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Abstract

Timely and constructive feedback is essential for supporting student learning, yet
providing it at scale remains a challenge for educators. Large Language Models (LLMs)
offer new opportunities to automate parts of this process, but their effectiveness
depends heavily on how decision logic is formulated and maintained. When such logic
is embedded directly in prompts, it can be difficult for instructors to update or adapt
it over time. This thesis presents a framework that integrates Decision Model and
Notation (DMN) with LLM prompting to make feedback generation more modular,
transparent, and easy to refine. The approach decomposes complex evaluation rules
into smaller, structured decision steps, which are then used to guide the LLM’s
reasoning. The framework was applied in a graduate-level course, using student
assignments and DMN models representing feedback criteria as inputs. The resulting
feedback was evaluated against a Chain-of-Thought (CoT) baseline and assessed for
perceived usefulness through a Technology Acceptance Model (TAM)-based survey.
Results show that the DMN-guided approach improves both accuracy and consistency
compared to CoT prompting, while also receiving positive responses from students.
These findings suggest that combining LLMs with structured decision modeling
can enhance the quality, transparency, and adaptability of automated feedback in

educational settings.
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Chapter 1

Introduction

1.1 Background and Motivation

In many domains where decision-making needs to be both consistent and explainable,
the ability to clearly separate business rules from the processes that use them has
proven invaluable. The Object Management Group (OMG) established the Decision
Model and Notation (DMN), which was designed to address exactly this need [1].
By offering a structured and interpretable way to formalize decision logic, DMN
allows organizations to document and automate operational rules without burying
them in complex procedural code. Unlike traditional approaches, where rules are
hidden inside software systems, DMN makes them visible and accessible to both
domain experts and technical specialists. It achieves this through two complementary
representations: graphical diagrams and tabular formats [2, 3]. Together, these tools
connect the two informal policy descriptions and fully executable logic, ensuring that
changes to decision-making criteria can be made with minimal disruption. A central
element of DMN is the Decision Requirements Diagram (DRD) [1], which maps how
different pieces of information and intermediate decisions interact. To illustrate,
consider a basic loan approval scenario, as shown in Figure 1.1. Here, two input data
elements—Salary and Credit Score—feed into a decision node labeled Loan Approval
Rule. This rule determines whether an applicant is approved, sent for manual review,
or declined. The result of this evaluation is passed on to another element, Loan

Approval Result, which generates the appropriate message for the applicant.
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ann Approval

Loan Approval Rule > Loan Approval Result
‘ creditScore ’

Figure 1.1: A sample decision requirements diagram.

Within the Loan Approval Rule, the underlying decision logic is often defined

using a decision table,Figure 1.2.

Loan Approval Rule | Hitpolicy: Unique v
When And Then
salary creditScore Is Eligible for Loan?
string string string
1 [> 50000 >= 700 approve
2 | > 50000 [650..700[ manual_review
3- - decline

Figure 1.2: A decision table example

In this table, each row indicates a distinct rule, while the columns specify input
conditions and the corresponding outcome. For example, one rule might state that
applicants earning more than 50,000 with a credit score above 700 are approved,
whereas a slightly lower credit score (between 650 and 700) triggers a manual
review. Any case that fails to meet these criteria defaults to a decline. Decision
tables are evaluated sequentially from top to bottom, with wildcard entries (“—7)
providing a fallback when no earlier rule applies. Once the decision has been made,
a literal expressionFigure 1.3—written in the Friendly Enough Expression Language
(FEEL)—can be used to map the result to a human-readable message. This enables
the system to return clear and context-specific communication, such as congratulating

approved applicants or offering declined applicants a polite explanation.
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Loan Approval Result

approave_message = "We're pleased to inform you that your loan application has been
approved. Congratulations!".

manual_review_message = "We’d like to inform you that your application has been
processed and requires a manual review. We will update you as soon as the review is
complete.”.

decline_message = "We regret to inform you that your loan application has not been
approved due to either insufficient income or credit score. If you have any questions
or would like further clarification, please feel free to contact us."

Figure 1.3: A case of literal expression.

While this example is deliberately simple, it reflects why DMN is valued in practice:
it produces decision logic that is explicit, easy to maintain, and adaptable to change [1].
Although DMN is well established in industries like finance, insurance, and regulatory
compliance, its role in orchestrating Al-driven systems remains underexplored. In this
thesis, DMN is applied in a novel way—as a guiding framework for Large Language
Models (LLMs) in educational feedback generation—combining the precision of

formal decision modeling with the flexibility of modern Al tools.

1.2 Problem Statement

The central challenge this thesis addresses is the lack of transparency, adaptability,
and maintainability in current LLM-based feedback generation systems. While large
language models such as GPT, Claude, and LLaMA have shown significant potential
in producing context-aware, domain-specific feedback, their effectiveness heavily
depends on the quality of the prompts used to guide them [4]. In most existing
approaches, including chain-of-thought prompting, all decision logic is embedded
directly within long, unstructured prompt text [5, 6]. Although this can produce
good results under controlled conditions, it introduces several practical issues when

deployed in real educational settings:

1. Opacity — The reasoning process driving the LLM’s evaluations is hidden
inside text instructions, making it difficult for educators to verify correctness,

identify errors, or audit the logic.

2. High Maintenance Costs — Any change to evaluation criteria often requires

rewriting the entire prompt from scratch, increasing the risk of inconsistencies.

3. Limited Reusability — Prompts designed for one course or assignment type

are rarely transferable without extensive modification.

4. Pedagogical Misalignment — Without an explicit, structured representation
of the decision process, there is no assurance that generated feedback consistently

aligns with the intended learning objectives.

These limitations hinder scalability and long-term sustainability in real classrooms.

For instance, in a graduate-level course with more than a hundred students, each
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assignment may need to be graded against a detailed evaluation criterion with many
conditional rules. When rules are hidden inside long, free-text prompts, even a small
change like shifting a grading threshold can turn into a major task. This not only
slows down the feedback process but also makes mistakes more likely.

Moreover, prompt engineering is often a trial-and-error activity that demands
technical expertise, which many educators may lack. As the decision logic changes
over time, the prompts need to be revised as well, creating extra work and complexity.
These challenges extend beyond accuracy—they affect transparency, collaboration,
and the ability to maintain consistent standards over time.

To address these issues, this thesis proposes integrating Decision Model and
Notation (DMN)—a standardized graphical notation for defining decision logic—into
the LLM prompting process [7, 1]. DMN enables decision pathways to be broken into
smaller, structured, and interpretable components that can be easily updated without
rewriting the entire prompt. This modularization not only improves maintainability
but also makes the decision process transparent to educators, ensuring pedagogical
alignment. In the proposed framework, DMN rules guide the LLM’s reasoning, while
retrieval-augmented generation (RAG) can optionally supply contextual knowledge
to enhance accuracy.

The approach was tested in a graduate-level course, where student assignments and
DMN-based feedback criteria were used to generate automated responses. Evaluations
showed that DMN-guided prompting outperformed traditional chain-of-thought
prompting in both accuracy and consistency [8], while students reported high levels
of perceived usefulness based on a Technology Acceptance Model (TAM)—inspired
survey [9]. These findings demonstrate that combining LLMs with structured decision
modeling offers a promising path toward scalable, transparent, and pedagogically

aligned feedback generation.

1.3 Objectives and Research Questions

The main goal of this thesis is to create, test, and assess a framework that brings
together Decision Model and Notation (DMN) and Large Language Models (LLMs).
The intention is to make automated feedback in education more accurate, transparent,
and flexible.

The research is motivated by the need to address persistent challenges in existing
LLM-based feedback systems—particularly the lack of transparency in decision-
making, the difficulty of updating evaluation rules, and the risk for prompts to
become locked into one specific use case.. By separating decision logic from prompt
text and expressing it in a structured, modular form, the proposed approach aims
to make automated feedback systems easier to maintain, adapt, and reuse across

different courses or assignments.

The specific objectives of this work are to:

e Develop a DMN-guided prompting framework that translates formalized de-
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cision logic into structured inputs for LLMs, allowing for modular updates

without full prompt rewriting.

o Investigate the effectiveness of this approach compared to traditional methods
such as chain-of-thought (CoT) prompting, focusing on accuracy, consistency,

and alignment with pedagogical goals.

o Evaluate the usability and perceived usefulness of DMN-guided feedback among
students and instructors, drawing on established models such as the Technology
Acceptance Model (TAM).

o Explore the potential for scalability and adaptability by assessing how well the

framework supports changes to evaluation criteria, rubrics, and course contexts.

Research Questions:

1. How can Decision Model and Notation (DMN) be effectively integrated with
Large Language Models to produce modular, transparent, and pedagogically
aligned feedback?

2. In what ways does DMN-guided prompting compare to chain-of-thought prompt-

ing in terms of feedback accuracy, consistency, and clarity?

3. How do students and instructors perceive the usefulness, clarity, and reliability

of feedback generated through DMN-guided prompting?

4. To what extent can the proposed approach support adaptation to evolving

course requirements without substantial re-engineering?

By addressing these questions, the thesis seeks to contribute both a practical tool for
educators and broader insights into the integration of structured decision modeling

with generative Al in the context of higher education.

1.4 Contributions of the Thesis

The following contributions are made by this thesis:

Technical:

o Introduces a new prompting approach where Decision Model and Notation
(DMN) is used to structure, separate, and simplify the decision logic guiding

Large Language Models, making it easier to update and understand.

e Provides a working implementation that connects DMN-based decision rules

with LLM-driven feedback generation in an educational context.
Methodological:

e Proposes an evaluation strategy that blends quantitative performance measures
(such as precision, recall, F1-score, and accuracy) with qualitative insights gath-

ered through surveys grounded in the Technology Acceptance Model (TAM).
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e Presents a side-by-side performance comparison between the proposed DMN-

guided approach and the conventional chain-of-thought prompting technique.
Practical:

o Validates the framework through its use in a real graduate-level course, showing

both effectiveness and positive reception from students.

o Offers practical guidance for educators interested in Al-supported feedback

systems that emphasize clarity, transparency, and adaptability over time.

1.5 Structure of the Thesis

The remainder of this thesis is organized as follows:

e Chapter 2 presents a comprehensive literature review on LLM prompting

strategies, DMN, and automated feedback systems.

e Chapter 3 details the proposed DMN-guided prompting methodology, includ-

ing the architecture, parsing process, and prompt design.

e Chapter 4 presents the case study in detail, including the educational context,
deployment of the framework, technical implementation, evaluation results,

rule-specific insights, and student perceptions of usefulness.
e Chapter 5 presents the evaluation results, both quantitative and qualitative.
e Chapter 6 outlines possible directions for future research.

e Chapter 7 concludes the thesis with a summary of findings.



Chapter 2

Literature Review

2.1 Large Language Models

2.1.1 Overview

Large language models are essentially powerful neural networks trained on enormous
amounts of text. By learning patterns in language, they can predict what word
is likely to come next, allowing them to produce text that reads naturally and
fits the context. Most of today’s leading systems are built on the Transformer
architecture [10], which uses a method called multi-head self-attention to understand
relationships between words—even when those words are far apart in a sentence.
Modern examples include OpenAl’s GPT-40, Anthropic’s Claude, Google’s Gemini
1.5 Pro, and Meta’s LLaMA models. These tools have pushed the boundaries of
what Al can do with language. Without being trained for specific jobs, they can
handle everything from reasoning through complex problems to summarizing articles,

translating languages, and even writing computer code.

2.1.2 Key Capabilities

e Contextual Understanding: Some advanced language models can hold
onto and understand a large amount of context—whether that’s an extended

back-and-forth conversation or a lengthy piece of writing [11].

« Reasoning and Inference: They’re capable of thinking through problems in
a sequential way, often called “chain-of-thought” reasoning, which helps them

reach more reliable conclusions.

e Domain Adaptation: When you give them prompts that are specific to a
certain field or topic, they can shift their responses to better fit that subject.

e Multi-Modal Processing: A few of these models can even handle different
types of input at the same time—text, images, audio, and video—working
across them in a coordinated way. GPT-40, for example, can combine all of

these formats smoothly.
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2.1.3 Limitations

Despite their power, LLMs suffer from:

o Hallucinations: these models may confidently give an answer that sounds

right but is wrong [12].

e Prompt Sensitivity: Even little changes to the wording of an instruction or

inquiry might result in entirely different responses from the model [13].

¢ Opaque Reasoning: Lack of transparency in how decisions are made inter-
nally [14].

These limitations motivate structured prompting approaches—such as DMN-guided

prompting—that add a formal reasoning layer on top of the model.

2.2 Prompt Engineering

Prompt engineering is the science of designing input instructions in a way that steers
how large language models respond. Since these models produce answers based
on patterns they’ve learned from massive amounts of text, the phrasing, structure,
and context of a prompt can heavily influence the outcome. This makes prompt
engineering an important skill for improving the accuracy, clarity, and usefulness of
the model’s responses [15, 16]. It’s an expanding field of study, with many different

approaches under investigation.

2.2.1 Zero-Shot Prompting

In a zero-shot prompting setup, the language model receives only a description of
the task or a direct question, without being shown any sample solutions beforehand.
Its response is based solely on prior training and whatever guidance is included in

the prompt at the moment [17].
Example 2.1:

Prompt: "Translate the following sentence into French:

‘The meeting starts at 3 PM.’"

Since no illustrations or examples are supplied, the model has to deduce the correct

output format and perform the translation entirely from its existing knowledge.

2.2.1.1 Advantages

e Simplicity: With zero-shot prompting, there’s almost no need for elaborate
prompt design. There is no need to prepare sample inputs and outputs; the
setup is straightforward, making it a good choice for quick trials or initial

testing phases.
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e Low token cost: Since the prompt is limited to the task instructions and the
actual query, it stays brief. A shorter prompt means fewer tokens are processed,

which can reduce operational costs and improve processing speed.

e Quick adaptability: You can alter or rewrite the task instructions without
having to adjust a set of predefined examples. This flexibility allows you to

easily test new wording or adapt the same setup to a slightly different use case.

e Broad applicability: This approach can be applied to many different kinds
of problems, as long as the instructions are written enough for the model to

follow without confusion.

2.2.1.2 Limitations

e inconsistent output quality: The results can vary noticeably between runs,
especially on tasks that require multi-step reasoning or have more than one
acceptable solution. Without example cases to guide the process, the model’s

responses may lack uniformity.

