order for any qubit platform to achieve the full promise of quantum computers these

systems must first solve the daunting challenge of scalability. This would look different

for each qubit platform. In the case of spin qubits realized in laterally-defined QDs, there

are two main obstacles to overcome. The first one i) is the ability to fabricate high quality

semiconductor QDs which are reproducible and have a low amount of variability. The

second hurdle to scalability is ii) having the ability to tune these devices to the desired

mode of operation. Tuning is currently being done manually by experts, which makes it

a laborious, time consuming process that is prone to errors. Indeed, we have discussed

at length the tuning process, and the importance of automating it as we increase the

number of devices and their complexity.

This thesis is a direct attempt to solving the second problem, more specifically to

automate the charge tuning process which consists of trapping the desired number of

charges in each individual QD. Although not a direct objective of this thesis, we also

provided in this work valuable feedback towards making informed decision that could

help improve the fabrication and reproducibility of these devices, thus making our work

directly relevant to both challenges on the route to scaling QD-based quantum computers.

The landscape of automated charge tuning for QDs is characterized by a clear evo-

lution from classical, heuristic-driven methods to sophisticated ML approaches. Early

classical algorithms, such as those by Lapointe-Major and Baart, demonstrated the fun-

damental feasibility of automated line detection and charge state identification, often

relying on image processing techniques or predefined patterns. While effective for their

specific contexts, these methods typically suffer from limited generalizability, requiring

significant prior device knowledge or being restricted to particular device architectures.

This dependency on device-specific heuristics presents a significant hurdle for scaling, as

each new device or architecture necessitates substantial manual recalibration. The ad-

vent of ML has offered a powerful avenue to overcome these limitations. ML algorithms,

particularly CNNs, are very good at learning complex patterns from data, enabling more

88

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

robust and generalizable solutions. The "empty-then-reload" strategy has emerged as a

universal, physically intuitive framework for charge tuning, providing a robust pathway

from an unknown charge state to a desired configuration by establishing a known refer-

ence point. The challenge for ML methods within this framework lies in efficiently and

reliably executing each phase.

Our proposed solution, employing a CNN for full-image scanning of CSDs to identify

all transition lines and directly extract voltage values, represents a distinct approach.

Compared to prevalent patch-based methods, this full-image analysis offers the advan-

tage of a holistic view, allowing the CNN to leverage broader spatial relationships and

contextual information. This could lead to more robust detection of transition lines, even

in the presence of localized noise or minor imperfections, potentially mitigating issues

like interruptions in transition lines that plague patch-based reloading. The ability to

directly identify the center of the desired regime combines detection and localization in

a single process, which is also a clear departure from the empty then reload approach

widely employed in the industry.

We summarize the key contributions of this work as follow:

Novel Auto-Tuning Pipeline: We have developed a comprehensive full diagram ML-

driven framework for the automatic tuning of gate-defined silicon QDs. By leveraging

a CNN model built in a UNet architecture on a pretrained MobileNetV2 backbone for

semantic segmentation of charge transition lines in stability diagrams.

Quantitative Validation: Through this model, we have achieved robust offline tun-

ing performance across diverse device designs and fabrication conditions by demonstrat-

ing average per-device accuracies exceeding 80%, highlighting pathways to approaching

near-perfect performance on good quality devices.

Comprehensive Dataset: Curated and manually labeled over 1,000 CSDs from nine

distinct device geometries, two carrier polarities, four fabrication runs, and seven wafers.

This diversity exceeds that of previous studies—e.g., Yon et al. used ∼27 diagrams split

between three device types for their offline tuning [93]. Our dataset captures real-world

variability and underpins the model’s generalizability.

Achieved Semi-Supervised Labeling: The model we developed in this work was

used to label new stability diagrams, due to its superior speed and detection accuracy

over manual labeling. By deploying our trained network as an accelerated annotator,

we achieved semi-supervised labeling of newly acquired CSDs, reducing human effort

compared to fully manual annotation.

89

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Physics-Informed Post-Processing: Beyond locating the single-charge regime, our

full-diagram segmentation yields digital line maps from which capacitance, lever arms,

inter-dot couplings, and line slopes can be extracted. This physics-guided feature extrac-

tion provides actionable feedback to device fabrication teams, an advantage not afforded

by patch classifiers.

Taken together, these contributions mark a significant advance toward fully auto-

mated, closed-loop charge tuning in QD systems. By shifting from heuristic, manual pro-

cedures to data-driven semantic segmentation, we reduce the calibration overhead and

improve reproducibility, which is a key requirement on the road to achieving fault-tolerant

quantum computers.

Nonetheless, several challenges remain. First, real-time, low-latency inference on

resource-constrained hardware demands further model compression and quantization

studies. Second, device drift and variability call for self-supervised or active-learning

paradigms to adapt models on the fly with minimal human labeling.

Looking forward, we envision three near-term objectives. (1) Deploy the auto-tuning

pipeline in a production cryoprober and benchmark live tuning throughput and accuracy.

(2) Extend the dataset to different designs and material stacks and possibly to larger QD

arrays. (3) Extract physics-based features from the predicted stability diagrams to further

aid in understanding and developing these devices.

By bridging the gap between advanced deep learning methods and the demands

of quantum hardware, this work lays the foundation for the next generation of auto-

mated qubit calibration. As QD devices grow in complexity and number, our data-driven

auto-tuning framework will be a critical enabler of rapid, reliable, and scalable quantum

information processing.

90

Appendix A

Training Details and Metrics

This appendix documents the exact training configuration used in the experiments re-

ported in Chapter 6, describes the grouped cross-validation protocol that ensured per-

device separation between training and test partitions, provides training metrics and

diagnostics for a representative fold, lists the principal software components and their

licenses, and discusses practical limitations and interpretation.

A.1 Hyperparameters

All folds were trained with the same hyperparameter set (no per-fold hyperparameter

search or tuning was performed). The table below lists the hyperparameters that were

kept fixed during the experiments.

