

 1

Nicolas GAUTIER-KUEA

Master MNIS
2023-2025

ClearSpace SA

Rue de Lausanne, 64, 1020 Renens, Switzerland

Design and development of the electronics
for a Solar Trajectory Simulator

From 03/02/25 to 31/07/25

Under the supervision of :

- Company supervisor : Simon BOTHNER,
simon.bothner@clearspace.today

- Phelma Tutor : Jonathan MIQUEL, jonathan.miquel@grenoble-

inp.fr

Confidentiality : � yes � no
Ecole nationale
supérieure de physique,
électronique, matériaux

Phelma
Bât. Grenoble INP - Minatec
3 Parvis Louis Néel - CS 50257
F-38016 Grenoble Cedex 01

Tél +33 (0)4 56 52 91 00
Fax +33 (0)4 56 52 91 03

http://phelma.grenoble-inp.fr

 2

Acknowledgments
 This internship has been a tremendous opportunity for me as a future engineer, and I am
truly grateful to everyone who contributed—directly or indirectly—to making it possible.

First and foremost, I would like to sincerely thank Simon Bothner, my internship
supervisor, for trusting me with a project that was both meaningful and fascinating, given the
wide range of applications and future possibilities it offers. The freedom he gave me in
researching and developing the solution was an incredible opportunity to gain a comprehensive
vision of the project. It allowed me not only to thrive within it, but also to face and overcome
moments of crisis—valuable learning experiences for both my professional and personal
growth.

I also want to thank the ClearSpace team for creating such a positive and supportive
work environment. Their kindness and good spirit made me feel welcome and respected from
day one. Special thanks go to Mickael Pellet, whose guidance on several key electronic design
decisions was especially helpful throughout the development process.

Finally, I would like to thank my family and friends, who have always shown genuine
interest in the projects I’ve undertaken and have been a constant source of motivation and
support throughout my academic journey.

 3

Table of contents

ACKNOWLEDGMENTS .. 2
GLOSSARY ... 3
LIST OF FIGURES .. 4
INTRODUCTION .. 5
I. CONTEXT ... 6

A) PRESENTATION OF CLEARSPACE ... 6
B) CLEARSPACE MISSIONS ... 7
C) MY GOALS AT CLEARSPACE .. 9

II. PRELIMINARY STUDIES AND EXISTING WORK ... 10
A) SYSTEM OVERVIEW ... 10
B) STATE OF THE ART .. 12

III. COMPONENT INVESTIGATION AND SYSTEM ARCHITECTURE ... 13
A) HARDWARE COMPONENTS ... 13
B) CONTROL AND COMMUNICATION ... 17

IV. SYSTEM DEVELOPMENT ... 18
A) INITIAL SETUP AND TESTS .. 18
B) HARDWARE DEVELOPMENT AND PROTOTYPING .. 21
C) SOFTWARE DEVELOPMENT ... 29
D) SYSTEM TESTING AND TROUBLESHOOTING .. 32

V. PROJECT HANDOVER AND SUSTAINABILITY .. 36
CONCLUSION ... 38
ABSTRACT ... 39
INTERNSHIP SUMMARY SHEET ... 41

Glossary

LEO: Low Earth Orbit. An orbit close to Earth (160–2,000 km altitude), used for
satellites and space missions.

ESA: European Space Agency. Europe’s main space organization, responsible for space
research and missions.

VESPA: VEga Secondary Payload Adapter. A structure on the Vega rocket that allows
launching multiple payloads.

PROBA-1: PRoject for Onboard Autonomy. An ESA satellite testing autonomous
systems; launched in 2001.

SunSim: Sun Simulator. A robot designed to replicate illumination scenarios similar to
those encountered in orbit.

CS-1: ClearSpace-1. Prior mission of ClearSpace aiming to remove the PROBA-1
debris from the LEO.

GNC: Guiding Navigation Control. ClearSpace’s computer vision protocol to guide the
servicer satellite toward the target.

ADR: Active Debris Removal
KiCAD: Ki Computed Aided Design. Open-source software used to design electronic

schematics and PCBs.

 4

SSH: Secure SHell. A secure protocol to remotely control a computer via terminal.
RPi: Raspberry Pi. A compact, low-cost computer used in electronics and programming.
JSON: JavaScript Object Notation. A lightweight text format to store and exchange

structured data.
µC: microcontroller. A small chip with a processor, memory, and inputs/outputs, used

in embedded systems.
PCB: Printed Circuit Board. A board that connects and supports electronic components.
GPIO : Global Purpose Input Output

List of Figures
Figure 1: Evolution of in-orbit debris since the beginning of the space era 6
Figure 2: Darkroom (left) and Cleanroom (right) .. 7
Figure 3: Illustration of CS-1 mission (left: VESPA, right: PROBA-1) 8
Figure 4: Illustration of CLEAR mission ... 8
Figure 5: Illustration of the Phoenix mission ... 9
Figure 6: Darkroom facility .. 10
Figure 7: Axis schematic .. 11
Figure 8: OptiTrack and infrared reflector ... 12
Figure 9: Previous PCBs iteration .. 12
Figure 10: Bench power supply and HEP-320 PSU .. 13
Figure 11: NEMA17 (left) SG100 (right) .. 14
Figure 12: DM320T (left) TMC2209 (right) .. 15
Figure 13: LED and Fan ... 15
Figure 14: Slip ring working principle ... 16
Figure 15: Contact sensors (left) and optical sensors (right) ... 16
Figure 16: Raspberry Pi 5 ... 17
Figure 17: System architecture ... 17
Figure 18: Stepper motors startup test .. 18
Figure 19: PTHat boards .. 19
Figure 20: 3D preview and routing of the PWR_PCB ... 22
Figure 21: Input power filtering stage .. 22
Figure 22: 3D preview of the Control PCB mounted with the RPi .. 23
Figure 23: Schematic of the Control PCB .. 24
Figure 24: Schematic of the Schmitt trigger circuit ... 24
Figure 25: 3D preview of the cart's bottom board .. 26
Figure 26: A6211 typical circuit .. 26
Figure 27: 3D preview of the two Cart-boards stacked ... 27
Figure 28: Illustration of a shielded cable .. 28
Figure 29: B4B-JST connector (left) XT30 power connector (right) 28
Figure 30: Section of the program creating the "Button" for interruption detection 29
Figure 31: Location of the four optical sensors on the R1 axis .. 30
Figure 32: Section of the code reading the JSON file .. 31
Figure 33: Converting the displacement into pulses for each axis ... 31
Figure 34: Generating the PWM signal via multithreading ... 32
Figure 36: Control PCB in its enclosure mounted on the robot ... 34
Figure 35: PWR_PCB in its enclosure mounted on the structure .. 34
Figure 38:Cart PCBs mounted with wiring .. 34
Figure 37: Overall view of the robot equipped with the electronic ... 34

 5

Introduction

 As part of the final semester of my Master’s program in MNIS (Micro and
Nanotechnologies for Integrated Systems), I completed an internship at ClearSpace SA, a Swiss
startup whose mission is to pave the way for sustainable space operations. Currently, no viable
solution exists to handle space debris—such as end-of-life satellites or fragments trapped in
low-Earth orbit—which poses significant threats to future space exploration. These risks imply
careful mission planning to avoid potential collisions and thus, ClearSpace aims to address this
problem by proposing a dual solution: either removing space debris by launching a satellite
equipped with a guiding navigation algorithm and arms, or performing life extension operations
on still-working spacecraft by refueling them or providing provide in-orbit maintenance
operation to make them operational for several more years.

During this internship, I worked on the electronic and software development of a sun
simulator, intended to support the training of the company’s guidance algorithms. This project
involved electronic circuit design, PCB prototyping, and Python programming to create a
system capable of simulating various space illumination scenarios.

In this report, I will present the different aspects of my internship, beginning with an

introduction to the project's context, including the company, its goals, and my role as a
development intern. I will then discuss the state of the art and the preliminary studies that
preceded my involvement, as well as the project requirements. Following that, I will describe
the component testing and development phases and finally, I will provide an overview of the
results along with suggestions for future improvements.

 6

I. Context
a) Presentation of ClearSpace

ClearSpace is a Swiss startup founded in 2018 with the mission of addressing space debris
and end-of-life satellites to make future space missions safer and more sustainable. The
importance of ClearSpace’s mission is significant. Considering the growing amount of space
debris over the past decades, it is clear that without actors like ClearSpace, Earth's orbit in the
near future could become saturated by debris, making future missions extremely challenging—
if not impossible. According to ESA figures, as of May 5, 2025, there are 14,240 satellites in
orbit, with around 11,600 still functioning. However, the total number of space objects regularly
tracked is approximately 41,670. This much higher number can be explained by the fact that
once a spacecraft is no longer in service, it can be destroyed by collisions with other debris,
generating smaller fragments. And for this reason, ESA reports that about 54,000 space objects
are larger than 10 cm, and around 1.2 million are between 1 cm and 10 cm. Given that these
objects can travel at speeds up to 8 km/s, even small fragments pose a significant threat, whereas
others of the order of mm can disable satellites.

Eventually, the goal of ClearSpace is to propose In Orbit Servicing (IOS), services that
include removing debris to build a safe path for future launch, or bringing maintenance
possibilities to in-orbit satellites. ClearSpace’s technology focuses mainly on Active Debris
Removal (ADR) of non-cooperative spacecraft. This means that the success of the removal
operation relies heavily on the guidance algorithm, electronics, and mechanical systems
developed by ClearSpace, as the target is an unresponsive object whose trajectory cannot be
adjusted.

