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Abstract

Résumé

La découverte de nouvelles molécules avec des propriétés spécifiques représente un défi majeur
en chimie moderne et en développement de médicaments. Les méthodes traditionnelles nécessitent
de tester des milliers ou méme des millions de molécules différentes, ce qui demande beaucoup de
temps et d’argent. Cette thése présente AutoSMILES, un framework basé sur des agents qui utilise
I'intelligence artificielle pour concevoir des molécules avec des caractéristiques désirées.

Le coeur de I'innovation réside dans 'utilisation de deux agents : un agent génératif qui crée des
molécules et un agent prompt qui fournit des retours dynamiques et contextuels basés sur I’historique
des tentatives précédentes. Cette approche agentic offrent des pistes de solutions sur les problémes
fondamentaux de génération itérative et d’inefficacité qui limitent les systémes traditionnels.

La recherche révéle des découvertes cruciales en ingénierie de prompt pour la chimie computa-
tionnelle. L’agent prompt produit des améliorations drastiques des performances, démontrant que les
stratégies d’ingénierie de prompt représentent un facteur plus que critique. L’étude établit également
des tendances universelles : les températures plus élevées améliorent systématiquement les taux de
succés tout en éliminant les comportements de boucle inefficaces. Ces résultats ouvrent de nouvelles
perspectives pour les systémes de génération moléculaire basés sur des agents.

Abstract
Abstract

The discovery of new molecules with specific properties represents a major challenge in modern
chemistry and drug development. Traditional methods involve testing thousands or even millions
of different molecules, which is time-consuming and costly. This thesis presents AutoSMILES, an
innovative framework based on a multi-agent architecture that revolutionizes Al-driven molecular
design.

The core innovation lies in employing two agents: a generative agent that creates molecules and
a prompt agent that provides dynamic, contextual feedback based on historical generation attempts.
This agentic approach offers paths of solutions to solves fundamental problems of iterative generation
and inefficiency that limit traditional systems.

The research reveals crucial discoveries in prompt engineering for computational chemistry. The
prompt agent produces drastic performance improvements, demonstrating that prompt engineering
strategies represent more than a critical factor. The study also establishes universal trends: higher
temperatures systematically improve success rates while eliminating inefficient loop behaviors. Most
importantly, the work shows that sophisticated agent-based feedback mechanisms can transform
molecular generation effectiveness, often providing greater improvements than scaling model size or
complexity. These results open new perspectives for molecular generation systems based on agents.

Keywords: Agents, Artificial Intelligence, Large Language Models, Molecular Generation, Prop-
erty Optimization
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Introduction

Context

The field of molecular discovery faces huge challenges that have grown more complex over the past
decades. The inverse design of molecules with optimized properties represents a fundamental challenge
in computational chemistry and materials science. The vastness of chemical space—estimated to contain
1033 drug-like molecules [1]-—makes exhaustive exploration computationally impossible. Modern drug
development requires an investment of over $2 billion per new drug [2], making it one of the most expensive
research processes in any industry. This high cost comes with significant risks, as approximately 90% of
potential drugs fail during clinical trials after years of development work[3]. The complete timeline from
initial discovery to market approval typically extends 10-15 years, creating urgent pressure to find more
efficient approaches to molecular design[4].

Traditional computational workflows, such as quantitative structure-activity relationship (QSAR)
modeling, physics-based simulations, and evolutionary algorithms, require experts, large computing re-
sources, and manual supervision. These requirements limit scalability and adaptability to new chemical
domains, illustrating the magnitude of this problem where molecular optimization remains a key bottle-
neck.

The recent Al revolution has begun to transform how scientists approach chemistry and molecular
discovery. LLMs have shown remarkable capabilities in understanding and generating complex patterns
in text data. This breakthrough has opened new possibilities for molecular design because chemical
structures can be represented as text through specialized notation systems. SMILES serves as a crucial
bridge between the world of molecular structures and NLP technologies [5]. This text-based representation
allows transformer architectures, which were originally designed for language tasks, to operate effectively
on chemical structure data.

Modern Al systems have evolved beyond single-task models to complex frameworks that can han-
dle multiple steps in a workflow. Graph-based agent systems, built using frameworks like LangGraph
and LangChain, enable the creation of pipelines where different Al agents work together to solve com-
plex problems. These systems can manage multiple objectives, provide feedback loops, and adapt their
behavior based on previous results.

Problem Statement

Current molecular generation systems face several fundamental limitations that restrict their ef-
fectiveness in real-world drug discovery applications.

A significant limitation of many current approaches is their lack of interactivity. Most models
operate as single-shot generators, producing molecules from static prompts without iterative learning or
adaptation from feedback. This lack of adaptability makes it difficult for these systems to improve their
performance over time or to handle complex design challenges that require iterative refinement.

Another significant problem is single-objective optimization, where the system only focusing on
improving one molecular property at a time. However, drug design is a multi-dimensional challenge where
molecules must simultaneously satisfy multiple criteria. This limitation prevents current systems from
capturing the full complexity of molecular design requirements.

Furthermore, there has been limited systematic evaluation of how different technical parameters
affect the performance of molecular generation systems. Specifically, the impact of temperature settings
(which control the randomness of AI generation) and prompt engineering strategies (how instructions are
given to the AI system).