Table A.1: Fixed hyperparameters used for all folds.

Hyperparameter Value
Optimizer Adam [71]
Learning rate 1 × 10−4

Loss function Dice loss
Batch size 8
Epochs 50
Input size 1024x1024
MobileNetV2 width multiplier ³ = 1.4

The values above are the parameters that remained unchanged across the 5 folds. Im-

plementation details (preprocessing, encoder/decoder choices and how the encoder was

initialised and trained) are described in the next section.

91

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

A.2 Architecture, preprocessing and trainability

A.2.1 Architecture Overview

The model pairs a MobileNetV2 [98] encoder (³ = 1.4) with a small custom decoder. In

the experiments described here the encoder was initialized from ImageNet weights and

left trainable (i.e., the encoder was fine-tuned during training).

Why MobileNetV2

MobileNetV2 was adopted as the encoder due to its favorable accuracy–efficiency tradeoff.

The key architectural benefits are listed below with brief explanations.

• Depthwise separable convolutions

• Pointwise convolutions

• Inverted residuals

• Linear bottlenecks

The separable convolutions in MobileNet split a standard k × k convolution into a

depthwise spatial convolution (per-channel k×k) followed by a pointwise 1×1 convolution

for channel mixing. This decoupling greatly reduces parameter count while preserving

effective receptive field.

Figure A.1: Schematic showing the difference between the regular and separable convo-
lution block which is implemented in the MobileNet architecture (Adapted from [98]).

A.2.2 Preprocessing

• Input images were resized and zero-padded (as needed) to a fixed training resolution

of 1024 × 1024 prior to augmentation and batching.

92

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

• Masks and probability maps are inverse-resized and unpadded in post-processing

before task-level evaluation so we detect the single charge regime with the original

pixel location.

A.2.3 Model Size and Parameter Count

The segmentation model used in this work contains a total of 2,057,489 parameters (ap-

proximately 7.85 MB when stored as 32-bit floats). Of those, 2,032,497 parameters are

trainable and 24,992 are non-trainable. The small number of non-trainable parameters

indicates that only minor quantities (e.g. BatchNorm) were non-trainable, and that the

MobileNetV2 encoder was fine-tuned together with the decoder during training (hence

nearly all parameters were updated by gradient descent).

For context, this model (≈ 2.06M parameters) is compact compared with many full

U-Net variants used in other segmentation tasks (which commonly have an order of

magnitude more parameters). The modest parameter count reduces memory and storage

requirements and makes the model practical for repeated training and inference in the

experimental pipeline used in this work and ideal for online deployment.

A.3 Cross-Validation Protocol and Dataset Split

• Group splitting: we used grouped k-fold cross-validation with k = 5 where the

grouping key corresponds to the unique physical device identifier (device design +

die location + gates used). This ensures that all images from a single physical

device are confined to a single fold and cannot appear in both training and test

partitions for the same fold, therefore no data leakage takes place.

• Fold proportions: within each fold the split is approximately 80% (training set)

and 20% (test set) of images. Each fold therefore provides a held-out test set drawn

from devices that the model did not see during training for that fold.

• Use of test partitions: we did not use the fold test sets to tune hyperparameters.

The fixed hyperparameter set (Table A.1) was used for every fold. The grouped folds

were used to obtain robustness estimates across devices, not for hyperparameter

selection.

• Why k-fold Using k folds allows us to (i) use all labeled data for both training

and held-out evaluation across different folds and (ii) report metrics over folds to

capture dataset heterogeneity.

93

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

A.4 Training Metrics and Interpretation

Below we summarize the behavior observed in one of the folds. A multi-metric plot of train

vs test curves across epochs for loss, Dice coefficient, Precision, Recall and Intersection

over Union (IoU) (see Figure A.2).

A.4.1 Metrics Summary

• End-of-training snapshot: by the final epoch the training Dice is high (≈ 0.84)

while the validation Dice is lower (≈ 0.59). Validation Precision stabilizes higher

than validation Recall (≈ 0.70 vs ≈ 0.56 in the representative fold).

• Convergence: training loss and training Dice improve steadily during the 50

epochs; validation metrics improve too but show a persistent train/validation gap

that plateau toward the end of training.

• Precision–Recall trade-off: across epochs validation Precision stabilizes at a

higher value than validation Recall in the representative fold, which is consistent

with a model that returns fewer false positives but can miss portions of the transi-

tions or predict a skeleton version of the thick line.

A.4.2 Interpretation

The main factors that explain the numerical behavior above are the following.

Mask geometry vs. practical task A core observation is that pixel-wise segmenta-

tion metrics (Dice, IoU) are strongly affected by the geometry of the ground-truth masks.

In our dataset the annotated transition lines were often drawn with relatively thick con-

tours. The trained model tends to predict thinner, well-localized lines along the location

of the transition lines seen in the stability diagram. A thin, correctly localized predic-

tion therefore yields a relatively low pixel-wise overlap with a hand labeled ground-truth

having thick lines, while still being sufficient for the downstream single charge detection

task. In short A correctly localized thin predicted line may yield low pixel-wise overlap

with a thick ground-truth mask thus yielding smaller values for IoU, DICE, etc.

Post-processing influence Postprocessing steps (morphological operations, connect-

ing broken lines, spurious-component filtering) materially affect the task specific success.

These steps can improve the detection of continuous transition lines even when raw pixel-

wise metrics remain modest. Therefore, reporting a success rate of finding the single

charge regime is more meaningful in our case than reporting pixel-wise metrics.

94

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

(a) Loss (b) Mean IoU

(c) Dice coefficient (d) Pixel Accuracy

(e) Precision (f) Recall

Figure A.2: Training and evaluation metrics for the segmentation model. From left-
to-right, top row: (a) Loss, (b) Mean IoU. Middle row: (c) Dice coefficient, (d) Pixel
Accuracy. Bottom row: (e) Precision, (f) Recall.

95

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Dataset heterogeneity and device-specific patterns Some device designs are under-

represented. The network can overfit to abundant patterns in the training subset causing

poorer generalization and lower test performance on those under-represented device types.

