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Introduction

1.1 Chapter Overview

This chapter introduces the essential background needed to understand the topic
of quality control in brain vessel segmentation. It begins by outlining the anatomy
and clinical relevance of the brain vasculature, describing the organization and
function of the arterial and venous systems. This section highlights why accurate
visualization and analysis of these structures are crucial for diagnosing and moni-
toring cerebrovascular diseases.

The chapter then moves on to the imaging modalities used to acquire vascular
data, presenting the most common techniques (e.g, MRI, CT) and discussing their
specific capabilities and limitations in capturing vascular detail. It also covers
preprocessing steps, which are critical for ensuring that imaging data are suitable
for further computational analysis.

Next, the concept of segmentation is introduced, not as the main focus of this
work, but as an essential component for understanding the complex context in
which quality control operates. The section defines segmentation, explains how it
is evaluated through ground-truth annotations and performance metrics, and re-
views current state-of-the-art approaches and available models (including nnU-Net,
A2V, JoB-VS, VesselBoost, and SPOCKMIP) that have been encountered through-
out the journey. Understanding these methods and their limitations provides the
necessary foundation for appreciating why quality control is such a critical challenge.

The following section, Quality Control, the other medal’s face, addresses the central
theme of this work: ensuring the reliability, robustness, and interpretability of
segmentation outputs. It emphasizes that even the most advanced segmentation
algorithms can fail or produce inconsistent results, underscoring the need for sys-
tematic quality assessment mechanisms.

Finally, the chapter concludes with the objectives, linking the anatomical, imaging,
and methodological discussions to the overarching goal of this research, setting
and testing the first basic approaches and ideas for quality control in brain vessel
segmentation.
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1.2 Anatomy and Clinical Significance of Brain
Vasculature

The brain, the central organ of the nervous system, functions as the body’s primary
command center. Owing to its high metabolic demand, it requires a continuous
and tightly regulated supply of oxygen and glucose, which are essential for the
survival and activity of neurons and glial cells. To meet this demand, a dense and
highly branched vascular network spreads across the pial surface. An approximate,
yet still representative, illustration is provided in Figure 1.1.

From this superficial plexus, penetrating arteries descend into the cortical layers
to reach neurovascular units [1]. Beyond nutrient delivery, cerebral arteries also
facilitate clearance of interstitial fluid (ISF) and metabolic waste products, including
amyloid-beta. Impairment of this perivascular drainage contributes to pathological
protein accumulation, a mechanism strongly implicated in Alzheimer’s disease [2].
At the microvascular level, capillaries play a central role. Their walls are composed
of endothelial cells supported by contractile pericytes, collectively forming part of
the blood-brain barrier (BBB). The BBB exerts strict regulation over molecular
exchange, thereby preserving homeostasis of the neural microenvironment.
Capillaries also contribute to ISF production, further underscoring their importance
in cerebral fluid dynamics. Venous drainage begins with post-capillary venules,
which direct blood toward larger cortical veins before ultimately converging into
the dural venous sinuses. In this way, the cerebral vasculature can be broadly
categorized into three interconnected components: arterial, capillary, and venous
networks.

Figure 1.1: The intricate vessel’s network.

A comprehensive understanding of the anatomy and vulnerabilities of the cerebral
vasculature is indispensable for elucidating mechanisms of normal brain function
as well as the pathogenesis of cerebrovascular and neurodegenerative diseases.

3
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1.2.1 Arterial System

The cerebral blood supply is derived primarily from two systems: the internal
carotid arteries (ICAs), which contribute approximately 70% of total cerebral blood
flow, and the vertebrobasilar system, which accounts for the remaining 30%. The
vertebral arteries originate from the subclavian arteries and unite to form the
basilar artery. The basilar artery subsequently bifurcates into the posterior cerebral
arteries (PCAs), which establish anastomotic connections with the ICAs via the
posterior communicating arteries. These vessels together constitute the Circle
of Willis, a critical arterial ring at the base of the brain. Anteriorly, each ICA
bifurcates into the middle cerebral artery (MCA) and the anterior cerebral artery
(ACA). The ACAs are joined by the anterior communicating artery, completing
the anterior portion of the Circle of Willis. The anterior cerebral circulation com-
prises the ACAs, MCAs, and the anterior choroidal artery. The anterior choroidal
artery typically arises proximal to the ACA-MCA bifurcation, although anatomical
variations are common. Functionally, the ACAs supply the medial aspects of the
cerebral hemispheres, the MCAs perfuse the lateral cortical surfaces, and the PCAs
provide circulation to the occipital lobes and inferior temporal regions [3].

A precise illustration of the arterial system is presented in Figure 1.2.

The Circle of Willis is central both to this work and to the human brain; therefore,
it is essential to provide deeper insight into its importance and clinical significance.
Figure 1.3 clearly illustrates the considerable space it occupies. The Circle of Willis
(CoW) is a vital arterial network located at the base of the brain, connecting the
bilateral internal carotid arteries and the basilar artery. Structurally, it forms
a ring composed of several key segments: the precommunicating portions of the
anterior cerebral arteries (Al), the precommunicating portions of the posterior
cerebral arteries (P1), the posterior communicating arteries (Pco), and the anterior
communicating artery (Aco). The anterior section of the CoW consists of the Al
segments and the Aco, while the posterior section is formed by the P1 segments
and the Pco.

Functionally, CoW, along with the ophthalmic artery and leptomeningeal vessels,
plays a crucial role in maintaining cerebral blood flow. When the blood supply from
primary arteries is compromised, a complete and well-formed CoW can redistribute
blood from other brain regions to the affected areas, helping to prevent potentially
severe outcomes.

As the primary source of arterial distribution in the brain, the CoW serves as the
most important collateral circulation route.

Consequently, understanding its anatomy is essential for research into cerebral
hemodynamics and is critically important in the prevention and treatment of stroke
and several other cerebrovascular disorders.
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Figure 1.2: Cerebral arteries.

Despite its significance, CoW shows a high degree of anatomical variability between
different populations. These variations often involve missing or underdeveloped
segments.

Although the widespread occurrence of these variations is well documented, their
underlying causes remain largely unknown [4]. The diseases directly linked with
these variants are multiple:

o Ischemic Stroke: An intact Circle of Willis helps redistribute blood flow
during arterial occlusion, reducing risk of brain infarction. In patients with
>70% internal carotid artery (ICA) stenosis, significantly more posterior CoW
hypoplasia is seen in those with ischemic lesions [4]. A complete CoW is
present in only about 11% of symptomatic carotid patients versus 55% in
controls, indicating that incomplete variants correlate with higher stroke risk

[5].
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Figure 1.3: Time-of-flight MRA at the level of the Circle of Willis.

Intracranial Aneurysms: About 90% of saccular aneurysms occur at Circle
of Willis branch points, especially at the anterior communicating artery
(ACoA), posterior communicating artery (PCoA), and ICA terminus.
Variants like fetal-type PCA and Al hypoplasia increase wall shear stress and
promote aneurysm formation and rupture [6].

Leukoaraiosis (White Matter Lesions): Incomplete CoW configurations,
particularly in the posterior portion, are associated with up to 58% greater
volume of white matter disease compared to complete circles [5, 4].

Carotid Surgery Risk: Patients lacking both the ACoA and ipsilateral
PCoA segments have a more than tenfold increased risk of stroke or TTA
during carotid endarterectomy if no protective shunt is used [4].
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1.2.2 Venous System

Cerebral venous drainage is mediated by an interconnected network of superfi-
cial and deep veins that ultimately converge into the dural venous sinuses. The
superficial venous system, including the superior cerebral veins, primarily drains
the cortical surfaces into the superior sagittal sinus. This major venous channel
courses along the midline within the falx cerebri and constitutes the principal
outflow pathway for much of the cerebral cortex. The deep venous system centers
on the internal cerebral veins, which join with the basal veins of Rosenthal to
form the great cerebral vein (vein of Galen). This short yet clinically significant
midline vessel drains into the straight sinus, which then merges with the superior
sagittal sinus at the confluence of sinuses. From this confluence, venous blood is
directed laterally into the paired transverse sinuses, which continue as the sigmoid
sinuses before ultimately exiting the cranial cavity through the internal jugular veins.

Additional venous pathways include the cavernous sinuses, situated bilaterally adja-
cent to the sella turcica. These sinuses receive venous return from the ophthalmic
veins and communicate with the posterior venous system via the superior and
inferior petrosal sinuses, thereby providing important collateral drainage routes.
Functionally, the superficial venous system drains most of the cerebral cortex, while
the deep venous system clears blood from the internal brain structures. Together,
they ensure efficient removal of deoxygenated blood and metabolic by-products,
thereby preserving intracranial homeostasis.

From a clinical perspective, the cerebral venous system is highly relevant to disease
processes. Obstruction of venous outflow, as occurs in cerebral venous sinus throm-
bosis, can lead to increased intracranial pressure, venous infarction, and hemorrhage.
The anatomical connections of the cavernous sinuses also predispose them to septic
thrombophlebitis, since infections originating in the facial “danger triangle” can
propagate intracranially via the ophthalmic veins. Moreover, malformations of
the deep venous system, such as vein of Galen aneurysmal malformations, are
associated with severe hemodynamic consequences in neonates and infants. Thus,
an appreciation of both the anatomy and the vulnerabilities of cerebral venous
drainage is fundamental for understanding normal physiology and a broad spectrum
of neuropathological conditions [7].
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1.3 Image Modalities

Imaging modalities form the foundation for brain vessel segmentation, as the
accuracy and robustness of computational algorithms depend heavily on the quality,
resolution, and contrast of the acquired data, since these constitute the input of
the segmentation pipeline. In this section, we provide an overview of the most
relevant imaging techniques for vascular analysis, each of which will be described
in more detail in the following subsections. While the techniques differ in terms
of physical principles, acquisition speed, invasiveness, and achievable resolution,
they all play a complementary role in shaping the current landscape of vessel
imaging. In particular, conventional Magnetic Resonance Imaging (MRI) provides
structural and, in some cases, functional information about the brain and its
vasculature; Time-of-Flight Magnetic Resonance Angiography (TOF-MRA) enables
non-invasive visualization of blood flow with strong vessel-to-background contrast;
and Computed Tomography (CT), particularly in its angiographic form (CTA),
offers rapid, high-resolution volumetric data of both large and small cerebral vessels.
The following subsections highlight the unique strengths and limitations of these
approaches, laying the groundwork for understanding their impact on segmentation
performance and clinical applicability.

1.3.1 Techniques

Among the most widely used techniques are conventional Magnetic Resonance
Imaging (MRI), Time-of-Flight Magnetic Resonance Angiography (TOF-MRA),
and Computed Tomography (CT), each with distinct physical principles, advan-
tages, and limitations.

Magnetic Resonance Imaging (MRI) in a broader sense provides structural and,
in some cases, functional information about the brain and its vasculature. MRI
is free of ionizing radiation and offers excellent soft tissue contrast, which makes
it valuable for integrating vessel segmentation into multi-modal brain analysis,
such as combining vascular maps with lesion or tumor segmentation. Nevertheless,
MRI’s lower spatial resolution compared to CT and its susceptibility to motion
artifacts can pose challenges in small vessel mapping.

Time-of-Flight Magnetic Resonance Angiography (TOF-MRA) is a non-invasive
MRI technique specifically designed to visualize flowing blood without the need
for contrast agents. It exploits flow-related enhancement, where unsaturated spins
from inflowing blood generate higher signal intensity compared to stationary tissue.
This method is particularly sensitive to medium-to-large arteries in the brain,
offering high-contrast vessel delineation while avoiding ionizing radiation. However,
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its sensitivity decreases for slow or turbulent flow, and very small distal vessels
may appear attenuated or absent. Motion artifacts and long acquisition times can
also affect segmentation quality.

