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Abstract 
 
Emotion recognition technology plays a crucial role in human-computer 
interaction and affective computing applications, with potential applications 
spanning from mental health monitoring to educational technology. However, 
the majority of existing emotion recognition systems suffer from significant 
performance degradation when deployed across different environments and 
datasets, limiting their practical applicability. This highlights the critical need 
for robust cross-domain solutions that can maintain performance consistency 
across varied real-world conditions. With the advancement of multimodal 
learning and domain adaptation techniques, attention-based fusion models 
have shown promising results in emotion recognition tasks. However, cross-
domain emotion recognition still faces substantial challenges due to domain 
distribution shifts, limited computational resources, and the need to balance 
source and target domain performance. Existing domain adaptation methods 
often exhibit training instability and catastrophic forgetting, where aggressive 
adversarial training sacrifices source domain performance for marginal target 
domain improvements, restricting the practical deployment of these systems. 

To address these issues, this study proposes a progressive multimodal 
fusion architecture with ultra-conservative domain adaptation for cross-
domain emotion recognition. We systematically evaluate three fusion 
strategies to identify the optimal multimodal integration approach, and 
implement a novel conservative alpha scheduling mechanism to ensure 
training stability. In addition, computational efficiency optimization is 
incorporated to enable practical deployment in resource-constrained scenarios. 
Specifically, we design a comprehensive fusion comparison framework with 
three different strategies—truly early fusion, progressive middle fusion with 
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multi-stage cross-attention, and weighted late fusion—to examine their 
effectiveness in cross-domain scenarios. Furthermore, we focus on transferring 
knowledge from controlled laboratory settings (RAVDESS) to naturalistic 
environments (CREMA-D), implementing an ultra-conservative domain 
adaptation strategy with alpha scheduling ranging from 0.0001 to 0.1, 
compared to traditional methods that scale to 1.0, along with strategic target 
domain subset selection to reduce computational requirements by 
approximately 5×. 

The results demonstrate that progressive middle fusion combined with 
conservative domain adaptation significantly outperforms baseline approaches 
in cross-domain transfer tasks. In speaker-independent evaluation, our method 
maintains high source domain performance while substantially improving 
target domain accuracy compared to zero-shot transfer baselines. The 
conservative alpha scheduling strategy achieves superior training stability with 
notably lower loss variance compared to traditional adversarial methods, while 
the efficient data balancing approach reduces training time and computational 
overhead without compromising performance quality. These results 
demonstrate the strong generalization ability and computational efficiency of 
the proposed approach, highlighting its potential for practical cross-domain 
emotion recognition deployment in real-world applications where both 
performance consistency and resource constraints are critical considerations. 
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Chapter 1 
 

Introduction 
 
Motivation and Background Emotion recognition is an essential 
building block in intelligent systems, enabling machines to interpret and 
respond to human affective states. This capability underpins numerous 
applications, such as adaptive human-computer interaction, emotion-aware 
healthcare monitoring, and intelligent educational systems. However, while 
models perform well in controlled laboratory settings, their performance often 
deteriorates significantly when applied in real-world scenarios that differ in 
population characteristics, environmental conditions, and data acquisition 
methods. 

Modern deployment environments—particularly in healthcare, education, 
and edge computing—impose stringent constraints on privacy, computational 
efficiency, and generalizability. For example, healthcare applications demand 
local processing on mobile devices to preserve patient privacy. Educational 
tools must adapt to diverse student populations with minimal delay. 
Meanwhile, edge devices such as smart speakers and wearable sensors must 
operate under limited memory and energy budgets while delivering real-time 
responses. These real-world requirements expose a persistent limitation in 
emotion recognition systems: domain generalization. 

This domain gap—the mismatch between training data (e.g., RAVDESS) 
and deployment data (e.g., CREMA-D)—is a fundamental barrier to practical 
emotion recognition. Models trained on controlled datasets often struggle 
when exposed to variations in acoustic background, speaker demographics, 
and sensor quality. Such performance degradation renders many models 
unusable in real-world settings, particularly in scenarios where domain-specific 
data collection is infeasible or unethical. 

Moreover, traditional domain adaptation methods rely heavily on large 
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target datasets and computationally intensive training procedures, which are 
impractical in constrained environments[1], [2]. As a result, many advanced 
systems remain confined to academic research, while deployed solutions rely 
on simplistic and brittle heuristics. 
 

Challenges in Cross-Domain Multimodal Emotion Recognition The 
core difficulty in cross-domain emotion recognition lies in managing three 
interdependent challenges: domain shift, computational constraints, and 
multimodal degradation. 

Domain shift occurs across multiple dimensions. In healthcare, for instance, 
models must generalize from clean lab-recorded speech to noisy, uncontrolled 
clinical recordings. In education, systems trained on adult datasets must 
interpret children's emotional cues, which differ in vocal tone and facial 
expression dynamics. Even hardware differences—such as camera resolution or 
microphone type—can lead to substantial performance drops if not adequately 
addressed. 

Computational constraints are particularly salient in edge and mobile 
environments, where memory and processing budgets are extremely limited. 
Traditional adversarial domain adaptation methods—though powerful—are 
often computationally prohibitive due to their reliance on gradient reversal 
and iterative optimization. These methods are incompatible with deployment 
on personal devices such as tablets, smartphones, or classroom hardware. 

Multimodal fusion under domain shift introduces further complexity. 
Audio and visual modalities often degrade asymmetrically across domains. For 
example, visual data may be affected by lighting changes while audio remains 
clear, or vice versa. Traditional fusion strategies assume stable modality 
reliability, which is not guaranteed in real-world deployments. Moreover, 
fusion strategies must remain computationally lightweight to meet latency 
requirements. 

Finally, limited access to target domain data—due to privacy regulations, 
data scarcity, or diversity in user populations—prevents traditional supervised 
learning from being feasible. Thus, any viable solution must function under 
small-data conditions while avoiding overfitting and instability. 
 
Research Objectives and Contributions This thesis proposes a resource-
efficient framework for cross-domain multimodal emotion recognition, 
specifically tailored to operate under realistic deployment constraints. The 
contributions are as follows: 

1. Conservative Domain Adaptation: A novel adversarial training schedule 
is proposed using ultra-conservative alpha scaling. This avoids the 
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optimization instability commonly observed when domain 
discriminators overpower emotion classifiers in small-data settings. 

2. Progressive Multimodal Fusion Architecture: A middle-fusion strategy 
is introduced, leveraging attention-based cross-modal interactions to 
capture complementary cues while being resilient to domain-specific 
modality degradation. 

3. Computational Efficiency Enhancements: An efficient training strategy 
is implemented by sampling small, representative subsets of the target 
domain (e.g., 25% of CREMA-D) guided by meta-learning principles. 
This reduces computational load without compromising adaptation 
quality. 

4. Robustness Evaluation Framework: The model is tested under 
controlled degradation scenarios—including audio noise injection, visual 
blur, and mixed conditions—to systematically evaluate real-world 
reliability. 

 
Technical Innovations and Practical Impact  Our innovations provide a 
comprehensive solution to bridge the gap between laboratory research and 
deployment-ready systems: 

1. The alpha scheduling algorithm mathematically controls adversarial loss 
contribution, ensuring domain alignment without compromising task 
performance. 

2. The efficient fusion design ensures low computational overhead, 
allowing deployment on consumer-grade or embedded hardware. 

3. The robustness framework provides a principled methodology for 
benchmarking models under realistic degradation, improving 
interpretability and reliability. 

These innovations collectively enable real-time, privacy-preserving emotion 
recognition on devices such as mobile tablets, classroom systems, and wearable 
sensors. Furthermore, this work supports broader goals of democratizing AI 
technologies by enabling their application in low-resource settings across 
healthcare, education, and consumer domains. 
 
Summary This study focuses on deep learning–based multimodal emotion 
recognition under resource and privacy constraints, with experiments centered 
on data augmentation, progressive cross-modal fusion, and cross-domain 
generalization. We demonstrate that an ultra-conservative adversarial 
schedule together with few-shot target sampling improves robustness and 
adaptability across recording conditions while reducing computational cost. In 
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addition, progressive middle fusion captures complementary affective cues 
from audio and video and remains stable when modality reliability shifts. 
Finally, we evaluate pre-trained backbone choices (EmoCatcher encoder; 
TimeSformer with parameter-efficient tuning) and compare domain-adaptive 
versus non-adaptive systems, as well as audio-only and video-only baselines, in 
multi-class classification using accuracy, macro-F1, domain gap, and domain-
confusion scores.  

The rest of this thesis is organized as follows: Chapter 2 presents a 
literature review covering domain adaptation, multimodal fusion, and 
deployment challenges in affective computing. Chapter 3 describes our 
methodology, including the architecture design and training strategies. 
Chapter 4 details the experimental setup and results. Chapter 5 concludes the 
work and highlights its broader implications, then discusses limitations and 
future directions. 



State of the Art 

  5 

 
 
 
 
 
Chapter 2 
 

State of the Art  
 
2.1 Background and Applications of Emotion 

Recognition 
 
Emotion recognition has emerged as a critical component in enabling 
machines to understand and respond to human affective states, bridging the 
gap between artificial intelligence systems and natural human communication. 
As comprehensively reviewed by Poria et al. [3], the ability to automatically 
detect and interpret emotions from multimodal signals—including speech, 
facial expressions, physiological signals, and text—has profound implications 
across diverse domains, transforming how humans interact with technology 
and each other. 

 
Emotion Recognition in Human-Computer Interaction 
 
In the realm of human-computer interaction (HCI), emotion-aware systems 
have revolutionized user experience by adapting their behavior based on 
detected emotional states [4]. Picard's seminal work on affective computing [5] 
laid the theoretical foundation for this field, proposing that computers should 
recognize, interpret, and simulate human emotions to achieve more natural 
and effective human-machine interaction. Building on this foundation, 
intelligent virtual assistants, conversational agents, and social robots now 
leverage emotion recognition to provide empathetic responses, thereby 
increasing user satisfaction and engagement [4]. 
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Calvo et al.'s comprehensive handbook [4] documents how emotion 
recognition has been successfully deployed in customer service systems, where 
detecting customer dissatisfaction enables proactive intervention and 
improved service quality. The handbook also highlights applications in 
automotive safety, where driver emotion monitoring systems analyze facial 
expressions and vocal patterns in real-time to detect dangerous states such as 
fatigue, anger, or distraction, issuing alerts or activating autonomous driving 
features to reduce accident rates. 

 
Applications in Healthcare and Mental Health 
 
The healthcare sector has witnessed substantial benefits from emotion 
recognition technologies, particularly in mental health assessment and 
monitoring. As Cummins et al. [6] extensively review, traditional psychiatric 
evaluation relies heavily on subjective self-reports and clinical interviews, 
which can be biased or incomplete. Automated emotion recognition provides 
objective, continuous monitoring of patients' affective states, enabling early 
detection of conditions such as depression, anxiety, and post-traumatic stress 
disorder (PTSD). 

Cummins et al. [6] document numerous studies demonstrating that 
automatic analysis of speech patterns can identify depressive symptoms with 
accuracy comparable to trained clinicians. The review highlights how vocal 
acoustic biomarkers—including prosody, speaking rate, and voice quality—
serve as reliable indicators of mental health status. These findings have 
enabled teletherapy platforms to integrate emotion recognition for remote 
patient monitoring, particularly valuable during circumstances when in-person 
sessions are limited. 

Beyond depression detection, Poria et al. [7] discuss applications in autism 
spectrum disorder (ASD) research, where emotion recognition technologies 
assist individuals who struggle with recognizing and expressing emotions. 
Interactive systems providing real-time feedback on emotional expressions 
serve as valuable training tools, helping patients develop social communication 
skills in controlled, supportive environments. 

 
Educational Technology and Affective Learning 
 
Educational technology has increasingly recognized the importance of 
students' emotional states in learning effectiveness. As detailed in Calvo et 
al.'s handbook [4], intelligent tutoring systems (ITS) equipped with emotion 
recognition capabilities can detect confusion, boredom, or frustration, 
adapting instructional strategies to maintain engagement and optimize 
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learning outcomes. The handbook cites empirical evidence showing that 
emotion-aware tutoring systems improve student performance by 15-20% 
compared to traditional systems by identifying moments of struggle and 
providing targeted support. 

In massive open online courses (MOOCs) and remote learning 
environments, where direct teacher-student interaction is limited, automated 
emotion analysis helps instructors understand class-wide emotional trends [4]. 
The handbook discusses how analyzing aggregated emotional data reveals 
which course segments cause confusion or disengagement, informing iterative 
course improvements. Some platforms now employ real-time emotion 
monitoring to detect students requiring additional assistance, facilitating 
timely intervention [1, 2]. 

The integration of emotion recognition in educational contexts represents a 
shift toward affective learning paradigms, where pedagogical strategies are 
informed not only by cognitive metrics but also by learners' emotional states. 
This holistic approach acknowledges that emotions play a fundamental role in 
attention, memory formation, and motivation—key factors determining 
learning success. 

 
Entertainment and Media Analysis 
 
The entertainment industry leverages emotion recognition for content 
recommendation, audience analysis, and interactive experiences. Poria et al. [7] 
review how streaming platforms analyze viewers' emotional responses to 
recommend content matching their current mood or predicted preferences. 
During content production, filmmakers use emotion recognition to test 
audience reactions to different cuts, optimizing narrative pacing and emotional 
impact. 

Video game development has particularly embraced emotion recognition to 
create adaptive, emotionally responsive gameplay. Calvo et al.'s handbook [4] 
describes games that detect player frustration and dynamically adjust 
difficulty levels, while horror games intensify suspense by monitoring fear 
responses. Virtual reality (VR) applications combine emotion recognition with 
immersive environments to create therapeutic experiences for phobia 
treatment or to enhance entertainment value through emotionally adaptive 
storytelling. 

Market research represents another significant application domain. Poria 
et al. [7] note that companies employ emotion recognition to analyze consumer 
reactions to advertisements, product designs, and brand messaging. By 
capturing authentic emotional responses in naturalistic settings—rather than 
relying solely on post-exposure surveys—companies gain insights that inform 
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more effective marketing strategies. This approach addresses limitations of 
traditional market research methods, which often suffer from social 
desirability bias and poor recall. 

The breadth of these applications underscores the transformative potential 
of emotion recognition technologies across human activity domains. However, 
as Poria et al. [7] emphasize, realizing this potential requires addressing 
fundamental challenges in multimodal signal processing, cross-context 
generalization, and ethical considerations regarding privacy and consent. The 
following sections examine technical approaches developed to address these 
challenges, focusing on audio-based methods (Section 2.2), video-based 
methods (Section 2.3), multimodal fusion strategies (Section 2.4), and domain 
adaptation techniques (Section 2.5) that enable emotion recognition systems 
to generalize across diverse datasets and real-world conditions. 

 

2.2 Audio-based Emotion Recognition 
 
Speech emotion recognition (SER) extracts affective states from acoustic and 
prosodic patterns in vocal signals. Emotions manifest through multiple 
acoustic dimensions—pitch variation, energy distribution, speaking rate, and 
spectral characteristics—making speech a remarkably rich channel for affective 
computing. Over the past two decades, the field has undergone a fundamental 
transformation: from carefully engineered acoustic features fed into 
conventional classifiers to deep learning architectures that discover 
hierarchical emotion representations directly from raw audio or spectrograms 
[8]. 

 
2.2.1 From Hand-crafted to Learned Representations 
 
Traditional approaches to speech emotion recognition centered on extracting 
manually designed acoustic features. Researchers identified low-level 
descriptors (LLDs)—pitch (fundamental frequency F0), energy, formants, 
zero-crossing rate—and computed statistical functionals over these measures: 
means, standard deviations, extrema, and percentiles [5], [9]. The extended 
Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) [10] exemplified this 
paradigm, offering 88 carefully curated features designed to capture emotion-
relevant acoustic characteristics. These feature vectors were then classified 
using Support Vector Machines, Hidden Markov Models, or Gaussian Mixture 
Models. 

