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Abstract

Wildfires are a growing environmental and socio-economic concern, with climate
change driving more frequent and severe events. Remote sensing has enabled
accurate post-event burned area mapping, yet predictive approaches that anticipate
fire impact before ignition remain limited and highly challenging. The complex
interactions between environmental, climatic, and topographic factors hinder the
development of robust pre-event models. This thesis investigates the feasibility of
proactive wildfire prediction through a custom multimodal deep learning
architecture designed to estimate burned area extent from pre-fire observations. The
framework integrates diverse data sources, including Sentinel and Landsat optical
imagery, Copernicus Digital Elevation Model, landcover information, and
meteorological variables from ERAS5, each processed through dedicated encoders
tailored to the nature of the input. The feature representations are subsequently
fused through specialized fusion blocks, enabling the model to capture
complementary aspects of the wildfire dynamics within a unified predictive structure.
Conducted as an experimental study, this work does not aim to deliver an
operational system but to explore the opportunities and challenges of shifting from
post-event segmentation to pre-event prediction. The best configuration achieved a
maximum Intersection over Union (IoU) of 38.59%, demonstrating both the
potential and the limitations of the approach. The results enhance the study of

employing multimodal deep learning for forecasting wildfire risk.

Keywords: Wildfire prediction; Burned area estimation; Remote sensing;

Multimodal deep learning; Pre-fire modeling; Anticipatory risk assessment
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Chapter 1

Introduction

Catastrophic hazards are of different nature, like floods, earthquakes, and severe
storms. These events represent potential threats from many perspectives: humani-
tarian, economic, and environmental [1].

Among them, forest fires have always stood out for their destructive power and
frequency. Floods, earthquakes and violent storms certainly represent a significant
threat, but wildfires in particular have the capability to affect multiple areas simul-
taneously. Beside environmental destruction, they also cause a devastating impact
on the economy. An additional level of difficulty is their propagation and spreading
in remote or difficult-to-access areas: their detection and timely intervention to
extinguish them can be problematic.

From an environmental perspective, local flora and fauna suffer from the destruc-
tion of the land, radically altering native ecosystems and endangering biodiversity.
Therefore, the combustion of the forests emits a huge quantity of CO4 in the atmo-
sphere, accelerating climate change. Recent data demonstrates the magnitude of
this impact: during the 2023-2024 fire season, global fire carbon emissions were 16%
above average, totaling 2.4 Pg C [2]. The Canadian boreal forests alone experienced
unprecedented emissions, with fires emitting nine times more carbon than in recent
decades, releasing about 640 million metric tons of carbon [3, 4]. Additionally, the
reduction of vegetation has long-term environmental impacts: the area’s ability to
absorb CO4 is compromised, and exposed soil without a healthy tree cover increases
the risk of erosion, then causing events such as landslides and floods.

Finally, smoke and particulate emissions caused by fire contribute to air pollution,
with potentially harmful effects on air quality and human health. Such phenomena
when they occur can even last for days. Winds can push smoke into remote areas,
even far away from the fires. Recent examples demonstrate this impact vividly:
the devastating January 2025 Los Angeles wildfires not only caused unprecedented
destruction to property but also created unhealthy air quality conditions for millions
of people across Southern California [5]. Similarly, in early June 2023, New York City
was shrouded in smoke from Canadian wildfires, demonstrating the transboundary
nature of wildfire impacts [6].

From an economic aspect, fires also cause extensive damage to private property,
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causing significant economic impacts to the affected area. For Southern Europe alone,
wildfires cause an average annual production loss of 13-21 billion euros per season [7].
The recent Los Angeles wildfires exemplify the extreme scale of potential destruction,
with estimated total property and capital losses ranging between $76 billion and
$131 billion [8]. In addition, the efforts required to extinguish the forest fire and
the subsequent recovery and restoration after the event must be taken into account.
Local heritage and historic places may also suffer irreparable losses.