Computed Tomography (CT), particularly when combined with iodinated contrast
in CT angiography (CTA), delivers high-resolution volumetric data with excellent
visualization of both large and small cerebral vessels. CTA is fast, widely available,
and highly effective in detecting acute vascular pathologies such as aneurysms,
stenoses, or occlusions. In segmentation tasks, CT’s high spatial resolution al-
lows accurate boundary definition of vessel lumens, even in tortuous or branching
regions. However, the use of ionizing radiation and contrast agents introduces
risks, especially for patients with renal impairment or allergies, and calcifications
in vessel walls may complicate automated segmentation by appearing similar to
contrast-filled lumens.

In summary, TOF-MRA excels in non-invasive, radiation-free vessel imaging with
strong artery-to-background contrast; MRI offers complementary structural and
tissue information that can enhance vessel context and multi-modal segmentation;
and CT provides rapid, high-resolution vascular mapping ideal for acute settings.
The choice among these modalities for brain vessel segmentation depends on the
clinical scenario, target vessel size, patient safety considerations, and the specific
requirements of the segmentation algorithm, such as tolerance to noise, resolution
needs, and contrast characteristics.

1.3.2 Preprocessing

In medical imaging, preprocessing constitutes a critical initial step, as most com-
putational algorithms require standardized input data to function reliably. Raw
images acquired from scanners frequently exhibit variability in dimensions, voxel
spacing, orientation, and intensity profiles. Such heterogeneity can significantly
hinder downstream analysis, rendering preprocessing indispensable to ensure con-
sistency, comparability, and robustness prior to the application of advanced image
processing or machine learning algorithms.

Image dimension refers to the number of pixels or voxels along each axis. Since
scans can vary in size depending on the field of view or acquisition protocol, resizing
or cropping is typically required to standardize the input shape.

Resizing changes the number of pixels or voxels in an image to match a target shape,
regardless of the original physical spacing. For example, a 256x256 MRI slice can
be resized to 128128 or 512x512 simply by scaling the pixel grid. This is usually
done with interpolation methods such as nearest neighbor, bilinear, or bicubic

9



Introduction

interpolation. Importantly, resizing does not preserve the physical dimensions of
the anatomy, it just ensures that all images have the same array size, which many
algorithms (especially deep learning models) require.

Cropping, in contrast, reduces the image size by cutting away unwanted parts of
the image while keeping the original pixel or voxel resolution intact. This is useful
when large parts of the scan contain background or irrelevant regions.

You can either combine the operations or just one of those, according to the task
setup.

Image dimension refers to the number of pixels or voxels along each axis of an
image. Since medical scans vary in size depending on acquisition protocols and
field of view, dimension standardization is often required prior to analysis. Two
common approaches are resizing and cropping.

Resizing adjusts the image matrix to a target shape by resampling the pixel or
voxel grid, irrespective of the original physical spacing. For instance, a 256x256
MRI slice can be rescaled to 128x128 or 512x512 using interpolation methods such
as nearest-neighbor, bilinear, or bicubic interpolation. While this ensures uniform
input dimensions for algorithm, particularly deep learning models, resizing alters
the physical resolution of the anatomy, potentially affecting geometric fidelity.
Cropping, by contrast, reduces image size by removing peripheral regions while
maintaining the original pixel or voxel resolution. This approach is particularly
useful when scans contain large background areas or anatomically irrelevant regions.
In practice, resizing and cropping may be applied individually or in combination,
depending on the specific requirements of the preprocessing pipeline and the
downstream computational task.

Spacing, or vozel size, indicates the physical distance represented by each pixel
or voxel. Different scanners and protocols may produce images with anisotropic
(the voxel dimensions are not equal along all three axes) or varying resolutions, so
resampling to isotropic (voxel spacing is equal across all axes) and uniform voxel
spacing is often performed to make images comparable.

Resampling in medical imaging refers to changing the voxel spacing of an image so
that the physical dimensions it represents become standardized. Every voxel in a
medical image corresponds to a real world distance, such as 0.7 mm x 0.7 mm X
5 mm. When scans come from different machines or protocols, these voxel sizes
can differ, leading to anisotropic images where one axis has much lower resolution
than the others. This inconsistency can cause problems for algorithms that expect
isotropic and comparable image data. To fix this, resampling interpolates the
voxel grid to a new spacing, often chosen to be uniform, like 1 mm x 1 mm x 1
mm. During resampling, the image is recomputed so that the same anatomy is
represented with the new voxel dimensions.

10
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Orientation in medical imaging describes how the 3D volume is aligned with respect
to the anatomical axes (e.g., left-right, anterior-posterior, superior-inferior). Dif-
ferent scanners and acquisition protocols can store images in varying orientations
such as LPS (Left—Posterior-Superior) or RAS (Right-Anterior—Superior). If left
unstandardized, these differences can lead to significant misinterpretation during
both visualization and model training: for example, a brain magnetic resonance
flipped left to right would confuse an algorithm. To address this, preprocessing
pipelines often reorient all images to a consistent coordinate convention, such as
RAS. This ensures that anatomical structures always appear in the same orientation
across the dataset.

Intensity represents the signal values within the image. Because these intensities are
not consistent across scans, normalization techniques such as z-score scaling are used
to bring them to a comparable range. For example, in brain MRI one scan might
have gray matter intensities centered around 600 while another has them around
1200 due to different scanner settings. After z-score normalization, both scans would
be transformed so that the mean intensity becomes 0 and the standard deviation be-
comes 1, making the relative differences between tissues comparable across patients.

Standardizing image dimension, spacing, intensity and orientation ensures that
medical images can be processed reliably by machine/deep learning algorithms.
Often, operations are performed in a precise cascading order to obtain the desired
standardized image.

Given the critical importance of establishing a robust preprocessing pipeline, this
work extensively leverages MONAI, an open-source framework specifically developed
for medical imaging. MONAI provides a comprehensive suite of tools that enable
the implementation of preprocessing operations in a structured, reproducible,
and modular manner. Beyond preprocessing, MONALI integrates seamlessly with
PyTorch, offering specialized modules for model architectures, loss functions, and
evaluation metrics that are tailored to the unique requirements of medical imaging
tasks [8]. Its community-driven design, extensive functionality, and focus on
reproducibility make MONATI a natural and effective choice for the development
and deployment of advanced computational pipelines in this domain.

11
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1.4 Segmentation

Segmentation is a central task in medical image analysis, as it enables the precise
delineation of anatomical structures and provides the foundation for quantitative
evaluation and computational modeling. In the context of cerebral vasculature,
segmentation allows for the extraction of both global vessel trees and individ-
ual branches, which are subsequently analyzed for morphological, functional, or
pathological insights. This section begins by introducing the formal definition
of binary segmentation, followed by a discussion on how segmentation quality is
evaluated in supervised settings, where ground-truth annotations are available.
Finally, commonly used evaluation metrics are presented, with particular attention
to those relevant for vascular imaging.

1.4.1 Definition

Binary segmentation aims to partition the image domain into vessel and background
regions. Formally, let Q C R? (or R?) denote the image domain, such as that of a
CTA or MRA scan. Define a binary label function:

L:Q— {0,1},

where
, if pixel/voxel x belongs to a blood vessel,

L(z) = .
0, otherwise.

The vessel region is then
Ryessa = {x € Q: L(x) =1},
while the background is defined as
Rpackgronnd = €2\ Ryessel-

In neurovascular imaging, segmentation models are trained to approximate L as
accurately as possible, enabling the reconstruction of the vascular tree at multiple
scales.

1.4.2 Evaluation with Ground-Truth Annotations

When ground-truth annotations are available, segmentation quality is assessed by
comparing predicted masks with the reference labels. Let I € RT*WXD denote
the input image (e.g., a 3D MRA volume), where H, W, and D represent height,
width, and depth. A model fy, parameterized by 6, produces a probability map:

}A/ _ f@([); Y/ c [071]H><W><D.
12
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A binary segmentation mask Y is obtained by thresholding at level 7 € [0,1]:

? 1a lf 5}; Z T,

0, otherwise.
Given the ground-truth segmentation Y € {0,1}*W*D " performance can be
expressed in terms of voxel-level comparisons. For N total voxels, we define:

N N
TP =3 UV~ 1ATi=1), FP=Y1(¥i—0ATi— 1)
i=1 i=1

N N
FN=3 1(Y;=1AY;=0), TN=3 1(Y;=0AY;=0),

i=1 i=1

where TP (true positives) are correctly segmented vessel voxels, FP (false positives)
are background voxels misclassified as vessels, FN (false negatives) are missed vessel
voxels, and TN (true negatives) are correctly identified background voxels.

1.4.3 Common Evaluation Metrics

Using TP, FP, FN, and TN, several broadly used metrics can be defined to evaluate
segmentation performance.

It is very important to underline that each captures a different aspect of quality,
and combining them provides a more comprehensive assessment.

e Dice Similarity Coefficient (DSC):

- 2TP
DSC(Y.Y) =
(V,Y) 2TP + FP +FN

Measures spatial overlap between prediction and ground truth; widely used in
medical imaging as it balances false positives and false negatives.

« Jaccard Index (Intersection-over-Union, IoU):

i TP
IoU(Y.Y) =
oUYVY) = 55 Fp 1 FN

Similar to DSC but more conservative, penalizing errors more strongly when
overlap is low.

13
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Precision (Positive Predictive Value):

TP

Precision = m

Indicates the fraction of predicted vessel voxels that are correct; high precision
means few false positives.

Recall (Sensitivity, True Positive Rate):

TP

ReCaH = m

Indicates the fraction of true vessel voxels correctly detected; high recall means
few false negatives.

Accuracy:
TP + TN

TP + TN+ FP + FN

Proportion of correctly classified voxels overall, though it may be misleading
in highly imbalanced problems such as vessel segmentation.

Accuracy =

F1-Score:

Pl — 2 - Precision - Recall

Precision + Recall

Equivalent to the Dice coefficient in binary segmentation; balances precision
and recall.

Hausdorff Distance (HD):

d(A, B) = maxmin ||a — blly, HD(Y,Y) = max{d(dY,dY), d(dY,dY)}

acA beB

Captures worst-case boundary errors by measuring the maximum surface-to-
surface distance between predicted and ground-truth boundaries.

Centerline Dice Coefficient (clDice):

. - 2[S(Y)NnY|-|[S(Y)NY]
AP Y ) = = S+ 15(7)

Tailored for vessel segmentation, it evaluates topological consistency by com-
paring skeletonized structures.

14
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1.4.4 State-of-the-art

Vascular segmentation has evolved rapidly, from classical image processing to
modern deep learning.

This section provides an overview of the main approaches, organized by supervision
strategy: unsupervised, supervised, and semi-supervised methods. Each category
highlights the key concepts, strengths, and limitations relevant for cerebrovascular
segmentation.

Unsupervised segmentations methods

Before the rise of machine learning, numerous approaches were proposed for vascular
segmentation. A classical review by Lesage et al. [9] categorized these methods
into three complementary axes: appearance and geometric models, image features,
and extraction algorithms.

Appearance and geometric models incorporate prior knowledge about vessel shape
and intensity. Appearance models rely on intensity profiles specific to the imaging
modality (e.g., CT angiography), while geometric models describe cross-sectional
shapes, centerlines, or both [10]. Hybrid approaches combine both, for instance by
modeling cross-sectional intensity with Gaussian or bar-like profiles. Image features
are derived from intensity or its derivatives. Isotropic features treat vessels without
directional priors [11], whereas anisotropic features leverage second-order derivatives
to detect tubular structures. Several methods focus on cross-sectional edges, using
ray projections [12] or active contours [13]. Extraction algorithms operationalize
segmentation. Vessel enhancement filters highlight tubular structures before thresh-
olding or further processing [14]. Region-growing methods iteratively expand from
seed points [15], sometimes with directional constraints. In summary, pre-learning
segmentation relied on a combination of prior modeling, image-derived features,
and algorithmic extraction. While surpassed by modern deep learning methods in
terms of accuracy and robustness, these classical approaches remain conceptually
relevant and continue to inspire hybrid or initialization strategies in current research.