This approach delivered moderate success on controlled laboratory 
datasets but revealed critical weaknesses. Manual feature engineering 
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demanded substantial domain expertise and proved labor-intensive. More 
fundamentally, hand-crafted features struggled to capture the complex 
temporal dynamics and subtle emotional nuances inherent in spontaneous 
speech. Performance degraded sharply when systems encountered diverse 
speakers, varied recording conditions, or cross-cultural expressions—precisely 
the scenarios encountered in real-world deployment [11]. 

The deep learning revolution fundamentally altered this landscape. Rather 
than manually specifying which acoustic patterns matter for emotion 
recognition, convolutional and recurrent neural networks learned hierarchical 
representations directly from data [12], [13]. A pivotal development was the 
adoption of mel-spectrograms as input representations—time-frequency 
visualizations that align with human auditory perception while capturing both 
spectral content and temporal evolution. 

 

 
 

Figure 2.1: The technical architecture of converting audio files into Mel 
spectrograms from a raw audio file[14].  

 
 
Mel-spectrogram Construction and Perceptual Relevance 
 
The mel-spectrogram computation transforms raw audio waveforms into 
perceptually meaningful representations through several carefully designed 
stages. Given a raw audio signal 𝑥𝑥(𝑡𝑡) sampled at rate 𝑓𝑓𝑠𝑠 (typically 22.05 kHz 
for speech), the process begins with Short-Time Fourier Transform (STFT) 
analysis. The signal is segmented into overlapping frames—commonly 2048 
samples with 50% overlap (hop length of 1024 samples)—and each frame is 
multiplied by a window function (usually Hamming or Hann) to minimize 
spectral leakage. The discrete Fourier transform of each windowed frame 
produces a complex-valued spectrogram 𝑆𝑆(𝑓𝑓, 𝑡𝑡) representing frequency content 
evolving over time.  

The magnitude spectrogram |𝑆𝑆(𝑓𝑓, 𝑡𝑡)|2 captures power distribution across 
frequencies but uses a linear frequency scale misaligned with human auditory 
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perception. The human cochlea processes sound using a quasi-logarithmic 
frequency scale—low-frequency differences (e.g., 100 Hz vs. 200 Hz) are 
perceptually more salient than equivalent high-frequency differences (e.g., 
5000 Hz vs. 5100 Hz). The mel scale addresses this through the transformation: 

 

𝑚𝑚 = 2595 log10 �1 + 𝑓𝑓
100� (2.1) 

 
where 𝑚𝑚 represents mel-frequency and 𝑓𝑓 represents linear frequency in Hertz. 
This logarithmic mapping concentrates frequency resolution where human 
hearing is most sensitive while coarsening resolution at higher frequencies 
where emotional prosody carries less information [14], [15].  

Converting the magnitude spectrogram to mel-scale involves applying a 
bank of triangular filters spaced according to mel-scale intervals. Typically, 
128 mel-filters span the frequency range 0-8000 Hz, though emotion 
recognition often limits the upper bound to 6000 Hz since most prosodic 
information concentrates below this threshold. Each filter performs weighted 
integration of magnitude spectrogram bins falling within its frequency range, 
producing a mel-spectrogram 𝑀𝑀(𝑚𝑚, 𝑡𝑡)  with dimensions [𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓] . 
Finally, logarithmic compression—converting to decibel scale via 
log10(𝑀𝑀(𝑚𝑚, 𝑡𝑡))—yields the final representation that Convolutional Neural 
Networks (CNNs) process.  

This representation offers substantial advantages for emotion recognition. 
The mel-frequency warping emphasizes prosodic features crucial for affective 
perception—fundamental frequency variations, formant structures, and 
harmonic relationships—while de-emphasizing high-frequency spectral details 
less relevant for emotion discrimination [16]. The time-frequency structure 
naturally suits convolutional processing: frequency patterns analogous to 
image features can be detected through learned filters, while temporal 
evolution unfolds along the time axis. 

Early deep learning approaches applied CNNs to mel-spectrograms, 
treating them analogously to images. Convolutional layers with small kernels 
(e.g., 3×3 or 5×5) learned hierarchical acoustic patterns: low-level spectral 
edges and textures in initial layers, mid-level phonetic structures in 
intermediate layers, and high-level emotional signatures in deeper layers [5], 
[6]. Pooling operations—max-pooling or average-pooling applied spatially—
introduced local translation invariance, allowing learned filters to recognize 
acoustic patterns regardless of slight temporal or frequency shifts[17], [18], [19]. 

 
2.2.2 Recurrent Architectures and Temporal Modeling 
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While CNNs effectively capture local spectro-temporal patterns, emotions 
unfold through extended sequences requiring models that maintain and update 
internal states based on temporal context. Recurrent Neural Networks, 
particularly Long Short-Term Memory (LSTM) networks [20] and Gated 
Recurrent Units (GRUs) [21], became instrumental for modeling speech's 
inherently sequential nature. 

The standard Recurrent Neural Networks (RNNs) [22] maintains a hidden 
state ℎ𝑡𝑡 that updates at each time step according to: 

 
ℎ𝑡𝑡 = tanh(𝑊𝑊ℎℎℎ𝑡𝑡−1 + 𝑊𝑊𝑥𝑥ℎ𝑥𝑥𝑡𝑡 + 𝑏𝑏ℎ) (2.2) 

 
where 𝑥𝑥𝑡𝑡  represents input at time 𝑡𝑡 , 𝑊𝑊ℎℎ  and 𝑊𝑊𝑥𝑥ℎ  are learnable weight 
matrices, and 𝑏𝑏ℎ is a bias vector. This formulation enables the network to 
accumulate information across time, with ℎ𝑡𝑡  theoretically encoding all 
previous inputs 𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑡𝑡 . However, vanilla RNNs suffer from vanishing 
and exploding gradients during backpropagation through time, making them 
incapable of capturing long-range dependencies spanning more than 5-10 time 
steps—insufficient for speech emotion recognition where affective cues may be 
distributed across entire utterances [23].  

 
LSTM Architecture and Gating Mechanisms 
 
LSTMs address these limitations through a sophisticated gating mechanism 
that regulates information flow [24]. The LSTM cell maintains two states: a 
hidden state ℎ𝑡𝑡 (analogous to standard RNNs) and a cell state 𝑐𝑐𝑡𝑡that serves as 
a long-term memory. Three gates control cell state updates:  

The forget gate determines which information from the previous cell state 
to discard: 

 
𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓� (2.3) 

 
 
where 𝜎𝜎 denotes the sigmoid function producing values in [0,1], and for the 
symbol [⋅,⋅] represents concatenation. Values near 0 erase corresponding cell 
state components, while values near 1 preserve them.  

The input gate decides which new information to add to the cell state. It 
operates in two stages: first, a sigmoid layer determines which values to 
update: 

 
𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (2.4) 
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Second, a tanh layer creates candidate values for addition: 

 
𝑐𝑐𝑡̃𝑡 = tanh(𝑊𝑊𝑐𝑐 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐) (2.5) 

 
The cell state then updates according to: 
 

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⊙ 𝑐𝑐𝑡̃𝑡 (2.6) 
 
where ⊙  denotes element-wise multiplication. This formulation allows the 
network to selectively forget irrelevant past information while incorporating 
new task-relevant information—crucial for emotion recognition where only 
certain portions of an utterance carry affective signals.  

Finally, the output gate determines which parts of the cell state to expose 
as the hidden state: 

 
𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) (2.7) 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ tanh(𝑐𝑐𝑡𝑡) (2.8) 

 
This gating architecture enables LSTMs to maintain information over 

hundreds of time steps, capturing prosodic patterns that unfold across entire 
utterances. For speech emotion recognition processing mel-spectrograms at a 
typical frame rate of ~43 Hz (with 512-sample hop length at 22.05 kHz 
sampling), even a 3-second utterance spans ~130 frames—well within LSTM 
modeling capacity. 

 
GRUs: Simplified Temporal Modeling 
 
GRUs offers a streamlined alternative to LSTMs with fewer parameters and 
comparable performance [25]. GRUs merge the forget and input gates into a 
single update gate and combine cell and hidden states, reducing computational 
overhead while maintaining long-range dependency modeling. The update gate 
controls information retention from the previous time step: 
 

𝑧𝑧𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑧𝑧 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑧𝑧) (2.9) 
 

A reset gate determines how much past information to discard when 
computing the candidate activation: 

 
𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑟𝑟 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑟𝑟) (2.10) 

ℎ̃𝑡𝑡 = tanh(𝑊𝑊ℎ ⋅ [𝑟𝑟𝑡𝑡 ⊙ ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏ℎ) (2.11) 
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The final hidden state interpolates between previous and candidate 

activations: 
 

ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡) ⊙ ℎ𝑡𝑡−1 + 𝑧𝑧𝑡𝑡 ⊙ ℎ̃𝑡𝑡 (2.12) 
 
This formulation provides similar expressive power to LSTMs with 
approximately 25% fewer parameters—a significant advantage when training 
on limited emotion datasets. In practice, bidirectional variants (Bi-LSTM, Bi-
GRU) prove most effective for speech emotion recognition [26]. Bidirectional 
processing runs separate forward and backward RNNs, concatenating their 
hidden states: 
 

ℎ𝑡𝑡 = �ℎ⃗𝑡𝑡; ℎ⃖𝑡𝑡� (2.13) 
 
where ℎ⃗𝑡𝑡 encodes past context (frames 1 to 𝑡𝑡) and ℎ⃖𝑡𝑡 encodes future context 
(frames 𝑡𝑡  to 𝑇𝑇 ). This allows each position's representation to leverage 
information from the entire utterance—particularly valuable for emotion 
recognition where anticipatory prosody (voice quality changes preceding 
emotionally charged words) and carryover effects (emotional coloring 
persisting beyond triggering events) both contribute to affective perception.  

 
2.2.3 Attention Mechanisms: Learning Temporal Saliency 
 
Despite RNNs' effectiveness in capturing temporal dependencies, a 
fundamental challenge remains: not all portions of an utterance contribute 
equally to emotional expression. Emotionally charged words, prosodic peaks, 
and voice quality shifts often concentrate affective cues in brief intervals—
perhaps 20-30% of utterance duration—while the remainder carries primarily 
linguistic content with minimal emotional information. Standard RNNs 
architectures process all time steps uniformly, potentially diluting emotionally 
salient signals. 

Attention mechanisms address this through learned soft selection over 
temporal sequences [27], [28]. Rather than treating all RNNs hidden states 
equally, attention computes a weighted aggregation emphasizing emotionally 
relevant segments. The mechanism has become standard in modern speech 
emotion recognition systems, improving both accuracy and interpretability. 

 
Bahdanau Attention: Additive Temporal Weighting 
 
The Bahdanau attention mechanism, originally developed for neural machine 
translation [29], has been successfully adapted for speech emotion recognition. 
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Given a sequence of bidirectional GRU hidden states ℎ1, ℎ2,… , ℎ𝑇𝑇  where each 
ℎ𝑡𝑡 ∈ ℝ2𝑑𝑑 (concatenating forward and backward states from a GRU with 𝑑𝑑-
dimensional hidden layers), attention computes a context vector 𝑐𝑐  as a 
weighted sum:  
 

𝑐𝑐 = �𝛼𝛼𝑡𝑡ℎ𝑡𝑡

𝑇𝑇

𝑡𝑡=1
(2.14) 

 
where attention weights 𝛼𝛼𝑡𝑡  satisfy 𝛼𝛼𝑡𝑡 ≥ 0  and ∑ 𝛼𝛼𝑡𝑡

𝑇𝑇
𝑡𝑡=1 = 1 . These weights 

reflect each time step's importance for the emotion classification decision. 
Computing appropriate weights requires learning an alignment model that 
scores how well position 𝑡𝑡matches the overall emotional content:  
 

𝑒𝑒𝑡𝑡 = 𝑣𝑣𝑎𝑎
𝑇𝑇 tanh(𝑊𝑊𝑎𝑎ℎ𝑡𝑡) (2.15) 

 
where 𝑊𝑊𝑎𝑎 ∈ ℝ𝑑𝑑𝑎𝑎×2𝑑𝑑  and 𝑣𝑣𝑎𝑎 ∈ ℝ𝑑𝑑𝑎𝑎  are learnable parameters, and 𝑑𝑑𝑎𝑎  is the 
attention dimension (commonly set equal to the hidden dimension 𝑑𝑑). The 
tanh nonlinearity allows the scoring function to learn complex, nonlinear 
relationships between hidden states and emotional salience. These raw scores 
are then normalized via softmax to produce valid probability distributions:  
 

𝛼𝛼𝑡𝑡 = exp(𝑒𝑒𝑡𝑡)

� exp�𝑒𝑒𝑗𝑗�
𝑇𝑇

𝑗𝑗=1

(2.16) 

 
This formulation ensures attention weights sum to one and remain non-

negative, enabling interpretation as a probability distribution over time steps. 
In practice, the attention mechanism learns to assign high weights (𝛼𝛼𝑡𝑡 > 0.1) 
to 10-30% of frames, typically corresponding to prosodic peaks, emotionally 
charged words, or voice quality shifts indicative of affective state [30].  

The resulting context vector 𝑐𝑐provides a fixed-dimensional utterance-level 
representation that emphasizes emotionally salient acoustic patterns while 
suppressing irrelevant variations from speaker identity or linguistic content. 
This representation then feeds into fully connected classification layers:  

 
𝑝𝑝( emotion ∣ 𝑐𝑐 ) = softmax(𝑊𝑊𝑐𝑐𝑐𝑐 + 𝑏𝑏𝑐𝑐) (2.17) 

 
where 𝑊𝑊𝑐𝑐  and 𝑏𝑏𝑐𝑐  are learnable parameters mapping the context vector to 
emotion class probabilities.  

Beyond improving classification accuracy, attention weights offer valuable 
interpretability. Visualizing 𝛼𝛼𝑡𝑡 across time reveals which temporal segments 
drive emotion predictions—for instance, attention might concentrate on 



State of the Art 

  15 

prosodic peaks for anger detection (high pitch and energy), voice breaks and 
pauses for sadness recognition (reduced pitch range and energy), or rapid 
pitch modulation for happiness detection (varied prosody and elevated 
baseline pitch). This interpretability proves valuable for debugging model 
behavior, validating that learned patterns align with human intuition about 
emotional expression, and building trust in deployed systems [31].  

 
2.2.4 Self-supervised Pre-training and Transfer Learning 
 
A more recent development leverages massive-scale self-supervised pre-training 
on unlabeled audio data to learn robust general-purpose speech 
representations [32]. Models like Wav2Vec 2.0 [33] and HuBERT [34] train on 
hundreds of thousands of hours of diverse speech, vastly exceeding the scale of 
any labeled emotion dataset—even the largest emotion corpora contain only 
thousands of labeled utterances. 
 

 
 

Figure 2.2: Wav2Vec 2.0 
 
 
Wav2Vec 2.0: Contrastive Predictive Learning 
 
Wav2Vec 2.0 learns speech representations through a masked prediction 
objective resembling BERT's masked language modeling [33], [35]. The 
architecture comprises two components: a convolutional feature encoder that 
processes raw audio waveforms, and a transformer encoder that contextualizes 
these features through self-attention. 

The feature encoder applies seven convolutional layers with strides that 
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progressively downsample the raw waveform by 160x, that is approximately 
mapping 20ms of audio to a single time step. This multi-scale processing 
extracts acoustic features at a frame rate suitable for phonetic modeling (~50 
Hz). These features are then randomly masked: approximately 6.5% of time 
steps are replaced with a learned mask embedding, and the model must 
predict masked representations from surrounding context. 

The prediction task employs contrastive learning: for each masked position, 
the model must identify the true latent representation among a set of 𝐾𝐾 
distractors (typically 𝐾𝐾 = 100) sampled from other time steps in the same 
utterance. Specifically, given context representations 𝑐𝑐𝑡𝑡 and a set of candidates 
quantized features {𝑞𝑞𝑡𝑡, 𝑞𝑞𝑡𝑡,1,… , 𝑞𝑞𝑡𝑡,𝐾𝐾} where 𝑞𝑞𝑡𝑡  is the true target and 𝑞𝑞𝑡𝑡,𝑖𝑖  are 
distractors, the model maximizes:  

 

ℒcontrastive = − log
exp�sim(𝑐𝑐𝑡𝑡, 𝑞𝑞𝑡𝑡)𝜏𝜏 �

� exp �
sim�𝑐𝑐𝑡𝑡, 𝑞𝑞𝑡𝑡,𝑖𝑖�

𝜏𝜏 �
𝐾𝐾

𝑖𝑖=0

(2.18) 

 
where sim(⋅,⋅) computes cosine similarity and 𝜏𝜏  is a temperature parameter. 
This objective encourages representations where true targets lie closer to 
context vectors than distractors in embedding space.  

