POLITECNICO DI TORINO

Master’s Degree in Data Science and Engineering

Politecnico
di Torino

Master’s Degree Thesis

Slimmable and Early Exit Neural
Networks for Object Detection on
Nano-Drones

Supervisors Candidate

Prof. Daniele Jahier PAGLIARI
Carlo MARRA
Prof. Alessio BURRELLO

Beatrice Alessandra MOTETTI

Academic Year 2025-2026

Abstract

Deploying deep learning on nano—drone platforms imposes strict constraints on
latency, memory, and energy. This thesis investigates the use of dynamic inference
solutions to tackle this problem, focusing in particular on object detection, a
common task in many applications such as navigation, obstacle avoidance, search
and rescue, etc.

The proposed approach modifies a MobileNetV2 SSDLite (input 512 x 512) into a
so-called slimmable model, where four width configurations (0.25x, 0.5x, 0.75x,
1.0x) can be dynamically selected for layers after the 6 feature extractor block.
The four widths share a single set of weights, except for width-private batch
normalization statistics, thus incurring a minimal memory overhead with respect
to the original model. Width selection can be performed on a per-sample basis,
for example depending on external conditions, such as remaining battery life or
expected task difficulty.

In addition to this multi-width operation, the model also supports an adaptive
mode, where a binary gate classifier is added at the end of the fixed backbone,
trained to detect empty or trivial frames and trigger an early-exit strategy, further
reducing computation without excessive performance loss.

Training is divided into two phases. In the first phase, the slimmable detector is
optimized across all widths using in-place ensemble bootstrapping with an EMA
teacher and knowledge distillation. This strategy ensures stable convergence and
preserves accuracy at every configuration. In the second phase, the gate is trained
for adaptive inference. By learning to discriminate between empty and labeled
images, the gate reduces the computation effort for the former, by either directly
returning an empty prediction, or by forcing the execution of the slimmest head,
which can potentially correct false negatives.

For evaluation, we use a Cityscapes-derived detection benchmark: each 2048 x 1024
image is converted to COCO format and split into eight non-overlapping 512 x 512
tiles, with extensive photometric and geometric augmentations.

As a reference, a non-slimmable MobileNetV2 SSDLite-512, which retains the same
gate as the slimmable model but is fixed to the full width, achieves 21.57 mAP
at a computational cost of 1.76 GMAC per forward pass. Our slimmable model

11

spans a smooth accuracy—efficiency frontier: at 1.0x it reaches mAP 21.96 at 1.44
GMAC /forward; at 0.75x it attains mAP 14.12 at 0.94 GMAC (—34.7% vs 1.0x);
and at 0.25x it yields mAP 2.09 at 0.38 GMAC (—73.6%). The adaptive mode,
leveraging the trained gate, skips 1884/4000 images (47.1%), correctly flags about
57% of empty images, and maintains mAP 16.64 while reducing the average cost
to 0.85 GMAC (—41.0% vs 1.0x).

Overall, the proposed detector combines the flexibility of slimmable design with
adaptive early-exit strategies. It allows instant switching between operating points,
either user-controlled or automatically chosen, and achieves substantial compute
savings in real-time drone workloads with controlled accuracy loss. Results indicate
that slimmable and input-adaptive networks offer a unified and practical approach
to deploying deep learning on resource-limited platforms.

II1

Table of Contents

List of Tables
List of Figures
Acronyms

1 Introduction

2 Background
2.1 Mobilenet V2
2.1.1 Manifold of Interest
2.1.2 Linear Bottleneck
2.1.3 Inverted Residual
2.1.4 Model Architecture
2.2 Object Detection L
2.2.1 Evaluation Metrics
2.2.2 Early Approaches
2.2.3 Two-Stage Detectors
2.2.4 One-Stage Detectors
2.3 Knowledge Distillation 00
2.3.1 Knowledge
2.3.2 Distillation
2.3.3 Teacher-Student architecture
2.4 Slimmable Neural Networks
241 History.
2.4.2 Benefits and Current Challenges

3 Related Works
3.1 Slimmable DNNs in Computer Vision
3.2 Dynamic Slimmable DNNs

VII

VIII

XII

4 Methods
4.1 Dataset Preprocessing
4.1.1 Tiling Process L
4.1.2 Data Augmentation
4.2 Model Architectureo
4.2.1 Backbone
4.2.2 Detection Head L.

4.3 Training Procedure
4.3.1 Phase 1: Stat

icMode

4.3.2 Phase 2: Adaptive Mode
5 Results
5.1 Static Mode
5.1.1 Training Details oo
5.1.2 Results.
5.2 Adaptive Mode
5.2.1 Training Details oo
522 Results.

5.3 Comparative Results
6 Conclusions

Bibliography

VI

37
38
38
41
42
43
45
45
46
47

51
51
51
52
57
57
58
63

65

67

List of Tables

2.1

2.2

2.3

24

4.1

5.1

5.2

9.3

Bottleneck residual block transforming from k to &’ channels, with
stride s, and expansion factor ¢ [7].
MobileNetV2 architecture, width multiplier a = 1, input size of 224
x 224. Each layer is defined by input resolution, operator, expansion
factor t, output channels ¢, number of repeats n, and stride s.
Comparison of SSD and SSDLite variants in terms of accuracy
(mAP), parameter count, multiply-add operations (MAdd), and
CPU inference latency [7].
Runtime of MobileNet v1 for image classification on different devices,
asreported in [45].o

Class distribution of the processed Cityscapes dataset after conver-
sion and tiling. The dataset is strongly imbalanced, with Car and
Person representing the majority of instances, while classes such as
Truck, Bus, and Train are rare.

Slimmable MobileNetV2 SSDLite-512 performance at different widths.
Savings are computed with respect to the slimmable 1.00x path
(1.44 GMAGCs). The static baseline retains the same gating struc-
ture but is fixed to the maximum width, acting as a conventional
single-width detector. L
Per-class mAP for the Slimmable MobileNetV2 SSDLite-512 at
different widths, alongside the proportion of each class in the test
set. Classes in the long tail (Truck, Bus, Train, Motorcycle) show

markedly lower mAP, reflecting both model capacity and data scarcity. 53

Adaptive-mode results under the two routing policies. The 1.0x
static benchmark run is included for reference.

VII

List of Figures

2.1

2.2
2.3

24
2.5

2.6
2.7
2.8
2.9
2.10
2.11
2.12

2.13

2.14

2.15

2.16
2.17

Citations per year of MobileNetV2, with the release of MobileNetV3

(2019) and MobileNetV4 (2023) indicated. 4
The ReLU (Rectified Linear Unit) activation function. 5
Examples of ReLLU transformations of low-dimensional manifolds
embedded in higher-dimensional spaces [7]. 6
Comparison between residual and inverted residual blocks [7]. . . . 7
Comparison of convolutional blocks for MobileNetV1 and MobileNetv2
architectures [7]. Lo 8
Comparison between image classification and object detection. . . . 10
R-CNN architecture [25]. 14
Fast R-CNN architecture [25]. 14
Faster R-CNN architecture [25]. 15
YOLO architecture [25]. oo 15
SSD architecture [30]..o 17

(a) The training data contains images and ground truth boxes for
every object. (b) In a fine-grained feature map (8 x 8), the anchor
boxes of different aspect ratios correspond to smaller area of the raw
input. (c) In a coarse-grained feature map (4 x 4), the anchor boxes
cover larger area of the raw input [29]. 17
An example of how the anchor box size is scaled up with layer index
[for [=6, Spmin = 0.2, Smin = 0.9. Only the boxes with aspect ration

r=1lareshown. 18
Mlustration of transformation between predicted and ground truth
bounding boxes [30]. 19

Multiple bounding boxes detect the car in the image. After non-
maximum suppression, only the best remains and the rest are ignored

as they have large overlaps with the selected one [33]. 21
SSD performance comparison [29]. oL L 22
Scheme of a generic response-based knowledge distillation approach

[40]. . 25

2.18 Scheme of a generic feature-based knowledge distillation approach [40]. 26

2.19 Representation of different types of distillations [40]..
2.20 Tlustration of a SNN. A single model can run at different widths (e.g.,

2.21

3.1

4.1

4.2
4.3

4.4

4.5

5.1

5.2

9.3

0.25x, 0.5%, 0.75x, 1.0x), enabling adaptive accuracy-efficiency
trade-offs [1].

Flow diagram of AutoSlim proposed approach [4].

[lustration of dynamic networks on efficient inference. Input images
are routed to use different architectures regarding their classification
difficulty [54].o

Example from the Cityscapes dataset showing instance segmentation
masks (colored regions) and the corresponding 2D bounding boxes
(dashed rectangles) after conversion to an object detection format. .
Example of the tiling process applied to Cityscapes images.
Example of bounding boxes removed during preprocessing. Boxes
lying on tile borders with at least one side shorter than 20 pixels
were discarded to avoid incomplete or misleading annotations in the
final dataset.
Examples of data augmentations applied to the Cityscapes dataset.
(a) Original image. (b) Photometric distortion (brightness, contrast,
hue-saturation shifts). (c) Zoom-out operation with padding and
resize. (d) Affine jitter including small translations, scaling, and
rotations. oo
Training process of slimmable detector with In-place Ensemble Boot-
strapping.

Qualitative predictions of the slimmable model in Static Mode at
different slimming ratios p € {0.25,0.50,0.75,1.0}. Each column
shows a representative image with ground truth (GT) on the first
row and model predictions below. (a) Example with a single, clearly
visible object. (b) Moderately dense and well lit scene. (c) Crowded
scene with multiple objects.
Qualitative predictions of the slimmable model in Static Mode at
different slimming ratios p. The layout follows Figure 5.1. (a) Small
object scenario. (b) Urban scene with multiple cars and one highly
infrequent object class. (c¢) Poorly lit image with reduced contrast. .
Routing policy used to train the Dynamic Slimming Gate. Empty
images correctly recognized by the slimmest sub-network are as-
signed the minimal-width target 7 (Xgmpty), Whereas non-empty or

27

o6

misclassified ones are assigned the maximal-width target T (XLapeled). 58

IX

5.4

9.5

5.6

5.7

Relationship between RMS Contrast, which goes from 0 to 0.5, and

gate behavior. (a) Percentage of empty images across RMS contrast

bins, showing that low-contrast scenes are more likely to be visually

empty. (b) Percentage of samples classified as Hard by the gate,

which increases with contrast.
Qualitative examples of images routed as Fasy by the gate. (a) Pre-

dominantly asphalt scene with few salient features. (b) Homogeneous

vegetation background with no foreground targets. (c) Visually

uniform yet semantically non-empty frame, containing small and

infrequent objects, misclassified as Fasy.
Qualitative examples of images routed as Hard by the gate. (a) Urban

street with mixed structures (road, facades, street furniture) and

multiple small objects. (b) Scene containing a large infrequent

class (Bus) alongside pedestrians and cars. (c) Cluttered yet empty

background in low-light conditions, wrongly classified as Hard. . . .
Accuracy—compute trade—off for Static and Adaptive modes.

62
63

Acronyms

Al
Artificial Intelligence

AP

Average Precision

BN

Batch Normalization

CNN

Convolutional Neural Network

DL
Deep Learning

DNN
Deep Neural Network

FSSD
Feature Fusion Single Shot Multibox Detector

IoT
Internet of Thing

IoU

Intersection over Union

KD
Knowledge Distillation

XII

MAC
Multiply-and-Accumulate

mAP

Mean Average Precision

ML

Machine Learning

Mol
Manifold of Interest

NAS

Neural Architecture Search

NMS

Non-Maximum Suppression

Rol

Region of Interest

RPN
Region Proposal Network

SGS
Sandwich Gate Sparsification

SNN

Slimmable Neural Network

SoA
State of the Art

SSD
Single-Shot MultiBox Detector

XIII

Chapter 1

Introduction

In recent years, the need to deploy deep learning (DL) models on mobile and
embedded devices has led to growing interest in efficient neural networks capable
of adapting to strict constraints in memory, computational power, and energy
consumption. Within this context, Slimmable Neural Networks (SNNs) have
emerged as a family of architectures designed to operate at variable widths, i.e.,
with a different number of active channels per layer. This property not only makes it
possible to dynamically balance accuracy and computational complexity, but also to
eliminate the need to train and maintain multiple distinct models for different usage
scenarios. SNNs therefore aim to address some of the key challenges associated
with running neural networks in real-world resource-costrained environments, which
are the variability of resources across devices, fluctuations in energy budgets on
the same device and the overhead of distributing and managing multiple models,
by allowing instantaneous switching between “lightweight” and relatively “heavy”
configurations.

The concept of slimmable networks was first introduced by Yu et al. (2018) [1],
who coined the term “Slimmable Neural Networks” for models that can run at
multiple widths. From there, SNNs have matured from a niche idea into a widely
used strategy in efficient deep learning. As of 2025, the SoA efficient models for
many tasks leverage the principles of slimmability and one-shot training. For
instance, leading image classification models optimized for mobile devices often
come from weight-sharing NAS techniques akin to OFA [2] or BigNAS [3], which
can be essentially seen as improved descendants of slimmable networks. In object
detection, it’s not uncommon to see frameworks where a single backbone can be
toggled between a fast mode and an accurate mode. Moreover, the concept has been
integrated into various AutoML [4] toolkits and hardware-aware model deployment
pipelines, indicating broad adoption. The research community has also extended
slimmable ideas to transformers for vision (ViT) [5], creating slimmable vision
transformers that can drop heads or layers on demand, which are becoming relevant

1

Introduction

in vision applications that need the adaptivity.

In this work, we focus on building an object detection model tailored for resource-
constrained drones. Our design takes inspiration from the Dynamic Slimmable
Network (DS-Net) proposed by Li et al. [6], which extends slimmable networks
with input-dependent gating. Whereas traditional SNNs assume that the width is
chosen statically for a given deployment scenario, DS-Net introduced the idea of
dynamically adjusting width on a per-input basis, thereby saving computation on
easier images while preserving accuracy on harder ones.

Building on this principle, we develop a slimmable version of MobileNetV2 SSDLite-
512 [7] equipped with a channel-gating mechanism that enables operation at four
widths (0.25x, 0.5x, 0.75x, and 1.0x), each providing a distinct balance between
accuracy and efficiency. The active width can be selected according to external
factors independent of the input, such as remaining battery or estimated operational
time.

In addition to multi-width operation, we introduce an adaptive mode that leverages
the same gating mechanism to identify simple or empty images and dynamically
adjust computation. Relative to the full-width (1.00x) configuration, the default
Try-Best setting processes such images with the slimmest sub-network, reducing
cost by 35.5% (0.93 GMACs vs. 1.44 GMACs) while maintaining 16.90% mAP
(—23.0%). The more aggressive Early-Exit variant instead skips these images
altogether, achieving a 41.0% cost reduction (0.85 GMACs per image) with a
comparable accuracy of 16.64% mAP (—24.2%). This trade-off demonstrates
the suitability of the proposed detector for real-world drone applications, where
efficiency and responsiveness are critical.

In general, the thesis is organized as follows:

o Chapter 2 provides the background for this work, starting with an overview
of the MobileNet V2 architecture and its core design principles, followed by
the main concepts of object detection, knowledge distillation, and slimmable
neural networks.

o Chapter 3 reviews the most relevant related works on SNNs, highlighting their
key ideas, challenges, and contributions.

o Chapter 4 details the methods and techniques adopted in this thesis. It
explains the architectural choices, the training procedure, and the specific
strategies used to implement and evaluate the proposed model.

o Chapter 5 presents the experimental results. It provides both a critical analysis
and visualizations of the most significant outcomes achieved during the project.

o Chapter 6 concludes the thesis by summarizing the main findings and outlining
possible directions for future work.

Chapter 2

Background

2.1 Mobilenet V2

MobileNet is a family of convolutional neural network architectures (CNNs) designed
for mobile and embedded vision applications, known for their limited size and
low latency [7, 8]. Made in response to a growing demand for efficient models
with competitive accuracy, the principle behind these architectures is balancing
perfomance and the memory requirements.

The first generation of MobileNet, MobileNetV1 [9], was published in 2017. From
an architectural point of view, the main innovation was the heavy use of depthwise
separable convolutions [10], resulting in a reduction of the number of parameters
and operations by almost an order of magnitude when compared to standard
convolutions.

MobileNetV2 [7, 8] was released a year later, introducing inverted residual blocks
and linear bottlenecks, improving both efficiency and capacity of representation.
This big step forward allowed the MobileNetV2 to be a widely adopted backbone
for various computer vision tasks, ranging from image classification to segmentation
[11, 12].

Later releases, namely MobileNetV3 (2019) [13] and MobileNetV4 (2023) [14]
further refined this design philosophy, incorporating techniques like hardware-aware
neural architecture search (NAS), complemented by algorithms like NetAdapt
[15] to tune performance for mobile CPUs, and attention mechanism [16]. As of
today, MobileNetV2 is still considered a pivotal step in the family, as it shown
in Figure 2.1, finding an effective balance between computational efficiency and
accuracy.

As already stated, the MobileNetV2 was proposed by Sandler et al. as a refinement
of the original MobileNet architecture. One of the major drawbacks of MobileNetV1
was its representational capacity, particularly when compared to larger, full-scale

3

Background

7000

6000

5000

Citations
D
o
o
o

w
o
o
o

2000

10001

2018 2019 2020 2021 2022 2023 2024
Year

Figure 2.1: Citations per year of MobileNetV2, with the release of MobileNetV3
(2019) and MobileNetV4 (2023) indicated.

CNNs. In particular, MobileNetV1 struggled with effectively reusing features across
layers, a crucial property that granted the success of deeper architectures such
as ResNet [17]. The design challenge for MobileNetV2 was therefore to keep the
computational efficiency of V1 while introducing mechanisms to recover part of the
lost accuracy.