A.5 Labeling issues and their effect on metrics

Manual annotation is one of the most important source of label variation in our dataset

and a dominant contributor to lower pixel-based metrics. Hand labeling of transition lines

is inherently noisy with inter annotator variability. When multiple human annotators

label a dataset, agreement may be imperfect. We highlight the practical points below.

Annotator style and mask thickness Ground truth masks typically had thicker lines

in order to make sure they fully cover the features of the actual transitions in the CSD and

to prevent having class imbalance with so few thin lines in a background of black pixels.

This conservative drawing of transition lines introduces a systematic mismatch: when the

model predicts a thinner, accurately placed line, the overlap with the thick ground-truth

contour can be small even though the predicted line is experimentally useful for locating

the single charge regime. This thickness mismatch is one of the principal reasons for

reduced Dice and IoU values in the experimental (hand-labeled) dataset.

Effects of resizing and interpolation Preprocessing resizes and pads raw images to

the training resolution. Resizing alters the effective line thickness in the mask. These

geometric artifacts further reduce pixel overlap between prediction and ground truth.

Inter-annotator variability and label noise When multiple humans annotate the

same image they do not always agree on boundary placement or thickness. This inter-

annotator variability places a practical upper bound on achievable pixel-wise metrics.

A.6 Software and License Statement

The code and experiments reported in this thesis use open source software and pre-

trained weights. The encoder used in the U-Net model is MobileNetV2 accessed via

tensorflow.keras.applications with the pre-trained ImageNet weights. All model

implementations and weights are released under the Apache License, Version 2.0. Other

libraries used include TensorFlow/Keras, NumPy, pandas, OpenCV, matplotlib, seaborn

and scikit-learn (all permissively licensed).

96

Appendix B

Offline Auto-Tuning Test Results

This appendix presents the detailed results of the offline auto-tuning test and collects ad-

ditional examples of model inferences across different devices and measurement qualities.

The examples were selected to illustrate the variety of signal/noise conditions encoun-

tered in our dataset and the model’s robustness under these conditions. For the legend

and symbol meanings (contours, red patch, etc.) see Figure 6.1 in the main text. These

qualitative examples complement the quantitative per-device design and per-fold results

presented in Tabled B.1.

Table B.1: Inference Summary per Design and per Fold. For each device and fold
we report the ratio of the number of diagrams with successful single charge detection to
the total number of diagrams, followed by the percentage value.

Fold Design A Design B Design C Design D Design E

1 11/12 (92%) 14/16 (88%) 17/17 (100%) 39/42 (93%) 24/24 (100%)
2 17/19 (89%) 10/11 (91%) 15/20 (75%) 21/26 (81%) 37/41 (90%)
3 11/15 (73%) 7/12 (58%) 12/15 (80%) 25/30 (83%) 25/31 (81%)
4 12/14 (86%) 9/9 (100%) 13/15 (87%) 21/25 (84%) 17/21 (81%)
5 19/23 (83%) 12/13 (92%) 7/14 (50%) 24/24 (100%) 19/21 (90%)

Total 70/83 (84%) 52/61 (85%) 64/81 (79%) 130/147 (88%) 122/138 (88%)

Fold Design F Design G Design H Design I

1 17/18 (94%) 5/8 (62%) 19/29 (66%) 28/37 (76%)
2 23/24 (96%) 6/6 (100%) 8/20 (40%) 25/36 (69%)
3 22/28 (79%) 5/9 (56%) 15/26 (58%) 32/37 (86%)
4 43/46 (93%) 6/9 (67%) 12/22 (55%) 28/42 (67%)
5 16/26 (62%) 8/11 (73%) 22/27 (81%) 34/44 (77%)

Total 121/142 (85%) 30/43 (70%) 76/124 (61%) 147/196 (75%)

Grand total (all shown devices): 812/1015 (80.0%)

97

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Figure B.1: Additional successful inference examples (part A). Each panel shows the
original stability diagram, the hand-labeled ground-truth mask, and the model prediction
(legend as in Figure 6.1).

98

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

Figure B.2: Additional successful inference examples (part B).

99

Bibliography

[1] Max Planck. “Zur theorie des gesetzes der energieverteilung im normalspektrum”.

In: Berlin (1900), pp. 237–245.

[2] Albert Einstein. “Über einen die Erzeugung und Verwandlung des Lichtes be-

treffenden heuristischen Gesichtspunkt”. In: Annalen der Physik 322.6 (1905),

pp. 132–148.

[3] Niels Bohr. “On the Constitution of Atoms and Molecules”. In: Philosophical Mag-

azine 26.6 (July 1913), pp. 1–25.

[4] Louis De Broglie. “Recherches sur la théorie des quanta”. PhD thesis. Migration-

université en cours d’affectation, 1924.

[5] W Heisenberg. “On the quantum-theoretical reinterpretation of kinematical and

mechanical relationships”. In: Z. Physik 33 (1925), pp. 879–893.

[6] E. Schrödinger. “An Undulatory Theory of the Mechanics of Atoms and Molecules”.

In: Phys. Rev. 28 (6 Dec. 1926), pp. 1049–1070. doi: 10.1103/PhysRev.28.1049.

[7] Werner Heisenberg. “Über den anschaulichen Inhalt der quantentheoretischen Kine-

matik und Mechanik”. In: Zeitschrift für Physik 43 (1927), pp. 172–198. doi:

10.1007/BF01397280.

[8] Jonathan P. Dowling and Gerard J. Milburn. “Quantum technology: the sec-

ond quantum revolution”. In: Philosophical Transactions of the Royal Society

of London. Series A: Mathematical, Physical and Engineering Sciences 361.1809

(Aug. 15, 2003). Ed. by A. G. J. MacFarlane, pp. 1655–1674. issn: 1364-503X,

1471-2962. doi: 10.1098/rsta.2003.1227.