Crucially, the targets 𝑞𝑞𝑡𝑡  are themselves learned through vector 
quantization—the continuous feature encoder outputs are discretized into a 
finite vocabulary of ~300 tokens learned via k-means clustering or Gumbel-
softmax relaxation. This quantization forces the model to discover discrete 
acoustic units resembling phonemes, enabling phonetic-level learning without 
phonetic labels [36].  

Pre-trained Wav2Vec 2.0 models, trained on 960 hours of LibriSpeech data 
[37], capture rich acoustic and phonetic structures that transfer to 
downstream tasks. For emotion recognition, practitioners typically freeze the 
convolutional encoder while fine-tuning the transformer encoder and adding 
task-specific classification heads. The pre-trained representations encode 
prosodic contours, voice quality characteristics, and phonetic structures—all 
relevant for emotion perception—though they optimize for linguistic content 
rather than paralinguistic cues. 

 
HuBERT: Clustering-based Masked Prediction 
 
HuBERT (Hidden-Unit BERT) [34] offers an alternative self-supervised 
approach, simplifying the training objective while achieving comparable or 
superior results. Rather than jointly learning representations and discrete 
targets via contrastive learning, HuBERT separates these stages. The model 
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first clusters frame-level features from a previous iteration (or from MFCC 
features in the first iteration) to generate pseudo-labels. A masked prediction 
loss then trains a BERT-like transformer to predict cluster assignments for 
masked frames: 
 

ℒHuBERT = − � log 𝑝𝑝� 𝑐𝑐𝑡𝑡 � 𝑐𝑐\𝑡𝑡 �
𝑡𝑡∈ℳ

(2.19) 

 
where ℳ denotes masked time steps, 𝑐𝑐𝑡𝑡  is the cluster assignment, and 𝑐𝑐\𝑡𝑡 
represents context from unmasked frames. This simpler objective avoids 
contrastive sampling while still encouraging the model to discover discrete 
acoustic units. Iterative refinement—alternating between clustering learned 
representations and training with updated cluster labels—progressively 
improves representation quality. After several iterations, HuBERT 
representations encode phonetic, prosodic, and speaker characteristics that 
transfer effectively to emotion recognition.  
 

 
Figure 2.3: HuBERT 

 
 

Challenges in Transferring ASR Models to SER 
 
Despite their promise, directly applying automatic speech recognition (ASR) 
pre-trained models to speech emotion recognition presents challenges [9], [13]. 
ASR systems optimize for recognizing linguistic content—the "what" of 
speech—while actively suppressing paralinguistic cues like prosody, voice 
quality, and speaking style that convey emotional information—the "how" of 
speech. This fundamental objective mismatch means that representations ideal 
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for transcription may be suboptimal for emotion recognition. 

Effective transfer learning strategies must balance preserving useful 
acoustic representations while adapting to affective characteristics. Layer-wise 
learning rate decay has proven beneficial: lower transformer layers capturing 
general acoustic features update conservatively (learning rates 10-100x smaller 
than standard values), while higher layers capturing task-specific patterns 
learn more aggressively [38]. Some practitioners freeze the feature encoder 
entirely and fine-tune only the contextualizing transformer, while others 
employ gradual unfreezing—initially training only the classification head, then 
progressively unfreezing deeper layers as training proceeds. 

Despite these challenges, transfer learning from self-supervised models 
shows particular promise in low-resource scenarios where labeled emotional 
speech is scarce. Fine-tuning on as few as 1-2 hours of labeled emotion data 
can achieve performance approaching systems trained on 10× more data from 
scratch [39]. This efficiency proves crucial for cross-lingual emotion recognition 
and adapting to specialized domains (e.g., clinical speech analysis) where 
large-scale labeled datasets are impractical to collect. 

 
Persistent Challenges and Future Directions 
 
Despite these advances, speech emotion recognition confronts persistent 
challenges[19], [40], [41]. Emotions manifest through subtle acoustic variations 
easily overshadowed by speaker-specific characteristics, linguistic content, and 
recording conditions. A speaker's habitual voice quality, speaking rate, and 
pitch range introduce substantial variability unrelated to emotion—what 
constitutes elevated pitch for one speaker may represent baseline pitch for 
another. Disentangling emotion-relevant acoustic variations from speaker 
identity remains an open challenge. 

Cultural differences in emotional expression further complicate 
generalization. Display rules—socially learned norms governing appropriate 
emotional expression—vary dramatically across cultures. What constitutes an 
angry tone in Western contexts may sound neutral in East Asian cultures 
emphasizing emotional restraint, while expressions considered neutral in 
individualist societies may signal mild displeasure in collectivist contexts. 
Most existing models train primarily on Western speakers, raising questions 
about cross-cultural applicability. 

Additionally, most existing datasets comprise acted or elicited emotions 
recorded in controlled settings, limiting ecological validity. Professional actors 
produce exaggerated, stereotypical expressions designed for clarity rather than 
reflecting the subtle, context-dependent emotional displays characteristic of 
spontaneous affective behavior. Whether models trained on acted speech will 
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recognize naturalistic emotions in real-world conversational contexts remains 
uncertain. The field continues evolving toward systems that can operate 
across diverse speakers, languages, and recording conditions while respecting 
cultural variation in emotional expression—challenges that motivate the 
domain adaptation techniques discussed in Section 2.5. 

  

2.3 Video-based Emotion Recognition 
 
Video-based emotion recognition leverages visual cues—primarily facial 
expressions, but also head pose, gaze direction, and body language—to infer 
affective states from image sequences. Human faces constitute the most 
expressive channel for emotional communication: the Facial Action Coding 
System (FACS) identifies over 40 distinct action units that combine to 
produce thousands of possible expressions. The challenge lies in automatically 
detecting these subtle muscular movements and their temporal dynamics from 
video data captured under varying lighting conditions, camera angles, and 
occlusions [42], [43]. 

The field has evolved from frame-based analysis using traditional computer 
vision techniques to sophisticated deep learning models that jointly process 
spatial appearance and temporal dynamics. Modern approaches must address 
fundamental challenges including inter-subject variability in expression 
intensity, cultural differences in emotional display, and the distinction 
between spontaneous and posed expressions. Real-world applications demand 
robustness to partial occlusions (hands covering face, glasses), non-frontal 
poses, and low-resolution imagery captured in uncontrolled environments—
scenarios where traditional geometric feature extraction fails catastrophically. 

 
2.3.1 From Frame-based to Spatiotemporal Modeling 
 
Early video-based emotion recognition systems treated facial expression 
analysis as a frame-level classification problem. These approaches extracted 
geometric features—facial landmark positions and their configurations—
combined with appearance-based features like Local Binary Patterns (LBP) or 
Histogram of Oriented Gradients (HOG). The extracted features fed into 
classifiers such as Support Vector Machines or Hidden Markov Models to 
recognize discrete emotion categories [43], [44]. While computationally efficient, 
this paradigm suffered from critical limitations: accurate facial landmark 
detection required as a preprocessing step proved fragile under head pose 
variations, and frame-by-frame processing discarded the temporal evolution of 
expressions. 
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The deep learning revolution transformed facial expression analysis by 
enabling end-to-end learning directly from raw pixel intensities. Convolutional 
neural networks, initially applied to static images, learned hierarchical 
representations where lower layers detect edges and textures while higher 
layers recognize facial parts and expression-specific patterns. Transfer learning 
from large-scale face recognition datasets (VGGFace, FaceNet trained on 
millions of identities) provided robust feature extractors that could be fine-
tuned for emotion recognition with limited labeled data—a practical necessity 
given the scarcity of large-scale annotated emotional video datasets [45]. 

However, as Kollias and Zafeiriou emphasize [46], treating video as 
collections of independent frames discards crucial temporal information. 
Emotions unfold dynamically over time, exhibiting distinct onset, apex, and 
offset phases. Genuine surprise, for instance, shows rapid onset (less than 0.5 
seconds from neutral to peak expression) followed by quick decay, while posed 
surprise often exhibits slower, more deliberate timing. Capturing these 
temporal dynamics became essential for distinguishing authentic emotions 
from deliberate expressions and achieving robust recognition in naturalistic 
settings where single-frame ambiguity is common. 

 
Spatiotemporal Feature Learning Architectures 
 
Modeling spatiotemporal patterns requires architectures that jointly process 
spatial appearance within frames and temporal evolution across frames. Early 
deep learning approaches employed two-stream architectures: separate 
convolutional networks processed RGB frames (appearance stream) and 
optical flow fields (motion stream), with late fusion combining their 
predictions. While conceptually simple, this approach required expensive 
optical flow computation and failed to capture joint spatiotemporal patterns—
spatial and temporal information processed independently cannot learn 
correlations between appearance changes and motion patterns that 
characterize emotional expressions. 

Three-dimensional Convolutional Neural Networks (3D CNNs) offered a 
more integrated solution by extending 2D convolutions along the temporal 
dimension [47]. A 3D convolutional filter with dimensions 𝑘𝑘ℎ × 𝑘𝑘𝑤𝑤 × 𝑘𝑘𝑡𝑡 (height, 
width, time) applies across spatial and temporal dimensions simultaneously:  

 
𝑦𝑦(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = �𝑤𝑤(𝑖𝑖, 𝑗𝑗, 𝜏𝜏) ⋅ 𝑥𝑥(𝑥𝑥 + 𝑖𝑖, 𝑦𝑦 + 𝑗𝑗, 𝑡𝑡 + 𝜏𝜏) + 𝑏𝑏

𝑖𝑖,𝑗𝑗,𝜏𝜏
(2.20) 

 
where 𝑤𝑤 represents learnable filter weights and 𝑏𝑏 is a bias term. This joint 
spatiotemporal convolution directly learns features capturing both appearance 
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patterns (facial configurations at individual frames) and motion patterns (how 
these configurations change over time)—for instance, a 3D filter might learn 
to detect the rapid eyebrow raise characteristic of surprise or the progressive 
mouth corner movement indicating a genuine smile.  

Notable 3D CNN architectures include C3D (Convolutional 3D) [48], [49], 
which demonstrated that 3×3×3 filters applied over 16-frame clips achieve 
strong performance on action recognition benchmarks, and I3D (Inflated 3D), 
which initializes 3D filters by "inflating" weights from 2D CNNs pre-trained 
on ImageNet [50]—replicating 2D filters across the temporal dimension and 
normalizing by the temporal extent. This inflation strategy enables effective 
transfer learning from image recognition to video understanding, leveraging 
the vast labeled image data to initialize spatiotemporal models. 

However, 3D CNNs introduce substantial computational overhead. A 
standard 2D convolutional layer with 𝐶𝐶𝑖𝑖𝑖𝑖  input channels, 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜  output 
channels, and 𝑘𝑘 × 𝑘𝑘 spatial filters require 𝐶𝐶𝑖𝑖𝑖𝑖 × 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑘𝑘 × 𝑘𝑘 parameters. The 
corresponding 3D layer with temporal extent 𝑘𝑘𝑡𝑡 requires 𝐶𝐶𝑖𝑖𝑖𝑖 × 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑘𝑘 × 𝑘𝑘 ×
𝑘𝑘𝑡𝑡 parameters—a multiplicative increase proportional to temporal kernel size. 
For typical configurations ( 𝑘𝑘𝑡𝑡 = 3  to 5), this translates to 3-5× more 
parameters per layer, dramatically increasing memory requirements and 
training data needs. Deep 3D CNNs easily exceed GPU memory constraints 
and overfit on limited emotion datasets [51], [52].  

 
 

 
 

Figure 2.4: Traditional structure of a CNNs model 
 

Factorized spatiotemporal convolutions address this efficiency challenge by 
decomposing 3D convolutions into separate spatial (2D) and temporal (1D) 
operations. The (2+1)D convolution architecture exemplifies this strategy [47]: 
a 3D convolution with 𝑘𝑘 × 𝑘𝑘 × 𝑘𝑘𝑡𝑡  filter is decomposed into a 2D spatial 
convolution (𝑘𝑘 × 𝑘𝑘 × 1) followed by a 1D temporal convolution (1 × 1 × 𝑘𝑘𝑡𝑡). 
Mathematically:  

 
3D conv: 𝑦𝑦 = 𝜎𝜎(𝑊𝑊3𝐷𝐷 ∗ 𝑥𝑥 + 𝑏𝑏) (2.21) 

 
is approximated by: 
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(2+1)D: 𝑧𝑧 = 𝜎𝜎(𝑊𝑊2𝐷𝐷 ∗ 𝑥𝑥 + 𝑏𝑏1), 𝑦𝑦 = 𝜎𝜎(𝑊𝑊1𝐷𝐷 ∗ 𝑧𝑧 + 𝑏𝑏2) (2.22) 
 
where 𝜎𝜎 denotes nonlinearity and ∗ represents convolution. This factorization 
reduces parameter count significantly: instead of 𝐶𝐶𝑖𝑖𝑖𝑖 × 𝑀𝑀 × 𝑘𝑘 × 𝑘𝑘 × 𝑘𝑘𝑡𝑡 
parameters for a 3D convolution with 𝑀𝑀  intermediate channels, the factorized 
version requires 𝐶𝐶𝑖𝑖𝑖𝑖 × 𝑀𝑀 × 𝑘𝑘 × 𝑘𝑘 + 𝑀𝑀 × 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 × 1 × 𝑘𝑘𝑡𝑡 parameters. For typical 
values ( 𝑀𝑀 = 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑘𝑘 = 3 , 𝑘𝑘𝑡𝑡 = 3 ), this achieves approximately 30-40% 
parameter reduction while maintaining comparable expressive power. The 
factorized design enables training deeper networks on limited computational 
resources while still capturing essential spatiotemporal patterns.  

 
2.3.2 Vision Transformers and Self-Attention for Video 

Understanding 
 
The transformer architecture, originally proposed for natural language 
processing, has recently revolutionized computer vision. The Vision 
Transformer (ViT) demonstrated that pure attention-based models could 
match or exceed CNNs performance on image classification when trained on 
sufficient data [53]. ViT divides images into fixed-size patches (typically 
16×16 pixels), linearly embeds each patch, and processes the sequence of 
patch embeddings using standard transformer encoder layers with multi-head 
self-attention mechanisms. 

 
Self-Attention Mechanism: Learning Spatial Relationships 
 
The core innovation enabling transformers is the self-attention mechanism, 
which computes interactions between all pairs of elements in a sequence [54], 
[55]. For an input sequence of patch embeddings {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁} where 𝑥𝑥𝑖𝑖 ∈
ℝ𝑑𝑑, self-attention transforms each element by aggregating information from all 
other elements through learned similarity weights.  