In the following subsections, the main properties and architectural components of
MobileNetV2 are presented. In particular, Subsection 2.1.2 explains the concept of
the linear bottleneck, while Subsection 2.1.3 details the inverted residual connection
and its motivations. Finally, the overall network architecture is summarized in
Subsection 2.1.4.

2.1.1 Manifold of Interest

Modern CNNs produce, for each layer L;, an activation tensor with shape h; x w; x d;,
where h; and w; denote the spatial dimensions (height and width of the feature map),
and d; the number of channels. What Sandler et al. observed is that each spatial
position can be represented as a d;-dimensional vector. Across different inputs,
these vectors do not uniformly fill the whole space R%, but rather concentrate on a
subset of it, the so-called "manifold of interest" (Mol).

From an empirical point of view, the Mol captures the statistical regularities of
images and the invariances learned by the network. Although each activation lives
in a d;-dimensional space, the data actually occupy only a much smaller subset of it.
In other words, the representational capacity of the network is usually larger than

4

Background

what is effectively needed, which is why the Mol tends to have a lower intrinsic
dimension than d;. This observation motivated the channel compression strategy
adopted in MobileNetV1, implemented through the width multiplier parameter a.
In other words, the linear transformations performed by convolutional layers can
preserve the essential information of the manifold while, at the same time, reducing
memory usage and computational cost.

However, what was observed by the authors is that compression alone is not enough,
since CNNs are not purely linear systems. After a linear transformation, infact, all
activations pass through a pointwise nonlinearity (e.g. ReLU [18]).

The ReLU activation function (Figure 2.2), for example, sets all negative input
values to zero. Geometrically, this means that the activation space is partitioned
into regions depending on which channels remain positive (the so-called "active'
channels). Within each region the layer behaves like a linear transformation, and
the nonlinearity only appears at the boundaries between regions.

ReLU(x) = 27 = max(0,2) =

r+lz] Jz, >0
2 o, z<0

ReLU(x)

Figure 2.2: The ReLU (Rectified Linear Unit) activation function.

Sandler et al. found out that compressing the representation first and then applying
ReLU, entire pieces of information can be suppressed, irreversibly collapsing parts
of the Mol.

As Figure 2.3 illustrates, the ReLU activation can distort low-dimensional represen-
tations, potentially causing a loss of information. The example shows an input Mol
(a spiral) undergoing ReLU transformations when projected into different output
dimensions (with dimensionality equal to 2, 3, 15, and 30). In low-dimensional
cases, such as the ones with dimension equal to 2 and to 3, the spiral becomes
compressed and distorted, leading to a collapse of certain regions of the manifold.

5

Background

Input Output/dim=2 Output/dim=3 Output/dim=5 Output/dim=15 Output/dim=30

L WK Nk g

Figure 2.3: Examples of ReLLU transformations of low-dimensional manifolds
embedded in higher-dimensional spaces [7].

This results in significant loss of information in the learned representation (i.e., the
activations). By contrast, when the output dimensionality is higher, such as with
dimension equal to 15 or to 30, the transformation preserves the structure of the
manifold much more effectively, and the information loss is greatly reduced.

2.1.2 Linear Bottleneck

MobileNetV1 manages to reduce the computation with depthwise separable con-
volutions and width multipliers, but an aggressive shrinking degraded capacity of
representation when nonlinear transformations acted in the narrow space.
MobileNetV2 solves this issue by moving the nonlinearity to higher-dimensional
spaces and keeping the compression step linear, avoiding destructive clipping. From
an architectural point of view, each of the building blocks follows the pattern:

Expansion — Depthwise Convolution — Projection

o Expansion: A 1x1 convolution expands the channels from d;, to t-d;, with ¢ >
1 (typically ¢ = 6), followed by batch normalization and a bounded activation.
This creates a higher-dimensional space where nonlinear transformations are
less likely to collapse the Mol.

o Depthwise convolution: A depthwise k x k convolution followed by batch
normalization (BN) and a ReLUG6.

o Projection: A 1 x 1 convolution brings the features back to doy. It is
fundamental to note that no nonlinear transformations are applied after this
phase.

In the original design, the authors employed the ReLLU6 activation function, a
variant of ReLLU that clips outputs to the range [0, 6]. This bounded version was
shown to be more robust in low-precision computations commonly used on mobile
devices [19, 20].

The Projection stage and its relative output are usually refered as "linear bottleneck".
The term “linear” emphasizes the absence of any non-linear activation function at
this narrowest point.

Background

2.1.3 Inverted Residual

In classical architectures such as ResNet [17], residual connections are placed
between layers with a large number of channels, so that the shortcut links wide
feature maps. MobileNetV2 takes the opposite approach: the shortcut is applied
at the narrow bottleneck rather than the expanded representation. The intuition is
that the bottleneck already preserves the essential information, while the expansion
mainly serves as an intermediate computation. This inversion of the residual
connection is what gives the block its name, the "inverted residual”.

(a) Residual block (b) Inverted residual block

Figure 2.4: Comparison between residual and inverted residual blocks [7].

There are two main motivations for placing the shortcut at the bottleneck:

1. The usage of shortcut improves gradient propagation across multiple stacked
blocks, same as with classical residual connections.

2. Inverted design is considerably more memory efficient. Moreover, experiments
conducted by the authors prove that it is also as accurate as the wide-skip
alternative.

Input Operator Output
hxwxk 1 x 1 conv2d, ReLU6 h x w x (tk)

hxwxtk | 3x3dwise s =s, ReLU6 | 2 x 2 x (tk)

X 2 x th linear 1 x 1 conv2d % X Y xk

Table 2.1: Bottleneck residual block transforming from k to k' channels, with
stride s, and expansion factor ¢ [7].

The basic implementation structure is defined and displayed in Table 2.1 and
represented in Figure 2.5 compared to a MobileNetV1 basic block.

7

Background

conv 1x1, Relu6 | At | | conv 1x1, Linear |
A ‘ conv 1x1, Linear ‘ T
f Dwise 3x3,
stride=2, Relub
. Dwise 3x3, Relu6
Dwise 3x3, : T
stride=s, Relu6
Conv 1x1, Relu6
Conv 1x1, Relu6

Stride=1 block Stride=2 block

> A

(a) MobileNetV1 (b) MobileNetV2

Figure 2.5: Comparison of convolutional blocks for MobileNetV1 and MobileNetv2
architectures [7].

The total number of Multiply-and-Accumulate (MACs) operations required, given
a block of size h x w, expansion factor ¢ and kernel size k with d’ input channels
and d” output channels, is:

MACs =h-w-d -t(d +k* +d")

2.1.4 Model Architecture

The architecture of MobileNetV2 contains the initial fully convolution layer with
32 filters, followed by 19 residual bottleneck layers described in Table 2.2. All
the nonlinear transformations are ReLLUG, as it has been shown to be particularly
robust with low-precision computation [9]. All depthwise kernels are 3 x 3. Each
stage is specified by the expansion factor ¢, the output channels ¢, the number of
block repeats n, and the stride s of the first block in that stage (subsequent repeats
use stride 1).

The last 1 x 1 projection of each block is followed by BN without an activation (as
explained in subsection 2.1.2).

The head is composed by a 1 x 1 convolution that expands the activation to 1280
channels at 7 x 7, followed by global average pooling and a final 1 x 1 convolution
to k classes.

The primary network, with width multiplier @ = 1 and an input size of 224 x 224,

8

Background

Input Operator t c n|s
2242 x 3 conv2d - 32 112
1122 x 32 bottleneck 1] 16 |11
1122 x 16 bottleneck 6| 24 |22
562 x 24 bottleneck | 6| 32 | 3|2
282 x 32 bottleneck | 6| 64 | 4|2
142 x 64 bottleneck 6| 96 | 3|1
142 x 96 bottleneck | 6 | 160 | 3 | 2
72 x 160 bottleneck |6 | 320 |1 |1
72 x 320 conv2d 1 x1 |- [1280 |1 |1
7> x 1280 | avgpool Tx 7 | - | - 1] -

1x1x1280 | conv2d 1 x 1 | - k - -

Table 2.2: MobileNetV2 architecture, width multiplier e = 1, input size of 224 x
224. Each layer is defined by input resolution, operator, expansion factor ¢, output
channels ¢, number of repeats n, and stride s.

has a computational cost of approximately 300 million MACs and comprises 3.4
million parameters [7].

2.2 Object Detection

Object detection is a computer vision task that consists in identifying and locating
objects within an image or video. Specifically, object detection models generate
bounding boxes around the entities detected within the input frame, thus allowing
to locate them (either statically in a single image, or dynamically in the context of
videos) in a scene, and label them at the same time.

It is important, before moving forward, to clarify the distinctions between object
detection and image classification.

Image classification consists in assigning one (or more) label to an image. On the
other hand, object detection provides more information about the image in question
drawing bounding boxes around each recognized object in the frame. Figure 2.6
presents a practical example demonstrating the distinction between the two tasks.
Object detection capabilities make it the go-to option for a various number of
application, citing a few: crowd counting, visual perception in self-driving cars,
video surveillance, face detection, anomaly detection.

9

Background

Dog

(a) Image classification (b) Object detection

Figure 2.6: Comparison between image classification and object detection.

2.2.1 Evaluation Metrics

Assessing the performance of object detection models is crucial for providing a
quantitative measure to compare across different methodologies. Different metrics
provide insights into how well a model is able to detect, classify and localize different
objects of interest in an image. We consider two families of evaluation metrics, i.e.,
those that can be used to assess the performance of the model on the task, and
those which allow to quantify the inference cost, or the network’s complexity.

Detection Metrics

 Intersection over Union (IoU): The overlap between the bounding box
predicted by the model and the ground truth. From a mathematical perspec-
tive, it is defined as the ratio of the area of intersection and the area of union
between the predicted bonding box (Bp) and the ground truth (Bgt) one:

| Bp N Byl

IoU =
| By U By

ranges from 0 (no overlap between predicted and ground-truth boxes) to 1
(perfect alignment).

o Precision: It measures the proportion of true positive predictions among all
positive predictions made by the model. It can be viewed as a measure of the
accuracy of positive predictions. Mathematically, precision is defined as the
ratio of true positives (TP) to the sum of true positives and false positives
(FP), given by the following:

TP

Precision = m

10

Background

Precision ranges from 0 to 1, where a precision of 1 indicates that every
positive prediction made by the model is correct. Precision is crucial when
the cost of false positives is high.

Recall: Also known as sensitivity, it measures the proportion of actual
positives that are correctly identified by the model. It is a measure of the
model’s ability to capture all relevant instances. Recall is mathematically
defined as the ratio of true positives (TP) to the sum of true positives and
false negatives (FN), expressed as follows:

TP

Recall = ——
T TP Y FN

Recall ranges from 0 to 1, with a recall of 1 indicating that the model correctly
identifies all positive instances. High recall is critical when the cost of false
negatives is high, ensuring that the model captures as many true positives as
possible.

Average Precision (AP): Metric that represents the precision across different
levels of recall, integrating the precision—recall curve. AP is computed as the
area under the precision-recall curve, which is computed as the weighted mean
of precisions achieved at each threshold, with the change in recall serving
as the weight. Defining R,, and P,, as the recall and precision at the n-th
threshold respectively, the formula for AP is given by the following:

AP =3 (R, — R, 1)P,

AP is a key metric in object detection as it accounts for the trade-off between
precision and recall across all thresholds.

Mean average precision (mAP): Extends the concept of AP to multiple
object classes, providing a unified metric that assesses the performance across
all classes. Mathematically, mAP is the mean of the AP values calculated for
each class, given by the following:

1 N
nais

where N is the number of classes in the dataset and AP; is the average precision
for the i-th class. mAP is the most widely used metric in object detection
challenges as it provides a comprehensive measure of the model’s ability to
detect and localize objects across different categories.

11

Background

Metrics for Resource-Constrained Devices

When deploying object detection models on mobile or embedded devices, traditional
metrics such as mAP are not sufficient on their own. In these scenarios, additional
factors become critical to ensure that the model can run under limited computational
and memory budgets. The most relevant metrics are:

o Frames per Second (FPS): How many images the model can process in
one second. A higher FPS indicates real-time performance, which is often
required in applications such as autonomous driving or augmented reality.

» Inference Latency: Time required to process a single image (often reported
in milliseconds). While related to FPS, latency is particularly important for
interactive systems, where fast response times are essential.

o Model Size: Number of parameters or the storage footprint of the model
(typically measured in MB). Smaller models are easier to deploy on devices
with limited memory and storage, and can also reduce power consumption.

« Peak Memory: The maximum CPU/GPU memory consumed during infer-
ence, including model weights, intermediate activations, and buffers. Lower
peak memory usage allows deployment on devices with stricter memory con-
straints, such as mobile or embedded platforms.

Together, these metrics provide a more complete picture of a model’s suitability
for real-world applications on constrained devices, complementing accuracy-based
measures such as mAP.

2.2.2 Early Approaches

The field of object detection has experienced significant evolution, beginning with
early techniques that laid the groundwork for future advancements.

The first ever approaches to object detection in computer vision relied heavily on
handcrafted features. In the earliest stages, the primary challenge was how to
effectively encode objects in a way that was both feasible from a computational
point of view and robust enough to variations in scale, rotation, and illumination.
One of the most influential early methods was the scale-invariant feature transform
(SIFT) [21]. SIFT was designed to detect features in images that were independent
to scale and rotation. SIFT became a powerful tool for matching objects across
different images. Its robustness to changes in viewpoint and illumination made it a
popular choice for early object recognition tasks. However, despite its accuracy,
SIFT was computationally intensive, which limited its application in real-time
systems.

12

Background

Around the same time, another critical advancement was the introduction of
the histogram of oriented gradients (HOG) [22]. HOG features were specifically
designed for human detection and became widely used due to their simplicity and
effectiveness. The HOG method consists in splitting an image into small, connected
regions called cells, computing a histogram of gradient directions within each cell.
This approach made it particularly effective for detecting pedestrians in images.
The HOG combination with Support Vector Machines (SVMs) in a sliding window
approach became the standard solution for pedestrian detection. Although HOG
was relatively faster than SIF'T, it still struggled with detecting objects in complex
scenes or under varying lighting conditions.

Another important development in early object detection was the introduction of
Haar-like features. Haar-like features are rectangular features used to represent the
difference in intensity between adjacent rectangular groups of pixels. These features
could be computed rapidly, allowing for real-time detection. Viola & Jones [23]
combined these features with a cascaded classifier, where a series of increasingly
complex classifiers were applied sequentially. The Viola—Jones detector became
one of the first successful real-time object detection systems, widely adopted in
applications ranging from security cameras to consumer electronics. Despite the
success, the Viola—Jones still struggled with variations in pose, scale, and occlusion.
It is essential to note that, in every proposed methods cited, the reliance on
predefined features made them ofter lacked the flexibility to handle the complexity
of real-world data. This was exactly the catalyst factor that would eventually drove
the field toward ML and DL approaches that could learn features directly from the
data.

2.2.3 Two-Stage Detectors

The introduction of CNNs marked a game-changing moment in the field of object
detection, improving detection accuracy but also enabling models to generalize
better across varying datasets and conditions. The breakthrough in using CNNs
for object detection began with the development of the regions with convolutional
neural networks (R-CNN) model [24]. R-CNN was one of the first methods that
leveraged CNNs for the feature extraction phase. The main idea of the model
was to generate region proposal for the image, namely candidate bounding boxes
obtained via algorithms like Selective Search [24], and then pass them all through
the feature extractor. The output is finally fed into a classifier to predict the
presence and category of objects within each region.

However, R-CNN’s performance gains came at the cost of a very low computa-
tional efficiency. Processing each region proposal independently led to significant
redundancy, as many overlapping regions shared similar features. This problem
motivated the development of Fast R-CNN [26], which introduced several key

13

Background

- SVM Classifier
‘I- |-

Input Image Region Proposals Warped ROI CNN Detection

Figure 2.7: R-CNN architecture [25].

innovations. By employing a technique known as Region of Interest (Rol) pool-
ing, Fast R-CNN allowed the sharing of convolutional computations across all
region proposals. Instead of feeding each proposal through the entire CNN, the
model needed to computed just a single feature map for the entire image and
then extracted features for each proposal from this shared map. This optimization
drastically reduced the computational burden and also enabled faster training and
inference without no accuracy sacrificed.

’|:| mmp | Classifier
g ot

FC Detection
layers

Spatial
Pyramid
Pooling

Input Image Convolutional Region proposals on
Layers feature maps

Figure 2.8: Fast R-CNN architecture [25].

Later on, the Faster R-CNN model [27] introduced another fundamental novelty:
the region proposal network (RPN). The RPN replaced the external region proposal
generation step with a fully trainable network. By generating region proposals
directly from the CNN feature map, Faster R-CNN eliminated the need for external
proposal algorithms like Selective Search, speeding up the detection process. The
RPN consists of sliding a small network over the feature map and predicting object
bounds and scores at each position. This approach also improved the quality of
the proposals, leading to even better detection performance, quickly making Faster
R-CNN the benchmark for high-accuracy object detection.

All the detectors explained so far are referred to in the literature as two-stage

14

Background

Nar
|I-
()
r pl

__________________ .
e Ngy
.
| |
regressor

Input Image Convolutional layers Feature Maps Region proposals on Rol Pooling FC Detection
feature maps layer layers

Figure 2.9: Faster R-CNN architecture [25].

detectors, since they first generate a set of region proposals and then classify and
refine them in a second stage. Two-stage detectors, such as the R-CNN family,
are typically computationally intensive models known for their high accuracy
and reliability. However, their multi-stage pipelines make them less suitable for
deployment in resource-constrained systems.