ClearSpace has several offices: in Renens, Switzerland; London, United Kingdom; and
Luxembourg. At the Renens office, where I completed my internship, the primary focus areas
are computer vision, Guidance Navigation and Control (GNC) protocols, and mechanical
engineering, including the design and testing of the robotic claw that will be mounted on the
satellite. In Switzerland, to support the development of their product, ClearSpace has built two
key facilities for in-house testing: the CleanRoom and the DarkRoom.

Unidentified

Rocket Mission Related Object

Rocket Body

Rocket Fragmentation Debris

Rocket Debris

Payload Mission Related Object

Payload Debris

Payload Fragmentation Debris

Payload

Figure 1: Evolution of in-orbit debris since the beginning of the space era

 7

The CleanRoom is a sterile environment used to assemble and test mechanical claw while
minimizing dust and moisture contamination whereas the DarkRoom is a blacked-out facility
where two robotic arms face each other under a carbon structure with a mobile LED light
source. The purpose of this room is thus to replicate space lighting conditions to test and train
the GNC and computer vision systems. One robotic arm represents the satellite equipped with
the guiding equipment (cameras, infrared sensors…), the other the target, and both are mounted
on one rail to perform translational movement.

 While ClearSpace focuses on developing the ADR and GNC protocols, it subcontracts
the development of the other parts of the satellite. These subcontractors are responsible for
designing or supplying components such as guidance equipment (including cameras and
sensors), the propellant tank, the propulsion system, or even the satellite platform itself.
Maintaining effective communication with these subcontractors is therefore crucial, as their
work directly influences how ClearSpace’s overall solution is built.

b) ClearSpace missions

In this subsection, I will present the main missions ClearSpace aims to develop along the
next years.

- The ClearSpace-1 mission

The ClearSpace-1 mission (CS-1) is the prior mission for which ClearSpace has been
created: the removing of a space debris from the Low Earth Orbit (LEO). This first mission was
born after ClearSpace was selected by the European Space Agency (ESA) to remove the upper
part of a VESPA (Vega Secondary Payload Adapter) from the VEGA launcher. However, the
target since changed as the VESPA entered in collision with another debris, changing its
expected trajectory and the target is now the PROBA-1 (Project for On-Board Autonomy)
satellites, a 94 kg satellites launched in 2001 for Earth observation.

This first mission aims to be a demonstration of the capture system of ClearSpace.
Indeed, during this mission, the satellite equipped with the ClearSpace guiding electronics and
claws is supposed to capture the PROBA-1 and then engage a re-entering phase to destroy the
debris in the atmosphere, which will also destroy the servicer at the same time. In future
mission, the idea would obviously be to deorbit multiple targets at each launch, but this mission
would already be a world’s first.

Figure 2: Darkroom (left) and Cleanroom (right)
(Images credit ÓClearSpace)

 8

- The CLEAR mission
The CLEAR mission has the same goal as the CS-1: remove a debris from LEO, the

TOPSAT satellite (Tactical Operational Satellite). The difference however is that after the
deorbitation, the aim would be to get back in orbit to then deorbit another target and even do
some refueling of another satellite. This mission follows a call for tenders of the United-
Kingdom Space Agency.

Something worth mentioning, however, is that for both CLEAR and CS-1, since these
missions result from calls for tenders issued by ESA and the UK Space Agency, it means that
multiple companies are competing to ultimately be selected to launch their solution into space
and carry out the mission. Currently, the selection process for both ESA and UKSA is in an
advanced stage, with only a few companies still in the running. This phase mainly involves
demonstrating development progress to the agencies, showcasing the maturity and feasibility
of the proposed technologies. At the end of this stage, the two space agencies will assess which
solution appears most promising and will select the final contractor to move forward with the
mission.

Figure 3: Illustration of CS-1 mission (left: VESPA, right: PROBA-1)
(Images credit ©ClearSpace)

Figure 4: Illustration of CLEAR mission
(Image credit ©ClearSpace)

 9

- The Phoenix mission
The Phoenix mission, by contrast, focuses on satellite life extension. Using a similar

rendezvous protocol, a servicing satellite would approach another satellite nearing the end of
its operational life to refuel it, perform maintenance operations, or provide a momentum boost,
allowing it to remain operational for several more years. In the context of this mission, the idea
is for ClearSpace’s servicer to dock on the target satellite, move it to a safer orbit, and once the
satellite eventually stops functioning, send it further away.

This mission would represent ClearSpace’s first opportunity to carry out a commercial
mission not directly commissioned by a space agency. Unlike the CLEAR and CS-1 missions,
which are funded by institutional clients and target already defunct satellites, Phoenix targets
an active, commercially valuable satellite. Successfully completing such a mission would
generate significant revenue for ClearSpace, supporting both team growth and the development
of future missions.

c) My goals at ClearSpace

From the previous section, one can notice how various and complex the missions that
ClearSpace might need to carry in the future are. And for this reason, I joined ClearSpace to
help developing a simulator that will support the development of their GNC protocol, the
SunSimualtor. As a development intern, I had to build the electronics and software controlling
the robot and my responsibilities included designing electronic circuits, prototyping PCBs using
KiCAD, and programming a Raspberry Pi in Python. The system was intended to control
multiple motors simultaneously based on data from a JSON file describing the sun’s relative
trajectory with respect to the satellite-target system, in order to recreate realistic space
illumination conditions. Once the electronic developed, the PCBs and wiring had to be
integrated into the existing DarkRoom structure, which includes a steel frame and a carbon
cantilever on which the LED light would move.

Figure 5: Illustration of the Phoenix mission
(Image credit ©ClearSpace)

 10

II. Preliminary studies and existing work
a) System overview

The DarkRoom is a testing facility designed to simulate, on Earth, the approach phase of a
servicer satellite toward its target. The setup of this room is illustrated in the figure below:

It is a completely blacked-out room containing three main elements: the servicer arm,
the target arm, and the Sun Simulator. Both the servicer and target are represented as 6-axis
robotic arms. At the end of the target arm is fixed a physical replica of the target satellite and
the servicer arm holds the guidance electronics, including cameras and sensors that collect and
process critical data-these data would normally be used to command the satellite's propulsion
system and adjust its trajectory. Thanks to their six degrees of freedom, the arms can perform
precise, repeatable, and complex motions. These allow for the realistic mimic of orbital
dynamics between the servicer and target. Additionally, both arms are mounted on a rail system
that enables translational movement, simulating the approach between the two spacecraft.

A metal structure surrounds the room from the walls to the ceiling and allows important
elements to be hung from it, such as the sun simulator or the black curtain covering the
perimeter of the room. The latter notably allows cables or electronics to pass through without
harming the desired complete darkness by preventing cables or PCBs from reflecting light.

The reason why this room is entirely dark is that the navigation system relies heavily on
optical cameras and sensors. This means that for proper testing of the algorithm, it is important
to replicate the lighting conditions found in space, where the sun is the only source of light and
the surrounding environment is otherwise pitch black

This is where the Sun Simulator comes into play. The DarkRoom alone only supports
linear translation between the modules. If a fixed light source were used, it would falsely imply
that the servicer and target are moving in a straight line relative to the sun—which does not
reflect the reality of orbital mechanics. In actual missions, both satellites are rotating around
the Earth and possibly also around each other depending on the scenario. The purpose of the
Sun Simulator is therefore to recreate this complex relative motion of the sun by dynamically

Figure 6: Darkroom facility

 11

adjusting the lighting on the target. This is achieved by moving an LED light source along four
different axes around the servicer-target system, simulating a realistic and changing sun
position over time.

The SunSimulator dispose of four different axis: the R1 axis that enables the sun to rotate
around the servicer-target couple, the Z1 axis that allows to adjust the height and the R2 and
R3 which control the respectively the pitch and yaw of the LED for a better focus on the target.
The LED itself is mounted on a so called “Cart” that slides onto the Z1 axis. At this point, it is
worth mentioning that the size of the robot is a major point to consider: from the R1 rotating
point to the end of the cantilever, there is about 3 meters of carbon fiber whereas from top to
bottom, the Z1 axis measures more than 2 meters. While this large form factor is advantageous
for illuminating the entire dark room, it also introduces significant constraints due to the inertia
generated during movement.

To control the position of each axis—both for the robotic arms and the Sun Simulator—

a JSON file is used, containing pre-calculated coordinate data. The system I am aiming to
develop shall read this data and translates it into commands that drive the motors, ensuring each
axis is set to the correct position at the right time to reproduce the intended scenario.

Additionally, an optical tracking system surrounds the so called “arena”. This system called

the Optitrack was not used during my internship, but its purpose would eventually be to track
the motion of the target, servicer and sun by using multiple cameras equipped with infrared
emitters illuminating the arena and reflecting off small retroreflective markers attached to the
tracked objects. This would thus allow a closed-loop system allowing to have realtime check
of the motion performed.

Top View

R1-axis

Z
1-axis

Side view

R
2-axis

R3-axis

R1 motor

R2 motor

R3 motor

Z1 motor
Cart view

Cart

Figure 7: Axis schematic

 12

b) State of the art

Upon my arrival, the first major component I studied to familiarize myself with the project
was the electronic system previously designed by a former intern. Although the PCBs had been
designed, they had not yet been routed or physically manufactured and my objective was
therefore to verify the correctness of the schematics and assess whether the design still aligned
with the updated project requirements.