Other unsupervised methods aim to segment vascular structures without requiring
annotated datasets. Most approaches rely on self-supervised learning by generating
synthetic training data: artificial vessel masks are fused with angiographic images
to create realistic training samples. For instance, Ma et al. (2021) [16] proposed an
adversarial learning framework with two generators: one synthesizes angiographic
images containing vessels at positions defined by binary masks, while the other
learns to segment these images, trained to produce masks indistinguishable from
ground truth. Kim et al. (2022) [17] adopted a similar strategy using diffusion mod-
els, later extending it with contrastive learning to improve vessel representations.
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Shi et al. (2023) [18] explored fusing vessel masks with angiographic images in the
Fourier domain. Overall, unsupervised vascular segmentation methods provide a
promising avenue to reduce reliance on costly annotations, but their effectiveness
strongly depends on the realism of the synthetic data and the generative models
employed.

Supervised segmentations methods

We found ourself in the supervised setup setting, already explained in 1.4.2. Su-
pervised learning has become the dominant paradigm for vascular segmentation,
achieving the highest levels of accuracy when sufficient annotated data are avail-
able. These methods leverage deep neural networks trained on labeled angiographic
images, and they can be grouped into general-purpose architectures and those specif-
ically adapted to vascular data. The breakthrough came with U-Net [19], whose
encoder—decoder structure with skip connections enabled precise localization while
preserving contextual information. Many variants followed, such as U-Net++ [20]
with redesigned skip pathways, residual U-Nets for deeper architectures, attention-
gated U-Nets to focus on vascular regions, and 3D U-Nets that better capture
volumetric continuity. Together, these models improved segmentation robustness
across multiple scales, a crucial property for detecting both large arteries and fine
peripheral vessels. Beyond convolutional networks, transformer-based models have
recently been explored. Architectures like TransUNet [21] and Swin-UNet [22]
integrate self-attention mechanisms, allowing the network to capture long-range
dependencies between distant vascular segments. This is particularly relevant for
cerebrovascular networks, where vessels form tortuous, branching structures that
extend across wide regions. Several supervised methods have been designed explic-
itly for vascular applications. DeepVesselNet [23] introduced specialized blocks for
analyzing tubular structures, while CS2-Net [24] improved the capture of multiscale
connectivity. Other works embed topological priors directly into the learning
process. For instance, the clDice loss [25] leverages skeleton representations to
encourage connectivity preservation. Some approaches adopt multitask frameworks,
training networks to simultaneously predict vessel segmentations and skeletons,
thereby reinforcing topological consistency. Despite these advances, supervised
methods face two persistent limitations:

« Data dependency: Annotating vascular networks is extremely demanding,
requiring voxel-level precision across 3D volumes. The scarcity of annotated
datasets remains a major bottleneck for training large models and for general-
ization across modalities or patient populations.
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 Topological errors: Classical loss functions (e.g., Dice, cross-entropy) optimize
voxel-level accuracy but do not penalize clinically critical errors such as broken
vessels or missing branches. Even high Dice scores can correspond to unusable
segmentations in practice

In summary, supervised deep learning approaches define the state of the art in
vascular segmentation, combining high segmentation accuracy with the flexibility
to adapt to complex geometries. However, their reliance on costly annotations and
their limited ability to guarantee topological correctness have spurred research into
semi-supervised methods and topology-aware constraints, which seek to overcome
these shortcomings.

Semi-supervised Segmentation Methods

Semi-supervised segmentation aims to overcome the scarcity of annotated medical
data by combining a small labeled set D; = (X,Y) with a larger unlabeled set
D, = X'. Unlike purely supervised training, these methods exploit both sources to
improve robustness and generalization. Jiao et al. [26] group them into three main
families: Knowledge-based approaches, Pseudo-labeling approaches, Unsupervised
regularization approaches.

Knowledge-based approaches inject anatomical priors (shape, topology, spatial
coherence) into the learning process. Zheng et al. [27], for example, proposed
an adversarial framework where a discriminator evaluates whether predicted seg-
mentations remain anatomically plausible, guiding the model beyond the limited
supervision.

Pseudo-labeling methods iteratively generate artificial labels for unlabeled data
using a model trained on the labeled set D;. The model predicts pseudo-labels Y},
for D, forming an augmented dataset D,; = (X’,Y};), which is then combined with
D, for retraining until convergence. To reduce noise in pseudo-labels, strategies
include confidence-based filtering [28], thresholding [29], or averaging predictions
over iterations [30]. Some methods propagate annotations via prototypes, generat-
ing labels based on similarity to labeled examples [31].

Instead of producing labels, Unsupervised regularization approaches impose con-
straints directly on predictions for unlabeled images. A prominent example is the
Mean Teacher framework [32], where a student network learns under supervision
from D; while being encouraged to remain consistent with a teacher network on
D,. Yu et al. (2019) [33] extended this with transformation consistency, ensuring
stable predictions under perturbations.
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Semi-supervised segmentation reduces annotation requirements by combining priors,
pseudo-labeling, or regularization on unlabeled data. In vascular applications, these
methods are particularly valuable for maintaining topology and connectivity, which
are essential for downstream clinical tasks such as blood flow simulation or surgical
planning.

1.4.5 Encountered models

However, segmentation remains a highly variable and architecture sensitive prob-
lem. Different models exhibit diverse behaviors depending on their design, training
regimes, and the imaging modalities used.
Throughout the course of this work, several algorithms were explored: nnU-Net,
A2V, JoB-VS, and SPOCKMIP. For each model, the architecture, main strengths,
performance, and dataset are summarized.

nnU-Net

nnU-Net is a fully convolutional U-Net style encoder-decoder that automatically
configures its architecture and preprocessing for a given dataset. It uses a four level
downsampling encoder (stacked convolutional blocks) and a mirrored upsampling
decoder with skip connections, transposed convolutions, and deep supervision at
multiple decoder stages.

The framework auto adjusts network depth, feature channels and other hyperpa-
rameters per task, eliminating manual tuning [34].

A key advantage of nnU-Net is its “out-of-the-box” adaptability: it self-optimizes
network architecture and learning parameters for diverse medical imaging datasets.
This yields state-of-the-art segmentation accuracy without manual design, and
robust performance across modalities. The deep supervision and large receptive
fields ensure stable training and good boundary localization.

For vessel tasks, recall often remains high with minimal false negatives.

In the context of brain vessel segmentation, nnU-Net based architectures have
consistently demonstrated strong baseline performance, even without modifications
of the task specific architecture. For example, in the CAS2023 TOF-MRA cerebral
artery segmentation challenge, nnU-Net achieved a Dice similarity coefficient in the
range of 85-86%, reflecting a high degree of spatial overlap between predicted and
reference vessel masks. Complementary metrics also indicated reliable segmentation
quality, with a Hausdorff distance at the 95th percentile (HD95) of approximately
48.2mm, a recall of around 83.5%, and a precision of about 87.8%.

These results, obtained in a multi-centre, multi-scanner setting, confirm the model’s
robustness and its suitability as a strong reference method for cerebral vessel
delineation tasks [35].

18



Introduction

A2V (Angiography-to-Venography)

A2V is a two stage, semi-supervised framework based on generative adversarial
models.

In Phase 1, a single generator (G) and discriminator (D) are trained in a StyleGAN2
architecture to model brain angiography/venography appearance.

In Phase 2, a single encoder network is trained to invert real images into the shared
StyleGAN latent space, enabling image-to-image translation between angiograms
and venograms. The generator’s “label-synthesis” branch (from DatasetGAN)
directly predicts vessel masks from the latent features, avoiding a separate segmen-
tation model.

Overall, A2V uses just one generator, one discriminator, and one encoder (no
cycle of paired generators), with a disentangled latent code that separates vessel
appearance (arteries vs veins) from spatial anatomy [36].

The model effectively bridges modality gaps with minimal labeled data in the
target domain, and simplifies training by using only three networks instead of more
complex cycle architectures.

Trained on OASIS-3 TOF-MRA angiograms and adapted to SWI venograms, A2V
achieved high vessel segmentation accuracy in both domains, with only an &~ 8.9%
Dice drop in the venography target domain compared to the angiography source
domain [36].

JoB-VS (Joint Brain Vessel Segmentation)

JoB-VS is a 3D multitask network built on a lattice structured U-Net (ROG)
backbone. It starts with an “initial module” followed by a triangular lattice of
feature nodes that connects multi resolution paths, preserving high resolution
details for small vessels while also capturing large scale context.

Critically, JoB-VS has a dual-head segmentation head: one branch predicts the
brain mask and the other predicts the vessel mask simultaneously.

The loss is computed jointly on both outputs (sum of Dice+CE losses) to guide
the network [37].

By segmenting brain tissue and vessels simultaneously, JoB-VS eliminates the need
for skull stripping, resulting in an end-to-end pipeline.

Multitask learning improves sensitivity to small vessels.

On OASIS-3 TOF-MRA, JoB-VS achieved a mean average precision of 70.03%,
maximum F1 (Dice) of 69.09%, and clDice of 74.6% without brain mask prepro-
cessing [37].
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VesselBoost

VesselBoost is a modular Python toolbox for small vessel segmentation in ultra-high
field MR angiography (TOF-MRA). It is based on a modified 3D U-Net with 4
encoder/decoder layers, lightweight convolutional blocks, and Tversky loss for
imbalanced vessel data.

The framework is organized into three modules: Predict, Test-Time Adaptation
(TTA), The Booster. Predict is a pre-trained network applied directly to MRA data
with preprocessing (bias-field correction, denoising) and post-processing (threshold-
ing, cluster removal).

Test-Time Adaptation (TTA) fine-tunes the pre-trained model using a proxy seg-
mentation (either user-provided or generated via predict), improving small-vessel
delineation.

The Booster trains a new segmentation model from scratch using imperfect labels,
leveraging a data augmentation strategy that creates small-vessel training examples
by zooming out large vessels and applying rotation/flipping transformations.
VesselBoost addresses the scarcity of manually segmented training data by learning
effectively from imperfect labels. Its augmentation strategy stabilizes training and
enhances sensitivity to small vessels. The modular design allows flexibility, users
can either apply pre-trained models, adapt them to new data, or build new models
for different contrasts.

Trained on the SMILE-UHURA 7T TOF-MRA dataset (300 pm resolution), Ves-
selBoost generalized well to unseen resolutions (150-400 pm). In quantitative
evaluation, TTA improved Dice scores by & 0.04 compared to coarse proxy segmen-
tations. Booster outperformed simple threshold-based labels by recovering finer
small vessels. An ablation study confirmed that zoom-based patch augmentation
with rotation and flipping yielded the most stable results, achieving segmentation
performance close to manually corrected ground truth [38].

SPOCKMIP

SPOCKMIP is built on a 3D UNet-MSS (multi-scale supervision) backbone (in-
spired by DS6). Concretely, it uses the same encoder—decoder U-Net with multiple
output scales (MSS) but replaces ReLLU with LeakyReLU activations.

The key innovation is the MIP loss: during patch-based training, SPOCKMIP
computes the maximum intensity projections (MIPs) of the predicted and ground-
truth vessel masks. A loss term is added that compares these MIPs along the axial
(z) direction (single-axis MIP) and/or cumulatively across all three axes. This
augments the standard Dice/CE loss to explicitly penalize discontinuities in vessel
segments across slices.

Apart from the MIP loss, SPOCKMIP uses a standard patch-based UNet training
pipeline (5-fold CV) [39].
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The MIP loss penalizes segmentation discontinuities, resulting in smoother and
more anatomically consistent vessel trees, especially in high-resolution data.

On the StudyForrest 7T TOF-MRA dataset, the multi-axis MIP variant achieved
a median Dice score of 80.25%, outperforming the single-axis variant (79.75%).

1.4.6 Why Brain Segmentation Matters

Accurate segmentation of intracranial blood vessels is essential for diagnosing and
treating cerebrovascular disorders.