2.2.4 One-Stage Detectors

The pursuit of faster and more efficient solutions led to the development of one-stage
detector models, of which the YOLO (You Only Look Once) family and SSDs
(deeply covered in section 2.2.4) profoundly redefined the landscape of real-time
object detection.

-
BB
Regressor

Convolutional Network ~ Convolution Layer Detection

HEALCEIE

i input Image
Figure 2.10: YOLO architecture [25].

The introduction of YOLO [28] marked a significant advancement in object detection.
YOLO reframed object detection as a single regression problem, predicting bounding
boxes and class probabilities straightly from the entire image in one unified process.

15

Background

This end-to-end approach, shown in Figure 2.10, allows YOLO to process images
in a single pass, significantly increasing the speed of detection.

The main innovation of this model consist of dividing the input image into a grid,
with each grid cell predicting a fixed number of bounding boxes and confidence
scores for the presence of objects. The directness of this approach allowed YOLO
to operate at speeds never seen before, achieving real-time performance even on
modest hardware [28]. Breaking free from having to focus on individual Rols,
YOLO manages to treat object detection as a global problem, enabling the capture
of contextual information from the entire image.

However, this design choice also introduced several challenges. Indeed, early versions
of YOLO struggled with small object detection and localizing objects close to each
other, primarily due to the grid method used for predictions. Moreover, the fixed
structure of the grid limited the model’s ability to adapt to instances of objects
that did not fit neatly within predefined cells. Despite these challenges, YOLO
has seen significant improvements through subsequent iterations. Each iteration of
YOLO has pushed the boundaries of what is considered possible in real-time object
detection, making it a popular choice for applications where speed is critical, such
as in autonomous driving, robotics, and real-time video analysis.

Both SSD and YOLO represent a shift toward more deployable object detection
systems. Their ability to operate at high frame rates without significant sacrifices
in accuracy has made them highly desirable systems in resource-constrained devices
and latency-sensitive applications. This has opened up new possibilities for real-
time applications, from drone navigation to augmented reality, where traditional
two-stage object detection methods would be impractical.

Single Shot MultiBox Detector

The Single Shot Detector (SSD) [29], proposed in 2016 by Wei Liu et al., is one of
the first attempts at using CNNs’ pyramidal feature hierarchy for efficient detection
of objects of various sizes [30].

As its base model, SSD uses the VGG-16 [31] model (pre-trained on ImageNet
[32]) for extracting image features. After the VGG-16, SSD adds on top several
convolutional layers of decreasing sizes, represented in Figure 2.11.

The main idea behind this model is that, since large fine-grained feature maps at
earlier levels are mostly good at capturing small objects and small coarse-grained
feature maps can detect large objects well, the detection happens in every pyramidal
layer, targeting at objects of various sizes.

Anchor Boxes Unlike YOLO, SSD does not divide each image into a strict
and arbitrary grid, but instead predicts, for each location of the feature map, the
offset of predefined anchor boxes. All the anchor boxes tile the whole feature map

16

Background

conv1 to convb blocks

\
s i “oaxd \ 1x1 >
Image]] 2 90T lconve| | oMY
1 E : (1c6)) % =0
b : I 1x1x256

3x3x256
- 19x19x1024 19x19x1024 10x10x512 OXOx256

Detection

300x300x3
VGG-16 Extra feature layers

Figure 2.11: SSD architecture [30].

in a convolutional manner. In other words, every feature map cell is associated
with a set of default bounding boxes of different dimensions and aspect ratios.
These default bounding boxes are manually chosen in order to grant, in theory, the
possibility for SSD to generalise for all types of input.

As explained, each feature map, depending on the level, has different sizes of
receptive field. All the anchor boxes are rescaled so that each one of the feature
map is responsible to detect object at a particular scale. Figure 2.12 shows an
example of this concept, showing how the dog can only be well detected in the
4 x 4 feature map, which corresponds to a higher level, while the cat is captured
by the 8 x 8 feature map, which represents a lower level.

- - =

o
T
|

r-—--71r

L - — — 1

1
1]
H 4 1
[
|
|

|
T
1
1
|
|
L
|

A=k GEIR i e

i]

"9RIRT Yioc: Alcx, cy, w, h)
conf: (¢, e, . ¢p)

(a) Image with GT boxes (b) 8 x 8 feature map (c) 4 x 4 feature map

Figure 2.12: (a) The training data contains images and ground truth boxes for
every object. (b) In a fine-grained feature map (8 x 8), the anchor boxes of different
aspect ratios correspond to smaller area of the raw input. (c¢) In a coarse-grained
feature map (4 x 4), the anchor boxes cover larger area of the raw input [29].

Each cell in the feature map is associated with a set of default bounding boxes
that tiles the map in a convolutional manner. In this way, the position of each
box relative to its corresponding cell remains fixed. At each cell, SSD predicts

17

Background

the offsets relative to the default box ain the cell, together with a score for all the
classes in the dataset that indicate the presence of the instance of a specific class
in the boxes.

Formally, for each box out of the k£ locations, SSD computes ¢ class scores and the
4 offsets relative to the default box shape. This results in a total of (¢ 4 4)k filters
applied on each location in the m x n feature map, yielding (¢ +4)kmn outputs for
each feature map. This approach is very similar to the one proposed in the Faster
R-CNN work, with the only difference that, in this case, it is applied to feature
maps at different levels of resolution.

Anchor boxes in the network are designed so that specific feature maps learn to
respond to diffente scales of the objects. Given the usage of [feature maps in the
network for prediction, the scale for each one is computed as:

Sk = Smin + isma;‘__fmi“(k: 1) ke[l

where, in the original paper, sy, and sy are respectively 0.2 and 0.9. This means
that the lowest layer has a scale of 0.9 and all the layers in between are evenly
spaced, as shown in Figure 2.13.

/=1 =2 {=3 ! =4 /=5 (=6
H
WJ
e s=0.9
—— s=0.76
— s=0.62
s=0.48
H_I
s=0.34
“—~
s=0.2

Figure 2.13: An example of how the anchor box size is scaled up with layer index
[for I =6, spin = 0.2, Spmin = 0.9. Only the boxes with aspect ration » = 1 are
shown.

The aspect ratios of the boxes, noted as a,., are imposed during the definition of
the model. In the original paper, the authors used:

11
23
The width (w§) and the height (h{) of the default boxes can be computed as such:
wi = skvar hi = si/var
18

a. €41,2,3,

Background

Combining predictions for all default boxes at different scales and aspect ratios
from all the locations of many feature maps guarantees a diverse set of predictions,
covering various input object sizes and shapes.

Bounding Box Regression Similar to the procedure used in the R-CNN de-
tector, given a predicted bounding box coordinate p = (p,py, Pw,pn) (center
coordinate, width, height) and its corresponding ground truth box coordinates
g = (9us Gy, Guws gn), the regressor is configured to learn scale-invariant transforma-
tion between two centers and log-scale transformation between widths and heights.
All the transformation functions take p as input:

Jr = Puwds(P) + Po
Gy = pudy(P) + py
Gw = pw exp(du(P))
gn = pnexp(dn(p))

y Pur =~ _ _
"N
pwedw(p)
pwdz(p)
<
ool b
VB @ep '
e o }phdy(p)
(8] 1
<
IsW
X;

Figure 2.14: Illustration of transformation between predicted and ground truth
bounding boxes [30].

This conversion, shown graphically in Figure 2.14, is applied so that all the
bounding box corrections functions d;(p) (i € {z,y,h,w}) can take any value
between [—o00, +00] and a standard regression model can solve the problem by
simply minimizing the Sum of Squared Error (SSE) loss with regularization. The

19

Background

targets to learn are:

te = (9o — P2)/Puw
ty = (9y —py)/Pn
tw = 10g(gw/Puw)
tn = log(gn/pn)

Loss Function and Training/Inference Techniques The loss of the SSD
model is the same as the one in YOLO, which is the sum of a localization loss and
a classification loss, formally:
1
L= N(»Ccls + a£10c>
where N is the number of matched bounding boxes and « balances the weights
between two losses, selected from a candidates set in the original paper via cross
validation.
The classification loss is a softmax loss over multiple classes:
Las=—) lfj log<éf) - > 10g(6§)) . where & = softmax(cF)
1EPOS i€Eneg
where lfj is an indicator function that tracks whether the ¢-th bounding box and the
j-th ground truth box match for an object of class k. pos and neg are, respectively,
the set of matched bounding boxes and the set of negative examples.
The localization loss is a smooth L1 loss betwen the predicted bounding box cor-
rection and the ground truth values transformed through the coordinate correction
explained previously:

X X (i, -)

4, me{x,y,w,h}

lemooth(x) — {

0.5z if 2] <1

|z| — 0.5, otherwise

@:%fm
Py

= ngl — p;
y i
Dh

‘ J

t = log(%”)
P

%>
Ph

~
o,
I
—
o
(F}
VRS

20

Background

match
ij
matches the j-th ground truth box with coordinates (g7, gi, g, gl) for any object.
d!., with m € {z,y, h,w} being the correction terms predicted by the model.

For the classification loss, SSD uses hard negative mining to select easy misclassified
negative examples to construct the neg set. Without this step, the training would
be dominated by the large number of easy negatives, which convey little useful
gradient information.

The process of hard negative mining works as follows:

where 1 tracks whether the 4-th bounding box with coordinates (pl,, pi,, pl,, pj,)

1. After computing the confidence scores for all anchors, every negative anchor,
i.e., anchors that are not matched to any ground truth box, is assigned an
“objectness” score.

2. These negative anchors are then sorted by their confidence loss. Hard negatives
are the ones with the highest classification loss.

3. To keep the training balanced, only the top-ranked negatives are selected,
ensuring that the ratio of negatives to positives does not exceed a certain ratio.
In the original paper, the ratio of neg : pos was chosen to be 3 : 1.

This strategy not only prevents the loss from being overwhelmed by trivial back-
ground examples but it also forces the model to learn from the most informative
mistakes.

Before non-max suppression After non-max suppression

Figure 2.15: Multiple bounding boxes detect the car in the image. After non-
maximum suppression, only the best remains and the rest are ignored as they have
large overlaps with the selected one [33].

An important trick used during inference, introduced with the release of the first
R-CNN, is Non-Maximum Suppression (NMS). This technique is fundamental in
scenarios where the model predicts multiple bounding boxes for the same object.
NMS reduces duplicate detections by sorting boxes by confidence, selecting the
highest-scoring one, and discarding those that overlap too much (e.g., IoU > 0.45

21

Background

was used in the original paper) with previously selected boxes. A simple example
is shown in Figure 2.15.

Performance Analysis In [29], to evaluate the model, the authors compared SSD
with the most performing solutions available at their time. For a fair comparison,
all the model used VGG-16 as the base network, with a batch size of 1, were tested
on the Pascal VOC2007 test set [34] and run on a NVIDIA GeForce GTX TITAN
X. The results can be observed in Figure 2.16. It is important to note that YOLO,
SSD300 (input resolution of 300 x 300) and SSD512 (input resolution of 512 x 512)
are the only one-stage detectors present, while all the other are two-stage detectors
based on region proposal approaches.

SSD512
80| 80% MAP /19 fps

SSD300
77% mAP / 46 fps

Faster R-CNN, Ren 2015
73% mAP /7 fps

Fast R-CNN, Girshick 2015
7OZS70% mAP /0.4 fps

VOC2007 test mAP

R-CNN, Girshick 2014 é YOLO, Redmon 2016
6% mAP /0.02 fps 66% mMAP / 21 fps

N

Y

10 20 30 40 50
Speed (fps)

Figure 2.16: SSD performance comparison [29].

In terms of accuracy, SSD300 outperformed YOLOv1 while at the same time being
significantly faster with a 25 fps margin and achieves comparable accuracy with a
6.6x faster speed when compared to Faster R-CNN (600 x 600 input images) while
using lower input size of 300 x 300.

SSD512, on the other hand, performes 13% better than YOLOvV1, keeping compa-
rable inference speed, but sacrifing more than half compared to the SSD300.

22

Background

SSDLite

SSDLite is a variant of the regular SSD which was first briefly introduced on the
MobileNetV2 paper [7] and later reused on the MobileNetV3 paper [13]. The main
innovation consists in replacing all the regular convolutions in the SSD prediction
layer with separable convolution, namely depthwise convolutions followed by 1 x 1
projection.

When compared to regular SSDs, SSDLite significantly reduces both the parameter
count and the computational cost, as it is shown in Table 2.3 taken from the
original paper, where all models are trained and tested on the COCO dataset [35].

Network mAP | Params | MAdd | CPU
SSD300 [34] 23.2 36.1M 35.2B -
SSD512 [34] 26.8 36.1M 99.5B -

MNet V1 4+ SSDLite | 22.2 5.1M 1.3B | 270ms
MNet V2 4 SSDLite | 22.1 4.3M 0.8B | 200ms

Table 2.3: Comparison of SSD and SSDLite variants in terms of accuracy (mAP),
parameter count, multiply-add operations (MAdd), and CPU inference latency [7].

SSDLite achieves a drastic reduction in both parameter count and MACs compared
to the standard SSD variants. In particular, MobileNetV2 + SSDLite requires only
4.3M parameters and 0.8B operations, making it nearly an order of magnitude
smaller and more efficient than SSD300, while running at 200 ms per image on
CPU. Despite this efficiency, its accuracy (22.1 mAP) remains competitive with
SSD300 (23.2 mAP) and even surpasses MobileNetV1 + SSDLite (22.2 mAP),
confirming the advantage of the improved backbone. These results underline the
suitability of SSDLite for resource-constrained environments such as mobile and
embedded devices, where minimizing computation and memory footprint is often
more critical than maximizing raw accuracy.

2.3 Knowledge Distillation

In recent years, DL neural networks have extremely expanded in terms of perfo-
mance, but this also brought with it a significant increase in size and computational
demands [36, 37]. Modern models often consist of billions of parameters and
require significant computing resources. It was inevitable that, after achieving
this incredible capabilities, their complexity and storage requirements would have
become some of the most serious challenges for deployment in real-time scenarios
and resource-constrained environments. In this context, exploring efficient machine

23

Background

learning and DL techniques aimed at reducing model complexity and optimizing
memory and energy usage is crucial. Well known optimization strategies can be
include model compression methods such as quantization and pruning [38], the
adoption of efficient neural network layers and computational techniques [39], and
the Knowledge Distillation (KD) technique [40].

KD [41] involves a primary deep neural network (teacher) that distils knowledge
to a smaller and optimised network (student). The student model can present a
different design and architecture in order to substitute specific layers and operations
from the original model. The main idea is that, with the teacher’s supervision
during the training, the student aims to replicate the teacher’s model predictions
despite the architectural differences.

The classical KD framework comprises the components: Knowledge, Distillation
Algorithms, and Teacher-Student architectures. This review comprehends the main
aspects of this technique, following the guide proposed by [40] and [42].

2.3.1 Knowledge

For "knowledge" it is intended which kind of information the teacher transmits to
the student. It is possible to distinguish different forms of knowledge, the most
popular comprehend: response-based, feature-based and relation-based.

Response-based Approach

In the response-based approach, the knowledge used derives from the logits, namely
the output of the last layer of the teacher model. The student looks directly at the
final prediction and it tries to replicate it. Formally, the objective is to minimize
the distance between the logits of the teacher and the ones of the student. Given a
vector of logits z as the output of the last Fully-Connected layer, a generalization
of the distillation loss (Lgesp(+)) can be formulated as:

LResD(zt7 Zs) = ER(Zta Zs)

where Lg(-) indicates the divergence loss of teacher z; and student z, logits.
The Kullback-Leibler divergence loss is often utilised for the distillation loss,
penalizing how much the student output differs from the teacher’s one. Usually,
for classification tasks the logits are intended as the soft targets, i.e. logits after
the application of the softmax function, representing the probability that the input
belongs to a specific class. Soft targets are computed as:

exp(z;/T)
P d) = (o)D)
24

Background

where z; is the logit for the i-th class and T is an hyperparameter that controls the
importance of each of them.

Distillation loss is most of the times combined with the student loss, i.e. the loss
between the ground truth label and the soft logits of the student model, which
is often a cross-entropy loss with ground-truth labels. A representation of the
response-based approach can be viewed in Figure 2.17.

Response-Based Knowledge Distillation

—

Distillation
Loss

Data ==

Figure 2.17: Scheme of a generic response-based knowledge distillation approach

[40].

Feature-based Approach

As for the feature-based approach, visually represented in Figure 2.18 knowledge is
represented by the output of intermediate layers. In this case, the distillation loss
is:

LFeaD(ft(x)7 fs(x)) == K'F(ft(x)? fs('r))

where f;(x) and f,(x) are the feature maps of the intermediate layers of the teacher
and student respectively, and Lg(+) indicates the similarity function. As Lg(+),
measures like [,-norm, [;-norm and cross entropy are the ones usually used.

Relation-based Approach

This approach focuses on transferring information by modeling the relationships
either between layers or between data samples. Instead of considering only single
feature maps, the idea is to exploit the correlations that the teacher captures. For
instance, given two feature maps from the teacher, ft and ft, and the corresponding
ones from the student, fs and f,, the relation loss can be defined as:

LRelD(ft; fs) - ‘CRl (qjt(ﬁa ﬁ)) ‘IJS<fA87 fNS))
25

Background

Feature-Based Knowledge Distillation

Teacher Model

=
v
v
L

N
v

Data = Distillation Loss

Student Model

Figure 2.18: Scheme of a generic feature-based knowledge distillation approach
[40].

where W (-) and W(-) are similarity functions, and Lg, denotes the correlation
function. This setting allows the student to mimic the teacher’s representation of
similarities between features.