The research presented in this thesis try to address these limitations by developing a comprehensive
agentic framework that can handle multiple objectives simultaneously while providing feedback loops. The
key research questions that guide this work are:

e How can graph-based argentic architectures improve property-directed molecular generation?
e What are the impacts of temperature variation, prompt template design, and workflow strategies?

e How does feedback from a specialized prompt agent reduce undesirable loop behaviors?



To address these needs, we introduce AutoSMILES, an agentic molecular design system. Au-
toSMILES iteratively modifies input SMILES strings to achieve user-specified property targets using
multi-strategy optimization. One of its main innovations is the use of prompt engineering through a
dual-agent setup: a generative agent that produces molecules under different prompt conditions, and a
prompt agent that dynamically writes prompt templates based on outcomes.

Report Plan
This report is organized as follows:

Chapter 1 reviews the fundamental concepts and technologies that form the foundation of this re-
search. This includes an explanation of SMILES notation and its role in representing molecular structures
as text, an overview of LLMs and their applications in chemistry, and an introduction to graph-based
agent frameworks.

Chapter 2 presents the AutoSMILES framework architecture and methodology. This chapter
explains the graph-based pipeline design that enables AI agents to work together. It describes the
experimental methodology used to evaluate the system, including the definition of different workflow
strategies and the parameters used during testing.

Chapter 3 analyzes the benchmark results obtained from testing the AutoSMILES framework.
The analysis focuses on understanding how parameters like temperature, prompt engineering approaches
or workflow strategies affect generation quality.

Conclusion synthesizes the findings from the experimental work and discusses their implications
for the future of molecular design using Al systems.



1 Background and State of the Art

1.1 Fundamental Concepts and Technologies

1.1.1 SMILES Representation and Molecular Properties

SMILES notation represents a breakthrough in molecular representation that makes it possible
to describe complex chemical structures using simple text strings [5]. This text-based approach makes
SMILES particularly suitable for transformer-based models, which were originally designed to process
sequences of words but can easily adapt to process sequences of chemical symbols. This linear ASCII
representation creates a bridge between the world of chemistry and NLP technologies.

To illustrate the power and simplicity of SMILES notation, Figure 1 shows several examples of
molecules represented both as SMILES strings and their corresponding 2D chemical structures.

SMILES: clcccecl

e N

AN
Ho” N N\ F

(a) Ethanol (b) Benzene

SMILES:
CN1CCC23C40c5c3c(ccc50)CC4CC2C1

SMILES: CC(C)Cclccc(ccl)C(C)C(=0)0 0
Os_ _OH HO

(c) Ibuprofen (d) Morphine

Figure 1: Examples of SMILES notation and corresponding molecular structures

The examples in Figure 1 illustrate several key aspects of SMILES notation:

e Atoms and bonds: Carbon atoms are represented by 'C’; oxygen by ’O’, nitrogen by 'N’. Single
bonds are implicit, while double bonds use =’ and triple bonds use '#’.

e Branching: Parentheses indicate side chains, as seen in the isobutyrate structure CC(C)C(=0)OCC.

¢ Ring closure: Numbers mark where rings close, such as the '1’ in benzene (clcccecl) indicating
the ring connection between the first and last carbon.



e Aromaticity: Lowercase letters (¢, n, o) represent aromatic atoms, distinguishing them from
aliphatic atoms (C, N, O).

e Complexity handling: Even complex molecules like morphine with multiple ring systems and
functional groups can be represented as readable text strings.

This encoding enables language models to process molecular structures using the same attention
mechanisms that make them effective for natural language tasks. The SMILES strings allows trans-
former architectures to learn chemical grammar rules, bond formation patterns, and structure-property
relationships through standard sequence approaches.

Several key molecular properties drive most drug design decisions and serve as targets for molecular
generation systems. LogP, the octanol-water partition coefficient, measures lipophilicity and determines
how well a molecule can cross cell membranes. This property is crucial because drugs need to be absorbed
by the body and reach their target locations. Molecular weight plays an important role in drug absorp-
tion: oral drugs should typically have molecular weights below 500 Daltons to maintain good absorption
properties.

Molecular refraction serves as an indicator of electronic properties and molecular polarizability,
helping predict how molecules will interact with biological targets. Topological polar surface area is also
important because it predicts membrane permeability.

Finally, synthetic accessibility scores help assess whether generated molecules can actually be made
in the laboratory. Computational tools evaluate proposed synthetic routes and assign scores that indicate
how difficult or expensive it would be to synthesize a particular molecule.

1.1.2 Large Language Models and Agent Frameworks

Advances in LLMs made a fundamental change in many scientific domains that rely on reasoning
and structured data, with chemistry and materials science among the most affected [0, 7]. Although first
designed for natural language tasks, LLMs now show strong abilities in handling molecular representa-
tions, especially when molecules are written as SMILES strings. This has enabled applications ranging
from property prediction and retrosynthetic analysis to inverse design of molecules with user-defined
objectives [3, 9].