« Risk of topic mismatch: When dealing with niche subject matter or industry-
specific jargon not well represented in the model’s training data, performance
can decline. In these situations, the model depends solely on what it has learned

previously, with no contextual hints to bridge the gap.

e Lack of formatting cues: In the absence of modelled examples, the structure
of the output may shift unpredictably. This can pose challenges for assign-
ments that demand a fixed layout, such as code snippets, JSON responses, or

standardized forms.

e No built-in corrective mechanism: Because there are no reference outputs
in the prompt, the model cannot adjust its answers to better align with a
specific tone, structure, or content style. This can increase the likelihood of

misunderstandings or deviations from the intended format.

Best suited for: Zero-shot prompting works well for straightforward tasks such
as basic categorization, direct translations, simple fact-based questions, or short-form
content creation. It works very well when the task instructions are unambiguous and
the subject matter is already well represented in the model’s prior knowledge. In
these cases, it offers a fast and efficient way to generate results without the overhead

of designing detailed example sets.
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2.2.2 Few-Shot Prompting

In few-shot prompting, the request to the model contains a handful of example
input—output pairs before the actual question or task. These short demonstrations
act as guidance, showing the model the pattern or style it should follow when

generating its own response [18].
Example 2.2:

Translate English to French:

Translate English to French:

English: The meeting starts at 3 PM.

French: La réunion commence a 15 heures.

English: She is reading a book.

French: Elle 1lit un livre.

English: I will call you tomorrow.

French:

2.2.2.1 Advantages

e« Improved accuracy: This approach often produces more reliable results,
particularly for work that must follow a specific structure or be adapted to a

particular subject area.

e Consistent style and structure: The inclusion of examples helps the model

maintain the same tone, format, and language style throughout its output.
e No retraining needed: It works directly with the existing model without
the need for additional fine-tuning.
2.2.2.2 Limitations

e Longer prompt length: Supplying examples increases the total number of

tokens, which can raise processing costs and slow response time.

o Example-dependent performance: If the chosen examples are unclear,
misleading, or unrepresentative, they can negatively influence the model’s

responses.

o Context size constraints: Adding too many examples can consume the
model’s available context window, leaving less room for the actual task or

relevant background information.
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Best suited for:
Tasks such as classification, generating structured outputs, mimicking a particular
writing style, or other situations where example data is available but full-scale model

fine-tuning is impractical.

2.2.3 Chain-of-Thought (CoT) Prompting

Chain-of-Thought prompting [8] is a prompting method that instructs a language
model to lay out its sequential logic procedure before presenting a conclusion. Instead
of jumping directly to the answer, the model walks through its thought process in
smaller, logical segments. This approach takes inspiration from how people often
solve problems—by breaking them into manageable parts and working through each
one systematically.

The value of this technique lies in making the reasoning explicit. It helps the
model maintain logical flow, reduces the likelihood of skipping steps, and provides
a record of how the conclusion was reached. This “visible” thought process can be
reviewed by humans, which adds a layer of transparency and makes it easier to verify

or debug the model’s output.

Example 2.3:

Prompt: "Solve: A farmer has 17 sheep, and all but 9 run away.

How many are left? Think step by step."

Model response:
"If all but 9 run away, that means 9 remain. Therefore, the answer is 9.
2.2.3.1 Advantages

e Better accuracy for complex problems: By handling a problem in stages,
the model can address each part carefully, often improving results for multi-step

calculations or reasoning tasks.

e Easier troubleshooting: The intermediate explanations act as a roadmap,

helping pinpoint exactly where an error occurs.

e Greater clarity: The explicit breakdown allows end-users to see how the
answer was reached, which can be important in fields like teaching, compliance,
or research where reasoning is as important as the outcome.

2.2.3.2 Limitations

e Longer outputs: Explaining every step increases the length of responses,

which can make them slower to read and more costly to generate.

e Prompt dependency: This method works best with well-chosen instructions;

vague or poorly worded prompts may reduce its effectiveness.

11
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o False reasoning risk: Although the final response is accurate, the step-by-step

explanation might contain flawed logic or made-up details.

o Higher resource usage: Producing more detailed responses can consume

additional computational resources, especially when running at scale.

Best suited for: Mathematical word problems, multi-step reasoning tasks,
complex logical challenges, long-form planning, and situations where showing the

reasoning process is important for trust and verification.

2.2.4 Role-Based Prompting

Role-based prompting involves instructing the language model to adopt a particular
identity or point of view before generating a response. This role could be profes-
sional—for instance, “You are an experienced business analyst”—or situational, such
as “You are a teacher explaining this concept to first-year students.” By framing the
task through a specific persona, the model is encouraged to produce text that reflects
the style, vocabulary, and reasoning one might expect from that role.

This strategy’s advantage is its ability to guide the model’s tone and focus toward
a desired domain or communication style. For example, positioning the model as a
financial advisor is likely to prompt formal, data-driven explanations, while casting
it as a creative storyteller may elicit more imaginative and emotionally engaging
narratives.

In multi-turn conversations, maintaining the assigned role can help ensure con-
sistency of perspective, making interactions feel more coherent and contextually
appropriate. Still, role adherence is not guaranteed; if the instructions are unclear or
contradicted by subsequent prompts, the model may drift away from the intended
persona.

Overall, role-based prompting is a straightforward yet powerful way to influence a
model’s voice, level of formality, and domain focus without the complexity of custom

training [19].

2.2.5 Retrieval-Augmented Prompting

Retrieval-augmented prompting is a method in which the instructions given to a
language model are paired with supporting information gathered from external
sources such as document collections, structured databases, or specialized knowledge
repositories. By supplying this extra context at the time of the query, the model
is better equipped to provide answers that are accurate, relevant, and grounded in
up-to-date facts rather than relying solely on what it learned during pre-training.
This approach is particularly valuable when working with subjects that change
rapidly—such as medical research, legal frameworks, or current events—where relying
on a static model could lead to outdated or incomplete responses. The process
typically involves a retrieval component that searches for and extracts relevant

materials in response to a user’s request. These retrieved passages or data points are
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then incorporated into the model’s input, helping it focus on verifiable sources while
producing its answer.

Retrieval-augmented prompting forms the backbone of many modern Retrieval-
Augmented Generation (RAG) systems. One advantage of this setup is that it
enables source transparency, since the supporting information can be cited or linked.
However, the effectiveness of the approach depends heavily on the quality of the
retrieved material. Poorly matched, irrelevant, or noisy data can mislead the model,
and large amounts of retrieved text can consume the model’s context capacity unless
they are carefully filtered or summarized.

When properly implemented, retrieval-augmented prompting strikes a balance
between the broad linguistic capabilities of large language models and the precision
of targeted, authoritative information sources, making it a practical choice for high-

stakes or knowledge-intensive applications [20].

2.2.6 Limitations of Existing Prompting Methods

Although existing prompting methods have improved task performance, they often
lack a structured framework. In most cases, the decision-making logic is embedded
within unstructured, free-text instructions, which makes them difficult to maintain,
update, or audit over time. Methods like retrieval-augmented prompting and role-
based prompting attempt to address certain limitations by either incorporating
outside information sources or shaping the model’s behavior through defined personas
and task-specific guidance [21, 22]. However, these approaches still fall short of
providing a fully standardized representation of the decision process. Decision Model
and Notation (DMN) offers a potential solution by introducing a formal, transparent

framework for encoding and managing decision rules.

2.3 Decision Model and Notation (DMN)

2.3.1 Origins and Standardization

Decision Model and Notation (DMN) is an internationally recognized standard
maintained by the Object Management Group (OMG) [1], a consortium responsible
for several widely adopted modeling languages such as UML (Unified Modeling
Language) and BPMN (Business Process Model and Notation). DMN was formally
introduced to address a longstanding gap in business process modeling—namely, the
absence of a common, implementation-independent way to express decision logic that
could be equally understood by business analysts, compliance officers, and software
engineers.

In contrast to procedural workflow models, which focus on how a sequence of
tasks is executed, DMN is concerned solely with what decisions are required and
the reasoning or rules behind them. This clear separation between process steps

and decision logic enables organizations to modify rules independently of the overall
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process design, allowing faster adaptation to changes and reducing the likelihood of
errors when updating systems.

Because DMN is an open standard, it can be implemented across different sectors
and tools without potential dependence on a single provider. This interoperability
allows seamless use between modeling platforms, rule engines, and process automation
technologies. Since its initial release, the specification has continued to evolve,
incorporating features that improve compatibility with Business Rule Management

Systems (BRMS) and support more advanced decision modeling scenarios.

2.3.2 Key Components

o Decision Requirements Diagram (DRD): At the highest level, the DRD
provides a visual map of the decision-making framework in DMN. It illustrates
the relationships between individual decisions, the data they depend on, and
any linked knowledge sources. By making these dependencies explicit, DRDs
give stakeholders a clear overview of how decisions are connected, making it

easier to grasp both the scope and the logical flow of the overall process.

e Decision Tables: Decision tables organize rules in a structured, tabular
form, with input conditions laid out in columns and corresponding outputs
arranged in rows. This approach is particularly effective for situations where
outcomes depend on several variables, as it systematically covers all possible
combinations and removes ambiguity. Their dual readability—by humans and
by software—makes them an ideal link between conceptual business logic and

its technical implementation.

o Literal Expressions: When decision rules are simple enough to be expressed as
a short formula or conditional statement, literal expressions provide a compact
solution. These are typically written in Friendly Enough Expression Language
(FEEL), the official expression syntax for DMN. This ensures that calculations,
conditional logic, and rule statements are expressed in a consistent, concise,

and standardized way.

2.3.3 Advantages

e Interpretability: DMN is designed so that even stakeholders without a
technical background can read and understand the decision logic, while still
being precise enough for direct execution by automated systems. This shared
readability helps bridge the gap between business and IT teams, promoting

clearer communication and reducing the risk of misinterpretation.

e Modularity: Decision rules are structured as independent components, al-
lowing specific elements to be updated or replaced without altering the entire
model. This design aligns well with agile workflows and supports continuous,

incremental improvements.
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e Auditability: The standardized and formal nature of DMN makes it straight-
forward to review, document, and verify decision logic. In industries with
strict regulatory requirements, this capability is essential for demonstrating

how particular results were produced.

e Interoperability: As a publicly available standard, DMN can be implemented
across different platforms and integrated with diverse process automation and
decision-support systems, making it adaptable to organizations with varied

technology environments.

¢« Reduced Cognitive Effort: The use of visual diagrams and tabular layouts
enables decision-makers to interpret complex rules more quickly and intuitively

than by parsing lengthy, free-text descriptions.

2.3.4 Applications Beyond BPM

Although DMN originated in the field of business process management and remains
widely adopted in sectors such as banking, insurance, and logistics, its range of uses

has expanded considerably in recent years:

¢ Clinical Decision Support: DMN can be used to formalize medical guidelines
and treatment pathways, providing healthcare systems with consistent and
explainable recommendations. Encoding clinical reasoning in this way promotes
adherence to established best practices while still allowing flexibility to adapt

decisions for individual patient circumstances [23].

e Legal Reasoning: DMN can represent legal decision-making processes, for
example, by mapping law-defined conditions to case outcomes. This structured
approach enhances transparency and supports the automation of compliance

verification [24].

o Educational Assessment: Preliminary research has applied DMN to grading
frameworks, where decision tables map assessment criteria to scores and feed-
back. This method makes evaluation rules explicit, benefiting both educators

and learners by clarifying how grades are determined.

e Hybrid AI Integration: DMN is increasingly integrated with machine
learning systems in hybrid architectures. A common pattern is to have an
AT model produce a prediction, which is then validated or adjusted using a

DMN-based rule set to meet regulatory or operational requirements.

e Policy Automation: Public sector organizations have begun adopting DMN
to codify policy rules in a clear, maintainable format. This enables faster
updates when laws or regulations change and ensures that decision logic remains

transparent to stakeholders.
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2.4 LLM Control Through Structured Representations

The quick expansion of large language models (LLMs) has driven increasing interest
in methods for steering and regulating their outputs through structured, formal
representations. Unlike conventional free-text prompts, which can be vague and
difficult to keep consistent over time, structured approaches embed rules, relationships,
or constraints that are directly interpretable by machines into the model’s inputs or
processing workflow. This added structure helps maintain logical consistency, factual

reliability, and alignment with domain-specific standards.

Several strategies have emerged to operationalize this idea:

e Knowledge Graph Integration: By connecting LLMs to ontologies or
domain-specific knowledge graphs, generated outputs can be aligned with
predefined semantic relationships. Incorporating ontology constraints into
model queries can prevent contradictions and encourage the use of consistent,

standardized terminology [25].

e Logic-Driven Prompting:This technique embeds formal logic statements or
explicit rule sets directly into the prompt. Incorporating symbolic rules into
prompt templates can shape model reasoning, enforce constraints, and reduce
the likelihood of fabricated or logically inconsistent responses—an especially

important factor in regulated areas such as law and finance [26].

e Hybrid Symbolic—Statistical Systems: In this approach, LLMs are com-
bined with symbolic reasoning systems, allowing the generative flexibility of
the model to be anchored by deterministic, rule-based logic. One research
describes systems in which the LLM manages natural language interpretation
and generation, while a symbolic engine performs rule validation, fact-checking,

or structured [27].

2.5 Automated Feedback Systems in Education

2.5.1 Historical Background

The idea of using computers to give feedback to learners is not new. Early examples
appeared in the late 1960s and 1970s, when rule-based programs began performing
simple checks on student work. Grammar checkers built into early word processors
and Computer-Assisted Instruction (CAI) platforms were among the first tools to
offer automated responses. These systems operated on a fixed set of rules, matching
learner input against predefined patterns to deliver scripted feedback. By the 1980s
and 1990s, more capable Intelligent Tutoring Systems (ITS) emerged. Drawing
on decision trees, error taxonomies, and domain-specific logic, they could adapt
responses to a learner’s actions. While this was a notable improvement, such systems

still had trouble coping with unexpected inputs or unconventional problem-solving
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approaches because their behavior was limited by the scope of their programmed

rules.