The existing work consisted of two PCBs: one designed to control the four motors and host
the computational unit, and another dedicated to powering and controlling the LED.

While the initial design appeared to be electrically functional, the specific needs of my
project required significant modifications—both in terms of control logic and the physical
architecture of the PCBs, in order to ensure better integration with the robotic structure.

One of the most notable differences concerned the control system architecture. The original
approach involved using both a Raspberry Pi and an STM32 microcontroller, communicating
with one another: the Raspberry Pi would receive the input data and send instructions to the
STM32, which would then generate the low-level commands for the motor drivers. This design
choice was made to leverage the real-time capabilities of the microcontroller, as unlike the

Figure 8: OptiTrack and infrared reflector

Figure 9: Previous PCBs iteration

 13

Raspberry Pi, it does not run a full operating system and thus avoids task scheduling delays: the
goal was to meet tight timing constraints for precise motor control. However, it became
apparent that establishing a reliable communication protocol between the Raspberry Pi and the
STM32 was difficult and unstable. Previous tests had yielded inconclusive results, and I was
therefore advised to explore a simplified solution using the Raspberry Pi alone as the main
controller.

Another key consideration was the mechanical integration of the PCBs. The previous two-
board setup did not account for the spatial constraints imposed by the robot’s structure. In
particular, the first iteration of the ControlPCB implied to run cable from the PCB to each
motor, which is quite inconvenient given the distributed placement of the motors on the robot
(see Figure 6 and 7). This design lacked the modularity and flexibility required for proper
integration and this constraint became a driving factor in the design decisions I made during the
development phase.

III. Component investigation and system architecture

The purpose of this section is to summarize the components intended for use in building the
solution and to introduce the communication protocol used to control the system. It will
therefore provide a brief overview of how the system is to be built and how each component
should interact with the others.

a) Hardware components

- The power supply
Along most of the tests, a bench power supply was used, capable of supplying up to 24V-

6A, but it was decided that to power the whole robot, a 24V-13A power supply would be used
on the final setup.

- Stepper motors + drivers
The stepper motors and the drivers are the core of the robot, as they are responsible of

creating the motion of the SunSim. Stepper motors are a type of motor which peculiarity
compared to regular motors is that they are controlled using pulses instead of a DC voltage. A
stepper motor operates by energizing coils in a specific sequence to rotate the rotor in fixed
angular steps. It consists of a stator with multiple coils arranged around the rotor. When current
flows through the stator coils in a controlled pattern, magnetic fields are generated that attract
the rotor teeth or poles, causing the rotor to align step by step. Thanks to their precise motion
control capacities, they are often used for CNC or 3D printer.

Figure 10: Bench power supply and HEP-320 PSU

 14

In contrast, a traditional electric motor—such as a brushed DC motor—has a stator that
creates a constant magnetic field and a rotor (the armature) with windings connected to a
commutator. As current flows through the rotor coils via brushes, the magnetic interaction
between the stator and rotor causes continuous rotation. Unlike stepper motors, which move in
discrete increments, standard electric motors rotate smoothly and require feedback systems for
precise position control. Stepper motors, by directly controlling the sequence of coil energizing,
offer better precision and repeatability without needing external sensors.

Another option would have been to use servomotors. These devices are appealing
because they include integrated encoders that provide real-time position feedback, allowing the
system to know the motor’s exact position at all times—even after power loss. However, in the
context of this project, servomotors presented several limitations. On certain axes, gear
reduction is used to increase torque, which would decouple the encoder’s readings from the
actual position of the moving part, making the position feedback unreliable. Furthermore, most
standard servomotors are limited to single-turn operation, whereas some of the robot’s axes
require continuous or multi-turn motion. High-torque servomotors capable of continuous
rotation do exist, but they are typically larger and bulkier than stepper motors. This lack of
compactness makes them less suitable for integration into the SunSim system, especially on the
cart, where space constraints and design flexibility are critical.

In the context of the SunSim project, two types of motors were selected: a motor from

the NEMA17 lineup and the 15PM20L02-SG100 motor (referred to as SG100). The NEMA17
is a powerful stepper motor that provides high holding torque, making it suitable for both the
R1 and Z1 axes, as they are responsible for moving the entire robot. The SG100, on the other
hand, is used as a pointing motor to control the pitch and yaw of the LED. Although it provides
significantly less torque, the weight it needs to move is much lower, and its compact form factor
made it easy to integrate into the robot.

To control the motion of a stepper motor, a driver is required to generate the electrical

sequence applied to the coils. The basic principle is that the driver is powered by a voltage
source, and this voltage is then applied to the motor's coils according to a pulsed signal (PUL),
whose frequency determines the motor’s speed. This signal in a way, “shapes” the power supply
in order to control the motor. The direction of rotation (clockwise or counterclockwise) is
controlled by a HIGH or LOW signal (DIR) applied to another input of the driver. One
important parameter for speed control is the number of pulses per revolution (pulse/rev). This
value corresponds to the number of pulses required for the motor to complete one full
revolution. A commonly used value is 400 pulses/rev, meaning that with a PUL signal of 400
Hz, the motor will rotate at 1 revolution per second. This parameter can be set in different way
depending on the driver.

Figure 11: NEMA17 (left) SG100 (right)

 15

The NEMA17 is powered by 24V, whereas the SG100 operates at 5V. For this reason,
they are controlled by two different drivers. The NEMA17 uses the DM320T driver, which
requires three input signals in addition to the 24V/GND power supply: PUL, DIR, and OPTO.
The OPTO input is simply a 5V signal used to power the driver's optocoupler stage. These are
robust industrial-grade drivers capable of delivering high currents of up to 2.2 A. The output
current can be configured using dedicated DIP switches (set to 1.6 A per phase for the
NEMA17). Microstepping is also configured via another set of three DIP switches, allowing
settings from 400 to 12,800 pulses per revolution. The SG100, on the other hand, is driven by
the TMC2209 — a smaller, compact driver that is easy to integrate onto a PCB thanks to its pin
headers. It requires only the PUL and DIR signals, and microstepping is configured using two
dedicated pins, each of which can be set to HIGH or LOW, allowing four possible
combinations. Both drivers have four outputs corresponding to the four motor windings, labeled
A+, A− and B+, B−. The connections between the motor and the driver must respect these
designations to ensure proper operation.

- LED + Fans
The LED used is a 3.3 V / 10 W high-power white LED. Thanks to its compact size, it

was easy to integrate onto the robot. With a maximum brightness of 1000 lumens, most lighting
scenarios can be recreated using a current driver circuit that controls the luminosity by
controlling the current flowing through the LED. Due to its small form factor and high-power
density, two fans are required to cool it down. These are standard 5 V fans that only need to be
powered — they do not require control signals and are simple to implement.

Figure 12: DM320T (left) TMC2209 (right)

Figure 13: LED and Fan

 16

- The slip ring
As described in section II.a, the robot is attached to a steel frame. Since the power supply

is wall-plugged and routed from the top of the structure, a slip ring is necessary to allow full
360° rotation of the carbon arm without the cable restricting movement. A slip ring enables
continuous rotation by having fixed wires on one side (connected to the static part) and rotating
wires on the other (connected to the moving axis). The selected slip ring features 12 channels
rated at 2A per wire, providing enough flexibility to transmit both power and signals between
the rotating and static parts of the robot.

- Contact and optical sensors
As the stepper motors used do not have built-in encoders or other position feedback

systems, contact and optical sensors are employed. These are digital high-low sensors that act
essentially like switches. When triggered, they provide a signal indicating that a motor has
reached a predefined position or limit. The contact sensors are basic mechanical switches
activated when a physical element presses the button. They are used on the R2, R3, and Z1
axes. On the R1 axis, four optical sensors are installed to divide the rotation into four quadrants.
These sensors are fixed to the moving part, and each one is triggered by a screw attached to the
metal frame. As the carbon arm rotates, the screw successively activates each sensor, allowing
the system to determine in which quarter the arm is currently located.

Figure 14: Slip ring working principle

Figure 15: Contact sensors (left) and optical sensors (right)

 17

b) Control and communication

The entire robot is designed to be controlled by a Raspberry Pi. Raspberry Pi boards are
compact, affordable and user-friendly single-board computer. They can perform many tasks
similar to a standard computer, such as running a Linux-based operating system, connecting to
the internet, or managing peripherals via the Global Purpose Input Output (GPIO) pins they
embed. They are also well equipped with useful port such as USB, Ethernet or HDMI making
them very versatile for hardware-oriented projects. In the frame of the project, the RPi board
was used to execute python script to control the motor. The concept is thus to provide it with a
JSON file containing the sun’s coordinates at various time intervals, describing a trajectory
synchronized with the two robotic arms. The Raspberry Pi interprets these coordinates into
motor commands by generating the appropriate PUL and DIR signals and sending them to the
drivers. Initial programming and testing were carried out with the Raspberry Pi connected to an
external monitor, but the final goal is to operate the system remotely via an SSH connection
between a computer and the Raspberry Pi.