The mechanism employs three learnable linear projections to generate 
queries (Q), keys (K), and values (V): 

 
𝑄𝑄 = 𝑋𝑋𝑊𝑊𝑄𝑄, 𝐾𝐾 = 𝑋𝑋𝑊𝑊𝐾𝐾,𝑉𝑉 = 𝑋𝑋𝑊𝑊𝑉𝑉 (2.23) 

 
where 𝑋𝑋 ∈ ℝ𝑁𝑁×𝑑𝑑  stacks input embeddings and 𝑊𝑊𝑄𝑄, 𝑊𝑊𝐾𝐾, 𝑊𝑊𝑉𝑉 ∈ ℝ𝑑𝑑×𝑑𝑑𝑘𝑘  are 
learnable weight matrices. The query for position 𝑖𝑖is matched against keys 
from all positions to compute attention weights:  
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Attention(𝑄𝑄,𝐾𝐾, 𝑉𝑉 ) = softmax�
𝑄𝑄𝐾𝐾𝑇𝑇

�𝑑𝑑𝑘𝑘
�𝑉𝑉 (2.24) 

 
The softmax operation over 𝑄𝑄𝐾𝐾𝑇𝑇  produces a matrix of attention weights 

𝛼𝛼𝑖𝑖𝑖𝑖 indicating how much position 𝑖𝑖should attend to position 𝑗𝑗. The scaling 
factor �𝑑𝑑𝑘𝑘 prevents dot products from growing too large in magnitude, which 
would push softmax into regions with vanishingly small gradients. Each 
output 𝑦𝑦𝑖𝑖 is then computed as a weighted sum of all value vectors:  

 

𝑦𝑦𝑖𝑖 = �𝛼𝛼𝑖𝑖𝑖𝑖𝑣𝑣𝑗𝑗

𝑁𝑁

𝑗𝑗=1
(2.25) 

 
This formulation enables each patch to selectively attend to relevant 

patches throughout the image, learning spatial relationships without 
convolutional inductive biases. For facial expression recognition, self-attention 
learns to correlate mouth regions with eye regions—for instance, detecting 
that a smiling mouth should co-occur with activated eye muscles (Duchenne 
smile) versus a mouth-only smile indicating posed expression [53]. 

 
Multi-head Attention: Capturing Multiple Relationships 
 
Single attention heads learn a particular type of relationship (e.g., spatial 
proximity, semantic similarity). Multi-head attention extends this by learning 
multiple parallel attention functions, each potentially capturing different 
relationship types: 
 

MultiHead(𝑄𝑄,𝐾𝐾, 𝑉𝑉 ) = Concat(head1,… ,headℎ)𝑊𝑊𝑂𝑂 (2.26) 
 
where head𝑖𝑖 = Attention(𝑄𝑄𝑊𝑊𝑄𝑄

𝑖𝑖 ,𝐾𝐾𝑊𝑊𝐾𝐾
𝑖𝑖 , 𝑉𝑉 𝑊𝑊𝑉𝑉

𝑖𝑖 ) , and each head uses separate 
projection matrices 𝑊𝑊𝑄𝑄

𝑖𝑖 , 𝑊𝑊𝐾𝐾
𝑖𝑖 , 𝑊𝑊𝑉𝑉

𝑖𝑖  with reduced dimensionality 𝑑𝑑𝑘𝑘 = 𝑑𝑑/ℎ 
(where ℎ is the number of heads), maintaining constant computational cost. 
Different heads learn complementary attention patterns—some may focus on 
local texture (wrinkles, skin tension), others on geometric configurations 
(relative positions of facial landmarks), and yet others on symmetric patterns 
(bilateral activation of facial muscles). The concatenated outputs are 
projected through 𝑊𝑊𝑂𝑂 to produce the final representation.  

For image classification, ViT typically uses 8-12 attention heads per layer 
and stacks 12-24 transformer encoder layers, creating deep architectures that 
progressively refine representations. Each encoder layer consists of multi-head 
self-attention followed by a position-wise feedforward network, with layer 
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normalization and residual connections ensuring stable gradient flow during 
training. 

 

 

 
 

Figure 2.5: A TimeSformer Instance 
  

Note: This is the example used in the TimeSformer paper to demonstrate that the model 
can learn to attend to the relevant regions in the video in order to perform complex 

spatiotemporal reasoning. we can see that the model focuses on the configuration of the 
hand when visible and the object-only when not visible. 

 
 
2.3.3 TimeSformer: Divided Attention for Video 
 
Extending transformers to video understanding presents unique challenges due 
to the significantly longer sequences resulting from spatiotemporal patch 
extraction. An image with 𝐻𝐻 × 𝑊𝑊  pixels divided into 𝑃𝑃 × 𝑃𝑃  patches yields 
𝑁𝑁 = (𝐻𝐻/𝑃𝑃) × (𝑊𝑊/𝑃𝑃) patches. For video with 𝑇𝑇 frames, naive spatiotemporal 
patching produces 𝑇𝑇 × 𝑁𝑁  patches—for typical configurations (224×224 images, 
16×16 patches, 8 frames), this yields 8×196 = 1,568 patches. Self-attention's 
𝑂𝑂(𝐿𝐿2) computational complexity (where 𝐿𝐿 is sequence length) makes joint 
spatiotemporal attention prohibitively expensive: computing attention over 
1,568 patches requires ~2.5 million pairwise comparisons, compared to 38,000 
for a single frame.  

The TimeSformer architecture [56] addresses this challenge through a 
divided attention mechanism that decomposes spatiotemporal attention into 
separate spatial and temporal attention operations. This factorization 
dramatically reduces computational complexity while maintaining the capacity 
to model spatiotemporal dependencies. 
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Figure 2.6: Video self-attention blocks of TimeSformer 
 
 

Divided Attention: Spatial and Temporal Factorization 
 
TimeSformer processes video through five sequential attention blocks, as 
showing in Figure 2.6, each implementing divided attention: 
 

1. Temporal Attention: For each spatial position (𝑝𝑝, 𝑞𝑞) , compute 
attention across all frames at that fixed spatial location. Given patch 
embeddings 𝑧𝑧(𝑡𝑡,𝑝𝑝,𝑞𝑞)  for frame 𝑡𝑡 and spatial position (𝑝𝑝, 𝑞𝑞) , temporal 
attention updates: 

 
𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

(𝑡𝑡,𝑝𝑝,𝑞𝑞) = 𝑧𝑧𝑡𝑡,𝑝𝑝,𝑞𝑞 + Attention �𝑄𝑄(𝑡𝑡,𝑝𝑝,𝑞𝑞), �𝐾𝐾(𝑡𝑡′,𝑝𝑝,𝑞𝑞)�
𝑡𝑡′=1

𝑇𝑇 , �𝑉𝑉 (𝑡𝑡′,𝑝𝑝,𝑞𝑞)�
𝑡𝑡′=1

𝑇𝑇 � (2.27) 

 
This operation captures motion and temporal evolution at each spatial 

location—for instance, how a specific facial region (corner of mouth, eyebrow 
position) changes across frames. 

2. Spatial Attention: For each frame 𝑡𝑡, compute attention across all 
spatial positions within that frame. This models spatial relationships at 
fixed temporal locations:  

 
𝑧𝑧spat

(𝑡𝑡,𝑝𝑝,𝑞𝑞) = 𝑧𝑧temp
(𝑡𝑡,𝑝𝑝,𝑞𝑞) + Attention�𝑄𝑄(𝑡𝑡,𝑝𝑝,𝑞𝑞), {𝐾𝐾(𝑡𝑡,𝑝𝑝′,𝑞𝑞′)}𝑝𝑝′,𝑞𝑞′ , �𝑉𝑉 (𝑡𝑡,𝑝𝑝′,𝑞𝑞′)}𝑝𝑝′,𝑞𝑞′� (2.28) 

 
Spatial attention learns which facial regions should be correlated for 



State of the Art 

  26 

emotion recognition—eyes with mouth (for genuine smiles), eyebrows with 
eyes (for surprise), forehead with mouth (for anger). 

The divided attention factorization reduces computational complexity from 
𝑂𝑂((𝑇𝑇 × 𝑁𝑁)2)  for joint spatiotemporal attention to 𝑂𝑂(𝑇𝑇 × 𝑁𝑁 × 𝑇𝑇) +
𝑂𝑂(𝑇𝑇 × 𝑁𝑁 × 𝑁𝑁) = 𝑂𝑂(𝑇𝑇 × 𝑁𝑁 × (𝑇𝑇 + 𝑁𝑁)) . For 𝑇𝑇 = 8  and 𝑁𝑁 = 196 , joint 
attention requires ~6.1M operations while divided attention requires only 
~320K operations—approximately 19× reduction. This efficiency gain enables 
processing longer video sequences and training deeper models within memory 
constraints [56].  

 
Positional Encoding and Learned Embeddings 
 
Unlike CNNs with built-in translation equivariance through weight sharing, 
transformers process patch embeddings as sets without inherent spatial or 
temporal ordering. Positional encodings inject spatial and temporal location 
information. TimeSformer uses learned positional embeddings: each patch 
position (𝑡𝑡, 𝑝𝑝, 𝑞𝑞) receives an additive embedding:  
 

𝑧𝑧input
(𝑡𝑡,𝑝𝑝,𝑞𝑞) = PatchEmbed�𝑥𝑥(𝑡𝑡,𝑝𝑝,𝑞𝑞)� + 𝐸𝐸pos

(𝑡𝑡) + 𝐸𝐸pos
(𝑝𝑝,𝑞𝑞) (2.29) 

 
where 𝐸𝐸pos

(𝑡𝑡)  encodes temporal position and 𝐸𝐸pos
(𝑝𝑝,𝑞𝑞)  encodes spatial position. 

These embeddings, learned during training, enable the model to leverage 
spatiotemporal structure—for instance, learning that central facial patches 
carry more emotional information than peripheral background patches, or that 
expression onset (early frames) should attend differently than apex (middle 
frames) or offset (late frames) [56].  

 
Pre-training and Transfer Learning 
 
TimeSformer benefits significantly from pre-training on large-scale action 
recognition datasets like Kinetics-400 (containing 400 action classes across 
240,000 training videos). Pre-training provides several advantages for emotion 
recognition: First, the model learns general spatiotemporal patterns—how 
objects and faces move, how appearance changes over time—that transfer 
across tasks. Second, pre-trained attention mechanisms learn to focus on 
relevant spatial regions (faces, hands, bodies) and temporal segments (action 
onsets, peaks). Third, initialization from pre-trained weights enables training 
on smaller emotion datasets (thousands rather than millions of samples) while 
avoiding overfitting. 

For emotion recognition applications, practitioners typically fine-tune pre-
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trained TimeSformer models on emotion-specific datasets [57], [58]. The pre-
trained weights provide strong initialization, while task-specific fine-tuning 
adapts representations to affective characteristics—learning to attend to 
subtle facial muscle movements (micro-expressions) and emotion-specific 
temporal patterns (the sustained nature of sadness versus the brief peak of 
surprise). Fine-tuning often employs lower learning rates for early transformer 
layers (capturing general visual features) and higher rates for later layers 
(capturing emotion-specific patterns), a strategy analogous to the layer-wise 
learning rate decay discussed for speech models in Section 2.2.4. 

 
Interpretability through Attention Visualization 
 
Beyond performance gains, TimeSformer's attention mechanisms provide 
interpretability. Visualizing attention weights reveals which spatial regions 
and temporal segments drive emotion predictions. For a surprise prediction, 
temporal attention weights might peak at frames showing the expression 
onset—the moment eyebrows raise and eyes widen—while spatial attention 
concentrates on eye and eyebrow regions. For sadness, attention may 
distribute more uniformly across frames, reflecting the sustained nature of sad 
expressions, while spatially focusing on mouth regions (downturned corners) 
and eyes (reduced aperture, lack of crinkling). 

This interpretability proves valuable for validating that models learn 
meaningful patterns aligned with psychological theories of emotional 
expression rather than spurious correlations in training data (e.g., background 
objects, lighting conditions). Attention visualizations also facilitate error 
analysis—examining cases where predictions fail can reveal systematic biases, 
such as over-reliance on particular facial regions or temporal segments that 
fail to generalize across individuals or contexts [59]. 

 
2.3.4 Face Detection and Preprocessing Pipeline 
 
Robust face detection and preprocessing constitute critical prerequisites for 
video-based emotion recognition, as facial alignment and normalization 
significantly impact downstream model performance. Modern systems employ 
deep learning-based face detectors that jointly localize faces and facial 
landmarks in a single forward pass. 
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Figure 2.7: MTCNN architecture  

 
Note: The architecture consists of three networks (P-Net, R-Net, and O-Net) that 

progressively refine face detection and alignment. 
 
Multi-task Cascaded Convolutional Networks (MTCNN) [60] exemplifies 
contemporary face detection approaches. MTCNN employs a three-stage 
cascade: a Proposal Network (P-Net) rapidly scans images at multiple scales 
to generate candidate face regions, a Refinement Network (R-Net) filters 
candidates and refines bounding boxes through regression, and an Output 
Network (O-Net) produces final detections along with five facial landmarks 
(eyes, nose, mouth corners). This coarse-to-fine strategy achieves high 
accuracy even for small, blurred, or partially occluded faces while maintaining 
computational efficiency through early rejection of obvious non-face regions. 

The preprocessed face sequences serve as input to emotion recognition 
models. For TimeSformer specifically, faces are cropped with appropriate 
margins (typically 20-30% padding beyond detected bounding boxes to include 
contextual regions), resized to 224×224 pixels, and normalized to [0,1] range. 
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Frame sampling strategies also play important roles: uniform sampling at 
fixed intervals (e.g., selecting 8 frames from a 3-second clip) provides temporal 
coverage, while adaptive sampling based on optical flow or expression 
intensity can emphasize emotionally salient moments. For the domain 
adaptation experiments discussed later, maintaining consistent preprocessing 
across RAVDESS and CREMA-D datasets proves crucial—differences in face 
detection, cropping, or resolution can introduce artificial domain shifts that 
confound the evaluation of adaptation effectiveness. 

The quality of face detection directly propagates through the entire 
pipeline. Detection failures (missed faces or false positives) prevent emotion 
recognition entirely, while imprecise localization (slightly off-center crops, 
inconsistent scaling) degrades recognition accuracy by 5-10% [61]. For video 
sequences, temporal consistency in face tracking—smoothing bounding boxes 
across frames rather than independently detecting per frame—reduces jittering 
and provides stable input to temporal models. These preprocessing 
considerations, while often overlooked in methodological descriptions, critically 
impact real-world system performance. 

 

2.4 Multimodal Fusion Strategies for Emotion 
Recognition 

 
Multimodal fusion aims to integrate complementary information from 
heterogeneous modalities to achieve more robust and accurate emotion 
recognition than unimodal approaches. As Rahman et al. [62] comprehensively 
document in their recent survey, audio and video signals capture distinct 
aspects of emotional expression—speech conveys prosodic and vocal 
characteristics while facial expressions reveal visual affective cues—making 
their combination particularly effective for emotion analysis. The central 
challenge lies in determining how and when to combine these modalities to 
maximize their complementary strengths while mitigating individual 
weaknesses. 

Fusion strategies can be broadly categorized into three paradigms based on 
the processing stage at which integration occurs: early fusion (feature-level), 
late fusion (decision-level), and middle fusion (intermediate-level). Each 
approach presents distinct trade-offs between modeling capacity, 
computational efficiency, and robustness to modality-specific noise or missing 
data. Recent advances have leveraged attention mechanisms and transformer 
architectures to enable more sophisticated fusion strategies that dynamically 
weight modality contributions based on context [63]. 
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2.4.1 Early Fusion: Feature-level Integration 
 
Early fusion, also termed feature-level fusion, concatenates representations 
from different modalities at an early processing stage before feeding the 
combined feature vector into a unified classifier. In the context of audio-visual 
emotion recognition, this typically involves extracting acoustic features (e.g., 
mel-spectrograms processed through CNNs or RNNs) and visual features (e.g., 
facial appearance encoded by vision transformers), concatenating these 
embeddings, and training a joint classifier on the combined representation. 

The primary advantage of early fusion lies in its computational efficiency 
and simplicity. By processing modalities jointly from an early stage, the model 
can potentially learn cross-modal correlations and interactions that might be 
missed by separate processing pipelines. A basic implementation concatenates 
audio and video embeddings and passes them through fully connected layers 
for classification. This approach enables end-to-end training with direct 
backpropagation of gradients through both modality encoders. 

 

 
 
Figure 2.8: An illustration of various fusion models for multimodal learning. 

(a) Early or data-level fusion, (b) late or decision-level fusion, and (c) 
intermediate fusion [64] 

 

However, Rahman et al. note several limitations [62]. Early fusion assumes 
tight temporal synchronization between modalities, which may not hold in 
real-world scenarios where audio and video signals experience different 
processing delays or quality degradations. Additionally, simple concatenation 
treats all features equally, failing to account for varying reliability or relevance 
of different modalities across contexts. When one modality contains 
predominantly noise or irrelevant information, it can negatively impact the 
combined representation. 