A similar idea can be extended to pairs of data samples. Let (¢;,t;) and (s;, s;)
denote data points in the teacher and student feature spaces, respectively. The
relation loss in this case becomes

LRelD(Ft) Fs) = £R2 (wt(tiv tj)? %(51’, Sj))

where 1;(-) and 14(+) are similarity functions applied to sample pairs, while Lpo is
the function measuring the consistency between the teacher and student correlations.

2.3.2 Distillation

The distillation process defines how the teacher and student models are trained
together. Different strategies have been explored in the literature, which can be
grouped into three main categories [40].

o Offline distillation: In this setting, the teacher is a pre-trained model whose
parameters remain fixed. Knowledge is transferred to the student by matching
its predictions or feature representations against those of the teacher. Since
the teacher is not updated, this strategy is the most widely used and well
established.

e Online distillation: Unlike the offline case, here teacher and student are
optimized simultaneously in an end-to-end fashion. Both models interact

26

Background

during training, which makes the scheme more flexible but also more demanding
in terms of training complexity.

o Self-distillation: A particular case in which the same network acts as
both teacher and student. Typically, deeper layers supervise shallower ones,
transferring internal representations within the same model. Although less
common, this approach has shown that even a single network can benefit from
distillation.

Offline Distillation

Student

Online Distillation

Teacher Student

Self-Distillation

- Pre-trained
Teacher/Student [To be trained

Figure 2.19: Representation of different types of distillations [40].

2.3.3 Teacher-Student architecture

In knowledge distillation, the choice of teacher and student architectures plays a
central role in determining the quality of knowledge transfer. The gap in capacity
between the two networks affects how well the student can reproduce the teacher’s
behavior. Typically, the goal is to design a student that is less complex than the
teacher, while still able to capture its essential representations.

Different strategies can be adopted when defining the student model:

1. A reduced version of the teacher, obtained by decreasing the number of layers
or channels.

27

Background

2. A quantized variant that maintains the overall structure but lowers memory
and computational requirements.

3. A completely different design, possibly based on more efficient operations or
on a globally optimized architecture.

Over the years, many methods have been introduced to manage this trade-off
between accuracy and efficiency, aiming to build student networks that balance
reduced complexity with satisfactory performance [43, 44].

2.4 Slimmable Neural Networks

Slimmable Neural Networks (SNNs) represent a paradigm shift in the design of
efficient DL models. Unlike conventional neural networks, which are trained and
deployed at a fixed size, SNNs are explicitly constructed to run at multiple capacities
within a single set of shared parameters [1]. This design makes them particularly
suitable for applications in which computational budgets, memory constraints, or
latency requirements may vary dynamically at runtime.

In real-world scenarios, the diversity of hardware devices introduces strong variabil-
ity in available resources. For example, a high-end smartphone can afford to run a
large model with higher accuracy, while a low-power embedded system may only
sustain smaller architectures within strict latency budgets. Even within the same
class of devices, the performance of a given model can vary considerably from one
specific device to another, as illustrated in Table 2.4.

Device Runtime
OnePlus 6 24 ms
Google Pixel 116 ms
LG Nexus 5 332 ms
Samsung Galaxy S3 | 553 ms
ASUS ZenFone 2 1507 ms

Table 2.4: Runtime of MobileNet v1 for image classification on different devices,
as reported in [45].

Traditionally, this challenge has been addressed by training, benchmarking, deploy-
ing, and maintaining multiple separate models, each corresponding to a different
operating point. This approach is highly inefficient, not only because it require a
large offline table to record the allocation of models to different devices according

28

Background

to their time and energy budgets, but also because it increases training and main-
tenance costs. Furthermore, even on the same device, the computational budget
can fluctuate (e.g., due to background processes reducing available resources), and
the energy budget may vary (e.g., when operating in low-power or power-saving
modes). Switching between larger and smaller models also introduces overhead, as
the time and data required for downloading or offloading models is not negligible.
Dynamic neural networks have been introduced as a way to enable selective
inference paths by Liu and Deng [6]. Liu and Deng proposed controller modules
that determine whether subsequent components should be executed, which leads to
low theoretical computational complexity but makes optimization and deployment
on mobile devices not trivial, since dynamic execution hinders layer fusion and
memory reuse. Huang et al. [46] incorporated early-exit branches connected
through dense connectivity, allowing predictions at intermediate layers. Wu et
al. [47] and Wang et al. [48] explored selective block execution in deep residual
networks, where only a subset of residual blocks is activated during inference.
Despite these advances, reducing depth does not lower the memory footprint at
inference time, unlike width scaling, which directly reduces the number of channels
and is therefore more suitable for mobile environments where memory is a key
constraint.

SNNs address these limitations by embedding multiple operating points into a single
model. At inference time, the model can dynamically switch configurations, selecting
the most suitable one based on device constraints or application requirements. An
example can be viewed in Figure 2.20.

Figure 2.20: Illustration of a SNN. A single model can run at different widths
(e.g., 0.25x, 0.5%, 0.75x, 1.0x), enabling adaptive accuracy-efficiency trade-offs

[1].

Let A = {aq, ag, ..., a;} denote a set of width multipliers, where each « represents
the fraction of channels active in each layer. A slimmable network M can then be
expressed as a family of models:

My, : X =Y, acA,
29

Background

where all M, share the same weights, but differ in the subset of channels used in
each layer.

For instance, consider a convolutional layer with C' = 64 channels. With a width
multiplier o = 0.25, only 16 channels are active, while o = 1.0 activates all the
64 channels. Thus, depending on «, the computational complexity of the same
network can vary substantially, while still relying on the same parameter set.
The central property of SNNs is the ability to balance accuracy and efficiency
on the fly. A smaller width (e.g., 0.25%) typically yields faster inference and
reduced memory usage, at the expense of lower accuracy. A larger width (e.g.,
1.0x) maximizes accuracy but requires more computational resources.

This trade-off enables a single model to serve multiple deployment scenarios. For
example, on a flagship device, the network may run at 1.0x width for maximum
accuracy, and on a low-power embedded device, the same network may switch to
0.25x width to reduce latency and memory consumption.

Much more interesting is the case of an adaptive systems, in which the width can
change dynamically depending on battery level, user requirements, or real-time
constraints. This adaptive behavior is particularly valuable when a single end
device must handle diverse operating conditions without switching between entirely
different models. For instance, a mobile device may run the network at full width
while charging, ensuring maximum accuracy for applications such as augmented
reality or high-resolution image processing. When the device enters a low-battery
mode, the same model can seamlessly switch to a narrower configuration to prolong
autonomy, sacrificing some accuracy for higher efficiency. Similarly, in scenarios
with variable input streams, such as real-time video analysis, the network may
adjust its width dynamically: larger configurations can be used for complex frames
with dense content, while smaller widths suffice for simpler or empty frames, thereby
reducing unnecessary computation.

2.4.1 History

As already stated in Chapter 1, the first appearance of SNNs was in 2018, by Yu
et al. [1]. In this work, the authors proposed a first approach on how to train
one network able to behave well at different widths. Yu et al. observed that naive
training of a shared network for multiple widths led to divergent batch normalization
statistics and severely degraded accuracy. Their solution was Switchable Batch
Normalization (S-BN), which consists of providing separate BatchNorm layers for
each width setting, preventing the inter-width interference that arises from using
one BN for all sub-networks.

With Switchable BN, the shared models achieved accuracy on par with or better
than individually trained models of the same width. Without any task-specific
re-tuning, the SNN managed to outperform individually trained backbones at

30

Background

equivalent widths on different tasks (object detection and instance segmentation),
showing how SNNs can be practically useful for deploying adaptable vision systems.
Building on this success, Yu et al. introduced, in 2019, Universally Slimmable
Networks (US-Nets) [49], addressing two important limitations of the original SNNs.
First, SNNs were limited to a few predefined width options. US-Nets instead allow
any width between a minimum and maximum, handling cases where every possible
channel count (within a range) should perform well, rather than just a fixed set,
utilizing techniques like "Sandwich Rule" and "Inplace Distillation". Second, they
sought to generalize the approach to architectures without BatchNorm.

One immediate challenge after the introduction of SNNs was automatically finding
the optimal widths or architecture for a given efficiency target. Traditional network
pruning and NAS methods often require training many candidate models or a large
search cost. Slimmable networks, by contrast, provide a trained accuracy predictor
for any width configuration. This led to a series of works that combine slimmable
networks with NAS or model compression.

+ : Decide which layer to slim by simple feed-
forward evaluation on validation set.

00 QOO
-’§§\\ -’Qi\
Q00 QRYV
(e]e) o]}

26 FLOPs 22 FLOPs

Best architecture
under 25 FLOPs

o0
Cat Dog

Network) Train a ——————— | Evaluateand — Efficient network
architecture

slimmable model greedily slim architecture

Figure 2.21: Flow diagram of AutoSlim proposed approach [4].

AutoSlim (2019) [50] introduced a method to determine per-layer channel counts
under a FLOPs or latency budget, without exhaustive search. Using a slimmable
network trained to support multiple widths, the authors treated each layer’s width
as an independent decision rather than applying a global multiplier. The algorithm
works greedily: starting from the full model, it iteratively prunes the layer whose
channel reduction causes the smallest accuracy drop, until the target budget is met.
Since the slimmable network can be evaluated across many configurations without
retraining, this one-shot process is far more efficient than conventional NAS.
AutoSlim optimized channel widths of a given network and paved the way for later
approaches that extended weight sharing to a broader range of architectural choices.
Once-for-All (OFA) by Cai et al. [2] is a landmark work that pushed slimmable
networks into the realm of full-fledged NAS.

31

Background

Another notable development was BigNAS [3], which argued that a well-trained
super-net can eliminate the need for post-search fine-tuning. Unlike earlier weight-
sharing methods (e.g., OFA), where sub-networks often required retraining, BigNAS
showed that with careful one-stage training, sub-networks could be directly deployed
using the shared weights. This demonstrated that a single slimmable model can
serve as the final architecture across multiple deployment sizes, further simplifying
the NAS pipeline.

To conclude, by 2020 SNNs had evolved into a powerful paradigm for one-shot NAS
and model compression. Works like OFA and techniques large super-net training
(BigNAS) enabled covering massive architecture spaces with one network.

2.4.2 Benefits and Current Challenges

SNNs can bring many practical benefits that are crucial for low-powered and
resource costrained devices:

o Parameter sharing: All widths share the same superset of parameters,
avoiding the need to train and store multiple models.

» Flexible deployment: A single model can be deployed across a wide range
of devices with different resource-constraints.

« Scalable performance: Inference can be scaled in real time by adjusting
the number of active channels, offering a near-continuous trade-off between
accuracy and efficiency.

o General applicability: The concept of width-scaling applies broadly to
convolutional, residual, and other DL architectures.

Despite major progress, several challenges remain for SNNs, citing a few:

o Training complexity and interference: Training one network to support
many sub-models is difficult, since sub-networks compete for capacity and
gradients. Heuristics like the sandwich rule, but scaling to huge search spaces
(width, depth, kernel, resolution) is still challenging.

o Normalization and calibration: While switchable BN solved discrete
widths, continuous configurations or alternative normalizations introduce
new stability issues, requiring smarter calibration or adaptive normalization
methods.

e Granularity of slimming: Most approaches adjust entire layers uniformly,
but finer per-layer control could improve trade-offs. Training such networks
efficiently, however, remains difficult.

32

Background

o Dynamic execution: Input-dependent slimming promises efficiency, but
training gates jointly with the super-net is not trivial, and hardware systems
must adapt to support per-input variability.

e Robustness: Different widths may behave differently under distribution
shifts or adversarial attacks, raising concerns about safety and reliability.

33

Chapter 3

Related Works

3.1 Slimmable DNNs in Computer Vision

While the early slimmable networks works focused on image classification as a
primary benchmark, the applicability of SNNs in other computer vision tasks
soon became a subject of research. The already noted work by Yu et al. [1]
validated slimmable backbones on object detection and instance segmentation. The
slimmable ResNet-50, for example, could power a Mask R-CNN detection pipeline
and could obtain a lighter or heavier detector as needed by switching its width.
The result was better COCO detection metrics for a given model size compared to
training separate detectors for each size.

For semantic segmentation, a well-known computationally intensive task, researchers
developed task-specific slimmable strategies. SlimSeg, by Xue et al. [51], is a prime
example. One challenge in segmentation is that object boundaries can suffer when
the network is heavily compressed, the SlimSeg method introduced a boundary-
guided loss to specifically address this issue. Specifically, during training, an
auxiliary loss focuses on correctly predicting the segmentation edges for each
sub-network, since it was observed that differences between the full and slim
models’ outputs concentrate near borders. Moreover, SlimSeg used a form of
“parametrized channel slimming with stepwise distillation”. In practice, they train
the full segmentation model, then progressively include narrower versions while
using the full model’s output as supervision for the sub-networks. With these
techniques, SlimSeg achieved a single model that can operate at multiple pixel
resolutions and channel widths, adapting to different speed/accuracy needs.

Another interesting vision application is in the domain of generative models, in
particular on Generative Adversarial Networks (GANSs), a type of generative models
based on game theory where ANNs are used to mimic a data distribution [52]. In
2020, Hou at al. conducted an exploratory work on Slimmable GANs [53], where

34

Related Works

the generator was made slimmable so that it could produce images at varying
computation costs. Although this may seem a less-traditional use-case, it indicated
that even in generator—discriminator training, one can train a GAN that functions
across multiple model sizes. The slimmable generator was able to switch its width
to trade off generation fidelity and speed. While not a core focus of our review, it’s
worth noting as it expands the horizons of where SNNs can be applied.

3.2 Dynamic Slimmable DNNs

A crucial extension of SNNs in vision came with the notion of dynamic slimmable
networks (DS-Net) [54], by Li et al., a work that deeply inspired the model we
present. Traditional SNNs assume the width is chosen statically based on a
deployment scenario, e.g. a device or a fixed runtime budget, however one can
imagine adjusting the width per input, e.g. an easy image might only require a
slim sub-network to get right, whereas a harder image might need the full network.

Use less computation

GoIdfisBJ

Hard samples

Use more computation

Figure 3.1: Illustration of dynamic networks on efficient inference. Input images
are routed to use different architectures regarding their classification difficulty [54].

DS-Net manages to achieve hardwer-efficiency dynamically slicing the number of
filters of the DNN with respect to different inputs. This approach not only guar-
antees consistency and validity across all width configurations, but also preserves
hardware efficiency by keeping filters static and contiguous when adjusting the
width of the network.

To ensure practical acceleration on hardware, it is important that filters remain
contiguous and relatively static during weight selection. Consider a convolutional

35

Related Works

layer with IV output filters and M input channels, where the weights can be repre-
sented as W € RY*M (omitting the spatial dimension). To make the architecture
slice-able at different widths, the authors introduce a routing agent A(¢). This
agent outputs a slimming ratio p € (0,1], which determines the number of active
filters, i.e., p x N. The resulting slice-able convolution can then be expressed as:

Y=W[:[pxN]|] +X

For training, Li et al. propoed an approach similar to the one proposed by Yu et
al. [49], comprehending the Sandwich Rule and the In-Place Distillation technique.
In the latter, the widest sub-network is used as the target network generating soft
labels for other sub-networks. On top of this idea, with the goal of stabilizing the
acute fluctuation of the weights during training and mitigating the hardship of
convergence, the authors proposed a training scheme named In-place Ensemble
Bootstrapping. This consist of using the exponential moving average (EMA) of the
model as the target network that generates soft labels. Formally, given 6 and 6’
the parameters of the online network and the target network, respectively, we have:
0, =pb 1 + (1 —p)o;
where p is a momentum factor controlling the ratio of the historical parameter and
t is a training timestamp which is usually measured by a training iteration.
In addition to that, the training uses different sub-networks as a teacher ensemble
when performing distillation, with the purpose of generating more accurate and
more general soft labels for distillation training of the student network.
To predictively adjust the network width, in [54], the authors propose a double-
headed dynamic gate, composed by an attention head (really similar to other
channel attention methods [55, 56]) and a slimming head, integrated into the model
with nearly zero cost. The double-headed gate takes as input the feature map and
output the slimming ratio p using a one-hot design.
The training of the gate is separated and subsequent to the one of the whole network.
In order to avoid the collapse of the gate into a static one, the work proposed,
together with the addidion of Gumbel noise [57], a technique named Sandwich
Gate Sparsification (SGS). SGS is applied by using the slimmest sub-network and
the whole network to identify easy and hard samples online and further generate
the ground truth slimming factors for the slimming heads of all the dynamic gates.
Experiments on ImageNet showed DS-Net could cut computation by 2 — 4x and
achieve 1.6 x actual speedup on devices, with minimal accuracy loss, outperforming
static models and prior dynamic networks (up to 5.9% higher accuracy than static
counterparts under the same cost).
Authors also experimented the DS-Net as a feature extractor in object detection
with Feature Fusion Single Shot Multibox Detector (FSSD) [58] and compare it
with a MobileNetV1 on the VOC 2007 test set [34]. DS-Net managed to achieve
1.8 mAP improvement with a 1.34x computation reduction.

36

Chapter 4

Methods

This chapter presents in detail the methodologies employed to develop a slimmable
object detection network equipped with a channel gating mechanism. The goal is
twofold: first, to design a model capable of achieving competitive results at four
different widths (0.25x, 0.5x, 0.75x, and 1.0x) which can be switched on-the-fly
during inference; and second, to exploit the channel gating mechanism to identify
empty or potentially simple images and trigger an early-exit strategy, thereby
reducing computational cost without severely compromising detection performance.
Section 4.1 focuses on the preprocessing steps applied to the Cityscapes dataset
[59]. Since Cityscapes was originally designed for semantic segmentation, it was
first converted into an object detection format and subsequently divided into a
grid of non-overlapping patches. Special care was taken when handling bounding
boxes that crossed patch boundaries. Additional data augmentation procedures
were applied to increase variability and robustness.