The following figure summarizes the overall system architecture:

Figure 16: Raspberry Pi 5

LED Driving Circuit

x424V

24V

PW
M

PUL/DIR

PU
L/
D
IR

PUL/DIR

PUL/DIR

5V

JSON

R1-Axis Z1-Axis

R2-Axis

R3-Axis

Figure 17: System architecture

 18

IV. System development
a) Initial setup and tests

The first step consisted in becoming familiar with the main components — namely the

stepper motors and the Raspberry Pi. The objective was to test and understand how to control
the motors by generating PUL and DIR signals using the Raspberry Pi.
The stepper motor tests were relatively simple, as the main properties to verify were speed and
direction control. The test setup is shown in the figure below:

It consisted of the drivers and motors, both powered by a lab bench power supply, along

with a function generator. In the case of the NEMA17, an additional 24V-to-5V DC-DC
converter was used to generate the OPTO and DIR signals. An oscilloscope was also used to
continuously monitor the input and output signals.

Motor control proved to be quite intuitive: changing the frequency of the PUL signal
allowed control over speed, and toggling the DIR pin between 5V and GND changed the
rotation direction. Microstepping was also tested, confirming that it affected the driver's
resolution — a higher pulse frequency was needed to achieve one full revolution per second at
finer microstepping settings.

 The next objective was to control the stepper motors using a Raspberry Pi by generating
a pulsed signal with a tunable frequency to adjust motor speed. Initially, I worked with a
Raspberry Pi 4, as it was the version available at the company. Research indicated that the most
suitable library for generating pulse signals was the pigpio library. However, after
implementing the program, it became clear that this approach had significant limitations. While
the library provided several methods for generating pulses, each came with major drawbacks.
Some methods allowed precise frequency control but were limited to a single GPIO pin. Others
supported simultaneous signal generation on multiple GPIOs but only at a very limited set of
predefined frequencies. The company then acquired a Raspberry Pi 5, which was compatible
with an alternative library, gpiozero. However, this library also presented limitations, with
similar trade-offs depending on the method used. Ultimately, the chosen solution was to use an
external module dedicated to signal generation, offloading this task entirely from the Raspberry
Pi.

Figure 18: Stepper motors startup test

 19

 The Pulse Train Hat (PTHat) is a module from the “HAT” (Hardware Attached on Top)
family, which consists of hardware extensions designed specifically for the Raspberry Pi
environment. Most of these modules are simply plugged onto the GPIO pins as extension
boards, and communication between the Raspberry Pi and the HAT is generally
straightforward. Some modules enhance the Pi’s computing power, others add features like
cooling fans, and in the case of the PTHat, it enables the generation of control signals for driving
stepper motors. The PTHat was originally developed for 3D printer applications, which rely
heavily on stepper motors to control the movement of the print head. It is therefore a perfect fit
for our project.

The PTHat can generate up to four independent PUL signals simultaneously while also
providing the 5V supply required for the OPTO pin of the DM320T driver. It also features
dedicated direction pins for each motor. These signals are available via connector blocks which
eases the access and wire making. Communication with the PTHat is handled via a UART
connection established between the Raspberry Pi and the board and A dedicated Application
Programming Interface (API) is provided, making it easy to send commands to the PTHat.
These commands are in ASCII format, simplifying programming by eliminating the need to
manually handle protocol configurations such as baud rate or parity bits.

This API is particularly convenient, offering intuitive functions that allow users to set
all key parameters for precise stepper motor control. As discussed in section III.a, stepper motor
rotation is controlled via pulse signals. For instance, if the driver’s microstepping is set to 400
steps per revolution, this corresponds to a resolution of 360°/400 = 0.9° per pulse. The API
allows users to specify a predefined number of pulses, which enables fine-grained control of
motion — down to tenths of a degree, or even finer when using higher microstepping settings.
The pulse frequency can also be adjusted, giving control over movement speed. Additional
parameters such as rotation direction and acceleration profiles are also available, allowing full
control over motor behavior.

Programming a stepper motor using the PTHat is quite intuitive and typically involves five
main steps:

- Yaxis = Axis(“Y”, command_id=1)

Figure 19: PTHat boards

 20

This line creates an instance of the Axis class, associated with the Y-axis port of the PTHat.
The command_id is a unique identifier used to differentiate commands addressed to each axis.

- Set_yaxis_cmd=yaxis.set_axis(frequency=f, pulse_count=p, direction=1,
start_ramp=1, finish_ramp=0,ramp_divide=100, ramp_pause=10,
enable_line_polarity=1)

This line constructs the ASCII command string that configures the Y-axis. It defines the motion
profile, including frequency (f), number of pulses (p), rotation direction, and ramp settings for
acceleration and deceleration.

The generated string has a fixed 37-character format, with clearly defined byte segments:

Table 1: ASCII packet nomenclature

In the ASCII data frame, the second segment specifies the axis command ID (must match the
one used in the Axis instantiation). The third indicates which axis is being set, the fourth sets
the pulse frequency, the fifth specifies the number of pulses to send and the remaining
characters configure acceleration, ramp pauses, and direction. Each command string must end
with an asterisk (*) to indicate the end of the instruction.

- yaxis.send_command(set_yaxis_cmd)

This line sends the previously generated ASCII command over the UART interface to the
PTHat, which interprets it and prepares the motion parameters.

- wait_for_responses(yaxis, ["RI02CY*", "CI02CY*"], “Message")

This step ensures that the PTHat correctly received and interpreted the command. The
wait_for_responses() function listens to the serial line for specific confirmation messages sent
back by the PTHat. It takes as parameters the name of the axis, the response the PTHat sends
and print a “Message” that the user can custom to have an interpretation of the answer of the
PTHat. In this case, the expected responses correspond to confirmation of the command
configuration. This step is essential to validate proper synchronization and error-free
communication.

- yaxis.send_command(yaxis.start())

This command sends the “start” instruction to begin motor motion, using a similarly structured
ASCII command string. As before, the execution would be followed by a call to
the wait_for_responses() function to verify that the motor has started and that pulses are being
sent as expected.

By following this sequence for each of the four motors, I was able to set them in motion
simultaneously while maintaining individual control over speed, direction, and timing. I also
successfully implemented staggered start times and conditional stops based on sensors
feedback, allowing the robot to respond dynamically when reaching one of the end stops.

ASCII
command

I 01 CY 125000.000 4294967295 1 1 1 100 010 0 1 *

Segment 1 2 3 4 5 6 7 8 9 10 11 12 13

 21

Once the control of the motor has been assessed, we decided to perform the first real

condition tests of the motor by mounting them on the structure one by one. These individual
tests were conducted to better assess the current consumption of each stepper motor, which was
a key requirement for correctly sizing the PCB power tracks. Since the current powering the
motors flows directly through the PCB, undersized tracks could overheat or even be damaged
if the current exceeds safe thresholds. Through these tests, it was determined that each
NEMA17 motor could draw up to 1 A, while the two smaller SG100 motors typically stayed
below 200 mA.

During these tests, a specific mechanical limitation was identified on the R2 axis. This axis
is responsible for pitching the LED from bottom to top and, under nominal operating conditions
with a 5 V power supply, the motor could not deliver enough torque to lift the LED past its most
demanding position—where gravitational torque is highest. To address this issue, one solution
involved increasing the supply voltage above the driver’s nominal recommendation, which
improved torque output and allowed the LED to complete the motion. However, this came at
the cost of higher motor temperatures, which raised long-term reliability concerns. To mitigate
this, the problem was taken into account in the following design stages, and in parallel, a
member of the mechanical team proposed an improvement to the torque transmission system
between the motor shaft and the LED axis. This optimization aimed to reduce the required
motor torque by improving mechanical leverage, providing a more sustainable and reliable
solution to the R2 motion issue. Apart of this issue, the motion on the other axis appeared to be
smooth and easy to control, bringing confidence in the control protocol for the next steps.

b) Hardware development and prototyping

Based on the findings from the initial investigation phase, the next step was to design the
electronic architecture of the robot, taking into account both mechanical constraints (such as
the placement of the power supply unit, efficient use of the slip ring, and distribution of the
electronic boards) and electrical considerations (available power, circuit sizing, powering
various components, etc.).

The robot can be divided into three main parts: the fixed base, composed of the metal frame
on which the carbon arm rotates; the horizontal carbon arm; and the vertical arm, along which
the cart carrying the LED moves. Given the robot’s wide and distributed design, it became clear
that optimizing the PCB placement would be essential to minimize cable congestion and build
a safe, robust, and reliable system.

Considering the location of each motor (see Section II.a), it became evident that three PCBs
would be necessary: one dedicated to the R1 motor, one for the Z1 motor, and one to control
the two motors mounted on the cart. This architecture would provide greater flexibility, as it
allows the placement of PCBs in critical positions, thereby reducing cable length. It also offers
more freedom in optimizing connector placement on the boards — a key factor in minimizing
congestion and simplifying the design of protective housing for each PCB.

This 3-PCBs architecture would be composed of the so called “PWR_PCB”, “Control_PCB”
and “Cart_PCB”.

 22

- PWR_PCB

As its name suggests, this PCB is responsible for powering the robot. It acts as the primary
interface between the power supply unit (PSU) and the rest of the system. For this reason, it
would be placed on the non-moving part of the robot since the PSU is fixed on the ground. In
addition to distributing power, this board also reroutes the control signals — PUL and DIR —
from the PTHat to the R1 motor driver. The OPTO signal required by the driver is generated
via a 24V-to-5V DC-DC converter and these three signals are grouped into a dedicated
connector, allowing the creation of a single cable for driving the motor.

The most critical feature of this PCB is its input stage, which is designed to filter, protect, and
stabilize the input power.