The restoration of an area after a fire could take a long time. Depending on the
extent, damage severity, and the specific characteristics of the soil and ecosystem,
a full recovery can take decades or even centuries [9]. Therefore, fire prevention
becomes even more important: prompt intervention to extinguish fires in their early
stages and monitor closely burned areas after the flames have been extinguished.

Global awareness of these kinds of global issues is steadily increasing, underlined
by the continuing reality of escalating wildfire seasons worldwide. 2024 was the
most extreme year for forest fires on record, with at least 13.5 million hectares of
forest burned [10]. As nations grapple with increased fire risk and escalating drought
conditions, the need for robust, coordinated international responses becomes ever
more urgent. In Europe, 2023 was among the worst wildfire years in this century,
producing some 20 megatonnes of CO2 emissions [11].

Facing this challenge, this thesis involves the implementation of a predictive model
that can anticipate burned areas before fires occur through the analysis of pre-fire
satellite imagery and environmental data. Unlike traditional post-fire assessment
approaches, this research focuses on developing a proactive system that can predict
the potential extent of fire spread based on pre-fire conditions.

In this context, the application of deep learning models is proving to be a promising
approach for wildfire prevention and management. The objective of this thesis is
intended to add a contribution to the promotion of a more proactive and resilient
approach to fire risk management.

Specifically, the developed model aims to predict the final burned area using
pre-fire imagery from satellites (primarily Sentinel, with Landsat when available)
combined with additional environmental data sources including Digital Elevation
Models (DEM), street network data, ERA5 meteorological data, landcover and
ignition point information. Through this multisource approach, a novel multimodal
neural network architecture is developed, employing different encoders for each data
modality to capture and integrate the complex relationships between environmental
conditions, topography, infrastructure, and fire behavior for predicting the potential
extent of fire spread.

The implementation of such a predictive model represents an experimental research
approach to traditional reactive fire monitoring methods from literature. This research
explores the potential for fire management strategies, particularly in scenarios where a
fire has just ignited and rapid assessment of potential spread is critical for emergency
response coordination. By attempting to predict fire spread patterns at ignition,

emergency services could potentially improve resource allocation and evacuation
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planning decisions.

In this thesis, a custom multimodal deep learning architecture is developed and
evaluated for its performance in predicting burned area extent by processing pre-fire
satellite acquisitions and environmental data through specialized encoders for each
data type. This experimental research represents an exploratory investigation into the
feasibility of wildfire management through predictive modeling, acknowledging the
inherent complexity and challenges of predicting natural phenomena. This approach
signifies a new research trajectory that shifts focus from evaluating events after they
occur to anticipating them beforehand, thereby enriching the expanding knowledge

base in computational wildfire management.
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Related Works

2.1 Wildfire Risk Assessment Frameworks

Wildfire risk assessment has evolved from a predominantly reactive and hazard-
centered approach to a more comprehensive and systemic understanding of wildfire
impacts. In particular, recent frameworks seek to integrate not only the likelihood of
fire occurrence and propagation, but also the exposure and vulnerability of human and
ecological assets. One of the most influential contributions in this domain is the work
of Chuvieco et al. [12], who propose a structured and harmonized approach aligned
with terminology adopted in the broader natural hazards literature. Their framework
explicitly embraces the conceptual triad of hazard (or danger), exposure, and
vulnerability, thereby aligning wildfire risk science with frameworks used in flood

risk, earthquake resilience, and climate adaptation.

2.1.1 From Fire Danger to Wildfire Risk.

Historically, the wildfire community has used terms like fire danger and fire hazard
somewhat interchangeably, often focusing on immediate weather and fuel conditions
to estimate fire behavior potential. However, this terminology lacked consistency
and limited the scope of risk assessment to short-term forecasting. Chuvieco et al.
argue for the adoption of a broader definition, where wildfire risk is conceived as
“the potential for adverse consequences or impacts due to the interaction between one
or more natural or human-induced hazards, the exposure of humans, infrastructure,
and ecosystems, and the systems’ vulnerabilities” [12]. In this view, wildfire risk is
not a unidimensional output of fuel and weather conditions, but a function of the
complex interplay between fire occurrence, landscape characteristics, societal values,

and resilience capacities.