Advanced early fusion strategies address these limitations through learned 
integration mechanisms. Rather than simple concatenation followed by linear 
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transformation, more sophisticated architectures employ gated fusion units or 
attention-weighted combination of modality features before classification, 
providing some flexibility while maintaining the early fusion paradigm. 

 
2.4.2 Late Fusion: Decision-level Combination 
 
Late fusion, or decision-level fusion, takes the opposite approach by training 
separate classifiers for each modality and combining their predictions to 
produce a final decision. In audio-visual emotion recognition, this involves 
training independent audio and video emotion classifiers, obtaining probability 
distributions over emotion classes from each modality, and aggregating these 
predictions through averaging, voting, or learned combination weights. The 
key advantage of late fusion lies in its modularity and robustness. Since 
modalities are processed independently, the approach naturally handles 
asynchronous inputs and modality-specific characteristics without requiring 
aligned feature spaces. If one modality is corrupted or missing, the system can 
fall back to predictions from available modalities without catastrophic failure. 
This robustness makes late fusion particularly attractive for real-world 
applications where sensor reliability varies. 

Traditional late fusion employs simple averaging of class probabilities or 
majority voting among modality-specific predictions. While straightforward, 
these methods treat all modalities as equally reliable regardless of input 
characteristics. Recent approaches have introduced learned fusion weights that 
dynamically adjust modality contributions based on their confidence or 
relevance. Wagner et al. [65] demonstrate that training a small meta-classifier 
to combine modality-specific predictions based on their entropy or consistency 
can significantly improve performance over fixed weighting schemes. 

A more sophisticated variant employs neural networks to learn optimal 
combination strategies. By concatenating probability distributions or logits 
from individual modality classifiers and training a fusion network to predict 
final emotions, the system learns context-dependent weighting that adapts to 
varying modality reliabilities. This approach maintains late fusion's 
modularity while enabling more nuanced integration than simple averaging. 

Despite these advantages, late fusion's separate processing of modalities 
prevents learning of cross-modal interactions during feature extraction [62]. 
Subtle correlations between audio and visual cues—such as synchronization 
between lip movements and speech prosody—cannot be captured when 
modalities are encoded independently. This limitation has motivated the 
development of middle fusion strategies. 
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2.4.3 Middle Fusion: Attention-based Integration 
 
Recent work has explored multi-stage fusion architectures that enable 
iterative refinement of multimodal representations. Rather than performing 
fusion in a single step, these approaches employ multiple layers of cross-modal 
interaction, allowing increasingly abstract representations to be refined 
through successive information exchange. Each fusion layer computes 
bidirectional attention between modalities, applies residual connections to 
preserve modality-specific information, and employs layer normalization for 
training stability. This progressive refinement enables the model to capture 
both low-level cross-modal correspondences (e.g., lip-speech synchronization) 
and high-level semantic alignments (e.g., crying sounds accompanying sad 
facial expressions). Mittal et al. [66] demonstrate that employing 
multiplicative interactions across multiple stages significantly improves 
multimodal emotion recognition performance compared to single-stage fusion. 
Their work highlights the importance of hierarchical integration where early 
layers capture basic alignments while deeper layers learn complex semantic 
relationships. Similarly, progressive attention architectures can be designed 
with multiple cross-attention layers, where each layer refines representations 
from the previous stage. By stacking attention mechanisms with residual 
connections, the architecture enables complex multi-hop reasoning across 
modalities—for instance, attending to facial muscle movements that correlate 
with vocal strain, which in turn indicates emotional intensity. The progressive 
fusion strategy offers several advantages over single-stage approaches. The 
iterative refinement process allows the model to gradually integrate 
information, starting with obvious alignments and progressing to subtle cross-
modal patterns. Layer normalization between attention stages ensures stable 
gradient flow during training, enabling deeper fusion networks. As 
documented in recent multimodal benchmarks [64], hierarchical fusion 
architectures consistently outperform both early and late fusion baselines 
across diverse emotion recognition tasks, with particularly strong 
improvements on subtle or complex emotional states that require nuanced 
cross-modal reasoning. 

 
2.4.4 Comparative Analysis and Design Considerations 
 
The choice among fusion strategies involves fundamental trade-offs between 
modeling capacity, computational efficiency, and practical robustness. Early 
fusion excels in scenarios with clean, well-synchronized multimodal data where 
computational resources are limited, as it requires training only a single joint 
classifier. However, its rigid integration makes it vulnerable to modality-
specific corruptions and synchronization errors. 
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Late fusion provides maximum modularity and fault tolerance, making it 
suitable for applications where modality availability varies or where separately 
pre-trained unimodal models must be integrated. The inability to learn cross-
modal interactions during feature extraction, however, limits its capacity to 
capture subtle multimodal patterns that require joint reasoning. 

Middle fusion strategies, particularly attention-based approaches, offer the 
best of both paradigms by enabling cross-modal learning while maintaining 
some modality-specific processing. The computational overhead of attention 
mechanisms is offset by superior performance on complex emotion recognition 
tasks where multimodal cues interact in sophisticated ways. Multi-stage fusion 
architectures further enhance this capability by enabling hierarchical cross-
modal reasoning [63]. 

Empirical comparisons consistently demonstrate that attention-based 
middle fusion achieves the highest accuracy on challenging emotion 
recognition benchmarks, particularly for subtle or complex emotional states 
[19]. The interpretability provided by attention weights also offers valuable 
insights into which cross-modal patterns drive predictions, facilitating model 
debugging and trust in deployment scenarios. These advantages make 
progressive attention-based fusion the preferred approach for state-of-the-art 
multimodal emotion recognition systems. 

 

2.5 Domain Adaptation in Affective Computing 
 
A critical challenge in deploying emotion recognition systems in real-world 
applications is the domain shift problem—models trained on one dataset often 
exhibit severe performance degradation when applied to data from different 
sources, recording conditions, or populations. In affective computing, this 
challenge is particularly acute due to substantial variability across emotional 
expression datasets in terms of actor demographics, recording environments, 
annotation protocols, and the fundamental distinction between acted versus 
spontaneous emotional displays [3]. A model achieving 85% accuracy on 
laboratory-collected acted emotions may drop to 50-60% accuracy on 
naturalistic emotional expressions captured in the wild, rendering the system 
impractical for deployment [67], [68]. 

Domain adaptation techniques aim to bridge this gap by learning 
representations that transfer effectively across domains, enabling models 
trained on labeled source data to generalize to unlabeled or sparsely labeled 
target data [67]. For multimodal emotion recognition, this challenge is 
compounded by the need to align not only individual modality features but 
also cross-modal interactions across domains. As Baltrušaitis et al. [69] 
comprehensively document, multimodal learning introduces unique challenges 
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for domain transfer beyond those encountered in unimodal settings. The 
fundamental question becomes: how can we leverage abundant labeled data 
from controlled laboratory datasets (e.g., RAVDESS [70]) to build models 
that perform reliably on diverse real-world datasets (e.g., CREMA-D [71]) 
where emotional expressions vary significantly in authenticity, intensity, and 
cultural context. 

 
2.5.1 The Cross-corpus Emotion Recognition Challenge 
 
Cross-corpus generalization represents one of the most persistent challenges in 
speech and video emotion recognition. Even when datasets share the same 
emotion label space, systematic differences in data collection methodology 
introduce distribution shifts that severely impact model performance. As 
documented in recent surveys of speech emotion recognition [68], models 
achieving over 80% accuracy on within-corpus test sets frequently fall below 
45-50% accuracy when evaluated on held-out corpora, even when both 
datasets ostensibly capture the same emotion categories. 

The sources of domain shift in emotion recognition are multifaceted. At 
the acoustic level, recording equipment quality, background noise 
characteristics, and room acoustics introduce systematic biases—RAVDESS 
recordings use professional studio equipment with minimal background noise, 
while CREMA-D employs consumer-grade cameras with variable acoustic 
conditions. At the expression level, acted emotions (RAVDESS) exhibit 
exaggerated prosodic patterns and stereotypical facial configurations designed 
for clarity, whereas more naturalistic expressions (CREMA-D) display subtle, 
context-dependent emotional cues that may deviate from prototypical 
patterns. 

Beyond these technical differences, fundamental mismatches in emotion 
taxonomies complicate cross-corpus transfer. RAVDESS employs an 8-
category emotion model (neutral, calm, happy, sad, angry, fearful, disgust, 
surprised) reflecting Ekman's basic emotions framework, while CREMA-D 
uses a 6-category model (neutral, happy, sad, angry, fear, disgust) that omits 
"calm" and "surprised" [70], [71]. This label space mismatch necessitates 
careful mapping strategies when transferring models between datasets—simply 
collapsing RAVDESS's 8 classes into CREMA-D's 6 classes requires decisions 
about whether to merge "calm" with "neutral" or discard calm samples entirely, 
and whether to map "surprised" to "happy" based on valence similarity or 
treat it as an outlier class. 

Demographic and cultural factors introduce additional complications. 
Actor diversity varies significantly across datasets: RAVDESS features North 
American actors with balanced gender representation, while CREMA-D 
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includes more diverse ethnic backgrounds and age ranges. Cultural display 
rules governing emotional expression—such as the suppression of negative 
emotions in collectivist cultures or exaggeration of surprise in Western 
contexts—mean that even identical emotion labels may correspond to different 
behavioral patterns across populations. A model learning to recognize "anger" 
from RAVDESS's theatrical expressions may fail to identify more subdued 
angry expressions common in CREMA-D's diverse actor pool. 

 
2.5.2 Domain Adversarial Neural Networks 
 
Domain adversarial training has emerged as a powerful approach for learning 
domain-invariant representations in emotion recognition. The foundational 
work by Ganin et al. [72] introduced the Domain-Adversarial Neural Network 
(DANN) architecture, which explicitly encourages feature extractors to 
produce representations that are discriminative for the primary task (emotion 
classification) while being indistinguishable across source and target domains. 
This is achieved through an adversarial training objective where a domain 
classifier attempts to identify which domain a sample originates from, while 
the feature extractor simultaneously tries to fool the domain classifier by 
producing domain-invariant features. 

 

 
Figure 2.9: DANN 

 
Note: It is a feature-based adaptation method that learns a domain-invariant 

representation through adversarial training. 

 

The key innovation enabling this adversarial objective is the Gradient 
Reversal Layer (GRL), which implements a simple yet elegant mechanism 
during backpropagation. During forward propagation, the GRL acts as an 
identity function, passing features unchanged to the domain classifier. During 
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backward propagation, however, the GRL multiplies gradients by a negative 
constant before passing them to the feature extractor. This gradient reversal 
has a profound effect: gradients that would normally update the feature 
extractor to improve domain classification are instead reversed, encouraging 
the feature extractor to produce features that maximize domain classifier 
confusion—precisely the desired domain-invariant property. 

Formally, the domain adversarial objective can be expressed as a minimax 
game. Let 𝑓𝑓𝜃𝜃 denote the feature extractor with parameters 𝜃𝜃, 𝑔𝑔𝑦𝑦 the emotion 
classifier, and 𝑔𝑔𝑑𝑑 the domain classifier. The training objective becomes:  
 

min
𝜃𝜃,𝑔𝑔𝑦𝑦

max
𝑔𝑔𝑑𝑑

ℒ𝑦𝑦(𝑓𝑓𝜃𝜃(𝑥𝑥), 𝑦𝑦) − 𝜆𝜆ℒ𝑑𝑑(𝑔𝑔𝑑𝑑�𝑓𝑓𝜃𝜃(𝑥𝑥)�, 𝑑𝑑) (2.30) 

 
where ℒ𝑦𝑦 is the emotion classification loss, ℒ𝑑𝑑 is the domain classification loss, 
and 𝜆𝜆controls the trade-off between task performance and domain invariance. 
The feature extractor 𝑓𝑓𝜃𝜃 minimizes emotion loss while maximizing domain loss 
(via gradient reversal), whereas the domain classifier 𝑔𝑔𝑑𝑑 maximizes its own 
accuracy, creating an adversarial dynamic that drives the learning of domain-
invariant yet emotion-discriminative representations [72].  

The hyperparameter 𝜆𝜆 , often referred to as the domain adaptation 
strength or adversarial coefficient, critically influences training dynamics. 
Setting 𝜆𝜆  too high causes the model to prioritize domain confusion over 
emotion discrimination, resulting in representations that are domain-invariant 
but insufficiently expressive for accurate emotion classification—source 
domain accuracy may remain acceptable, but the representations lack the 
discriminative power needed for fine-grained emotion distinctions [72]. 
Conversely, setting 𝜆𝜆 too low provides insufficient pressure toward domain 
invariance, allowing the model to overfit to source domain-specific patterns 
that fail to transfer.  

Recent work has explored adaptive scheduling of 𝜆𝜆 throughout training 
rather than using a fixed value. A common approach gradually increases 𝜆𝜆 
from near-zero to a maximum value as training progresses, following schedules 
such as:  

 

𝜆𝜆𝑝𝑝 = 2
1 + exp(−𝛾𝛾 ⋅ 𝑝𝑝)

− 1 (2.31) 

 
where 𝑝𝑝represents training progress (epoch / total_epochs) and 𝛾𝛾 controls the 
rate of increase [72]. This progressive schedule allows the model to first learn 
task-relevant features from the source domain before gradually introducing 
domain invariance pressure, preventing the adversarial objective from 
disrupting the initial learning of emotion-discriminative patterns.  
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However, in multimodal emotion recognition contexts, standard DANN 
faces unique challenges [73]. The architecture must learn not only domain-
invariant unimodal features but also cross-modal interactions that generalize 
across domains [69]. A model trained on RAVDESS's synchronized, high-
quality audio-visual data may learn cross-modal attention patterns that break 
down when applied to CREMA-D's more variable synchronization and quality 
characteristics. Simply applying domain adversarial training to the final fused 
representation may fail to address domain shift at the individual modality 
level or in cross-modal alignment mechanisms. 

 
2.5.3 Multimodal Domain Adaptation with Progressive 

Fusion 
 
Extending domain adaptation to multimodal fusion architectures requires 
careful consideration of where and how to apply adversarial training. A naive 
approach would apply a single domain classifier to the final fused 
representation, but this fails to ensure that individual modality 
representations are domain-invariant before fusion. If audio features remain 
domain-specific while video features achieve domain invariance, the fusion 
mechanism itself must compensate for this asymmetry—a difficult learning 
problem that may result in suboptimal cross-modal integration. 

More sophisticated multimodal domain adaptation architectures employ 
multiple domain classifiers operating at different levels of the fusion hierarchy 
[74]. For a progressive fusion architecture with multiple cross-attention stages, 
domain classifiers can be attached to (1) individual modality representations 
before fusion, (2) intermediate representations after each fusion stage, and (3) 
the final fused representation. Each domain classifier receives gradient reversal 
signals, encouraging domain invariance at its respective level. This hierarchical 
domain confusion ensures that domain adaptation occurs not only in the final 
task-relevant representation but throughout the entire multimodal processing 
pipeline. 

The integration of progressive cross-modal fusion with domain adversarial 
training presents both opportunities and challenges. On one hand, the multi-
stage refinement process provides natural insertion points for domain 
classifiers at different abstraction levels, enabling fine-grained control over 
where domain invariance is enforced. The residual connections and layer 
normalization inherent in progressive fusion architectures also facilitate stable 
gradient flow even with multiple adversarial objectives. On the other hand, 
the increased model complexity introduces additional hyperparameters—each 
domain classifier may require its own 𝜆𝜆value, and the relative weighting 
among domain classifiers at different levels must be carefully tuned.  
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A critical practical consideration in multimodal domain adaptation for 
emotion recognition is computational efficiency. Training domain adversarial 
networks typically requires iterating over both source and target domain data, 
and the need to balance source and target batch sizes to prevent domain 
classifier bias can significantly increase training time [75]. When the target 
domain dataset (e.g., CREMA-D with 7,442 samples) is substantially larger 
than necessary for effective adaptation, using only a strategically selected 
subset of target data can reduce computational costs by 3-5x while 
maintaining adaptation effectiveness. Techniques such as uncertainty-based 
sampling or diversity-based selection can identify the most informative target 
samples for domain alignment, avoiding redundant processing of highly similar 
target examples. 

