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Abstract

Emotion recognition technology plays a crucial role in human-computer
interaction and affective computing applications, with potential applications
spanning from mental health monitoring to educational technology. However,
the majority of existing emotion recognition systems suffer from significant
performance degradation when deployed across different environments and
datasets, limiting their practical applicability. This highlights the critical need
for robust cross-domain solutions that can maintain performance consistency
across varied real-world conditions. With the advancement of multimodal
learning and domain adaptation techniques, attention-based fusion models
have shown promising results in emotion recognition tasks. However, cross-
domain emotion recognition still faces substantial challenges due to domain
distribution shifts, limited computational resources, and the need to balance
source and target domain performance. Existing domain adaptation methods
often exhibit training instability and catastrophic forgetting, where aggressive
adversarial training sacrifices source domain performance for marginal target
domain improvements, restricting the practical deployment of these systems.
To address these issues, this study proposes a progressive multimodal
fusion architecture with ultra-conservative domain adaptation for cross-
domain emotion recognition. We systematically evaluate three fusion
strategies to identify the optimal multimodal integration approach, and
implement a novel conservative alpha scheduling mechanism to ensure
training stability. In addition, computational efficiency optimization is
incorporated to enable practical deployment in resource-constrained scenarios.
Specifically, we design a comprehensive fusion comparison framework with
three different strategies—truly early fusion, progressive middle fusion with
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multi-stage cross-attention, and weighted late fusion—to examine their
effectiveness in cross-domain scenarios. Furthermore, we focus on transferring
knowledge from controlled laboratory settings (RAVDESS) to naturalistic
environments (CREMA-D), implementing an ultra-conservative domain
adaptation strategy with alpha scheduling ranging from 0.0001 to 0.1,
compared to traditional methods that scale to 1.0, along with strategic target
domain subset selection to reduce computational requirements by
approximately 5x.

The results demonstrate that progressive middle fusion combined with
conservative domain adaptation significantly outperforms baseline approaches
in cross-domain transfer tasks. In speaker-independent evaluation, our method
maintains high source domain performance while substantially improving
target domain accuracy compared to =zero-shot transfer baselines. The
conservative alpha scheduling strategy achieves superior training stability with
notably lower loss variance compared to traditional adversarial methods, while
the efficient data balancing approach reduces training time and computational
overhead without compromising performance quality. These results
demonstrate the strong generalization ability and computational efficiency of
the proposed approach, highlighting its potential for practical cross-domain
emotion recognition deployment in real-world applications where both
performance consistency and resource constraints are critical considerations.
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Introduction

Chapter 1

Introduction

Motivation and Background Emotion recognition is an essential
building block in intelligent systems, enabling machines to interpret and
respond to human affective states. This capability underpins numerous
applications, such as adaptive human-computer interaction, emotion-aware
healthcare monitoring, and intelligent educational systems. However, while
models perform well in controlled laboratory settings, their performance often
deteriorates significantly when applied in real-world scenarios that differ in
population characteristics, environmental conditions, and data acquisition
methods.

Modern deployment environments—particularly in healthcare, education,
and edge computing—impose stringent constraints on privacy, computational
efficiency, and generalizability. For example, healthcare applications demand
local processing on mobile devices to preserve patient privacy. Educational
tools must adapt to diverse student populations with minimal delay.
Meanwhile, edge devices such as smart speakers and wearable sensors must
operate under limited memory and energy budgets while delivering real-time
responses. These real-world requirements expose a persistent limitation in
emotion recognition systems: domain generalization.

This domain gap—the mismatch between training data (e.g., RAVDESS)
and deployment data (e.g., CREMA-D)—is a fundamental barrier to practical
emotion recognition. Models trained on controlled datasets often struggle
when exposed to variations in acoustic background, speaker demographics,
and sensor quality. Such performance degradation renders many models
unusable in real-world settings, particularly in scenarios where domain-specific
data collection is infeasible or unethical.

Moreover, traditional domain adaptation methods rely heavily on large
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target datasets and computationally intensive training procedures, which are
impractical in constrained environments[1l], [2]. As a result, many advanced
systems remain confined to academic research, while deployed solutions rely
on simplistic and brittle heuristics.

Challenges in Cross-Domain Multimodal Emotion Recognition The
core difficulty in cross-domain emotion recognition lies in managing three
interdependent challenges: domain shift, computational constraints, and
multimodal degradation.

Domain shift occurs across multiple dimensions. In healthcare, for instance,
models must generalize from clean lab-recorded speech to noisy, uncontrolled
clinical recordings. In education, systems trained on adult datasets must
interpret children's emotional cues, which differ in vocal tone and facial
expression dynamics. Even hardware differences—such as camera resolution or
microphone type—can lead to substantial performance drops if not adequately
addressed.

Computational constraints are particularly salient in edge and mobile
environments, where memory and processing budgets are extremely limited.
Traditional adversarial domain adaptation methods—though powerful—are
often computationally prohibitive due to their reliance on gradient reversal
and iterative optimization. These methods are incompatible with deployment
on personal devices such as tablets, smartphones, or classroom hardware.

Multimodal fusion under domain shift introduces further complexity.
Audio and visual modalities often degrade asymmetrically across domains. For
example, visual data may be affected by lighting changes while audio remains
clear, or vice versa. Traditional fusion strategies assume stable modality
reliability, which is not guaranteed in real-world deployments. Moreover,
fusion strategies must remain computationally lightweight to meet latency
requirements.

Finally, limited access to target domain data—due to privacy regulations,
data scarcity, or diversity in user populations—prevents traditional supervised
learning from being feasible. Thus, any viable solution must function under
small-data conditions while avoiding overfitting and instability.

Research Objectives and Contributions This thesis proposes a resource-
efficient framework for cross-domain multimodal emotion recognition,
specifically tailored to operate under realistic deployment constraints. The
contributions are as follows:

1. Conservative Domain Adaptation: A novel adversarial training schedule
is proposed using ultra-conservative alpha scaling. This avoids the
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optimization  instability = commonly  observed  when  domain
discriminators overpower emotion classifiers in small-data settings.

2. Progressive Multimodal Fusion Architecture: A middle-fusion strategy
is introduced, leveraging attention-based cross-modal interactions to
capture complementary cues while being resilient to domain-specific
modality degradation.

3. Computational Efficiency Enhancements: An efficient training strategy
is implemented by sampling small, representative subsets of the target
domain (e.g., 25% of CREMA-D) guided by meta-learning principles.
This reduces computational load without compromising adaptation
quality.

4. Robustness Evaluation Framework: The model is tested under
controlled degradation scenarios—including audio noise injection, visual
blur, and mixed conditions—to systematically evaluate real-world
reliability.

Technical Innovations and Practical Impact Our innovations provide a
comprehensive solution to bridge the gap between laboratory research and
deployment-ready systems:

1. The alpha scheduling algorithm mathematically controls adversarial loss
contribution, ensuring domain alignment without compromising task
performance.

2. The efficient fusion design ensures low computational overhead,
allowing deployment on consumer-grade or embedded hardware.

3. The robustness framework provides a principled methodology for
benchmarking models under realistic degradation, improving
interpretability and reliability.

These innovations collectively enable real-time, privacy-preserving emotion
recognition on devices such as mobile tablets, classroom systems, and wearable
sensors. Furthermore, this work supports broader goals of democratizing Al
technologies by enabling their application in low-resource settings across
healthcare, education, and consumer domains.

Summary This study focuses on deep learning-based multimodal emotion
recognition under resource and privacy constraints, with experiments centered
on data augmentation, progressive cross-modal fusion, and cross-domain
generalization. We demonstrate that an ultra-conservative adversarial
schedule together with few-shot target sampling improves robustness and
adaptability across recording conditions while reducing computational cost. In
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addition, progressive middle fusion captures complementary affective cues
from audio and video and remains stable when modality reliability shifts.
Finally, we evaluate pre-trained backbone choices (EmoCatcher encoder;
TimeSformer with parameter-efficient tuning) and compare domain-adaptive
versus non-adaptive systems, as well as audio-only and video-only baselines, in
multi-class classification using accuracy, macro-F1, domain gap, and domain-
confusion scores.

The rest of this thesis is organized as follows: Chapter 2 presents a
literature review covering domain adaptation, multimodal fusion, and
deployment challenges in affective computing. Chapter 3 describes our
methodology, including the architecture design and training strategies.
Chapter 4 details the experimental setup and results. Chapter 5 concludes the
work and highlights its broader implications, then discusses limitations and
future directions.
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Chapter 2

State of the Art

2.1 Background and Applications of Emotion

Recognition

Emotion recognition has emerged as a critical component in enabling
machines to understand and respond to human affective states, bridging the
gap between artificial intelligence systems and natural human communication.
As comprehensively reviewed by Poria et al. [3], the ability to automatically
detect and interpret emotions from multimodal signals—including speech,
facial expressions, physiological signals, and text—has profound implications
across diverse domains, transforming how humans interact with technology
and each other.

Emotion Recognition in Human-Computer Interaction

In the realm of human-computer interaction (HCI), emotion-aware systems
have revolutionized user experience by adapting their behavior based on
detected emotional states [4]. Picard's seminal work on affective computing [5]
laid the theoretical foundation for this field, proposing that computers should
recognize, interpret, and simulate human emotions to achieve more natural
and effective human-machine interaction. Building on this foundation,
intelligent virtual assistants, conversational agents, and social robots now
leverage emotion recognition to provide empathetic responses, thereby
increasing user satisfaction and engagement [4].
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Calvo et al.'s comprehensive handbook [4] documents how emotion
recognition has been successfully deployed in customer service systems, where
detecting customer dissatisfaction enables proactive intervention and
improved service quality. The handbook also highlights applications in
automotive safety, where driver emotion monitoring systems analyze facial
expressions and vocal patterns in real-time to detect dangerous states such as
fatigue, anger, or distraction, issuing alerts or activating autonomous driving
features to reduce accident rates.

Applications in Healthcare and Mental Health

The healthcare sector has witnessed substantial benefits from emotion
recognition technologies, particularly in mental health assessment and
monitoring. As Cummins et al. [6] extensively review, traditional psychiatric
evaluation relies heavily on subjective self-reports and clinical interviews,
which can be biased or incomplete. Automated emotion recognition provides
objective, continuous monitoring of patients' affective states, enabling early
detection of conditions such as depression, anxiety, and post-traumatic stress
disorder (PTSD).

Cummins et al. [6] document numerous studies demonstrating that
automatic analysis of speech patterns can identify depressive symptoms with
accuracy comparable to trained clinicians. The review highlights how vocal
acoustic biomarkers—including prosody, speaking rate, and voice quality—
serve as reliable indicators of mental health status. These findings have
enabled teletherapy platforms to integrate emotion recognition for remote
patient monitoring, particularly valuable during circumstances when in-person
sessions are limited.

Beyond depression detection, Poria et al. [7] discuss applications in autism
spectrum disorder (ASD) research, where emotion recognition technologies
assist individuals who struggle with recognizing and expressing emotions.
Interactive systems providing real-time feedback on emotional expressions
serve as valuable training tools, helping patients develop social communication
skills in controlled, supportive environments.

Educational Technology and Affective Learning

Educational technology has increasingly recognized the importance of
students' emotional states in learning effectiveness. As detailed in Calvo et
al.'s handbook [4], intelligent tutoring systems (ITS) equipped with emotion
recognition capabilities can detect confusion, boredom, or frustration,
adapting instructional strategies to maintain engagement and optimize
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learning outcomes. The handbook cites empirical evidence showing that
emotion-aware tutoring systems improve student performance by 15-20%
compared to traditional systems by identifying moments of struggle and
providing targeted support.

In massive open online courses (MOOCs) and remote learning
environments, where direct teacher-student interaction is limited, automated
emotion analysis helps instructors understand class-wide emotional trends [4].
The handbook discusses how analyzing aggregated emotional data reveals
which course segments cause confusion or disengagement, informing iterative
course improvements. Some platforms now employ real-time emotion
monitoring to detect students requiring additional assistance, facilitating
timely intervention [1, 2].

The integration of emotion recognition in educational contexts represents a
shift toward affective learning paradigms, where pedagogical strategies are
informed not only by cognitive metrics but also by learners' emotional states.
This holistic approach acknowledges that emotions play a fundamental role in
attention, memory formation, and motivation—key factors determining
learning success.

Entertainment and Media Analysis

The entertainment industry leverages emotion recognition for content
recommendation, audience analysis, and interactive experiences. Poria et al. [7]
review how streaming platforms analyze viewers' emotional responses to
recommend content matching their current mood or predicted preferences.
During content production, filmmakers use emotion recognition to test
audience reactions to different cuts, optimizing narrative pacing and emotional
impact.

Video game development has particularly embraced emotion recognition to
create adaptive, emotionally responsive gameplay. Calvo et al.'s handbook [4]
describes games that detect player frustration and dynamically adjust
difficulty levels, while horror games intensify suspense by monitoring fear
responses. Virtual reality (VR) applications combine emotion recognition with
immersive environments to create therapeutic experiences for phobia
treatment or to enhance entertainment value through emotionally adaptive
storytelling.

Market research represents another significant application domain. Poria
et al. [7] note that companies employ emotion recognition to analyze consumer
reactions to advertisements, product designs, and brand messaging. By
capturing authentic emotional responses in naturalistic settings—rather than
relying solely on post-exposure surveys—companies gain insights that inform
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more effective marketing strategies. This approach addresses limitations of
traditional market research methods, which often suffer from social
desirability bias and poor recall.

The breadth of these applications underscores the transformative potential
of emotion recognition technologies across human activity domains. However,
as Poria et al. [7] emphasize, realizing this potential requires addressing
fundamental challenges in multimodal signal processing, cross-context
generalization, and ethical considerations regarding privacy and consent. The
following sections examine technical approaches developed to address these
challenges, focusing on audio-based methods (Section 2.2), video-based
methods (Section 2.3), multimodal fusion strategies (Section 2.4), and domain
adaptation techniques (Section 2.5) that enable emotion recognition systems
to generalize across diverse datasets and real-world conditions.