This protection stage safeguards the rest of the system against voltage irregularities that could
potentially damage electronic components. It includes:

- A fuse, which prevents overcurrent by physically disconnecting the circuit in case
of excessive current draw.

- An SM6T33A TVS diode (Transient Voltage Suppression), which protects against
overvoltage by clamping any voltage spike above its threshold and safely diverting
it to ground.

- Two electrolytic capacitors connected in parallel, which help filter high-frequency
noise and smooth out voltage ripple on the power supply line.

This same protection circuit will be replicated on each of the robot’s PCBs to ensure individual
protection and improve overall system reliability.

Input Power Connector
Power connector for
the rest of the robot

Power for the R1 motor

Figure 20: 3D preview and routing of the PWR_PCB

Figure 21: Input power filtering stage

 23

- Control_PCB

The Control_PCB is the main interface between the other PCBs. It embeds the RPi and
the PTHat to spread the driving signal to the motors’ driver, bring power to the cart and the Z1
motor and collects the signal from the three contact sensors and four optical sensors. I decided
to locate it near the end of the horizontal arm to be as close as possible to the cart and the Z1
driver. This allows robust cable management near this location, and only straight wire to travel
along the horizontal arm up to the rotation axis where the power and PUL/DIR signal will be
transmitted via the slip ring. Same thing goes with the wire that will power the optical sensors
and carry their output signals.

Figure 22: 3D preview of the Control PCB mounted with the RPi

Input power connector

Z1 power connectorCart's power connector Conditioning circuits

40 pins connector
 for the PTHat

 24

 On the schematic, on can notice that this PCB is divided into four parts:

• Power filtering stage
As mentioned previously for the PWR_PCB, this section is dedicated to filtering the input

power to ensure a safe, clean, and reliable power supply for the rest of the board

• EndStops
This section manages the signals from both the contact and optical sensors, using a

dedicated Schmitt trigger circuit for each input.

Schmitt triggers are used here as signal conditioning circuits to ensure clean and reliable
signals at the Raspberry Pi input. The fundamental principle of a Schmitt trigger is that its
output can only have two discrete states — HIGH or LOW — depending on the input voltage.
It switches states only when the input crosses defined threshold levels, effectively introducing

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date:
KiCad E.D.A. 8.0.8

Rev:Size: A4
Id: 1/4

Title: Control Board SunSimulator
File: SunSimCommand.kicad_sch
Sheet: /
ClearSpace SA

Contact OUT 1Contact IN 1

Optical OUT 3Optical IN 3

Optical IN 2 Optical OUT 2

Optical IN 1 Optical OUT 1

Contact OUT 2

Contact OUT 3

Contact IN 2

Contact IN 3

Optical OUT 4Optical IN 4

VC
CEndStops

VC
C

Opt IN 3

Opt IN 4

Opt IN 2

Opt IN 1

Contact IN 1

Contact IN 2

Contact IN 3

PWM_LED

RPI + PTHat

3V3
24V

5V_RPI

+12V

Power Supplies

+12V

1
2

J6

12V opt sensors

GND

1
2

J3

24V output PCB chariot

GND

1
2
3
4

J4
Contact sensors IN + PWM_LED

+12V

3V3 5V_RPI

GND

1
2

J1

24V input

24V

3V3

C2
68u 63V

C23
100n

F1
16A

GND

24V

GND

24V

C24
100n

1
2

J2

24V output Motor Z

H3
M4

GND

D1
SM6T33A

H2
M3

C1
68u 63V

GND

C22
100n

GND

H5
M1

C21
100n

1
2
3
4

J5
Optical sensors IN

H1
M2

5V_RPI

PWM_LED

PWM_LED

+12V

J6

12V opt sensors

1
2

GND

J3

24V output PCB chariot

1
2

GND

GND

24V

GND

24V

J2

24V output Motor Z

1
2

D1
SM6T33A

C1
68u 63V

C23
100n

GND

C24
100n

H3
M4

GND

H2
M3

GND

H1
M2

C22
100n

GND

H5
M1

C21
100n

C2
68u 63V

Figure 23: Schematic of the Control PCB

Pull-Up resistorPull-Up resistor

Figure 24: Schematic of the Schmitt trigger circuit

 25

hysteresis. This feature is particularly useful for cleaning up noisy signals that may occur during
propagation from the sensors to the Raspberry Pi. Additionally, Schmitt triggers serve as a
means of electrical isolation between the sensor stage and the Raspberry Pi’s GPIO inputs.

For both contact and optical sensors, a pull-up resistor is required to ensure clearly
defined logic states. In the case of contact sensors, pressing the sensor connects the input to
ground, resulting in a LOW logic level; otherwise, the line would be left floating. To address
this, a pull-up resistor is added so that when the sensor is open (not pressed), the input to the
trigger is pulled up to 3.3V. When pressed, the voltage drops to 0V, and the Schmitt trigger
toggles accordingly.

The same principle is applied to optical sensors, with the distinction that these operate
at 12V. The pull-up resistor is placed between the sensor’s VCC pin and its output. As a result,
the sensor’s output toggles between 0V and 12V. Since the input of the Schmitt trigger must
not exceed 3.3V (to be compatible with the Raspberry Pi), a voltage divider is added to scale
down the 12V signal to approximately 3V, ensuring safe operation.

• Power Supplies

This section handles the power conversion from the 24V main supply to the various voltage
levels required across the board. It includes DC-DC converters generating 12V for the optical
sensors, 3.3V for the Schmitt trigger circuits, and 5V for the Raspberry Pi. Each converter is a
standard three-pin component (VIN, GND, VOUT) and is accompanied by input and output
filtering capacitors to ensure voltage stability and reduce ripple.

• RPi+PTHat

This final block provides a straightforward interface between the PTHat and the

Raspberry Pi, using two 40-pin connectors. A female connector is mounted on the PCB to host
the Raspberry Pi vertically, while a male connector allows the PTHat to be connected on top.
The GPIO signals are routed from one connector to the other, ensuring a direct and reliable
connection between the two boards.

- Cart_PCB

The purpose of this PCB is to control the electronics located on the cart, which includes

the R2 and R3 motors, the LED, and the cooling fans. The onboard electronics consist of the
LED control circuit, two motor drivers, and multiple DC-DC conversion stages. Indeed, the
PCB receives a 24V power supply from the main control PCB but the motors do not operate at
24V but at a lower voltage, between 5V and 10V, as discussed in section IV.a. This voltage had
not been precisely determined during testing, especially since the tests were not conducted
under fully realistic conditions and to accommodate this uncertainty, I chose to include several

 26

DC-DC converters providing different voltage outputs, along with two rotary switches that
allow the user to select the appropriate supply voltage for each motor individually.

The available voltages are 5V, 6.5V, 7.2V, and 9V, and each DC-DC converter was
selected to be capable of supplying enough current—up to 500 mA per motor. The output of
each switch is connected to the power input of one motor driver. A 4-pin connector is then used
to connect the motor coils to the driver’s phase outputs. Microstepping can be configured using
jumpers, and the PUL and DIR control signals are injected from the main control PCB via
another 4-pin connector. In order to plug the drivers directly into the PCB, two 8-pin female
headers are used to allow a simple and secure connection.

Another DC-DC stage is required to power the LED and its control circuit. The LED
itself is powered at 3.3V, while the control circuit operates at 12V. Since the LED can draw up
to 3A, I selected a 12V–3A power supply to meet this requirement.

The LED control circuit is built around the A6211 driver. In theory, this driver can
supply up to 3A if properly configured. The configuration is done by selecting component
values according to the design guidelines provided in the datasheet. Most importantly, the
𝑅!"#!" resistor must be correctly chosen, as it directly sets the output current via the formula:
𝐼	 = $.&

'!"#!"
.

Drivers

DC-DC converters

Switches

Figure 25: 3D preview of the cart's bottom board

Figure 26: A6211 typical circuit

 27

To achieve a current of around 3A, a 75 mΩ resistor is used, which actually limits the
current to approximately 2.6A, providing a safety margin for the LED. The other components
are dimensioned to configure additional parameters such as the switching frequency of the
internal MOSFET used to regulate the output voltage. The dimming (control over the brightness
of the LED) can be performed in two ways : via a PWM signal or an analog voltage. The control
is linear which means that the duty cycle of the PWM directly corresponds to the power of the
LED whereas for the analog voltage, 0V leads to a maximum current and 5V corresponds to
the maximum brightness. To switch between PWM or analog voltage dimming of the LED
brightness, I added two jumpers on the PCB.

Finally, it remains the fans that are easily powered by the 5V DC-DC converter used for

the motors as the current drawn by the fans is negligible and it does not require any control.

To address integration and space constraints, I chose to split the electronics into two
separate PCBs stacked vertically. Combining all components on a single board would have
resulted in a large, unbalanced layout that was not compatible with the available space on the
cart. Stacking the boards allowed for a more compact and weight-centered design, placing the
mass closer to the cart’s center of gravity. Another specific mechanical constraints was that the
cart was already equipped with four M3 mounting holes, which I integrated into the PCB layout
to ensure secure attachment of the PCB on it.

Functionally, the two PCBs were separated according to their roles: the bottom board

handles motor control, integrating the DC-DC converters, drivers, and motor connectors, while

the top board manages signal routing from the contact sensors (mounted on the cart), powers
the LED and fans, and handles analog LED control. The bottom board receives the main 24V
power input and distributes power to the top board via a dedicated connector and cable carrying
GND, 12V for the LED driver, and 5V for the fans and control signals.