2.1.2 Danger: Fire Ignition and Propagation.

The first core dimension, referred to as Danger (or Hazard, though the term “danger”

is preferred in wildfire science), represents the likelihood that a fire will both ignite and

spread. Danger encompasses two interconnected processes: ignition and propagation.
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Ignition sources can be broadly categorized into natural and anthropogenic
causes. Human ignitions are responsible for approximately 90% of wildfires globally,
according to FAO estimates, and their spatial distribution is shaped by variables
such as population density, proximity to roads and urban edges, livestock activity,
and socio-political factors. Modeling human ignition probability often requires
regionally-specific proxies and, increasingly, data-driven methods such as Random
Forest classifiers using historical fire occurrence data.

In contrast, natural ignitions are primarily caused by lightning. Of particular
interest are lightning discharges with long continuing current (LCC) — typically
lasting over 40 milliseconds — and those of positive polarity, which are more likely to
initiate combustion. The assessment of natural ignition potential remains challenging
due to the so-called holdover phase — a time-lag between lightning strike and visible
flame — which complicates both detection and prediction. Nevertheless, statistical
models using lightning density from Numerical Weather Prediction (NWP) systems,
combined with fuel and moisture indicators, are showing promise in estimating
ignition likelihood.

Propagation potential, the second subcomponent of danger, reflects how fire
spreads across the landscape, its speed, intensity, and direction. It is controlled by a
combination of topography, meteorological conditions, and fuel characteristics.

- Weather and climate factors — including temperature, humidity, precipita-
tion, and wind — directly affect fuel flammability and fire spread rates. Climate
extremes, in particular, are increasingly recognized as key drivers of large and de-
structive fire events. Long-term shifts in climate patterns are also altering fuel loads,
fire season duration, and lightning regimes.

- Topography plays a critical role by influencing wind patterns, solar radiation,
and moisture distribution. Slope steepness accelerates uphill fire spread through
pre-heating, while concave landforms such as canyons can amplify fire intensity due
to wind funneling effects.

- Fuel properties are fundamental to propagation dynamics. Fuels are charac-
terized by their biomass load, vertical and horizontal structure, moisture content,
and flammability traits. Two specific measures of fuel moisture are commonly used:
Dead Fuel Moisture Content (DFMC) is a short-term indicator influenced by weather
conditions. It determines how much energy is required to vaporize moisture before
ignition, and is a core component of many meteorological fire danger indices, Live
Fuel Moisture Content (LFMC) varies on longer time scales and is influenced by
plant physiology and climatic conditions. While more difficult to measure, LFMC
is increasingly estimated using remote sensing data (e.g., multispectral sensors on
MODIS, Sentinel-2, or microwave instruments) in combination with radiative transfer
models.

To translate vegetation heterogeneity into operational metrics, fuels are often
abstracted into fuel models — such as those developed by Rothermel, Scott and
Burgan, or the FCCS system — which capture generalized combinations of fuel types,

loads, and moisture scenarios.
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2.1.3 Exposure: Assets and Ecosystems at Risk.

The second major dimension is Ezposure, which refers to the presence of people,
infrastructure, or ecological assets in areas that could be affected by wildfire. Exposure
may be direct (e.g., damage to buildings or forests by fire) or indirect (e.g., smoke
exposure, disruption of hydrological cycles, or soil degradation). Exposure assessment
typically involves overlaying modeled fire behavior (e.g., flame length, burn probability,
fireline intensity) with geospatial datasets describing asset locations — such as census
data, land use maps, or habitat distributions.