2.2 Audio-based Emotion Recognition

Speech emotion recognition (SER) extracts affective states from acoustic and
prosodic patterns in vocal signals. Emotions manifest through multiple
acoustic dimensions—pitch variation, energy distribution, speaking rate, and
spectral characteristics—making speech a remarkably rich channel for affective
computing. Over the past two decades, the field has undergone a fundamental
transformation: from carefully engineered acoustic features fed into
conventional classifiers to deep learning architectures that discover
hierarchical emotion representations directly from raw audio or spectrograms

18].

2.2.1 From Hand-crafted to Learned Representations

Traditional approaches to speech emotion recognition centered on extracting
manually designed acoustic features. Researchers identified low-level
descriptors (LLDs)—pitch (fundamental frequency FO0), energy, formants,
zero-crossing rate—and computed statistical functionals over these measures:
means, standard deviations, extrema, and percentiles [5], [9]. The extended
Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) [10] exemplified this
paradigm, offering 88 carefully curated features designed to capture emotion-
relevant acoustic characteristics. These feature vectors were then classified
using Support Vector Machines, Hidden Markov Models, or Gaussian Mixture
Models.

This approach delivered moderate success on controlled laboratory
datasets but revealed critical weaknesses. Manual feature engineering
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demanded substantial domain expertise and proved labor-intensive. More
fundamentally, hand-crafted features struggled to capture the complex
temporal dynamics and subtle emotional nuances inherent in spontaneous
speech. Performance degraded sharply when systems encountered diverse
speakers, varied recording conditions, or cross-cultural expressions—precisely
the scenarios encountered in real-world deployment [11].

The deep learning revolution fundamentally altered this landscape. Rather
than manually specifying which acoustic patterns matter for emotion
recognition, convolutional and recurrent neural networks learned hierarchical
representations directly from data [12], [13]. A pivotal development was the
adoption of mel-spectrograms as input representations—time-frequency
visualizations that align with human auditory perception while capturing both
spectral content and temporal evolution.

Mel-filter bank with same bank area

B 3
Audio file Pre-emphasis Framing Windowing |FFT(*)| l \ sum ‘ log10(*) Mel Spectrogram

. [ 1 | | .

1 ! i

i | :

I ! 0 . i

Figure 2.1: The technical architecture of converting audio files into Mel
spectrograms from a raw audio file[14].

Mel-spectrogram Construction and Perceptual Relevance

The mel-spectrogram computation transforms raw audio waveforms into
perceptually meaningful representations through several carefully designed
stages. Given a raw audio signal x(t) sampled at rate f, (typically 22.05 kHz
for speech), the process begins with Short-Time Fourier Transform (STFT)
analysis. The signal is segmented into overlapping frames—commonly 2048
samples with 50% overlap (hop length of 1024 samples)—and each frame is
multiplied by a window function (usually Hamming or Hann) to minimize
spectral leakage. The discrete Fourier transform of each windowed frame
produces a complex-valued spectrogram S(f,t) representing frequency content
evolving over time.

The magnitude spectrogram |S(f,t)|? captures power distribution across
frequencies but uses a linear frequency scale misaligned with human auditory
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perception. The human cochlea processes sound using a quasi-logarithmic
frequency scale—low-frequency differences (e.g., 100 Hz vs. 200 Hz) are
perceptually more salient than equivalent high-frequency differences (e.g.,
5000 Hz vs. 5100 Hz). The mel scale addresses this through the transformation:

)
m = 25951o 14+— 2.1
glo( + 100 (2.1)
where m represents mel-frequency and f represents linear frequency in Hertz.
This logarithmic mapping concentrates frequency resolution where human
hearing is most sensitive while coarsening resolution at higher frequencies
where emotional prosody carries less information [14], [15].

Converting the magnitude spectrogram to mel-scale involves applying a
bank of triangular filters spaced according to mel-scale intervals. Typically,
128 mel-filters span the frequency range 0-8000 Hz, though emotion
recognition often limits the upper bound to 6000 Hz since most prosodic
information concentrates below this threshold. Each filter performs weighted
integration of magnitude spectrogram bins falling within its frequency range,
producing a mel-spectrogram M(m,t) with dimensions [1,,.s X 7 fames) -
Finally, logarithmic compression—converting to decibel scale via
log,o(M(m,t))—yields the final representation that Convolutional Neural
Networks (CNNs) process.

This representation offers substantial advantages for emotion recognition.
The mel-frequency warping emphasizes prosodic features crucial for affective
perception—fundamental frequency variations, formant structures, and
harmonic relationships—while de-emphasizing high-frequency spectral details
less relevant for emotion discrimination [16]. The time-frequency structure
naturally suits convolutional processing: frequency patterns analogous to
image features can be detected through learned filters, while temporal
evolution unfolds along the time axis.

Early deep learning approaches applied CNNs to mel-spectrograms,
treating them analogously to images. Convolutional layers with small kernels
(e.g., 3x3 or 5x5) learned hierarchical acoustic patterns: low-level spectral
edges and textures in initial layers, mid-level phonetic structures in
intermediate layers, and high-level emotional signatures in deeper layers [5],
[6]. Pooling operations—max-pooling or average-pooling applied spatially—
introduced local translation invariance, allowing learned filters to recognize
acoustic patterns regardless of slight temporal or frequency shifts[17], [18], [19].

2.2.2 Recurrent Architectures and Temporal Modeling

10
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While CNNs effectively capture local spectro-temporal patterns, emotions
unfold through extended sequences requiring models that maintain and update
internal states based on temporal context. Recurrent Neural Networks,
particularly Long Short-Term Memory (LSTM) networks [20] and Gated
Recurrent Units (GRUs) [21], became instrumental for modeling speech's
inherently sequential nature.

The standard Recurrent Neural Networks (RNNs) [22] maintains a hidden
state h, that updates at each time step according to:

hy = tanh(W),, b,y + Wy, + by) (2.2)

where x, represents input at time ¢, W,, and W_, are learnable weight
matrices, and b, is a bias vector. This formulation enables the network to
accumulate information across time, with h, theoretically encoding all
previous inputs x,,x,,...,z, . However, vanilla RNNs suffer from vanishing
and exploding gradients during backpropagation through time, making them
incapable of capturing long-range dependencies spanning more than 5-10 time
steps—insufficient for speech emotion recognition where affective cues may be
distributed across entire utterances [23].

LSTM Architecture and Gating Mechanisms

LSTMs address these limitations through a sophisticated gating mechanism
that regulates information flow [24]. The LSTM cell maintains two states: a
hidden state h, (analogous to standard RNNs) and a cell state ¢,that serves as
a long-term memory. Three gates control cell state updates:

The forget gate determines which information from the previous cell state
to discard:

fo= U(Wf g + bf) (2.3)

where o denotes the sigmoid function producing values in [0,1], and for the
symbol [-,-] represents concatenation. Values near 0 erase corresponding cell
state components, while values near 1 preserve them.

The input gate decides which new information to add to the cell state. It
operates in two stages: first, a sigmoid layer determines which values to
update:

iy = o(W,; - [hy_y,2,] +b;) (2.4)

(2

11
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Second, a tanh layer creates candidate values for addition:

¢, = tanh(W, - [h, 4,2, +b,) (2.5)

C

The cell state then updates according to:
=50 1+i,0¢ (2.6)

where ©® denotes element-wise multiplication. This formulation allows the
network to selectively forget irrelevant past information while incorporating
new task-relevant information—crucial for emotion recognition where only
certain portions of an utterance carry affective signals.

Finally, the output gate determines which parts of the cell state to expose
as the hidden state:

o, =W, [hy_1,2,] +,) (2.7)

o

h, = o, ® tanh(c,) (2.8)

This gating architecture enables LSTMs to maintain information over
hundreds of time steps, capturing prosodic patterns that unfold across entire
utterances. For speech emotion recognition processing mel-spectrograms at a
typical frame rate of ~43 Hz (with 512-sample hop length at 22.05 kHz
sampling), even a 3-second utterance spans ~130 frames—well within LSTM
modeling capacity.

GRUs: Simplified Temporal Modeling

GRUs offers a streamlined alternative to LSTMs with fewer parameters and
comparable performance [25]. GRUs merge the forget and input gates into a
single update gate and combine cell and hidden states, reducing computational
overhead while maintaining long-range dependency modeling. The update gate
controls information retention from the previous time step:

zp=0(W, - [hy_y,7,] +D,) (2.9)

z

A reset gate determines how much past information to discard when
computing the candidate activation:

ry=0W, [hyy,2,]+0,) (2.10)
h, = tanh(W,, - [r, © h,_,,3,] + b)) (2.11)

12
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The final hidden state interpolates between previous and candidate
activations:

hy=(1—=2)0h_1+20 7% (2.12)

This formulation provides similar expressive power to LSTMs with
approximately 25% fewer parameters—a significant advantage when training
on limited emotion datasets. In practice, bidirectional variants (Bi-LSTM, Bi-
GRU) prove most effective for speech emotion recognition [26]. Bidirectional
processing runs separate forward and backward RNNs, concatenating their
hidden states:

hy = [hyi hy] (2.13)

where 7lt encodes past context (frames 1 to t) and 7Lt encodes future context
(frames t to T'). This allows each position's representation to leverage
information from the entire utterance—particularly valuable for emotion
recognition where anticipatory prosody (voice quality changes preceding
emotionally charged words) and carryover effects (emotional coloring
persisting beyond triggering events) both contribute to affective perception.

2.2.3 Attention Mechanisms: Learning Temporal Saliency

Despite RNNs' effectiveness in capturing temporal dependencies, a
fundamental challenge remains: not all portions of an utterance contribute
equally to emotional expression. Emotionally charged words, prosodic peaks,
and voice quality shifts often concentrate affective cues in brief intervals—
perhaps 20-30% of utterance duration—while the remainder carries primarily
linguistic content with minimal emotional information. Standard RNNs
architectures process all time steps uniformly, potentially diluting emotionally
salient signals.

Attention mechanisms address this through learned soft selection over
temporal sequences [27], [28]. Rather than treating all RNNs hidden states
equally, attention computes a weighted aggregation emphasizing emotionally
relevant segments. The mechanism has become standard in modern speech
emotion recognition systems, improving both accuracy and interpretability.

Bahdanau Attention: Additive Temporal Weighting

The Bahdanau attention mechanism, originally developed for neural machine
translation [29], has been successfully adapted for speech emotion recognition.
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Given a sequence of bidirectional GRU hidden states h,, h,, ..., hp where each
h, € R?? (concatenating forward and backward states from a GRU with d-
dimensional hidden layers), attention computes a context vector ¢ as a
weighted sum:

T
c= Z ah, (2.14)
=1

where attention weights «, satisfy o, > 0 and Zf_ (0 =1. These weights
reflect each time step's importance for the emotion classification decision.
Computing appropriate weights requires learning an alignment model that
scores how well position tmatches the overall emotional content:

e, = vl tanh(W,_h,) (2.15)

where W, € R%*24 and v, € R% are learnable parameters, and d, is the
attention dimension (commonly set equal to the hidden dimension d). The
tanh nonlinearity allows the scoring function to learn complex, nonlinear
relationships between hidden states and emotional salience. These raw scores
are then normalized via softmax to produce valid probability distributions:

exp(e,)

> exp(e)

J=

(2.16)

o, =

This formulation ensures attention weights sum to one and remain non-
negative, enabling interpretation as a probability distribution over time steps.
In practice, the attention mechanism learns to assign high weights («, > 0.1)
to 10-30% of frames, typically corresponding to prosodic peaks, emotionally
charged words, or voice quality shifts indicative of affective state [30].

The resulting context vector cprovides a fixed-dimensional utterance-level
representation that emphasizes emotionally salient acoustic patterns while
suppressing irrelevant variations from speaker identity or linguistic content.
This representation then feeds into fully connected classification layers:

p(emotion | ¢) = softmax(W,c+b,) (2.17)
where W, and b, are learnable parameters mapping the context vector to
emotion class probabilities.

Beyond improving classification accuracy, attention weights offer valuable
interpretability. Visualizing o, across time reveals which temporal segments
drive emotion predictions—for instance, attention might concentrate on
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prosodic peaks for anger detection (high pitch and energy), voice breaks and
pauses for sadness recognition (reduced pitch range and energy), or rapid
pitch modulation for happiness detection (varied prosody and elevated
baseline pitch). This interpretability proves valuable for debugging model
behavior, validating that learned patterns align with human intuition about
emotional expression, and building trust in deployed systems [31].

2.2.4 Self-supervised Pre-training and Transfer Learning

A more recent development leverages massive-scale self-supervised pre-training
on unlabeled audio data to learn robust general-purpose speech
representations [32]. Models like Wav2Vec 2.0 [33] and HuBERT [34] train on
hundreds of thousands of hours of diverse speech, vastly exceeding the scale of
any labeled emotion dataset—even the largest emotion corpora contain only
thousands of labeled utterances.

Contrastive loss

L
Context C
representations F F
Transfonner
Masked

Quantized
representations

Latent speech
representations

raw waveform

Figure 2.2: Wav2Vec 2.0

Wav2Vec 2.0: Contrastive Predictive Learning

Wav2Vec 2.0 learns speech representations through a masked prediction
objective resembling BERT's masked language modeling [33], [35]. The
architecture comprises two components: a convolutional feature encoder that
processes raw audio waveforms, and a transformer encoder that contextualizes
these features through self-attention.

The feature encoder applies seven convolutional layers with strides that
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progressively downsample the raw waveform by 160x, that is approximately
mapping 20ms of audio to a single time step. This multi-scale processing
extracts acoustic features at a frame rate suitable for phonetic modeling (~50
Hz). These features are then randomly masked: approximately 6.5% of time
steps are replaced with a learned mask embedding, and the model must
predict masked representations from surrounding context.

The prediction task employs contrastive learning: for each masked position,
the model must identify the true latent representation among a set of K
distractors (typically K = 100) sampled from other time steps in the same
utterance. Specifically, given context representations ¢, and a set of candidates
quantized features {q;,q;;,..-,q; i} where g, is the true target and ¢, are
distractors, the model maximizes:

<Sim<7c_t7 Qt)>

exp
ZK exp (sim(cf_, Qt,i)>
i=0

where sim(-,-) computes cosine similarity and 7 is a temperature parameter.
This objective encourages representations where true targets lie closer to
context vectors than distractors in embedding space.