Figure 27: 3D preview of the two Cart-boards stacked

 28

 Particular attention was paid to signal integrity when designing the wiring. Since the
structure is made of carbon fiber, which is conductive, it can behave like an antenna and
potentially interfere with the signals transmitted through the wires. To prevent such
disturbances, shielded cables were used instead of standard unshielded ones, especially for
signals running along the carbon fiber axis.

 In a shielded cable, a conductive metallic layer is placed between the inner conductors
and the outer insulating sheath. This shield is tied to ground, which helps protect the signal or
power lines from electromagnetic interference by referencing nearby disturbances to a common
ground potential. For areas not exposed to the carbon structure or electromagnetic noise,
standard unshielded cables were used, as they are more flexible and easier to route—particularly
in tight spaces.
 For signal connectors, I selected the JST XH series connectors (BYB-XH, where Y
indicates the number of pins). These are widely available, affordable, and offer good reliability
for low-power applications. A major advantage is that they can be used with a universal
crimping tool, avoiding the need to invest in expensive, brand-specific crimp tools. The JST
XH connectors support currents up to 3A and accommodate wire sizes ranging from AWG30
to AWG22, making them versatile enough for various signal types, including PWM, PUL, and
DIR signals.
 For power transmission, I opted for the XT30 connectors. These gold-plated connectors
are compact and robust, capable of handling currents up to 15A, which comfortably meets the
power requirements of the motors, LED, and fans. Their secure connection and high current
tolerance made them a reliable choice for the robot’s power distribution.

Figure 28: Illustration of a shielded cable

Figure 29: B4B-JST connector (left) XT30 power connector (right)

 29

c) Software development

As this was the first software iteration of the project, the expectations were quite basic. The

main objective was to create a simple motion from point A to point B, without any constraints
on speed or synchronization between the two robotic arms.

The first code I developed was the calibration program. Its purpose was to measure the
number of pulses required for each motor to move the LED along its entire axis. For the R1
axis, this meant completing a full 360° rotation. For the Z1 axis, it involved traveling along the
entire vertical range. For the R2 and R3 axes, it meant moving across the full range of angles
permitted by the cart’s mechanical constraints.
This calibration allows the determination of the resolution of each axis in either degrees per
pulse (°/pulse) or centimeters per pulse (cm/pulse). With these values, precise motion becomes
possible: sending a given number of pulses will move the robot by a defined angle or distance.

The program follows this procedure:

• Prompts the user to choose which axis to calibrate.
• Asks for the desired frequency.
• Asks for the number of pulses to send via the PTHat.
• Asks for the rotation direction.

The motor will then rotate until it hits one of the end-stop sensors. Upon detection, the

program enters an interrupt routine that stops the pulse emission and sends a pulse count request
to the PTHat. This provides the exact number of pulses emitted right before the stop command
was triggered. For the R1 axis, the process is slightly different, since it can perform a full
revolution. Four optical sensors are placed around the rotation to map out the full 360°. During
calibration, the program retrieves the pulse count every time a sensor is crossed. This provides
the pulse count for both a 90° rotation and a full 360° turn, which allows for cross-checking the
accuracy of the method: the pulse count for 360° should roughly equal four times that of 90°.

Interrupts are handled using the gpiozero library, specifically the Button class. The
interrupt setup follows this sequence:

• A Button object is created and linked to a specific Raspberry Pi GPIO. One object is
created per sensor. A bounce_time is specified to prevent signal bouncing, which could
trigger false multiple activations.

• Each Button is linked to a callback function: when the GPIO detects a change (sensor
activation), the program automatically jumps to this function and executes the interrupt
routine.

• The interrupt routine is defined for each type of sensor:
o For contact sensors, the routine stops the motion and sends a pulse count

request to the PTHat.

Figure 30: Section of the program creating the
"Button" for interruption detection

 30

o For optical sensors, the motion continues, but the pulse count is still logged
when the sensor is crossed.

 The homing program is a crucial step, as it establishes the robot’s initial position before
executing any trajectory. Because stepper motors do not provide inherent feedback about their
position during movement, the only way to determine a known reference is by using the sensors.
The principle of the homing strategy is to move each motor along its axis until a sensor is
triggered, then set the corresponding coordinate (position or angle) to a defined reference value.

For the Z1, R2, and R3 axes, the homing process is relatively straightforward:

• The PTHat drives the motor until a contact sensor is activated.
• Once triggered, the motor stops, and the system sets the coordinate to either zero or to

the initial point of the trajectory.
• The origin is defined as follows:

o The middle of the vertical axis for Z1.
o The neutral position (centered) for R2 and R3, based on mechanical limits.

For the R1 axis, the process is more complex because there are no physical end stops. Instead,
four optical sensors are used around the rotation axis to determine orientation. Depending on
the robot’s initial position, a different sensor may be triggered first. Each sensor corresponds to
a different angle, which determines the specific sequence of movements required to return the
robot to its starting position.

In the figure above, each sensor around the R1 axis has been assigned a number to help
define logical mapping between sensor triggers and arm angles. The origin position is located
between sensor 1 and sensor 4 as the position where the carbon arm is aligned parallel to the
rail of the robotic arms. As such, the homing sequence must adapt depending on the robot’s
initial position when booting. For instance, if the robot powers up between sensors 2 and 3, the
most efficient strategy is to move clockwise until sensor 3 is triggered, and then continue in the
same direction by sending a precise number of pulses corresponding to the angular offset
required to reach the origin. Conversely, if the robot starts between sensors 1 and 2, the closest
path to the origin lies in the counterclockwise direction. In that case, the homing sequence
would involve first triggering sensor 2, then rotating counterclockwise toward the initial
position, as this path requires less angular displacement than a full clockwise turn. This

Optical sensors

1

2

3
4

Figure 31: Location of the four optical sensors
on the R1 axis

 31

conditional logic allows the system to always select the shortest and safest trajectory to reach
the origin, regardless of the motor’s starting point. It also ensures consistent initialization for
accurate motion control throughout the sequence.

 The entire trajectory relies on a JSON file containing the positions of each robotic axis
at different time intervals. The program begins by reading this file, identifying the relevant data
associated with the SunSim position, and extracting it into a dictionary for easier access.

To read the JSON file, one just needs to give the absolute path to the file. Then the read_json
function will look for the relevant value needed for the SunSim trajectory, store them inside a
dictionary and return it so that it can be used in the next steps.

Once extracted, the program can compute the displacement that occurs between two
timestamps, which is then converted into the number of pulses required to move each motor
accordingly. In this implementation, I chose to use only the two extreme values (i.e., t = 0s and
t = t_end) to define the movement. This decision was based on the observation that intermediate
points in the file showed only minor displacement between consecutive timestamps, making
the total movement more meaningful when considering only the initial and final positions.

Figure 32: Section of the code reading the JSON file

Figure 33: Converting the displacement into pulses for
each axis

 32

In this extract of the program, the dictionary generated by the read_json function has
been sent to the motor_value function. This function returns a dictionary containing both the
frequency and number of pulses for each axis to perfom the displacement under a duration of
delay seconds. One can notice that the resolution constant (z_Res, R1_res…) are here used to
compute the number of pulse equivalent to the displacement to perform on each axis.

 This section of the program is dedicated to generating a PWM signal that controls the
LED intensity. Since the gpiozero library does not offer a direct method to produce a custom
PWM signal on arbitrary GPIO pins, I leveraged the “LED” object provided by the same library.
This object allows toggling a GPIO pin between HIGH and LOW states, simulating a PWM
output when combined with controlled timing. To maintain the HIGH or LOW state for a
specific duration, I used the sleep function from the time library. However, this function pauses
the entire program, which would interfere with the main execution if used directly. To avoid
blocking the rest of the code, I implemented multithreading: the PWM signal generation runs
in a separate thread, enabling it to operate independently from the main program flow. This
ensures that the LED modulation occurs in parallel with the robot’s trajectory execution,
without interrupting or delaying other processes.

d) System testing and troubleshooting

The next phase involved assembling and testing the PCBs individually. Out of the four
routed PCBs, three were fully functional. The only board that encountered issues was the one
embedding the LED driving circuit. Despite the fact that the schematic had been strictly
followed—both on the PCB layout and during initial breadboard testing—the current supplied
by the LED driver never exceeded a few milliamps. The issue did not stem from routing or
component placement but appeared to be related to incompatibility or limitations of the driver
itself in the PCB context. To solve this, we decided to switch to a different component. Several
alternatives exist for this application, and we selected one that came with an evaluation board
to simplify testing. These boards, provided by the manufacturer, offer ideal conditions to test
components with proper routing, grounding, and thermal dissipation.

We switched to the MP24833-AGN-P driver, which offers similar functionality to the
A6211 but with a different approach to ground distribution. Like the A6211, it uses a sense
resistor to regulate output current and supports both PWM and analog dimming. Testing with
the evaluation board showed that the LED control was both precise and stable. The board came
preinstalled with two 400 mΩ resistors in parallel, resulting in a total sense resistance of

Figure 34: Generating the PWM signal via multithreading

 33

200 mΩ and a corresponding current of 1 A. To match the previous setup, I replaced those with
two 150 mΩ resistors in parallel (yielding 75 mΩ), and successfully reached a current of up to
2 A. Although this configuration should have allowed up to 2.6 A, I assumed that parasitic
resistance—possibly due to the solder joints or trace impedance—caused a slight drop in
performance. At such low resistance values, even minor imperfections in the PCB layout can
significantly impact the output current.