A particularly important concept is the Wildland-Urban Interface (WUI), which
designates the spatial boundary between developed areas and wildland vegetation.
WUI regions are highly exposed due to the convergence of ignition sources (e.g.,
human activity) and combustible landscapes. Mapping WUI zones has become a

critical component of fire risk modeling and emergency planning.

2.1.4 Vulnerability: Susceptibility and Resilience.

Vulnerability represents the degree to which exposed elements — whether human,
economic, or ecological — are susceptible to damage, and their capacity to resist
or recover. A region with high-value assets and low recovery capacity is considered
highly vulnerable.

Vulnerability encompasses several subdimensions:

- Socio-economic vulnerability includes both tangible losses (e.g., destroyed homes,
infrastructure, economic disruption) and intangible values (e.g., cultural heritage,
public health). These can be monetized using asset valuations or indirect indicators
such as population density and social deprivation indices.

- Ecological vulnerability refers to the potential degradation of ecosystem services
and biodiversity. Wildfires can compromise timber production, carbon sequestration,
grazing land, and recreational resources. Ecological values may also include biodiver-
sity indices (species richness, rarity), habitat connectivity, and conservation status
(e.g., presence of protected areas).

- Resilience, closely related to vulnerability, denotes the capacity of a system to resist
damage and return to its pre-fire state. In ecological systems, resilience is influenced
by species traits (e.g., resprouting ability, bark thickness), abiotic conditions (e.g.,
soil moisture), and disturbance history (e.g., fire return interval). In human systems,
social resilience is linked to governance, infrastructure, and community adaptive

capacity.

2.1.5 Integrating the Dimensions: From Indicators to Indices.

A critical challenge in wildfire risk assessment is the integration of heterogeneous
indicators — ranging from physical to social variables — into synthetic, actionable
indices. Chuvieco et al. describe several strategies to harmonize and combine these
components:

- Normalization and scaling: Raw indicators are converted into a common scale
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Figure 2.1: Conceptual integration of wildfire risk assessment components within
the FirEUrisk project. This scheme could also be eventually applied to risk reduction
and adaptatio [12]
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(e.g., 0-1 or 0-100), using min-max rescaling, qualitative classes, or probabilistic
transformations.

- Index aggregation: Once standardized, components can be aggregated using
conceptual formulas (e.g., danger x vulnerability), multicriteria decision analysis, or
statistical models.

- Probabilistic modeling: Techniques such as logistic regression, geographically
weighted regression, or machine learning algorithms (e.g., Random Forests, SVMs,
MaxEnt) can be trained on historical fire occurrence data to derive risk surfaces.

- Ranking approaches: Pareto-based ranking systems can preserve ordinal rela-
tionships among risk values, as used in some continental-scale assessments.

- Weighted averaging: Inspired by systems like the Environmental Performance Index,
indicators are combined using expert-derived weights reflecting their perceived impor-
tance. An example of an operational system implementing this integrated framework
is the European Union’s FirEUrisk project. FirEUrisk provides risk assessments
at multiple spatial resolutions — from continental-scale (1 km?) to high-resolution
pilot sites (0.01 km?) — and temporal scales, supporting both near-real-time and

historical scenario analysis.

2.2 Machine Learning for Fire Mapping

The intersection of wildfire research and machine learning has evolved dramatically
over the past decade, driven by the increasing availability of high-resolution satellite
imagery, advances in computational methods, and the urgent need for more effective
wildfire management strategies. While traditional approaches to wildfire analysis have

predominantly focused on post-event assessment and damage quantification, the field
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is experiencing a paradigm shift toward predictive modeling that leverages pre-fire
environmental conditions and real-time data to support proactive decision-making

and emergency response operations.