Section 4.2 introduces the model employed for the object detection task. It presents
the chosen backbone and the SSDLite detection head configuration. Particular
emphasis is placed on the integration of the gating module (Dynamic Slimming
Gate), describing both its internal structure and the mechanism by which it selects
different network widths.

Finally, section 4.3 outlines the training methodology, which is organized into two
complementary phases. Phase 1 focuses on learning robust detection capabilities
across the four predefined widths by applying an adapted version of the In-Place
Ensemble Bootstrapping technique proposed by [54]. This stage ensures that all
subnetworks, from the smallest to the largest, are jointly optimized. Phase 2 then
targets the training of the gating module, enabling it to discriminate between
empty or simple inputs and more complex ones. To achieve this, we leveraged the
Sandwich Gate Sparsification strategy, also introduced by [54], which encourages
the gate to route trivial samples to the slimmest configuration while reserving wider
subnetworks for challenging inputs.

37

Methods

4.1 Dataset Preprocessing

As mentioned in the introduction, Cityscapes was originally designed for semantic
and instance segmentation tasks. It is a widely used benchmark in academia,
particularly in applications such as pedestrian detection, traffic light recognition,
and vehicle tracking, as it provides pixel-precise class annotations from a vehicle’s
perspective in complex urban environments. To adapt Cityscapes for object
detection, we converted its instance segmentation annotations into bounding boxes
using a conversion tool [60]. Since the annotations in Cityscapes also consider
segmentation instances, each object is defined by a segmentation mask and a unique
instance ID. This information can be directly exploited to determine the spatial
extent of each object and derive its corresponding 2D bounding box, as shown in
Figure 4.1. Overall, after the conversion the dataset covers eight object categories:
Person, Car, Truck, Rider, Motorcycle, Bicycle, Bus and Train. Across the entire
data, the distribution of object categories is highly imbalanced. Car and Person
dominate the annotations, together accounting for more than 80% of all bounding
boxes. Mid-frequency classes such as Bicycle and Rider are present in significantly
smaller amounts, while Motorcycle, Truck, Bus, and Train form a long tail of rare
categories, each contributing less than 2% individually. Detailed counts per class
and split are reported in Table 4.1.

Although this conversion required additional preprocessing, Cityscapes remains a
practical choice thanks to its detailed annotations, urban diversity, and challenging
conditions, which make it suitable for evaluating object detection models aimed at
real-world deployment on nano-drones.

4.1.1 Tiling Process

Once the conversion was completed, each Cityscapes image (2048 x 1024 pixels)
was divided into a grid of eight non-overlapping patches, an example is illustrated
in Figure 4.2. This choice serves a dual purpose. First, it adapts the high-resolution
images of the dataset to the 512 x 512 input size required by the SSDLite detector.
Unlike anisotropic resizing, tiling avoids geometric distortions and preserves the
original aspect ratios of objects, which has been shown to improve detection
accuracy [61]. Second, the partitioning naturally produces a significant number of
empty patches, i.e., image crops without bounding boxes, which are later exploited
during the training of the adaptive mode.

After the grid partitioning, the final preprocessing step consisted of removing
bounding boxes that only slightly extended into adjacent tiles. This was done to
avoid generating incomplete or ambiguous annotations, which could negatively
impact the detector’s training. Empirically, all bounding boxes lying on the border
of a tile that had at least one side shorter than 20 pixels were discarded. An

38

Methods

persom

person

. car
IR)i,
—
7 I
be——ui
(

Figure 4.1: Example from the Cityscapes dataset showing instance segmentation
masks (colored regions) and the corresponding 2D bounding boxes (dashed rectan-
gles) after conversion to an object detection format.

(a) Example of a raw image from the (b) Division into eight non-overlapping
Cityscapes dataset. 512x512 patches used as inputs.

Figure 4.2: Example of the tiling process applied to Cityscapes images.

example of removed bounding boxes is shown in Figure 4.3.

The final dataset consists of 27,800 non-overlapping 512 x 512 tiles, split into 19,040
(68.49%) for training, 4,760 (17.12%) for validation, and 4,000 (14.39%) for testing.
Among these, 6,883 training samples (~36%), 1,557 validation samples (~32%),
and 967 test samples (~24%) contain no objects, providing a substantial pool of
empty images for adaptive training.

Across all dataset splits, the distribution of object categories is highly imbalanced.
Car and Person dominate the annotations, together accounting for more than 80%
of all bounding boxes. Mid-frequency classes such as Bicycle and Rider are present
in significantly smaller amounts, while Motorcycle, Truck, Bus, and Train form a

39

Methods

Figure 4.3: Example of bounding boxes removed during preprocessing. Boxes
lying on tile borders with at least one side shorter than 20 pixels were discarded to
avoid incomplete or misleading annotations in the final dataset.

long tail of rare categories, each contributing less than 2% individually. Detailed
counts per class and split are reported in Table 4.1.

Category | Train | Val Test | Total | % of Total
Person 21,263 | 5,202 | 4,322 | 30,787 32.3%
Car 37,378 | 5,954 | 6,787 | 50,119 52.6%
Truck 674 38 144 856 0.9%
Rider 2,148 450 719 3,317 3.5%
Motorcycle | 1,059 227 199 1,485 1.6%
Bicycle 4,675 | 1,009 | 1,763 | 7,447 7.8%
Bus 531 68 164 763 0.8%
Train 310 100 45 455 0.5%
Total 68,038 | 13,048 | 14,143 | 95,229 100%

Table 4.1: Class distribution of the processed Cityscapes dataset after conversion
and tiling. The dataset is strongly imbalanced, with Car and Person representing
the majority of instances, while classes such as Truck, Bus, and Train are rare.

40

Methods

4.1.2 Data Augmentation

Data augmentation is a practical and effective way to increase dataset diversity,
reduce overfitting, and improve robustness to real-world variability in illumination,
viewpoint, and partial occlusions. Augmentations were implemented with the
Albumentations library [62] and are applied only during training; validation and
test images undergo normalization and tensor conversion only.

Global appearance is perturbed through random brightness/contrast and hue- satu-
ration adjustments, encouraging invariance to exposure changes, sensor differences,
and lighting conditions typical of urban scenes. To increase scale variability without
distorting object geometry, a "zoom-out" operation is included: the image is placed
on a larger canvas filled with a constant mean color and then resized back to
512x512. This mimics the expand strategy popularized in single-shot detectors
and subsequent computer vision works [63, 64|, effectively creating wider spatial
context and smaller apparent object scales while preserving aspect ratios.
Additional geometric diversity is introduced via small affine transformations (scaling,
translation, and limited rotation), simulating viewpoint and platform motion
within ranges that keep annotations reliable and free from unrealistic deformations.
Random left-right flips capture road topology symmetry and improve generalization
across driving directions. Structured occlusions are modeled with coarse dropout
("cutout"), enhancing resilience to missing evidence in crowded scenes.

Bounding boxes are consistently propagated through these transformations, with
invalid boxes removed based on minimum area and visibility thresholds. This
prevents label noise from tiny or truncated boxes at the borders and ensures
reliable supervision for the detector’s receptive field and anchor design.

Overall, this augmentation scheme increases appearance, scale, and occlusion
diversity without introducing anisotropic resizing artifacts, ultimately leading to
more robust detectors under the operating conditions expected for perception. An
example of the augmentations proposed in action can be seen in Figure 4.4.

41

(c) (d)

Figure 4.4: Examples of data augmentations applied to the Cityscapes dataset.
(a) Original image. (b) Photometric distortion (brightness, contrast, hue-saturation
shifts). (c) Zoom-out operation with padding and resize. (d) Affine jitter including
small translations, scaling, and rotations.

4.2 Model Architecture

A typical DL-based object detector, as outlined in Section 2.2.3, consists of two main
components: a CNN backbone, which extracts hierarchical feature representations
from the input image, and a detection head that uses these features to predict
object categories and localize them through bounding box offsets.

In this chapter, the architecture adopted in our work is described in detail. Sec-
tion 4.2.1 focuses on the chosen backbone, a slimmable variant of MobileNetV2
capable of running at four different widths (0.25x, 0.5x, 0.75%, and 1.0x), with

42

Methods

particular attention to the design and integration of the Dynamic Slimming Gate,
proposed by [54]. Section 4.2.2 is dedicated to the detection head, where we employ
an SSDLite-512 module and discuss its configuration and role within the overall
pipeline.

4.2.1 Backbone

As backbone, we adopt MobileNetV2 [7], previously introduced in Section 2.1, and
extend it to operate at multiple widths. To achieve this, each convolutional layer is
replaced with a slice-able variant capable of dynamically selecting the number of
active channels. For practical acceleration, the slice-able design ensures that filters
remain contiguous and dense during width selection. As a result, the operation
reduces to a standard slicing followed by dense matrix multiplication, which is
significantly more efficient in real hardware implementations than sparse indexing
or irregular weight selection.

Formally, consider a convolutional layer with N filters and M input channels,
represented by W € RM*M (gpatial dimensions are omitted for clarity). Given an
input activation X and a slimming ratio p € {0.25,0.5,0.75,1.0}, the slice-able
convolution can be expressed as:

Y=W[:[px N]||] «X

where only the first p x N filters are selected during inference. In this way, the
backbone can seamlessly switch between lightweight and full-capacity configurations,
either according to external conditions or as dynamically determined by the output
of the Dynamic Slimming Gate.

Dynamic Slimming Gate

The Dynamic Slimming Gate, inspired by the work of Li et al. [54], is integrated
at the beginning of the i-th block of the backbone. Its role is to transform the
input feature map A&; into a slimming ratio p, which determines the number of
active channels in the subsequent layers. At inference time, the gate outputs a
categorical score over the candidate ratios L,, and the final width is selected by
applying an argmax, yielding a one-hot vector that directly specifies the active
channel configuration. In other words, the gate functions as an architecture-routing
agent A(X;), which can be formally expressed as

A(X) = F(E(X))

where £ encodes the feature maps into a compact representation and F maps this
representation to a one-hot vector used for channel slicing.

43

Methods

Let X; € RO*FXW denote the feature map produced by the i-th block of the
backbone. The encoder £(-) reduces it to a vector Xg; € RY, which is then
projected by F into a categorical distribution. After the one-hot decision is taken,
the slimming ratio predicted by the gate is obtained as follows:

pi = A(X) - L,

where L, is the set of candidate ratios and A(&;) is the one-hot vector selecting
the active width.

The encoder £(+) is instantiated as global average pooling: the input feature map
is spatially averaged to produce a C-dimensional channel descriptor. The feature-
mapping function F(-) is implemented as a lightweight two-layer perceptron realized
with consecutive 1x1 convolutions and a ReLLU nonlinearity in between. The first
projection reduces the C-dimensional descriptor to a compact hidden embedding,
and the second maps this embedding to g = |L,| logits. During training, gate
probabilities are obtained by applying Gumbel - Softmax to these logits [57]; at
inference time, a one-hot selection is produced via argmax.

In line with [54], the gate comprises two branches that share the same encoder £(-):

o Channel-attention head: maps the shared embedding back to C' channels to
produce per-channel reweighting coefficients, which are applied multiplicatively
to the features. This branch is fully continuous.

o Slimming head: maps the same embedding to g=|L,| logits (one per candidate
width) and selects the width; (Gumbel-)Softmax is used during training, while
argmax is used at inference to yield a one-hot choice.

Extra Layers

Following prior work on multi-scale object detection, the backbone is augmented
with a small set of additional blocks that produce progressively lower-resolution
feature maps consumed by the detection head. This design mirrors the extra
prediction layers of SSD [29] and is conceptually related to feature-pyramid methods
such as FPN [65].

Concretely, one intermediate feature is tapped from the n-th layer, with n set equal
to 13 following [7] (prior to the final 1x1 head), and four additional features are
produced by stacked depthwise-separable inverted-residual blocks with stride 2,
while preserving the slice-able channel design. The result is a six-level fixed pyramid
of feature maps (from high to low resolution) that the head uses for classification
and bounding-box regression.

To maintain a stable interface with the detection head (and avoid duplicating
heads per width), each feature map is zero-padded along the channel dimension
up to a predefined reference size before being forwarded to the head. Padding

44

Methods

preserves dense computation and keeps the head configuration constant across
widths, simplifying both implementation and deployment.

4.2.2 Detection Head

As the detection head we adopt an SSDLite module, introduced in Section 2.2.4,
configured for 512x512 inputs. The head operates on six multi-scale feature maps:
one extracted from the 13-th block of the backbone, one from the final MobileNetV2
head, and four from the extra layers (see Section 4.2.1). Following the standard SSD
design, depthwise separable prediction layers are employed to reduce computation.
At each pyramid level k € {1,...,6}, anchors follow the SSD defaults [29]: scales
sy, linearly spaced in [0.1, 0.9] and aspect ratios A = {1, 2, 3, 3, 5}. For a € A,
an additional square anchor at sj, = /5y, sk11 (for k£ < 6) is included. Hence each
spatial location yields 6 anchors per level. The head predicts class logits and box
offsets for all anchors.

The following defaults are used:

o Score threshold = 0.1: minimum class confidence required for a prediction to
be considered before non-maximum suppression.

« Non Max Suppression (NMS) threshold = 0.55: intersection-over-union (IoU)
threshold used by non-maximum suppression to remove highly overlapping
detections of the same class.

o Detections per image = 300: maximum number of final detections retained
for each image after post-processing.

o Top-k candidates = 300: number of highest-scoring candidate boxes per image
considered prior to applying non-maximum suppression.

 Image normalization (mean/std = (0.5,0.5,0.5)): per-channel normalization
applied to inputs, i.e., (x — p)/o with p = o = (0.5,0.5,0.5).

After per-location predictions, top-k candidates are selected and class-wise NMS
(see Section 2.2.4) is applied to obtain the final detections.

4.3 Training Procedure

To obtain a dual-purpose network, a two-phase training scheme inspired by Li et al.
[54], introduced in Section 3.2, was adopted and adapted to the object detection
task. In Phase 1, described in Section 4.3.1, the gating mechanism is disabled
and the entire network is trained at multiple widths using the In-Place Ensemble
Bootstrapping strategy. In Phase 2, described in Section 4.3.2, the backbone and

45

Methods

head weights are frozen and the slimming gate is optimized through the Sandwich
Gate Sparsification technique, enabling the model to recognize empty or simple
images and dynamically route them to lightweight sub-networks.

4.3.1 Phase 1: Static Mode

In earlier works, the training of slimmable networks was typically carried out using
In-Place Distillation combined with the Sandwich Rule [49]. The underlying idea of
this approach was to employ the widest sub-network as a teacher for the narrower
ones by generating soft targets. Although effective in many cases, this strategy
often suffered from convergence issues due to large weight fluctuations in the widest
sub-network [3], which could lead to instability and loss explosions in the early
stages of training.

To address this limitation, we adopt the In-Place Ensemble Bootstrapping (IEB)
strategy. Instead of relying solely on the online network, an Exponential Moving
Average (EMA) copy of the model, referred to as the target network, is maintained
and used to generate soft labels. Denoting by 6 the parameters of the online
network and by 6’ those of the target network, the update rule for the EMA is
given by

0, = pb_y + (1 —p)b;

where p € [0,1] is the momentum coefficient and ¢ the training step. The use of
the EMA provides more stable and accurate targets compared to the fluctuating
predictions of the online network, thereby improving convergence stability and the
overall quality of the supervision received by the sub-networks.

Furthermore, following the design choices proposed in related works [66, 67], the
training of the slimmest sub-network is enhanced by leveraging an ensemble of the
soft labels produced by all sub-networks, rather than relying on a single teacher.
This ensemble supervision mitigates the risk of underfitting the smallest configura-
tion and encourages consistent performance across the entire width spectrum.
Formally, at each training step, the widest sub-network (L) is supervised directly
with ground-truth labels), while the target network provides soft predictions at
the largest width to guide the n intermediate sub-networks (I;).

For the slimmest configuration (), both classification logits and bounding box
predictions are averaged across all wider sub-networks to form ensemble targets:

Yo(0) = n_1'_1<Y/L<91) +iY’z¢(9’>>

i=1

B.,(0) = n_1H (B’Lw/) + Z BL(G’))

i=1
where Y and B denote classification logits and bounding box deltas, respectively.

46

Methods

The losses for the three groups of sub-networks are defined as:
LEP(0) = Laet (Y1(6), BL(6); V)
LEP0) = 3| Lp-as (Y1(0), Y(0)) + Lipvox (B (0), B/L(G/))}
i=1

L) = Lvas (Ys(0), Yr,1(0)) + Lxpo (Bs(60), Bri(¢))

with total loss

L=LF"+ LR 4 PP

We provide the pseudocode of the training procedure in Algorithm 1, and the
overall train process is summarized in Figure 4.5.

In object detection, the background class typically dominates, and a failure to
correctly distinguish foreground objects from background regions can overwhelm
the error signal. To address this, we follow the recommendations of Chen et al.
[68] for the classification distillation term (Lkp.as), employing a class-weighted
cross-entropy loss:

»CKD-cls = — Z We Pt(c) 10g PS(C)

where P, and P, denote the teacher and student probabilities, respectively, and w,
are per-class weights. This weighting scheme reduces the tendency of the model to
misclassify foreground instances as background, which is far more detrimental than
confusion among foreground categories.

For the regression distillation term (Lxp.pox), the Smooth-¢; loss is adopted, con-
sistent with other works [26, 27, 29].

The outcome of Phase 1 is a single slimmable detector whose parameters are
jointly optimized across all candidate widths. Each sub-network learns to mimic
the predictions of the largest configuration through distillation. This provides a
unified backbone that can later be coupled with the Dynamic Slimming Gate in
Phase 2 to enable adaptive width selection at inference time.