The combination of NLP and molecular modeling has expanded the methods available for repre-
senting and generating molecules. ChemBERTa creates molecular embeddings from SMILES [10], while
MolT5 allows translation between natural language and molecular structures [11].

Specialized models have achieved remarkable performance in molecular generation tasks. SmileyL-
lama, can achieve validity rates near 99%, demonstrating that LLMs can learn the complex grammar and
constraints of chemical structures [12]. SynLlama extends this capability by generating both molecules
and synthetic pathways [13].

However, these advances come with significant challenges. Chemical hallucinations remain a major
issue requiring careful prompt optimization, as models can generate chemically implausible or impossi-
ble structures despite appearing syntactically correct [14]. This highlights the importance of prompt
engineering and validation mechanisms in molecular generation systems.

Temperature parameters play a critical rolse for generation randomness and creativity in language
models. Low temperature values (close to 0) produce more predictable outputs, while higher temperature
values increase randomness. Understanding how temperature affects molecular generation performance
is essential for optimizing system behavior.

In artificial intelligence, an Agent is a computational entity that can interact with its environment,
make decisions, and take actions autonomously to achieve specific goals. Agent-based systems represent
an evolution beyond simple approaches. Multi-agent architectures decompose complex problems into
manageable subtasks that can be handled by specialized components. Each agent can focus on a specific
aspect of the overall problem, such as generation, evaluation, or feedback.

Graph-based workflows, implemented through frameworks like LangGraph and LangChain, provide
an approache for managing complex state transitions and conditional logic flows. These frameworks enable
the creation of dynamic workflows where the next step depends on the results of previous steps like finite
state machines.



1.1.3 Graph-Based Pipeline Architectures

Node-based processing workflows offer modular approaches to complex tasks, where each node
represents a specific operation or decision point. This design allows individual nodes to be designed,
tested, and optimized independently before being integrated into larger systems.

State management and validation systems form critical infrastructure components that ensure
process reliability through complex workflows. These systems track the current status of the generation
process, validate intermediate results, and provide all necessary information needed for each step of the
pipeline.

Feedback mechanisms are essential against inefficient computational cycles and generation stagna-
tion. Without proper feedback, systems might repeatedly generate the same unsuccessful molecules or
get stuck in unproductive patterns. So to detect this behavior, the system has a loop detection metric
that helps identify when the system is stuck.

Best-of-N algorithm is a trajectory optimization strategy where it improves output quality by
generating multiple candidates and selecting the optimal results based on a defined loss function [15].
Rather than accepting the first generated molecule, these strategies produce several options and choose
the best one, leading to higher overall success rates.

1.2 Current Approaches

1.2.1 Traditional Single and Multi-Property Optimization

The field of property-directed molecular generation shows a clear distinction between single-
property optimization approaches and the significantly more challenging multi-property scenarios that
better reflect real-world drug design requirements. Traditional single-objective methods focus on optimiz-
ing one molecular property at a time. While these approaches can achieve good results for their specific
targets, they face limitations when drug design requires balancing multiple properties simultaneously.

Multi-objective challenges introduce the complexity of Pareto optimization, where improving one
property might require accepting worse performance in another property. Defining appropriate trade-offs
between different molecular characteristics becomes a critical challenge, as there is rarely a single "best"
solution that optimizes all properties simultaneously.

1.2.2 Existing Agentic Systems and Frameworks

Recently, new agentic frameworks for molecular and materials discovery have emerged, representing
a significant evolution in how Al systems approach molecular design. ChemCrow and dZiner use modular
agents that are specialized in retrieval, reasoning, scoring, and validation [16, 17]. dZiner introduces
an iterative loop for molecular modification, combined with human-in-the-loop evaluation and scoring
functions.

CRAG-MoW uses multiple specialized agents for retrieval-augmented generation, hallucination
detection, and response refinement, showing that multi-agent systems can outperform single models in
molecular design [18].

AutoGen provides infrastructure for multi-agent conversations in scientific applications [19] and
systems like ACCELMAT help generate new hypotheses in materials discovery by using goal-conditioned
agents, critic and summarization modules [20].

However, most of these systems still focus on broad results—like whole material classes or general
reactions—rather than on the precise optimization of molecular properties such as lipophilicity (logP),
drug-likeness (QED), or synthetic accessibility (SA).

1.3 Current Limitations

Existing approaches show a lack of feedback mechanisms that will guide iteratively in molecular
generation tasks. Many current systems generate molecules in isolation, without learning from previous
attempts or adapting their strategies based on what works and what does not work.

Loop behavior and generation redundancy represent persistent problems that waste computational
resources and limit practical applicability. When systems repeatedly generate the same unsuccessful



molecules or get stuck in unproductive patterns, they consume time and computational power without
making progress toward the desired goals.

Integration challenges add another layer of complexity through model-dependent performance vari-
ations that make it difficult to generalize findings across different language model architectures. What
works well with one model might not transfer effectively to another model.