2.2.1 Deep Learning Approaches for Burned Area Mapping

The application of deep learning techniques to burned area mapping represents one of
the most significant methodological advances in wildfire remote sensing. Knopp et al.
(2020) [13] pioneered the development of a fully automated processing chain based
on deep learning for rapid burned area segmentation using mono-temporal Sentinel-2
imagery. Their approach addresses critical limitations of traditional methods that
typically require extensive preprocessing, multi-temporal data acquisition, or complex
rule-based classification systems—factors that significantly hinder operational deploy-
ment in time-critical scenarios. The core innovation lies in their implementation of a
U-Net architecture for semantic segmentation, originally developed for biomedical
image analysis but adapted for remote sensing applications due to its ability to
learn effectively from limited training data while maintaining a relatively compact
parameter space.

The methodological significance of Knopp et al’s work extends beyond the neural
architecture itself. Their systematic evaluation of spectral band combinations led
to the identification of an optimal six-band configuration (Blue, Green, Red, Near
Infrared, and two Shortwave Infrared bands - specifically B2, B3, B4, B8, Bl11,
and B12 from Sentinel-2) that balances classification accuracy with computational
efficiency. Particularly relevant to the present work is their demonstration that Level
L1C data—imagery that has not undergone atmospheric correction—can achieve
high accuracy levels while dramatically reducing preprocessing time and complexity.
This finding challenges conventional wisdom in remote sensing applications and opens
possibilities for near real-time processing scenarios. Furthermore, their processing
chain incorporates sophisticated handling of invalid pixels through a separate CNN
module that identifies and masks clouds, cloud shadows, snow, and ice, providing
a comprehensive framework for managing atmospheric interference in operational
settings. Building upon these foundational developments, Ban et al. (2020) [14]
introduced Burnt-Net, an end-to-end deep learning framework that combines morpho-
logical operations with multi-scale residual blocks to enhance burned area detection
accuracy. Their approach demonstrates the value of incorporating domain-specific
knowledge about fire-affected landscape morphology into neural network architec-
tures, achieving improved performance in identifying burned area boundaries and
reducing false positive classifications in spectrally similar land cover types such
as agricultural fields and exposed soil. The synergistic integration of multi-sensor
data has emerged as another important development in deep learning-based burned
area mapping. Farasin et al. (2020) [15] demonstrated significant performance
improvements through the combined use of Sentinel-1 SAR and Sentinel-2 optical

data, leveraging the complementary information provided by active and passive
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remote sensing systems. Their work illustrates how SAR data can penetrate cloud
cover and provide structural information about vegetation changes, while optical
data contributes detailed spectral signatures of burned surfaces. This multi-sensor
approach is particularly valuable for operational applications where cloud coverage
or smoke plumes may compromise optical imagery quality.

The transferability of deep learning models across different sensor platforms has
been investigated by Hu et al. (2021) [16], who demonstrated successful knowledge
transfer between Landsat and Sentinel-2 sensors using U-Net architectures. Their
findings suggest that models trained on one sensor platform can maintain acceptable
accuracy levels when applied to data from different sensors, provided appropriate
spectral band mapping and radiometric adjustments are implemented. This cross-
sensor transferability is crucial for operational systems that must integrate historical

archives from multiple satellite missions.

2.2.2 Multi-Task Learning for Burned Area and Land Cover Inte-
gration

The integration of auxiliary tasks in deep learning architectures for burned area
mapping has emerged as a promising approach to enhance model performance through
shared feature learning. Recent work by Sdraka et al. (2024) [17] proposed a robust
multitask learning framework that incorporates land cover classification as an auxiliary
task to enhance the robustness and performance of burned area segmentation models,
demonstrating improved accuracy by leveraging the inherent relationships between
fire-affected landscapes and underlying land cover characteristics.

The theoretical foundation for multi-task learning in wildfire applications rests on
the observation that burned area detection and land cover classification share common
spectral and spatial feature representations. Fire-affected areas exhibit characteristic
signatures that are intrinsically linked to pre-fire vegetation types and land cover
conditions. By training networks simultaneously on both tasks, models develop more
robust feature extractors that capture these underlying relationships while reducing
overfitting to task-specific noise patterns. This shared learning paradigm enables the
optimization process to benefit from complementary information provided by each
objective, resulting in enhanced performance on both primary and auxiliary tasks.