4.3.2 Phase 2: Adaptive Mode

In Phase 2, all model parameters are frozen except for the slimming head of the
gate. To endow the model with the ability to recognize simple or empty images,
training proceeds by optimizing the detector with the standard detection loss (Lget)
and, in addition, a complexity penalty (Lep) that discourages the selection of
computationally expensive widths. Moreover, following Li et al., the Sandwich
Gate Sparsification (SGS) technique is adapted to the object detection setting to
explicitly guide the gate toward minimal width on easy inputs and maximal width
otherwise.

47

Methods

Target Network

<Nt

N AWW

¥s1By (Loss Ls—®)
Yi B (Loss £ |«-----------

Yi B @HGround Truth]

Ensemble __ Stop
Module Gradient

Figure 4.5: Training process of slimmable detector with In-place Ensemble
Bootstrapping.

The core idea is to supervise the slimming head directly by comparing its output
with a target that depends on the sample type. Dataset samples are partitioned
into two groups:

« Labeled samples (XLapeled), i-€. images containing at least one bounding box.
o Empty samples (Xgmpty), i.e. images without any bounding boxes.

To minimize computation, the ground-truth target for the slimming head routes
empty (Fasy) images to the slimmest sub-network:

T (Xempty) = [1,0,...,0]
48

Methods

Algorithm 1 Phase 1: Training with In-Place Ensemble Bootstrapping (IEB)

Require: Model M with width set W = {wg, wy,, ..., wr}; a € [0,1].
1: Initialize online params 6 and EMA params 6’ < 6.
2: for each mini-batch (x,)) do
3: Set width wz; compute detector loss LB «— L4 (M, (x;6),Y)
4 Compute EMA logits/boxes with M(- ;60') at wy, and {wy,}
5: for each w;, do
6 Set width wy,; compute

£1,= Livas (Y10), Y5(0)) + Licovox (Br,(0), B, (9))

end for N B
8: Form ensemble targets from EMA predictions Y ; and By, ;
9: Set width wg; compute

Ls=Lxp-cls (Ys(e), ?L,I) + LKD box (Bs((‘)), EL,I)

10: Compute total loss £ = L¥B + 3. L, + Ls.
11: Update online params 6 < 6 — n VoL

12: EMA update: ¢ + a0 + (1 —«)6

13: end for

Conversely, labeled images are encouraged to use the widest sub-network:
T(XLabeled> = [07 07 sy 1]
The final SGS loss is defined as

Lscs(X) = Tisbmpty (X) - Lor (X, T(XEmpty>)
+ (1= Tremupiy (X)) - Lot (X, T (Xavetea))

where Tis gmpty (X) € {0,1} indicates whether X is an empty image, and

Lop(X,T) = =Y T log (P(X))

is the cross-entropy between the gate’s softmax scores P(X) and the one-hot target
T. The overall objective for Phase 2 is then

L = Lot + Lo + 5 Lscs

with a = 4 and [= 2 in our experiments.

49

Methods

To optimize the non-differentiable slimming head of the dynamic gate within
the object detection framework, the Gumbel-Softmax reparameterization [57]
is adopted, replacing the discrete argmax with a differentiable softmax during
backpropagation. In addition, following [54], Gumbel noise is injected during
training to prevent the gate from collapsing into a static routing policy.

The outcome of Phase 2 is a fully trained Dynamic Slimming Gate capable of
adaptively routing each input to either the slimmest or the widest sub-network at
inference time, depending on its estimated difficulty. Whereas Phase 1 produces
a single detector that can operate at multiple widths with consistent predictions,
Phase 2 equips this model with a learned policy that trades off accuracy and
computational cost on a per-image basis, typically steering easy inputs toward the
minimal width and hard inputs toward the maximal width. In practice, this policy
can be deployed in different ways: for example, it may use the slimmest subnet to
refine potentially misclassified Fasy frames or, more aggressively, skip such frames
altogether to maximise computational savings. As a result, the same backbone
can be run either statically at a fixed width or dynamically under a computational
budget, depending on the operational constraints.

50

Chapter 5

Results

This chapter presents the experimental results and analysis of the proposed
slimmable detection network.

In Section 5.1, we examine the outcomes of Phase 1 training with In-Place Ensemble
Bootstrapping (see Section 4.3.1). Results are analyzed both qualitatively and
quantitatively, with a focus on the performance variation across the four sub-models
and the potential energy savings achieved by deploying narrower configurations.
Section 5.2 reports the results obtained after Phase 2 training of the Dynamic
Slimming Gate (see Section 4.3.2). Here, we evaluate the effectiveness of the
adaptive mode, highlighting how the gate autonomously balances accuracy and
efficiency depending on the input.

Finally, in Section 5.3, we provide a direct comparison between the two modes,
contrasting their detection accuracy, computational cost, and energy footprint.

5.1 Static Mode

For our Slimmable MobileNetV2 backbone, as described in Section 4.2.1, the
slimming gate is placed after the fifth depthwise separable convolution block. All
preceding layers operate with a fixed slimming ratio p = 0.50, while the subsequent
layers are controlled by the gate with candidate ratios p € {0.25, 0.50, 0.75, 1.0}.
The model is initialized with COCO-pretrained weights [35], as this has proven to
be an effective strategy for transfer learning on urban datasets such as Cityscapes

69].

5.1.1 Training Details

The supernet was trained for a total of 150 epochs with a batch size of 32. We
used SDG optimizer with learning rate of 0.02, momentum of 0.9, and weight decay

51

Results

of 5 x 107%. A cosine annealing learning rate schedule was adopted, following
[54], with a minimum learning rate set to 1% of the initial value. The momentum
coefficient for the EMA model was set to p = 0.997.

For the classification loss, per-class weights were used to mitigate foreground — back-
ground imbalance, as adviced by [68]: the background class was up-weighted
(wp = 1.5), while all foreground classes were assigned w, = 1.

5.1.2 Results

To the best of our knowledge, no prior work has reported object detection ex-
periments on a dataset of this kind, making it necessary to establish a reference
point. For benchmarking, we train a non-slimmable MobileNetV2 SSDLite-512
baseline, which retains the same gating structure as our slimmable model but is
fixed to the maximum width, effectively operating as a single-width static network.
This baseline therefore serves as a proxy for a conventional detector without width
adaptivity, against which we can assess the benefits of our approach. It achieves
an mAP of 21.57% with a per-pass cost of 1.76 GMACs.

Table 5.1 reports the performance of our slimmable MobileNetV2 SSDLite-512
across its four candidate widths. As expected, accuracy increases with width,
reaching 21.96% mAP at full capacity (1.0x), but at the highest computational
cost of 1.44 GMACs per pass. Reducing the width yields substantial savings: the
0.25x configuration requires only 0.38 GMACs (a 73.6% reduction) but drops to
3.76% mAP, showing that extremely narrow models lose much of the representa-
tional capacity. Intermediate settings provide more favorable trade-offs: 0.50x
reduces compute by 59.0% while retaining 41.2% of the full-width accuracy, and
0.75x achieves 13.44% mAP with a 34.7% cost reduction (retaining 61.2% of the
full-width accuracy).

Width mAP (%) | GMACs/forward | Saving vs SNN 1.00x (%)
0.25x 2.09 0.38 73.6
0.50% 9.04 0.59 59.0
0.75% 14.12 0.94 34.7
1.00x 21.96 1.44 —
Static 1.00x 21.57 1.76 —

Table 5.1: Slimmable MobileNetV2 SSDLite-512 performance at different widths.
Savings are computed with respect to the slimmable 1.00x path (1.44 GMACs).
The static baseline retains the same gating structure but is fixed to the maximum
width, acting as a conventional single-width detector.

The slight gain at 1.0x over the single-width baseline is consistent with training

52

Results

under TEB, where an EMA teacher provides temporally smoothed supervision.
EMA-based teachers are indeed known to stabilize optimization and can yield
modest generalization improvements [70].

Class Test % | 0.25x 0.5x 0.75x 1.0x

Person 30.6% 0.0617 0.1216 0.1716 0.2482
Car 48.0% 0.1850 0.2919 0.3546 0.4510
Truck 1.0% 0.0117 0.0276 0.0587 0.1141
Rider 5.1% 0.0126 0.0524 0.1282 0.2235
Motorcycle 1.4% 0.0022 0.0184 0.0506 0.1153
Bicycle 12.5% | 0.0066 0.0538 0.0929 0.1839
Bus 1.2% 0.0206 0.1355 0.1751 0.3047
Train 0.3% 0.0004 0.0220 0.0437 0.1159

Table 5.2: Per-class mAP for the Slimmable MobileNetV2 SSDLite-512 at different
widths, alongside the proportion of each class in the test set. Classes in the long
tail (Truck, Bus, Train, Motorcycle) show markedly lower mAP, reflecting both
model capacity and data scarcity.

Table 5.2 further breaks down the results by category, showing the per-class mAP
for each candidate width. Frequent categories such as Car and Person consistently
dominate detection performance at all widths, reaching 0.4510 and 0.2482 mAP
respectively at full capacity. In contrast, rare or small-scale categories like Train,
Motorcycle, and Truck achieve much lower scores, particularly at narrower widths,
reflecting the compounded effect of data scarcity and reduced representational
capacity. Intermediate widths (0.5x and 0.75x) offer a balanced compromise: they
already surpass the narrowest setting by a large margin on most classes, and begin
to recover performance on mid-frequency categories such as Bicycle and Rider.
This breakdown highlights how width scaling disproportionately affects rare or
fine-grained categories, while high-frequency classes remain relatively robust even
in slimmest configurations.

From a qualitative perspective, the predictions of the different sub-networks ex-
hibit consistent patterns depending on the input characteristics. In simple and
well-defined scenes containing only clearly delineated foreground objects, the per-
formance across all widths is often comparable, if not almost identical, which
supports the use of the slimmest configuration for such cases (Figure 5.1(a)). Under
good lighting conditions, the intermediate 0.75x sub-network frequently serves as
an excellent substitute for the full 1.0x model, achieving nearly identical results
while reducing the computational cost by 34.7% (Figure 5.1(b)). Conversely, as
expected, the slimmest configuration shows a marked performance drop in crowded

53

Results

or visually complex environments, which highlights its reduced representational ca-
pacity and reveals the limitations of aggressive channel reduction when fine-grained
discrimination is required (Figure 5.1(c)).

This trend is particularly evident for rare classes such as Bus, Truck and Train, where
the widest configuration maintains a clear advantage (Figure 5.2(b)). Moreover,
all sub-networks except the widest struggle on two specific scenarios: poorly lit
images and the detection of small background objects (Figure 5.2(a—c)). Together,
these observations highlight the importance of dynamically adapting width to the
input to balance efficiency and accuracy.

o4

Results

(a)

Figure 5.1: Qualitative predictions of the slimmable model in Static Mode
at different slimming ratios p € {0.25,0.50,0.75,1.0}. Each column shows a
representative image with ground truth (GT) on the first row and model predictions
below. (a) Example with a single, clearly visible object. (b) Moderately dense and
well lit scene. (¢) Crowded scene with multiple objects.

59

Results

GT

0.50

EbBICPICYIOIYEIE picyicieie/cls

0.25

p:

0.75

p:

bicycle

person

thicyClipicyclee bibicyibicycle

Ceganiear’

(b) (c)

Figure 5.2: Qualitative predictions of the slimmable model in Static Mode at
different slimming ratios p. The layout follows Figure 5.1. (a) Small object scenario.
(b) Urban scene with multiple cars and one highly infrequent object class. (c)
Poorly lit image with reduced contrast.

56

Results

5.2 Adaptive Mode

In contrast to the static evaluation of fixed-width subnetworks, the Adaptive Mode
enables the model to dynamically select between the widest and the slimmest width
on a per-image basis. Instead of executing a predetermined configuration for all
inputs, a lightweight gate predicts the most appropriate subnetwork according
to the estimated difficulty or content of each image. This mechanism allows the
system to allocate computational resources adaptively: trivial or empty frames
can be processed by the slimmest network, while more complex scenes exploit the
full capacity of the model. The following section reports and analyses the results
obtained after training this gating mechanism (Phase 2), evaluating both its impact
on detection accuracy and the achieved computational savings.

5.2.1 Training Details

For the second training stage (Adaptive Mode), we start from the weights of the
supernet trained in Phase 1 and freeze all parameters except those of the slimming
gate. This allows the gate to learn how to route each input to the most appropriate
sub-network without altering the feature extractors.

Training is performed until convergence with a batch size of 1, as each image is
processed individually to determine its routing difficulty. To stabilise the training
and approximate a larger batch size, gradients are accumulated over 512 images
before each optimisation step. Following [54], we optimize only the gate parameters
using stochastic gradient descent with a learning rate of 0.05 (with a momentum of
0.9) which decays to 0.9x of its value in every epoch. In our experiments, the gate
typically converged within approximately 15 epochs, after which both the routing
policy and detection performance stabilized.

As explained in Section 4.3.2, the objective combines three terms: the standard
detection loss Lget, the complexity penalty Lep (which discourages the selection
of computationally expensive widths), and the Sandwich Gate Sparsification loss
Lsas, which supervises the gate to favour the slimmest path for empty or trivial
images and the widest path otherwise. In our experiments, the loss weights are set
to a = 2.0 for Lepx and 8 = 4.0 for Lggs. The computational cost of each width
configuration is normalised using a pre-computed GFLOPs table.

During training, the gate output is computed using the differentiable Gumbel-
Softmax reparameterization [57], allowing gradients to flow through the categorical
selection. To identify easy samples, an image is labeled as Fasy not simply because
it contains no ground-truth objects, but only if the slimmest sub-network correctly
predicts it as empty (i.e., with no false positives), as in Figure 5.3. In this way,
the gate is guided by reliable targets derived from the smallest configuration’s
behaviour.

57

Results

Correctly Recognized
y ecog ;I T (Xompty) = [1,0, ..., 0]

Empty Image Slimmest Width
A

Y

Non-Empty Image :I T (XLabelea) = [0, 0, ..., 1] l

Figure 5.3: Routing policy used to train the Dynamic Slimming Gate. Empty
images correctly recognized by the slimmest sub-network are assigned the minimal-
width target T (Xempty), Whereas non-empty or misclassified ones are assigned the
maximal-width target T(XLabeled)-

5.2.2 Results

As in Section 5.1, we also apply the Phase 2 training procedure to the static
network for benchmarking purposes. In this setting, the adaptive version attempts
to route empty images to the slimmest configuration, thereby reducing the average
computational cost to 1.59 GMACs (—9.7%) with a slight decrease in accuracy to
21.18% mAP (—1.8% vs the 21.57% of the Static 1.00x baseline). This baseline
policy classifies about ~11% of test images as empty, correctly identifying only
~21% of the truly empty ones.

These results are unsurprisingly suboptimal: since the static model has never
been trained at the smallest width, it lacks the capacity to fully converge in this
configuration. Moreover, the complete absence of a detection-loss component
supervising the smallest path further hinders stable convergence and weakens the
model’s ability to learn an effective gating policy.

Our slimmable model on the other hand, by leveraging the trained slimmest
subnet, routes 1884/4 000 images (47.1%) through the minimal-width path, thereby
lowering computational cost and correctly identifying approximately 57% of the
empty images.

In this context, the adaptive mode can be operated in two distinct ways. The default
and less aggressive configuration, which we term Try-Best, is the one for which the
gate has been trained: images classified as Fasy are still processed by the slimmest
sub-network rather than being discarded, allowing the system to save computation
while retaining the possibility to recover detection errors on non-trivial cases. A
second, more aggressive configuration, which we term Farly-FEzit, treats images
classified as Fasy by the gate as effectively empty or uninformative, bypassing
further detection altogether. This policy maximizes computational savings but
may sacrifice accuracy on borderline cases.

58

Results

Table 5.3 summarises the results obtained under both configurations. Under Try-
Best, accuracy is slightly higher at 16.90% mAP (a 23.0% drop vs. the slimmable
1.0x), with a compute cost of 0.93 GMACs per image (a 35.5% reduction vs.
1.44 GMACs). Under Early-FEzit, the model attains an mAP of 16.64% (a 24.2%
drop relative to the 1.0x slimmable setting at 21.96), while reducing the average
compute to 0.85 GMACSs per image, a 41.0% saving with respect to the 1.44 GMACs
full-width run.

Configuration | Try-Best Early-Exit | mAP | GMAC/img
1.0x Static v 21.18 1.59
Slimmable v 16.90 0.93
Slimmable v 16.64 0.85

Table 5.3: Adaptive-mode results under the two routing policies. The 1.0x static
benchmark run is included for reference.

From a qualitative point of view, combining gate decisions with the Static Mode
predictions reveals consistent patterns. Scenes with low structural complexity or
homogeneous appearance (e.g., mostly asphalt or mostly vegetation) are frequently
routed as Fasy by the gate (Figure 5.5(a~b)), where skipping or using the slimmest
subnet has limited impact on accuracy. Conversely, heterogeneous urban scenes
(mixed road, street furniture, foliage, facades) tend to be handled conservatively
and are more often routed as Hard (Figure 5.6(a-b)), in line with the observation
that wider subnets better handle small, crowded, or poorly lit objects.

100 100 —=
80 80 P
9 9
2 60 5 60
g s
g T 1
8
2 40 2 a0 E
£ ? ¥
a g
20 20 } % ;
0 0
0.05 0.10 0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
RMS Contrast RMS Contrast
(a) (b)

Figure 5.4: Relationship between RMS Contrast, which goes from 0 to 0.5, and
gate behavior. (a) Percentage of empty images across RMS contrast bins, showing
that low-contrast scenes are more likely to be visually empty. (b) Percentage of
samples classified as Hard by the gate, which increases with contrast.