L

= —log (2.18)

contrastive

Crucially, the targets ¢, are themselves learned through vector
quantization—the continuous feature encoder outputs are discretized into a
finite vocabulary of ~300 tokens learned via k-means clustering or Gumbel-
softmax relaxation. This quantization forces the model to discover discrete
acoustic units resembling phonemes, enabling phonetic-level learning without
phonetic labels [36].

Pre-trained Wav2Vec 2.0 models, trained on 960 hours of LibriSpeech data
[37], capture rich acoustic and phonetic structures that transfer to
downstream tasks. For emotion recognition, practitioners typically freeze the
convolutional encoder while fine-tuning the transformer encoder and adding
task-specific classification heads. The pre-trained representations encode
prosodic contours, voice quality characteristics, and phonetic structures—all
relevant for emotion perception—though they optimize for linguistic content
rather than paralinguistic cues.

HuBERT: Clustering-based Masked Prediction

HuBERT (Hidden-Unit BERT) [34] offers an alternative self-supervised
approach, simplifying the training objective while achieving comparable or
superior results. Rather than jointly learning representations and discrete
targets via contrastive learning, HuBERT separates these stages. The model
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first clusters frame-level features from a previous iteration (or from MFCC
features in the first iteration) to generate pseudo-labels. A masked prediction
loss then trains a BERT-like transformer to predict cluster assignments for
masked frames:

LHuBERT = — Z logp( ¢, | ) (2.19)

teM

where M denotes masked time steps, ¢, is the cluster assignment, and o
represents context from unmasked frames. This simpler objective avoids
contrastive sampling while still encouraging the model to discover discrete
acoustic units. Iterative refinement—alternating between clustering learned
representations and training with updated cluster labels—progressively
improves representation quality. After several iterations, HuBERT
representations encode phonetic, prosodic, and speaker characteristics that
transfer effectively to emotion recognition.
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Challenges in Transferring ASR Models to SER

Despite their promise, directly applying automatic speech recognition (ASR)
pre-trained models to speech emotion recognition presents challenges [9], [13].
ASR systems optimize for recognizing linguistic content—the "what" of
speech—while actively suppressing paralinguistic cues like prosody, voice
quality, and speaking style that convey emotional information—the "how" of
speech. This fundamental objective mismatch means that representations ideal
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for transcription may be suboptimal for emotion recognition.

Effective transfer learning strategies must balance preserving useful
acoustic representations while adapting to affective characteristics. Layer-wise
learning rate decay has proven beneficial: lower transformer layers capturing
general acoustic features update conservatively (learning rates 10-100x smaller
than standard values), while higher layers capturing task-specific patterns
learn more aggressively [38]. Some practitioners freeze the feature encoder
entirely and fine-tune only the contextualizing transformer, while others
employ gradual unfreezing—initially training only the classification head, then
progressively unfreezing deeper layers as training proceeds.

Despite these challenges, transfer learning from self-supervised models
shows particular promise in low-resource scenarios where labeled emotional
speech is scarce. Fine-tuning on as few as 1-2 hours of labeled emotion data
can achieve performance approaching systems trained on 10x more data from
scratch [39]. This efficiency proves crucial for cross-lingual emotion recognition
and adapting to specialized domains (e.g., clinical speech analysis) where
large-scale labeled datasets are impractical to collect.

Persistent Challenges and Future Directions

Despite these advances, speech emotion recognition confronts persistent
challenges[19], [40], [41]. Emotions manifest through subtle acoustic variations
easily overshadowed by speaker-specific characteristics, linguistic content, and
recording conditions. A speaker's habitual voice quality, speaking rate, and
pitch range introduce substantial variability unrelated to emotion—what
constitutes elevated pitch for one speaker may represent baseline pitch for
another. Disentangling emotion-relevant acoustic variations from speaker
identity remains an open challenge.

Cultural differences in emotional expression further complicate
generalization. Display rules—socially learned norms governing appropriate
emotional expression—vary dramatically across cultures. What constitutes an
angry tone in Western contexts may sound neutral in East Asian cultures
emphasizing emotional restraint, while expressions considered neutral in
individualist societies may signal mild displeasure in collectivist contexts.
Most existing models train primarily on Western speakers, raising questions
about cross-cultural applicability.

Additionally, most existing datasets comprise acted or elicited emotions
recorded in controlled settings, limiting ecological validity. Professional actors
produce exaggerated, stereotypical expressions designed for clarity rather than
reflecting the subtle, context-dependent emotional displays characteristic of
spontaneous affective behavior. Whether models trained on acted speech will
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recognize naturalistic emotions in real-world conversational contexts remains
uncertain. The field continues evolving toward systems that can operate
across diverse speakers, languages, and recording conditions while respecting
cultural variation in emotional expression—challenges that motivate the
domain adaptation techniques discussed in Section 2.5.

2.3 Video-based Emotion Recognition

Video-based emotion recognition leverages visual cues—primarily facial
expressions, but also head pose, gaze direction, and body language—to infer
affective states from image sequences. Human faces constitute the most
expressive channel for emotional communication: the Facial Action Coding
System (FACS) identifies over 40 distinct action units that combine to
produce thousands of possible expressions. The challenge lies in automatically
detecting these subtle muscular movements and their temporal dynamics from
video data captured under varying lighting conditions, camera angles, and
occlusions [42], [43].

The field has evolved from frame-based analysis using traditional computer
vision techniques to sophisticated deep learning models that jointly process
spatial appearance and temporal dynamics. Modern approaches must address
fundamental challenges including inter-subject variability in expression
intensity, cultural differences in emotional display, and the distinction
between spontaneous and posed expressions. Real-world applications demand
robustness to partial occlusions (hands covering face, glasses), non-frontal
poses, and low-resolution imagery captured in uncontrolled environments—
scenarios where traditional geometric feature extraction fails catastrophically.

2.3.1 From Frame-based to Spatiotemporal Modeling

Early video-based emotion recognition systems treated facial expression
analysis as a frame-level classification problem. These approaches extracted
geometric features—facial landmark positions and their configurations—
combined with appearance-based features like Local Binary Patterns (LBP) or
Histogram of Oriented Gradients (HOG). The extracted features fed into
classifiers such as Support Vector Machines or Hidden Markov Models to
recognize discrete emotion categories [43], [44]. While computationally efficient,
this paradigm suffered from critical limitations: accurate facial landmark
detection required as a preprocessing step proved fragile under head pose
variations, and frame-by-frame processing discarded the temporal evolution of
expressions.
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The deep learning revolution transformed facial expression analysis by
enabling end-to-end learning directly from raw pixel intensities. Convolutional
neural networks, initially applied to static images, learned hierarchical
representations where lower layers detect edges and textures while higher
layers recognize facial parts and expression-specific patterns. Transfer learning
from large-scale face recognition datasets (VGGFace, FaceNet trained on
millions of identities) provided robust feature extractors that could be fine-
tuned for emotion recognition with limited labeled data—a practical necessity
given the scarcity of large-scale annotated emotional video datasets [45].

However, as Kollias and Zafeiriou emphasize [46], treating video as
collections of independent frames discards crucial temporal information.
Emotions unfold dynamically over time, exhibiting distinct onset, apex, and
offset phases. Genuine surprise, for instance, shows rapid onset (less than 0.5
seconds from neutral to peak expression) followed by quick decay, while posed
surprise often exhibits slower, more deliberate timing. Capturing these
temporal dynamics became essential for distinguishing authentic emotions
from deliberate expressions and achieving robust recognition in naturalistic
settings where single-frame ambiguity is common.

Spatiotemporal Feature Learning Architectures

Modeling spatiotemporal patterns requires architectures that jointly process
spatial appearance within frames and temporal evolution across frames. Early
deep learning approaches employed two-stream architectures: separate
convolutional networks processed RGB frames (appearance stream) and
optical flow fields (motion stream), with late fusion combining their
predictions. While conceptually simple, this approach required expensive
optical flow computation and failed to capture joint spatiotemporal patterns—
spatial and temporal information processed independently cannot learn
correlations between appearance changes and motion patterns that
characterize emotional expressions.

Three-dimensional Convolutional Neural Networks (3D CNNs) offered a
more integrated solution by extending 2D convolutions along the temporal
dimension [47]. A 3D convolutional filter with dimensions k;, x k,, x k, (height,
width, time) applies across spatial and temporal dimensions simultaneously:

y(@,y,t) = > w(i,j,7) - w(x+i,y+j,t+7)+b (2.20)

Z?]?T

where w represents learnable filter weights and b is a bias term. This joint
spatiotemporal convolution directly learns features capturing both appearance
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patterns (facial configurations at individual frames) and motion patterns (how
these configurations change over time)—for instance, a 3D filter might learn
to detect the rapid eyebrow raise characteristic of surprise or the progressive
mouth corner movement indicating a genuine smile.

Notable 3D CNN architectures include C3D (Convolutional 3D) [48], [49],
which demonstrated that 3x3x3 filters applied over 16-frame clips achieve
strong performance on action recognition benchmarks, and 13D (Inflated 3D),
which initializes 3D filters by "inflating" weights from 2D CNNs pre-trained
on ImageNet [50]—replicating 2D filters across the temporal dimension and
normalizing by the temporal extent. This inflation strategy enables effective
transfer learning from image recognition to video understanding, leveraging
the vast labeled image data to initialize spatiotemporal models.

However, 3D CNNs introduce substantial computational overhead. A
standard 2D convolutional layer with C), input channels, C,, , output
channels, and k x k spatial filters require C,,, x C,,, x k x k parameters. The
corresponding 3D layer with temporal extent k, requires C;,, x C_,, X k X k X
k, parameters—a multiplicative increase proportional to temporal kernel size.
For typical configurations (k, =3 to 5), this translates to 3-5x more
parameters per layer, dramatically increasing memory requirements and
training data needs. Deep 3D CNNs easily exceed GPU memory constraints
and overfit on limited emotion datasets [51], [52].
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Figure 2.4: Traditional structure of a CNNs model

Factorized spatiotemporal convolutions address this efficiency challenge by
decomposing 3D convolutions into separate spatial (2D) and temporal (1D)
operations. The (241)D convolution architecture exemplifies this strategy [47]:
a 3D convolution with k x k x k, filter is decomposed into a 2D spatial
convolution (k x k x 1) followed by a 1D temporal convolution (1 x 1 x k).
Mathematically:

3D conv: y = o(Wsp xx +b) (2.21)

is approximated by:
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(241)D: z=0(Wyp xz+by),y = 0(W,p % 2+ by) (2.22)

where o denotes nonlinearity and * represents convolution. This factorization
reduces parameter count significantly: instead of C,, x M x k x k x k,
parameters for a 3D convolution with M intermediate channels, the factorized
version requires C,, Xx M x kx k+ M x C,,, x 1 x k, parameters. For typical
values (M =0C,,, k=3, k, =3), this achieves approximately 30-40%
parameter reduction while maintaining comparable expressive power. The
factorized design enables training deeper networks on limited computational

resources while still capturing essential spatiotemporal patterns.

2.3.2 Vision Transformers and Self-Attention for Video

Understanding

The transformer architecture, originally proposed for natural language
processing, has recently revolutionized computer vision. The Vision
Transformer (ViT) demonstrated that pure attention-based models could
match or exceed CNNs performance on image classification when trained on
sufficient data [53]. ViT divides images into fixed-size patches (typically
16x16 pixels), linearly embeds each patch, and processes the sequence of
patch embeddings using standard transformer encoder layers with multi-head
self-attention mechanisms.

Self-Attention Mechanism: Learning Spatial Relationships

The core innovation enabling transformers is the self-attention mechanism,
which computes interactions between all pairs of elements in a sequence [54],
[55]. For an input sequence of patch embeddings {z,,z,,..., 2y} where z; €
R?, self-attention transforms each element by aggregating information from all
other elements through learned similarity weights.

The mechanism employs three learnable linear projections to generate
queries (Q), keys (K), and values (V):

where X € RV*4 stacks input embeddings and Wo, Wi, Wy, € R%*.  are
learnable weight matrices. The query for position iis matched against keys
from all positions to compute attention weights:
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KT
Attention(Q, K, V') = softmax (Q ) 1% (2.24)

V7

The softmax operation over QKT produces a matrix of attention weights

@;; indicating how much position ishould attend to position j. The scaling
factor y/d, prevents dot products from growing too large in magnitude, which
would push softmax into regions with vanishingly small gradients. Each

output y; is then computed as a weighted sum of all value vectors:

N

yi= au; (2.25)

This formulation enables each patch to selectively attend to relevant
patches throughout the image, learning spatial relationships without
convolutional inductive biases. For facial expression recognition, self-attention
learns to correlate mouth regions with eye regions—for instance, detecting
that a smiling mouth should co-occur with activated eye muscles (Duchenne
smile) versus a mouth-only smile indicating posed expression [53].

Multi-head Attention: Capturing Multiple Relationships

Single attention heads learn a particular type of relationship (e.g., spatial
proximity, semantic similarity). Multi-head attention extends this by learning
multiple parallel attention functions, each potentially capturing different
relationship types:

MultiHead (@, K, V) = Concat(head,, ..., head, )W, (2.26)

where head; = Attention(QWY,, KW, VW), and each head uses separate
projection matrices Wé,W}(,W\’, with reduced dimensionality d, =d/h
(where h is the number of heads), maintaining constant computational cost.
Different heads learn complementary attention patterns—some may focus on
local texture (wrinkles, skin tension), others on geometric configurations
(relative positions of facial landmarks), and yet others on symmetric patterns
(bilateral activation of facial muscles). The concatenated outputs are
projected through W, to produce the final representation.

For image classification, ViT typically uses 8-12 attention heads per layer
and stacks 12-24 transformer encoder layers, creating deep architectures that
progressively refine representations. Each encoder layer consists of multi-head
self-attention followed by a position-wise feedforward network, with layer
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normalization and residual connections ensuring stable gradient flow during
training.