Given the successful testing with this new driver, I designed a revised version of the LED
driver PCB, applying the routing guidelines recommended in the evaluation board’s datasheet,
particularly regarding component placement, ground plane distribution, and thermal
dissipation. I also ordered a range of sense resistors (from 20 mΩ to 75 mΩ) to explore the full
current range supported by the new driver in future tests.

Once this revise version assembled, I managed to control the LED luminosity with a PWM
generated by the RPi.

 Apart from the LED driver board, the Control PCB delivered conclusive and reliable
results during initial testing. It successfully powered the Raspberry Pi as expected, detected
sensor inputs through its GPIOs, and provided the necessary 3.3V and 12V supply for the
optical and contact sensors using its DC-DC converters. To verify remote access capabilities, I
tested the SSH connection to the Raspberry Pi. The connection was successfully established,
allowing full remote programming and control of the Raspberry Pi and the PTHat from an
external computer. To establish such a connection, the following steps were followed:

• Retrieve the Raspberry Pi's IP address using a monitor or a network scanning tool.
• From a computer connected to the same Wi-Fi network, use the command: ssh

username@ip.address

This prompts for the Raspberry Pi's password. Once logged in, the Raspberry Pi's file system
becomes accessible from the computer. It is then possible to edit, run, or upload scripts, such
as the JSON trajectory files used for robot control.

The bottom PCB of the cart, which handles the power distribution and the R2 and R3
stepper drivers, also functioned correctly during bench testing. Power was evenly distributed
across the board, and both R2 and R3 motors responded as expected. One key outcome of this
test involved validating the motor torque under different supply voltages. Using the rotary
switches integrated into the PCB, I was able to easily toggle between the multiple DC-DC
outputs (5V, 6.5V, 7.2V, 9V). As anticipated, a 5V supply was insufficient to generate enough
torque for the R2 axis to rotate the LED arm smoothly across its full range. Switching to the
6.5V supply resolved the issue and enabled consistent and smooth motion.

The validation of the PWR_PCB was straightforward as the only point to validate was

that it would convert properly the 24V into 5V for the OPTO signal, and reroute the drive
signals of the R1 axis.

mailto:username@ip.address

 34

Once all the individual PCBs had been validated, the next phase consisted of integrating
the entire system onto the robot's mechanical structure and running tests in real-world
conditions. Therefore, 3D enclosures were designed to install the Control_PCB and the
PWR_PCB on the structure. The result of the installation is given in the following pictures:

Figure 37: Control PCB in its enclosure mounted on the
robot

Figure 38: PWR_PCB in its enclosure
mounted on the structure

Figure 36: Overall view of the robot equipped
with the electronic

Figure 35:Cart PCBs mounted with wiring

 35

During installation, it became clear that cable congestion remained an issue, even with
careful planning. This was especially true for the Control_PCB, which serves as the main
interface with the other boards, requiring numerous connections—including motor driving
signals, power lines for both the motors and the cart, and optical sensor inputs. On the cart side,
the similar issue occured, but the use of braided sleeves helped achieve a cleaner integration
with significantly less visible cabling.

The following schematic summarizes the system architecture:

At the initial boot-up of the system, a few key indicators helped confirm that the setup was

functioning correctly. First, checking whether each motor remained locked (i.e., held in
position) by its driver confirmed that the motors were properly powered. Additionally, the
immediate startup of the fans and the activity of the Raspberry Pi's (RPi) status LED confirmed
that the RPi was successfully booting.

Once these technical checks were complete, the first programming tests could begin,
starting with the calibration routine. As expected, when a motion was triggered, pressing an
endstop sensor would stop the motion (or not depending on the axis) and return the number of
pulses. This provided the pulse count for each axis. However, at the time of writing this report,
the actual angular range of the R2 and R3 axes was not yet known. Further testing is required
to determine these ranges accurately and thereby calculate the resolution of each axis.

Despite this, initial approximations enabled the validation of a first iteration of the SunSim
system, albeit with a few trade-offs.

The validated aspects include:
• The ability to perform simultaneous motion across all four axes.
• Smooth and repeatable movements, confirming the reliability of both the program

and the electronics. Even though trajectory extracted from the JSON file is not yet
possible, one could consider that the repeatability of a motion from one point to

Slip Ring
Power delivery

Power Distrib PCB

24V

GND

R1 Driver

PU
L

D
IR

O
PTO

24V
G

N
D

R1 Motor

A
+A
-

B
+B
-

24V

GND

DIR

PUL

24V

GND

DIR_R1

PUL_R1Control PCB+PTHat

Z1 Driver

PU
L_Z

1

D
IR

_Z
1

O
PTO

24V
G

N
D

Z1 Motor

A
+A
-

B
+B
-

Optical Sensors

12V
GND
OUT

 Cart Bottom
PCB

GND

OUT

LED

24V

GND

Sens.out

PUL_R2
DIR_R2

DIR_R3
PUL_R3

R2
Driver

PU
L_R

2

D
IR

_R
2

5V
G

N
D

R2 Motor

A
+A
-

B
+B
-

R3
Driver

PU
L_

R
3

D
IR

_R
3

G
N

D

R3 Motor

A
+ A
-

B
+ B
-

5V

Fans

G
N

D

Cart Top
PCB

12V

GND
5V

PWMLED+
LED-

5V

Sens.out

2

2

2

2

4

4

4

3

3

2

Figure 39: Overall System architecture

 36

another represent, in a way already a trajectory, bar the fact that it does not originate
from the JSON

• Effective control of the LED via PWM on the RPi, allowing for a wide range of
brightness settings, which supports flexible lighting scenarios.

Several limitations were however identified during testing:

• Without an accurate determination of angular ranges, the homing sequence-and by
extension, the trajectory planning-lacks precision. As a result, realistic trajectories
are not yet achievable.

• Although the LED can be dimmed using PWM, attempts to control it via analog
voltage were unsuccessful. A voltage divider using a potentiometer was
implemented on the PCB, but the measured voltage output did not match the
expected values.

• A significant issue emerged regarding the RPi power supply. Initially, the RPi was
powered through the Control PCB using an onboard 24V-to-5V DC-DC converter,
with power supplied via the RPi's GPIO pins. However, after several months of test,
the RPi eventually crashed. It was later discovered that powering the RPi through
the GPIO bypasses the voltage protection circuitry present on the USB-C input.
After discussing with ClearSpace electronics engineers, it was agreed that RPis are
relatively fragile in terms of power management, and for that reason, they should be
considered more as consumables than as robust computing units. As a future
improvement, it was proposed to integrate a power delivery board-similar to a
PTHat-that would deliver 5V via the USB-C port, offering safer and more reliable
power regulation from the main 24V line.

Despite a few technical compromises, the designed and tested system shows strong
potential. It safely powers all four motors, supports reliable and coordinated movement, and
offers precise LED brightness control. Furthermore, the identified issues appear solvable in the
short term, paving the way for more advanced use cases and experimentation with the SunSim
in the near future.

V. Project handover and sustainability

This section outlines a non-exhaustive list of possible future improvements to enhance the

long-term viability and capabilities of the SunSim robot.
 Obviously, the above mentioned trade-off are part of the next major upgrades that this

project would benefit of, and the first major update would be to determine the right resolution
of each axis which would allow for motion with the same logic that the two robotic arms follow.

Then the most significant opportunity lies in further developing the software. The
current implementation enables basic linear displacement between two orbital points but does
not support dynamic trajectory adjustments such as real-time changes in speed or direction. As
a result, the complexity and realism of simulated trajectories are currently limited. The system
is functional for taking snapshots at relatively long intervals, but to support more advanced use
cases—such as synchronized operation with the dual robotic arm setup—future development
should allow seamless image capture throughout the motion. This would enable more accurate
and representative data collection for validating GNC algorithms. Fortunately, the PTHat’s API
supports real-time control and trajectory modulation, meaning these upgrades could be
implemented with a few additional weeks of development.

 37

Another improvement concerns the LED module. While the current LED is quite
powerful for its size, using a brighter LED would enable more versatile test scenarios,
particularly in high-contrast lighting simulations. However, this would likely require
redesigning the cart's driver and upgrading to a more robust DC-DC converter capable of
delivering higher current.

Once a wide range of motion scenarios have been tested, a second iteration of the cart’s
bottom PCB could be considered. The current board includes multiple DC-DC converters to
offer flexibility, but test results suggest that a single 6.5V converter performs well across all
required movements. Removing the unnecessary converters would reduce both the physical
footprint and the cost of the PCB—particularly valuable given that DC-DC converters are
among the most expensive components on the board.

Further improvements to the cart could address thermal management. Due to the
compact form factor of the R2 and R3 motors, prolonged use leads to noticeable heating, which
could shorten their lifespan. To mitigate this, passive heat sinks or small active cooling elements
like fans—similar to those already used for the LED—could be integrated into the system.

Finally, adding a status LED directly onto the PCB would provide a quick visual
indication of the cart's power state. At present, only the fans indicate whether the system is
powered, which is not an ideal or reliable solution.