Deshpande et al. note that high-fidelity vessel delineation “is critical to various
diagnostic and therapeutic purposes” (and to studying brain health) [40]. By
converting angiograms (CT/MRI) into quantitative 3D maps, clinicians can system-
atically analyze vessel geometry (length, diameter, tortuosity) and detect subtle
pathologies. Modern deep learning algorithms achieve high accuracy in vessel
segmentation [41], automating complex tasks like anomaly detection and enabling
personalized assessment of cerebral blood flow.

» Stroke and Ischemic Disease

In acute stroke, vessel segmentation helps identify arterial occlusions and
evaluate collateral flow. Quantitative vessel models reveal pathology: for
example, Deshpande et al. found that stroke patients have significantly
reduced vessel length/volume but increased tortuosity and fractal dimension
compared to controls [40]. Precisely delineating major arteries (e.g., middle
cerebral artery and its lenticulostriate branches) is essential for treatment
decisions. Zhou et al. emphasize that segmenting these arteries “is key
for effectively managing stroke ... and for improving patient neurological
outcomes” [42]. Automated segmentation thus enables rapid detection of
occlusions and supports planning of thrombectomy or thrombolysis.

o Intracranial Aneurysms Segmentation is crucial for detecting and charac-
terizing aneurysms, which are often asymptomatic until rupture. Accurate
delineation of the aneurysm sac and parent vessels allows precise measurement
of aneurysm size, neck width, and shape. Manual identification and segmen-
tation of intracranial aneurysms is known to be “labor intensive and prone
to human errors” [43]. Such challenges underscore the need for automated
detection and segmentation systems with the aim of providing reproducible
measurements of aneurysm geometry, supporting rupture risk assessment.

e Monitoring and Risk Stratification
Automated vessel segmentation also enhances disease monitoring and risk
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stratification.

Quantitative metrics derived from segmentation (vessel volume, tortuosity,
branching patterns) can be tracked over time to assess progression or treatment
response. For example, an increase in aneurysm volume or a change in arterial
tortuosity can indicate growth or instability. As previously said, Deshpande
et al. showed that vessel tortuosity and fractal dimension (from segmentation)
differ in stroke, suggesting these features could serve as risk markers [40].
By providing consistent, quantitative measures, segmentation enables objective
follow-up and stratification (e.g., predicting stroke risk based on arterial
morphology).

« Efficiency and Reproducibility in Clinical Workflows

Finally, automated segmentation greatly improves efficiency and reproducibil-
ity. Manual tracing of brain vessels is tedious and subject to inter-operator
variability.

Deep learning models can segment entire angiographic scans in minutes with
expert level accuracy [41] [42]. Such automation reduces reporting time and
eliminates subjective bias, leading to faster diagnosis and allowing large-scale
analyses of cerebrovascular morphology.

1.5 Quality Control, the other medal’s face

Even state-of-the-art networks like nnU-Net can produce imperfect segmentations
under challenging conditions (e.g., low image quality or unusual anatomy). In
practice, factors such as image noise, motion artifacts, or scanner differences can
degrade segmentation accuracy.

Likewise, extreme anatomical variability (major cause) or rare pathologies that
were not well represented in the training data may lead to spurious contours or
missing regions. A robust quality-control stage is therefore needed to catch such
failures before they affect downstream analysis.

« Image quality issues: Noise, poor contrast, and artifacts can obscure
anatomical structures, confusing the model and resulting in inaccurate or
incomplete segmentations.

o Anatomical variability: The cerebral vasculature exhibits substantial natu-
ral variability across individuals. Also cases with pathological changes (e.g.,
aneurysms, arteriovenous malformations), or surgical alterations may deviate
significantly from the training distribution, leading to inaccurate or incomplete
segmentations.
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e Model limitations: Any learned model has blind spots. Out-of-distribution
cases, unusual intensities, or some anatomical variations can trigger gross
errors (e.g., missing thin vessels or false positives).

o Acquisition differences: Variability in scanners, protocols, or preprocessing
steps may degrade a model’s performance on new data.

Given the potential for errors in automated segmentation, in particular for the
before cited reasons, it is essential for the pipeline to include mechanisms that
automatically evaluate the reliability of each output. A quality-control (QC)
module can implement both basic and advanced checks. Basic sanity checks
may verify that the segmented volume falls within an expected range or exhibits a
plausible anatomical shape, while more sophisticated approaches can leverage model-
based uncertainty estimates or assess disagreements across ensemble predictions.
Additionally, key statistical features of the segmentation can be compared against
normative values derived from reference populations. Cases that deviate from
these expected ranges can be flagged for further review, ensuring that anomalous
results are identified promptly. A well-designed QC pipeline thus complements the
neural network by detecting errors and anomalies early, providing confidence that
downstream analyses, such as quantitative measurements, clinical evaluations, or
diagnostic decisions, are based on accurate and reliable segmentations. In summary,
robust quality control is indispensable for guaranteeing the validity of automated
vessel segmentation outputs and for highlighting any results that require manual
inspection.
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1.6 Objectives and Contributions

Ensuring the quality of segmentation results is critical in medical imaging, but it is
challenging to assess quality on new data without ground truth.

In brain MRI analysis, manual quality control remains the gold standard but is
impractical for large studies; automated QC tools (e.g: MRIQC [44], Qoala-T
[45]) have been proposed. However, none of these strategies have been applied
to cerebrovascular segmentation, which is especially challenging due to the thin,
branching nature of brain vessels.

Our literature survey found virtually no dedicated QC workflow for brain vessel
segmentation. In fact, only a few automated QC methods exist for medical image
segmentation, and these have focused on organs like the prostate or heart. The
lack of prior work on vascular QC underscores the need for the novel approaches
we investigate.

The main contributions of this work are as follows:

o Vessel metrics toolkit. We developed a flexible software framework for
computing topological and morphological descriptors of vessel segmentations,
grounded in solid mathematical foundations. This toolkit can process any
segmentation of the cerebral vasculature, whether manual or automatic, and
serves both as the basis for quality control (QC) pipelines and as a general-
purpose tool for vascular analysis.

» Feature-based regression QC. Predictive models are trained on the ex-
tracted segmentation features to estimate segmentation quality. This approach
offers both interpretability and computational efficiency, as it relies on explicit,
biologically meaningful descriptors. However, its effectiveness depends on
how well these features capture relevant segmentation errors and may require
model-specific examples for optimal training.

o Generative reconstruction QC. We employ generative models, such as
three-dimensional variational autoencoders (VAESs), to learn the distribution
of plausible vessel segmentations. By reconstructing input segmentations,
the method can identify anomalous or low-quality segmentations. This unsu-
pervised strategy potentially eliminates the need for labeled error examples
and is capable of detecting novel failure modes, though it is computationally
demanding and sensitive to model tuning.

o Comparative analysis of QC strategies. We systematically compare the
two QC approaches in terms of practical applicability, computational cost, and
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detection performance. This analysis elucidates each method’s strengths and
limitations in the vascular context, providing guidance for their integration
into automated QC pipelines.

To the best of our knowledge, this is the first systematic investigation of automated
QC methods for cerebral vessel segmentation. By adapting and evaluating these
two methodological pathways within the vascular domain, we establish a foundation
for future research aimed at developing robust and scalable QC procedures for this
challenging imaging task.
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Tool metrics’ computation
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2.1 Chapter Overview

Quantitative characterization of vascular networks is a cornerstone in biomedical
imaging, pathology, and neuroscience. The morphology and geometry of vessels
provide essential information about vascular health, pathological remodeling, and
the efficiency of blood supply in tissues. Subtle alterations in vascular structure
often precede clinical symptoms, making morphometric and topological analysis an
important tool for both research and diagnostics.

With the advent of high-resolution three-dimensional (3D) imaging modalities such
as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and Optical
Coherence Tomography (OCT), it is now possible to obtain volumetric datasets
that capture intricate vascular architectures at multiple scales. However, these
datasets are typically represented as binary masks following segmentation, and
their size and complexity necessitate automated, reproducible, and robust analysis
pipelines. Manual inspection or simplistic measures are insufficient to capture
the full range of structural and functional information encoded in vascular networks.

This chapter presents the methodology and mathematical underpinnings of
VESSEL_METRICS, a computational framework designed to perform comprehensive
morphometric and topological analysis of 3D vessel masks. The software converts
volumetric vessel segmentations into skeleton-based graph representations, enabling
systematic computation of segment-level, component-level, and global descriptors.
It integrates several processing stages culminating in the extraction of a wide set
of structural and geometric features. These include classical morphometrics such
as vessel length, radius, volume, and bifurcation counts, as well as higher-order
descriptors such as tortuosity indices, fractal dimension, and lacunarity.

On top of VESSEL_METRICS, ATLAS_VESSEL_METRICS software has been developed.
Within this tool, the metrics computation is made at regional-level, according to
the vessel tree partition defined by a given ATLAS.

By unifying these analyses into a reproducible pipeline, practically explained
in Figure 2.1, VESSEL_METRICS.py facilitates quantitative evaluation of vascular
structure across experimental conditions, disease models, and imaging modalities.
The framework is particularly suited for large-scale studies where consistency,
reproducibility, and automation are paramount.
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2.2 Processing Pipeline for Vessel Masks

The analysis pipeline processes a binary 3D vessel mask, where segmented vessels
are represented by voxels labeled as 1 and the background as 0.

Notably, no additional cleaning operations (e.g., removal of minor disconnected
islands) are applied.

This choice is deliberate, as the goal is to preserve the raw structure of the segmen-
tation and analyze its intrinsic characteristics without introducing preprocessing
biases.

Nevertheless, this strategy may not be universally appropriate. In certain applica-
tions, filtering out very small connected components can be beneficial, for example,
to reduce the influence of segmentation noise, to improve computational efficiency,
or when such small structures are known to be irrelevant for the biological question
at hand.

The key stages are:

1. Skeletonization to extract centerlines
2. Distance transform for local radius estimation
3. Graph construction and pruning

4. Connected component decomposition
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5. Extraction of vessel segments
6. Computation of morphometric and tortuosity metrics

7. Aggregation and output

2.2.1 Preliminary transformations

Skeletonization

Skeletonization reduces volumetric vessel data into a 1-voxel-thick centerline pre-
serving topology. This step is essential to obtain vessel centerlines for subsequent
graph construction.

Formally, given a binary mask M : Q) C Z* — {0,1}, skeletonization computes a
set S C 2 such that:

S is connected,

S is one-voxel thick (minimal thickness),

The topology (connectivity and loops) of M is preserved,
« SC M.

This is achieved using algorithms like the thinning method implemented in
skimage.morphology.skeletonize. The output S represents the medial axis of the
vessel volume.

Estimation of Local Vessel Radius via Distance Transform

To quantify vessel thickness, a Euclidean distance transform is applied on the
binary mask M, yielding a distance map D : Q — R™:

D(z) = min [lz =yl

where x € M. The value D(z) approximates the radius of the vessel at voxel
assuming vessels are approximately circular in cross-section.
For skeleton voxels s € .S, their local radius is

rs = D(s).
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Graph Construction from Skeleton Voxels

Each skeleton voxel corresponds to a node in an undirected weighted graph G =
(V. E):

e Nodes V = {v;} represent skeleton points with 3D coordinates x; € Z3.

« Edges E connect pairs of nodes (v;, v;) if their voxel coordinates are within a
3x3x3 neighborhood (26-connectivity).

o Edge weights w;; equal the Euclidean distance between nodes:

wij = ||x; — Xj|2.

The graph captures vessel centerline topology and spatial relationships.
Pruning Triangular Loops

Skeleton graphs derived from 26-connectivity may introduce artificial triangular
loops at bifurcations due to voxel adjacency patterns.

We observed that these spurious loops frequently arise at branching points as a
direct consequence of the 26-connectivity scheme.