2.5.2 Al-Enhanced Feedback

The shift from purely rule-based systems to those informed by machine learning
marked a major turning point. Instead of being constrained by prewritten rules, Al-
driven tools learned patterns from large datasets, allowing them to provide feedback
that was more adaptable and sensitive to context.

Several notable developments illustrate this shift:

o Automated Essay Scoring (AES): Tools like e-rater and IntelliMetric assess
writing by analyzing linguistic features, structure, and coherence [28]. Widely
adopted in large-scale assessments, these systems save time but have drawn
criticism for their opacity and for missing subtler qualities in writing, such as

creativity or persuasive style.

e Programming Tutors: Systems such as CodeHunt and CodeRunner give
targeted feedback on coding exercises, flagging syntax issues, logical errors, and
inefficient solutions [29]. By running code against test cases, they can pinpoint

exactly where a solution fails.

e Formative Feedback in STEM: NLP-based systems have been designed to
evaluate step-by-step reasoning in mathematics and science, helping identify
misconceptions and offering hints that guide students toward the right answer

without simply telling them [30].

This move toward data-driven adaptivity meant feedback could be tailored, at

least partially, to an individual learner’s history, strengths, and recurring errors.

2.5.3 LLM-Powered Feedback

The newest wave of systems takes advantage of large language models (LLMs). These
models go beyond rigid templates, producing feedback that is fluent, conversational,

and contextually aware. Their key strengths include:

e Natural Language Explanations: Feedback is phrased in everyday language,

making it approachable for a wide range of learners.

o Context-Sensitive Suggestions: Guidance is shaped by the specific content

of a student’s work, not just generic rules.

e Personalized Learning Paths: Some platforms generate tailored sequences

of practice tasks based on the learner’s prior work.
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Yet, alongside these benefits are some persistent challenges:

e Consistency and Accuracy: Without safeguards, the quality of feedback

can fluctuate, and occasional factual mistakes can slip through.

e Rubric Alignment: Without clear guidance, LLMs might give feedback that

doesn’t match the instructor’s grading standards.

e Educator Control: Many teachers lack straightforward ways to adjust how

these models operate, since much of the logic is hidden inside complex prompts.

Incorporating Decision Model and Notation (DMN) into LLM-driven feedback
systems offers a way forward. DMN’s structured, transparent decision rules can keep
LLM outputs consistent with course rubrics, making the feedback both flexible and

reliable.

2.5.4 Evaluation Techniques for Automated Feedback and Grading
Systems

Assessing the quality and impact of automated feedback tools calls for more than
a single metric. A combination of approaches helps capture both the technical

performance and the educational value of these systems:

e Automatic Grading Systems: NLP or LLM models automatically score
open-ended responses, saving time in large classes and ensuring consistency.
However, they can miss subtle reasoning or creativity, and their performance

hinges on model accuracy [31].

e Automated Feedback Systems: Provides instant formative feedback, en-
couraging real-time improvement. While effective for boosting engagement,

they sometimes lack depth or precision in complex subject areas [32].

o System Usability Scale (SUS): Provides a fast way to measure user satisfac-

tion, but results can be influenced by past experience with similar tools. [33].

o Text Classification Systems: Categorize responses for faster analysis and
targeted feedback. This is efficient at scale but can oversimplify nuanced

reasoning [34].

e Multimodal Evaluation Systems: Combine multiple data types (text,
visuals, audio) to gain a fuller understanding of student learning. While
offering rich insights, these systems demand significant resources and integration
effort [35].

o Content-Overlap Metrics (ROUGE): Compare generated feedback with
expert-written responses based on shared wording. Objective and widely used,
but limited in capturing true meaning when synonyms or rephrasings are
involved [36].
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o Model-Based Metrics (BERTScore): Evaluate semantic similarity between
generated and expert feedback using contextual embeddings. Strong correlation

with human judgment, but more resource-intensive and less transparent [36].

o Human Evaluation (Multi-Dimensional): Experts manually review feed-
back for clarity, accuracy, and tone. This yields rich insights but is time-

consuming and can suffer from inconsistency across reviewers [37].

2.6 Integrating Evaluation into Practice

In practice, effective evaluation blends these methods. For example, automatic
grading might be paired with human review to combine efficiency with deeper
qualitative insights. Semantic similarity checks could be used alongside DMN-based
rubric rules to ensure feedback is both accurate and aligned with instructional goals.

A well-designed evaluation plan does more than verify system performance—it
helps ensure that automated feedback tools remain trustworthy, fair, and genuinely
useful for learning. As these systems continue to evolve, maintaining this balance

will be essential for their long-term acceptance in educational settings.

2.7 Identified Research Gap

A close reading of the existing literature points to several persistent shortcomings
in how large language models (LLMs) are currently applied, particularly in settings
where the stakes are high and the margin for error is small.

First, most LLM-powered systems in education operate without a clear or
sustainable mechanism for controlling how decisions are made. While they may
produce impressively fluent responses, the reasoning behind those responses is buried
deep within opaque model architectures. In a classroom or assessment setting, this
lack of transparency is more than an academic concern—it affects trust. Teachers need
to know not only what the system decided, but why it decided so, especially when
the output influences grades or shapes learning pathways. Without a transparent
control layer, maintaining consistent quality over time is difficult, and errors can
easily slip through unnoticed.

Second, the dominant method for influencing model behavior—prompt engineer-
ing—is still something of an art form. Prompts are often created through personal
experimentation, which means they may work well for one instructor or developer
but be hard to replicate elsewhere. This ad hoc approach makes it difficult to share,
refine, or scale prompts across larger teams. Over time, even small, untracked changes
can cause prompts to drift away from curriculum goals or institutional standards,
undermining both reliability and fairness.

Finally, there is an underused tool hiding in plain sight: Decision Model and
Notation (DMN). Well established in the business world for capturing decision logic

in a structured, low-code format, DMN’s visual diagrams and rule tables are easy for
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both technical and non-technical stakeholders to understand. In theory, this makes
DMN a perfect fit for guiding LLM outputs—offering a way to embed grading rubrics,
pedagogical rules, and institutional policies directly into the model’s decision-making
process. Yet despite its potential, there is almost no systematic research applying
DMN to LLM prompting in education.

Taken together, these issues open the door to a clear and compelling line of
inquiry:

Can integrating DMN into LLM-based feedback systems improve not just accuracy,
but also interpretability and ease of use—making them more reliable tools for

educators and learners alike?
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Methodology

3.1 Overview of the Proposed Framework

The framework developed in this study introduces a structured way of guiding
Large Language Models (LLMs) by relying on Decision Model and Notation (DMN).
Rather than packing all the rules and constraints directly into long text prompts,
as is common in today’s practice, the framework keeps the decision-making logic
outside the prompt itself and represents it in a standardized form. This separation is
important: it makes the rules easier to read, update, and audit, while the LLM is
left to apply them when generating responses.

Why This Approach?

Most current techniques for steering LLMs—prompt engineering, few-shot exam-
ples, or fine-tuning—have clear drawbacks. Prompt engineering is often improvised
and hard to replicate, since the reasoning steps are hidden inside unstructured text.
Fine-tuning requires access to model weights and substantial resources, which is
rarely feasible in an educational setting. And while classical rule-based systems
provide consistency and control, they lack the flexibility and natural fluency of
modern language models.

The proposed framework is meant to bring these two worlds together. By
embedding explicit decision logic into the interaction with the LLM, it becomes
possible to produce feedback that is not only more reliable but also easier for
educators to maintain over time. This is particularly valuable in teaching, where
grading rubrics and assessment standards change regularly, and instructors need to

ensure that students receive consistent and fair feedback.

3.1.1 Core Structure: DMN Triples

The system works around a modular unit called a DMN triple, which captures each

decision in three parts:

1. Input Data Elements — the variables needed to reach a decision (e.g., assignment

clarity, test case results).
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2. Decision Tables — the rules that connect different combinations of inputs with

particular outcomes.

3. Literal Expressions — the text or feedback messages that are tied to each

outcome.

This framework provides the model with a sequential structure for reasoning. Instead
of asking the LLM to reason in a completely open-ended way, it follows a three-
part process: extract relevant inputs, check them against the rules, and return the
corresponding output message. It is similar in spirit to Chain-of-Thought prompting,
but here the reasoning path is explicitly defined and modular, rather than hidden

inside a text instruction.

3.1.1.1 Theoretical Roots

The framework I propose does not come out of nowhere. It builds on three traditions
that have been around for quite some time: symbolic Al, explainable AI, and more

recent work on prompting strategies for large language models.

e« Symbolic AI and Expert Systems

If we look back at the early days of Al, systems were largely symbolic. Expert
systems like MYCIN or DENDRAL worked entirely on the basis of explicit
rules written by specialists. The appeal of these systems was not just that they
produced answers but that every answer could be explained by tracing back
through a set of “if-then” conditions. That kind of transparency has always
been valuable in education, where being able to show why a student received a
certain piece of feedback can matter just as much as the feedback itself. The
DMN approach essentially revives this tradition in a modern form: decision
tables capture rules clearly, but the reasoning process is still transparent to

both humans and machines.

o Explainable AI

In more recent years, there has been a strong push for explainability in Al. This
is partly a reaction to the rise of black-box systems like deep learning, which
are powerful but often impossible to interrogate. In education, this lack of
clarity can be problematic—students and instructors alike need to understand
where feedback comes from. DMN naturally provides that kind of traceability.
Every outcome links directly to a rule in the decision table, so if a learner wants
to know why their assignment received a certain comment, the instructor can
point to the logic behind it. This makes the system accountable in a way that

many current Al tools are not.

e Prompting Strategies for LLMs

Finally, the design draws on what we’ve learned from prompting large language

models. Research has shown that models perform better when their reasoning
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is broken into steps, as in Chain-of-Thought prompting [38]. The problem is
that these strategies usually rely on long text templates that are clumsy to
maintain. Each time the rules or grading rubrics change, someone has to go
back and re-engineer the prompt. DMN offers a neater solution: it externalizes
the rules into a model that can be swapped or updated without rewriting the
prompt itself. In other words, it takes what works about structured prompting

and makes it reusable and easier to manage.

Taken together, these three roots show that the DMN-guided framework is less
a radical departure and more a synthesis. It borrows the transparency of symbolic
Al, the accountability of explainable Al, and the structured reasoning of prompt

engineering, tying them together in a way that fits educational needs.

3.1.1.2 Benefits in Practice
Bringing these ideas together has some very practical advantages.

o Transparency

The first is transparency. Because every decision maps to a specific rule, there
is no guesswork involved in explaining how a piece of feedback was generated.
This not only builds trust with students but also reassures instructors that the

system is operating fairly.

e Maintainability

Another benefit is maintainability. Instructors often revise feedback rules, and
doing that in a conventional prompt can be messy. With DMN;, the only thing
that changes is the decision table; the prompt structure remains stable. That

makes the system much easier to update.

e Scalability

The framework is also scalable. A single prompting pipeline can support very
different kinds of tasks—for instance, programming assignments and essay
grading—simply by swapping in a different DMN file. This flexibility makes it
possible to deploy the system across entire courses or even departments without

having to rebuild everything from scratch.

o Accessibility

Perhaps most importantly, the approach is accessible to non-programmers.
Instructors don’t need to know how to write prompts in a careful, technical way.
Instead, they can design decision tables in a graphical editor and let the LLM
handle the rest. This lowers the barrier to entry and brings more educators

into the process of shaping Al feedback.

In short, the framework is designed to be transparent, easy to maintain, flexible
across contexts, and inclusive of subject matter experts who might not be technically

trained.
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3.1.1.3 Remaining Challenges

Still, the design has some limits.

e Ambiguous Inputs

Student work can be unpredictable. Sometimes responses are incomplete,
off-topic, or simply unusual. DMN works best when inputs are clean and
structured; LLMs can help interpret the messier cases, but this can lead to

mistakes.

o Balancing Strictness and Flexibility

There is also the question of balance. DMN is deterministic: given the same
inputs, it always produces the same output. LLMs, on the other hand, are
probabilistic and can vary in their responses. Finding the right balance between
rule-based certainty and generative flexibility is tricky. Too much rigidity, and

the system feels unfair; too much flexibility, and it risks inconsistency.

¢ Human Oversight

Even with these precautions, human oversight remains essential. Feedback is not
only about correctness but also about tone, encouragement, and appropriateness
for the student’s level. These nuances are difficult to encode into rules, meaning

that instructors still need to act as a final check before feedback is delivered.

¢ Technical and Resource Barriers

Lastly, building and maintaining this kind of system does require infrastructure.
Preprocessing pipelines, secure data handling, and integration with learning
platforms are not trivial. For some institutions, these technical demands may

slow adoption.

Briefly, the DMN-guided prompting framework connects several traditions in Al,
combining established strengths with emerging opportunities. It has the potential
to make Al feedback systems more transparent, adaptable, and collaborative, while
also underscoring the areas where human judgment remains essential. Its promise is
real, but so are its challenges—particularly the need to balance the precision of rules

with the flexibility required in real-world education.

3.2 Framework Architecture

Figure 3.1 illustrates the layered architecture of the DMN-guided prompting system.
The framework is designed to separate formal decision logic from free-text prompting,
ensuring outputs are both interpretable and auditable. The architecture is composed

of several interdependent components:

24



Methodology

" You are given two inputs: @

i 1. ADMN file in XML format. It may contain one or more decision tables. H
2. A natural language description of a case. '

Your task is to extract the decision logic from the DMN and reason through the case using the
following steps.

! ### Output Format @

' return only the result list. ;

Figure 3.1: The general prompt structure for DMN-guided assessment.

3.2.1 DMN Model Creation

At the foundation of the system, instructors or subject matter experts define decision
logic in the form of DMN models. These models can be constructed using graphical
modeling environments such as Camunda Modeler, which provide user-friendly drag-
and-drop interfaces.

Each decision is represented as a triple:

1. Input data elements (variables or student attributes to be evaluated),
2. Decision table (conditional rules that map inputs to outcomes),

3. Literal expressions (the human-readable feedback or instructional messages

associated with each outcome).

This structured representation ensures that decision logic is standardized and

can be easily modified without rewriting prompts.

3.2.2 Input Data Preparation

Before evaluation, student submissions—such as essays, process models, or program-
ming assignments—must be transformed into a form that the LLM can process.

A preprocessing script is used to convert raw submissions into structured natural
language descriptions.