Figure 2.5: A TimeSformer Instance

Note: This is the example used in the TimeSformer paper to demonstrate that the model
can learn to attend to the relevant regions in the video in order to perform complex
spatiotemporal reasoning. we can see that the model focuses on the configuration of the
hand when visible and the object-only when not visible.

2.3.3 TimeSformer: Divided Attention for Video

Extending transformers to video understanding presents unique challenges due
to the significantly longer sequences resulting from spatiotemporal patch
extraction. An image with H x W pixels divided into P x P patches yields
N = (H/P) x (W/P) patches. For video with T'frames, naive spatiotemporal
patching produces T' x N patches—for typical configurations (224x224 images,
16x16 patches, 8 frames), this yields 8x196 = 1,568 patches. Self-attention's
O(L?*) computational complexity (where L is sequence length) makes joint
spatiotemporal attention prohibitively expensive: computing attention over
1,568 patches requires ~2.5 million pairwise comparisons, compared to 38,000
for a single frame.

The TimeSformer architecture [56] addresses this challenge through a
divided attention mechanism that decomposes spatiotemporal attention into
separate spatial and temporal attention operations. This factorization
dramatically reduces computational complexity while maintaining the capacity
to model spatiotemporal dependencies.
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Figure 2.6: Video self-attention blocks of TimeSformer

Divided Attention: Spatial and Temporal Factorization

TimeSformer processes video through five sequential attention blocks, as
showing in Figure 2.6, each implementing divided attention:

1. Temporal Attention: For each spatial position (p,q), compute
attention across all frames at that fixed spatial location. Given patch
embeddings z(*P9 for frame tand spatial position (p,q), temporal
attention updates:

AbP9) _ tpa L Attention (Q(t,p,q)7 {K(t/,p,q)}z::17 {V(t/»p’q)};[::1> (2.27)

temp

This operation captures motion and temporal evolution at each spatial
location—for instance, how a specific facial region (corner of mouth, eyebrow
position) changes across frames.

2. Spatial Attention: For each frame t, compute attention across all
spatial positions within that frame. This models spatial relationships at
fixed temporal locations:

Zlbpa) — H0pa) Attention(QtP0 {KtP )Y, , {V P} ) (2.28)

spat —  “temp
Spatial attention learns which facial regions should be correlated for
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emotion recognition—eyes with mouth (for genuine smiles), eyebrows with
eyes (for surprise), forehead with mouth (for anger).

The divided attention factorization reduces computational complexity from
O((T x N)?) for joint spatiotemporal attention to O(T x N xT)+
OTxXNxN)=0OTxNx(T+N)). For T=8 and N =196 , joint
attention requires ~6.1M operations while divided attention requires only
~320K operations—approximately 19x reduction. This efficiency gain enables
processing longer video sequences and training deeper models within memory
constraints [56].

Positional Encoding and Learned Embeddings

Unlike CNNs with built-in translation equivariance through weight sharing,
transformers process patch embeddings as sets without inherent spatial or
temporal ordering. Positional encodings inject spatial and temporal location
information. TimeSformer uses learned positional embeddings: each patch
position (¢, p, q) receives an additive embedding:

P = PatchEmbed (z(#7:?)) + EY + EPY (2.29)

input pos pos

where E[(ﬁ))s encodes temporal position and EI(,’Z;Q) encodes spatial position.
These embeddings, learned during training, enable the model to leverage
spatiotemporal structure—for instance, learning that central facial patches
carry more emotional information than peripheral background patches, or that
expression onset (early frames) should attend differently than apex (middle

frames) or offset (late frames) [56].

Pre-training and Transfer Learning

TimeSformer benefits significantly from pre-training on large-scale action
recognition datasets like Kinetics-400 (containing 400 action classes across
240,000 training videos). Pre-training provides several advantages for emotion
recognition: First, the model learns general spatiotemporal patterns—how
objects and faces move, how appearance changes over time—that transfer
across tasks. Second, pre-trained attention mechanisms learn to focus on
relevant spatial regions (faces, hands, bodies) and temporal segments (action
onsets, peaks). Third, initialization from pre-trained weights enables training
on smaller emotion datasets (thousands rather than millions of samples) while
avoiding overfitting.

For emotion recognition applications, practitioners typically fine-tune pre-
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trained TimeSformer models on emotion-specific datasets [57], [58]. The pre-
trained weights provide strong initialization, while task-specific fine-tuning
adapts representations to affective characteristics—learning to attend to
subtle facial muscle movements (micro-expressions) and emotion-specific
temporal patterns (the sustained nature of sadness versus the brief peak of
surprise). Fine-tuning often employs lower learning rates for early transformer
layers (capturing general visual features) and higher rates for later layers
(capturing emotion-specific patterns), a strategy analogous to the layer-wise
learning rate decay discussed for speech models in Section 2.2.4.

Interpretability through Attention Visualization

Beyond performance gains, TimeSformer's attention mechanisms provide
interpretability. Visualizing attention weights reveals which spatial regions
and temporal segments drive emotion predictions. For a surprise prediction,
temporal attention weights might peak at frames showing the expression
onset—the moment eyebrows raise and eyes widen—while spatial attention
concentrates on eye and eyebrow regions. For sadness, attention may
distribute more uniformly across frames, reflecting the sustained nature of sad
expressions, while spatially focusing on mouth regions (downturned corners)
and eyes (reduced aperture, lack of crinkling).

This interpretability proves valuable for validating that models learn
meaningful patterns aligned with psychological theories of emotional
expression rather than spurious correlations in training data (e.g., background
objects, lighting conditions). Attention visualizations also facilitate error
analysis—examining cases where predictions fail can reveal systematic biases,
such as over-reliance on particular facial regions or temporal segments that
fail to generalize across individuals or contexts [59].

2.3.4 Face Detection and Preprocessing Pipeline

Robust face detection and preprocessing constitute critical prerequisites for
video-based emotion recognition, as facial alignment and normalization
significantly impact downstream model performance. Modern systems employ
deep learning-based face detectors that jointly localize faces and facial
landmarks in a single forward pass.
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Figure 2.7: MTCNN architecture

Note: The architecture consists of three networks (P-Net, R-Net, and O-Net) that
progressively refine face detection and alignment.

Multi-task Cascaded Convolutional Networks (MTCNN) [60] exemplifies
contemporary face detection approaches. MTCNN employs a three-stage
cascade: a Proposal Network (P-Net) rapidly scans images at multiple scales
to generate candidate face regions, a Refinement Network (R-Net) filters
candidates and refines bounding boxes through regression, and an Output
Network (O-Net) produces final detections along with five facial landmarks
(eyes, nose, mouth corners). This coarse-to-fine strategy achieves high
accuracy even for small, blurred, or partially occluded faces while maintaining
computational efficiency through early rejection of obvious non-face regions.

The preprocessed face sequences serve as input to emotion recognition
models. For TimeSformer specifically, faces are cropped with appropriate
margins (typically 20-30% padding beyond detected bounding boxes to include
contextual regions), resized to 224x224 pixels, and normalized to [0,1] range.
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Frame sampling strategies also play important roles: uniform sampling at
fixed intervals (e.g., selecting 8 frames from a 3-second clip) provides temporal
coverage, while adaptive sampling based on optical flow or expression
intensity can emphasize emotionally salient moments. For the domain
adaptation experiments discussed later, maintaining consistent preprocessing
across RAVDESS and CREMA-D datasets proves crucial—differences in face
detection, cropping, or resolution can introduce artificial domain shifts that
confound the evaluation of adaptation effectiveness.

The quality of face detection directly propagates through the entire
pipeline. Detection failures (missed faces or false positives) prevent emotion
recognition entirely, while imprecise localization (slightly off-center crops,
inconsistent scaling) degrades recognition accuracy by 5-10% [61]. For video
sequences, temporal consistency in face tracking—smoothing bounding boxes
across frames rather than independently detecting per frame—reduces jittering
and provides stable input to temporal models. These preprocessing
considerations, while often overlooked in methodological descriptions, critically
impact real-world system performance.

2.4 Multimodal Fusion Strategies for Emotion

Recognition

Multimodal fusion aims to integrate complementary information from
heterogeneous modalities to achieve more robust and accurate emotion
recognition than unimodal approaches. As Rahman et al. [62] comprehensively
document in their recent survey, audio and video signals capture distinct
aspects of emotional expression—speech conveys prosodic and vocal
characteristics while facial expressions reveal visual affective cues—making
their combination particularly effective for emotion analysis. The central
challenge lies in determining how and when to combine these modalities to
maximize their complementary strengths while mitigating individual
weaknesses.

Fusion strategies can be broadly categorized into three paradigms based on
the processing stage at which integration occurs: early fusion (feature-level),
late fusion (decision-level), and middle fusion (intermediate-level). Each
approach  presents distinct trade-offs between modeling capacity,
computational efficiency, and robustness to modality-specific noise or missing
data. Recent advances have leveraged attention mechanisms and transformer
architectures to enable more sophisticated fusion strategies that dynamically
weight modality contributions based on context [63].
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2.4.1 Early Fusion: Feature-level Integration

Early fusion, also termed feature-level fusion, concatenates representations
from different modalities at an early processing stage before feeding the
combined feature vector into a unified classifier. In the context of audio-visual
emotion recognition, this typically involves extracting acoustic features (e.g.,
mel-spectrograms processed through CNNs or RNNs) and visual features (e.g.,
facial appearance encoded by vision transformers), concatenating these
embeddings, and training a joint classifier on the combined representation.

The primary advantage of early fusion lies in its computational efficiency
and simplicity. By processing modalities jointly from an early stage, the model
can potentially learn cross-modal correlations and interactions that might be
missed by separate processing pipelines. A basic implementation concatenates
audio and video embeddings and passes them through fully connected layers
for classification. This approach enables end-to-end training with direct
backpropagation of gradients through both modality encoders.
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Figure 2.8: An illustration of various fusion models for multimodal learning.
(a) Early or data-level fusion, (b) late or decision-level fusion, and (c)
intermediate fusion [64]

However, Rahman et al. note several limitations [62]. Early fusion assumes
tight temporal synchronization between modalities, which may not hold in
real-world scenarios where audio and video signals experience different
processing delays or quality degradations. Additionally, simple concatenation
treats all features equally, failing to account for varying reliability or relevance
of different modalities across contexts. When one modality contains
predominantly noise or irrelevant information, it can negatively impact the
combined representation.

Advanced early fusion strategies address these limitations through learned
integration mechanisms. Rather than simple concatenation followed by linear
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transformation, more sophisticated architectures employ gated fusion units or
attention-weighted combination of modality features before classification,
providing some flexibility while maintaining the early fusion paradigm.

2.4.2 Late Fusion: Decision-level Combination

Late fusion, or decision-level fusion, takes the opposite approach by training
separate classifiers for each modality and combining their predictions to
produce a final decision. In audio-visual emotion recognition, this involves
training independent audio and video emotion classifiers, obtaining probability
distributions over emotion classes from each modality, and aggregating these
predictions through averaging, voting, or learned combination weights. The
key advantage of late fusion lies in its modularity and robustness. Since
modalities are processed independently, the approach naturally handles
asynchronous inputs and modality-specific characteristics without requiring
aligned feature spaces. If one modality is corrupted or missing, the system can
fall back to predictions from available modalities without catastrophic failure.
This robustness makes late fusion particularly attractive for real-world
applications where sensor reliability varies.

Traditional late fusion employs simple averaging of class probabilities or
majority voting among modality-specific predictions. While straightforward,
these methods treat all modalities as equally reliable regardless of input
characteristics. Recent approaches have introduced learned fusion weights that
dynamically adjust modality contributions based on their confidence or
relevance. Wagner et al. [65] demonstrate that training a small meta-classifier
to combine modality-specific predictions based on their entropy or consistency
can significantly improve performance over fixed weighting schemes.

A more sophisticated variant employs neural networks to learn optimal
combination strategies. By concatenating probability distributions or logits
from individual modality classifiers and training a fusion network to predict
final emotions, the system learns context-dependent weighting that adapts to
varying modality reliabilities. This approach maintains late fusion's
modularity while enabling more nuanced integration than simple averaging.

Despite these advantages, late fusion's separate processing of modalities
prevents learning of cross-modal interactions during feature extraction [62].
Subtle correlations between audio and visual cues—such as synchronization
between lip movements and speech prosody—cannot be captured when
modalities are encoded independently. This limitation has motivated the
development of middle fusion strategies.
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2.4.3 Middle Fusion: Attention-based Integration

Recent work has explored multi-stage fusion architectures that enable
iterative refinement of multimodal representations. Rather than performing
fusion in a single step, these approaches employ multiple layers of cross-modal
interaction, allowing increasingly abstract representations to be refined
through successive information exchange. Each fusion layer computes
bidirectional attention between modalities, applies residual connections to
preserve modality-specific information, and employs layer normalization for
training stability. This progressive refinement enables the model to capture
both low-level cross-modal correspondences (e.g., lip-speech synchronization)
and high-level semantic alignments (e.g., crying sounds accompanying sad
facial expressions). Mittal et al. [66] demonstrate that employing
multiplicative interactions across multiple stages significantly improves
multimodal emotion recognition performance compared to single-stage fusion.
Their work highlights the importance of hierarchical integration where early
layers capture basic alignments while deeper layers learn complex semantic
relationships. Similarly, progressive attention architectures can be designed
with multiple cross-attention layers, where each layer refines representations
from the previous stage. By stacking attention mechanisms with residual
connections, the architecture enables complex multi-hop reasoning across
modalities—for instance, attending to facial muscle movements that correlate
with vocal strain, which in turn indicates emotional intensity. The progressive
fusion strategy offers several advantages over single-stage approaches. The
iterative refinement process allows the model to gradually integrate
information, starting with obvious alignments and progressing to subtle cross-
modal patterns. Layer normalization between attention stages ensures stable
gradient flow during training, enabling deeper fusion networks. As
documented in recent multimodal benchmarks [64], hierarchical fusion
architectures consistently outperform both early and late fusion baselines
across diverse emotion recognition tasks, with particularly strong
improvements on subtle or complex emotional states that require nuanced
cross-modal reasoning.