Recent implementations of multi-task architectures typically employ shared en-
coder networks with task-specific decoder heads. The common feature extraction
backbone processes input imagery through convolutional layers, developing hierarchi-
cal representations that capture both spectral patterns and spatial context relevant
to both burned area delineation and land cover classification. Separate decoding
pathways then transform these shared representations into task-specific predictions,
with the combined loss function enabling simultaneous optimization across multiple
objectives. Multi-scale convolutional approaches (Wang et al., 2021) [18] and trans-
ferable deep models (Liu et al., 2019) [19] have shown particular promise for land

cover classification tasks, providing architectural foundations that can be adapted
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for multi-task learning scenarios.

The practical advantages of multi-task learning extend beyond improved accuracy
metrics. Models trained with auxiliary land cover tasks demonstrate enhanced
generalization across diverse geographic regions and ecosystem types, as the land
cover classification objective forces the network to learn discriminative features
for various vegetation classes that subsequently improve burned area boundary
delineation. This approach particularly addresses common challenges in burned
area detection, such as confusion between burned areas and spectrally similar land
cover types including bare soil, agricultural fields, and naturally sparse vegetation.
By explicitly modeling land cover relationships, these networks better distinguish
between actual fire-affected areas and naturally occurring spectral patterns that

might otherwise generate false positive classifications.

2.2.3 Predictive Modeling of Fire Behavior and Severity

The transition from reactive burned area mapping to predictive fire behavior model-
ing represents a fundamental shift in wildfire research methodology. Klimas et al.
(2025) [20] developed a comprehensive machine learning framework for predicting
potential burn severity in unburned forest areas, addressing the critical need for
proactive fuel management and erosion prevention strategies. Their Random Forest-
based model incorporates twenty-three environmental variables spanning topographic
characteristics, canopy and surface fuel properties, environmental conditions, meteoro-
logical parameters, and geographic positioning. Through systematic feature selection,
seventeen predictors were retained in the final model, with Net Primary Productivity,
elevation, and canopy fuel characteristics emerging as the most influential variables.

The methodological sophistication of Klimas et al’s approach is evident in their
treatment of meteorological data, particularly their calculation of the Energy Release
Component (ERC) as a 31-day mean centered on fire ignition dates. This temporal
aggregation approach captures the cumulative effects of weather conditions on fuel
moisture and fire potential, providing a more robust predictor than instantaneous
meteorological measurements. Their model’s ability to predict continuous differenced
Normalized Burn Ratio (ANBR) values at 30-meter resolution enables fine-scale
assessment of potential fire impacts, supporting precision management interventions
and risk assessment protocols.

The performance characteristics of the Klimas et al. model reveal important
insights about spatial scale effects in fire behavior prediction. While pixel-level
predictions achieved an out-of-bag R? of 0.67, aggregation to hydrologic sub-catchment
scales substantially improved performance (R? = 0.75), suggesting that fire behavior
prediction benefits from spatial averaging that captures landscape-level patterns while
reducing pixel-level noise. Their analysis also demonstrated the overriding influence
of extreme meteorological conditions, showing that under high ERC scenarios, local
vegetation characteristics become less predictive as fire behavior becomes increasingly

weather-driven across diverse landscape types.

10
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2.2.4 Multimodal Approaches and Fire Spread Prediction

The integration of heterogeneous data sources through multimodal machine learning
architectures represents an emerging frontier in wildfire prediction research. Hodges
and Lattimer (2019) [21] pioneered the application of CNNs for fire propagation
prediction by integrating topographic, meteorological, and fuel data within unified
neural network architectures. Their work demonstrated that CNNs can effectively
learn spatial patterns of fire spread by processing gridded environmental data as
multi-channel images, analogous to RGB image analysis but with environmental
variables as input channels.