[9] Gordon E Moore et al. “Progress in digital integrated electronics”. In: Electron

devices meeting. Vol. 21. Washington, DC. 1975, pp. 11–13.

[10] John Preskill. Quantum computing and the entanglement frontier. 2012. arXiv:

1203.5813 [quant-ph].

[11] Richard P. Feynman. “Simulating Physics with Computers”. In: International

Journal of Theoretical Physics 21.6-7 (1982), pp. 467–488. doi: 10.1007/BF02650179.

100

https://doi.org/10.1103/PhysRev.28.1049
https://doi.org/10.1007/BF01397280
https://doi.org/10.1098/rsta.2003.1227
https://arxiv.org/abs/1203.5813
https://doi.org/10.1007/BF02650179

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

[12] Alán Aspuru-Guzik et al. “Simulated Quantum Computation of Molecular En-

ergies”. In: Science 309.5741 (2005), pp. 1704–1707. doi: 10 . 1126 / science .

1113479. eprint: https://www.science.org/doi/pdf/10.1126/science.

1113479.

[13] Iulia M Georgescu, Sahel Ashhab, and Franco Nori. “Quantum simulation”. In:

Reviews of Modern Physics 86.1 (2014), pp. 153–185.

[14] Yudong Cao et al. “Quantum chemistry in the age of quantum computing”. In:

Chemical reviews 119.19 (2019), pp. 10856–10915.

[15] P.W. Shor. “Algorithms for quantum computation: discrete logarithms and fac-

toring”. In: Proceedings 35th Annual Symposium on Foundations of Computer

Science. 1994, pp. 124–134. doi: 10.1109/SFCS.1994.365700.

[16] Vaishali Bhatia and K.R. Ramkumar. “An Efficient Quantum Computing tech-

nique for cracking RSA using Shor’s Algorithm”. In: 2020 IEEE 5th Interna-

tional Conference on Computing Communication and Automation (ICCCA). 2020,

pp. 89–94. doi: 10.1109/ICCCA49541.2020.9250806.

[17] Charles H Bennett and Gilles Brassard. “An update on quantum cryptography”.

In: Workshop on the theory and application of cryptographic techniques. Springer.

1984, pp. 475–480.

[18] Artur K. Ekert. “Quantum cryptography based on Bell’s theorem”. In: Phys. Rev.

Lett. 67 (6 Aug. 1991), pp. 661–663. doi: 10.1103/PhysRevLett.67.661.

[19] Lov K. Grover. “Quantum Mechanics Helps in Searching for a Needle in a Haystack”.

In: Physical Review Letters 79.2 (July 14, 1997), pp. 325–328. issn: 0031-9007,

1079-7114. doi: 10.1103/PhysRevLett.79.325.

[20] Peter W. Shor. “Scheme for reducing decoherence in quantum computer memory”.

In: Phys. Rev. A 52 (4 Oct. 1995), R2493–R2496. doi: 10.1103/PhysRevA.52.

R2493.

[21] Austin G Fowler et al. “Surface codes: Towards practical large-scale quantum

computation”. In: Physical Review A—Atomic, Molecular, and Optical Physics

86.3 (2012), p. 032324.

[22] John Preskill. “Quantum computing in the NISQ era and beyond”. In: Quantum

2 (2018), p. 79.

[23] Rodney Van Meter and Dominic Horsman. “A blueprint for building a quantum

computer”. In: Communications of the ACM 56.10 (2013), pp. 84–93.

[24] Morten Kjaergaard et al. “Superconducting qubits: Current state of play”. In:

Annual Review of Condensed Matter Physics 11.1 (2020), pp. 369–395.

101

https://doi.org/10.1126/science.1113479
https://doi.org/10.1126/science.1113479
https://www.science.org/doi/pdf/10.1126/science.1113479
https://www.science.org/doi/pdf/10.1126/science.1113479
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/ICCCA49541.2020.9250806
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevA.52.R2493

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

[25] Si-Hui Tan and Peter P. Rohde. “The resurgence of the linear optics quantum

interferometer — recent advances & applications”. In: Reviews in Physics 4 (2019),

p. 100030. issn: 2405-4283. doi: https://doi.org/10.1016/j.revip.2019.

100030.

[26] Colin D Bruzewicz et al. “Trapped-ion quantum computing: Progress and chal-

lenges”. In: Applied physics reviews 6.2 (2019).

[27] Daniel Loss and David P. DiVincenzo. “Quantum computation with quantum

dots”. In: Phys. Rev. A 57 (1 Jan. 1998), pp. 120–126. doi: 10.1103/PhysRevA.

57.120.

[28] R. Hanson et al. “Spins in few-electron quantum dots”. In: Rev. Mod. Phys. 79 (4

Oct. 2007), pp. 1217–1265. doi: 10.1103/RevModPhys.79.1217.

[29] Amina Sadik. “Intégration de matrices de boîtes quantiques sur silicium”. PhD

thesis. 2025.

[30] Daniel Loss and David P. DiVincenzo. “Quantum computation with quantum

dots”. In: Physical Review A 57.1 (Jan. 1, 1998). Number: 1, pp. 120–126. issn:

1050-2947, 1094-1622. doi: 10.1103/PhysRevA.57.120.

[31] M. Veldhorst et al. “A two-qubit logic gate in silicon”. In: Nature 526.7573 (Oct.

2015). Number: 7573, pp. 410–414. issn: 0028-0836, 1476-4687. doi: 10.1038/

nature15263.

[32] T. F. Watson et al. “A programmable two-qubit quantum processor in silicon”.

In: Nature 555.7698 (Mar. 2018). Number: 7698, pp. 633–637. issn: 0028-0836,

1476-4687. doi: 10.1038/nature25766.

[33] Guido Burkard et al. “Semiconductor spin qubits”. In: Reviews of Modern Physics

95.2 (June 14, 2023). Number: 2, p. 025003. issn: 0034-6861, 1539-0756. doi:

10.1103/RevModPhys.95.025003.