To preserve biologically meaningful loops while removing artifacts, the graph is
pruned by eliminating the edge with the highest weight (i.e., the longest) in each
3-node cycle.

This procedure suppresses artificial loops while maintaining an accurate approxi-
mation of the true branching structure.
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2.2.2 Connected Components Decomposition

The graph G may consist of multiple disconnected subgraphs, corresponding to
separate vessel components. Connected components {G}} are identified via:

G =G
k

where each Gy = (Vj, Ey) is maximal connected.
Total Length
The total length L; of component Gy, is the sum of all edge weights:
L, = Z Wy -
(u,v)EEY
Number of Bifurcations

Nodes with degree deg(v) > 3 are considered bifurcations. The count is:

By = |{v € Vi : deg(v) > 3}|.
Bifurcation Density
Density of bifurcations per unit length:

By,

Pk = L.
Vessel Volume Estimation

Volume Vj, approximated by treating each edge as a truncated cylinder with radius
interpolated from node radii r,, 7,:

2
Vk _ Z - (Tu ;‘ Tv) Wy

(’lL,U) EEk

Number of Loops

Loops correspond to cycles in the graph. The cycle basis provides the number of
independent loops:

Cy = |cycle_basis(Gy)|.
Abnormal Degree Nodes

Nodes with degree > 3 are considered abnormal, possibly representing artifacts:

A = |{v € Vi : deg(v) > 3}
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Fractal Dimension Estimation

Vessel networks often exhibit fractal-like branching patterns. Fractal dimension D
quantifies complexity beyond Euclidean dimensions.
Using the box-counting method:

1. Cover the skeleton voxels with cubic boxes of side length e.
2. Count N(€), the number of boxes containing any skeleton points.

3. Repeat for multiple scales e.

Plotting:

1
log N(e) vs log-—,
€

the fractal dimension D is the slope of the linear fit:

1
log N(¢) = Dlog — + c.
€

Lacunarity Calculation

Lacunarity A measures spatial heterogeneity or texture gaps in the vessel pattern,
complementing fractal dimension.

1. Define box size
I— max(Azx, Ay, Az)
= 10 )

2. Partition the vessel points into boxes of size L.
3. Compute the distribution of point counts n per box.
4. Calculate:

A Var(n)

= —"=+ 1
Mean(n)? i

A higher lacunarity indicates more heterogeneous spatial distribution.
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2.2.3 Segment Extraction and Tortuosity Analysis

Vessel segments are meaningful subunits defined by paths between key nodes
(roots).

Selection of Roots

Three root nodes per component Gy, are selected:
e R;: Endpoint (degree=1) with largest diameter.
e Ry: Endpoint with second-largest diameter.
» Rj3: Bifurcation node (degree > 3) with largest diameter. If none, fallback to
R;.
Segment Definition
Segments are shortest paths from each root to all reachable endpoints:

P,_,. = arg min Z Wayp-
paths p
(uw)ep

Segments correspond to vessel branches emanating from key nodes.

Tortuosity Metrics via Cubic B-Spline Fitting

Tortuosity serves as a key descriptor of the winding, bending, and overall geometric
complexity of vascular structures.

Direct measurements on voxelized skeletons can be sensitive to noise and discretiza-
tion artifacts; therefore, a smooth parametric representation is required.

In this work, which is inspired by [46], vessel centerlines are approximated using
cubic B-spline fitting, which provides a continuous and differentiable curve represen-
tation. This formulation enables stable computation of curvature along the vessel
segments’ trajectory and facilitates the extraction of tortuosity metrics at multiple
scales, including local curvature descriptors and aggregated root-level measures.

Input and Spline Fitting
Given N sample points
pi = (zi,y5,2%) €ERY, i=0,...,N—1,
a cubic B-spline curve is fitted:
C(u) = (z(u),y(u), 2(u)), wel[0,1],
with smoothing factor s > 0. The parameter values are u; with ug =0, uy_1 = 1.
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Arc-Length Reparameterization

The arc length as a function of u is

ds ‘dC

du

% = s S(O) = 0,

and the total arc length is

L=s()= [ 10w du

Let s € [0, L] and define the inverse map u = u(s). Then we define uniformly
sampled arc-length points

J .
;= L =0,....n—1
8] n—1 ) J ) y )

and corresponding points on the curve:
rj = C(u(s;)).
Derivatives

Using finite differences, compute the first and second derivatives with respect to

arc length:
_dC _d*C

T(s) = o (s) = e

Curvature

The curvature at each point is given by:

_ IIT(s) x N(s)[|

)= TP

Weighted Curvature

In some cases, certain points along the vessel skeleton may appear in multiple
segments due to shared branches or overlapping paths. To avoid overemphasizing
these points in the tortuosity computation, thereby reducing redundancy and bias,
we introduce a weighting scheme based on the point’s occurrence frequency.

Let n; = n(p;) be the number of segments containing the point p;. By interpolating
these counts along the continuous arc-length parameter s, we obtain a smooth
function n(s) > 1.
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The weighted curvature is then defined as:

_ r(s) K (s)

R(s) = ()’ R*(s) = 2(s)’

This weighting effectively reduces the contribution of points that are shared across
multiple segments, ensuring that repeated structures do not disproportionately
influence global tortuosity metrics. Consequently, the curvature measurements
better reflect the overall geometric complexity of the vascular network without
redundant inflation from overlapping segments.

Tortuosity Metrics

Define the following tortuosity metrics:

e Spline arc length:
spline_arc_length = L

Chord length:

spline_chord_length = D = ||C(1) — C(0)|

Mean weighted curvature:

L
spline_mean_curvature = k = / R(s)ds
0

Mean square weighted curvature:
_ L 9
spline_mean_square_curvature = k> = / R*(s)ds
0

« RMS weighted curvature:

L
spline_rms_curvature = Kyyus = —/ R2(s)ds

0

Arc-over-chord ratio:

arc_over_chord = D

Spline fit RMSE:

fit_rmse = J

N—
Z —pil?

1=0

Z\H
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2.2.4 Final Aggregation

While tortuosity metrics are computed at the segment level, not all are equally
informative for global characterization. In practice, the two most robust and
interpretable measures are retained for aggregation:

o Mean weighted curvature k

o RMS weighted curvature Kpmg

The first captures the overall level of bending along the vessel, while the second
emphasizes localized variations in curvature and sharp turns.

Length-weighted pooling.

To combine segment-level metrics into a component-level descriptor, a length-
weighted average is applied. For a set of segments {P]}jj‘i1 with arc lengths L;, the
aggregated metric M is defined as

M
M = j=1 Lj Mj
===
j=1 Lj
This ensures that longer vessel branches contribute proportionally more to the final
measure, reflecting their structural importance within the vascular network.

Root-policy stratification.

Since segments are constructed according to three distinct root-selection policies
(R1, R2, R3), aggregation is performed independently for each policy. As a result,
each connected component G}, yields three sets of tortuosity descriptors:

(R(Rl)’ ,{(Rl)) ’ (/—{(32)’ Kﬁﬁi)) ’ (/_{(R3)7 K(R?’)) )

rms rms

Interpretation.

This stratified aggregation allows for comparing how the choice of root influences
the perception of tortuosity.

Together, these aggregated metrics provide a comprehensive yet parsimonious
summary of vascular geometry for each connected component.
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2.2.5 Metric Computation and Storage

Metric aggregation is performed in two distinct modes, depending on whether
VESSEL_ METRICS or ATLAS_ VESSEL_METRICS is applied. Each mode
follows a specific aggregation strategy tailored to the data organization and intended
level of analysis. The following sections provide a detailed overview of how metrics
aggregated and stored within each mode, highlighting the hierarchical structure
of outputs and the relationships between mask-, component-, and segment-level
measurements.

VESSEL__METRICS

e« Whole-mask level: Global metrics are obtained by aggregating measure-
ments across all connected components. Reported features include: total
vessel length, number of bifurcations, bifurcation density, estimated volume,
fractal dimension, lacunarity, number of loops, number of abnormal-degree
nodes, mean and maximum loop length, and root-level tortuosity metrics.
Length-dependent metrics are aggregated using length-weighted means. Op-
tionally, statistics can also be reported for the K longest connected components
(Top-K).

Results are exported to:
— Whole_mask metrics.csv — aggregated statistics across all components.

o Component level: Each connected component is analyzed independently, re-
porting the same set of metrics (length, bifurcations, volume, loops, abnormal-
degree nodes, fractal dimension, lacunarity, loop lengths, tortuosity). A binary
mask is reconstructed from the skeleton and distance map, and saved as
Conn__comp__<index>__skeleton.nii.gz.

Results are exported to:

— all_components_metrics.csv — table of metrics for every connected
component, sorted by connected component lenght.

» Segment level: Within each component, root branches are identified (e.g.,
largest endpoint root, second-largest endpoint root, largest bifurcation root).
Each segment is quantified by geodesic length (arc length), average diameter,
and local tortuosity descriptors. For every segment, a CSV file
(Segment__metrics.csv) is generated, along with an optional reconstructed
binary mask (Segment.nii.gz).
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After execution, the <output_folder> has the following hierarchy:

output_folder/
Conn_comp_1/
Conn_comp_1_skeleton.nii.gz component 1
Segments/
Largest endpoint root/
Segment 1/
Segment _metrics.csv
Segment .nii.gz

Second largest endpoint root/
Largest bifurcation root/
Conn_comp_2/

all components _metrics.csv
Whole _mask _metrics.csv

ATLAS__VESSEL__METRICS

» Region level: Metrics are aggregated across all connected components within
each region.
Reported features include: total vessel length, number of bifurcations, bifur-
cation density, estimated volume, fractal dimension, lacunarity, number of
loops, number of abnormal-degree nodes, mean and maximum loop length,
and root-level tortuosity measures.
Length-dependent metrics are computed as length-weighted means.
Optionally, statistics can also be restricted to the K longest connected com-
ponents (Top-K).

Two overall CSV files summarize results at this level:
— all_components_by_region.csv: detailed per-component metrics grouped
by region.
— region_summary.csv : region-level aggregation of metrics.
o Component level: Each connected component is analyzed independently, re-
porting the same set of metrics (length, bifurcations, volume, loops, abnormal-
degree nodes, fractal and lacunarity measures, loop lengths, tortuosity).

A binary mask is reconstructed from the skeleton and distance map, and saved
as Conn__comp__ <index>__skeleton.nii.gz.
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» Segment level: Within each component, root branches are identified (e.g.,
largest endpoint root, second-largest endpoint root, largest bifurcation root).
Segments belonging to these roots are quantified by geodesic length (arc
length), average diameter, and local tortuosity descriptors.

Each segment has an associated Segment metrics.csv file, and optionally a
reconstructed binary mask (Segment.nii.gz).

After execution, the specified output folder follows a hierarchical structure:

Region_1/

Conn_comp_1/
Conn_comp_1_skeleton.nii.gz
Segments/

Largest endpoint root/
Segment_1/
Segment_metrics.csv
Segment.nii.gz
(other segments)
Second largest endpoint root/
Largest bifurcation root/

Conn_comp_2/

(other components)
Region_2/

(same structure as above)
all_components_by_region.csv
region_summary.csv
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3.1 Chapter Overview

This chapter explores a subset of learning-based strategies for Quality Control (QC)
in brain vessel segmentation, focusing on the most promising approaches from our
perspective: regression- and reconstruction-based methods. The motivation is to
complement traditional morphological and topological descriptors with predictive
models capable of automatically estimating segmentation quality across diverse
masks and segmentation algorithms.

Regression-based methods are presented first, highlighting their interpretability,
efficiency, and robustness. Using the VESSEL METRICS tool, handcrafted vas-
cular descriptors are employed to predict quality metrics such as Dice Similarity
Coefficient (DSC) and Centerline Dice Coefficient (Cl-DSC). Key insights include
the value of topology-aware features, the challenges of model-agnostic QC, and the
limitations of synthetic degradations in representing real-world errors.