Beyond the work I directly focused on, a valuable improvement for the DarkRoom setup

would be to integrate the OptiTrack motion tracking system. Although this system has already
been physically installed on the structure, it has not yet been implemented. Once active, it would
enable real-time tracking of both the Sun (LED) movement and the relative displacement of the
servicer and target. As previously mentioned, apart from the SunSim endstop sensors, the robot
currently lacks a feedback system to determine the real-time position of the LED—aside from
the limited pulse count query the PTHat can give which only offers an approximate location.
By using reflective markers and infrared cameras, the OptiTrack system could provide accurate,
real-time position data. This would allow for the implementation of a feedback control loop,
ensuring that the commands sent from the Raspberry Pi to the motors are correctly executed.
The same benefit could apply to the two robotic arms: while they already include integrated
position sensors, OptiTrack could serve as a redundant system to cross-verify motion accuracy,
thereby improving overall reliability.

From a long-term perspective, one key area of improvement would be upgrading the

motors currently used in the system. While the present motors are sufficient for most trajectory
scenarios, they begin to show limitations when motion speed increases. Specifically, during
high-speed movements, the motors often lack the necessary torque to decelerate abruptly and
stop precisely, leading to missed steps. This issue is especially noticeable on the Z1 and R1
axes, as discussed in section IV.d. The large size and mass of the carbon arms generate
significant inertia during fast motion. As a result, when the motors attempt to stop, the system
behaves almost like it is “skidding” due to the excessive momentum—causing a loss of
positional accuracy. To address this, more powerful motors capable of handling higher
deceleration forces would be needed. These would provide better control during abrupt stops
and enable smoother, more reliable operation at higher speeds. Such an upgrade would unlock
the full potential of the two robotic arms, which are theoretically capable of executing much
faster and more precise motions than what is currently achievable with the existing motors.

 38

Conclusion
 At the conclusion of this internship, I believe I successfully delivered a solid first
iteration of the SunSim’s electronic system. The main goal of the project was to animate a high-
intensity LED in accordance with a trajectory extracted from a JSON file. Despite a few
remaining limitations, the developed system largely meets the functional expectations initially
set out. It allows for the coordinated control of four stepper motors, accurate homing using
endstop sensors, and precise motion execution along the defined trajectory. Throughout the
development, several technical challenges and unexpected issues significantly slowed down
progress. However, overcoming these obstacles proved to be extremely valuable from a
learning perspective. As a future engineer, this internship gave me the opportunity to deepen
my understanding of system architecture, embedded electronics, and software development,
while also training my critical thinking and problem-solving abilities. I had the chance to carry
the project end-to-end — from the early design phase to the integration and functional testing.
This included defining the electronics and communication interfaces, designing and assembling
the PCBs, setting up the system on the physical robot structure, and ensuring the integration of
all components. This holistic involvement gave me ownership over the entire system and
allowed me to put into practice the skills I’ve developed throughout my academic journey.
While the current prototype can already support interesting experimental use cases, especially
in the context of Sun-satellite interaction simulation, there is clear potential for further
improvement. With continued refinement — particularly in motor control, software
architecture, and synchronization with the robotic arms — the SunSim could become a powerful
test platform for ClearSpace’s guidance and navigation development. I am confident that the
work carried out during this internship lays down a solid technical foundation for future
upgrades and experimentation.

 39

Abstract (french version)

 Dans le cadre de mon projet de fin d’études en filière Nanotech à Grenoble-INP Phelma,
j’ai effectué un stage de six mois au sein de ClearSpace, une startup suisse œuvrant pour une
industrie spatiale durable en collaboration avec l’Agence Spatiale Européenne (ESA).
L’objectif principal de ClearSpace est le développement de missions de désorbitage de débris
en orbite basse, afin de limiter les risques pour les missions spatiales présentes et futures. Durant
ce stage, j’ai participé au développement d’un simulateur de trajectoire solaire destiné à la salle
d’expérimentation « DarkRoom », dans le cadre du système GNC (Guidance, Navigation and
Control). Ce simulateur vise à reproduire les conditions d’éclairage spatiales pour tester et
calibrer les capteurs optiques utilisés lors des phases d’approche de satellites de capture. Mon
travail a porté sur la conception complète de l’électronique et de l’informatique embarquée
pilotant la source lumineuse mobile. J’ai conçu et réalisé les circuits électroniques, sélectionné
les composants, routé les cartes sur KICAD, procédé à l’assemblage (soudure, câblage,
intégration mécanique) et développé les programmes de pilotage et de calibration sur Raspberry
Pi. L’ensemble permet de contrôler précisément la position d’une LED via quatre moteurs pas-
à-pas, selon des trajectoires importées en JSON. Ce projet m’a permis de consolider mes
compétences en électronique embarquée et en intégration système. La solution livrée constitue
une base fonctionnelle pour les futures expérimentations de ClearSpace dans la DarkRoom,
permettant dès à présent des tests réalistes de guidage orbital.

Abstract (english version)

As part of my final-year project in the Nanotech program at Grenoble-INP Phelma, I
completed a six-month internship at ClearSpace, a Swiss aerospace startup working with the
European Space Agency (ESA) to promote a more sustainable space industry. These efforts
focus on the deorbiting of space debris in low Earth orbit, which poses a significant risk to
current and future missions. During this internship, I contributed to the development of a solar
trajectory simulator, part of ClearSpace’s Guidance, Navigation, and Control (GNC) system.
This simulator is used in the "DarkRoom" test facility to replicate complex space illumination
conditions, enabling realistic testing of visual navigation systems involved in satellite-target
approach phases. My responsibilities included designing the electronics and embedded software
for controlling a robotic system that positions an LED to simulate sunlight. This involved
developing schematics (power conversion, signal conditioning, LED control), routing PCBs in
KiCAD, selecting and assembling components, and programming a Raspberry Pi interfaced
with a PTHat motor controller. The system interprets trajectory data from JSON files to drive
four stepper motors. I implemented calibration routines, position initialization, and motion
control software, with remote operation via SSH. This project allowed me to manage a full
electronics development cycle and deepen my skills in embedded systems integration. The
delivered prototype enables precise and realistic solar positioning, providing a solid foundation
for future GNC testing in the DarkRoom.

Abstract (italian version)

Nel contesto del mio progetto di fine studi nella specializzazione Nanotech presso
Grenoble-INP Phelma, ho svolto un tirocinio di sei mesi presso ClearSpace, startup svizzera
del settore aerospaziale che collabora con l'Agenzia Spaziale Europea (ESA) per promuovere
un’industria spaziale più sostenibile. Le missioni di ClearSpace sono dedicate alla
deorbitazione dei detriti in orbita bassa, per ridurre i rischi legati alle missioni spaziali presenti

 40

e future. Durante il mio tirocinio, ho partecipato allo sviluppo di un simulatore di traiettoria
solare, utilizzato nella “DarkRoom” — un ambiente sperimentale oscurato — per riprodurre le
complesse condizioni di illuminazione spaziale. Questo simulatore rientra nello sviluppo del
sistema GNC (Guidance, Navigation and Control), impiegato durante la fase di avvicinamento
di un satellite di cattura verso un bersaglio. Mi sono occupato della progettazione e
realizzazione dell’elettronica e del software necessari per controllare una sorgente luminosa
mobile basata su LED, guidata da quattro motori passo-passo. Il sistema è gestito tramite una
Raspberry Pi e un modulo PTHat, in grado di interpretare dati di traiettoria in formato JSON e
convertirli in comandi motore. Il lavoro ha incluso la progettazione degli schemi elettrici, il
layout dei circuiti con KiCAD, la scelta e l’assemblaggio dei componenti, oltre allo sviluppo
dei programmi per la calibrazione degli assi, l’inizializzazione delle posizioni e l’esecuzione
dei movimenti. Questo progetto mi ha permesso di acquisire una solida esperienza nello
sviluppo completo di sistemi elettronici embedded. La soluzione finale, completamente
operativa, consente movimenti precisi della sorgente luminosa, costituendo una base affidabile
per i futuri test del sistema GNC all’interno della DarkRoom.

 41

Internship summary sheet

Nicolas GAUTIER-KUEA

Master MNIS
2023-2025

ClearSpace SA

Rue de Lausanne, 64, 1020 Renens, Switzerland

Design and development of the electronics
for a Solar Trajectory Simulator

From 03/02/25 to 31/07/25

Under the supervision of :

- Company supervisor : Simon BOTHNER,
simon.bothner@clearspace.today

- Phelma Tutor : Jonathan MIQUEL, jonathan.miquel@grenoble-

inp.fr

Confidentiality : � yes � no
Ecole nationale
supérieure de physique,
électronique, matériaux

Phelma
Bât. Grenoble INP - Minatec
3 Parvis Louis Néel - CS 50257
F-38016 Grenoble Cedex 01

Tél +33 (0)4 56 52 91 00
Fax +33 (0)4 56 52 91 03

http://phelma.grenoble-inp.fr

 42

Internship overview: The main focus of this internship was the electronic and PCB design of
a robot embedding motors and sensors. The responsibilities included the design, sourcing and
testing of the solution powering and controlling the robot. The work was done in order to be
integrated onto an existing mechanical structure, the electronic aiming to make it operational.
The tasks also included firmware development for the low-level control of the motor and
sensors.

Technical resources used:

- KiCAD
- Mouser/PCBWAY/Digikey suppliers
- Oscilloscope
- Power supplies
- Soldering station (tweezers, soldering iron, tin paste, fume extractor…)
- Raspberry Pi
- UltraLibrarian/Octopart/SnapEDA/ComponentSearchEngine
- Stepper Motor Drivers