[34] R. Maurand et al. “A CMOS silicon spin qubit”. In: Nature Communications 7.1

(Nov. 24, 2016), p. 13575. issn: 2041-1723. doi: 10.1038/ncomms13575.

[35] M. F. Gonzalez-Zalba et al. “Scaling silicon-based quantum computing using

CMOS technology”. In: Nature Electronics 4.12 (Dec. 20, 2021), pp. 872–884.

issn: 2520-1131. doi: 10.1038/s41928-021-00681-y.

[36] N. I. Dumoulin Stuyck et al. “Uniform Spin Qubit Devices with Tunable Cou-

pling in an All-Silicon 300 mm Integrated Process”. In: 2021 Symposium on VLSI

Circuits. 2021 Symposium on VLSI Circuits. Kyoto, Japan: IEEE, June 13, 2021,

pp. 1–2. isbn: 978-4-86348-780-2. doi: 10.23919/VLSICircuits52068.2021.

9492427.

102

https://doi.org/https://doi.org/10.1016/j.revip.2019.100030
https://doi.org/https://doi.org/10.1016/j.revip.2019.100030
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1103/RevModPhys.79.1217
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1038/nature15263
https://doi.org/10.1038/nature15263
https://doi.org/10.1038/nature25766
https://doi.org/10.1103/RevModPhys.95.025003
https://doi.org/10.1038/ncomms13575
https://doi.org/10.1038/s41928-021-00681-y
https://doi.org/10.23919/VLSICircuits52068.2021.9492427
https://doi.org/10.23919/VLSICircuits52068.2021.9492427

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

[37] A. Elsayed et al. “Low charge noise quantum dots with industrial CMOS manufac-

turing”. In: npj Quantum Information 10.1 (July 19, 2024), p. 70. issn: 2056-6387.

doi: 10.1038/s41534-024-00864-3.

[38] Juha T. Muhonen et al. “Storing quantum information for 30 seconds in a nano-

electronic device”. In: Nature Nanotechnology 9.12 (Dec. 2014), pp. 986–991. issn:

1748-3387, 1748-3395. doi: 10.1038/nnano.2014.211.

[39] Alexei M. Tyryshkin et al. “Electron spin coherence exceeding seconds in high-

purity silicon”. In: Nature Materials 11.2 (Feb. 2012), pp. 143–147. issn: 1476-

1122, 1476-4660. doi: 10.1038/nmat3182.

[40] M. Veldhorst et al. “An addressable quantum dot qubit with fault-tolerant control-

fidelity”. In: Nature Nanotechnology 9.12 (Dec. 2014), pp. 981–985. issn: 1748-

3387, 1748-3395. doi: 10.1038/nnano.2014.216.

[41] Jonathan Y. Huang et al. “High-fidelity spin qubit operation and algorithmic

initialization above 1 K”. In: Nature 627.8005 (Mar. 2024), pp. 772–777. issn:

1476-4687. doi: 10.1038/s41586-024-07160-2.

[42] Luca Petit et al. “Design and integration of single-qubit rotations and two-qubit

gates in silicon above one Kelvin”. In: Communications Materials 3.1 (Nov. 2,

2022), p. 82. issn: 2662-4443. doi: 10.1038/s43246-022-00304-9.

[43] Kenta Takeda et al. “A fault-tolerant addressable spin qubit in a natural silicon

quantum dot”. In: Science Advances 2.8 (Aug. 5, 2016), e1600694. issn: 2375-2548.

doi: 10.1126/sciadv.1600694.

[44] Jun Yoneda et al. “A quantum-dot spin qubit with coherence limited by charge

noise and fidelity higher than 99.9%”. In: Nature Nanotechnology 13.2 (Feb. 2018),

pp. 102–106. issn: 1748-3387, 1748-3395. doi: 10.1038/s41565-017-0014-x.

[45] Akito Noiri et al. “A shuttling-based two-qubit logic gate for linking distant silicon

quantum processors”. In: Nature Communications 13.1 (Sept. 30, 2022), p. 5740.

issn: 2041-1723. doi: 10.1038/s41467-022-33453-z.

[46] Xiao Xue et al. “Quantum logic with spin qubits crossing the surface code thresh-

old”. In: Nature 601.7893 (Jan. 20, 2022), pp. 343–347. issn: 0028-0836, 1476-4687.

doi: 10.1038/s41586-021-04273-w.

[47] Adam R. Mills et al. “Two-qubit silicon quantum processor with operation fidelity

exceeding 99%”. In: Science Advances 8.14 (Apr. 8, 2022), eabn5130. issn: 2375-

2548. doi: 10.1126/sciadv.abn5130.

[48] David P DiVincenzo. “The physical implementation of quantum computation”.

In: Fortschritte der Physik: Progress of Physics 48.9-11 (2000), pp. 771–783.

103

https://doi.org/10.1038/s41534-024-00864-3
https://doi.org/10.1038/nnano.2014.211
https://doi.org/10.1038/nmat3182
https://doi.org/10.1038/nnano.2014.216
https://doi.org/10.1038/s41586-024-07160-2
https://doi.org/10.1038/s43246-022-00304-9
https://doi.org/10.1126/sciadv.1600694
https://doi.org/10.1038/s41565-017-0014-x
https://doi.org/10.1038/s41467-022-33453-z
https://doi.org/10.1038/s41586-021-04273-w
https://doi.org/10.1126/sciadv.abn5130

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

[49] T. Edvinsson. “Optical quantum confinement and photocatalytic properties in

two-, one- and zero-dimensional nanostructures”. In: Royal Society Open Science

5.9 (Sept. 2018), p. 180387. issn: 2054-5703. doi: 10.1098/rsos.180387.

[50] David L. Klein et al. “An approach to electrical studies of single nanocrystals”.

In: Applied Physics Letters 68.19 (1996), pp. 2574–2576. doi: 10.1063/1.116188.

[51] M. Urdampilleta et al. “Supramolecular spin valves”. In: Nature Materials 10

(2011), pp. 502–506. doi: 10.1038/nmat3050.