59

Results

A possible explanation for this behaviour lies in the architecture of the Dynamic
Slimming Gate itself. Because it aggregates spatial information via global average
pooling to form a compact channel descriptor, its internal statistics primarily
capture global activation patterns (e.g., texture richness and contrast diversity),
rather than precise spatial structure [55, 71]. Consequently, low heterogeneity can
serve as a plausible, though imperfect, proxy for trivial or empty frames. This
mechanism can be indeed prone to misrouting: visually uniform but semantically
rich images (e.g. low-contrast backgrounds with small targets) or cluttered yet
empty scenes may be wrongly classified, with empty images marked as Hard
(Figure 5.6(c)) and non-empty ones sent to Fasy (Figure 5.5(c)).

To further investigate this hypothesis, we analyzed the relationship between the
gate’s predictions and the average image contrast, measured in terms of RMS
contrast. As shown in Figure 5.4, the percentage of empty images decreases steadily
as contrast increases, while the proportion of samples classified as Hard follows the
opposite trend. This correlation strongly suggests that the gate implicitly relies on
global contrast statistics when estimating image difficulty and the presence of objects
in it. In practice, this behaviour is also consistent with dataset characteristics:
low-contrast scenes (e.g., uniform asphalt or dense vegetation) are often truly empty,
whereas high-contrast ones tend to correspond to structured urban views containing
objects and edges. Therefore, while contrast is not an explicit supervision signal, it
emerges as a strong latent cue guiding the gate’s routing decisions.

60

Results

Easy Images

Image GT Prediction

=
kb bic blcyrbilzly cLycl e

< bic'y'cle3|e/de

Figure 5.5: Qualitative examples of images routed as Fasy by the gate. (a) Pre-
dominantly asphalt scene with few salient features. (b) Homogeneous vegetation
background with no foreground targets. (c) Visually uniform yet semantically
non-empty frame, containing small and infrequent objects, misclassified as Fasy.

61

Results

Hard Images

Prediction

person /¥ &

REE =3

Figure 5.6: Qualitative examples of images routed as Hard by the gate. (a) Urban
street with mixed structures (road, facades, street furniture) and multiple small
objects. (b) Scene containing a large infrequent class (Bus) alongside pedestrians
and cars. (c) Cluttered yet empty background in low-light conditions, wrongly
classified as Hard.

62

Results

5.3 Comparative Results

Figure 5.7 summarizes the accuracy—compute trade—off (mAP vs. average GMACs
per forward) for the Slimmable model in both Static and Adaptive modes, alongside
the non—slimmable Baseline. The static slimmable runs (circles) delineate a clean
operating frontier: as width increases, mAP improves with diminishing returns
and a knee near the 0.75x setting. Placing the adaptive policies (squares) on the
same axes shows that input—conditioned routing can yield more favorable points
at comparable budgets: by sending easy frames to cheaper subnets and reserving
wide subnets for difficult scenes, both Farly-Ezit and Try-Best achieve higher
average accuracy than fixed widths around the 0.85—0.95 GMAC/img range. The
non-slimmable baseline (diamonds) exhibits limited movement when attempting
to skip empty images, confirming that without narrower subnets there is little
headroom for computational savings.

25
—@— Slimmable - Static Mode
B Slimmable - Adaptive Mode 1.00x
—@- Baseline
20 - Baseline
Try-Best Baseline
(Early-Exit)
- 151 Early-Exit
<
o
g
10 -
5 -
0.25x
O T T T T

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Average GMACs per forward

Figure 5.7: Accuracy—compute trade—off for Static and Adaptive modes.

The two modes are complementary and can coexist in a single system: Static Mode
is preferable when the budget is fixed and predictable (e.g., a known operation

63

Results

time), and we can assume a stable input distribution (e.g., a specific patrol route or
inspection profile). It offers deterministic latency, simpler validation, and straight-
forward worst—case guarantees—properties that can be important for certification
and mission planning. Adaptive Mode, on the other hand, is advantageous when
the scene difficulty varies across time or routes, and when average rather than
worst—case compute matters. In these settings, gating converts heterogeneity in
the stream into compute savings and/or accuracy gains at the same average cost.
Between the two policies, Early-FEzit favors efficiency (lower GMAC /img) with a
small mAP penalty, whereas Try-Best spends slightly more compute to recover
additional detections.

In other words, if the deployment can rely on a fixed budget and a well-characterized
input profile, a static width is adequate and easier to certify. If the operational
conditions are variable or uncertain, enabling the gate provides a strictly better
average accuracy—efficiency trade—off, effectively shifting the operating point above
the static frontier.

64

Chapter 6
Conclusions

Designing DNNs for mobile and embedded devices remains a challenging task.
Practical constraints such as limited compute capacity, strict power budgets, and
heterogeneous hardware architectures often require developing separate models
for each platform or usage scenario. This fragmentation increases deployment
complexity and memory footprint, particularly when multiple performance—energy
trade-offs are required on the same device.

This work tries to address these issues by designing and validating a slimmable
approach to object detection tailored for medium—low altitude drone applications.
By integrating techniques such as In-Place Ensemble Bootstrapping, knowledge
distillation, and channel-wise slicing, we developed a MobileNetV2-SSDLite512
model capable of operating efficiently across four predefined widths using a single
set of shared parameters. Each configuration, from the slimmest to the full-capacity
network, was trained to produce consistent predictions, effectively allowing the
convolutional weights to be “sliced” on demand to match different computational
budgets. In the static mode, the detector achieved mAP scores of 2.09%, 9.04%,
14.12%, and 21.96% across the 0.25x, 0.50x, 0.75x, and 1.00x widths, respectively,
with corresponding computational costs of 0.38, 0.59, 0.94, and 1.44 GMACs
per image. This demonstrates a clear trade-off between accuracy and efficiency,
confirming that meaningful predictions can be retained even under substantial
computational reduction.

Beyond static scalability, we further extended the model with a Dynamic Slimming
Glate, enabling adaptive inference. This module learns to analyze incoming feature
maps and route each input either through the widest or the slimmest subnet,
depending on its estimated difficulty. In practice, this mechanism allows the detector
to process visually complex scenes with full capacity, while reducing computation
on non-informative images. The resulting framework therefore supports both a
static deployment at a fixed cost and a dynamic one, where accuracy and efficiency
are jointly optimized on a per-image basis.

65

Conclusions

In adaptive mode, the network can operate under two different configurations: the
standard Try-Best, which processes Fasy images through the slimmest sub-network,
and the more aggressive Farly-Fxit, which omits them entirely to maximize efficiency.
Under Try-Best, the model achieves 16.90% mAP (a 23.0% decrease relative to
the slimmable 1.00x setting at 21.96%) with an average cost of 0.93 GMACs/img
(—35.5%). Conversely, Early-Exit attains 16.64% mAP (—24.2% vs. 1.00x) with
just 0.85 GMACs/img, corresponding to a 41.0% reduction in compute.

Such flexibility opens multiple operational modes, depending on both external
and internal factors. Exogenous conditions such as remaining battery life, mission
duration, or communication bandwidth may dictate a preferred energy profile, while
endogenous conditions, determined by the input itself, can trigger automatic adap-
tation to preserve efficiency without compromising accuracy. This dual adaptivity
makes the approach well suited for resource-constrained, autonomous platforms
where computation must be allocated intelligently and in real time.

Overall, the proposed methodology demonstrates that width-adaptive object de-
tection can provide a unified, lightweight, and versatile alternative to maintaining
multiple specialized models. By exploiting a single shared backbone capable of
scaling its complexity dynamically, we enable flexible deployment across a wide
range of operating conditions without sacrificing performance consistency.
Further research could focus on enhancing the per-width representational qual-
ity and designing a more robust gating mechanism, less sensitive to activation
statistics and more attuned to spatial context. Exploring mixed-precision kernels,
quantization-aware training, and joint optimization of energy—latency objectives
could also extend the model’s applicability to ultra-low-power devices and real-time
drone missions.

66

Bibliography

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas S. Huang.
«Slimmable Neural Networks». In: CoRR abs/1812.08928 (2018). arXiv: 1812.
08928. URL: http://arxiv.org/abs/1812.08928 (cit. on pp. 1, 28-30, 34).

Peng Wang et al. «Unifying Architectures, Tasks, and Modalities Through a
Simple Sequence-to-Sequence Learning Framework». In: CoRR abs/2202.03052
(2022). arXiv: 2202.03052. URL: https://arxiv.org/abs/2202.03052 (cit.
on pp. 1, 31).

Jiahui Yu et al. «BigNAS: Scaling up Neural Architecture Search with
Big Single-Stage Models». In: Computer Vision — ECCV 2020: 16th Fu-
ropean Conference, Glasgow, UK, August 25-28, 2020, Proceedings, Part
VII. Glasgow, United Kingdom: Springer-Verlag, 2020, pp. 702-717. 1SBN:
978-3-030-58570-9. DOI: 10.1007/978-3-030-58571-6_41. URL: https:
//doi .org/10.1007/978-3-030-58571-6_41 (cit. on pp. 1, 32, 46).

Xin He, Kaiyong Zhao, and Xiaowen Chu. « AutoML: A Survey of the State-
of-the-Art». In: CoRR abs/1908.00709 (2019). arXiv: 1908 . 00709. URL:
http://arxiv.org/abs/1908.00709 (cit. on pp. 1, 31).

Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale. 2021. arXiv: 2010 . 11929 [cs.CV]. URL:
https://arxiv.org/abs/2010.11929 (cit. on p. 1).

Lanlan Liu and Jia Deng. «Dynamic Deep Neural Networks: Optimizing

Accuracy-Efficiency Trade-offs by Selective Execution». In: CoRR abs/1701.00299

(2017). arXiv: 1701.00299. URL: http://arxiv.org/abs/1701.00299 (cit.
on pp. 2, 29).

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. MobileNetV2: Inverted Residuals and Linear Bottlenecks. 2019.
arXiv: 1801.04381 [cs.CV]. URL: https://arxiv.org/abs/1801.04381
(cit. on pp. 2, 3, 6-9, 23, 43, 44).

67

https://arxiv.org/abs/1812.08928
https://arxiv.org/abs/1812.08928
http://arxiv.org/abs/1812.08928
https://arxiv.org/abs/2202.03052
https://arxiv.org/abs/2202.03052
https://doi.org/10.1007/978-3-030-58571-6_41
https://doi.org/10.1007/978-3-030-58571-6_41
https://doi.org/10.1007/978-3-030-58571-6_41
https://arxiv.org/abs/1908.00709
http://arxiv.org/abs/1908.00709
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1701.00299
http://arxiv.org/abs/1701.00299
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381

Bibliography

[10]

[11]

[12]

[13]

[14]

[16]

Muhammet Taha Topalli, Mehmet Yilmaz, and Muhammed Fatih Corap-
siz. «Real Time Implementation of Drone Detection using TensorFlow and
MobileNetV2-SSD». In: 2021 7th International Conference on FElectrical,
FElectronics and Information Engineering (ICEEIE). 2021, pp. 436-439. DOI:
10.1109/ICEEIE52663.2021.9616846 (Cit. on p. 3).

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. «MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applicationsy. In:
CoRR abs/1704.04861 (2017). arXiv: 1704.04861. URL: http://arxiv.org/
abs/1704.04861 (cit. on pp. 3, 8).

Francois Chollet. «Xception: Deep Learning With Depthwise Separable Con-
volutionsy». In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). July 2017 (cit. on p. 3).

Ramesh G, Jeswin Y, Divith R Rao, B.R Suhaag, Daksh Uppoor, and Kiran
Raj K M. «Real Time Object Detection and Tracking Using SSD Mobilenetv2
on Jetbot GPU». In: 2024 IEEFE International Conference on Distributed Com-
puting, VLSI, Electrical Circuits and Robotics (DISCOVER). 2024, pp. 255—
260. pOI: 10.1109/DISCOVER62353.2024.10750771 (cit. on p. 3).

Anusree Kanadath, J. Angel Arul Jothi, and Siddhaling Urolagin. «Histopatholy
ogy Image Segmentation Using MobileNetV2 based U-net Model». In: 2021
International Conference on Intelligent Technologies (CONIT). 2021, pp. 1-8.
DOI: 10.1109/CONIT51480.2021.9498341 (cit. on p. 3).

Andrew Howard et al. Searching for MobileNetV3. 2019. arXiv: 1905.02244
[cs.CV]. URL: https://arxiv.org/abs/1905.02244 (cit. on pp. 3, 23).

Danfeng Qin et al. MobileNetV, — Universal Models for the Mobile Ecosystem.
2024. arXiv: 2404 .10518 [cs.CV]. URL: https://arxiv.org/abs/2404.
10518 (cit. on p. 3).

Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler,
Vivienne Sze, and Hartwig Adam. NetAdapt: Platform-Aware Neural Network
Adaptation for Mobile Applications. 2018. arXiv: 1804.03230 [cs.CV]. URL:
https://arxiv.org/abs/1804.03230 (cit. on p. 3).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, fukasz Kaiser, and Illia Polosukhin. «Attention is all
you need». In: Proceedings of the 31st International Conference on Neural
Information Processing Systems. NIPS’17. Long Beach, California, USA:
Curran Associates Inc., 2017, pp. 6000-6010. 1SBN: 9781510860964 (cit. on

p. 3).

68

https://doi.org/10.1109/ICEEIE52663.2021.9616846
https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://doi.org/10.1109/DISCOVER62353.2024.10750771
https://doi.org/10.1109/CONIT51480.2021.9498341
https://arxiv.org/abs/1905.02244
https://arxiv.org/abs/1905.02244
https://arxiv.org/abs/1905.02244
https://arxiv.org/abs/2404.10518
https://arxiv.org/abs/2404.10518
https://arxiv.org/abs/2404.10518
https://arxiv.org/abs/1804.03230
https://arxiv.org/abs/1804.03230

Bibliography

[20]

[21]

[22]

23]

[24]

[25]

[26]

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. 2015. arXiv: 15612 .03385 [cs.CV]. URL:
https://arxiv.org/abs/1512.03385 (cit. on pp. 4, 7).

Abien Fred Agarap. Deep Learning using Rectified Linear Units (ReLU). 2019.
arXiv: 1803.08375 [cs.NE]. URL: https://arxiv.org/abs/1803.08375
(cit. on p. 5).

Rui Kong, Yuanchun Li, Yizhen Yuan, and Linghe Kong. «ConvReLU++:
Reference-based Lossless Acceleration of Conv-ReLLU Operations on Mobile
CPUw. In: Proceedings of the 21st Annual International Conference on Mobile
Systems, Applications and Services. MobiSys ’23. Helsinki, Finland: Associa-
tion for Computing Machinery, 2023, pp. 503-515. 1SBN: 9798400701108. DOTI:
10.1145/3581791.3596831. URL: https://doi.org/10.1145/3581791.
3596831 (cit. on p. 6).

Baoye Song, Jianyu Chen, Weibo Liu, Jiangzhong Fang, Yani Xue, and
Xiaohui Liu. « YOLO-ELWNet: A lightweight object detection network». In:
Neurocomputing 636 (Mar. 2025), p. 129904. DOI: 10.1016/j .neucom.2025.
129904 (cit. on p. 6).

Tony Lindeberg. «Scale Invariant Feature Transform». In: vol. 7. May 2012.
DOI: 10.4249/scholarpedia. 10491 (cit. on p. 12).

N. Dalal and B. Triggs. «Histograms of oriented gradients for human de-
tectiony». In: 2005 IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR’05). Vol. 1. 2005, 886-893 vol. 1. DOT:
10.1109/CVPR.2005.177 (cit. on p. 13).

P. Viola and M. Jones. «Rapid object detection using a boosted cascade
of simple features». In: Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR 2001. Vol. 1.
2001, pp. I-1. por: 10.1109/CVPR.2001.990517 (cit. on p. 13).

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. 2014.
arXiv: 1311.2524 [cs.CV]. URL: https://arxiv.org/abs/1311.2524
(cit. on p. 13).

Syed Sahil Abbas Zaidi, Mohammad Samar Ansari, Asra Aslam, Nadia
Kanwal, Mamoona Asghar, and Brian Lee. A Survey of Modern Deep Learning
based Object Detection Models. 2021. arXiv: 2104.11892 [cs.CV]. URL: https:
//arxiv.org/abs/2104.11892 (cit. on pp. 14, 15).

Ross Girshick. Fast R-CNN. 2015. arXiv: 1504.08083 [cs.CV]. URL: https:
//arxiv.org/abs/1504.08083 (cit. on pp. 13, 47).

69

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1803.08375
https://doi.org/10.1145/3581791.3596831
https://doi.org/10.1145/3581791.3596831
https://doi.org/10.1145/3581791.3596831
https://doi.org/10.1016/j.neucom.2025.129904
https://doi.org/10.1016/j.neucom.2025.129904
https://doi.org/10.4249/scholarpedia.10491
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/CVPR.2001.990517
https://arxiv.org/abs/1311.2524
https://arxiv.org/abs/1311.2524
https://arxiv.org/abs/2104.11892
https://arxiv.org/abs/2104.11892
https://arxiv.org/abs/2104.11892
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1504.08083

Bibliography

[27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. 2016.
arXiv: 15606.01497 [cs.CV]. URL: https://arxiv.org/abs/1506.01497
(cit. on pp. 14, 47).

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only
Look Once: Unified, Real-Time Object Detection. 2016. arXiv: 1506.02640
[cs.CV]. URL: https://arxiv.org/abs/1506.02640 (cit. on pp. 15, 16).