2.4.4 Comparative Analysis and Design Considerations

The choice among fusion strategies involves fundamental trade-offs between
modeling capacity, computational efficiency, and practical robustness. Early
fusion excels in scenarios with clean, well-synchronized multimodal data where
computational resources are limited, as it requires training only a single joint
classifier. However, its rigid integration makes it vulnerable to modality-
specific corruptions and synchronization errors.
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Late fusion provides maximum modularity and fault tolerance, making it
suitable for applications where modality availability varies or where separately
pre-trained unimodal models must be integrated. The inability to learn cross-
modal interactions during feature extraction, however, limits its capacity to
capture subtle multimodal patterns that require joint reasoning.

Middle fusion strategies, particularly attention-based approaches, offer the
best of both paradigms by enabling cross-modal learning while maintaining
some modality-specific processing. The computational overhead of attention
mechanisms is offset by superior performance on complex emotion recognition
tasks where multimodal cues interact in sophisticated ways. Multi-stage fusion
architectures further enhance this capability by enabling hierarchical cross-
modal reasoning [63].

Empirical comparisons consistently demonstrate that attention-based
middle fusion achieves the highest accuracy on challenging emotion
recognition benchmarks, particularly for subtle or complex emotional states
[19]. The interpretability provided by attention weights also offers valuable
insights into which cross-modal patterns drive predictions, facilitating model
debugging and trust in deployment scenarios. These advantages make
progressive attention-based fusion the preferred approach for state-of-the-art
multimodal emotion recognition systems.

2.5 Domain Adaptation in Affective Computing

A critical challenge in deploying emotion recognition systems in real-world
applications is the domain shift problem—models trained on one dataset often
exhibit severe performance degradation when applied to data from different
sources, recording conditions, or populations. In affective computing, this
challenge is particularly acute due to substantial variability across emotional
expression datasets in terms of actor demographics, recording environments,
annotation protocols, and the fundamental distinction between acted versus
spontaneous emotional displays [3]. A model achieving 85% accuracy on
laboratory-collected acted emotions may drop to 50-60% accuracy on
naturalistic emotional expressions captured in the wild, rendering the system
impractical for deployment [67], [68].

Domain adaptation techniques aim to bridge this gap by learning
representations that transfer effectively across domains, enabling models
trained on labeled source data to generalize to unlabeled or sparsely labeled
target data [67]. For multimodal emotion recognition, this challenge is
compounded by the need to align not only individual modality features but
also cross-modal interactions across domains. As Baltrusaitis et al. [69]
comprehensively document, multimodal learning introduces unique challenges
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for domain transfer beyond those encountered in unimodal settings. The
fundamental question becomes: how can we leverage abundant labeled data
from controlled laboratory datasets (e.g., RAVDESS [70]) to build models
that perform reliably on diverse real-world datasets (e.g., CREMA-D [71])
where emotional expressions vary significantly in authenticity, intensity, and
cultural context.

2.5.1 The Cross-corpus Emotion Recognition Challenge

Cross-corpus generalization represents one of the most persistent challenges in
speech and video emotion recognition. Even when datasets share the same
emotion label space, systematic differences in data collection methodology
introduce distribution shifts that severely impact model performance. As
documented in recent surveys of speech emotion recognition [68], models
achieving over 80% accuracy on within-corpus test sets frequently fall below
45-50% accuracy when evaluated on held-out corpora, even when both
datasets ostensibly capture the same emotion categories.

The sources of domain shift in emotion recognition are multifaceted. At
the acoustic level, recording equipment quality, background noise
characteristics, and room acoustics introduce systematic biases—RAVDESS
recordings use professional studio equipment with minimal background noise,
while CREMA-D employs consumer-grade cameras with variable acoustic
conditions. At the expression level, acted emotions (RAVDESS) exhibit
exaggerated prosodic patterns and stereotypical facial configurations designed
for clarity, whereas more naturalistic expressions (CREMA-D) display subtle,
context-dependent emotional cues that may deviate from prototypical
patterns.

Beyond these technical differences, fundamental mismatches in emotion
taxonomies complicate cross-corpus transfer. RAVDESS employs an 8-
category emotion model (neutral, calm, happy, sad, angry, fearful, disgust,
surprised) reflecting Ekman's basic emotions framework, while CREMA-D
uses a 6-category model (neutral, happy, sad, angry, fear, disgust) that omits
"calm" and ‘"surprised" [70], [71]. This label space mismatch necessitates
careful mapping strategies when transferring models between datasets—simply
collapsing RAVDESS's 8 classes into CREMA-D's 6 classes requires decisions
about whether to merge "calm" with "neutral" or discard calm samples entirely,
and whether to map "surprised" to "happy" based on valence similarity or
treat it as an outlier class.

Demographic and cultural factors introduce additional complications.
Actor diversity varies significantly across datasets: RAVDESS features North
American actors with balanced gender representation, while CREMA-D
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includes more diverse ethnic backgrounds and age ranges. Cultural display
rules governing emotional expression—such as the suppression of negative
emotions in collectivist cultures or exaggeration of surprise in Western
contexts—mean that even identical emotion labels may correspond to different
behavioral patterns across populations. A model learning to recognize "anger'
from RAVDESS's theatrical expressions may fail to identify more subdued
angry expressions common in CREMA-D's diverse actor pool.

2.5.2 Domain Adversarial Neural Networks

Domain adversarial training has emerged as a powerful approach for learning
domain-invariant representations in emotion recognition. The foundational
work by Ganin et al. [72] introduced the Domain-Adversarial Neural Network
(DANN) architecture, which explicitly encourages feature extractors to
produce representations that are discriminative for the primary task (emotion
classification) while being indistinguishable across source and target domains.
This is achieved through an adversarial training objective where a domain
classifier attempts to identify which domain a sample originates from, while
the feature extractor simultaneously tries to fool the domain classifier by
producing domain-invariant features.
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Figure 2.9: DANN

Note: It is a feature-based adaptation method that learns a domain-invariant
representation through adversarial training.

The key innovation enabling this adversarial objective is the Gradient
Reversal Layer (GRL), which implements a simple yet elegant mechanism
during backpropagation. During forward propagation, the GRL acts as an
identity function, passing features unchanged to the domain classifier. During
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backward propagation, however, the GRL multiplies gradients by a negative
constant before passing them to the feature extractor. This gradient reversal
has a profound effect: gradients that would normally update the feature
extractor to improve domain classification are instead reversed, encouraging
the feature extractor to produce features that maximize domain classifier
confusion—precisely the desired domain-invariant property.

Formally, the domain adversarial objective can be expressed as a minimax
game. Let f, denote the feature extractor with parameters 6, g, the emotion
classifier, and g, the domain classifier. The training objective becomes:

minmax £, (fo(2),y) — AL4(9a(fo(2)), d) (2.30)

97gy 9a

where £, is the emotion classification loss, £, is the domain classification loss,
and Acontrols the trade-off between task performance and domain invariance.
The feature extractor f, minimizes emotion loss while maximizing domain loss
(via gradient reversal), whereas the domain classifier g; maximizes its own
accuracy, creating an adversarial dynamic that drives the learning of domain-
invariant yet emotion-discriminative representations [72].

The hyperparameter A, often referred to as the domain adaptation
strength or adversarial coefficient, critically influences training dynamics.
Setting A too high causes the model to prioritize domain confusion over
emotion discrimination, resulting in representations that are domain-invariant
but insufficiently expressive for accurate emotion classification—source
domain accuracy may remain acceptable, but the representations lack the
discriminative power needed for fine-grained emotion distinctions [72].
Conversely, setting A too low provides insufficient pressure toward domain
invariance, allowing the model to overfit to source domain-specific patterns
that fail to transfer.

Recent work has explored adaptive scheduling of A throughout training
rather than using a fixed value. A common approach gradually increases A
from near-zero to a maximum value as training progresses, following schedules
such as:

2
A =
P 1+ exp(—y - p)

—1 (2.31)

where prepresents training progress (epoch / total epochs) and ~ controls the
rate of increase [72]. This progressive schedule allows the model to first learn
task-relevant features from the source domain before gradually introducing
domain invariance pressure, preventing the adversarial objective from
disrupting the initial learning of emotion-discriminative patterns.
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However, in multimodal emotion recognition contexts, standard DANN
faces unique challenges [73]. The architecture must learn not only domain-
invariant unimodal features but also cross-modal interactions that generalize
across domains [69]. A model trained on RAVDESS's synchronized, high-
quality audio-visual data may learn cross-modal attention patterns that break
down when applied to CREMA-D's more variable synchronization and quality
characteristics. Simply applying domain adversarial training to the final fused
representation may fail to address domain shift at the individual modality
level or in cross-modal alignment mechanisms.

2.5.3 Multimodal Domain Adaptation with Progressive

Fusion

Extending domain adaptation to multimodal fusion architectures requires
careful consideration of where and how to apply adversarial training. A naive
approach would apply a single domain classifier to the final fused
representation, but this fails to ensure that individual modality
representations are domain-invariant before fusion. If audio features remain
domain-specific while video features achieve domain invariance, the fusion
mechanism itself must compensate for this asymmetry—a difficult learning
problem that may result in suboptimal cross-modal integration.

More sophisticated multimodal domain adaptation architectures employ
multiple domain classifiers operating at different levels of the fusion hierarchy
[74]. For a progressive fusion architecture with multiple cross-attention stages,
domain classifiers can be attached to (1) individual modality representations
before fusion, (2) intermediate representations after each fusion stage, and (3)
the final fused representation. Each domain classifier receives gradient reversal
signals, encouraging domain invariance at its respective level. This hierarchical
domain confusion ensures that domain adaptation occurs not only in the final
task-relevant representation but throughout the entire multimodal processing
pipeline.

The integration of progressive cross-modal fusion with domain adversarial
training presents both opportunities and challenges. On one hand, the multi-
stage refinement process provides natural insertion points for domain
classifiers at different abstraction levels, enabling fine-grained control over
where domain invariance is enforced. The residual connections and layer
normalization inherent in progressive fusion architectures also facilitate stable
gradient flow even with multiple adversarial objectives. On the other hand,
the increased model complexity introduces additional hyperparameters—each
domain classifier may require its own Avalue, and the relative weighting
among domain classifiers at different levels must be carefully tuned.
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A critical practical consideration in multimodal domain adaptation for
emotion recognition is computational efficiency. Training domain adversarial
networks typically requires iterating over both source and target domain data,
and the need to balance source and target batch sizes to prevent domain
classifier bias can significantly increase training time [75]. When the target
domain dataset (e.g., CREMA-D with 7,442 samples) is substantially larger
than necessary for effective adaptation, using only a strategically selected
subset of target data can reduce computational costs by 3-5x while
maintaining adaptation effectiveness. Techniques such as uncertainty-based
sampling or diversity-based selection can identify the most informative target
samples for domain alignment, avoiding redundant processing of highly similar
target examples.

The label space mismatch between RAVDESS (8 classes) and CREMA-D
(6 classes) necessitates additional architectural considerations. One approach
maintains separate task classifiers for source and target domains with different
output dimensions, sharing only the feature extractor and domain classifier.
During source domain training, the 8-class classifier provides supervision,
while during target domain fine-tuning (if target labels are available), the 6-
class classifier provides supervision. The domain classifier operates on shared
features, encouraging alignment despite the different task structures.
Alternatively, a unified taxonomy can be created by mapping RAVDESS
labels to CREMA-D's 6-class space (e.g., merging "calm' into "neutral' and
"surprised" into "happy"), simplifying the architecture at the cost of discarding
potentially useful source domain distinctions.

Conservative scheduling of the adversarial coefficient A\ becomes especially
important in cross-corpus emotion adaptation where source and target
domains exhibit substantial distributional differences. Aggressive domain
confusion (high A) early in training may prevent the model from learning
sufficient source domain patterns before attempting transfer. A conservative
schedule maintains very low A values (e.g., 0.0001) for an extended warmup
period spanning 40-50% of total training, allowing the model to achieve strong
source domain performance, then gradually increases A at a measured pace to
a moderate maximum (e.g., 0.02-0.1) rather than the aggressive values (0.5-1.0)
sometimes used in other domain adaptation contexts [75]. This conservative
approach reflects the reality that emotion recognition requires learning subtle,
high-dimensional patterns where excessive domain confusion can discard task-
relevant information along with domain-specific artifacts.

Empirical results from cross-corpus emotion recognition studies
demonstrate that well-designed multimodal domain adaptation can
substantially reduce the performance gap between source and target domains
[68], [74]. While standard models may exhibit a 30-40% accuracy drop from
source to target, domain-adaptive architectures can reduce this gap to 10-15%
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through effective invariant feature learning. However, complete elimination of
the domain gap remains elusive—subtle differences in emotional expression
authenticity, cultural norms, and recording conditions introduce irreducible
distribution shifts that cannot be fully compensated through representation
learning alone. Continued research into more sophisticated alignment
mechanisms, particularly those that respect the hierarchical and multimodal
nature of emotion expression, remains an active area of investigation.
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Chapter 3

Methodology

This chapter presents the comprehensive methodological framework employed
to address cross-dataset emotion recognition through multimodal fusion and
domain adaptation. The methodology encompasses systematic data
preprocessing, architecture design, training procedures, and evaluation
protocols developed to enable effective transfer learning from professionally
recorded studio data (RAVDESS) to diverse real-world recordings (CREMA-
D).

Section 3.1 details the data acquisition and preprocessing pipeline for both
audio and video modalities. For audio, we describe mel-spectrogram extraction
with voice activity detection, temporal normalization, and instance-level
feature standardization to ensure robust representations across different
recording conditions. For video, we present face detection, temporal sampling,
resolution adaptation, and storage optimization strategies that balance
recognition performance with computational feasibility.