[52] Cees Dekker. “Carbon Nanotubes as Molecular Quantum Wires”. In: Physics To-

day 52.5 (1999), pp. 22–28. doi: 10.1063/1.882658.

[53] Leo P. Kouwenhoven, D. G. Austing, and Seigo Tarucha. “Few-electron quantum

dots”. In: Reports on Progress in Physics 64.6 (2001), pp. 701–736. doi: 10.1088/

0034-4885/64/6/201.

[54] Leo P. Kouwenhoven et al. “Electron Transport in Quantum Dots”. In: Mesoscopic

Electron Transport. Ed. by L. L. Sohn, L. P. Kouwenhoven, and G. Schön. Kluwer,

1997, pp. 105–214. doi: 10.1007/978-94-015-8839-3_4.

[55] Floris A. Zwanenburg et al. “Silicon quantum electronics”. In: Rev. Mod. Phys. 85

(3 July 2013), pp. 961–1019. doi: 10.1103/RevModPhys.85.961.

[56] Emmanuel Chanrion. “Charge control in semiconductor quantum-dot arrays and

prospects for large-scale integration”. PhD thesis. Université Grenoble Alpes [2020-

....], 2021.

[57] Brett M Maune et al. “Coherent singlet-triplet oscillations in a silicon-based double

quantum dot”. In: Nature 481.7381 (2012), pp. 344–347.

[58] Maximilian Russ and Guido Burkard. “Three-electron spin qubits”. In: Journal of

Physics: Condensed Matter 29.39 (2017), p. 393001.

[59] Dohun Kim et al. “Quantum control and process tomography of a semiconductor

quantum dot hybrid qubit”. In: Nature 511.7507 (2014), pp. 70–74.

[60] B. J. van Wees et al. “Quantized conductance of point contacts in a two-dimensional

electron gas”. In: Phys. Rev. Lett. 60 (9 Feb. 1988), pp. 848–850. doi: 10.1103/

PhysRevLett.60.848.

[61] M. Field et al. “Measurements of Coulomb blockade with a noninvasive voltage

probe”. In: Phys. Rev. Lett. 70 (9 Mar. 1993), pp. 1311–1314. doi: 10.1103/

PhysRevLett.70.1311.

[62] M. A. Kastner. “The single-electron transistor”. In: Rev. Mod. Phys. 64 (3 July

1992), pp. 849–858. doi: 10.1103/RevModPhys.64.849.

[63] Tom M. Mitchell. Machine Learning. McGraw Hill, 1997.

104

https://doi.org/10.1098/rsos.180387
https://doi.org/10.1063/1.116188
https://doi.org/10.1038/nmat3050
https://doi.org/10.1063/1.882658
https://doi.org/10.1088/0034-4885/64/6/201
https://doi.org/10.1088/0034-4885/64/6/201
https://doi.org/10.1007/978-94-015-8839-3_4
https://doi.org/10.1103/RevModPhys.85.961
https://doi.org/10.1103/PhysRevLett.60.848
https://doi.org/10.1103/PhysRevLett.60.848
https://doi.org/10.1103/PhysRevLett.70.1311
https://doi.org/10.1103/PhysRevLett.70.1311
https://doi.org/10.1103/RevModPhys.64.849

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

[64] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. “Deep feedforward net-

works”. In: Deep learning 1 (2016), pp. 161–217.

[65] Richard Szeliski. Computer vision: algorithms and applications. Springer Nature,

2022.

[66] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,

2006.

[67] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-

tion. MIT Press, 2018.

[68] Pedro L. Fernández-Cabán, Forrest J. Masters, and Brian M. Phillips. “Predict-

ing Roof Pressures on a Low-Rise Structure From Freestream Turbulence Using

Artificial Neural Networks”. In: Frontiers in Built Environment Volume 4 - 2018

(2018). issn: 2297-3362. doi: 10.3389/fbuil.2018.00068.

[69] Sunanda Das et al. “A Voting Approach for Heart Sounds Classification Using

Discrete Wavelet Transform and CNN Architecture”. In: SN Computer Science

5.2 (Feb. 5, 2024), p. 251. issn: 2661-8907. doi: 10.1007/s42979-023-02580-9.

[70] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning

representations by back-propagating errors”. In: Nature 323.6088 (Oct. 1, 1986),

pp. 533–536. issn: 1476-4687. doi: 10.1038/323533a0.

[71] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.

In: arXiv preprint arXiv:1412.6980 (2014).

[72] Anders Krogh and John Hertz. “A simple weight decay can improve generaliza-

tion”. In: Advances in neural information processing systems 4 (1991).

[73] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from

overfitting”. In: J. Mach. Learn. Res. 15.1 (Jan. 1, 2014), pp. 1929–1958. issn:

1532-4435.

[74] Connor Shorten and Taghi M. Khoshgoftaar. “A survey on Image Data Augmen-

tation for Deep Learning”. In: Journal of Big Data 6.1 (July 6, 2019), p. 60. issn:

2196-1115. doi: 10.1186/s40537-019-0197-0.

[75] Sinno Jialin Pan and Qiang Yang. “A Survey on Transfer Learning”. In: IEEE

Transactions on Knowledge and Data Engineering 22.10 (2010), pp. 1345–1359.

doi: 10.1109/TKDE.2009.191.

[76] Jason Yosinski et al. “How transferable are features in deep neural networks?”

In: Advances in Neural Information Processing Systems (NeurIPS). Vol. 27. 2014,

pp. 3320–3328.

105

https://doi.org/10.3389/fbuil.2018.00068
https://doi.org/10.1007/s42979-023-02580-9
https://doi.org/10.1038/323533a0
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1109/TKDE.2009.191

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

[77] Walber. Precision and recall. https://commons.wikimedia.org/wiki/File:

Precisionrecall.svg. Own work; licensed under Creative Commons Attribu-

tion–ShareAlike 4.0 International (CCBY-SA4.0). Nov. 2014.