This abstraction layer ensures that the LLM interprets student work consistently,
without needing to parse diagrams, code syntax, or other domain-specific formats
directly.

For example, instead of parsing a BPMN diagram, the system generates a text-
based summary describing model elements, which can then be evaluated against the
DMN rules.
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This stage acts as a bridge between raw student data and machine-readable

decision logic.

3.2.3 Prompt Construction

Once the DMN and the case description are prepared, they are embedded into a
structured multi-part prompt. As shown in Figure 3.1, the prompt is divided into
four explicit parts (A-D):

Part A: Provides context by embedding the full DMN XML file and the case
description.

Part B: Instructs the LLM to parse the DMN into a structured dictionary of
decision triples.

Part C: Guides the model in applying decision logic, matching student input
values against the decision table conditions.

Part D: Directs the LLM to return final results in a clean, machine-readable
JSON format.

This modular construction reduces ambiguity and ensures that reasoning follows

a transparent, repeatable workflow.

3.2.3.1 Part B: Parsing the DMN Model

The first step in the execution pipeline is to parse the DMN content, which is usually
provided in XML. Instead of asking the LLM to interpret XML tags directly—an
approach that can be error-prone—the framework guides the model to translate each
decision into a simplified dictionary format. This makes the rules easier to work with

and keeps them consistent.

Each decision is captured as a triple containing(Figure 3.2):

¢ Rule name — a descriptive label, often given in the DMN annotations.
e Input fields — the variables needed to reach a decision.

e Decision table — the mapping between conditions and their outcomes.

o Literal expressions — the specific feedback messages tied to those outcomes.
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### Phase 1: Extract Decision Logic from the DMN

From the DMN file:
- Identify each decision rule (preferably using annotations as rule names).
- For each rule, extract a structured dictionary entry as follows:

“json

"rule Name": {
"input": [list of required input field names],
"decision table": {
"name": "<decision table name>",
"content": "<decision table XML snippet>"

}

iteral expression": {
"name": "<output name>",
"content": "<list of outcomes and corresponding messages>"

Figure 3.2: Part B contains instructions for parsing DMN into structured triples.

For example, a grading decision might rely on input fields such as clarity, accuracy,
and completeness. The decision table would then connect different combinations of
these values to outcomes like excellent, satisfactory, or needs improvement. Each
outcome is paired with a ready-made message, for example: “Your explanation is
clear and thorough” or “Consider adding more detail to improve completeness.”

This process protects the LLM from raw XML and instead provides a structured,
human-readable format. By packaging each rule in this modular way, the framework
ensures that decisions are evaluated one at a time, without unrelated rules interfering.

This step is important because it allows multiple decision rules to exist within a
single DMN file, making the framework more flexible. At the same time, it creates
a structured knowledge base of triples that guide reasoning, ensuring that each
result links back to its rule. By keeping the formatting consistent, the chance of

misinterpretation is greatly reduced.

3.2.3.2 Part C: Evaluating the Input Text

Once the rules are parsed, the LLM can move on to the student’s work. Figure 3.3
illustrates that this stage applies the dictionary entries to the input text through a

four-step process:

1. Extract Input Values (C1): This step asks the LLM to look at the input list
in the dictionary and pick out the needed values.These inputs then guide the

model in finding their corresponding values in the given text (second instruction

in C1).

2. Evaluate the Decision Table (C2): The extracted values are then compared
against the conditions defined in the table. Numeric ranges and symbolic
expressions are spelled out clearly—for instance, [40..50] is inclusive of both 40
and 50, while [40..50) includes 40 but excludes 50. Providing these explicit rules
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helps the model avoid misinterpretation and keeps the evaluation consistent.
Examples and edge cases are often included in the prompt to reduce the risk of

hallucinations.

3. Retrieve the Literal Expression (C3): Once a matching condition is found,
the model gets the feedback message for the matched outcome. Instead of

inventing new feedback, it selects from instructor-approved options.

4. Return the Final Message (C4): The last step ensures that only the feed-
back message is returned, usually in JSON format. By filtering out intermediate
steps—Ilike reasoning traces or extracted dictionaries—the system delivers clean,

unambiguous outputs.

| ### Phase 2: Process Each Entry Using Natural Language Input @
For each extracted entry:

**Step 1: Extract Input Values**

- Identify the required input fields from the input list.

- From the natural language text, extract the values for those fields (even if not in key-
value format).

1
'
'
'
'
'
'
'
\

®..@

**Step 2: Evaluate the Decision Table**

- Evaluate input values strictly according to the decision table logic, any value shall be !

treated accordingly (numbers below are examples): '
- [40..50] means inclusive of 40 and 50.
- (40..50) means exclusive of both 40 and 50. '
- 140..50[ means exclusive of both 40 and 50. '
- [40..50) means inclusive of 40, exclusive of 50 (and so on).
- [40..50[ means inclusive of 40, exclusive of 50 (and so on). '
- Do not round or approximate values. For instance, 39 must not match [40..50].

- Identify the name of the outcome for the matching rule. !

," **Step 3: Retrieve the Corresponding Literal Expression** @
i - Use the outcome name and look at the message instruction written in the "literal '
'\ expression™ entry.

" *Step 4: Generate the Replies**

- return the message exactly as written, without any change. '
- generate a list named **result** include all generated messages, i.e., "result": [ /

Figure 3.3: Part C instructions include utilising parsed DMN to evaluate input
text.

This structure makes the evaluation orderly instead of random. The LLM can
still work with natural language, but its choices are firmly guided by DMN rules.

This step can help the system avoid hallucinations by following predefined rules,
making responses more reliable. Clear definitions for numbers and symbols help
handle tricky cases. Since the same logic is always applied, students get consistent
feedback. The outputs are also clean and structured, so they can be easily used in

feedback systems.
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3.2.3.3 Result Compilation and Final Output

In the final stage, the framework pulls everything together. Each decision triple is
evaluated independently, and the results are merged into a single response. The
output is delivered in a standardized format.

This setup makes the results easy to check, save, and use again. For example, the
output can be stored together with the student’s work and the DMN model version,
creating a clear record for accountability.

A key strength of this design is that the prompt itself doesn’t need to change
when rules are updated. If an instructor wants to refine the grading criteria, they
simply edit the DMN file, and the framework adapts automatically. Separating

decision logic from prompt syntax makes the system far easier to maintain.

The framework brings together a number of practical strengths. Main advantages

are :

e Modularity: different parts can be created, updated, or reused without

disrupting the whole system, which makes it easier to maintain and scale.

o Interpretability: it also improves interpretability, since every decision rule

and its outcome can be traced back clearly, making things clearer.

o Collaborative design: Instructors or subject experts can directly shape the

decision logic, rather than relying entirely on technical specialists.

e Transparency: Most importantly, the framework improves transparency by
replacing improvised prompts with a structured and trackable process. This is

especially important for complex, rule-based tasks.

3.3 Integration with LLM APIs

The DMN-guided prompting framework requires reliable access to advanced large
language models (LLMs) in order to transform structured rules into natural-language
feedback. To achieve this, the system integrates directly with two leading LLM
providers through their APIs: GPT-40 via the OpenAl API and Gemini 1.5 Pro
via the Google Gemini API. These models were chosen because they represent the
current state of the art in reasoning performance and text generation, while also

supporting the input/output formats required for structured evaluation.

3.3.1 Goals of Integration

The integration was designed with three main goals:

1. Deterministic Behavior: In an educational setting, consistency is critical.
To minimize random variations in output, both models were configured with a

temperature of 0, ensuring that identical inputs yield identical outputs.
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2. Scalable Evaluation: Since student assignments may involve multiple decision
rules and detailed case descriptions, the max_tokens parameter was set high
enough to accommodate both full DMN parsing and contextual reasoning

completely.

3. Structured Outputs: To enable traceability and post-processing, the frame-
work makes use of JSON mode whenever possible. This forces the models to
output in a machine-readable format, avoiding the risk of noisy or verbose

responses.

3.3.2 API Workflow

The interaction between the framework and the APIs proceeds in a structured

pipeline:
1. Preprocessing: The DMN model is exported into XML format, and student

submissions are converted into structured natural language descriptions.

2. Prompt Assembly: A multi-part prompt (Parts A-D) is generated, embed-
ding both the DMN XML and the case description.

3. API Call: The prompt is transmitted via HTTPS requests to either the
OpenAl or Gemini endpoint, with specified parameters for temperature, token

length, and output format.

4. Response Handling: The system parses the JSON-formatted result, aligns it
with the corresponding decision rule, and stores it alongside the DMN version

and student submission for traceability.
This setup makes the LLM act less like a free text generator and more like a
reasoning tool that follows clear rules.
3.3.3 Cross-Model Consistency

Both GPT-40 and Gemini 1.5 Pro were tested under the same conditions, making it
easier to separate the effects of the framework from the strengths or limits of each
model. For instance, if both models improve in consistency when guided by DMN
rules compared to Chain-of-Thought prompting, the added value can be attributed

to the framework rather than to a particular LLM.

3.3.4 Benefits of API-Based Integration
Integrating via APIs provides several advantages:

e Abstraction: The framework does not need to manage low-level model training

or optimization; instead, it leverages high-level API endpoints.

e Portability: Different LLMs can be swapped in or out with minimal changes,

making the system adaptable to future model releases.
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e Reproducibility: By fixing parameters such as temperature and enforcing
JSON-mode outputs, the system ensures that results can be replicated across

runs.

e Ease of review: Each API call is logged with metadata including timestamp,

DMN version, and model configuration, leaving a complete trace.

3.3.5 Open-Source Implementation

To ensure transparency and replicability, the implementation scripts for API integra-
tion, prompt templates, and evaluation routines have been released as open-source
resources. This allows researchers and practitioners to adapt the framework to their
own domains, whether in education, business process management, or healthcare

feedback systems.

3.3.6 Implications for Educational Use

For educators, API-based integration means that they do not need to engage directly
with prompt engineering or model tuning. Instead, they can focus on encoding
decision logic in DMN, while the framework ensures that the LLMs apply these rules
reliably. By sharing the work between parts, the system becomes easier to adopt,

particularly among non-technical instructors.

3.3.7 Human-in-the-Loop Verification

While the DMN-guided prompting framework aims to bring more structure and
reliability to automated feedback, it is important to remember that no Al-based
system is flawless. To ensure the credibility of feedback provided to students, a
human-in-the-loop mechanism was built into the process.

First, every piece of feedback generated by the LLM was reviewed by an instructor
or subject matter expert before it reached students. This step served as a safeguard
against mistakes or misinterpretations that could still occur, even when the decision
logic was formally defined. Instructors confirmed not only the factual accuracy but
also the appropriateness of tone, ensuring that the feedback was constructive and
aligned with educational goals.

Second, during this review process, each feedback instance was explicitly tagged as
either correct or incorrect. This binary labeling created a valuable secondary dataset.
Over time, this dataset can serve two important purposes: (1) to measure the overall
accuracy of the framework under real conditions, and (2) to provide labeled examples
for possible fine-tuning of future models. In this way, the human-in-the-loop layer
does not simply act as a safeguard but also as a feedback loop that strengthens the
system over time.

Finally, this stage provided instructors with a sense of control and trust in the
system. Rather than feeling replaced by automation, educators could see themselves

as active participants in shaping and refining Al-generated outputs. This sense of
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shared responsibility is especially important for adoption in educational contexts,

where trust in feedback is central to student learning.

3.3.8 Ethical Considerations

Ethical design choices were also prioritized to make sure the framework operates in a

way that respects both students and educators. Four main areas were addressed:

1. Data Protection and Privacy: Before any processing, all student submissions
were anonymized. Personally identifiable information (PII) was removed or
masked, ensuring that the system only worked with the educational content
itself. Secure storage protocols were also applied to both DMN models and

student work, protecting them from unauthorized access.

2. Transparency: Students were informed whenever Al assistance was used in
the generation of feedback. Communicating the role of Al in the process helped
maintain openness, avoided misconceptions, and gave students the opportunity
to understand the origin of their feedback. Transparency was treated not as

optional but as a core ethical responsibility.

3. Bias Monitoring and Fairness: Bias is a well-documented concern in Al
systems. To counter this, feedback was regularly monitored to detect any
patterns that might indicate unequal treatment across different student groups
or assignment types. The use of deterministic DMN rules already helps reduce
bias by basing outputs on clear, predefined rules, but human oversight was still

essential to ensure fairness.

4. Instructor Agency and Responsibility: Importantly, the system was
designed to support educators rather than replace them. By giving instructors
the final authority over what feedback students receive, the framework reinforces
the ethical approach that teachers remain accountable for student evaluation.

Al is positioned as an assistant, not an autonomous decision-maker.

Together, these measures ensure that the framework is not only technically robust
but also ethically sound, balancing efficiency with responsibility. The integration
of human oversight, data protections, and transparency measures supports both

educational integrity and student trust.
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Case Study

4.1 Introduction to the Case Study

The development of the DMN-guided prompting framework was motivated by a
practical need: how to make feedback generated by large language models more
reliable, transparent, and pedagogically useful in real learning environments. While
theoretical discussions and controlled examples can demonstrate the promise of such
a framework, its real value can only be judged when applied in practice. For this
reason, we designed a case study to evaluate the framework within an actual academic
course.

This case study focused on three main objectives.

1. Technical performance: First, we tested how well the framework worked by
comparing its accuracy with a baseline prompting method. This allowed us to
examine whether embedding decision logic genuinely reduces errors or whether

it simply adds extra complexity.

2. Pedagogical utility: Second, we examined how well the feedback matched
instructor expectations and whether it actually helped students learn and

improve their work.

3. User perceptions: Finally, we looked at how students felt about the sys-
tem—whether they saw the feedback as clear, reliable, and helpful for their

learning.

This study was carried out in the field of business process modeling education,
which is especially well suited for this kind of research. Unlike open-ended writing or
creative tasks, process modeling is grounded in well-defined principles and established
best practices. This makes it possible to encode evaluation criteria as decision rules
in DMN and then assess how effectively the framework can apply these rules to real
student submissions.