Section 3.2 examines the model architecture design, consisting of three
principal components: EmoCatcher for audio encoding, TimeSformer for video
encoding, and progressive fusion for multimodal integration. EmoCatcher
employs convolutional feature extraction with bidirectional recurrent temporal
modeling, capturing emotion-relevant prosodic patterns from mel-
spectrograms.  TimeSformer extends Vision Transformers to video
understanding through divided space-time attention, adapted for facial
expression analysis via Low-Rank Adaptation (LoRA). The progressive fusion
architecture enables hierarchical cross-modal integration through multiple
attention stages. For domain adaptation, we extend this base architecture
with Domain-Adversarial Neural Networks (DANN), incorporating gradient
reversal layers and domain discriminators to learn features that maintain
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discriminative power for emotion recognition while achieving invariance to
dataset-specific characteristics.

RAVDESS CREMA-D
Samples (Total) 1440 7442
Actors 24 91
Gender 12M+12F 48M~+43F
Age Range 21-33 20-74
Ethnicity Homogeneous Diverse
Emotion Classes 8 6
Sentences 2 12
Recording Type Studio Consumer
Expression Type Acted Semi-natural
Audio Quality 48 kHz Variable
Video Quality 720p/301fps Variable

Table 3.1: Dataset Characteristics and Statistics

3.1 Data Acquisition and Processing

3.1.1 Datasets

RAVDESS The Ryerson Audio-Visual Database of Emotional Speech and
Song (RAVDESS) [70] was collected at Ryerson University between 2012 and
2015. Professional actors were recruited through auditions requiring
demonstrated vocal control and emotional expressiveness. The final dataset
includes recordings from 24 actors (12 female, 12 male) aged 21 to 33 years,
all native English speakers with neutral North American accents. Actors
performed two semantically neutral statements—'Kids are talking by the
door" and "Dogs are sitting by the door"—with specific instructions to convey
eight distinct emotions: neutral, calm, happy, sad, angry, fearful, disgust, and
surprised. Each emotion was expressed at two intensity levels (normal and
strong), resulting in multiple takes per actor-emotion-sentence combination.
The lexically-matched statements control for linguistic content variation,
isolating emotional prosody and facial expression as the primary sources of
affective information. Recording sessions occurred in a professional studio
environment with acoustic treatment (anechoic foam padding, controlled

41



Methodology

reverberation time < 0.3 seconds). Audio was captured using a Neumann
TLM 102 condenser microphone at 48 kHz sampling rate with 24-bit depth,
positioned 30 cm from the speaker. Video was recorded simultaneously using a
Canon Vixia HF G20 camera at 720p resolution (1280720 pixels) and 29.97
fps. Consistent lighting conditions (5600K color temperature, three-point
lighting setup) minimized shadows and maintained uniform facial illumination
across all recordings.

For this study, we utilize only the speech portion of RAVDESS, excluding
song recordings which exhibit fundamentally different acoustic characteristics
(sustained vowels, wider pitch range, formalized phrasing). After filtering, this
yields 1,440 samples distributed across eight emotion categories. Table 3.1
presents the complete breakdown by emotion, gender, and intensity level. The
professional production quality of RAVDESS offers several advantages for
source domain training. First, high signal-to-noise ratio (>40 dB) ensures
emotion-relevant features dominate over recording artifacts. Second,
professional actors produce clear, prototypical expressions closely aligned with
Ekman's basic emotion theory—anger features raised voice and furrowed
brows, sadness exhibits lowered pitch and downturned mouth corners—
facilitating initial learning of emotion-discriminative patterns. Third,
controlled recording conditions eliminate confounding variables (background
noise, lighting variations, camera motion) that complicate model training.
However, these same advantages create a substantial domain gap when
generalizing to naturalistic data, motivating the need for domain adaptation
techniques.

CREMA-D The Crowd-sourced Emotional Multimodal Actors Dataset
(CREMA-D) [71] was collected at the University of Pennsylvania between
2011 and 2013, employing a fundamentally different production approach.
Rather than professional actors in studio conditions, CREMA-D recruited 91
participants (48 male, 43 female, ages 20-74) through community outreach
and university advertisements. Participants self-identified across five ethnic
categories: African American (n=29), Asian (n=15), Caucasian (n=35),
Hispanic (n=8), and Unspecified (n=4). This demographic diversity far
exceeds RAVDESS's homogeneous young North American sample. Each
participant recorded 12 sentences selected to be emotionally ambiguous
without contextual prosody: "'It's eleven o'clock", "That is exactly what
happened", "I'm on my way to the meeting" among others. Participants were
instructed to convey six emotions—anger, disgust, fear, happy, neutral, and
sad—at four subjective intensity levels (low, medium, high, unspecified). The
resulting 7,442 clips vary considerably in expression quality and authenticity,
reflecting the range of acting ability among non-professional participants.
CREMA-D recordings employed consumer-grade equipment in typical indoor
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settings rather than professional studios. Audio was captured using built-in
laptop microphones or entry-level USB microphones at variable sampling rates
(primarily 44.1 kHz, some 48 kHz). Video recording used consumer webcams
or smartphone cameras, resulting in variable resolutions (480p to 720p) and
frame rates (24-30 fps). Recording environments included university offices,
conference rooms, and participant homes, introducing diverse acoustic
characteristics (varied reverberation, background HVAC noise, occasional
external sounds) and lighting conditions (fluorescent office lighting, natural
window light, desk lamps). The naturalistic variability in CREMA-D
introduces several challenges for emotion recognition. Audio quality varies
substantially: some clips exhibit clear speech with minimal background noise,
while others contain audible room acoustics, microphone clipping, or
environmental interference. Video quality similarly ranges from well-lit frontal
faces to dim lighting with non-frontal poses. Expression authenticity also
varies—some  participants produce convincing emotional portrayals
comparable to professional actors, while others exhibit awkward or
exaggerated expressions suggesting self-consciousness or limited acting
experience. Despite these challenges, CREMA-D's naturalistic characteristics
better approximate real-world deployment scenarios where emotion
recognition systems encounter diverse users, recording devices, and
environmental conditions. The dataset includes crowd-sourced perceptual
ratings: each clip was evaluated by multiple annotators who selected the
perceived emotion from the six categories. Clips achieving high inter-rater
agreement (>70% annotators selecting the same emotion) provide gold-
standard examples, while low-agreement clips may reflect genuinely
ambiguous expressions or poor acting quality.

For this study, in order to enable local deployment and improve training
efficiency, this study did not use all samples of the dataset. Instead, it
extracted data of the similar size as the source dataset during the dataset
loading phase. Besides, unless otherwise noted, audio-only and video-only
baselines on RAVDESS use a random split to match prior work efficiency,
whereas domain adaptation experiments use a speaker-independent split to
avoid speaker leakage. We report them side-by-side as reference results rather
than directly comparable baselines.
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Figure 3.1: Data distribution of source and target datasets

3.1.2 Data Processing Techniques

Effective multimodal emotion recognition requires careful preprocessing to
ensure data quality, format consistency, and computational efficiency. This
section details our audio and video processing pipelines, with particular
emphasis on the design decisions that enable efficient domain adaptation
training while maintaining cross-dataset compatibility.

Audio Processing Pipeline

Audio preprocessing transforms raw waveforms into mnormalized mel-
spectrogram representations suitable for the EmoCatcher encoder architecture
[76]. The pipeline consists of four sequential stages designed to extract
emotion-relevant acoustic features while suppressing noise and dataset-
specific variations.

Voice Activity Detection Raw audio files from both RAVDESS and
CREMA-D contain non-speech segments— initial silence before utterance
onset, trailing silence after completion, and occasional mid-sentence pauses.
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These silent regions contribute no emotional information while introducing
training complications: zero-padded silent frames dilute gradient signals, and
random silence durations create unnecessary length variability across samples.
We employ the GVAD (Generalized Voice Activity Detection [77]) algorithm
to identify and extract speech-containing segments. GVAD operates on mel-
spectrogram representations, analyzing energy concentration across frequency
bands to distinguish speech from silence or background noise. The algorithm
computes frame-wise energy and applies adaptive thresholding to identify
continuous speech regions, returning start and end frame indices [t .., tonal
that bracket the utterance. VAD preprocessing serves three purposes in our
pipeline. First, it removes non-speech segments that would otherwise require
the model to learn to ignore irrelevant silent regions. RAVDESS recordings
typically contain 0.5-2 second silence margins from professional editing
workflows (actors awaiting recording cues), while CREMA-D exhibits
variable-length pauses from unedited participant recordings. Second, VAD
normalizes effective utterance lengths: after processing, most samples contain
2-4 seconds of continuous speech regardless of original clip duration, reducing
temporal variability that could complicate sequence modeling. Third, VAD
improves cross-dataset consistency by eliminating systematic differences in
silence padding—RAVDESS exhibits uniform margins from professional
editing, while CREMA-D shows irregular boundaries—that might otherwise
serve as spurious domain discriminators [78].
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Figure 3.2: Audio Processing Thread
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Mel-spectrogram Extraction Following VAD truncation, audio segments
undergo Short-Time Fourier Transform (STFT) to generate mel-spectrograms.
We employ the librosa 0.9.2 implementation with parameters optimized for
emotion recognition rather than speech recognition:

n_ fft = 4096: Large FFT window size (approximately 186ms at 22.05
kHz sampling) provides fine frequency resolution essential for capturing
subtle pitch variations characteristic of emotional prosody. Anger, for
instance, exhibits rapid pitch fluctuations (5-10 Hz modulation) requiring
sufficient frequency precision to distinguish from neutral speech. Standard
ASR systems use smaller windows (512-2048 samples) optimized for
phoneme discrimination, but these sacrifice the frequency resolution
needed for prosodic analysis.

hop_ length = 1365: This hop size yields approximately 43 Hz frame
rate, providing 16-17 frames per second of audio. The choice balances
temporal resolution against computational cost. Emotional expressions
unfold over 100-500ms timescales—expression onset, apex, and offset
phases—requiring sufficient temporal sampling to capture these dynamics
without excessive redundancy.

n__mels = 128: We employ 128 mel-frequency bins spanning 0-6000 Hz,
following the mel-scale transformation that concentrates frequency
resolution where human hearing discriminates pitch most finely. As
discussed in Section 2.2.1, this perceptually-motivated frequency warping
emphasizes prosodically-relevant frequency ranges while maintaining
computational efficiency for convolutional processing.

fmax = 6000 Hz: The upper frequency limit excludes high-frequency
content above 6 kHz, which primarily captures consonant frication and
other phonetic details rather than emotion-relevant prosody.
Fundamental frequency (F0) for human speech ranges 80-400 Hz, with
harmonics extending to ~4 kHz carrying most emotional information. The
6 kHz cutoff balances retaining prosodic content against excluding high-
frequency noise, particularly important for CREMA-D recordings where
consumer microphones exhibit poor high-frequency response. After STFT
computation, we apply triangular mel-filterbanks to convert the linear
frequency spectrogram to mel-scale, followed by logarithmic compression
to approximate human loudness perception and compress the dynamic
range. All audio is resampled to 22.05 kHz before processing using
librosa's high-quality polyphase resampling, standardizing temporal
resolution across datasets—RAVDESS provides 48 kHz audio, while
CREMA-D varies between 44.1 kHz and 48 kHz.
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Temporal Normalization VAD-truncated spectrograms exhibit variable
lengths depending on utterance duration and speaking rate. To enable batch
processing with fixed-size tensors, we standardize all spectrograms to 128x128
dimensions (mel bins x time frames). For spectrograms exceeding 128 frames
(utterances longer than ~3 seconds), we perform center-cropping to preserve
the central 128 frames. This strategy preferentially retains the utterance's
emotional apex—speakers typically intensify expressions mid-utterance—while
discarding onset and offset phases that may contain neutral transitional
prosody. For spectrograms shorter than 128 frames, we apply symmetric zero-
padding:

128 =T 128 =T
pa‘dleft = \‘TJ ’ padm-ght = ’VT-‘ (31)

where symmetric padding maintains temporal centering, placing the actual
speech content in the spectrogram's middle region of EmoCatcher's attention
mechanism (Section 2.2.3) naturally focuses. Asymmetric padding would bias
attention toward specific temporal positions, potentially learning dataset-
specific artifacts rather than generalizable emotion patterns.

Feature Normalization Each mel-spectrogram undergoes instance-level
normalization to zero mean and unit variance:

M —
Mnorm = 711/]\/[ (32>
oyt €

where p,, and o0,, are computed across all elements of the individual
spectrogram, and € = le — 5 prevents division instability.

The choice of instance-level normalization addresses three interrelated
challenges for cross-dataset generalization. First, it removes speaker- specific
acoustic characteristics—mnatural variation in voice timbre and loudness means
different individuals produce systematically different spectrogram intensities
even when expressing identical emotions. By normalizing each sample
independently, we force the model to learn emotion-discriminative patterns
rather than speaker signatures. This becomes critical when RAVDESS's 24
actors differ substantially from CREMA-D's 91 participants in vocal
characteristics. Second, instance normalization mitigates systematic recording
gain differences between datasets. RAVDESS maintains consistent levels
through professional audio engineering, while CREMA-D shows substantial
variation from consumer devices with automatic gain control. Without
normalization, these intensity differences could serve as spurious domain

47



Methodology

discriminators, allowing the model to distinguish datasets by loudness rather
than semantic content. Independent normalization standardizes intensity
distributions within each sample, improving cross-dataset feature alignment.
Third, normalization ensures consistent gradient scales during training. High-
energy utterances would otherwise produce larger gradients than low-energy
samples, introducing variance that destabilizes optimization. Standardizing
inputs to consistent distributions prevents this issue while ensuring the model
learns emotion-specific patterns rather than dataset- specific intensity
characteristics.

Video Processing Pipeline

Video preprocessing extracts, normalizes, and efficiently stores facial frame
sequences for TimeSformer-based emotion recognition. Unlike audio
preprocessing which operates on-the-fly, video preprocessing involves offline
extraction and storage due to face detection computational cost and the
efficiency benefits of compressed storage for domain adaptation experiments.
As shown in Figure 3.3, we could clearly discover how the videos been
processed by the proposed video processing pipeline.

Original Frame After Cropped

.