Reconstruction-based methods, including encoder—decoder and Variational Au-
toencoder (VAE) architectures, are then discussed. These approaches learn latent
manifolds of anatomically plausible vessel structures to detect implausible segmen-
tations. While they show promise on clean masks, practical application to degraded
or noisy predictions revealed limitations in generalization and robustness.

Finally, the chapter synthesizes findings from both approaches, highlighting their

complementary strengths and weaknesses, and presents practical recommendations
for further analysis.
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3.2 Regression-Based Method

3.2.1 Overview

Regression-based methods have historically constituted a cornerstone of Quality
Control (QC) frameworks, owing to their adaptability and their ability to model
relationships between input features and segmentation quality metrics.

In the medical imaging domain, these approaches have typically relied on hand-
crafted or extracted features (e.g, morphological descriptors, intensity statistics, or
texture measures) to predict the reliability of segmentation outcomes.

Their interpretability, statistical rigor, and robustness have made them a widely
recognized and trusted standard in the evaluation of brain vessel segmentation
results. Moreover, regression-based approaches generally offer lower computational
demands, with faster training and inference compared to deep learning models,
an important factor when considering their integration into medical pipelines for
large-scale inspections and routine inference. Nonetheless, the dependence on
predefined feature sets constrains their capacity to fully capture the complexity of
vascular anatomy and the variability inherent in imaging data.

With the advent of deep learning and representation learning, QC strategies can
now leverage end-to-end architectures that jointly perform feature extraction and
prediction, enabling the modeling of richer, hierarchical, and non-linear relation-
ships.

As a result, while regression methods continue to serve as a valuable and transparent
baseline, particularly in contexts demanding interpretability, efficiency, or limited
data, contemporary research increasingly turns to deep learning approaches for
improved predictive accuracy and generalization across diverse clinical scenarios.
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3.2.2 Feature-based Regression

Our proposed approach builds upon the tool introduced in Chapter 2, extending
its functionality within a supervised regression framework.

The full dataset construction pipeline is illustrated in Figure 3.1. The objective is
to train a regression model capable of predicting two quality metrics for a given
segmentation mask: the Dice Similarity Coefficient (DSC) and the Centerline Dice
Coefficient (Cl1-DSC). The choice of DSC is motivated by its well-established role
as a straightforward and interpretable measure of spatial overlap between two
segmentations. In parallel, CI-DSC is incorporated as it is particularly well-suited
to skeleton-based features, which form a large part of the descriptors extracted
in our setting. Together, these metrics provide a complementary evaluation of
segmentation quality, capturing both volumetric overlap and structural alignment.

In this supervised setup, each row of the training dataset corresponds to one
segmentation instance, represented by its extracted features. The target values
(DSC and CI-DSC) are obtained by comparing the predicted segmentation with its
corresponding ground truth annotation. This formulation enables the regressor to
learn a mapping between feature space and quality metrics, thereby facilitating
automated quality estimation.

To establish a meaningful baseline, the same pipeline is replicated using features
extracted with PyRadiomics, a widely used state-of-the-art library for radiomics
analysis. This parallel setup allows us to build a second dataset and train equivalent
regression models, enabling a direct comparison of predictive performance between

VESSEL_METRICS and PyRadiomics.
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Figure 3.1: Overview of the regression-based dataset construction pipeline.

Input data

The training dataset is composed of features extracted from segmentation masks
that were algorithmically degraded.

This strategy was deliberately chosen to ensure a model-agnostic setup, allowing
the regressor to assess segmentation quality independently of the specific algorithm
used to generate the masks. Such independence is particularly important in clinical
contexts, where diverse segmentation methods may coexist across institutions,
software pipelines, or imaging modalities. A model-agnostic QC framework thus
enhances interoperability and supports more consistent integration into real-world
medical workflows.

The construction of the training set was further guided by the objective of achieving
as flat as possible distributions of quality scores (DSC and CI-DSC). From a clinical
standpoint, this is crucial to guarantee reliable predictions not only for high- and
low-quality cases but also for intermediate-quality segmentations, which are often
the most challenging to detect and interpret.

However, automatically adjusting degradations to meet predefined target quality
scores while preserving anatomical plausibility is inherently nontrivial.

In practice, degradations were directed toward target score ranges, even though the
resulting masks may not correspond to fully realistic outputs. This compromise
was considered acceptable, as it enabled effective regressor training and ensured
sufficient representation across the spectrum of quality levels.

Ultimately, this design choice promotes both robustness and generalizability,
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Figure 3.2: Distributions of target quality scores across the degraded dataset.

two properties that are essential for deploying QC systems in large-scale clini-
cal pipelines.

The ground truth segmentation masks were sourced from the publicly available
TopCoW Challenge dataset [47], a well-recognized benchmark in medical image
analysis. Building upon these ground truths, approximately 800 degraded masks
were algorithmically generated to construct the training set.

Despite the complexity of this task, the employed degradation algorithm succeeded
in achieving balanced distributions of quality scores across the targeted ranges,
as illustrated in Figure 3.2. This outcome provided decent coverage of the entire
quality spectrum.

In practice, this was achieved by a degradation algorithm with several type of
degradations, which will explained in the next section.

Degradation algorithm

The degradation pipeline was designed to algorithmically perturb ground-truth
masks while preserving basic anatomical plausibility, with the explicit goal of gen-
erating masks spanning a broad spectrum of quality scores (DSC). Some examples
are shown in Figure 3.3 This was achieved through controlled corruption routines
applied in a probabilistic manner.

The core of the algorithm is a function which attempts to transform an input
ground-truth mask into a degraded version that approximates a predefined target
DSC. Target values were selected across the full quality range (0.85, 0.70, 0.55,
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Figure 3.3: Examples of possible slice degradations.

0.35, 0.15), ensuring adequate coverage from nearly perfect to severely corrupted
masks.

To reach a given target DSC, the algorithm applies different families of degradations
via the corrupt_ohe_masks utility:

o Erosion: selectively shrinks the segmentation boundary, mimicking underseg-
mentation.

« False positives (fp): introduces spurious foreground regions disconnected from
the true anatomy.

o Holes: removes internal parts of the structure, imitating local segmentation
failures.

» Randomized corruption operations: each operation is applied with configurable
probabilities, and up to a maximum number of iterations per mask.

The corruption parameters are conditioned on the target DSC range. For high
DSC values (> 0.8), the algorithm applies minimal perturbations (e.g., low erosion
and hole probability, few operations). For intermediate DSC values (0.4-0.7), more
aggressive settings are used, combining erosion with false positive insertions and
larger internal defects. For very low DSC values (< 0.4), strong corruptions with
high probabilities of all operation types are applied, leading to heavily distorted
and anatomically implausible masks.
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Because corruption is stochastic, multiple attempts are made for each target DSC.
After every attempt, the DSC is computed between the degraded mask and the
ground truth. The attempt that achieves the closest DSC to the target is retained.
If the achieved DSC falls within a tolerance of +0.05 of the target, the search
terminates early; otherwise, the algorithm continues until the maximum number of
attempts is reached. This strategy balances precision in hitting the target score
with computational efficiency.

For each ground-truth mask, five degraded versions are produced, one per target
DSC value, resulting in a diverse dataset of masks systematically covering the
quality spectrum. This procedure was applied to all vessel annotations from the
TopCoW dataset, ultimately yielding ~ 800 degraded masks for training.

Preliminary Analysys: 80-20 Split in Trainset

Within this setup a regression algorithm is trained on 80% of the training data,
while the remaining 20% is set aside for validation. The model does not “see”
this validation subset during training, which allows us to assess its predictive
performance on data that is not directly used for fitting.

Formally, let the dataset be defined as

D = {(:L‘z;yz)}z]\ila

where z; € RP denotes the feature vector with p predictors and y; € R the
corresponding target value. The dataset D is partitioned into:

Dtrain C Dv Dval C Da Dtrain N Dval - ®7 |Dtrain| = 08N7 ‘Dval| =0.2N.

Model performance is then evaluated on the validation set D,,;, providing an
unbiased estimate of generalization.

This procedure is useful to understand how well the regression model generalizes
within the same dataset. The validation split helps to:

o Evaluate performance: on unseen samples, giving an unbiased estimate of
accuracy or error metrics.

o Identify overfitting: by comparing training and validation errors.

o Guide model selection: and hyperparameter tuning before testing on a truly
independent test set.

In addition, this validation strategy can be employed as a analysis of the features
available in the dataset.
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By observing the model’s performance on the 20% hold-out subset, we can infer
whether the chosen features are sufficiently informative for predicting the target
variable.

If the regression model achieves consistent accuracy between training and validation
sets, this suggests that the features capture meaningful patterns. Conversely, if
the validation error remains high despite reasonable model complexity, it may
indicate that the features lack predictive power, suffer from redundancy, or require
transformation.

Such an analysis provides an early diagnostic step before more elaborate tech-
niques (e.g., feature selection, dimensionality reduction, or engineered variables)
are introduced, ensuring that the dataset is rich enough to support robust modeling.
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Figure 3.4: Performances on trainset.

As shown in Figure 3.5, the features were sufficient for the model to clearly distin-
guish between the different quality levels. It is worth noting that the two sets were
constrained to share the same distribution across quality levels.

The reported metrics provide complementary perspectives on model performance.
The Pearson Correlation (r) measures the strength and direction of the linear rela-
tionship between predicted and true quality levels, indicating how consistently the
model follows the underlying trend. The Mean Absolute Error (MAE) captures the
average magnitude of prediction errors, directly reflecting how close the predictions
are to the actual values. Finally, the p-value (p) assesses the statistical significance
of the observed correlation, ensuring that the results are unlikely to be due to
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chance.
Together, these metrics demonstrate both the accuracy and the reliability of the
model.

Test

In our test setup, as announced, we conducted a direct comparison with PyRa-
diomics, a widely adopted open-source Python library for deriving radiomic features
from medical images and their corresponding masks [48]. PyRadiomics is particu-
larly valued for its flexibility and reproducibility, making it an established baseline
for this study.

Radiomic features are quantitative descriptors extracted from medical images that
capture patterns, textures, shapes, and intensity distributions not easily perceivable
by the human eye. They can represent properties such as tumor heterogeneity, ves-
sel morphology, or tissue texture, providing a high-dimensional characterization of
image regions. Radiomics has become broadly used because it transforms standard
medical images (CT, MRI, etc.) into rich datasets of measurable features that can
be linked to clinical outcomes, disease phenotypes, or molecular characteristics.
This makes radiomics a powerful tool for diagnosis, prognosis, and treatment re-
sponse assessment. Its popularity also stems from its reproducibility, open-source
toolkits (such as PyRadiomics), and its ability to support data-driven, non-invasive
biomarkers in precision medicine [49].

For both VESSEL_METRICS and PyRadiomics, features were extracted from
the same set of degraded masks to construct training datasets. Two separate
Random Forest regressors were then trained per feature set: one to predict the
DSC and another to predict the Cl-DSC. Each feature extractor was subsequently
evaluated on a held-out test set comprising 125 predicted masks for each of the
five segmentation models (A2V, JOB-VS, VesselBoost, nnUNet, and SPOCKMIP),
described previously in Section 1.4.5.

As shown in Figure 3.5, VESSEL METRICS demonstrates decent performance,
achieving consistently low error values across the evaluations. In contrast, PyRa-
diomics struggles noticeably, yielding less accurate predictions. As expected,
Cl-DSC provides significantly better results, standing out as the most effective
estimator for VESSEL_METRICS features, since the descriptors are directly linked
with the vessel skeleton. Still, even in the CI-DSC plots, clusters of poorly predicted
points can be observed, negatively impacting correlation values.

To better understand this behavior, we analyzed the results on a per-model basis.