The case study design also ensured that the framework was tested under realistic
conditions. Students worked in groups on process models as part of their regular

coursework, and their submissions were evaluated using the same criteria that
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instructors would normally apply. To maintain fairness and accuracy, every Al-
generated comment was reviewed by instructors before being shared with students.
This not only safeguarded the instructional quality but also produced a labeled dataset
that could be used to measure system accuracy and inform future improvements.
In short, this case study tested the DMN-guided prompting framework in a real
classroom. It showed how well the system works technically and how it fits into
teaching and learning with both instructors and students. By combining performance
results with student feedback, the study gives a clear picture of the framework’s

strengths, limits, and future potential.

4.2 Educational Context

This case study was carried out in the graduate-level course Business Process Design
and Intelligence at the Department of Computer and Systems Sciences, Stockholm
University. The course focuses on equipping students with practical and theoretical
skills in analyzing, modeling, and improving organizational processes. A total of 24
student groups participated in the study, with each group consisting of around six
members working collaboratively throughout the semester.

The central assignment required students to design business process models using
Petri nets, a formal modeling language known for its ability to capture concurrency,
synchronization, and resource dependencies in processes. Students created their
models using the WoPeD modeling tool [39], which is widely used in teaching
environments for its intuitive interface and strong analytical features.

To guide their modeling efforts, students were expected to apply established
Business Process Redesign (BPR) principles. These included:

e Triage: reorganizing cases to ensure efficiency in handling.
e Parallelism: enabling tasks to occur simultaneously where appropriate.

e Automation: replacing manual tasks with automated solutions to reduce

delays.
o Task elimination: removing unnecessary activities to streamline processes.
¢ Resequencing: reordering tasks for improved flow and effectiveness.

The assignments were based on clear principles, which made it easier to judge
student work. This also helped test the DMN-guided framework, since its rules
followed the same principles.

The students approached their tasks using an agile methodology [40], which
emphasized incremental improvement and continuous refinement of their process
models. This method encouraged experimentation and iterative learning, allowing
students to repeatedly test and revise their designs. From a research perspective, this
provided a rich and varied set of submissions, capturing both correct implementations

of BPR principles and common student mistakes. These variations offered an ideal
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basis for evaluating whether the DMN-guided prompting framework could correctly
identify strengths and weaknesses in the models.

It was entirely optional to participate in the study. Students were fully informed
about the goals and scope of the research, and informed consent was obtained from
all participants. To safeguard student privacy, all submissions were anonymized
before being processed by the system. This ensured that the focus remained on
evaluating the framework rather than on individual student performance.

This particular educational setting was deliberately chosen because business
process modeling provides an excellent environment for structured feedback generation.
The domain is rule-intensive: models can be objectively assessed against well-defined
principles, yet student submissions often exhibit subtle variations in labeling, task
structuring, or sequencing. These characteristics created both opportunities and
challenges for the framework. On the one hand, the existence of clear evaluation
rules made it possible to encode decision logic in DMN tables. On the other hand,
the variability in how students expressed their ideas tested the framework’s ability to
balance deterministic rules with the flexible interpretation needed to handle natural
language inputs.

The combination of a well-defined rule system (BPR principles), collaborative stu-
dent projects, and iterative model refinement made this course a strong environment
for evaluating the DMN-guided prompting framework. It provided a realistic but
controlled setting in which to measure technical performance, assess the relevance of
generated feedback, and explore how such a system might eventually be adopted in

broader educational contexts.

4.3 Deployment of the Framework

Figure 4.1 illustrates how the DMN-guided prompting framework was embedded
into the course environment. The setup focused on three main roles, each playing a

critical role in making the system work:

e Instructors — Instructors were responsible for encoding the evaluation criteria
into DMN models. Each rule was represented as a decision triple, consisting of
input data, a decision table, and a feedback expression. By formalizing their
expectations in this way, instructors ensured that feedback rules were explicit,
traceable, and consistent. This approach shifted the role of instructors from
crafting individual prompts to defining systematic rules that could be reused

across multiple assignments.

¢ Students — Students submitted their process models, developed as part of their
coursework. These models served as real-world test cases for the framework.
Importantly, the submissions were anonymized, protecting student identities
while still allowing meaningful evaluation. This setup allowed students to
indirectly benefit from Al-supported feedback without compromising ethical

safeguards.
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e The DMN-guided system — The system served as the reasoning engine,
applying the encoded rules to student submissions. Using the DMN triples as a
structured guide, the system generated tailored feedback automatically. Unlike
traditional black-box prompting approaches, this process linked each piece of

feedback directly to a rule, ensuring transparency and traceability.
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Figure 4.1: Our case study’s implementation of the DMN-Guided Prompting
Framework.

A central part of the deployment was the human-in-the-loop verification process.
The Al-generated feedback was not shared with students immediately. Instead,
instructors carefully reviewed each comment and labeled it as correct or incorrect.
Only validated feedback was delivered to students. This additional step served

multiple purposes:

o It ensured the feedback stayed reliable, prevented the dissemination of poten-

tially misleading feedback.
o It created a labeled dataset for subsequent analysis.

Such a dataset is particularly valuable for future research, as it provides training

material for refining and fine-tuning LLMs in educational contexts.

To evaluate robustness and generalizability, the framework was tested with two
different large language models: GPT-40 (via OpenAI’s API) and Gemini 1.5 Pro (via
Google’s API). Running both models under the same conditions made it possible to
distinguish effects caused by the framework design from those related to the specific
capabilities of a given LLM. In other words, the study could test whether the benefits
came from the DMN-guided prompting itself, and not just from the behavior of one
specific model.

In parallel, a Chain-of-Thought (CoT) [8] prompting setup was implemented as a
baseline. CoT prompting has become a popular technique for improving reasoning in
LLMs by explicitly guiding them to break problems into smaller steps. However, it
lacks the formal structure and interpretability of DMN rules. By comparing DMN-
guided prompting to CoT, the study could assess whether embedding explicit decision
logic provided measurable improvements in accuracy, consistency, and educational

alignment.
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Another benefit of this deployment design is that it promoted accountability and
transparency. Every feedback instance was traceable to a rule, every reviewed case
contributed to the dataset, and every model run was logged with its corresponding
DMN version. By keeping this trail of records, we could both assess the system
systematically and allow others to repeat the study, confirming and extending our
findings.

Finally, this division of roles between instructors, students, and the system
supports scalability and broader adoption. Instructors retain control over pedagogical
content by defining rules, students receive structured and validated feedback, and the
system acts as a reliable assistant rather than a replacement. It creates a foundation
for using Al feedback more widely in education, making sure that innovation is

matched with careful oversight.

4.4 Technical Implementation

A dedicated software component was designed to bridge the gap between student-
created process models and the LLM-based evaluation framework. The tool auto-
matically translated Petri net models into structured natural language descriptions.
These descriptions captured not only the overall control flow but also key resource
semantics, such as task assignments and dependencies. By doing so, the system
avoided the complexity of parsing graphical diagrams directly while still preserving
all essential information required for accurate evaluation.

The feedback mechanism was grounded in a set of nine decision rules, each
carefully aligned with a recognized principle of Business Process Redesign (BPR).
These rules were formalized in Decision Model and Notation (DMN) tables, ensuring
that each condition corresponded to a predefined feedback message. For example, if
a process failed to apply parallelism correctly, the system would match this case to a
DMN rule and retrieve the appropriate instructor-approved feedback. This design
not only supported consistent and repeatable evaluation but also helped prevent
arbitrary or improvised outputs from the LLM.

Another important aspect of the implementation was its modularity. Since the
rules were encoded separately in DMN, they could be updated or extended without
requiring changes to the underlying prompt structure. This separation of concerns
allows the framework to evolve as teaching practices or course requirements change,
making it scalable and adaptable to different learning environments.

To support transparency and encourage adoption by the wider community, the
complete implementation has been published openly on GitHub. Along with the
code, example DMN files and documentation are provided to make replication and
adaptation easier. This openness not only enhances reproducibility but also lays the
foundation for collaborative improvement, where educators and researchers can build
upon the existing work to refine the framework further.

Finally, by using structured DMN rules as the backbone of the evaluation,

the technical setup also served as a safeguard against LLM-specific issues such as
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hallucinations. Instead of generating arbitrary text, the models were constrained to
select from instructor-defined outputs, increasing both the reliability of the system

and the trustworthiness of the feedback delivered to students.

4.5 Evaluation Results

The evaluation of the framework was grounded in instructor-labeled data, which
served as the reference point for measuring performance, as shown in Figure 4.2.

For each feedback instance, two criteria were assessed:

o (i) Whether the student had correctly applied the intended BPR principle in
their process model.

o (ii) Whether the system-generated feedback accurately reflected correctness or

error.

This dual evaluation allowed us to measure not just raw accuracy, but also the

quality and reliability of the automated feedback mechanism.
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Figure 4.2: Summary of the instructor-labeled comments for each rule and group.
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We computed four standard classification metrics:

e Precision:

TP
TP+ FP

Proportion of predicted positives that are correct.

Precision =

e Recall:
TP

TP+ FN

Proportion of actual positives correctly identified.

Recall =

e F1l-score:
Precision x Recall

F1- =2 X
seore Precision + Recall

Harmonic mean of precision and recall.

e Accuracy:
TP+TN

TP+TN+ FP+ FN

Overall proportion of correct predictions.

Accuracy =

Where:

o TP = True Positive (correctly predicted correct feedback)

o FP = False Positive (incorrectly predicted correct feedback)
e TN = True Negative (correctly predicted incorrect feedback)

o F'N = False Negative (incorrectly predicted incorrect feedback)

Table 4.1 provides the comparative results that highlight clear differences between
the DMN-guided framework and the baseline Chain-of-Thought (CoT) prompting.
Across all configurations, DMN-guided prompting delivered higher precision and

more balanced performance.

¢ GPT-40 with DMN emerged as the most effective setup. It achieved a
precision of 0.91, recall of 0.90, and Fl-score of 0.91, alongside an overall
accuracy of 0.87. This indicates that the system was both consistent in
detecting correct applications of BPR rules and cautious enough to minimize

false positives.

e GPT-40 with CoT, in contrast, produced perfect recall (1.00) but very
poor precision (0.36). This means the system identified all correct cases but
also over-generated feedback, leading to many false positives and lowering the
F1-score to 0.53. In practical terms, this would risk overwhelming students

with misleading or irrelevant comments.

39



Case Study

e Gemini 1.5 Pro followed a similar pattern. Under DMN-guided prompting,
it achieved an Fl-score of 0.71, outperforming the CoT variant, which only
reached 0.62. Although its overall performance was lower than GPT-4o, the

consistency across models reinforces the generalizability of the DMN-based

approach.
Approach Model Precision | Recall | Fl-score | Accuracy
DMN-guided GPT-40 0.91 0.90 0.91 0.87
Chain-of-Thought GPT-40 0.36 1.00 0.53 0.54
DMN-guided Gemini 1.5 Pro 0.60 0.87 0.71 0.65
Chain-of-Thought | Gemini 1.5 Pro 0.55 0.71 0.62 0.52

Table 4.1: Performance comparison of several methods of prompting.

These findings demonstrate the tangible benefits of embedding structured decision
logic into prompt design. Whereas CoT prompting leans heavily on the probabilistic
reasoning of LLMs—leading to variability and over-generation — the DMN frame-
work keeps the evaluation aligned with unambiguous rules. This not only boosts
precision but also ensures that feedback is traceable to explicit criteria, fostering
both transparency and reliability.

Looking past numerical results, the results point to broader pedagogical implica-
tions. Higher precision means students are less likely to receive irrelevant or incorrect
advice, which enhances trust in the feedback system. Balanced recall ensures that
key errors are still detected, preventing important learning opportunities from being
missed. Taken together, the results suggest that DMN-guided prompting provides
a more disciplined and trustworthy foundation for deploying LLMs in educational

contexts.

4.6 Rule-Specific Insights

register request

Figure 4.3: Example of a merged task with ambiguous labeling, leading to DMN-
Guided framework using GPT-40 feedback misclassification for Rule 2 (task composi-
tion).
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In addition to the overall performance metrics, a closer rule-level analysis was carried
out to better understand how the framework handled individual Business Process
Redesign (BPR) principles, as well as to uncover recurring challenges faced by
students. This qualitative layer of analysis provided insights into both the strengths
of the DMN-guided framework and the learning gaps present in the classroom.

For Rule 1 (triage), all student groups successfully modeled the principle, and
the framework—when paired with GPT-4o0—identified these cases without error,
demonstrating perfect alignment.

Rule 2 (task composition) was implemented correctly by roughly 79% of the
groups, and the framework reached an accuracy of 86%. The main source of error
came from unconventional task labels (e.g., “check and register result” instead of the
expected phrasing related to a credit check), which occasionally reduced the system’s
ability to match the semantics of student models (see Figure 4.3).

For Rule 3 (knock-out), which involves rejecting cases at an early stage
(e.g., after a credit assessment), 93% of students applied the principle correctly.
The framework matched this with 93% accuracy, slightly outperforming its overall
average.

The most challenging principle for students was Rule 5 (task resequencing).
Only one group (7%) managed to correctly reorder tasks. Nevertheless, the framework
was able to detect the intended redesign in 93% of submissions. This indicates that,
although students found dependency reasoning difficult, the structured rules allowed
the system to recognize the underlying logic reliably.

With Rule 6 (deferred choice and contact reduction), 64% of groups
succeeded in applying the principle, while the framework achieved 79% accuracy.
Some groups incorrectly used XOR-splits or introduced unnecessary tasks such as
an additional “Wait for Result” step, which contradicted the expected automated
design. Figure 4.4 illustrates such a case, where students modeled both the reminder
mechanism and a redundant waiting activity. Interestingly, the framework was still
able to flag the issue correctly, most likely by drawing on contextual task assignments
(e.g., roles such as “Fraud Investigator”).

For Rule 7 (parallelism between automated tasks), 71% of student groups
modeled the principle correctly, while the framework achieved 79% accuracy. Misun-
derstandings often arose when students merged two external services into one task,
which conflicted with proper process design assumptions.

Finally, Rules 8 and 9 (parallelism of automated and manual tasks, and
sequencing within parallelized tasks) showed strong performance. Both the
students and the framework achieved an accuracy rate of 86%, consistent with the
overall evaluation results.