More recently, Huot et al. (2022) [22] developed sophisticated deep learning
models that combine satellite imagery, weather data, and topographic information
for next-day wildfire spread prediction. Their multimodal architecture employs
separate encoder networks for different data modalities—a design philosophy that
allows specialized feature extraction from heterogeneous data types while enabling
cross-modal information fusion through shared decoder networks. This architectural
approach is conceptually aligned with the methodology adopted in the present work,
where different environmental data sources require specialized processing before
integration into unified predictive models.

The work of Prapas et al. (2024) [23] further advanced multimodal approaches by
demonstrating wildfire spread prediction using deep neural networks that integrate
geospatial data from multiple sources. Their framework successfully incorporates
static environmental variables (topography, land cover, climate normals) with dy-
namic meteorological data (weather forecasts, fuel moisture estimates) to predict
fire spread patterns up to several days in advance. The success of their approach
underscores the value of combining data sources with different temporal character-
istics—static geographic features that provide baseline environmental context with
dynamic variables that capture changing fire weather conditions.

Radke et al. (2019) [24] proposed FireCast, a system that combines satellite im-
agery with meteorological data for fire risk prediction, demonstrating the operational
potential of integrated data approaches for supporting fire management decisions.
Their work illustrates how machine learning models can synthesize information from
disparate sources to provide actionable intelligence for fire suppression resource

deployment and evacuation planning.

2.2.5 Infrastructure Integration and Spatial Analysis

The incorporation of human infrastructure data into fire prediction models has
received increasing attention as researchers recognize the complex interactions between
fire behavior and anthropogenic landscape modifications. Alcasena et al. (2018) [25]
conducted comprehensive analyses of how road networks influence both fire ignition
patterns and subsequent propagation dynamics. Their findings demonstrate that
roads can serve dual roles as both fire barriers—through the creation of fuel breaks

and providing access for suppression activities—and fire corridors—by facilitating
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ignition from human activities and creating wind channels that accelerate fire spread.
This nuanced understanding of infrastructure effects on fire behavior is particularly
relevant for the present work’s integration of road network data as a predictive
variable.

The spatial analysis methodologies developed by Alcasena et al. extend beyond
simple distance-to-road calculations to include network topology measures, road
density metrics, and accessibility indices that capture the complex ways infrastructure
influences fire risk and suppression effectiveness. Their work provides a theoretical
foundation for understanding how transportation networks should be incorporated
into predictive fire models, emphasizing the importance of considering both positive

and negative infrastructure effects on fire outcomes.

2.2.6 Final Burned Area Prediction and Early Fire Characteristics

Specific research addressing final burned area prediction using early fire characteristics
or ignition-point data represents a relatively specialized but critically important
subdomain of wildfire prediction. Artés et al. (2019) [26] developed statistical models
that utilize topographic, meteorological, and vegetation characteristics measured
at fire ignition points to predict ultimate fire size. Their approach recognizes that
certain environmental conditions at the time and location of ignition can be strongly
predictive of subsequent fire growth, providing valuable intelligence for initial attack
resource allocation and strategic planning.

Recent advances in this area include the work of Silva et al. (2022) [27], who
demonstrated the effectiveness of ensemble machine learning methods for burned
area prediction using comprehensive environmental variable sets. Their comparative
analysis of multiple algorithms—including Random Forest, Support Vector Machines,
and Gradient Boosting approaches—revealed that ensemble methods consistently
outperform single-algorithm approaches, suggesting that the complexity of fire-

environment interactions benefits from diverse modeling perspectives.

2.2.7 Positioning and Novel Contributions of This Work

The present research occupies a unique position within the broader landscape of
wildfire prediction studies through several distinctive methodological and conceptual
innovations. Unlike existing approaches that focus primarily on post-fire burned
area segmentation (such as Knopp et al.) or hypothetical severity assessment under
various scenarios (such as Klimas et al.), this work addresses the specific challenge
of predicting final burned area extent using exclusively pre-fire environmental data.
This predictive focus, combined with the integration of ignition point coordinates
as a key input variable, positions the research at the intersection of fire initiation
studies and spread prediction modeling.