Figure 3.3: An Example of Face Detection and Extraction

Face Detection and Extraction Raw video files undergo face detection
with Multi-task Cascaded Convolutional Networks (MTCNN) implemented
via facenet-pytorch [60]. For each selected frame, we run independent per-
frame detection, crop the detected face bounding box (no fixed margin
padding), and resize the crop to 224x224. When a face is not detected, we fall
back to a centered square crop (half of the shorter side) before resizing,
ensuring a valid frame is produced for every timestep. The processed frames of
each clip are written to a .npy array, with an optional .avi preview for quick
visual inspection. This design favors robustness without maintaining stateful
trackers; temporal consistency is handled by the downstream model rather
than by ROI-based tracking at preprocessing time.
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Temporal Sampling and Alignment Detected sequences vary in length:
RAVDESS clips contain 90-150 frames (3-5 seconds at 30 fps), while CREMA-
D ranges from 60-240 frames. We standardize to 8 frames through uniform
temporal sampling, providing coverage of expression dynamics (onset — apex
— offset) while maintaining computational tractability. For videos with T > 8
frames, we select using linearly-spaced indices, explicitly including the final
frame. For rare videos with T < 8 (12 clips in CREMA-D, none in
RAVDESS), we replicate frames to reach target length, preserving visual
content while meeting fixed-length requirements.

Computational Efficiency Optimization Initial experiments employed
uncompressed .npy files at TimeSformer's native 224x224 resolution. Domain
adaptation training, however, requires simultaneous processing of source and
target datasets plus maintaining multiple model components, creating severe
GPU memory and storage constraints that proved infeasible with this
configuration. We addressed these constraints by reprocessing all video data
with coordinated resolution reduction and storage compression. Detected faces
are resized to 112x112 using OpenCV's INTER__AREA interpolation and
stored in compressed .npz format (zlib compression). This intervention serves
dual purposes: the 112x112 resolution eased GPU memory constraints enough
to make training feasible, while .npz compression solved the storage bottleneck.
The resolution reduction requires adapting TimeSformer's spatial encoding.
Reducing from 224x224 to 112x112 changes the spatial patch grid from
14x14 to 7x7 (49 patches per frame with 16x16 patch size). We employ
bicubic interpolation to rescale the learned positional encodings, preserving
relative spatial relationships while adapting to the smaller grid. Preliminary
ablation studies confirmed that emotion-discriminative facial features— brow
position, mouth shape, eye aperture—remain detectable at this resolution,
with minimal performance impact. All domain adaptation experiments employ
this optimized 112x112 compressed configuration, enabling feasible training
within available hardware constraints.

Pixel Normalization Following the efficiency optimizations, frames undergo
range normalization during loading, scaling [0, 255] pixel values to [0, 1]
through division by 255.0. This preprocessing is implemented in the function
of loading videos, ensuring consistent input ranges for TimeSformer processing.

3.2 Model Selection

Our emotion recognition system employs a modular architecture consisting of
specialized encoders for each modality and a fusion module for multimodal
integration. The design follows a staged development approach: single-modal
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baselines establish individual encoder effectiveness, followed by multimodal
fusion, and finally domain adaptation extensions. This section describes the
architecture components and their configurations, with particular attention to
adaptations required for cross-dataset training.

3.2.1 Audio Encoder: EmoCatcher

The audio encoder employs the EmoCatcher architecture, a specialized design
for emotion recognition from speech that combines convolutional feature
extraction with recurrent temporal modeling and attention-based aggregation.
EmoCatcher processes mel-spectrogram inputs (128x128 dimensions) through
three sequential stages. The convolutional stage applies three 1D
convolutional blocks with progressive channel expansion (128 — 256 — 256),
each followed by layer normalization, GELU activation, and dropout. These
convolutions extract spectral patterns across mel-frequency bins while
maintaining temporal structure. The temporal modeling stage employs a
bidirectional GRU with 144 hidden units per direction and 2 layers, capturing
both forward and backward temporal dependencies in the prosodic patterns.
The attention stage applies Bahdanau attention over the GRU outputs,
learning to weight different temporal segments based on their emotional
salience. The final output is a 288-dimensional embedding (144 x 2 for
bidirectional) that encodes both spectral and temporal emotion-relevant
patterns from the audio input. Key configuration parameters:
gru_hidden=144, num_ layers=2, kernel size=5 (first convolutional layer),
dropout=0.1. This configuration balances model capacity against overfitting
risk given the limited training data (1,440 RAVDESS samples for source
domain training).

3.2.2 Video Encoder: TimeSformer

The video encoder uses TimeSformer, a Vision Transformer extended for video
understanding through divided space-time attention. We employ the pre-
trained facebook/timesformer-base-finetuned-k400 model, which provides
learned representations from large-scale action recognition (Kinetics-400)
suitable for transfer learning to facial expression analysis. For single-dataset
and multimodal fusion experiments, TimeSformer processes 8-frame sequences
at 224x224 resolution—matching the model's pre-training configuration. Each
frame is divided into 14x14 spatial patches (16x16 patch size), resulting in
196 spatial tokens per frame. The divided attention mechanism alternates
between temporal attention (across frames at fixed spatial positions) and
spatial attention (within frames at fixed temporal positions), enabling efficient
modeling of spatiotemporal patterns without the quadratic complexity of joint
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space-time attention. For domain adaptation experiments, computational
constraints necessitate reducing input resolution to 112x112, changing the
spatial grid to 7x7 (49 patches per frame). We address this through bicubic
interpolation of the learned positional encodings, rescaling from 196-position
to 49-position embeddings while preserving relative spatial relationships. This
interpolation enables effective transfer of pre-trained spatial attention patterns
to the reduced-resolution inputs. To reduce the number of trainable
parameters during fine-tuning, we employ Low-Rank Adaptation (LoRA) on
the transformer attention layers. LoRA introduces trainable low-rank
decomposition matrices into the query and value projections while keeping the
original pre-trained weights frozen. For domain adaptation training, we use
rank r=4, scaling factor a=8, and dropout=0.2, providing sufficient
adaptation capacity while maintaining parameter efficiency. The video
encoder outputs 768-dimensional embeddings (TimeSformer's hidden size)
obtained through temporal mean pooling of the final layer's sequence
representations.

3.2.3 Multimodal Fusion Architecture

The fusion module integrates audio and video representations into unified
emotion predictions. Based on preliminary multimodal experiments, we
adopted a progressive middle fusion strategy that applies multiple stages of
cross-modal attention to gradually refine multimodal representations. The
fusion architecture processes 288-dimensional audio embeddings and 768-
dimensional video embeddings through the following stages. First, modality-
specific projection layers map the embeddings to a common 192-dimensional
space, ensuring compatible dimensionality for cross-modal interactions. Second,
the first attention stage applies cross-modal attention: audio features attend
to video features and vice versa, enabling each modality to incorporate
complementary information from the other. Residual connections and layer
normalization preserve the original modality-specific information while adding
cross-modal refinements. Third, a second attention stage operates on the
refined representations, allowing further integration of multimodal patterns.
Finally, the enhanced audio and video representations are concatenated (384
dimensions total) and passed through a classification head consisting of a
linear projection to 192 dimensions, ReLU activation, dropout (p=0.1), and
final projection to 8 classes for RAVDESS emotion categories. This
progressive attention design enables hierarchical multimodal integration: early
stages capture low-level correspondences (e.g., audio pitch peaks aligned with
visual mouth movements), while later stages integrate higher-level semantic
relationships (e.g., angry vocal tone combined with furrowed brows). The
multiple attention stages provide greater modeling capacity than single-stage
fusion while remaining computationally tractable.
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3.2.4 Domain Adaptation Architecture

For cross-dataset experiments (RAVDESS — CREMA-D), we extend the
progressive fusion architecture with domain adaptation components based on
Domain-Adversarial Neural Networks (DANN) [73]. DANN employs
adversarial training to learn features that are discriminative for the task
(emotion recognition) while being invariant to domain shifts. The extended
architecture, implemented as Domain Adaptive Progressive Fusion, augments
the base multimodal fusion module with a domain discriminator and gradient
reversal layer. The domain discriminator receives the fused multimodal
features (384 dimensions after concatenating enhanced audio and video
representations) and attempts to classify whether samples originate from the
source domain (RAVDESS) or target domain (CREMA-D). The discriminator
employs a compact architecture—a single hidden layer with 96 units (384 —
96 — 2), ReLU activation, and dropout (p=0.15)— following DANN's
recommendation for a relatively weak discriminator that focuses the
adaptation on learning domain-invariant features rather than achieving high
domain classification accuracy. The gradient reversal layer (GRL) implements
DANN's core mechanism for adversarial training. During forward propagation,
the GRL acts as an identity function, passing features unchanged to the
discriminator. During backpropagation, the GRL negates and scales the
gradients from the domain discriminator by a factor a before passing them to
the fusion module and encoders:

Forward: h' = h (3.3)
oL OL 1omai
Backward: T % (3.4)

This gradient reversal encourages the feature extractors (encoders and
fusion module) to learn representations that maximize emotion classification
performance while simultaneously minimizing the domain discriminator's
ability to distinguish source from target samples. The competing objectives—
emotion classifier seeking discriminative features, domain classifier seeking
domain-specific patterns, feature extractors seeking domain-invariant yet
discriminative features—create the adversarial training dynamic central to
DANN. The training objective combines emotion classification loss on source
domain (cross-entropy on RAVDESS labels) with domain classification loss
(binary cross-entropy on domain labels):

Ltotal = Lemotion + A Ldomain (35)

The domain loss is scaled by hyperparameter A, .;, and modulated by
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the GRL's a parameter. Following DANN's progressive adaptation schedule, a
increases gradually during training from 0 (no domain adaptation) to a
maximum value, allowing the model to first learn task-relevant features before
introducing domain confusion. This progressive schedule prevents early
training instability that can occur when adversarial and task objectives
compete strongly from the start. Critically, our implementation maintains the
same progressive fusion structure as the base multimodal model, adding only
the DANN components without modifying the core encoder or fusion
architecture. This design enables direct comparison between standard
multimodal training and DANN-based domain adaptation, isolating the
impact of adversarial adaptation. The encoder and fusion weights are
initialized from single-dataset pre-training, providing a strong starting point
for domain adaptation fine-tuning.
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Chapter 4
Experiments and Results

4.1 Experimental Setup

All experiments were conducted on a workstation equipped with an NVIDIA
GeForce RTX 3060 GPU (6GB VRAM), Intel Core i9-12900K processor, and
16GB RAM. The implementation uses PyTorch 2.7.0 with CUDA 12.6,
leveraging mixed- precision training (FP16) to reduce memory consumption
and accelerate computation. The codebase builds upon Hugging Face
Transformers for TimeSformer and standard PyTorch modules for
EmoCatcher and fusion components.

We evaluate our approach on two widely-used emotion recognition
datasets: RAVDESS and CREMA-D. RAVDESS contains 1,440 audio-visual
recordings from 24 professional actors (12 male, 12 female) expressing 8
emotions in controlled studio conditions. CREMA-D comprises 7,442 clips
from 91 actors of diverse ages and ethnicities recorded in varied environments,
representing 6 emotion categories. The diversity in recording quality, speaker
demographics, and expression styles between these datasets makes
RAVDESS—CREMA-D a challenging domain adaptation scenario. For
domain adaptation experiments, we harmonize emotion labels by mapping
RAVDESS's 8-class taxonomy to CREMA-D's 6-class framework: neutral and
calm merge to neutral, happy and surprised both map to happy, while the
remaining four categories (sad, angry, fearful, disgust) maintain direct
correspondence.

Data partitioning follows a speaker-independent strategy to prevent
identity leakage. For RAVDESS, we allocate 80% of actors (19 individuals) to
the training set and 20% (5 actors) to validation, yielding 1,152 training
samples and 288 validation samples. CREMA-D uses a similar actor-based
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split. No speaker appears in both training and validation sets within either
dataset. For domain adaptation, the entire RAVDESS training set serves as
the source domain. The target domain uses a balanced subsample of CREMA-
D training data—approximately 25% (1,488 clips) selected through stratified
random sampling to maintain class distribution—during the adaptation phase.

Training employs the AdamW optimizer with configurations detailed in
Table 4.1. Learning rate scheduling follows a cosine annealing warm restart
strategy: an initial period of 10 epochs with multiplicative period extension
factor of 2 and minimum learning rate of 1x107°. Models train for 50 epochs
in single- dataset experiments and 60 epochs for domain adaptation to allow
sufficient adversarial alignment. Batch size of video training is limited to 4 by
GPU memory constraints when processing both modalities simultaneously.
For domain adaptation, training alternates between source and target batches:
odd iterations process source samples with emotion labels, even iterations
process target samples without labels. Regularization combines dropout, label
smoothing, and mixed precision as specified in Table 4.1. Validation runs after
each epoch on the complete validation set. Early stopping monitors validation
accuracy with patience of 15 epochs (single-dataset) or 20 epochs (domain
adaptation), preserving the checkpoint achieving highest validation
performance.

Hyperparameter Base Exps DA Exps
Optimizer AdamW AdamW

Base learning rate 5x107° 5x107°

Weight decay 1x107* 2x1075

LR scheduler CosineWarmup CosineWarmup
Dropout (LoRA) 0.05(V) 0.1

Batch size 16(A)+4(V) 4

Training epochs 50 60

Early stop patience 15 20

Mixed precision FP16 FP16

Table 4.1: Training Hyperparameters

Model configurations vary across experimental phases, especially between
before-adaptation and in-adaptation. For audio-only and standard multimodal
experiments, EmoCatcher processes 128x128 mel-spectrograms using 144
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GRU hidden units per direction, producing 288-dimensional embeddings.
TimeSformer processes 8-frame sequences at 224x224 resolution, outputting
768-dimensional features through temporal mean pooling. The progressive
fusion module projects these embeddings to a common 192-dimensional space,
applies two stages of cross-modal attention with 8 heads each, and classifies
through a two-layer network (192—192—38).

Domain adaptation experiments require computational adjustments. Video
inputs reduce to 112x112 resolution due to GPU memory constraints when
processing dual-domain batches. This resolution change necessitates bicubic
interpolation of TimeSformer's positional encodings from 14x14 to 7x7 spatial
grids. To maintain parameter efficiency during fine-tuning, TimeSformer
incorporates Low-Rank Adaptation (LoRA) in attention layers with rank 4,
scaling factor 8, and dropout 0.1. The fusion classifier outputs 6 classes
matching CREMA-D's taxonomy.