There is increasing agreement that next-generation molecular design systems need to include: (i)
agents with capabilities for planning, memorizing, and reasoning; and (ii) feedback-driven optimiza-
tion to improve molecules step by step. This change requires systems that do more than just generate
molecules—they must reason about molecular structures, adapt to different feedback, and work indepen-
dently throughout the entire molecular design process.
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2  AutoSMILES Framework and Methodology

2.1 System Architecture

2.1.1 Graph-Based Pipeline Design

The AutoSMILES framework uses a graph-based architecture where individual nodes handle spe-
cific tasks within a larger workflow management system. This modular design allows each component to
focus on a particular aspect of molecular generation while maintaining coordination with other parts of
the system. The basic pipeline algorithm is displayed in the Algorithm 1.

Algorithm 1 AutoSMILES Graph-Based Pipeline

Require: Initial SMILES string sg, target properties Piorget, tolerance €, max_attempts N
1: Initialize: iteration = 0, best score = 00, Spest = None
2: while iteration < N AND not success do
3:  Validation Node:

4:  if validate smiles(Scyrrent) == False then

5: Scurrent = S0

6: end if

7 Generative Agent Node

8 if using Best-of-N then

9: candidates = generate multiple smiles(Scyrrent, Prompt, temperature)
10:  else

11: candidates = [generate smiles(Scyrrent, prompt, temperature)]

12:  end if

13:  Property Computation Node

14:  for each s; in candidates do

15: P; = compute properties(s;)

16: score; = loss_ function(P;, Piarget)

17:  end for

18:  Selection Node

19:  Sselected = argmin(score) from candidates
20:  selected score = min(score)

21:  Success Check

22:  if all properties within e tolerance then
23: RETURN sgeiected

24:  end if

25:  Loop Detection

26:  if Sgeiccted In generation history then
27: loop detected = True

28: end if

29:  Prompt Agent Node (if enabled)

30:  if using prompt agent then

31: feedback = generate feedback(history, Parget, current results)
32: prompt = update prompt(prompt, feedback)

33:  end if

34:  if selected score < best_score then

35: best _score = selected _score

36: Sbest — Sselected

37 end if

38: Scurrent = Sselected

39: iteration +=1
40: end while
41: return Spegt

The input validation node serves as the entry point for the system, performing SMILES syntax
verification to ensure that all molecular representations is conform. This validation step prevents errors
from propagating through the system and ensures that only properly formatted molecules are processed.

11



The generative agent node represents the core of the molecular generation process, where LLMs
produce new molecular structures. This node takes into account specified property targets.

Property computation nodes calculate new generated molecular properties using established chem-
informatics algorithms. These nodes compute properties like LogP, molecular weight, molecular refrac-
tion, and topological polar surface area.

The prompt agent node represents a critical add in the system, dynamically generating feedback
messages that incorporate information from previous generation attempts. This feedback guides next
iterations toward better outcomes by helping the system learn from its previous attempts.

Input molecules \ ‘

Generative Agent  Prompt Engineering Agent

C9
| o S
|

Property criteria ‘

Output molecules

Figure 2: AutoSMILES Base Pipeline Architecture

Selection nodes implement Best-of-N algorithms that evaluate multiple generated candidates and
select an optimal molecule based on defined loss functions. These loss functions measure how far generated
molecules deviate from target properties.

Input molecules \ ‘

o}{ Generative Agent Prompt Agent

e — a0
(- (-] Output molecules

Property
criteria I oﬁ

Candidate molecules

~ Best molecules

[§
(
4
K — X
Figure 3: AutoSMILES Pipeline with Best-of-N Algorithm

The pipeline flow logic manages sequential processing with conditional branches that determines
next steps based on current generation results. Loop detection mechanisms monitor generation patterns to

12



identify when the system begins producing redundant outputs, while max attempts parameters provide
definitive termination criteria to prevent infinite cycles.

Success and failure state are track at the end of the workflow and report whether property targets
are achieved within specified iteration limits or not.
2.1.2 Agent Specifications

The Agents are five distinct LLMs to enable model comparison. The tested models are:

e granite3.3, context window: 131k tokens

llama4-mvk, context window: 1M tokens

e phi4, context window: 32k tokens

qwen2.5, context window: 33k tokens

gpt-0ss-120b, context window: 131k tokens

Depending on the workflows, multiple SMILES generation capabilities enable Best-of-N selection
strategies that improve output quality through candidate comparison and optimization. Instead of gen-
erating only one molecule per iteration, the system can produce several options and choose the best
one.

The prompt agent incorporates feedback integration mechanisms that analyze historical genera-
tion attempts and dynamic prompt construction that adapts its output based on current context and
generation history.

2.2 Experimental Design and Parameters

2.2.1 Parameter Space Definition
Temperature settings represent a critical experimental dimension with three chosen values:
e Temperature 0
e Temperature 0.3
e Temperature 0.7

Low temperature values (close to 0) produce more predictable outputs, while higher temperature values
increase randomness.

The benchmarks tested five different prompt templates for molecular generation, each designed to
test how language models respond to different instruction styles:

e chat template follows a structured conversational format with embedded feedback mechanisms
that provide feedback as "history" variable within the template structure itself.

e prompt base represents a detailed instruction template that provides extensive context and ex-
plicit guidance for molecular generation tasks.

e Variation 1, variation 2, and variation 3 implement concise template alternatives that
test whether reduced instruction complexity can maintain generation effectiveness while improving
computational efficiency.