[78] Justyna P. Zwolak and Jacob M. Taylor. “Colloquium : Advances in automation of

quantum dot devices control”. In: Reviews of Modern Physics 95.1 (Feb. 17, 2023),

p. 011006. issn: 0034-6861, 1539-0756. doi: 10.1103/RevModPhys.95.011006.

[79] Joshua Ziegler et al. “Tuning Arrays with Rays: Physics-Informed Tuning of

Quantum Dot Charge States”. In: Physical Review Applied 20.3 (Sept. 28, 2023),

p. 034067. issn: 2331-7019. doi: 10.1103/PhysRevApplied.20.034067.

[80] Joshua Ziegler et al. “Toward Robust Autotuning of Noisy Quantum dot Devices”.

In: Physical Review Applied 17.2 (Feb. 25, 2022), p. 024069. issn: 2331-7019. doi:

10.1103/PhysRevApplied.17.024069.

[81] Hanwei Liu et al. “An automated approach for consecutive tuning of quantum

dot arrays”. In: Applied Physics Letters 121.8 (Aug. 22, 2022), p. 084002. issn:

0003-6951, 1077-3118. doi: 10.1063/5.0111128.

[82] H. Moon et al. “Machine learning enables completely automatic tuning of a quan-

tum device faster than human experts”. In: Nature Communications 11.1 (Aug. 19,

2020), p. 4161. issn: 2041-1723. doi: 10.1038/s41467-020-17835-9.

[83] Justyna P. Zwolak et al. “Autotuning of Double-Dot Devices In Situ with Machine

Learning”. In: Physical Review Applied 13.3 (Mar. 31, 2020), p. 034075. issn: 2331-

7019. doi: 10.1103/PhysRevApplied.13.034075.

[84] B. Severin et al. “Cross-architecture tuning of silicon and SiGe-based quantum de-

vices using machine learning”. In: Scientific Reports 14.1 (July 27, 2024), p. 17281.

issn: 2045-2322. doi: 10.1038/s41598-024-67787-z.

[85] Sandesh S. Kalantre et al. “Machine learning techniques for state recognition and

auto-tuning in quantum dots”. In: npj Quantum Information 5.1 (Jan. 21, 2019),

p. 6. issn: 2056-6387. doi: 10.1038/s41534-018-0118-7.

[86] J Darulová, M Troyer, and M C Cassidy. “Evaluation of synthetic and experimen-

tal training data in supervised machine learning applied to charge-state detection

of quantum dots”. In: Machine Learning: Science and Technology 2.4 (Dec. 1,

2021), p. 045023. issn: 2632-2153. doi: 10.1088/2632-2153/ac104c.

[87] Justin K Perron, M D Stewart Jr, and Neil M Zimmerman. “A quantitative study

of bias triangles presented in chemical potential space”. In: Journal of Physics:

Condensed Matter 27.23 (June 17, 2015), p. 235302. issn: 0953-8984, 1361-648X.

doi: 10.1088/0953-8984/27/23/235302.

106

https://commons.wikimedia.org/wiki/File:Precisionrecall.svg
https://commons.wikimedia.org/wiki/File:Precisionrecall.svg
https://doi.org/10.1103/RevModPhys.95.011006
https://doi.org/10.1103/PhysRevApplied.20.034067
https://doi.org/10.1103/PhysRevApplied.17.024069
https://doi.org/10.1063/5.0111128
https://doi.org/10.1038/s41467-020-17835-9
https://doi.org/10.1103/PhysRevApplied.13.034075
https://doi.org/10.1038/s41598-024-67787-z
https://doi.org/10.1038/s41534-018-0118-7
https://doi.org/10.1088/2632-2153/ac104c
https://doi.org/10.1088/0953-8984/27/23/235302

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

[88] T. Hensgens. “Emulating Fermi-Hubbard physics with quantum dots”. PhD thesis.

Delft University of Technology, 2018. doi: 10.4233/UUID:B71F3B0B-73A0-4996-

896C-84ED43E72035.

[89] T. A. Baart et al. “Computer-automated tuning of semiconductor double quantum

dots into the single-electron regime”. In: Applied Physics Letters 108.21 (May 24,

2016), p. 213104. issn: 0003-6951. doi: 10.1063/1.4952624.

[90] M. Lapointe-Major et al. “Algorithm for automated tuning of a quantum dot into

the single-electron regime”. In: Physical Review B 102.8 (Aug. 3, 2020). Publisher:

American Physical Society, p. 085301. doi: 10.1103/PhysRevB.102.085301.

[91] R. Durrer et al. “Automated Tuning of Double Quantum Dots into Specific Charge

States Using Neural Networks”. In: Physical Review Applied 13.5 (May 8, 2020),

p. 054019. issn: 2331-7019. doi: 10.1103/PhysRevApplied.13.054019.

[92] Stefanie Czischek et al. “Miniaturizing neural networks for charge state autotuning

in quantum dots”. In: Machine Learning: Science and Technology 3.1 (Mar. 1,

2022), p. 015001. issn: 2632-2153. doi: 10.1088/2632-2153/ac34db.

[93] Victor Yon et al. “Robust quantum dots charge autotuning using neural network

uncertainty”. In: Machine Learning: Science and Technology 5.4 (Dec. 1, 2024),

p. 045034. issn: 2632-2153. doi: 10.1088/2632-2153/ad88d5.

[94] Victor Yon et al. “Experimental Online Quantum Dots Charge Autotuning Using

Neural Networks”. In: Nano Letters 25.10 (Mar. 12, 2025). Publisher: American

Chemical Society, pp. 3717–3725. issn: 1530-6984. doi: 10.1021/acs.nanolett.

4c04889.

[95] Jonas Schuff et al. Fully autonomous tuning of a spin qubit. Version Number: 1.

2024. doi: 10.48550/ARXIV.2402.03931.

[96] Julian D. Teske et al. “A machine learning approach for automated fine-tuning

of semiconductor spin qubits”. In: Applied Physics Letters 114.13 (Apr. 1, 2019),

p. 133102. issn: 0003-6951, 1077-3118. doi: 10.1063/1.5088412.