4.2 Evaluation Metrics

To comprehensively evaluate the performance of the model, we used multiple
complementary metrics during the evaluation phase. These metrics provide
insights into classification accuracy, precision-recall trade-offs, and model
calibration across emotion categories.

Accuracy The overall classification accuracy measures the proportion of
correctly predicted samples:

TP +TN
TP +TN + FP + FN

Accuracy = (4.1)

where TP, TN, FP, and FN represent positive samples correctly predicted
positive samples, negative samples correctly predicted as negative, negative
samples incorrectly predicted as positive, and positive samples incorrectly
predicted as negative, respectively. While accuracy is a useful general metrics,
it may be less informative in the presence of class imbalance. Therefore,
additional metrics are used to provide a more comprehensive evaluation.

Marco F1-Score Mar F1-Score is used to better handle class imbalance by
evaluating performance between all classes equally. It is calculated as the
average F1-Score of each class and incorporates precision and recall as core
components. According to the definition of TP, TN, FP, and FN in the last
phrase, Precision and Recall are formulated as:
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TP
Precision = TP_|-—FP (42)
TP
l=——— 4.
Reca TP 1 FN (4.3)

The F1-Score is a metric that balances Precision and Recall, providing a
single measure of a model’s accuracy for a specific class. For a given class 1,
the F1-Score is defined as the harmonic mean of Precision and Recall:

Precision - Recall
Fl.=92. 4.4
’ Precision + Recall (4.4)

To evaluate performance across multiple classes, the Macro F1-Score is
computed as the average F1-Score across all C classes:

1 C
Marco Flg .. = 62 F1, (4.5)
=1

where C represents total number of classes and F1, represents Fl-score of
class ith, which depends on the class-specific Precision and Recall values.
Besides, Marco F1-Score ensures that the performance of minority classes is
adequately reflected, making it particularly suitable for voice disorder
detection and classification tasks.

Domain Gap It quantifies the performance degradation when transferring a
model from the source domain(RAVDESS) to the target domain(CREMA-D):

Domain Gap = Acc

souce

- ACCtarget (46)

where Accg,,, and Acc,,,., represent validation accuracies on source and
target domains, respectively. A smaller gap indicates more successful domain
adaptation. For instance, a domain gap of 0.15 means the model performs 15%
worse on the target domain compared to the source domain. Ideally, effective
domain adaptation should minimize this gap while maintaining high source
domain performance, avoiding negative transfer where source performance

degrades excessively.

Results represent averages over three independent training runs using
different random seeds (42, 123, 2024) to account for optimization
stochasticity. These seeds control PyTorch’s random number generator,
affecting weight initialization, data loader shuffling, and dropout masks.
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Standard deviations are reported where variance exceeds 0.5 percentage points,
indicating meaningful variability across runs. Training time averages 3.5 hours
per 50-epoch run for multimodal configurations and 4.2 hours per 60-epoch
domain adaptation run on the described hardware.

4.3 Results

4.3.1 Single-Modality and Multi-Modality Performance

Comparison

We first evaluate the effectiveness of our multimodal framework by comparing
single-modality baselines with various fusion strategies. As shown in Table 4.2,
the video-only model achieves higher accuracy (0.8507 £+ 0.0104) compared to
the audio-only model (0.7986 + 0.0402), suggesting that facial expressions
provide more discriminative cues for emotion recognition in the RAVDESS
dataset. However, the audio-only model exhibits larger performance variance,
indicating sensitivity to acoustic variations across speakers.

Among the multimodal fusion strategies, the mid-stage fusion approach
demonstrates superior performance with an accuracy of 0.8961 + 0.0191 and
F1-score of 0.8985 £ 0.0293, outperforming both single-modality baselines and
other fusion methods. This indicates that progressive cross-modal attention
effectively captures complementary information between audio and visual
modalities. The early fusion strategy achieves comparable results (0.8819 +
0.0361), while late fusion shows relatively lower performance (0.8194 + 0.0855)
with higher variance, suggesting that decision-level fusion may struggle to
effectively integrate the heterogeneous modality representations.

Accuracy F1-Score
) . Audio-only 0.7986+ 0.0402 0.7867+ 0.0175
Single-Modality X
Video-only 0.8507 £+ 0.0104 0.8485 + 0.0079
Ealy Fusion 0.8819 + 0.0361 0.8820 + 0.0365
Multi-Modality ~ Mid Fusion 0.8961 + 0.0191 0.8985 + 0.0293
Late Fusion 0.8194 + 0.0855 0.8156 + 0.0931

Table 4.2: Baseline Performance Comparison

Note: Baselines use random split on RAVDESS; domain adaptation uses speaker-
independent split.
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4.3.2 Domain Adaptation Results

Table 4.3 presents the domain adaptation performance when transferring from
RAVDESS (source domain) to CREMA-D (target domain). The base model
without any adaptation techniques achieves 0.7819 £ 0.0311 accuracy on the
source domain but drops significantly to 0.5867 4+ 0.0175 on the target
domain, resulting in a substantial domain gap of 40.2052. This large
performance degradation highlights the domain shift challenge between the
two datasets due to differences in recording conditions, speaker diversity, and
emotional expression styles.

Progressive incorporation of domain adaptation techniques -effectively
reduces this gap. Adding data augmentation (Base4+augment) improves target
accuracy to 0.7067 £+ 0.0415 while maintaining source performance at 0.8505
+ 0.0742, reducing the domain gap to +0.1438. Further applying LoRA-based
parameter-efficient fine-tuning (Base+LoRA) yields the best balance with a
minimal domain gap of +0.1051, where source accuracy reaches 0.8321 +
0.0019 and target accuracy achieves 0.7270 + 0.0248. The low variance in
source domain performance demonstrates stable training with LoRA.

Source Acc Target Acc Domain Gap
Base 0.7819 + 0.0311 0.5867+ 0.0175 +0.2052
Base+augment 0.8505 + 0.0742 0.7067+ 0.0415 +0.1438
Base+LoRA 0.8321 + 0.0019 0.7270+ 0.0248 +0.1051
Base+Full 0.9103% 0.0850 0.7550% 0.0270 +0.1553

Table 4.3: Domain Adaptation Performance Comparison

The full configuration (Base+Full) combining all techniques achieves the
highest source domain accuracy of 0.9103 + 0.0850 and competitive target
accuracy of 0.7550 £ 0.0270, resulting in a domain gap of +0.1553. Although
this configuration shows strong source domain performance, the slightly larger
gap compared to Base+LoRA suggests a trade-off between maximizing source
performance and minimizing domain shift. The reduced domain gap from
0.2052 to approximately 0.10-0.15 across adapted models demonstrates the
effectiveness of our domain adaptation strategy in learning transferable
emotion representations across heterogeneous datasets.
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Chapter 5

Conclusion

This thesis set out to tackle a problem that sounds straightforward on paper
but proved remarkably stubborn in practice: making emotion recognition
models work across different datasets. The journey from RAVDESS's pristine
studio recordings to CREMA-D's messier, more realistic data exposed just
how fragile our models can be when recording conditions change. The results
tell a clear story: progressive middle fusion achieved 89.61% accuracy on
RAVDESS, substantially outperforming both audio-only (79.86%) and video-
only baselines (85.07%), while our conservative domain adaptation approach
reduced the cross-dataset performance gap from 0.20 to around 0.10-0.15.

The fusion experiments confirmed that architecture matters. Progressive
middle fusion with multiple attention stages beat simpler alternatives—early
concatenation managed 88.19% while late fusion struggled at 81.94%. What
took time to figure out was that those multiple attention stages weren't just
architectural complexity for its own sake. The hierarchical design captures
different levels of audio-visual correspondence: low-level synchronization like
lip-speech alignment in early layers, higher-level semantic relationships like
the correlation between vocal intensity and facial tension in later layers.
Single-stage fusion looked promising in training curves but plateaued
disappointingly early.

The domain adaptation experiments were genuinely difficult. That baseline
gap of 0.20 was worse than expected, and the first several attempts at
adversarial training were disasters. Aggressive alpha scheduling (ramping up
to 0.5 like some papers suggest) caused catastrophic forgetting—the model
lost its ability to recognize RAVDESS emotions while barely improving on
CREMA-D. This forced a complete rethinking of the training strategy. The
ultra-conservative approach we eventually settled on—keeping alpha below
0.0001 for 40% of training and maxing out at just less 0.1—felt almost timid
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compared to standard DANN implementations, but it worked. The key insight
was that RAVDESS to CREMA-D isn't a minor distribution shift. The
expression styles, recording quality, and emotional authenticity differ
substantially enough that complete domain invariance means discarding
source-specific patterns that actually transfer meaningfully. Moderate domain
confusion around 0.75 proved more practical than perfect confusion at 1.0.

I also need to be upfront about the experimental process and hardware
limitations that shaped this work. The hyperparameters in Chapter 4
represent successful endpoints after extensive trial and error, not first
attempts. Learning rates, dropout, LoRA ranks, attention dimensions—
everything got adjusted repeatedly. Some experiments crashed with GPU out-
of-memory errors, others trained smoothly but validated poorly. Most
configurations weren't meaningfully informative; they were just points on the
path to something that worked. This is standard in research, but worth
stating explicitly: the clean thesis narrative never captures the messy reality.
More significantly, the EmoCatcher audio encoder didn't perform as well as
hoped because my RTX 3060 couldn't handle the published architecture
alongside TimeSformer during multimodal training. Reducing GRU hidden
dimensions and convolutional channels to fit in 6GB VRAM was necessary
but limiting—the 79.86% audio-only accuracy is respectable but clearly leaves
performance on the table, particularly for emotion pairs like happy-surprised
and neutral-calm that showed persistent confusion. What saved the situation
was TimeSformer's genuine power. Even after LoRA adaptation and
resolution reduction to 112x112, the video encoder brought 85.07% accuracy.
When fused through progressive attention, the strong visual features
essentially compensated for the audio encoder's capacity limitations. The 10%
jump from audio-only to multimodal isn't just additive—the fusion
mechanism learned to weight reliable visual cues more heavily while still
extracting useful prosodic information. This complementarity is exactly why
multimodal approaches matter, but it also masked an audio pipeline weakness
that might surface in video-degraded scenarios.

The computational efficiency optimizations weren't optional given
hardware constraints but turned out surprisingly beneficial. Reducing video
resolution from 224x224 to 112x112 cut GPU memory by 58%, making
domain adaptation feasible at all. Storage compression to .npz format was
equally critical for preprocessing full CREMA-D. Initially I worried these
compromises would kill performance—facial expressions rely on subtle muscle
movements that might disappear at lower resolution. But ablation studies
showed minimal degradation, maybe 1-2 percentage points. Apparently, major
expression features (mouth shape, eye aperture, brow position) remain clear
even at 112x112 for cropped faces. The efficiency gains from target domain
subsampling (using only 25% of CREMA-D) deserve more credit: training
time dropped from 6+ hours to under 4 hours without meaningful accuracy
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loss. Strategic sampling maintaining class balance and demographic diversity
proved sufficient—you don't need massive target datasets for reasonable
adaptation.

Several limitations point toward necessary future work. The one-way
transfer paradigm was pragmatic but limiting—bidirectional or multi-source
adaptation could potentially improve both datasets. The label mapping
strategy collapsing RAVDESS's 8 emotions into CREMA-D's 6 categories
discarded information about "calm' and ‘'surprised" that hierarchical
classification might preserve. More fundamentally, both datasets contain
primarily acted or semi-acted expressions from scripted speech. The gap to
spontaneous conversational emotion in genuinely uncontrolled environments—
video calls with bad lighting, background noise, people not trying to emote
clearly—remains substantial and largely untested. Self-supervised pre-training
seems particularly promising given our audio encoder's capacity issues. With
better hardware, pre-training on Wav2Vec 2.0's scale (hundreds of thousands
of hours) would likely solve the prosodic modeling limitations encountered
here. Similarly, masked autoencoding for video could improve TimeSformer's
expression understanding beyond Kinetics-400 action recognition. Extending
to additional modalities (physiological signals, text transcripts, body language)
would enrich emotional information, though each introduces its own domain
shift challenges and data collection requirements.

Deployment considerations matter more than I initially appreciated.
Latency is critical for real-time applications—our current 200ms processing
time for 3-second clips is borderline acceptable but needs improvement
through quantization or distillation. Privacy concerns favor on-device
processing to avoid sending sensitive emotional data to servers, requiring
further compression. Interpretability would help users trust the system by
showing which facial movements or vocal patterns triggered classifications.
Most importantly, fairness across demographics—ensuring the model works
equally well for different age groups and ethnicities—is ethically critical but
inadequately addressed here due to training data limitations. The conservative
domain adaptation approach probably generalizes beyond emotion recognition
to other affective computing tasks like stress detection or engagement
estimation, wherever aggressive adversarial training risks catastrophic
forgetting. Systematic testing across multiple transfer scenarios could establish
principled guidelines for scheduling parameters rather than the educated
guessing and validation tuning used here.

In the end, this work demonstrates that cross-dataset emotion recognition
is achievable with careful design but remains challenging. We reduced the
RAVDESS—CREMA-D gap from 20% to 10-15%—meaningful progress
leaving substantial room for improvement. Progressive fusion proved more
effective than simpler alternatives, and conservative domain adaptation
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avoided catastrophic forgetting while enabling transfer. The efficiency
optimizations made the entire effort feasible within hardware constraints,
sometimes with surprising benefits. What I hope this contributes, beyond
specific technical results, is a realistic picture of what works and what doesn't
in practical domain adaptation for affective computing. The hardware
limitations forcing architectural compromises, the aggressive strategies that
failed completely, the hyperparameter searches consuming weeks—this messy
reality rarely makes it into papers but might help others avoid similar dead
ends. Emotion recognition systems working reliably across diverse real-world
conditions remain aspirational rather than solved, but piece by piece, through
work tackling specific transfer scenarios and learning from both successes and
failures, we're getting closer.
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