Taken together, these findings highlight that the DMN-guided framework is
capable not only of detecting whether principles were correctly applied but also of
revealing systematic areas where students struggled. This diagnostic capability gives
instructors an additional benefit: beyond automated grading, the system can point

to common misconceptions, guiding future teaching interventions.
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Figure 4.4: Example of an incorrectly modeled deferred choice, where an unnecessary
‘Wait for Result’ task was added despite the presence of an automated reminder
mechanism.

4.7 Perceived Usefulness

To evaluate how students experienced the system in practice, we collected survey
responses following the principles of the Technology Acceptance Model (TAM) [9].
TAM is widely used in information systems research to assess how useful and easy-
to-use participants perceive a system to be [41, 42, 43]. Figure 4.5 presents the
summarized results, both at the aggregate level and broken down by individual items.

At the overall level, the composite Perceived Usefulness (PU) score, calculated
as the mean of six survey items, showed a strong positive trend. The median
rating was consistently above 5.5 on the 7-point Likert scale, suggesting that most
participants agreed or strongly agreed with the system’s usefulness. The narrow
spread of responses further indicates that opinions were concentrated in the upper
part of the scale. Although a small number of outliers appeared (with ratings closer
to 3), these did not substantially influence the overall distribution. Taken together,
these results suggest that the system was generally regarded as highly useful by the
majority of students.

Looking more closely at the individual PU items (PU1-PUG6), all six questions
exhibited similarly high central tendencies, with medians again clustering at or
above 5.5. Some variation in dispersion was observed—for example, responses to
PU5 displayed a slightly wider range—but the core pattern of positive evaluation
held consistently across items. Even when outliers were present, the median values
remained high, reflecting stable agreement with the usefulness of the system.

The alignment across different items, combined with the relatively low variability
in responses, supports the internal consistency of the PU construct. This indicates that
students viewed the system as useful across multiple dimensions of its functionality

rather than in isolated aspects.
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Figure 4.5: Boxplots showing the distribution of Perceived Usefulness (PU) in
aggregated and detailed level.

4.7.1 Note on Perceived Ease of Use

The Perceived Ease of Use (PEU) dimension of TAM was not included in this study.
Since students interacted with the system only indirectly through the university’s
Learning Management System (LMS), they did not operate the tool itself. As a

result, evaluating ease of use was not relevant in this particular context.

4.8 Summary

The case study provides strong evidence that the DMN-guided prompting framework is
both practical and effective within an educational setting. By embedding decision logic
into the feedback process, the framework consistently outperformed the baseline Chain-
of-Thought prompting approach, particularly in terms of accuracy and reliability.
The structured approach enabled the generation of feedback that was not only
precise but also transparent and reproducible, thereby addressing common concerns
of inconsistency and unpredictability in LLM-based systems. From the perspective
of students, the system was well received, as reflected in the high ratings of perceived
usefulness.

At the same time, the study also showed areas for refinement. Some challenges
were linked to ambiguous or unconventional task labels, which caused occasional
misclassifications. More abstract design principles, such as task resequencing, proved
difficult for both students to model and the framework to assess consistently, high-
lighting the need for enhanced support in these complex reasoning scenarios. These
findings underscore that while formalized decision logic strengthens the reliability of
feedback, continuous iteration is needed to fully capture the nuances of human-created
process models.

Beyond technical performance, the case study illustrates the broader value of

combining deterministic rule structures with the generative flexibility of large language
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models. This hybrid approach allows systems to balance consistency with adaptability,
offering both educators and learners feedback that is dependable yet sensitive to
natural language variation. In practical terms, the framework fosters accountability,
reproducibility, and scalability—qualities essential for integrating Al-based feedback
into real-world classrooms.

In summary, the case study not only validates the feasibility of DMN-guided
prompting but also outlines a pathway for its future improvement and adoption.
The insights gained point toward opportunities for expanding the framework to
other educational domains, refining its handling of ambiguous inputs, and leveraging
its traceability for long-term use in teaching and assessment. Thus, the study
demonstrates both the current strengths of the approach and its potential to evolve

into a robust, widely applicable tool for Al-supported education.
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Chapter 5

Discussion

5.1 Findings

This chapter moves beyond the case study results reported in Chapter 4 to consider
their wider meaning and significance. While the previous chapter presented the
empirical findings in detail—including performance metrics, rule-specific outcomes,
and user perceptions—the current chapter interprets these results in light of both
the theoretical motivations behind DMN-guided prompting and the broader field of
Large Language Model (LLM) control strategies. In particular, it examines what the
improvements in accuracy, precision, and perceived usefulness suggest about the role
of structured decision logic in guiding probabilistic models.

The discussion also situates these findings within the wider landscape of related
work, comparing DMN-guided prompting to alternative approaches such as Chain-of-
Thought reasoning, template-based systems, and knowledge graph augmentation. By
doing so, it highlights both the distinctive contributions of the framework and the
challenges it shares with other hybrid AI methods.

In addition, this chapter explores the practical implications of the framework for
education and beyond. Within education, the framework offers a pathway toward
scalable, transparent, and reviewable feedback systems that can enhance teaching
and learning. Outside of education, the same principles could be extended to domains
such as healthcare, compliance, and customer service, where structured decision logic
is central to ensuring trustworthy Al

At the same time, it is important to recognize the framework’s limitations.
These include domain specificity, sensitivity to naming conventions, and the inherent
constraints of LLMs when managing vague or incomplete inputs. The chapter,
therefore, also outlines possible strategies to mitigate these issues, ranging from
ontology integration to retrieval-augmented prompting and conversational clarification
mechanisms.

Taken together, this discussion aims to situate the DMN-guided prompting
framework not just as a technical innovation tested in a single classroom, but as part
of a broader movement toward hybrid, interpretable, and responsible Al It highlights

both the current value demonstrated in the case study and the opportunities for
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further refinement and application in diverse contexts.

5.2 Interpreting the Findings

5.2.1 Precision Gains and Trust

One of the clearest outcomes of the evaluation was the marked improvement in
precision when moving from Chain-of-Thought (CoT) prompting to DMN-guided
prompting. For example, GPT-40’s precision rose from 0.36 under CoT to 0.91
under DMN guidance. This shift represents more than a technical improvement: it
directly affects the educational value of the system. In classroom contexts, a false
positive—where the Al incorrectly flags or praises a student’s work—can be more
damaging than a missed detection. Misleading or inaccurate feedback risks confusing
learners, reducing their trust in automated systems, and potentially slowing down
their progress.

By reducing the rate of false positives, DMN-guided prompting produced feedback
that students and instructors could rely on with greater confidence. These precision
gains were not achieved by sacrificing recall. On the contrary, the F1-scores indicate
that the framework preserved its ability to detect genuine errors while becoming
more selective in what it reported. In practice, this balance means students receive
feedback that is both targeted and accurate: The system points out mistakes when
they happen, without overwhelming students with noise.

From a pedagogical perspective, this improvement strengthens the credibility of
automated feedback. Trust is a critical factor in educational technology adoption, and
systems that frequently generate incorrect advice can quickly lose student engagement.
By contrast, a framework that consistently delivers precise and relevant feedback
helps reinforce positive learning behaviors, since students are more likely to act on
comments they believe to be valid. For instructors, higher precision also reduces the
time needed for manual correction, as fewer Al-generated messages require rejection
or revision. This trust-enhancing effect therefore benefits both learners and educators,
positioning DMN-guided prompting as a more dependable foundation for classroom
use.

These findings also connect to wider concerns about using Al, especially the
challenge of ensuring reliability in high-stakes areas. Just as medical or legal decision-
support systems must reduce the generation of invalid results, educational feedback
systems must prioritize accuracy to maintain fairness and learner confidence. Within
this context, the precision gains observed here highlight the value of combining prob-
abilistic reasoning with deterministic rule structures, offering a model for trustworthy

AT that extends beyond education.

5.2.2 Balanced Error Profiles

While Chain-of-Thought (CoT) prompting reached perfect recall in some settings,

this caused an unacceptably high number of false positives. What this means is, the
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system marked almost every issue, which ensured that real mistakes were detected,
but it also overloaded students with irrelevant or incorrect feedback. Such over-
generation not only makes the feedback less useful but also risks weakening students’
trust in the system, since they may start ignoring even valid comments when these
are hidden among errors. Over time, this can create disengagement, as learners come
to see the Al not as a helpful assistant but as a source of noise that must be filtered
out.

By contrast, the DMN-guided prompting framework delivered a more balanced
error profile, combining high recall with a dramatic improvement in precision. This
meant that most real errors were still detected, but without the distracting noise of
unnecessary warnings. For students, this balance is vital: it ensures that meaningful
mistakes are reliably highlighted while also protecting them from cognitive overload
or unnecessary discouragement. Rather than receiving too many unhelpful alerts,
students are provided with feedback that is targeted, pedagogically meaningful,
and explicitly aligned with the principles they are expected to demonstrate. For
instructors, the improved precision reduces the need to filter large volumes of incorrect
system-generated advice, making the integration of Al feedback into the classroom
more feasible and less resource-intensive.

More generally, this finding illustrates a central trade-off in Al-assisted evaluation
systems: the tension between sensitivity (recall) and selectivity (precision). Systems
that focus only on recall may seem thorough, but they often produce so much irrelevant
feedback that their real usefulness is reduced. Conversely, systems optimized for
precision alone may become overly conservative, failing to flag important mistakes.
The results suggest that DMN-guided prompting offers a principled way to manage
this trade-off, linking outputs to explicit decision rules that minimize false positives
while still maintaining strong coverage of actual errors.

This balance has wider implications beyond education. In fields such as healthcare,
compliance auditing, or legal review, excessive false positives may result in wasted
resources, user fatigue, and the neglect of critical signals. False negatives, on the
other hand, can cause critical oversights. The DMN-guided approach demonstrates
that structured, rule-based reasoning can mitigate both extremes, making Al systems
more trustworthy and practical in high-stakes domains.

From a pedagogical perspective, the ability to maintain both high recall and high
precision also supports sustainable learning environments. When feedback is both
accurate and concise, it strengthens student trust and confidence and keeps learners
engaged, while also allowing instructors to rely on the system as real support for
teaching. In this way, the balanced error profile of DMN-guided prompting is more
than just a technical result—it is also essential for education, making it possible to

bring Al into classrooms in a scalable and responsible way.
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5.2.3 Rule-Level Insights

The rule-specific analysis (Chapter 4) revealed where the framework excelled and
where challenges remain. Deterministic rules with clear, well-defined conditions, such
as triage and knock-out, were detected with near-perfect accuracy. These results
highlight the strength of the DMN-guided approach in contexts where evaluation
criteria can be expressed clearly. In such cases, the framework operates almost as a
direct mapping mechanism, with minimal chance of error.

By contrast, rules dependent on naming conventions, such as task composition,
were less accurate. Small variations in student phrasing, for example, using “check
and register result” instead of the more expected “credit check”, lowered detection
accuracy. This points to an important limitation: although DMN rules give structured
guidance, their effectiveness is still influenced by how closely the input language
matches the encoded conditions. Without some form of synonym handling or semantic
normalization, even slight linguistic deviations can create mismatches.

More abstract redesign principles, such as resequencing or deferred choice, proved
difficult for both students and the system. These principles often require reasoning
about task order or conditional dependencies that extend beyond surface-level labeling.
For example, correctly modeling deferred choice requires understanding not just the
tasks involved but also the temporal and contextual assumptions governing them.
Here, the DMN-guided framework still outperformed CoT prompting, but the errors
show that abstraction and higher-order reasoning remain open challenges.

Taken together, these results illustrate a layered picture of system capability.
At one end, deterministic rules map cleanly to structured feedback, demonstrating
the reliability of the DMN approach. On the other hand, abstract or semantically
variable rules expose the limitations of rule-based structures when students describe
the same idea in different words. This duality suggests that future improvements
should combine DMN with complementary techniques, such as lightweight ontologies,
synonym dictionaries, or semantic parsing, to bridge the gap between deterministic
logic and natural language variability.

Beyond technical implications, the rule-level insights also hold pedagogical value.
They provide instructors with a diagnostic lens: where student errors were frequent
(e.g., resequencing), the framework’s results signal areas in which teaching interven-
tions may be most needed. In this way, the system not only automates feedback
but also acts as a mirror for student learning patterns, highlighting both conceptual
strengths and recurring wrong ideas.

In this sense, the rule-level analysis shows how DMN-guided prompting contributes
not only to technical accuracy but also to the creation of more transparent, reliable,
and trustworthy Al systems in education. This naturally leads to the question of
how students themselves experienced the system, which is examined in the following

subsection on user perceptions.
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5.2.4 User Perceptions

Survey results indicated strong student support for the system. Median scores above
5.5 across all TAM items reflect broad agreement that the framework added value.
Students often viewed the rule-based feedback as more objective and trustworthy
compared to free-form LLM outputs. This consistency is important for building confi-
dence in Al-driven systems, aligning with broader findings in educational technology
adoption that emphasize transparency and reliability as reasons for acceptance.

Beyond the numbers, the score distribution (see Fig. 4.5) showed little variation,
meaning that most students shared the positive view instead of it coming only from a
few very favorable responses. Even items with slightly broader spread, such as PUS5,
still maintained high median values, reinforcing the overall impression that students
consistently valued the system. These stable ratings point to internal coherence in
the way students evaluated usefulness: they saw the system as supportive across
different dimensions of their learning, not just in isolated aspects.

Equally important was how students interpreted the nature of the feedback.
Qualitative comments highlighted that predefined, rule-based messages felt more
impartial and less arbitrary than the free-form responses sometimes associated with
LLMs. In other words, students trusted the system not only because it was accurate
but also because its outputs could be traced back to explicit decision logic. This sense
of fairness is crucial in educational contexts, where perceived bias or inconsistency
can quickly undermine acceptance of automated tools.

Another noteworthy implication is that student trust appeared closely linked to
the transparency of the framework. Because the rules were aligned with principles
they had been taught (e.g., triage, parallelism, resequencing), learners could easily
connect feedback messages to the underlying course content. This created a perception
that the system was reinforcing instruction rather than replacing it, so students
perceived the Al as a transparent aid to their learning, instead of as an unclear
authority whose decisions could not be questioned.

All in all, these findings suggest that the perceived usefulness of the DMN-guided
framework stems not only from its technical accuracy but also from its interpretability
and fairness. In line with prior TAM-based studies, acceptance is driven by a
combination of effectiveness, clarity, and alignment with student expectations. As
such, the system demonstrates how structured prompting approaches can go beyond
error detection to cultivate student trust, which is a precondition for successful

integration of Al feedback in real classrooms.