50



o e =
fo oo o

Prediction
o
~

1.0

o
o

Prediction
o
~

Learning-Based Approaches for Quality Control

PYRAD - CI-DSC PYRAD - DSC
r=0.68 | p = 3.64e-84 | MAE = 0.12 10 17 0.74| p=1.12e-108 | MAE = 0.13
Ideal (y = x) Ideal (y = x) o
e PR 0.8 s i
506
k]
K
a 04
0.2
0.0
0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Ground Truth Ground Truth
VESSEL_METRICS - CI-DSC VESSEL_METRICS - DSC
r=0.82 | p=4.74e-152 | MAE = 0.07 10 F= 0.64 | p=2.32e-72 | MAE = 0.08
Ideal (y = x) Ideal (y = x)
0.8
et
§06 e
k]
3
04
0.2
0.0
0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Ground Truth Ground Truth

Figure 3.5: Test Performance

A compact visualization focusing on the superior target (Cl-DSC) is presented in
Figure 3.6. This analysis revealed that certain segmentation models were systemat-
ically harder to predict, even though the overall training performance appeared
reasonable. A likely explanation is that the degradations used to construct the
training dataset, while controlled and effective in simulating general errors, did not
fully reflect the error patterns produced by some models in practice.

In other words, the variability introduced during training did not sufficiently en-
compass the broader spectrum of real-world prediction errors. As a result, the
regressors struggled to generalize, exposing a limitation in the diversity of mask
degradations employed during training.
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Figure 3.6: Performance per model.

A key point to emphasize is that, within this model-agnostic setup, the approach
faces intrinsic challenges when applied to the complexity of real-world segmenta-
tions. Constructing an extensive and exhaustive training dataset that faithfully
represents the full diversity of real segmentation errors is extremely difficult, if not
infeasible. This highlights a fundamental limitation: while controlled degradations
provide a valuable foundation for learning, they cannot fully capture the variability
and unpredictability inherent to real-world outputs.

To fully uncover the weak points of the approach, it is not sufficient to rely solely
on global performance metrics. A deeper inspection of the model’s internal decision
process is required. One effective strategy is analyzing the relative importance of
features. Feature importance analysis reveals which descriptors the Random Forest
relied on most heavily and which contributed little or no useful information.

By studying this distribution, it becomes possible to identify potential biases,
highlight redundancies or underutilized descriptors, and assess whether the chosen
feature set captures the most relevant aspects of segmentation quality. Such an
analysis offers valuable insight into both the strengths and limitations of the current

52



ance

Learning-Based Approaches for Quality Control

design, guiding improvements in feature selection and dataset construction.

Feature Importance from CI-DSC for VESSEL_METRICS

) < & @& @ @ . @ 2 ]
¥ S EE T LTI FESFELSFSTSS
¢ & W W@ W NN &SNS e
F & OO & F R E L W e
2 & &S N RS RN Q7w
& DO ¢ < [N N o 4 N> o e
» PO M TR S - Y R S R S e ©
@ & o & & R & & &S o7 G >
& & F &L K F & FFS R
n/ (}',00\'/ o7 D&, I OO/\/ N
R ¢ O 2 € LEC PR
A2 & & E & T
bQO\ eiQo‘ oé\./ bQQ\ bQo‘ S $7
{ 0
&L S «
(s)
&e Qef’ S <§9 {&9
G & F N VP
>7 7 &7 0/
& @ o R
P fb‘q 'b'}l 4\0
v
f}¢b, Agoq
Features

Figure 3.7: Feature importance.

As illustrated in Figure 3.7, the number of connected components emerged as a
dominant feature for VESSEL METRICS. However, this may simply be an artifact
of how the training data was constructed. By degrading masks in a relatively
uniform manner with a limited set of operations, the training procedure may have
inadvertently emphasized fragmentation as the strongest signal of mask quality.
The Random Forest effectively learned a shortcut: “fewer components — higher
DSC; more components — lower DSC”. While this heuristic works well for synthetic
degradations, it may fail to generalize to the more diverse and subtle error patterns
present in real-world segmentation outputs.

3.2.3 Conclusion

In summary, VESSEL METRICS consistently outperformed PyRadiomics in pre-
dicting segmentation quality metrics, with particularly strong performance on the
CI-DSC, which directly reflects vessel skeleton fidelity. Beyond accuracy, these
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results highlight the tool’s potential as an effective component of automated Qual-
ity Control (QC) pipelines for segmentation outputs, enabling rapid, objective,
and reproducible evaluation of mask quality. Nevertheless, the analysis revealed
systematic prediction challenges for certain segmentation models, indicating that
training on controlled degradations alone may not fully capture the diversity of
errors encountered in real-world data. This underscores the critical importance of
incorporating realistic and varied degradations in training datasets to ensure that
automated QC methods remain reliable and generalizable across heterogeneous
segmentation outputs. By combining high predictive performance with interpretabil-
ity through feature importance analysis, VESSEL METRICS offers a promising
pathway toward robust, data-driven QC practices that can help detect failures,
guide model improvements, and ultimately enhance the reliability of medical image
analysis workflows.
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3.3 Reconstruction-Based Methods

3.3.1 Overview

Reconstruction-based methods have emerged as a powerful strategy for Quality
Control (QC) in medical image segmentation, particularly in scenarios where
anatomical plausibility and structural consistency are critical.

These approaches learn a model of high-quality, anatomically correct segmentations
and use it to evaluate or refine new predictions. By projecting segmentations onto
a latent manifold of plausible structures, reconstruction-based QC can identify
deviations caused by artifacts, noise, or model errors.

Notable examples include Liu et al. [50], who proposed an alarm system for
segmentation algorithms using a variational autoencoder trained on ground-truth
masks. Their system detects implausible predictions by comparing reconstructions
to the learned anatomical manifold, providing a model-agnostic mechanism for
segmentation QC. Similarly, Painchaud et al. [51] applied a constrained VAE to
cardiac segmentation, projecting predictions onto a latent space of anatomically
valid shapes to correct implausible outputs automatically.

Compared to regression-based QC methods, reconstruction-based approaches are
less dependent on handcrafted features and can capture complex, non-linear rela-
tionships inherent in anatomical structures. They are particularly advantageous
when variability in imaging quality or acquisition protocols is high, offering a
principled, automated, and model-agnostic way to assess and refine segmentation
quality.

While these methods typically require larger datasets and higher computational
resources than traditional regression approaches, they offer the potential to integrate
anatomical priors directly into the QC process, improving robustness and reliability
in both research and clinical pipelines.

3.3.2 General encoder-decoder

Core idea

A reconstruction-based unsupervised approach was investigated, designed to learn
directly from vessel masks without paired image—segmentation annotations. The
latent manifold is constructed using high-quality ground-truth segmentation masks
only, exploiting their structural regularities to build an implicit anatomical prior.
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An encoder—decoder network was trained to reconstruct vessel maps from them-
selves. Given a ground truth segmentation S, the encoder projects it into a latent
representation z € R™, which the decoder maps back to S’. The optimization relies
on a reconstruction loss (binary cross-entropy), ensuring that S’ remains close to
S while regularizing the latent space to capture meaningful vascular structures.
Figure 3.8 illustrates the pipeline.

Reconstructed
Image

Input Image
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Latent space
Representation

v v v
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Figure 3.8: Reconstruction flow using an encoder—decoder model.

At inference, an external prediction S is processed through the model, yielding
a surrogate reconstruction S* that lies closer to the learned manifold of anatom-
ically plausible vessels. Comparing S with S* provides a plausibility estimate:
reliable predictions reconstruct faithfully, whereas artifact-driven ones deviate. This
mechanism is model-agnostic and robust to variability in imaging protocols.

Experimental setup

Careful consideration is required in selecting an appropriate model, particularly one
that is balanced in terms of depth. The anatomical structures under consideration
(thin, elongated, and highly branching vessels), demand a network capable of
capturing fine-scale details while also maintaining global anatomical coherence. A
model that is too shallow risks underfitting and missing subtle vascular patterns.
Conversely, an excessively deep network increases the risk of overfitting, vanishing
gradients, and unstable training dynamics, while also significantly raising computa-
tional cost.
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To address this trade-off, several encoder—decoder architectures of varying depth
were systematically evaluated. As an initial design, a deep 3D convolutional model
was implemented, consisting of six to seven downsampling and upsampling stages.
In parallel, different input configurations were tested, including variations in the
spatial size of cropped volumes and modifications to the segmentation masks (e.g.,
enlarging or restricting the surrounding context).

(a) Original GT mask. (b) Reconstructed mask.

Figure 3.9: Successful reconstruction instance (DSC = 0.89).

These initial trials with the deep 3D model showed no signs of effective learning.
The training loss remained stagnant throughout the epochs, and the model failed
to converge. This outcome suggests that the network’s complexity was excessive
relative to the available data and optimization setup: the large number of param-
eters, combined with the increased difficulty of training 3D convolutions, made
gradient propagation unstable and prevented the model from entering a learning
regime. The natural next step was a simplification of the model architecture. The
depth of the encoder—decoder backbone was reduced to four downsampling and
upsampling stages, thereby lowering representational complexity while retaining
sufficient capacity to capture vessel structures at multiple scales. This shallower 3D
model demonstrated clear improvements: the loss curve steadily decreased during
training, and consistently high Dice scores were observed on the validation set.
Figure 3.9 provides an illustrative example, showing that the reconstructed vessel
segmentation obtained by the reduced-depth model closely aligns with the ground
truth.

Inference phase

During inference, when the model was tasked with reconstructing degraded masks
in order to recover the original, undegraded structures, it consistently failed to
achieve the intended corrections. Rather than producing faithful restorations of
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the ideal ground truth masks, the network instead generated alternative vessel
segmentations that deviated substantially from the true anatomy.

(a) Original GT degradated mask. (b) Reconstructed mask.

Figure 3.10: Inference reconstruction instance.

As illustrated in Figure 3.10, the reconstructed mask does not correspond to the
original vascular anatomy.

The outputs remained incomplete and anatomically inconsistent, ultimately failing
to meet the objective of reliably reversing the applied degradations.

3.3.3 VAE with search in latent space

Core idea

A generative model was designed to learn from image-segmentation pairs, drawing
strong inspiration from [52]. The model provides a probabilistic latent embedding
that jointly captures both intensity and anatomical domains. This latent manifold
is constructed using high-quality ground-truth image-segmentation pairs, ensuring
that the reconstructed segmentations remain anatomically consistent with true
vessel structures. To approximate this manifold, a Variational Autoencoder (VAE)
was employed..

Let X = (,S5) denote an image—segmentation pair. The encoder maps X to a
Gaussian-distributed latent vector z € R™, and the decoder reconstructs (I’, S")
from z. The loss combines binary cross-entropy for masks, mean squared error
for images, and a Kullback—Leibler divergence term to regularize the latent space.
Figure 3.11 shows the pipeline.

At inference, an external prediction S is evaluated by performing an iterative search
in latent space to identify the latent code z* whose reconstruction (I*,S*) best
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(a) Training stage: (b) Application stage:

5]

Ground-
truth

’ I I
u I 17— . [ sur]
S! ] [ '] fﬁ"‘ \\. sur
g, gt S \
Recon-  Input / Surrogate
struction =1 ] i

Quality predition q(Seyr,S)

Figure 3.11: Pipeline of the VAE with latent space search.

matches ([, S ). The surrogate S* serves as an anatomically plausible reference for
comparison.

This formulation differs from the encoder—decoder baseline in two aspects:

1. the inclusion of image—segmentation pairs, allowing joint modeling of appearance
and anatomy;

2. the latent search, which explicitly projects predictions back onto the learned
manifold.

Experimental setup

The experimental setup followed the same general strategy as the encoder—decoder
approach. Initially, a deeper 3D network was implemented to maximize representa-
tional capacity. However, training this architecture showed no effective learning,
likely due to the increased difficulty of propagating gradients through multiple 3D
convolutional layers and the limited size of the dataset. Consequently, a shallower
network was adopted, reducing the number of downsampling and upsampling stages
while retaining sufficient capacity to capture vessel structures at multiple scales.