Model comparison across five different language model enables assessment of how different training
approaches, model sizes, and architectural decisions affect molecular generation performance. By testing
the same tasks across multiple models, the research can identify which approaches work consistently and
which are model-dependent.

Target property specification focuses on four key molecular characteristics that represent differ-
ent aspects of drug-like behavior and synthetic accessibility. LogP targeting examines lipophilicity and
Molecular weight, molecular refraction, and topological polar surface area provide additional dimensions
for multi-property optimization challenges.

The +20% tolerance threshold reflects an experimental measurement uncertainties and acceptable
variation ranges for practical molecular design applications.
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The following code blocks show the five prompt templates used in the experimental evaluation:

Listing 1: chat _template

prompt = ChatPromptTemplate.from messages (|
("system", "{system prompt}"),
MessagesPlaceholder (variable name="history"),
("human", "{human prompt}"),

D)

human prompt = """Given the original molecule represented by the SMILES string: {smiles},
with the following original property wvalues:
{property list}

Generate a new wvalid SMILES that satisfies all the following conditions:
1. It is structurally different from the original molecule.

2. It is not present in the list of previously generated SMILES.

3. Its predicted properties are as close as possible to the target wvalues:
{target list}

Return {candidates per_ iteration} different SMILES strings in the required JSON format.

mnmnn

system prompt = """You are a molecular design assistant specialized in organic chemistry
and polymer science.

You generate wvalid SMILES strings that represent chemically wvalid molecules.

You must generate {candidates per_ iteration} different wvalid SMILES strings that each
satisfy :

— Syntactically walid according to SMILES conventions.

— Chemically plausible (no wvalence errors, mo unstable radicals unless specified).

— Structurally different from each other and from the original molecule.

— FEach targeting the specified property values as closely as possible.
mnmnn

Listing 2: prompt base

prompt base = """### Tools
— **SMILES Generator**
— Purpose: Generate chemically valid SMILES strings.
— Arguments:
— {smiles }: Input molecule in SMILES format.
— {property_list}: Original property list of the molecule.
— {target list}: Property target list for the new molecule.
— {candidates per_ iteration }: Number of different SMILES strings to generate.
— Ezxample usage: Not explicitly provided, but expected to ensure syntactical validity,
chemical plausibility , and uniqueness.

### Plan of Action

1. **Analysisx*:
— Input the original molecule SMILES and the history of generated SMILES.
— Identify structural features of the original molecule.

2. xxGeneration *x:
— Use the SMILES generator to create a mew SMILES string.
— Ensure syntactical validity per SMILES conventions and chemical plausibility (e.g.,
correct wvalence, stability ).

3. x*¥ Validation xx:
— Check for structural difference from the original molecule.
— Verify that the generated SMILES is mot already im the history list.

4. *xOptimization xx:
— Adjust the new SMILES structure to approach the target property wvalues as closely
as possible.

5. *xxOutput **:
— Return the new SMILES string.

### Retry or Recovery Logic
— If a generated SMILES is not wvalid, attempt generation again with slight modifications.

— Ensure no infinite loops occur by limiting retries and keeping track of attempts.

##4 Additional Heuristics and Ezamples
— Emphasize avoiding valence errors and ensuring chemical stability wunless radical states

14



are explicitly desired.
— Implicitly adhere to SMILES conventions in all string generations.
— Maintain data integrity by consistently checking against history to avoid repetitions.

Return {candidates per_ iteration} different SMILES strings in the required JSON format.

mnimnn

Listing 3: variation 1

variation 1 = """As a chemist with ezpertise in optimization, analyze the

starting molecule {smiles} which has {property list}.

Your goal is to design a molecule with {property list} closest to {target list}.
Consider:

1. Structure—activity relationships for {property list} modification,

2. Metabolic stability implications ,

8. Synthetic feastbility of proposed changes.

Return {candidates per_ iteration} different SMILES strings in the required JSON format.

nmnn

Listing 4: variation 2

variation 2 = """Given molecule: {smiles} (current {property list})
Target: {target list}

Step 1: Analyze current molecular features affecting {property list}

Step 2: Identify specific substructures contributing to current {property list}
Step 8: Plan strategic modifications to reach {target list}

Step 4: Consider ADMET trade—offs and synthetic accessibility

Step 5: Generate optimized molecule maintaining drug—like properties

Return {candidates per_ iteration} different SMILES strings in the required JSON format.

mnmnn

Listing 5: variation 3
variation 3 = """MOLECULAR OPTIMIZATION TASK
Initial: {smiles} | Property: {property list} | Target: {target list}
Constraints: Preserve scaffold topology, maintain drug—like properties (Lipinski
compliance ), ensure synthetic feasibility
Optimization Strategy: If target > current, increase lipophilic substituents; if target
< current, add polar/ionizable groups
Success Metric: Minimize [predicted {property list} — {target list}/
Return {candidates per iteration} different SMILES strings in the required JSON format.

mnmnn

2.2.2 Workflow Strategies

Single property workflows provide focused optimization that enable detailed analysis of how dif-
ferent parameters affect generation performance when complexity is minimized through single-objective
targeting. These workflows are easier to analyze because they only need to optimize one property at a
time.