[97] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional

Networks for Biomedical Image Segmentation”. In: Medical Image Computing

and Computer-Assisted Intervention – MICCAI 2015. Ed. by Nassir Navab et

al. Cham: Springer International Publishing, 2015, pp. 234–241. isbn: 978-3-319-

24574-4. doi: 10.1007/978-3-319-24574-4_28.

[98] Mark Sandler et al. “MobileNetV2: Inverted Residuals and Linear Bottlenecks”. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

2018, pp. 4510–4520.

107

https://doi.org/10.4233/UUID:B71F3B0B-73A0-4996-896C-84ED43E72035
https://doi.org/10.4233/UUID:B71F3B0B-73A0-4996-896C-84ED43E72035
https://doi.org/10.1063/1.4952624
https://doi.org/10.1103/PhysRevB.102.085301
https://doi.org/10.1103/PhysRevApplied.13.054019
https://doi.org/10.1088/2632-2153/ac34db
https://doi.org/10.1088/2632-2153/ad88d5
https://doi.org/10.1021/acs.nanolett.4c04889
https://doi.org/10.1021/acs.nanolett.4c04889
https://doi.org/10.48550/ARXIV.2402.03931
https://doi.org/10.1063/1.5088412
https://doi.org/10.1007/978-3-319-24574-4_28

Neural Network Segmentation for the Auto-Tuning of Silicon QDs for Spin Qubits

[99] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009

IEEE conference on computer vision and pattern recognition. Ieee. 2009, pp. 248–

255.

[100] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. 4th. Pearson,

2018.

108

Author Declarations

Statement of Non-Plagiarism

I hereby declare that all information in this report has been obtained and presented in

accordance with academic rules and ethical conduct. The work I am submitting in this

report, except where otherwise indicated, is entirely my own.

AI Usage Statement

Generative AI tools such as large language models and AI coding assistants were used to

support the preparation of this thesis. These tools assisted with drafting initial sections

of the manuscript, generating parts of the software stack, and its documentation. All

AI-generated text and code were critically reviewed, edited, tested, and validated by

the author. The author retains full responsibility for the accuracy, interpretation, and

integrity of the final content.

Copyright and Permissions

All figures, tables, and illustrations included in this report that are not of my own creation

have been used with the appropriate permissions from the original copyright holders. No

copyrighted material has been used without proper authorization.

Date:

Signature:

August 22, 2025

Supervisors Approval

I, the undersigned, Yann Beilliard, supervisor of Peter Samaha, student of the PSRS

EMJMD, during his master thesis at CEA-Leti, certify that I approve the content of

this master thesis report entitled: “Neural Network Segmentation of Charge Stability

Diagrams for the Auto-Tuning of Silicon Quantum Dots for Spin Qubits.”

Date:

Signature:

I, the undersigned, Pierre-André Mortemousque, supervisor of Peter Samaha,

student of the PSRS EMJMD, during his master thesis at CEA-Leti, certify that I approve

the content of this master thesis report entitled: ‘Neural Network Segmentation of Charge

Stability Diagrams for the Auto-Tuning of Silicon Quantum Dots for Spin Qubits.”

Date:

Signature:

August 22, 2025

22/08/2025

	Contents
	List of Figures
	List of Tables
	Introduction
	State of the Art
	Fundamentals of Quantum Computing
	The Challenges of Quantum Computers
	Physical Platforms to Realize a Qubit

	Quantum Dots
	Quantum Confinement
	Quantum Dot Realizations
	Electrostatically Defined Semiconductor Quantum Dots

	Quantum Dots for Qubit Realization
	Coulomb Blockade in QD
	Readout Method: Single Electron Transistor
	Charge Stability Diagram
	Machine Learning
	Learning Paradigms
	Data Types
	What Is a Machine Learning Model
	Training Process of a Neural Network
	Transfer Learning and Fine‐Tuning
	Evaluation
	Model Inference

	Conclusion

	The Tuning Process of Quantum Dots
	Tuning of QDs
	Charge Tuning of qd
	Literature Review and State-of-the-Art
	Classical Heuristic Methods
	Machine Learning Methods

	Proposed Full‑Diagram Charge Tuning Method
	Device Variability and ML‑Enabled Feedback
	Conclusion

	Data Acquisition and Preprocessing
	Experimental Setup and Data Acquisition
	Data Labeling
	Type of Transition Lines
	Labeling Workflow

	Data Processing
	Statistical Feature Extraction
	Normalization
	Mask Generation
	Single Charge Regime Mask Generation

	Conclusion

	Implementation of the ML‑Based Charge Tuning Pipeline
	Problem Formulation
	Model Architecture
	Encoder: MobileNetV2 Backbone
	Decoder: Upsampling, Skip Connections, and Feature Fusion
	Final Prediction Layer
	Loss Function: Dice Loss

	Training Procedure
	Computational Environment
	Data Splitting & Cross‐Validation
	Input Preprocessing: Resize and Padding
	Data Augmentation

	Prediction and Postprocessing
	Evaluation Metrics
	Conclusion

	Experimental Results of Offline Auto Tuning
	Results and Discussion
	Qualitative Results
	Quantitative Results

	Failure Analysis
	Results summary

	Discussion and Future Work
	In-Situ Auto-Tuning in a Cryogenic Wafer Prober
	On-Chip Cryogenic Implementation
	Scalability to Multi-Qubit Arrays and New Materials
	Physics-Guided Feature Extraction
	Enhanced Multi-Channel Input Representations

	Conclusion and Perspectives
	Training Details and Metrics
	Hyperparameters
	Architecture, preprocessing and trainability
	Architecture Overview
	Preprocessing
	Model Size and Parameter Count

	Cross-Validation Protocol and Dataset Split
	Training Metrics and Interpretation
	Metrics Summary
	Interpretation

	Labeling issues and their effect on metrics
	Software and License Statement

	Offline Auto-Tuning Test Results
	Bibliography