To evaluate the impact of the latent space dimensionality on reconstruction quality,
several bottleneck sizes were systematically tested. This allowed assessment of how
the dimensionality of the latent representation influences the ability of the network
to capture anatomical variations while maintaining reconstruction fidelity.

Inference phase

Within these setups, the model struggled to generate confident predictions, as
illustrated in Figure 3.12, where the soft outputs rarely exceed the 0.5 threshold.
This indicates a difficulty in producing segmentations that the network considers
sufficiently certain. The underlying causes are likely multifactorial, including the
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limited size of the training dataset, the complexity of the 3D anatomical structures,
and the increased variability introduced by imaging artifacts and noise.
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(a) Original segmentation slice. (b) Reconstruction soft prediction.

Figure 3.12: Example of unstable soft predictions for a reconstructed slice.

Additionally, the iterative latent space search may amplify these challenges. Small
deviations in the predicted segmentation can result in large shifts within the latent
space, leading the reconstructed outputs to deviate from the desired ground-truth
anatomy. As a consequence, the surrogate segmentations sometimes fail to provide
a reliable reference for assessing the plausibility of external predictions.

These observations suggest that, while the VAE framework provides a principled
mechanism for learning anatomically plausible structures, careful tuning of the
latent space dimensionality, network capacity, and training strategy is critical.
Future refinements may include data augmentation, improved regularization, or
alternative latent search strategies to enhance convergence and confidence in the
reconstructed outputs.

3.3.4 Conclusion

Reconstruction-based QC methods offer an attractive, conceptually simple route:
by learning a manifold of plausible vessel structures, they can in principle distin-
guish anatomically consistent outputs from artifact-driven or unstable predictions.

Our experiments confirm two important aspects of this promise. First, an en-
coder—decoder trained purely on high-quality masks is capable of learning to
reconstruct clean vessel geometries, as evidenced by high validation Dice scores for
reconstructions of ground-truth masks (see Figure 3.9).
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Second, generative formulations that jointly model image and segmentation (the
VAE) provide a principled probabilistic latent space that can, in theory, support
projection of noisy predictions back onto the anatomical manifold.

However, the practical utility of these methods as corrective tools or stand-alone
QC agents proved limited in our setting. Two recurrent failure modes emerged:

1. Inference mismatch: although reconstruction of clean masks succeeds under
controlled conditions, passing degraded or partially incorrect masks through
the trained reconstructor did not consistently recover the original anatomy.

2. Latent-space sensitivity and low confidence: the VAE-based latent search
struggled to produce confident (high-probability) segmentations for many
inputs; soft outputs frequently remained near the classification threshold. The
iterative search in latent space amplified small input perturbations into large
latent displacements, which in turn yielded reconstructions that could deviate
markedly from the desired anatomy.

Analysis points to several root causes that are likely responsible for these behaviors:
(i) limited dataset size relative to the complexity of 3D vascular anatomy, (ii) the
increased optimization difficulty and parameter count of deep 3D convolutional
models. Together, these factors reduce the models’ ability to generalize from
reconstructing ideal masks to reliably correcting or assessing imperfect predictions.

In summary, reconstruction-based approaches remain a promising component of
segmentation QC for vascular tasks, but our results highlight that learning to
reconstruct high-quality masks is not synonymous with reliably correcting or
unequivocally validating arbitrary external predictions. With targeted changes,
reconstruction-based methods can become much more effective and practically
useful in both research and clinical pipelines.
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The work presented in this study addresses a timely and practically significant
gap in medical image analysis: the development of automated quality control
(QC) mechanisms for cerebral vessel segmentation. Accurate delineation of the
cerebral vascular network is essential for both diagnostic and research applications
in cerebrovascular and neurodegenerative diseases.

Yet, the brain’s vascular anatomy presents exceptional technical challenges, its
vessels are extremely thin, highly tortuous, and subject to pronounced anatomical
variability across subjects, scanners, and pathologies. These characteristics make
both segmentation and objective quality assessment particularly demanding. Even
state-of-the-art neural networks such as nnU-Net achieve good accuracy but remain
prone to subtle and sometimes clinically significant errors that can compromise
downstream analyses or decision-making. Despite the evident importance of this
problem, the existing literature reveals no prior systematic investigation of QC
methodologies specifically designed for brain vessel segmentation.

Motivated by this gap, the present work introduces a systematic comparative
study between two conceptually distinct paradigms for segmentation quality assess-
ment. The first approach employs supervised regression on handcrafted, topology-
and morphology-aware features derived from the VESSEL METRICS framework,
which quantifies vessel length, diameter, tortuosity, branching, and connectivity.
The second explores self-supervised reconstruction using encoder—decoder and
variational autoencoder (VAE) architectures trained to model the manifold of
anatomically plausible vessel masks, thereby identifying or correcting implausible
segmentations through reconstruction behaviour.

As part of this work, a dedicated software toolkit, VESSEL METRICS, was
developed to enable systematic and interpretable vascular analysis. This toolkit
computes detailed topological and morphological descriptors from any cerebral
vessel segmentation, whether generated manually or by automated methods. The
extracted features encompass a broad range of biologically and geometrically mean-
ingful properties, including vessel length, diameter, branching patterns, tortuosity,
volume, fractal dimension, and connectivity. Together, these descriptors provide a
quantitative and anatomically interpretable representation of vascular structure,
forming the foundation for both explanatory analyses and data-driven modelling.
In this sense, VESSEL _METRICS serves simultaneously as a general-purpose
framework for vascular characterization and as a core component of the proposed
automated quality control pipeline.

The overarching methodological insight of this study is that the two QC paradigms
offer complementary approaches: feature-based models provide supervised, inter-
pretable predictions of segmentation quality, while reconstruction-based models
enable unsupervised estimation of the same. The following discussion synthesises
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these empirical contrasts, interprets their implications for the broader field of
vascular imaging, and outlines practical recommendations for developing robust,
interpretable, and scalable QC systems for cerebral vessel segmentation.

In our experiments, Random Forest regressors built on VESSEL _METRICS de-
scriptors, trained on a synthetically degraded dataset, achieved the most accurate
and stable predictions when evaluated on a test set comprising segmentation out-
puts from multiple real-world models. Predictions of the centerline Dice (Cl-DSC)
were consistently more reliable than those of the volumetric Dice, reflecting the
skeleton- and topology-oriented nature of the feature set. Under identical condi-
tions, PyRadiomics-based models underperformed, indicating that generic radiomic
descriptors are less attuned to the fine-grained topological cues critical for vascu-
lar fidelity. However, feature-importance analyses exposed a notable limitation:
model performance depended disproportionately on a small subset of variables,
particularly the number of connected components, suggesting that part of the
observed advantage may stem from exploiting strong synthetic artifacts rather than
genuinely learning robust, generalisable topological relations.

Thus, while these findings confirm the potential of topology-aware descriptors for
quality control in vascular segmentation, they also highlight the need to comple-
ment synthetic degradations with broad empirically observed errors and to conduct
systematic ablation and importance analyses to identify and mitigate spurious
shortcuts. In summary, feature-based regressors represent a powerful and pragmatic
approach, yet their real-world generalisability ultimately depends on the realism
and diversity of the degradations used for training.

Reconstruction-based QC, learning a manifold of clean, ground truth vessel segmen-
tations via encoder—decoder and VAE architectures, offers a contrasting strategy:
determine plausibility by how well an input mask projects onto or is reconstructed
from a learned anatomical latent space. This approach has appealing theoretical
properties. A sufficiently expressive generative model, trained on a diverse set of
high-quality vessel masks, could, in principle, reconstruct anatomically plausible
structures from incorrect, partially incorrect, or implausible inputs. In doing so,
it would both flag and potentially correct segmentation errors without the need
for explicitly labelled corruptions, while also providing a quantitative means of
assessing segmentation accuracy by measuring the discrepancy between an input
mask and its optimal reconstruction.

Empirically, however, the reconstruction methods exhibited a pattern of behaviour
that tempers that theoretical optimism. When presented with clean masks, the
models reconstructed anatomy with high fidelity, confirming that the architectures
can learn useful generative priors for vascular structure. When presented with
degraded or even partially incorrect masks, however, plain reconstructor inference
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and even latent-search variants of the VAE often failed to produce reliable correc-
tions. Reconstructions tended to be overly smooth, lost fine branches, clustered
outputs near the decision threshold (indicative of low confidence), and were highly
sensitive to small input perturbations. The farther a degraded mask lay from the
training manifold, the less plausible the reconstruction; in many cases the output
diverged substantially from the true anatomy rather than providing a conservative
or corrective estimate. These observations point to a crucial moderating variable:
dataset scale and diversity. VAE-type methods appear especially sensitive to the
breadth of anatomical examples seen during training. Sparse coverage of the true
manifold, inevitable when only a few hundred high-quality vessel maps are available,
produces latent spaces that lack the local structure necessary to map incorrect
inputs back to plausible anatomies. Consequently, while generative reconstruc-
tions are conceptually attractive, their utility as standalone certifiers or automatic
correctors is limited under current data regimes. They may still be valuable as a
component of a hybrid system or as a diagnostic tool when trained on far larger
and more heterogeneous corpora.

Taken together, these results yield several actionable conclusions for researchers
and practitioners aiming to deploy QC for cerebral vessel segmentation.

The study suggests a pragmatic roadmap of experiments and engineering steps
that balance cost and expected benefit.

1) The highest-priority activity is empirical error collection: gather segmentation
outputs and their failure modes from multiple state-of-the-art models and use these
model-produced errors to re-train and validate regression models. To close the
realism gap in training data, treat synthetic corruptions as a useful starting point
but systematically augment them with these empirically sampled errors so that
QC regressors learn to recognise real-world failure patterns rather than synthetic
shortcuts.

2) Scale up the ground-truth corpus for generative training and measure learn-
ing curves for reconstruction fidelity and robustness; this experiment will clarify
whether architecture or data scarcity is the limiting factor.

3) Implement and evaluate topology-aware losses for the reconstructor and quantify
their effect on downstream QC metrics such as CI-DSC and clinically relevant
connectivity measures.

4) Prototype hybrid approaches that augment the interpretable descriptor set
with lightweight learned modules: small CNNs applied to local patches around
centerlines or graph neural networks operating on extracted centerline graphs can
capture relational and contextual cues while preserving overall transparency.

5) Embed routine diagnostic procedures (e.g., feature ablations, importance track-
ing, and bias audits) into model development pipelines to detect and correct
spurious shortcuts (e.g., overreliance on component counts) early.
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The work also exposes persistent limitations and practical constraints. High-quality
vessel annotations are expensive to produce and subject to inter-rater variability;
assembling large, diverse, expert-curated corpora will require coordination and
resources. Even with more data, some errors remain intrinsically hard to detect
with global metrics: losses of clinically critical small branches may have modest
influence on volumetric DSC but large clinical implications.

The dependence of regressors on the fidelity of corruption models and the sensitivity
of generative models to latent coverage both argue for human-in-the-loop systems in
the near term. Finally, generalisability across patient populations must be validated
explicitly; QC systems tuned to a narrow set of conditions risk brittleness when
deployed in broader clinical settings.

In conclusion, and to briefly sum up, this work presents the first systematic investi-
gation of automated quality control for cerebral vessel segmentation and introduces
VESSEL METRICS, a comprehensive framework for quantifying morphomet-
ric and topological properties of vascular masks. The study demonstrates that
feature-based regression models can potentially predict successfully segmentation
quality using interpretable, biologically meaningful descriptors, while also exploring
generative reconstruction as an unsupervised alternative for detecting corrupted
segmentations. By comparing these two paradigms, the work delineates their com-
plementary strengths and limitations. Collectively, these contributions establish
a foundation for developing robust, scalable, and interpretable QC systems in
medical image segmentation, particularly within the anatomically complex do-
main of cerebral vasculature, and point toward future work focused on integrating
complementary methodologies, expanding dataset diversity, and advancing more
generalisable and trustworthy quality control frameworks across medical imaging
domains.
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