The label space mismatch between RAVDESS (8 classes) and CREMA-D 
(6 classes) necessitates additional architectural considerations. One approach 
maintains separate task classifiers for source and target domains with different 
output dimensions, sharing only the feature extractor and domain classifier. 
During source domain training, the 8-class classifier provides supervision, 
while during target domain fine-tuning (if target labels are available), the 6-
class classifier provides supervision. The domain classifier operates on shared 
features, encouraging alignment despite the different task structures. 
Alternatively, a unified taxonomy can be created by mapping RAVDESS 
labels to CREMA-D's 6-class space (e.g., merging "calm" into "neutral" and 
"surprised" into "happy"), simplifying the architecture at the cost of discarding 
potentially useful source domain distinctions. 

Conservative scheduling of the adversarial coefficient 𝜆𝜆 becomes especially 
important in cross-corpus emotion adaptation where source and target 
domains exhibit substantial distributional differences. Aggressive domain 
confusion (high 𝜆𝜆) early in training may prevent the model from learning 
sufficient source domain patterns before attempting transfer. A conservative 
schedule maintains very low 𝜆𝜆 values (e.g., 0.0001) for an extended warmup 
period spanning 40-50% of total training, allowing the model to achieve strong 
source domain performance, then gradually increases 𝜆𝜆 at a measured pace to 
a moderate maximum (e.g., 0.02-0.1) rather than the aggressive values (0.5-1.0) 
sometimes used in other domain adaptation contexts [75]. This conservative 
approach reflects the reality that emotion recognition requires learning subtle, 
high-dimensional patterns where excessive domain confusion can discard task-
relevant information along with domain-specific artifacts.  

Empirical results from cross-corpus emotion recognition studies 
demonstrate that well-designed multimodal domain adaptation can 
substantially reduce the performance gap between source and target domains 
[68], [74]. While standard models may exhibit a 30-40% accuracy drop from 
source to target, domain-adaptive architectures can reduce this gap to 10-15% 
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through effective invariant feature learning. However, complete elimination of 
the domain gap remains elusive—subtle differences in emotional expression 
authenticity, cultural norms, and recording conditions introduce irreducible 
distribution shifts that cannot be fully compensated through representation 
learning alone. Continued research into more sophisticated alignment 
mechanisms, particularly those that respect the hierarchical and multimodal 
nature of emotion expression, remains an active area of investigation. 
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Chapter 3 
 

Methodology  
 
This chapter presents the comprehensive methodological framework employed 
to address cross-dataset emotion recognition through multimodal fusion and 
domain adaptation. The methodology encompasses systematic data 
preprocessing, architecture design, training procedures, and evaluation 
protocols developed to enable effective transfer learning from professionally 
recorded studio data (RAVDESS) to diverse real-world recordings (CREMA-
D).  

Section 3.1 details the data acquisition and preprocessing pipeline for both 
audio and video modalities. For audio, we describe mel-spectrogram extraction 
with voice activity detection, temporal normalization, and instance-level 
feature standardization to ensure robust representations across different 
recording conditions. For video, we present face detection, temporal sampling, 
resolution adaptation, and storage optimization strategies that balance 
recognition performance with computational feasibility.  

Section 3.2 examines the model architecture design, consisting of three 
principal components: EmoCatcher for audio encoding, TimeSformer for video 
encoding, and progressive fusion for multimodal integration. EmoCatcher 
employs convolutional feature extraction with bidirectional recurrent temporal 
modeling, capturing emotion-relevant prosodic patterns from mel-
spectrograms. TimeSformer extends Vision Transformers to video 
understanding through divided space-time attention, adapted for facial 
expression analysis via Low-Rank Adaptation (LoRA). The progressive fusion 
architecture enables hierarchical cross-modal integration through multiple 
attention stages. For domain adaptation, we extend this base architecture 
with Domain-Adversarial Neural Networks (DANN), incorporating gradient 
reversal layers and domain discriminators to learn features that maintain 



Methodology 

  41 

discriminative power for emotion recognition while achieving invariance to 
dataset-specific characteristics. 

 
 RAVDESS CREMA-D 
Samples (Total) 1440 7442 
Actors 24 91 
Gender 12M+12F 48M+43F 
Age Range 21-33 20-74 
Ethnicity Homogeneous Diverse 
Emotion Classes 8 6 
Sentences 2 12 
Recording Type Studio Consumer 
Expression Type Acted Semi-natural 
Audio Quality 48 kHz Variable 
Video Quality 720p/30fps Variable 

 

Table 3.1: Dataset Characteristics and Statistics 
 
 

3.1 Data Acquisition and Processing 
 
3.1.1 Datasets 
 
RAVDESS The Ryerson Audio-Visual Database of Emotional Speech and 
Song (RAVDESS) [70] was collected at Ryerson University between 2012 and 
2015. Professional actors were recruited through auditions requiring 
demonstrated vocal control and emotional expressiveness. The final dataset 
includes recordings from 24 actors (12 female, 12 male) aged 21 to 33 years, 
all native English speakers with neutral North American accents. Actors 
performed two semantically neutral statements—"Kids are talking by the 
door" and "Dogs are sitting by the door"—with specific instructions to convey 
eight distinct emotions: neutral, calm, happy, sad, angry, fearful, disgust, and 
surprised. Each emotion was expressed at two intensity levels (normal and 
strong), resulting in multiple takes per actor-emotion-sentence combination. 
The lexically-matched statements control for linguistic content variation, 
isolating emotional prosody and facial expression as the primary sources of 
affective information. Recording sessions occurred in a professional studio 
environment with acoustic treatment (anechoic foam padding, controlled 
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reverberation time < 0.3 seconds). Audio was captured using a Neumann 
TLM 102 condenser microphone at 48 kHz sampling rate with 24-bit depth, 
positioned 30 cm from the speaker. Video was recorded simultaneously using a 
Canon Vixia HF G20 camera at 720p resolution (1280×720 pixels) and 29.97 
fps. Consistent lighting conditions (5600K color temperature, three-point 
lighting setup) minimized shadows and maintained uniform facial illumination 
across all recordings.  

For this study, we utilize only the speech portion of RAVDESS, excluding 
song recordings which exhibit fundamentally different acoustic characteristics 
(sustained vowels, wider pitch range, formalized phrasing). After filtering, this 
yields 1,440 samples distributed across eight emotion categories. Table 3.1 
presents the complete breakdown by emotion, gender, and intensity level. The 
professional production quality of RAVDESS offers several advantages for 
source domain training. First, high signal-to-noise ratio (>40 dB) ensures 
emotion-relevant features dominate over recording artifacts. Second, 
professional actors produce clear, prototypical expressions closely aligned with 
Ekman's basic emotion theory—anger features raised voice and furrowed 
brows, sadness exhibits lowered pitch and downturned mouth corners— 
facilitating initial learning of emotion-discriminative patterns. Third, 
controlled recording conditions eliminate confounding variables (background 
noise, lighting variations, camera motion) that complicate model training. 
However, these same advantages create a substantial domain gap when 
generalizing to naturalistic data, motivating the need for domain adaptation 
techniques. 

 

CREMA-D The Crowd-sourced Emotional Multimodal Actors Dataset 
(CREMA-D) [71] was collected at the University of Pennsylvania between 
2011 and 2013, employing a fundamentally different production approach. 
Rather than professional actors in studio conditions, CREMA-D recruited 91 
participants (48 male, 43 female, ages 20-74) through community outreach 
and university advertisements. Participants self-identified across five ethnic 
categories: African American (n=29), Asian (n=15), Caucasian (n=35), 
Hispanic (n=8), and Unspecified (n=4). This demographic diversity far 
exceeds RAVDESS's homogeneous young North American sample. Each 
participant recorded 12 sentences selected to be emotionally ambiguous 
without contextual prosody: "It's eleven o'clock", "That is exactly what 
happened", "I'm on my way to the meeting" among others. Participants were 
instructed to convey six emotions—anger, disgust, fear, happy, neutral, and 
sad—at four subjective intensity levels (low, medium, high, unspecified). The 
resulting 7,442 clips vary considerably in expression quality and authenticity, 
reflecting the range of acting ability among non-professional participants. 
CREMA-D recordings employed consumer-grade equipment in typical indoor 
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settings rather than professional studios. Audio was captured using built-in 
laptop microphones or entry-level USB microphones at variable sampling rates 
(primarily 44.1 kHz, some 48 kHz). Video recording used consumer webcams 
or smartphone cameras, resulting in variable resolutions (480p to 720p) and 
frame rates (24-30 fps). Recording environments included university offices, 
conference rooms, and participant homes, introducing diverse acoustic 
characteristics (varied reverberation, background HVAC noise, occasional 
external sounds) and lighting conditions (fluorescent office lighting, natural 
window light, desk lamps). The naturalistic variability in CREMA-D 
introduces several challenges for emotion recognition. Audio quality varies 
substantially: some clips exhibit clear speech with minimal background noise, 
while others contain audible room acoustics, microphone clipping, or 
environmental interference. Video quality similarly ranges from well-lit frontal 
faces to dim lighting with non-frontal poses. Expression authenticity also 
varies—some participants produce convincing emotional portrayals 
comparable to professional actors, while others exhibit awkward or 
exaggerated expressions suggesting self-consciousness or limited acting 
experience. Despite these challenges, CREMA-D's naturalistic characteristics 
better approximate real-world deployment scenarios where emotion 
recognition systems encounter diverse users, recording devices, and 
environmental conditions. The dataset includes crowd-sourced perceptual 
ratings: each clip was evaluated by multiple annotators who selected the 
perceived emotion from the six categories. Clips achieving high inter-rater 
agreement (>70% annotators selecting the same emotion) provide gold-
standard examples, while low-agreement clips may reflect genuinely 
ambiguous expressions or poor acting quality.  

For this study, in order to enable local deployment and improve training 
efficiency, this study did not use all samples of the dataset. Instead, it 
extracted data of the similar size as the source dataset during the dataset 
loading phase. Besides, unless otherwise noted, audio-only and video-only 
baselines on RAVDESS use a random split to match prior work efficiency, 
whereas domain adaptation experiments use a speaker-independent split to 
avoid speaker leakage. We report them side-by-side as reference results rather 
than directly comparable baselines. 
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Figure 3.1: Data distribution of source and target datasets 
 
 
3.1.2 Data Processing Techniques 
 
Effective multimodal emotion recognition requires careful preprocessing to 
ensure data quality, format consistency, and computational efficiency. This 
section details our audio and video processing pipelines, with particular 
emphasis on the design decisions that enable efficient domain adaptation 
training while maintaining cross-dataset compatibility. 
 

Audio Processing Pipeline 
 
Audio preprocessing transforms raw waveforms into normalized mel-
spectrogram representations suitable for the EmoCatcher encoder architecture 
[76]. The pipeline consists of four sequential stages designed to extract 
emotion-relevant acoustic features while suppressing noise and dataset- 
specific variations. 

Voice Activity Detection Raw audio files from both RAVDESS and 
CREMA-D contain non-speech segments— initial silence before utterance 
onset, trailing silence after completion, and occasional mid-sentence pauses. 
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These silent regions contribute no emotional information while introducing 
training complications: zero-padded silent frames dilute gradient signals, and 
random silence durations create unnecessary length variability across samples. 
We employ the GVAD (Generalized Voice Activity Detection [77]) algorithm 
to identify and extract speech-containing segments. GVAD operates on mel-
spectrogram representations, analyzing energy concentration across frequency 
bands to distinguish speech from silence or background noise. The algorithm 
computes frame-wise energy and applies adaptive thresholding to identify 
continuous speech regions, returning start and end frame indices [𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒] 
that bracket the utterance. VAD preprocessing serves three purposes in our 
pipeline. First, it removes non-speech segments that would otherwise require 
the model to learn to ignore irrelevant silent regions. RAVDESS recordings 
typically contain 0.5-2 second silence margins from professional editing 
workflows (actors awaiting recording cues), while CREMA-D exhibits 
variable-length pauses from unedited participant recordings. Second, VAD 
normalizes effective utterance lengths: after processing, most samples contain 
2-4 seconds of continuous speech regardless of original clip duration, reducing 
temporal variability that could complicate sequence modeling. Third, VAD 
improves cross-dataset consistency by eliminating systematic differences in 
silence padding—RAVDESS exhibits uniform margins from professional 
editing, while CREMA-D shows irregular boundaries—that might otherwise 
serve as spurious domain discriminators [78]. 

 

 
Figure 3.2: Audio Processing Thread 
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Mel-spectrogram Extraction Following VAD truncation, audio segments 
undergo Short-Time Fourier Transform (STFT) to generate mel-spectrograms. 
We employ the librosa 0.9.2 implementation with parameters optimized for 
emotion recognition rather than speech recognition:  

n_fft = 4096: Large FFT window size (approximately 186ms at 22.05 
kHz sampling) provides fine frequency resolution essential for capturing 
subtle pitch variations characteristic of emotional prosody. Anger, for 
instance, exhibits rapid pitch fluctuations (5-10 Hz modulation) requiring 
sufficient frequency precision to distinguish from neutral speech. Standard 
ASR systems use smaller windows (512-2048 samples) optimized for 
phoneme discrimination, but these sacrifice the frequency resolution 
needed for prosodic analysis.  

hop_length = 1365: This hop size yields approximately 43 Hz frame 
rate, providing 16-17 frames per second of audio. The choice balances 
temporal resolution against computational cost. Emotional expressions 
unfold over 100-500ms timescales—expression onset, apex, and offset 
phases—requiring sufficient temporal sampling to capture these dynamics 
without excessive redundancy. 

n_mels = 128: We employ 128 mel-frequency bins spanning 0-6000 Hz, 
following the mel-scale transformation that concentrates frequency 
resolution where human hearing discriminates pitch most finely. As 
discussed in Section 2.2.1, this perceptually-motivated frequency warping 
emphasizes prosodically-relevant frequency ranges while maintaining 
computational efficiency for convolutional processing.  

fmax = 6000 Hz: The upper frequency limit excludes high-frequency 
content above 6 kHz, which primarily captures consonant frication and 
other phonetic details rather than emotion-relevant prosody. 
Fundamental frequency (F0) for human speech ranges 80-400 Hz, with 
harmonics extending to ~4 kHz carrying most emotional information. The 
6 kHz cutoff balances retaining prosodic content against excluding high-
frequency noise, particularly important for CREMA-D recordings where 
consumer microphones exhibit poor high-frequency response. After STFT 
computation, we apply triangular mel-filterbanks to convert the linear 
frequency spectrogram to mel-scale, followed by logarithmic compression 
to approximate human loudness perception and compress the dynamic 
range. All audio is resampled to 22.05 kHz before processing using 
librosa's high-quality polyphase resampling, standardizing temporal 
resolution across datasets—RAVDESS provides 48 kHz audio, while 
CREMA-D varies between 44.1 kHz and 48 kHz. 
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Temporal Normalization VAD-truncated spectrograms exhibit variable 
lengths depending on utterance duration and speaking rate. To enable batch 
processing with fixed-size tensors, we standardize all spectrograms to 128×128 
dimensions (mel bins × time frames). For spectrograms exceeding 128 frames 
(utterances longer than ~3 seconds), we perform center-cropping to preserve 
the central 128 frames. This strategy preferentially retains the utterance's 
emotional apex—speakers typically intensify expressions mid-utterance—while 
discarding onset and offset phases that may contain neutral transitional 
prosody. For spectrograms shorter than 128 frames, we apply symmetric zero-
padding:  
 

𝑝𝑝𝑝𝑝𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = �128 − 𝑇𝑇
2

�，𝑝𝑝𝑝𝑝𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = �128 − 𝑇𝑇
2

� (3.1) 

 
where symmetric padding maintains temporal centering, placing the actual 
speech content in the spectrogram's middle region of EmoCatcher's attention 
mechanism (Section 2.2.3) naturally focuses. Asymmetric padding would bias 
attention toward specific temporal positions, potentially learning dataset- 
specific artifacts rather than generalizable emotion patterns.  