The BASE workflow implements straightforward single property targeting with LogP = 4 &+ 20%,
providing fundamental baseline performance measurement across all parameter combinations.

SINGLE BON extends single property targeting with Best-of-N selection algorithms that generate
multiple candidates per iteration and select optimal molecules based on property achievement metrics.

Multi-property workflows represent significantly more challenging scenarios that better reflect real-
world molecular design requirements where multiple properties must be simultaneously satisfied. In drug
discovery, molecules typically need to meet several criteria at once.

MULTI_PROPERTY workflow targets four simultaneous properties with LogP = 4 + 20%, MR
=90 + 20%, MW = 400 4+ 20% Da, and TPSA = 80 + 20% A2. This configuration requires balancing of
competing molecular characteristics, as improving one property might make it harder to achieve another.

MULTI BON combines multi-property targeting with Best-of-N selection strategies.
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2.3 Evaluation Metrics and Methodology

2.3.1 Performance Metrics

Success rate measurement provides the primary quantitative metric of the system effectiveness,
calculated as the proportion of generation tasks that achieve all specified property targets within defined
tolerance ranges.

Loop behavior quantification measures the percentage of generation attempts that produce du-
plicate SMILES strings across different iterations within the same task. This metric specifically tracks
when the system generates identical molecules that have already been produced in previous iterations,
indicating ineffective feedback mechanisms or insufficient exploration strategies.

The measurement focuses on the best-selected molecule from each iteration when Best-of-N strate-
gies are employed, meaning that loop detection reflects the most relevant generation outputs rather than
all intermediate candidates. High loop behavior indicates that the system is not learning effectively from
previous attempts and may be wasting computational resources.

2.3.2 Similarity and Diversity Metrics

Tanimoto similarity calculations provide standardized molecular fingerprint comparison that en-
ables quantitative measurement of structural relationships between generated molecules and reference
compounds.

Tanimoto Similarity:

_|AnB| |AN B

TAB) = A0B ~ A+ 1B —[ANB]

where A and B are molecular fingerprint bit vectors.

Cosine distance measurements compute vector-embedded similarity that captures different aspects
of molecular similarity beyond structural fingerprints.

Euclidean distance provide direct measurement of how closely generated molecules approach target
property combinations, enabling optimization tracking and convergence analysis.

Synthetic accessibility score evaluates whether generated molecules represent synthetically feasible
targets or computationally interesting but practically inaccessible structures.

Loss Function for Property Targeting:

P en Par e ?
Lo = 3w <gtgt> @)

P,
peP target

where w; are property weights.

2.3.3 Experimental Protocol

Dataset selection needs to be done carefully with a wide range of the tested properties, ensuring
robust baseline measurements for comparative analysis. The property histograms in Figure 4 provide
visual and statistical characterization of dataset distributions.

Controlled parameter variation methodology ensures systematic exploration of the experimental
space while maintaining statistical validity through appropriate replication and randomization strategies.

Statistical analysis focus on trend identification across parameter combinations, with particular
focus on temperature effect and prompt template impact.

Range analysis enables quantitative measurement of temperature impact magnitude by calculating
variation ranges across different temperature settings for fixed combinations of other parameters. This
approach provides generalizable information about parameter sensitivity.

The AutoSMILES framework implements a graph-based architecture that enables systematic eval-
uation of multiple parameters affecting molecular generation performance, with a particular focus on
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Figure 4: Distribution of molecular properties in the dataset. (a) LogP, (b) MW, (c) MR, and (d) TPSA

quantifying temperature effects and prompt engineering impacts through many different experimental
set ups.
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3 Results and Analysis

3.1 Basic Benchmark Analysis

3.1.1 Primary Trends Identification

The experimental results reveal two universal temperature effects that appear consistently across
all tested parameter combinations. These patterns are so reliable that they can be considered fundamental
characteristics of how language models behave in molecular generation tasks.

The first universal trend shows that higher temperature settings consistently produce higher success
rates in molecular generation tasks (Figure 5). This means that when the Al system generates molecules
with more randomness, it is more likely to create molecules that meet the specified property targets.
This pattern indicates that increased randomness enables more effective exploration of chemical space,
helping the system find molecules that satisfy the required characteristics.

The second universal trend demonstrates that higher temperature settings consistently reduce loop
behavior percentages (Figure 6). Loop behavior occurs when the system generates the same molecule
multiple times, wasting computational resources without making progress. Higher temperature settings
help prevent this problem by introducing more variability in generation, making it less likely that the
system will get stuck repeating the same unsuccessful attempts.

These trends demonstrate model behavior, appearing consistently across all five tested language
model architectures: granite3.3, llama4-mvk, phi4, qwen2.5, and gpt-oss-120b. Despite their different
training approaches, parameter counts, and model sizes, all models show the same temperature-related
patterns.

Template-independent trend validation confirms that these temperature effects persist regardless of
prompt template structure. Whether using the chat template with embedded feedback or the variation
templates with minimal instruction content, the same temperature patterns appear.

These two effects appearing in both single and multi-property workflows confirms that they rep-
resent fundamental characteristics of language model behavior in molecular generation contexts rather
than artifacts of specific experimental setups. The same patterns appear whether the system is trying to
optimize one property or multiple properties simultaneously.