5.3 Comparison with Related Work

The DMN-guided framework is part of research on hybrid AI, which combines clear
rule-based reasoning with flexible data-driven models. Like symbolic—statistical
methods, it uses explicit rules for transparency while still taking advantage of what

LLMs can generate. This helps address concerns about black-box Al by making
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systems both easier to understand and more adaptable.

Compared with traditional intelligent tutoring systems (ITS), which often relied
on static scripts or hand-coded rule trees, the DMN-based design introduces a modular
and graphical representation that lowers the barrier for domain experts. This means
that instructors can refine or extend evaluation logic without technical training,
encouraging a more collaborative and reliable method for maintaining the system
over time.

Prompt-engineering approaches such as Chain-of-Thought (CoT) or zero-shot
prompting, while useful in many contexts, typically intertwine reasoning rules with
natural language instructions. This not only makes them fragile when applied
across different domains but also introduces significant overhead when prompts need
to be adapted or debugged. By explicitly separating decision logic from prompt
phrasing, DMN-guided prompting reduces this fragility and supports more consistent,
domain-aligned outputs.

Related work on knowledge graph prompting and ontology-augmented reasoning
also highlights the value of structured inputs for improving LLM performance.
However, decision tables encoded in DMN offer a complementary advantage: They
give a clear link between conditions and outcomes, making it easier to check, review,
and match with teaching goals. This makes them particularly suitable for process-
oriented domains where decision points can be formalized into explicit “if-then”
structures.

Overall, the DMN-guided framework shows that adding a clear, rule-based struc-
ture to LLM prompting can improve control and interpretability, while still keeping
the flexibility of modern models. While prior efforts have emphasized either the power
of generative models or the rigidity of symbolic systems, this approach shows how
the two can reinforce each other, providing a foundation for scalable and trustworthy

applications in education and beyond.

5.4 Practical Implications

5.4.1 Educational Contexts

For instructors, the framework offers adaptability: decision rules can be updated by
editing DMN models without re-engineering prompts. For students, transparency
and consistency in feedback foster trust and reduce disputes about fairness. At an
institutional level, scalability is supported by the ability to reuse the same framework
across multiple courses, simply by substituting different DMN models.

In addition, the explicit mapping between decision rules and feedback provides a
pedagogical advantage: students not only receive feedback but can also see the rea-
soning that underlies it. This reduces the “black-box” problem that often surrounds
AT tools in education. Over time, such transparency can encourage students to reflect
more deeply on evaluation criteria and develop self-assessment skills. For instructors,

the approach reduces grading workload while still allowing them to retain control

50



Discussion

over academic standards, since they define the decision logic. From an administrative
perspective, the framework provides a uniform structure for documenting how assess-
ments are carried out, which may support approval procedures or quality assurance

reviews.

5.4.2 Beyond Education

The approach has clear potential outside of teaching:

e Healthcare: Clinical guidelines or diagnostic protocols could be modeled as

DMN rules, offering explainable Al support.

e Compliance: Regulatory requirements could be encoded for consistent evalu-

ation of documents and processes.

e Customer Service: Decision trees for troubleshooting could be embedded as

DMN logic, improving the reliability of conversational agents.

Another strength is portability. Since the DMN standard is already widely
adopted in industry, the framework can be integrated into existing workflows without
requiring custom tools. Organizations already employing business rules or process
modeling technologies could extend their infrastructure to Al-supported evaluation
with minimal friction. Moreover, in domains where accountability is non-negotiable,
such as healthcare or finance, the ability to point to explicit decision tables offers
a safeguard against unclear or unverifiable Al outputs. This enhances stakeholder

confidence and reduces risks of liability.

5.4.3 Al Governance

The framework also contributes to responsible Al practice. DMN rules provide an
explicit and auditable record of decision logic. Transparency is enhanced because
both educators and learners can inspect how decisions are derived. Finally, human-in-
the-loop verification ensures that Al outputs remain aligned with domain expertise,
preventing automation from replacing essential human oversight. These qualities
resonate with current international discussions on trustworthy Al, such as the EU
AT Act.

In governance terms, the framework operationalizes several principles that are of-
ten discussed in theory but rarely implemented in practice: traceability, contestability,
and proportionality. Because every output can be traced back to a rule, decisions are
contestable in a meaningful way—students, for instance, can query why a particular
feedback message was given. Proportionality is supported because the system never
generates open-ended judgments but instead selects from rule-constrained options.
When viewed together, these features show how DMN-guided prompting can act
as a test case for embedding accountability into real Al systems, bridging the gap

between regulatory aspirations and applied practice.
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5.5 Limitations

While the results of this study are promising, a number of limitations should be

acknowledged to provide a realistic picture of the framework’s current boundaries.

Domain Specificity: The evaluation was confined to the context of business
process redesign education. Although this setting is highly suitable due to
its clear rules and established best practices, it remains an open question
whether the same benefits will hold in other domains such as healthcare, law,

or engineering. Broader testing is needed to establish cross-domain robustness.

Input Quality: The effectiveness of the framework relies heavily on the clarity
and structure of both the DMN models and the natural language descriptions
of student work. Poorly specified decision rules or ambiguous textual inputs
reduce accuracy, suggesting that instructor training and careful model design

remain critical components.

Naming Sensitivity: Rules tied to text matching remain vulnerable to
inconsistencies in student task labels. For instance, semantically equivalent but
differently phrased labels can lead to misclassification. While DMN provides
structure, it does not fully solve the semantic variation problem inherent in

natural language.

LLM Constraints: Although DMN-guided prompting reduces hallucinations,
large language models can still produce incorrect outputs when inputs are
vague or under-specified. In such cases, the system may default to plausible but

inaccurate reasoning, underlining the importance of human-in-the-loop review.

Scalability and Efficiency: Very large or complex DMN models raise practical
challenges. Current LLMs have finite context windows, meaning that feeding
large decision tables into prompts risks exceeding token limits. Even when
technically possible, efficiency concerns such as latency and computational cost

may hinder deployment at scale.

Evaluation Scope: The present study focused on immediate accuracy and
user perceptions but did not capture long-term learning outcomes. It remains
unclear whether exposure to structured, Al-assisted feedback leads to lasting

improvements in student performance or conceptual understanding.

Generalizability of Results: The participant pool was limited to one course
at a single institution. Cultural, disciplinary, or institutional differences may
shape how both instructors and students perceive and interact with Al-driven

feedback, limiting the external validity of these findings.

These limitations highlight areas where further refinement and broader testing

are required. Addressing them will be essential if DMN-guided prompting is to

mature into a reliable and widely deployable solution across multiple educational

and professional contexts.
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5.6 Strategies for Mitigation

Several strategies could address the limitations identified above and support the

maturation of the framework:

e Synonym and Ontology Support: Incorporating lightweight domain on-
tologies or synonym dictionaries would help normalize variation in task labels,
ensuring that semantically equivalent terms (e.g., “credit verification” vs. “check

and register result”) are recognized consistently.

¢ Incremental Domain Testing: Expanding the framework to domains such
as healthcare, legal reasoning, or compliance auditing would test adaptability
under different knowledge structures and rule intensities. Such testing would

also clarify how domain complexity affects both performance and user trust.

e Context Window Optimization: To address scalability, retrieval-augmented
generation (RAG) techniques could be used to dynamically select and inject
only the most relevant fragments of large DMN models into prompts, reducing

the risk of exceeding context window limits while maintaining efficiency.

o Interactive Clarification: Allowing for multi-turn dialogue with the LLM
could enable the system to request additional details when inputs are ambiguous

or incomplete, reducing the risk of hallucinations or misinterpretations.

e Instructor-Centered Tools: Developing user-friendly authoring environ-
ments for DMN would reduce reliance on technical expertise and ensure that
decision models are consistently well-structured. This would also encourage

broader adoption by lowering entry barriers for educators.

« Expanded Evaluation Metrics: Beyond accuracy, future studies should
measure long-term educational outcomes, student learning gains, and instructor
workload reduction. This would provide a fuller picture of the framework’s

impact on teaching and learning.

e Cross-Institutional Studies: Conducting pilots in multiple courses and
institutions would strengthen the generalizability of findings by accounting for
cultural, disciplinary, and contextual differences in how Al-driven feedback is

perceived.

Together, these strategies not only address current limitations but also set the
stage for extending DMN-guided prompting into new domains and larger-scale
deployments, ensuring that the framework remains adaptable, trustworthy, and

relevant over time.

5.7 Summary

This chapter has reflected on the evaluation results by situating them within the

broader discussion of LLM control strategies and hybrid Al design. The findings show
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that DMN-guided prompting offers clear advantages over unconstrained methods such
as Chain-of-Thought reasoning, particularly in terms of precision, balance between
recall and selectivity, and overall trustworthiness. These gains translate directly into
pedagogical value: students receive clearer, more reliable feedback, and instructors
benefit from reduced noise and greater transparency in assessment.

At the same time, the analysis highlighted important nuances. Rule-level insights
revealed that while deterministic conditions are handled with high accuracy, challenges
remain when student phrasing diverges from expected labels or when abstract redesign
principles require deeper reasoning. User perception data further emphasized that
the usefulness of the system rests not only on technical accuracy but also on its
transparency, fairness, and clear alignment with instructional goals.

When compared with related approaches, the framework demonstrates how
explicit decision logic can bridge the gap between the interpretability of symbolic
methods and the flexibility of modern LLMs. Its practical implications extend beyond
education, offering potential value in domains where accountability and structured
decision-making are central, such as healthcare, compliance, and customer service.
At the same time, limitations such as domain specificity, naming sensitivity, and
scalability must be carefully addressed.

Taken together, the discussion positions DMN-guided prompting as a step toward
auditable, interpretable, and sustainable Al systems. By combining probabilistic
language models with explicit rule structures, the framework not only advances the
conversation on Al reliability but also provides a practical foundation for real-world
deployment. The next chapter will build on these insights to outline future research
directions, focusing on how the framework can be refined, extended, and adapted to

broader contexts.
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Future Work

6.1 Foundational Concepts

6.1.1 Executive Summary

This report presents a series of research proposals designed to extend the DMN-guided
prompting framework, which was developed to create more reliable, transparent, and
modular automated feedback in educational settings. The original thesis demonstrated
the framework’s superior performance over conventional Chain-of-Thought (CoT)
prompting, particularly in achieving higher precision and a more balanced error
profile.

Building on these successes, this roadmap outlines six specific research directions
to address the framework’s identified limitations and advance it toward broader
applicability and greater intelligence. The proposals focus on enhancing the system’s
robustness through automated self-refinement and semantic normalization, advancing
its intelligence with retrieval-augmented and multi-turn capabilities, and establishing
a formal governance model to ensure its ethical and sustainable deployment across

diverse domains.

6.1.2 Rationale and Context

The most important contribution of the past research was the design, implementa-
tion, and evaluation of a framework that integrates Decision Model and Notation
(DMN) with Large Language Models (LLMs). This approach responded to persistent
challenges in automated feedback systems, including a lack of transparency, high
maintenance costs, and limited reusability.

The DMN-guided framework successfully addressed these issues by externalizing
evaluation logic into structured, easy-to-update DMN models, which then guided the
LLM’s reasoning. The case study, conducted in a graduate-level course, provided
empirical evidence that this method improved both accuracy and consistency while
receiving positive responses from students.

The purpose of this roadmap is to formalize and extend the high-level suggestions

outlined in the Future Work chapter of the thesis. By transforming these ideas into
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specific, actionable research projects, this document offers a practical roadmap for

the next phase of development.

6.1.3 Acknowledged Thesis Strengths and Limitations

The DMN-guided framework’s effectiveness was evidenced by its strong performance
in a real-world case study. A comparison with a CoT baseline revealed a significant
advantage in accuracy and reliability. Specifically, the framework paired with GPT-40
achieved an Fl-score of 0.91, dramatically outperforming the CoT approach’s 0.53.

However, the previous work also highlighted a number of limitations that serve

as the foundation for future research:

e« Domain Specificity: Validation was limited to one academic field.
e« Naming Sensitivity: Challenges in handling varied phrasing.

e Scalability and Efficiency: Large DMN models risk exceeding LLM context

windows.

These challenges are critical areas for the next phase of development, aiming to

move from a prototype into a robust, generalizable solution.

6.2 Enhancing Framework Robustness and Adaptability

6.2.1 Research Direction: Automated DMN Model Refinement
6.2.1.1 Why We Propose This

The thesis used human-in-the-loop review to verify Al-generated feedback. This
process, while effective, produced valuable labeled data of “DMN model errors.”
Future work can leverage this data to let the LLM propose corrections, shifting

instructors into a supervisory role rather than manual maintainers.

6.2.1.2 Proposed System Architecture

e Error Tagging Module: Instructors label the reason for misclassifications

(e.g., “Missing Rule,” “Ambiguous Input”).

e LLM Analysis Engine: An LLM analyzes tagged errors and proposes DMN

rule changes.

o Change Management Module: Instructors review and approve Al-suggested

updates.

This creates a closed-loop improvement cycle, reducing maintenance effort while

retaining human oversight.
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6.2.2 Research Direction: Integrating Ontology and Synonym Map-
ping
6.2.2.1 Reasoning Behind It

A key limitation was sensitivity to naming variation (e.g., “check and register result”
vs. “credit check”). A semantic normalization layer would map varied student

phrasings to uniform terms before DMN evaluation.

6.2.2.2 Proposed Methodology

¢ Domain Ontology: Define canonical terms and common synonyms. Example:

PN

“credit check,” “check and register result,” “verify credit” — all mapped to

Credit_ Verification.

e Semantic Normalization Engine: Preprocess natural language input to

normalize phrasing.

¢ Revised Evaluation Flow: Apply DMN rules only to standardized inputs.

The Table 6.1 illustrates how varied student phrasings are mapped to standard-
ized terms and then evaluated using DMN rules. For example, when a student
writes “check and register result”, the semantic normalization engine interprets it as
Credit_ Verification. The associated DMN rule then applies the knock-out principle,
where the process can terminate if the credit check fails. Similarly, the phrase “delay
until result” is standardized as Deferred_ Choice, which requires that the decision be
deferred only when involving non-manual tasks. Finally, “change the order of steps”
is mapped to Task Resequencing, and the system verifies that the reordering does

not place a task before its required dependency.