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C. Berg. «SSD: Single Shot MultiBox Detec-
tor». In: Computer Vision — ECCV 2016. Springer International Publishing,
2016, pp. 21-37. 1SBN: 9783319464480. DOI: 10.1007/978-3-319-46448-0_2.
URL: http://dx.doi.org/10.1007/978-3-319-46448-0_2 (cit. on pp. 16,
17, 22, 44, 45, 47).

Lilian Weng. «Object Detection Part 4: Fast Detection Models». In: lilian-
weng.github.io (2018). URL: https://lilianweng.github.io/posts/2018-
12-27-object-recognition-part-4/ (cit. on pp. 16, 17, 19).

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. 2015. arXiv: 1409.1556 [cs.CV]. URL:
https://arxiv.org/abs/1409.1556 (cit. on p. 16).

Olga Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge.
2015. arXiv: 1409.0575 [cs.CV]. URL: https://arxiv.org/abs/1409.0575
(cit. on p. 16).

Pedro F. Felzenszwalb, David McAllester, Deva Ramanan, and Ross B. Gir-
shick. « Object Detection with Discriminatively Trained Part-Based Models
». In: IEEFE Transactions on Pattern Analysis € Machine Intelligence 32.09
(Sept. 2010), pp. 1627-1645. 1SSN: 1939-3539. DOI: 10.1109/TPAMI.2009. 167.
URL: https://doi.ieeecomputersociety.org/10.1109/TPAMI.2009. 167
(cit. on p. 21).

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and
Andrew Zisserman. «The PASCAL Visual Object Classes (VOC) Challenge».
In: International Journal of Computer Vision 88 (2010), pp. 303-338 (cit. on
pp. 22, 36).

Tsung-Yi Lin et al. «Microsoft COCO: Common Objects in Context». In:
CoRR abs/1405.0312 (2014). arXiv: 1405.0312. URL: http://arxiv.org/
abs/1405.0312 (cit. on pp. 23, 51).

Tom B. Brown et al. «Language models are few-shot learners». In: Proceed-
ings of the 34th International Conference on Neural Information Processing
Systems. NIPS ’20. Vancouver, BC, Canada: Curran Associates Inc., 2020.
ISBN: 9781713829546 (cit. on p. 23).

70

https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
https://lilianweng.github.io/posts/2018-12-27-object-recognition-part-4/
https://lilianweng.github.io/posts/2018-12-27-object-recognition-part-4/
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.0575
https://arxiv.org/abs/1409.0575
https://doi.org/10.1109/TPAMI.2009.167
https://doi.ieeecomputersociety.org/10.1109/TPAMI.2009.167
https://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312

Bibliography

[37]

[38]

[39]

[41]

[42]

[43]

[44]

[45]

[46]

Gaurav Menghani. «Efficient Deep Learning: A Survey on Making Deep
Learning Models Smaller, Faster, and Better». In: ACM Comput. Surv. 55.12
(Mar. 2023). 18SN: 0360-0300. DOI: 10.1145/3578938. URL: https://doi.
org/10.1145/3578938 (cit. on p. 23).

Tailin Liang, John Glossner, Lei Wang, and Shaobo Shi. «Pruning and
Quantization for Deep Neural Network Acceleration: A Survey». In: CoRR
abs/2101.09671 (2021). arXiv: 2101.09671. URL: https://arxiv.org/abs/
2101.09671 (cit. on p. 24).

Babak Rokh, Ali Azarpeyvand, and Alireza Khanteymoori. «A Compre-
hensive Survey on Model Quantization for Deep Neural Networks in Image
Classification». In: ACM Transactions on Intelligent Systems and Technology
14.6 (Nov. 2023), pp. 1-50. 1SSN: 2157-6912. pOI: 10.1145/3623402. URL:
http://dx.doi.org/10.1145/3623402 (cit. on p. 24).

Jianping Gou, Baosheng Yu, Stephen John Maybank, and Dacheng Tao.
«Knowledge Distillation: A Survey». In: CoRR abs/2006.05525 (2020). arXiv:
2006.05525. URL: https://arxiv.org/abs/2006.05525 (cit. on pp. 24-27).

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge
in a Neural Network. 2015. arXiv: 1503.02531 [stat.ML]. URL: https:
//arxiv.org/abs/1503.02531 (cit. on p. 24).

Gousia Habib, Tausifa jan Saleem, Sheikh Musa Kaleem, Tufail Rouf, and
Brejesh Lall. A Comprehensive Review of Knowledge Distillation in Computer
Vision. 2024. arXiv: 2404.00936 [cs.CV]. URL: https://arxiv.org/abs/
2404.00936 (cit. on p. 24).

Amir M. Mansourian et al. A Comprehensive Survey on Knowledge Distillation.
2025. arXiv: 2503.12067 [cs.CV]. URL: https://arxiv.org/abs/2503.
12067 (cit. on p. 28).

Amir Moslemi, Anna Briskina, Zubeka Dang, and Jason Li. «A survey on
knowledge distillation: Recent advancements». In: Machine Learning with
Applications 18 (2024), p. 100605. 1SSN: 2666-8270. DOI: 10.1016/j .mlwa.
2024.100605. URL: https://www.sciencedirect.com/science/article/
pii/S2666827024000811 (cit. on p. 28).

Andrey Ignatov, Radu Timofte, William Chou, Ke Wang, Max Wu, Tim
Hartley, and Luc Van Gool. AI Benchmark: Running Deep Neural Networks
on Android Smartphones. 2018. arXiv: 1810.01109 [cs.AI]. URL: https:
//arxiv.org/abs/1810.01109 (cit. on p. 28).

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten,
and Kilian Q. Weinberger. Multi-Scale Dense Networks for Resource Efficient
Image Classification. 2018. arXiv: 1703 .09844 [cs.LG]. URL: https://
arxiv.org/abs/1703.09844 (cit. on p. 29).

71

https://doi.org/10.1145/3578938
https://doi.org/10.1145/3578938
https://doi.org/10.1145/3578938
https://arxiv.org/abs/2101.09671
https://arxiv.org/abs/2101.09671
https://arxiv.org/abs/2101.09671
https://doi.org/10.1145/3623402
http://dx.doi.org/10.1145/3623402
https://arxiv.org/abs/2006.05525
https://arxiv.org/abs/2006.05525
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2404.00936
https://arxiv.org/abs/2404.00936
https://arxiv.org/abs/2404.00936
https://arxiv.org/abs/2503.12067
https://arxiv.org/abs/2503.12067
https://arxiv.org/abs/2503.12067
https://doi.org/10.1016/j.mlwa.2024.100605
https://doi.org/10.1016/j.mlwa.2024.100605
https://www.sciencedirect.com/science/article/pii/S2666827024000811
https://www.sciencedirect.com/science/article/pii/S2666827024000811
https://arxiv.org/abs/1810.01109
https://arxiv.org/abs/1810.01109
https://arxiv.org/abs/1810.01109
https://arxiv.org/abs/1703.09844
https://arxiv.org/abs/1703.09844
https://arxiv.org/abs/1703.09844

Bibliography

[47]

[49]

[50]

[51]

[52]

[53]

[55]

[56]

Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S.
Davis, Kristen Grauman, and Rogerio Feris. BlockDrop: Dynamic Inference
Paths in Residual Networks. 2019. arXiv: 1711.08393 [cs.CV]. URL: https:
//arxiv.org/abs/1711.08393 (cit. on p. 29).

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E. Gonzalez.
SkipNet: Learning Dynamic Routing in Convolutional Networks. 2018. arXiv:
1711.09485 [cs.CV]. URL: https://arxiv.org/abs/1711.09485 (cit. on
p. 29).

Jiahui Yu and Thomas Huang. Universally Slimmable Networks and Improved
Training Techniques. 2019. arXiv: 1903 .05134 [cs.CV]. URL: https://
arxiv.org/abs/1903.05134 (cit. on pp. 31, 36, 46).

Jiahui Yu and Thomas Huang. AutoSlim: Towards One-Shot Architecture
Search for Channel Numbers. 2019. arXiv: 1903.11728 [cs.CV]. URL: https:
//arxiv.org/abs/1903.11728 (cit. on p. 31).

Danna Xue, Fei Yang, Pei Wang, Luis Herranz, Jingiu Sun, Yu Zhu, and
Yanning Zhang. SlimSeg: Slimmable Semantic Segmentation with Boundary
Supervision. 2023. arXiv: 2207.06242 [cs.CV]. URL: https://arxiv.org/
abs/2207.06242 (cit. on p. 34).

Guillermo Iglesias, Edgar Talavera, and Alberto Diaz-Alvarez. «A survey
on GANs for computer vision: Recent research, analysis and taxonomy». In:
Computer Science Review 48 (May 2023), p. 100553. 1SSN: 1574-0137. DOT:
10.1016/j.cosrev.2023.100553. URL: http://dx.doi.org/10.1016/j.
cosrev.2023.100553 (cit. on p. 34).

Liang Hou, Zehuan Yuan, Lei Huang, Huawei Shen, Xueqi Cheng, and
Changhu Wang. Slimmable Generative Adversarial Networks. 2021. arXiv:
2012.05660 [cs.LG]. URL: https://arxiv.org/abs/2012.05660 (cit. on
p. 34).

Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang, Zhihui Li, and
Xiaojun Chang. Dynamic Slimmable Network. 2021. arXiv: 2103 . 13258
[cs.CV]. URL: https://arxiv.org/abs/2103. 13258 (cit. on pp. 35-37,
43-45, 50, 52, 57).

Jie Hu, Li Shen, and Gang Sun. «Squeeze-and-Excitation Networks». In: 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018,
pp. 7132-7141. por: 10.1109/CVPR.2018.00745 (cit. on pp. 36, 60).

Zongxin Yang, Linchao Zhu, Yu Wu, and Yi Yang. Gated Channel Trans-
formation for Visual Recognition. 2020. arXiv: 1909.11519 [cs.CV]. URL:
https://arxiv.org/abs/1909.11519 (cit. on p. 36).

72

https://arxiv.org/abs/1711.08393
https://arxiv.org/abs/1711.08393
https://arxiv.org/abs/1711.08393
https://arxiv.org/abs/1711.09485
https://arxiv.org/abs/1711.09485
https://arxiv.org/abs/1903.05134
https://arxiv.org/abs/1903.05134
https://arxiv.org/abs/1903.05134
https://arxiv.org/abs/1903.11728
https://arxiv.org/abs/1903.11728
https://arxiv.org/abs/1903.11728
https://arxiv.org/abs/2207.06242
https://arxiv.org/abs/2207.06242
https://arxiv.org/abs/2207.06242
https://doi.org/10.1016/j.cosrev.2023.100553
http://dx.doi.org/10.1016/j.cosrev.2023.100553
http://dx.doi.org/10.1016/j.cosrev.2023.100553
https://arxiv.org/abs/2012.05660
https://arxiv.org/abs/2012.05660
https://arxiv.org/abs/2103.13258
https://arxiv.org/abs/2103.13258
https://arxiv.org/abs/2103.13258
https://doi.org/10.1109/CVPR.2018.00745
https://arxiv.org/abs/1909.11519
https://arxiv.org/abs/1909.11519

Bibliography

[60]

[61]

[62]

[63]

Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization
with Gumbel-Softmaz. 2017. arXiv: 1611.01144 [stat.ML]. URL: https:
//arxiv.org/abs/1611.01144 (cit. on pp. 36, 44, 50, 57).

Zuoxin Li, Lu Yang, and Fuqiang Zhou. F'SSD: Feature Fusion Single Shot
Multibox Detector. 2024. arXiv: 1712.00960 [cs.CV]. URL: https://arxiv.
org/abs/1712.00960 (cit. on p. 36).

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus
Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele.
The Cityscapes Dataset for Semantic Urban Scene Understanding. 2016. arXiv:
1604.01685 [cs.CV]. URL: https://arxiv.org/abs/1604.01685 (cit. on
p. 37).

Till Beemelmanns. How to convert Cityscapes dataset to COCO dataset format.
2020. URL: https://tillbeemelmanns.github.i0/2020/10/10/convert-
cityscapes-to-coco-dataset-format.html (visited on 09/14/2025) (cit.
on p. 38).

Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement.
2018. arXiv: 1804 .02767 [cs.CV]. URL: https://arxiv.org/abs/1804.
02767 (cit. on p. 38).

Alexander Buslaev, Vladimir I. Iglovikov, Eugene Khvedchenya, Alex Parinov,
Mikhail Druzhinin, and Alexandr A. Kalinin. « Albumentations: Fast and
Flexible Image Augmentations». In: Information 11.2 (2020). 1SSN: 2078-
2489. DOI: 10.3390/1inf011020125. URL: https://www.mdpi.com/2078-
2489/11/2/125 (cit. on p. 41).

Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Al-
varez, and Ping Luo. SegFormer: Simple and Efficient Design for Semantic
Segmentation with Transformers. 2021. arXiv: 2105.15203 [cs.CV]. URL:
https://arxiv.org/abs/2105.15203 (cit. on p. 41).

Hanchao Li, Pengfei Xiong, Jie An, and Lingxue Wang. Pyramid Attention
Network for Semantic Segmentation. 2018. arXiv: 1805.10180 [cs.CV]. URL:
https://arxiv.org/abs/1805.10180 (cit. on p. 41).

Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan,
and Serge Belongie. «Feature Pyramid Networks for Object Detection». In:
2017 IEEE Conference on Computer Vision and Pattern Recognition (C'VPR).
2017, pp. 936-944. DOT: 10.1109/CVPR.2017.106 (cit. on p. 44).

73

https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1712.00960
https://arxiv.org/abs/1712.00960
https://arxiv.org/abs/1712.00960
https://arxiv.org/abs/1604.01685
https://arxiv.org/abs/1604.01685
https://tillbeemelmanns.github.io/2020/10/10/convert-cityscapes-to-coco-dataset-format.html
https://tillbeemelmanns.github.io/2020/10/10/convert-cityscapes-to-coco-dataset-format.html
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1804.02767
https://doi.org/10.3390/info11020125
https://www.mdpi.com/2078-2489/11/2/125
https://www.mdpi.com/2078-2489/11/2/125
https://arxiv.org/abs/2105.15203
https://arxiv.org/abs/2105.15203
https://arxiv.org/abs/1805.10180
https://arxiv.org/abs/1805.10180
https://doi.org/10.1109/CVPR.2017.106

Bibliography

[66]

Zhigiang Shen, Zhankui He, and Xiangyang Xue. « MEAL: Multi-Model En-
semble via Adversarial Learningy. In: Proceedings of the Thirty-Third AAAI
Conference on Artificial Intelligence and Thirty-First Innovative Applica-
tions of Artificial Intelligence Conference and Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence. AAAT'19/TAAT'19/EAAT'19.
Honolulu, Hawaii, USA: AAAI Press, 2019. 1SBN: 978-1-57735-809-1. DOI:
10.1609/aaai.v33101.33014886. URL: https://doi.org/10.1609/aaai.
v33101.33014886 (cit. on p. 46).

Zhigiang Shen and Marios Savvides. MEAL V2: Boosting Vanilla ResNet-50 to
80%+ Top-1 Accuracy on ImageNet without Tricks. 2021. arXiv: 2009.08453
[cs.CV]. URL: https://arxiv.org/abs/2009.08453 (cit. on p. 46).

Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and Manmohan Chan-
draker. «Learning efficient object detection models with knowledge distilla-
tiony. In: Proceedings of the 31st International Conference on Neural Infor-
mation Processing Systems. NIPS’17. Long Beach, California, USA: Curran
Associates Inc., 2017, pp. 742-751. 1SBN: 9781510860964 (cit. on pp. 47, 52).

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. « Mask R-
CNN». In: 2017 IEEE International Conference on Computer Vision (ICCV).
2017, pp. 2980-2988. pOI: 10.1109/ICCV.2017.322 (cit. on p. 51).

Antti Tarvainen and Harri Valpola. «Mean teachers are better role models:
Weight-averaged consistency targets improve semi-supervised deep learning
results». In: Proceedings of the 31st International Conference on Neural
Information Processing Systems. NIPS’17. Long Beach, California, USA:
Curran Associates Inc., 2017, pp. 1195-1204. 1sBN: 9781510860964 (cit. on
p. 53).

Yong Xu, Feng Li, Zhile Chen, Jinxiu Liang, and Yuhui Quan. «Encoding
spatial distribution of convolutional features for texture representationy.
In: Proceedings of the 35th International Conference on Neural Information
Processing Systems. NIPS ’21. Red Hook, NY, USA: Curran Associates Inc.,
2021. 1SBN: 9781713845393 (cit. on p. 60).

74

https://doi.org/10.1609/aaai.v33i01.33014886
https://doi.org/10.1609/aaai.v33i01.33014886
https://doi.org/10.1609/aaai.v33i01.33014886
https://arxiv.org/abs/2009.08453
https://arxiv.org/abs/2009.08453
https://arxiv.org/abs/2009.08453
https://doi.org/10.1109/ICCV.2017.322

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background
	Mobilenet V2
	Manifold of Interest
	Linear Bottleneck
	Inverted Residual
	Model Architecture

	Object Detection
	Evaluation Metrics
	Early Approaches
	Two-Stage Detectors
	One-Stage Detectors

	Knowledge Distillation
	Knowledge
	Distillation
	Teacher-Student architecture

	Slimmable Neural Networks
	History
	Benefits and Current Challenges

	Related Works
	Slimmable asdnn in Computer Vision
	Dynamic Slimmable asdnn

	Methods
	Dataset Preprocessing
	Tiling Process
	Data Augmentation

	Model Architecture
	Backbone
	Detection Head

	Training Procedure
	Phase 1: Static Mode
	Phase 2: Adaptive Mode

	Results
	Static Mode
	Training Details
	Results

	Adaptive Mode
	Training Details
	Results

	Comparative Results

	Conclusions
	Bibliography