3.1.2 Prompt Template Analysis

While temperature effects remain consistent across different prompt templates, the templates them-
selves produce significant variations in absolute performance. This means that while temperature always
has the same directional effect, the starting performance level depends heavily on which template is used
with which model (Table 1 & Table 2).

Model-template interaction effects demonstrate that different combinations produce substantially
different absolute performance values. This means that template optimization should consider target
model, as what works well with one model might not be optimal for another.

Table 1: Success Rate Matrix at Temperature 0 and BASE Workflow

Model chat template | prompt base | variation 1 | variation 2 | variation 3
granite3.3 0.23 0.59 0.56 0.45 0.40
llama4-mvk 0.92 0.86 0.94 0.94 0.88
phid 0.75 0.82 0.91 0.84 0.81
qwen2.5 0.78 0.71 0.92 0.94 0.88
gpt-o0ss-120b 0.99 0.86 0.93 0.92 0.84

3.1.3 Range Analysis and Generalization

Success rate range analysis provides measurement of temperature impact magnitude by calculating
the difference between maximum and minimum success rates observed across the three temperature
settings for each fixed combination of model and template parameters (Figure 7).
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Table 2: Loop Behavior Matrix at Temperature 0 and BASE Workflow

Model chat template | prompt base | variation 1 | variation 2 | variation 3
granite3.3 65 17 12 11 11
llama4-mvk 2 10 3 0 0
phid 24 3 1 2 2
qwen2.5 18 8 2 1 1
gpt-o0ss-120b 0 1 0 0 0
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Average range values across different templates demonstrate consistent temperature sensitivity
(Table 3). This means that changing temperature settings typically improves success rates by fixed
amount, regardless of which template or model is used.

Looking at the other workflows, it confirms that this patters persist across BASE, SINGLE BON,
MULTI PROPERTY, and MULTI BON configurations. Whether the system is working on simple
single-property tasks or complex multi-property challenges, temperature has the same magnitude of
effect.

Table 3: Average Success Rate Range Matrix

Workflows chat template | prompt base | variation 1 | variation 2 | variation 3
BASE 0.08 0.08 0.07 0.07 0.09
SINGLE BON 0.03 0.03 0.04 0.05 0.07
MULTI_PROP 0.08 0.11 0.09 0.05 0.08
MULTI_BON 0.07 0.10 0.11 0.08 0.06

Model temperature sensitivity demonstrates that range patterns remain consistent across all five
tested language model. This provides strong evidence for generalizable temperature optimization guide-
lines that should work across current and future language models.

Loop behavior range analysis reveals dramatically different patterns, with one notable exception
to the general consistency. The chat template consistently shows exceptional sensitivity to temperature
variation with average ranges substantially higher than other templates that cluster (Table 4).

Table 4: Average Loop Behavior Range Matrix

Workflows chat template | prompt base | variation 1 | variation 2 | variation 3
BASE 8.40 5.80 2.20 2.40 2.80
SINGLE_BON 2.25 1.75 1.00 0.25 1.75
MULTI_PROP 19.50 8.75 4.50 3.75 4.25
MULTI_BON 11.00 8.75 7.75 6.25 6.25

This exceptional sensitivity reflects the interaction between the chat template’s built-in feedback
mechanisms and external temperature control. The conversational format creates amplified sensitivity
to randomness parameters that affects loop behavior more dramatically than other template designs.
This finding suggests that templates with built-in feedback structures may require different temperature
optimization strategies.

3.2 Workflow and Target Value Studies

3.2.1 Single vs Multi-Property Analysis

Performance degradation patterns between single and multi-property workflows reveal the expected
complexity-performance trade-offs as additional property constraints significantly reduce success rates
while increasing computational requirements for achieving satisfactory results. When the system must
satisfy multiple properties simultaneously, the task becomes much more challenging.

Multi-property scenarios require balancing of competing molecular characteristics, often involving
trade-offs where improving one property may negatively affect another. This creates optimization chal-
lenges that extend beyond simple parameter adjustment, as the system must find molecules that represent
acceptable compromises across multiple objectives (Figure 5).

3.2.2 Best-of-N Algorithm Impact

Best-of-N algorithm demonstrates consistent performance improvement across all tested parameter
combinations, providing clear evidence for the effectiveness of multi-candidate generation with optimized
selection strategies (Figure 5).

Success rate improvements appear across all workflow configurations, indicating that generating
multiple candidates per iteration and selecting optimal results based on property achievement metrics
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provides significant advantages over single-generation approaches. The improvement is consistent whether
working on simple or complex molecular design tasks.

Loop behavior reduction in multi-generation scenarios confirms that Best-of-N selection helps pre-
vent repetitive generation cycles by providing multiple exploration paths at each iteration. When the
system generates several options instead of just one, it is less likely to become trapped in limited regions
of chemical space that produce the same molecules repeatedly.

Selection node demonstrates that the implemented loss function approaches successfully identify
optimal candidates from multi-molecule generation sets. The system can reliably choose the best op-
tion from several alternatives, contributing to overall system performance improvements that justify the
additional computational overhead of multiple generation per iteration.