Student Phrasing Ex- | Standard Term DMN Rule Condition
amples

sult” to a knock-out

“check and register re- | Credit_ Verification Credit Verification exists and leads

manual task

“delay until result” Deferred_ Choice Deferred_ Choice is used with a non-

steps” fore its dependency

“change the order of | Task Resequencing | Task Resequencing moves a step be-

Table 6.1: Illustrative Canonical Term Mapping

This mapping ensures that even when students use different wordings, the frame-
work consistently evaluates their models against the same underlying rules. It
addresses the naming sensitivity problem by introducing a normalization layer that
aligns natural language with deterministic logic, thereby improving both accuracy

and fairness in automated feedback.
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6.3 Advancing Framework Intelligence and User Inter-

action

6.3.1 Research Direction: Architecting a Retrieval-Augmented DMN‘
Framework

6.3.1.1 Why This Matters

One of the main challenges of the current approach is scalability. Embedding
an entire DMN model directly into a prompt quickly runs into the limits of an
LLM’s context window, especially when the decision model contains many rules.
As the framework grows to support larger or more complex domains, this becomes
increasingly impractical. Retrieval-Augmented Generation (RAG) offers a way
forward by ensuring that only the most relevant decision rules are included in the
prompt. This not only avoids overloading the model with unnecessary information

but also makes the system faster and more efficient.

6.3.1.2 Proposed Architecture

To implement this idea, the framework could be redesigned around three main

components:

« DMN Repository: All DMN rules are stored in a structured database (e.g.,

a vector database) where they can be efficiently indexed and searched.

e Retrieval Engine: When a new case or student submission is processed, the
engine identifies and retrieves only the subset of rules that are directly relevant

to that input.

e Dynamic Prompt Assembly: A concise prompt is then constructed by
combining the student submission with the retrieved rules. This ensures that

the LLM receives exactly the information it needs—no more, no less.

This architecture would allow the framework to handle thousands of rules without
exceeding context limits, making it more scalable, efficient, and applicable in real-

world settings where decision models can be very large.

6.3.2 Research Direction: Developing an Interactive Multi-Turn
Feedback System

6.3.2.1 The case for this direction

The current framework processes inputs in a single pass. While efficient, this approach
breaks down when faced with incomplete or ambiguous submissions. In such cases,
the model either produces an incorrect result or fails to respond meaningfully. A
dialogue-based system could overcome this limitation by allowing the Al to ask

clarifying questions before applying decision rules. This interaction not only reduces
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the risk of errors but also mirrors the way human instructors guide students through

uncertainty, making the system both more accurate and more engaging.

6.3.2.2 Illustrative Dialogue Flow

Table 6.2 presents a simple example of how an interactive exchange might unfold. A
student submits a process model with an ambiguous sequence. Instead of guessing,
the Al requests clarification. Once the student provides the missing detail, the Al
applies the appropriate DMN rule and delivers targeted feedback.

Turn | Role | Dialogue / Action
Student | Submits process model (input ambiguous).

Al “Could you clarify the order of Task A and Task B?”
Student | “Yes, Task A must be completed before Task B.”

Al Applies Task Resequencing rule: “Your model for
Task B is incorrect. Task B requires Task A’s output,
so they cannot be parallel.”

= N

Table 6.2: Illustrative Dialogue Flow for Multi-Turn Clarification

This kind of exchange transforms the framework from a one-way feedback genera-
tor into an active learning companion. By engaging students in short clarification
dialogues, the system ensures that feedback is not only technically correct but also

pedagogically meaningful.

6.4 Generalizing and Sustaining the Framework

6.4.1 Cross-Domain Generalization and Evaluation

While the framework has shown promising results in the context of business process
redesign education, its true potential lies in its adaptability to other fields. A
structured plan for cross-domain generalization is therefore essential.

Phase 1: Domain Analysis and Model Formalization. The first step would
involve close collaboration with domain experts to translate their knowledge into
DMN-based rules. For example, in healthcare this might mean encoding diagnostic
pathways, while in law it could involve formalizing compliance checks. Engaging
experts early ensures that the resulting DMN models capture the nuances and
priorities of each field.

Phase 2: Tool Development for Non-Technical Experts. A critical barrier
to adoption is the technical expertise required to author DMN models. Building user-
friendly authoring tools, such as graphical editors or guided templates, would allow
instructors, clinicians, or auditors to contribute directly without needing programming
skills. This democratization of model creation is essential for long-term sustainability.

Phase 3: Applied Case Studies. Finally, conducting real-world evaluations in

domains such as healthcare, law, or compliance would test both technical robustness
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and user acceptance. These studies would provide valuable insights into domain-
specific challenges (e.g., medical terminology, legal ambiguity) and highlight how the

framework can adapt across different professional contexts.

6.4.2 Comprehensive Long-Term Evaluation

Beyond domain expansion, it is equally important to study the framework’s long-term
impact. Accuracy metrics alone provide only a partial picture; sustainability requires
measuring educational, organizational, and human factors over extended periods.

Quantitative Dimensions. Long-term studies should track objective indicators
such as student performance, reduction in recurring errors, and instructor workload
savings. In professional domains, equivalent measures could include compliance error
reduction, time saved in audits, or accuracy of clinical decisions. These metrics would
clarify whether the framework produces cumulative improvements over time, rather
than short-term gains only.

Qualitative Dimensions. Equally important is capturing how users experience
and perceive the system. Surveys based on established models such as TAM can
quantify acceptance, while interviews and focus groups provide richer insights into
usability, trust, and perceived fairness. Such methods also highlight unanticipated
effects, such as whether students develop stronger self-assessment skills or whether
professionals feel more confident in their decision-making.

Together, cross-domain generalization and long-term evaluation ensure that the
DMN-guided framework does not remain a one-off academic prototype, but instead
evolves into a mature, widely applicable, and sustainable approach to integrating

structured decision logic with LLMs.

Metric Data Source Frequency

Student Grades LMS records End of each semester
DMN Log Accuracy | Framework logs Monthly aggregation
Instructor Workload | Manual logs Weekly

Perceived Usefulness | Survey (TAM) End of semester
Qualitative Feedback | Interviews/Focus Groups | Mid- and end-semester

Table 6.3: Longitudinal Study Metrics and Data Collection Plan

6.5 Ethical Governance and Responsible AI Deployment

6.5.1 Proposed Governance Model

As Al systems increasingly influence decision-making in education and beyond,
questions of ethics, transparency, and accountability cannot be overlooked. The
DMN-guided framework naturally supports these principles, but a more explicit
governance model strengthens its credibility and ensures compliance with emerging
regulations such as the EU AI Act.
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Transparency. All DMN models should be openly documented and, where
possible, made available to stakeholders. This allows both students and instructors
to see the exact decision logic behind each piece of feedback, helping to build trust
and reducing the risk of “black box” decision-making.

Auditability. Governance requires that every system action can be traced.
Version control of DMN models, combined with logs of feedback outputs, provides a
complete audit trail. This enables institutions to verify why a particular decision
was made and ensures accountability if errors or disputes arise.

Fairness. Even deterministic rules can unintentionally reflect bias. Regular
review cycles should therefore be established to check DMN rules for unintended
consequences, such as consistently disadvantaging certain groups of students or
misrepresenting particular patterns of work.

Security and Privacy. Since both student data and institutional rules are sen-
sitive, strong safeguards are necessary. Anonymization, encryption, and compliance
with data protection protocols should be integral parts of the system design, ensuring
responsible handling of personal and institutional information.

Together, these practices demonstrate how the framework can act not only as a
technical solution but also as a model for responsible Al deployment in real-world

contexts.

6.6 Conclusion and Research Roadmap

6.6.1 Synthesis of Directions

The research roadmap presented in this chapter outlines a coherent path forward for
advancing DMN-guided prompting. Each proposed direction builds on the strengths
of the current framework while addressing specific limitations identified in the case
study.

First, automated DMN refinement and semantic normalization are essential to
improving robustness. These strategies reduce the maintenance burden on instructors
and mitigate the sensitivity to naming variation, ensuring that the system remains
reliable over time.

Second, integrating retrieval-augmented methods and multi-turn interactions will
expand scalability and intelligence. These enhancements allow the framework to
handle larger and more complex models while engaging in meaningful dialogue with
users when inputs are unclear.

Finally, embedding ethical governance into the framework ensures that future
deployments are not only effective but also aligned with broader societal expectations.
By combining transparency, auditability, fairness, and privacy, the system can serve
as a test case for how interpretable decision models can guide LLMs responsibly.

Taken together, these directions provide a clear and practical roadmap for ma-
turing the framework into a more powerful, trustworthy, and widely applicable

solution.
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Chapter 7

Conclusion

7.1 Introduction

This work set out to solve an important problem in applying Large Language
Models (LLMSs) to structured, high-stakes tasks: lack of clarity, poor maintainability,
and limited reusability of systems where complex decision logic is embedded within
unstructured prompts. Motivated by the limitations of this ad-hoc approach to prompt
engineering, this research set out to design, implement, and evaluate a novel framework
that integrates Decision Model and Notation (DMN) with LLM prompting. The
objective was to introduce a more principled, low-code, and interpretable methodology
for controlling LLM behavior. The work was grounded in a real-world educational
case study focused on generating automated feedback for a graduate-level course on
business process redesign, providing a practical testbed to validate the framework’s

effectiveness against a strong baseline.

7.2 Summary of Contributions

This research makes five primary contributions to the fields of applied Al, educational

technology, and software engineering:

1. A Novel Prompting Methodology: The thesis introduces a new architecture
where DMN serves as a transparent, externalized reasoning layer for LLMs. By
separating decision logic from the wording of prompts, the framework allows
domain experts to define, manage, and review evaluation rules without needing

to wrestle with complex prompt engineering.

2. A Modular, Triple-Based Architecture: The framework encodes each de-
cision as a self-contained “DMN triple” comprising inputs, a decision table, and
literal expressions. This modular design enhances maintainability, reusability,
and scalability, since individual rules can be modified without affecting the

entire system.

3. A Comprehensive Educational Case Study: The framework was fully

deployed and validated in a graduate-level course. This end-to-end implementa-

62



Conclusion

tion included data preprocessing from student submissions, automated prompt
execution, and a rigorous human-in-the-loop verification process, demonstrating

its practical viability.

4. A Rigorous Comparative Evaluation: Empirical evidence showed that
DMN-guided prompting significantly outperforms Chain-of-Thought (CoT)
prompting. The DMN-guided approach delivered dramatic improvements in
precision, F'l-score, and overall accuracy, demonstrating superior reliability and

trustworthiness.

5. An Open-Source Implementation: To ensure reproducibility and encourage
further research, the complete implementation—including the code, example

DMN models, and workflows—has been released as an open-source artifact.

7.3 Answers to Research Questions

The findings of this thesis provide clear answers to the four research questions posed

at the outset:

RQ1: How can DMN be integrated with LLMs to improve control,
interpretability, and maintainability?

By encoding decision logic in modular DMN triples and instructing the LLM to sys-
tematically apply these rules, the framework externalizes the “brain” of the evaluation
process. Instructors can update feedback criteria by editing DMN models without

rewriting prompts, thereby improving transparency, control, and maintainability.

RQ2: How does DMN-guided prompting compare to CoT prompting
in predictive accuracy?

In the case study, DMN-guided prompting paired with GPT-40 achieved a precision
of 0.91 and an Fl-score of 0.91. By contrast, the CoT baseline achieved perfect
recall but with poor precision (0.36) and a much lower Fl-score (0.53). DMN-guided

prompting thus offered a more balanced and pedagogically sound error profile.

RQ3: How do end-users perceive the usefulness of a DMN-based
reasoning system?

The TAM-based survey revealed high levels of perceived usefulness. Median scores
above 5.5 indicated strong agreement that the system added value. Qualitative com-
ments highlighted that rule-based feedback felt more objective, fair, and trustworthy

than unconstrained Al outputs.
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RQ4: What are the broader implications of using formal decision
models to govern LLM outputs?

The results confirm that DMN-guided prompting supports principles of trustworthy
Al by creating explicit, auditable trails for every decision. This “glass box” approach
offers transparency and accountability and is well-suited for other high-stakes domains

where oversight and explainability are essential.

7.4 Implications
The findings carry significant implications:

¢ Educational Technology: Provides a scalable model for consistent, rule-
aligned automated feedback. Transparency fosters student trust, while instruc-

tors retain control over evaluation criteria.

e AI Governance: Shows a clear way forward for designing AI systems. DMN
models serve as decision logs that can be inspected for compliance and fairness,

aligning with regulatory principles.

e Cross-Domain Deployment: The methodology is transferable to domains
such as healthcare (clinical decision support), finance (compliance auditing),

and customer service (policy enforcement).

7.5 Limitations
Despite promising results, several limitations remain:

e« Domain Specificity: The framework was validated in one academic context

(business process redesign); generalization to other domains remains untested.

e« Naming Sensitivity: Performance is affected by variations in task naming

and phrasing, requiring greater semantic flexibility.

¢« LLM Context Constraints: Current context limits restrict the size and

complexity of DMN models that can be processed in a single prompt.

7.6 Future Outlook
As outlined in Chapter 6, these limitations inform clear directions for future work:

e Domain Adaptation: Extending the framework to healthcare, law, and

compliance.

e Integration with RAG: Using retrieval-augmented generation to handle

large and complex DMN models.
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e Multi-Turn Interaction: Developing a dialogue-based agent that asks clari-

fying questions when faced with ambiguity.

e Ontology Support: Building semantic normalization layers to reduce errors

caused by naming mismatches.

7.7 Closing Remarks

This thesis has shown that DMN-guided prompting is a viable and effective way to
control LLM behavior in structured decision-making. By leveraging a standardized
and interpretable modeling language, it bridges the gap between human expertise
and Al execution, enabling more transparent, collaborative, and consistent feedback.

In a landscape where Al must be explainable, auditable, and aligned with human
values, this study signals a transition from ad-hoc prompting practices to a more
systematic and principled framework for AI control. It provides both a technical
foundation and a practical blueprint for ensuring that LLMs act not only intelligently

but also responsibly.
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