 
Feature Normalization Each mel-spectrogram undergoes instance-level 
normalization to zero mean and unit variance:  
 

𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑀𝑀 − 𝜇𝜇𝑀𝑀
𝜎𝜎𝑀𝑀 + 𝜀𝜀

(3.2) 

 
where 𝜇𝜇𝑀𝑀  and 𝜎𝜎𝑀𝑀  are computed across all elements of the individual 
spectrogram, and 𝜀𝜀 = 1𝑒𝑒 − 5 prevents division instability.  

The choice of instance-level normalization addresses three interrelated 
challenges for cross-dataset generalization. First, it removes speaker- specific 
acoustic characteristics—natural variation in voice timbre and loudness means 
different individuals produce systematically different spectrogram intensities 
even when expressing identical emotions. By normalizing each sample 
independently, we force the model to learn emotion-discriminative patterns 
rather than speaker signatures. This becomes critical when RAVDESS's 24 
actors differ substantially from CREMA-D's 91 participants in vocal 
characteristics. Second, instance normalization mitigates systematic recording 
gain differences between datasets. RAVDESS maintains consistent levels 
through professional audio engineering, while CREMA-D shows substantial 
variation from consumer devices with automatic gain control. Without 
normalization, these intensity differences could serve as spurious domain 
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discriminators, allowing the model to distinguish datasets by loudness rather 
than semantic content. Independent normalization standardizes intensity 
distributions within each sample, improving cross-dataset feature alignment. 
Third, normalization ensures consistent gradient scales during training. High-
energy utterances would otherwise produce larger gradients than low-energy 
samples, introducing variance that destabilizes optimization. Standardizing 
inputs to consistent distributions prevents this issue while ensuring the model 
learns emotion-specific patterns rather than dataset- specific intensity 
characteristics. 
 
 
Video Processing Pipeline 
 
Video preprocessing extracts, normalizes, and efficiently stores facial frame 
sequences for TimeSformer-based emotion recognition. Unlike audio 
preprocessing which operates on-the-fly, video preprocessing involves offline 
extraction and storage due to face detection computational cost and the 
efficiency benefits of compressed storage for domain adaptation experiments. 
As shown in Figure 3.3, we could clearly discover how the videos been 
processed by the proposed video processing pipeline. 

 
Figure 3.3: An Example of Face Detection and Extraction 

 

Face Detection and Extraction Raw video files undergo face detection 
with Multi-task Cascaded Convolutional Networks (MTCNN) implemented 
via facenet-pytorch [60]. For each selected frame, we run independent per-
frame detection, crop the detected face bounding box (no fixed margin 
padding), and resize the crop to 224×224. When a face is not detected, we fall 
back to a centered square crop (half of the shorter side) before resizing, 
ensuring a valid frame is produced for every timestep. The processed frames of 
each clip are written to a .npy array, with an optional .avi preview for quick 
visual inspection. This design favors robustness without maintaining stateful 
trackers; temporal consistency is handled by the downstream model rather 
than by ROI-based tracking at preprocessing time. 
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Temporal Sampling and Alignment Detected sequences vary in length: 
RAVDESS clips contain 90-150 frames (3-5 seconds at 30 fps), while CREMA-
D ranges from 60-240 frames. We standardize to 8 frames through uniform 
temporal sampling, providing coverage of expression dynamics (onset → apex 
→ offset) while maintaining computational tractability. For videos with T ≥ 8 
frames, we select using linearly-spaced indices, explicitly including the final 
frame. For rare videos with T < 8 (12 clips in CREMA-D, none in 
RAVDESS), we replicate frames to reach target length, preserving visual 
content while meeting fixed-length requirements. 

Computational Efficiency Optimization Initial experiments employed 
uncompressed .npy files at TimeSformer's native 224×224 resolution. Domain 
adaptation training, however, requires simultaneous processing of source and 
target datasets plus maintaining multiple model components, creating severe 
GPU memory and storage constraints that proved infeasible with this 
configuration. We addressed these constraints by reprocessing all video data 
with coordinated resolution reduction and storage compression. Detected faces 
are resized to 112×112 using OpenCV's INTER_AREA interpolation and 
stored in compressed .npz format (zlib compression). This intervention serves 
dual purposes: the 112×112 resolution eased GPU memory constraints enough 
to make training feasible, while .npz compression solved the storage bottleneck. 
The resolution reduction requires adapting TimeSformer's spatial encoding. 
Reducing from 224×224 to 112×112 changes the spatial patch grid from 
14×14 to 7×7 (49 patches per frame with 16×16 patch size). We employ 
bicubic interpolation to rescale the learned positional encodings, preserving 
relative spatial relationships while adapting to the smaller grid. Preliminary 
ablation studies confirmed that emotion-discriminative facial features— brow 
position, mouth shape, eye aperture—remain detectable at this resolution, 
with minimal performance impact. All domain adaptation experiments employ 
this optimized 112×112 compressed configuration, enabling feasible training 
within available hardware constraints. 

Pixel Normalization Following the efficiency optimizations, frames undergo 
range normalization during loading, scaling [0, 255] pixel values to [0, 1] 
through division by 255.0. This preprocessing is implemented in the function 
of loading videos, ensuring consistent input ranges for TimeSformer processing. 
 
 

3.2 Model Selection 
 
Our emotion recognition system employs a modular architecture consisting of 
specialized encoders for each modality and a fusion module for multimodal 
integration. The design follows a staged development approach: single-modal 
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baselines establish individual encoder effectiveness, followed by multimodal 
fusion, and finally domain adaptation extensions. This section describes the 
architecture components and their configurations, with particular attention to 
adaptations required for cross-dataset training.  
 

3.2.1 Audio Encoder: EmoCatcher 
 
The audio encoder employs the EmoCatcher architecture, a specialized design 
for emotion recognition from speech that combines convolutional feature 
extraction with recurrent temporal modeling and attention-based aggregation. 
EmoCatcher processes mel-spectrogram inputs (128×128 dimensions) through 
three sequential stages. The convolutional stage applies three 1D 
convolutional blocks with progressive channel expansion (128 → 256 → 256), 
each followed by layer normalization, GELU activation, and dropout. These 
convolutions extract spectral patterns across mel-frequency bins while 
maintaining temporal structure. The temporal modeling stage employs a 
bidirectional GRU with 144 hidden units per direction and 2 layers, capturing 
both forward and backward temporal dependencies in the prosodic patterns. 
The attention stage applies Bahdanau attention over the GRU outputs, 
learning to weight different temporal segments based on their emotional 
salience. The final output is a 288-dimensional embedding (144 × 2 for 
bidirectional) that encodes both spectral and temporal emotion-relevant 
patterns from the audio input. Key configuration parameters: 
gru_hidden=144, num_layers=2, kernel_size=5 (first convolutional layer), 
dropout=0.1. This configuration balances model capacity against overfitting 
risk given the limited training data (1,440 RAVDESS samples for source 
domain training).  

 
3.2.2 Video Encoder: TimeSformer 
 
The video encoder uses TimeSformer, a Vision Transformer extended for video 
understanding through divided space-time attention. We employ the pre-
trained facebook/timesformer-base-finetuned-k400 model, which provides 
learned representations from large-scale action recognition (Kinetics-400) 
suitable for transfer learning to facial expression analysis. For single-dataset 
and multimodal fusion experiments, TimeSformer processes 8-frame sequences 
at 224×224 resolution—matching the model's pre-training configuration. Each 
frame is divided into 14×14 spatial patches (16×16 patch size), resulting in 
196 spatial tokens per frame. The divided attention mechanism alternates 
between temporal attention (across frames at fixed spatial positions) and 
spatial attention (within frames at fixed temporal positions), enabling efficient 
modeling of spatiotemporal patterns without the quadratic complexity of joint 
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space-time attention. For domain adaptation experiments, computational 
constraints necessitate reducing input resolution to 112×112, changing the 
spatial grid to 7×7 (49 patches per frame). We address this through bicubic 
interpolation of the learned positional encodings, rescaling from 196-position 
to 49-position embeddings while preserving relative spatial relationships. This 
interpolation enables effective transfer of pre-trained spatial attention patterns 
to the reduced-resolution inputs. To reduce the number of trainable 
parameters during fine-tuning, we employ Low-Rank Adaptation (LoRA) on 
the transformer attention layers. LoRA introduces trainable low-rank 
decomposition matrices into the query and value projections while keeping the 
original pre-trained weights frozen. For domain adaptation training, we use 
rank r=4, scaling factor α=8, and dropout=0.2, providing sufficient 
adaptation capacity while maintaining parameter efficiency. The video 
encoder outputs 768-dimensional embeddings (TimeSformer's hidden size) 
obtained through temporal mean pooling of the final layer's sequence 
representations. 

 
3.2.3 Multimodal Fusion Architecture 
 
The fusion module integrates audio and video representations into unified 
emotion predictions. Based on preliminary multimodal experiments, we 
adopted a progressive middle fusion strategy that applies multiple stages of 
cross-modal attention to gradually refine multimodal representations. The 
fusion architecture processes 288-dimensional audio embeddings and 768-
dimensional video embeddings through the following stages. First, modality-
specific projection layers map the embeddings to a common 192-dimensional 
space, ensuring compatible dimensionality for cross-modal interactions. Second, 
the first attention stage applies cross-modal attention: audio features attend 
to video features and vice versa, enabling each modality to incorporate 
complementary information from the other. Residual connections and layer 
normalization preserve the original modality-specific information while adding 
cross-modal refinements. Third, a second attention stage operates on the 
refined representations, allowing further integration of multimodal patterns. 
Finally, the enhanced audio and video representations are concatenated (384 
dimensions total) and passed through a classification head consisting of a 
linear projection to 192 dimensions, ReLU activation, dropout (p=0.1), and 
final projection to 8 classes for RAVDESS emotion categories. This 
progressive attention design enables hierarchical multimodal integration: early 
stages capture low-level correspondences (e.g., audio pitch peaks aligned with 
visual mouth movements), while later stages integrate higher-level semantic 
relationships (e.g., angry vocal tone combined with furrowed brows). The 
multiple attention stages provide greater modeling capacity than single-stage 
fusion while remaining computationally tractable. 
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3.2.4 Domain Adaptation Architecture 
 
For cross-dataset experiments (RAVDESS → CREMA-D), we extend the 
progressive fusion architecture with domain adaptation components based on 
Domain-Adversarial Neural Networks (DANN) [73]. DANN employs 
adversarial training to learn features that are discriminative for the task 
(emotion recognition) while being invariant to domain shifts. The extended 
architecture, implemented as Domain Adaptive Progressive Fusion, augments 
the base multimodal fusion module with a domain discriminator and gradient 
reversal layer. The domain discriminator receives the fused multimodal 
features (384 dimensions after concatenating enhanced audio and video 
representations) and attempts to classify whether samples originate from the 
source domain (RAVDESS) or target domain (CREMA-D). The discriminator 
employs a compact architecture—a single hidden layer with 96 units (384 → 
96 → 2), ReLU activation, and dropout (p=0.15)— following DANN's 
recommendation for a relatively weak discriminator that focuses the 
adaptation on learning domain-invariant features rather than achieving high 
domain classification accuracy. The gradient reversal layer (GRL) implements 
DANN's core mechanism for adversarial training. During forward propagation, 
the GRL acts as an identity function, passing features unchanged to the 
discriminator. During backpropagation, the GRL negates and scales the 
gradients from the domain discriminator by a factor α before passing them to 
the fusion module and encoders: 
 

Forward: ℎ′ = ℎ (3.3) 
 

Backward: ∂𝐿𝐿
∂ℎ

= −𝛼𝛼 ⋅
∂𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
∂ℎ′

(3.4) 

 
This gradient reversal encourages the feature extractors (encoders and 

fusion module) to learn representations that maximize emotion classification 
performance while simultaneously minimizing the domain discriminator's 
ability to distinguish source from target samples. The competing objectives—
emotion classifier seeking discriminative features, domain classifier seeking 
domain-specific patterns, feature extractors seeking domain-invariant yet 
discriminative features—create the adversarial training dynamic central to 
DANN. The training objective combines emotion classification loss on source 
domain (cross-entropy on RAVDESS labels) with domain classification loss 
(binary cross-entropy on domain labels):  
 

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝜆𝜆 · 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (3.5) 
 

The domain loss is scaled by hyperparameter 𝜆𝜆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and modulated by 
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the GRL's α parameter. Following DANN's progressive adaptation schedule, α 
increases gradually during training from 0 (no domain adaptation) to a 
maximum value, allowing the model to first learn task-relevant features before 
introducing domain confusion. This progressive schedule prevents early 
training instability that can occur when adversarial and task objectives 
compete strongly from the start. Critically, our implementation maintains the 
same progressive fusion structure as the base multimodal model, adding only 
the DANN components without modifying the core encoder or fusion 
architecture. This design enables direct comparison between standard 
multimodal training and DANN-based domain adaptation, isolating the 
impact of adversarial adaptation. The encoder and fusion weights are 
initialized from single-dataset pre-training, providing a strong starting point 
for domain adaptation fine-tuning. 
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Chapter 4 
 

Experiments and Results 
 
4.1 Experimental Setup  
 
All experiments were conducted on a workstation equipped with an NVIDIA 
GeForce RTX 3060 GPU (6GB VRAM), Intel Core i9-12900K processor, and 
16GB RAM. The implementation uses PyTorch 2.7.0 with CUDA 12.6, 
leveraging mixed- precision training (FP16) to reduce memory consumption 
and accelerate computation. The codebase builds upon Hugging Face 
Transformers for TimeSformer and standard PyTorch modules for 
EmoCatcher and fusion components. 

We evaluate our approach on two widely-used emotion recognition 
datasets: RAVDESS and CREMA-D. RAVDESS contains 1,440 audio-visual 
recordings from 24 professional actors (12 male, 12 female) expressing 8 
emotions in controlled studio conditions. CREMA-D comprises 7,442 clips 
from 91 actors of diverse ages and ethnicities recorded in varied environments, 
representing 6 emotion categories. The diversity in recording quality, speaker 
demographics, and expression styles between these datasets makes 
RAVDESS→CREMA-D a challenging domain adaptation scenario. For 
domain adaptation experiments, we harmonize emotion labels by mapping 
RAVDESS's 8-class taxonomy to CREMA-D's 6-class framework: neutral and 
calm merge to neutral, happy and surprised both map to happy, while the 
remaining four categories (sad, angry, fearful, disgust) maintain direct 
correspondence.  

Data partitioning follows a speaker-independent strategy to prevent 
identity leakage. For RAVDESS, we allocate 80% of actors (19 individuals) to 
the training set and 20% (5 actors) to validation, yielding 1,152 training 
samples and 288 validation samples. CREMA-D uses a similar actor-based 
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split. No speaker appears in both training and validation sets within either 
dataset. For domain adaptation, the entire RAVDESS training set serves as 
the source domain. The target domain uses a balanced subsample of CREMA-
D training data—approximately 25% (1,488 clips) selected through stratified 
random sampling to maintain class distribution—during the adaptation phase.  

Training employs the AdamW optimizer with configurations detailed in 
Table 4.1. Learning rate scheduling follows a cosine annealing warm restart 
strategy: an initial period of 10 epochs with multiplicative period extension 
factor of 2 and minimum learning rate of 1×10⁻⁶. Models train for 50 epochs 
in single- dataset experiments and 60 epochs for domain adaptation to allow 
sufficient adversarial alignment. Batch size of video training is limited to 4 by 
GPU memory constraints when processing both modalities simultaneously. 
For domain adaptation, training alternates between source and target batches: 
odd iterations process source samples with emotion labels, even iterations 
process target samples without labels. Regularization combines dropout, label 
smoothing, and mixed precision as specified in Table 4.1. Validation runs after 
each epoch on the complete validation set. Early stopping monitors validation 
accuracy with patience of 15 epochs (single-dataset) or 20 epochs (domain 
adaptation), preserving the checkpoint achieving highest validation 
performance. 