3.2.3 Target Value Sensitivity

LogP comparison studies between target values of 4 and 6 provide data about how target difficulty
affects generation performance.

Trend preservation confirms that the fundamental temperature patterns (higher temperature lead-
ing to higher success rates and lower loop behavior) remain consistent regardless of target property values.
This indicates that these represent intrinsic characteristics of the generation process rather than artifacts
of specific target selection.

Difficulty scaling effects produce predictable changes in absolute performance values, with higher
target values (LogP = 6) generally producing lower success rates due to increased constraint difficulty.
However, relative performance patterns and temperature sensitivities remain consistent across target
variations. This means that while harder targets are more difficult to achieve, the same optimization
strategies still work (Figure 8).

3.3 Prompt Agent Impact Assessment

3.3.1 With vs Without Prompt Agent Comparison

Prompt agent activation produces dramatic improvements in success rates across all parameter
combinations tested, providing evidence for the critical importance of feedback mechanisms in itera-
tive molecular generation systems. The difference between systems with and without prompt agents is
substantial and consistent (Figure 9).

Success rate shows improvements in already high-performing configurations and challenging multi-
property scenarios. This demonstrates that feedback-guided generation represents a fundamental require-
ment for effective molecular design.

Whether using simple or complex templates, single or multiple properties, or different language
models, the prompt agent always provides significant benefits.

3.3.2 Loop Behavior Reduction

Feedback mechanism effectiveness in reducing loop behavior provides one of the most drastic
performance improvements observed in the experimental results. Systems lacking prompt agents show
extremely high loop behavior percentages that indicate severe efficiency problems, with the system re-
peatedly generating the same unsuccessful molecules (Figure 10).

Significant loop behavior reduction with prompt agent activation demonstrates that historical
generation tracking and dynamic feedback generation effectively prevent repetitive generation cycles.
The prompt agent provides increasingly specific guidance as iterations progress, helping the system avoid
previously explored areas that did not produce successful results.

Without prompt agent, trend reveals that temperature effects become more pronounced when
feedback mechanisms are absent. This suggests that randomness parameters provide partial compensation
for missing feedback but cannot fully compensate. Temperature becomes more important when other
guidance mechanisms are not available.
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Figure 10: granite3.3 Loop Behavior Without Prompt Agent
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3.3.3 Range Analysis

The chat _template exhibits unique behavior patterns due to its built-in feedback structure that
creates interaction effects when combined with external prompt agent systems (Table 5). This template
already includes some feedback mechanisms within its conversational format.

Built-in feedback structure create dual feedback mechanisms when chat _template is combined with
prompt agent. The template itself provides some guidance, while the prompt agent provides additional
feedback, explaining the exceptional sensitivity patterns observed in range analysis.

Table 5: Average Loop Behavior Range Matrix Without Prompt Agent

Workflows chat template | prompt base | variation 1 | variation 2 | variation 3
BASE 9.00 23.00 22.25 25.25 20.00
SINGLE BON 9.75 27.50 19.25 21.50 20.50
MULTI_PROP 17.00 35.50 37.75 36.75 33.00
MULTI_BON 13.50 44.00 48.00 46.00 41.75
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Conclusion

The key contributions of this research include several important findings that advance the field
of Al-driven molecular design. Universal temperature trend identification provides a first evidence for
consistent optimization strategies across different language model in molecular generation applications.
The discovery that higher temperatures consistently improve success rates while reducing loop behavior
gives a reliable optimization strategy that works regardless of other system choices.

Systematic prompt agent impact demonstrates that feedback mechanisms represent essential rather
than optional components for effective molecular generation systems. The drastic improvements in both
success rates and computational efficiency show that implementing feedback should be a priority.

Best-of-N algorithm validation in chemical contexts confirms that multi-candidate generation with
optimized selection provides consistent benefits that justify additional computational overhead. This
finding gives system designers confidence that implementing multi-candidate approaches will improve
performance.

The practical impact of this research extends to several areas that can immediately benefit exist-
ing systems. The parameter optimization guidelines can improve current molecular generation systems
without requiring major architectural changes. Template design can increase performance by choosing
appropriate instruction formats for their specific models and applications.

This work provides concrete evidence that prompt engineering strategies and feedback system
design often provide greater performance improvements than computational scaling or model modifica-
tions. This suggests that research efforts might be better directed toward improving feedback and prompt
design.

While this study demonstrates interesting and promising results, several limitations should be ac-
knowledged. The findings are inherently study-dependent and may be specific to the AutoSMILES system
architecture and experimental conditions used here. The template analysis, in particular, represents a
limited exploration of the prompt engineering space, having benchmarked only five template variations.
This constraint suggests that much more extensive work is needed to fully understand the relationship
between prompt design and molecular generation performance.

Future research should explore a broader range of template structures, instruction formats, and
prompt engineering strategies to validate whether the observed patterns generalize across different sys-
tem architectures and molecular design tasks. Additionally, the temperature and feedback mechanism
findings, while consistent across the tested configurations, would benefit from validation on different
agent frameworks and molecular property targets to establish their broader applicability in the field of
Al-driven molecular design.
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