 

Hyperparameter Base Exps DA Exps 

Optimizer AdamW AdamW 

Base learning rate 5×10⁻⁵ 5×10⁻⁵ 

Weight decay 1×10⁻⁴ 2×10⁻⁵ 

LR scheduler CosineWarmup CosineWarmup 

Dropout (LoRA) 0.05(V) 0.1 

Batch size 16(A)+4(V) 4 

Training epochs 50 60 

Early stop patience 15 20 

Mixed precision FP16 FP16 

 
Table 4.1: Training Hyperparameters 

 
Model configurations vary across experimental phases, especially between 

before-adaptation and in-adaptation. For audio-only and standard multimodal 
experiments, EmoCatcher processes 128×128 mel-spectrograms using 144 
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GRU hidden units per direction, producing 288-dimensional embeddings. 
TimeSformer processes 8-frame sequences at 224×224 resolution, outputting 
768-dimensional features through temporal mean pooling. The progressive 
fusion module projects these embeddings to a common 192-dimensional space, 
applies two stages of cross-modal attention with 8 heads each, and classifies 
through a two-layer network (192→192→8).  

Domain adaptation experiments require computational adjustments. Video 
inputs reduce to 112×112 resolution due to GPU memory constraints when 
processing dual-domain batches. This resolution change necessitates bicubic 
interpolation of TimeSformer's positional encodings from 14×14 to 7×7 spatial 
grids. To maintain parameter efficiency during fine-tuning, TimeSformer 
incorporates Low-Rank Adaptation (LoRA) in attention layers with rank 4, 
scaling factor 8, and dropout 0.1. The fusion classifier outputs 6 classes 
matching CREMA-D's taxonomy. 

 

4.2 Evaluation Metrics 
 
To comprehensively evaluate the performance of the model, we used multiple 
complementary metrics during the evaluation phase. These metrics provide 
insights into classification accuracy, precision-recall trade-offs, and model 
calibration across emotion categories. 
 
Accuracy The overall classification accuracy measures the proportion of 
correctly predicted samples: 
 

Accuracy = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹

(4.1) 

 
where TP, TN, FP, and FN represent positive samples correctly predicted 
positive samples, negative samples correctly predicted as negative, negative 
samples incorrectly predicted as positive, and positive samples incorrectly 
predicted as negative, respectively. While accuracy is a useful general metrics, 
it may be less informative in the presence of class imbalance. Therefore, 
additional metrics are used to provide a more comprehensive evaluation. 

 
Marco F1-Score Mar F1-Score is used to better handle class imbalance by 
evaluating performance between all classes equally. It is calculated as the 
average F1-Score of each class and incorporates precision and recall as core 
components. According to the definition of TP, TN, FP, and FN in the last 
phrase, Precision and Recall are formulated as: 
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Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

(4.2) 

 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

(4.3) 

 
The F1-Score is a metric that balances Precision and Recall, providing a 

single measure of a model’s accuracy for a specific class. For a given class 𝑖𝑖, 
the F1-Score is defined as the harmonic mean of Precision and Recall: 
 

𝐹𝐹1𝑖𝑖 = 2 ⋅ Precision ⋅ Recall
Precision + Recall

(4.4) 

 
To evaluate performance across multiple classes, the Macro F1-Score is 

computed as the average F1-Score across all C classes: 
 

Marco F1Score = 1
𝐶𝐶

�𝐹𝐹1𝑖𝑖

𝐶𝐶

𝑖𝑖=1
(4.5) 

 
where C represents total number of classes and 𝐹𝐹1𝑖𝑖 represents F1-score of 
class ith, which depends on the class-specific Precision and Recall values. 
Besides, Marco F1-Score ensures that the performance of minority classes is 
adequately reflected, making it particularly suitable for voice disorder 
detection and classification tasks. 

 
Domain Gap It quantifies the performance degradation when transferring a 
model from the source domain(RAVDESS) to the target domain(CREMA-D): 
 

Domain Gap = Acc𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − Acc𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (4.6) 

 
where Accsource  and Acctarget  represent validation accuracies on source and 
target domains, respectively. A smaller gap indicates more successful domain 
adaptation. For instance, a domain gap of 0.15 means the model performs 15% 
worse on the target domain compared to the source domain. Ideally, effective 
domain adaptation should minimize this gap while maintaining high source 
domain performance, avoiding negative transfer where source performance 
degrades excessively. 

Results represent averages over three independent training runs using 
different random seeds (42, 123, 2024) to account for optimization 
stochasticity. These seeds control PyTorch’s random number generator, 
affecting weight initialization, data loader shuffling, and dropout masks. 
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Standard deviations are reported where variance exceeds 0.5 percentage points, 
indicating meaningful variability across runs. Training time averages 3.5 hours 
per 50-epoch run for multimodal configurations and 4.2 hours per 60-epoch 
domain adaptation run on the described hardware.  

 

4.3 Results 
 
4.3.1 Single-Modality and Multi-Modality Performance 

Comparison 
 
We first evaluate the effectiveness of our multimodal framework by comparing 
single-modality baselines with various fusion strategies. As shown in Table 4.2, 
the video-only model achieves higher accuracy (0.8507 ± 0.0104) compared to 
the audio-only model (0.7986 ± 0.0402), suggesting that facial expressions 
provide more discriminative cues for emotion recognition in the RAVDESS 
dataset. However, the audio-only model exhibits larger performance variance, 
indicating sensitivity to acoustic variations across speakers. 

Among the multimodal fusion strategies, the mid-stage fusion approach 
demonstrates superior performance with an accuracy of 0.8961 ± 0.0191 and 
F1-score of 0.8985 ± 0.0293, outperforming both single-modality baselines and 
other fusion methods. This indicates that progressive cross-modal attention 
effectively captures complementary information between audio and visual 
modalities. The early fusion strategy achieves comparable results (0.8819 ± 
0.0361), while late fusion shows relatively lower performance (0.8194 ± 0.0855) 
with higher variance, suggesting that decision-level fusion may struggle to 
effectively integrate the heterogeneous modality representations. 

 
 Accuracy F1-Score 

Single-Modality 
Audio-only 0.7986± 0.0402 0.7867± 0.0175 
Video-only 0.8507 ± 0.0104 0.8485 ± 0.0079 

Multi-Modality 
Ealy Fusion 0.8819 ± 0.0361 0.8820 ± 0.0365 
Mid Fusion 0.8961 ± 0.0191 0.8985 ± 0.0293 
Late Fusion 0.8194 ± 0.0855 0.8156 ± 0.0931 

 

Table 4.2: Baseline Performance Comparison 
 

Note: Baselines use random split on RAVDESS; domain adaptation uses speaker-
independent split. 
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4.3.2 Domain Adaptation Results 
 
Table 4.3 presents the domain adaptation performance when transferring from 
RAVDESS (source domain) to CREMA-D (target domain). The base model 
without any adaptation techniques achieves 0.7819 ± 0.0311 accuracy on the 
source domain but drops significantly to 0.5867 ± 0.0175 on the target 
domain, resulting in a substantial domain gap of +0.2052. This large 
performance degradation highlights the domain shift challenge between the 
two datasets due to differences in recording conditions, speaker diversity, and 
emotional expression styles. 

Progressive incorporation of domain adaptation techniques effectively 
reduces this gap. Adding data augmentation (Base+augment) improves target 
accuracy to 0.7067 ± 0.0415 while maintaining source performance at 0.8505 
± 0.0742, reducing the domain gap to +0.1438. Further applying LoRA-based 
parameter-efficient fine-tuning (Base+LoRA) yields the best balance with a 
minimal domain gap of +0.1051, where source accuracy reaches 0.8321 ± 
0.0019 and target accuracy achieves 0.7270 ± 0.0248. The low variance in 
source domain performance demonstrates stable training with LoRA. 

 
 Source Acc Target Acc Domain Gap 

Base 0.7819 ± 0.0311 0.5867± 0.0175 +0.2052 
Base+augment 0.8505 ± 0.0742 0.7067± 0.0415 +0.1438 
Base+LoRA 0.8321 ± 0.0019 0.7270± 0.0248 +0.1051 
Base+Full 0.9103± 0.0850 0.7550± 0.0270 +0.1553 

 

Table 4.3: Domain Adaptation Performance Comparison 
 

The full configuration (Base+Full) combining all techniques achieves the 
highest source domain accuracy of 0.9103 ± 0.0850 and competitive target 
accuracy of 0.7550 ± 0.0270, resulting in a domain gap of +0.1553. Although 
this configuration shows strong source domain performance, the slightly larger 
gap compared to Base+LoRA suggests a trade-off between maximizing source 
performance and minimizing domain shift. The reduced domain gap from 
0.2052 to approximately 0.10-0.15 across adapted models demonstrates the 
effectiveness of our domain adaptation strategy in learning transferable 
emotion representations across heterogeneous datasets. 
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Chapter 5 
 

Conclusion  
 
This thesis set out to tackle a problem that sounds straightforward on paper 
but proved remarkably stubborn in practice: making emotion recognition 
models work across different datasets. The journey from RAVDESS's pristine 
studio recordings to CREMA-D's messier, more realistic data exposed just 
how fragile our models can be when recording conditions change. The results 
tell a clear story: progressive middle fusion achieved 89.61% accuracy on 
RAVDESS, substantially outperforming both audio-only (79.86%) and video-
only baselines (85.07%), while our conservative domain adaptation approach 
reduced the cross-dataset performance gap from 0.20 to around 0.10-0.15. 

The fusion experiments confirmed that architecture matters. Progressive 
middle fusion with multiple attention stages beat simpler alternatives—early 
concatenation managed 88.19% while late fusion struggled at 81.94%. What 
took time to figure out was that those multiple attention stages weren't just 
architectural complexity for its own sake. The hierarchical design captures 
different levels of audio-visual correspondence: low-level synchronization like 
lip-speech alignment in early layers, higher-level semantic relationships like 
the correlation between vocal intensity and facial tension in later layers. 
Single-stage fusion looked promising in training curves but plateaued 
disappointingly early. 

The domain adaptation experiments were genuinely difficult. That baseline 
gap of 0.20 was worse than expected, and the first several attempts at 
adversarial training were disasters. Aggressive alpha scheduling (ramping up 
to 0.5 like some papers suggest) caused catastrophic forgetting—the model 
lost its ability to recognize RAVDESS emotions while barely improving on 
CREMA-D. This forced a complete rethinking of the training strategy. The 
ultra-conservative approach we eventually settled on—keeping alpha below 
0.0001 for 40% of training and maxing out at just less 0.1—felt almost timid 
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compared to standard DANN implementations, but it worked. The key insight 
was that RAVDESS to CREMA-D isn't a minor distribution shift. The 
expression styles, recording quality, and emotional authenticity differ 
substantially enough that complete domain invariance means discarding 
source-specific patterns that actually transfer meaningfully. Moderate domain 
confusion around 0.75 proved more practical than perfect confusion at 1.0. 

I also need to be upfront about the experimental process and hardware 
limitations that shaped this work. The hyperparameters in Chapter 4 
represent successful endpoints after extensive trial and error, not first 
attempts. Learning rates, dropout, LoRA ranks, attention dimensions—
everything got adjusted repeatedly. Some experiments crashed with GPU out-
of-memory errors, others trained smoothly but validated poorly. Most 
configurations weren't meaningfully informative; they were just points on the 
path to something that worked. This is standard in research, but worth 
stating explicitly: the clean thesis narrative never captures the messy reality. 
More significantly, the EmoCatcher audio encoder didn't perform as well as 
hoped because my RTX 3060 couldn't handle the published architecture 
alongside TimeSformer during multimodal training. Reducing GRU hidden 
dimensions and convolutional channels to fit in 6GB VRAM was necessary 
but limiting—the 79.86% audio-only accuracy is respectable but clearly leaves 
performance on the table, particularly for emotion pairs like happy-surprised 
and neutral-calm that showed persistent confusion. What saved the situation 
was TimeSformer's genuine power. Even after LoRA adaptation and 
resolution reduction to 112×112, the video encoder brought 85.07% accuracy. 
When fused through progressive attention, the strong visual features 
essentially compensated for the audio encoder's capacity limitations. The 10% 
jump from audio-only to multimodal isn't just additive—the fusion 
mechanism learned to weight reliable visual cues more heavily while still 
extracting useful prosodic information. This complementarity is exactly why 
multimodal approaches matter, but it also masked an audio pipeline weakness 
that might surface in video-degraded scenarios. 

The computational efficiency optimizations weren't optional given 
hardware constraints but turned out surprisingly beneficial. Reducing video 
resolution from 224×224 to 112×112 cut GPU memory by 58%, making 
domain adaptation feasible at all. Storage compression to .npz format was 
equally critical for preprocessing full CREMA-D. Initially I worried these 
compromises would kill performance—facial expressions rely on subtle muscle 
movements that might disappear at lower resolution. But ablation studies 
showed minimal degradation, maybe 1-2 percentage points. Apparently, major 
expression features (mouth shape, eye aperture, brow position) remain clear 
even at 112×112 for cropped faces. The efficiency gains from target domain 
subsampling (using only 25% of CREMA-D) deserve more credit: training 
time dropped from 6+ hours to under 4 hours without meaningful accuracy 



Conclusion 

  62 

loss. Strategic sampling maintaining class balance and demographic diversity 
proved sufficient—you don't need massive target datasets for reasonable 
adaptation. 

Several limitations point toward necessary future work. The one-way 
transfer paradigm was pragmatic but limiting—bidirectional or multi-source 
adaptation could potentially improve both datasets. The label mapping 
strategy collapsing RAVDESS's 8 emotions into CREMA-D's 6 categories 
discarded information about "calm" and "surprised" that hierarchical 
classification might preserve. More fundamentally, both datasets contain 
primarily acted or semi-acted expressions from scripted speech. The gap to 
spontaneous conversational emotion in genuinely uncontrolled environments—
video calls with bad lighting, background noise, people not trying to emote 
clearly—remains substantial and largely untested. Self-supervised pre-training 
seems particularly promising given our audio encoder's capacity issues. With 
better hardware, pre-training on Wav2Vec 2.0's scale (hundreds of thousands 
of hours) would likely solve the prosodic modeling limitations encountered 
here. Similarly, masked autoencoding for video could improve TimeSformer's 
expression understanding beyond Kinetics-400 action recognition. Extending 
to additional modalities (physiological signals, text transcripts, body language) 
would enrich emotional information, though each introduces its own domain 
shift challenges and data collection requirements. 

Deployment considerations matter more than I initially appreciated. 
Latency is critical for real-time applications—our current 200ms processing 
time for 3-second clips is borderline acceptable but needs improvement 
through quantization or distillation. Privacy concerns favor on-device 
processing to avoid sending sensitive emotional data to servers, requiring 
further compression. Interpretability would help users trust the system by 
showing which facial movements or vocal patterns triggered classifications. 
Most importantly, fairness across demographics—ensuring the model works 
equally well for different age groups and ethnicities—is ethically critical but 
inadequately addressed here due to training data limitations. The conservative 
domain adaptation approach probably generalizes beyond emotion recognition 
to other affective computing tasks like stress detection or engagement 
estimation, wherever aggressive adversarial training risks catastrophic 
forgetting. Systematic testing across multiple transfer scenarios could establish 
principled guidelines for scheduling parameters rather than the educated 
guessing and validation tuning used here. 

In the end, this work demonstrates that cross-dataset emotion recognition 
is achievable with careful design but remains challenging. We reduced the 
RAVDESS→CREMA-D gap from 20% to 10-15%—meaningful progress 
leaving substantial room for improvement. Progressive fusion proved more 
effective than simpler alternatives, and conservative domain adaptation 
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avoided catastrophic forgetting while enabling transfer. The efficiency 
optimizations made the entire effort feasible within hardware constraints, 
sometimes with surprising benefits. What I hope this contributes, beyond 
specific technical results, is a realistic picture of what works and what doesn't 
in practical domain adaptation for affective computing. The hardware 
limitations forcing architectural compromises, the aggressive strategies that 
failed completely, the hyperparameter searches consuming weeks—this messy 
reality rarely makes it into papers but might help others avoid similar dead 
ends. Emotion recognition systems working reliably across diverse real-world 
conditions remain aspirational rather than solved, but piece by piece, through 
work tackling specific transfer scenarios and learning from both successes and 
failures, we're getting closer. 
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