The methodological innovation lies in the comprehensive integration of multi-
sensor satellite imagery (Sentinel and Landsat platforms), high-resolution Copernicus

DEM data, ERA5 meteorological reanalysis information, ignition point coordinates,
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and road network data within a unified multimodal neural architecture. This data
fusion approach draws methodological elements from multiple streams of existing
literature while combining them in a novel configuration specifically designed for pre-
fire prediction scenarios. The use of separate encoders for different data modalities
allows for specialized feature extraction that respects the unique characteristics of
each data source while enabling sophisticated cross-modal information integration
through shared decoder networks.

A distinctive aspect of this work is the implementation of multi-task learning
through the integration of land cover classification as an auxiliary task alongside
primary burned area prediction. This approach leverages the complementary re-
lationship between land cover characteristics and fire behavior patterns, enabling
the model to develop more robust feature representations that benefit both tasks
simultaneously. The shared encoder-decoder architecture with task-specific output
heads allows the network to learn common underlying patterns while maintaining
specialized prediction capabilities for each objective. This multi-task formulation not
only improves burned area prediction accuracy through enhanced feature learning
but also provides additional operational value by generating land cover information
useful for post-fire assessment and management applications.

The temporal focus on pre-fire prediction distinguishes this work from the majority
of existing research that either analyzes post-fire conditions or predicts hypothetical
scenarios without reference to actual ignition events. By conditioning predictions on
known ignition points and pre-fire environmental states, this approach provides a
framework for near real-time decision support that could inform emergency response
protocols, resource allocation strategies, and evacuation planning during the critical

early hours of fire events when intervention effectiveness is typically highest.
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Dataset

This chapter focuses on the description and construction of the dataset. The first
section presents the data sources and services used to download the required infor-
mation, while the second section details the review and preprocessing steps applied
to the data.

3.1 Data Sources

3.1.1 Piedmont Civil Protection Data

One of the core sources used to build the wildfire dataset was provided by the Civil
Protection of the Piedmont Region [28]. The data package included the following
files:

e Shapefiles:

— INC_SDO_PL_INCENDI.shp: a point shapefile containing the ignition loca-

tions of wildfires.

— INC_SDO_PL_INCENDIO.shp: a polygon shapefile contains the final burned
area geometries for only a subset of the fires — specifically those for which

the perimeter was large enough to be mapped or recorded.
e CSV file:

— A tabular file containing metadata for each fire, such as ID, start date,
area, and location. The CSV and shapefiles share a common identifier,

ID_INCENDI, which allows for joining and relational querying across files.

After filtering the dataset to the 2012-2024 period, a total of 2,152 fire records
were retained. Among these, 2,150 were associated with ignition points, while only
1,233 included a corresponding burned area polygon. This means that just over half
of the recorded fires had spatial geometries representing the final burned perimeter,
whereas the remainder were excluded from the analysis—either because they were too

small, extinguished rapidly, or lacked sufficient information for perimeter mapping.
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Using the common identifier ID_INCENDI, the area shapefile was joined with
the corresponding metadata in the CSV. The resulting dataset was exported as
a GeoJSON file named piedmont_fa.geojson, reprojected into EPSG:3857 (Web
Mercator). Each of the 1,233 entries includes:

o id: Fire event ID

e initialdate: Fire start date

o finaldate: Set to null (not available)

e area_ha: Burned area in hectares

e point_x, point_y: Ignition coordinates projected to EPSG:3857
e geometry: Polygon or multipolygon of the burned area

e country, iso2, iso3: Static metadata (e.g., Italia, IT, ITA)

o admlvll, admlvl2, admlvl5: Administrative region descriptors (e.g., Nord-Ovest)|
Piemonte, local toponym from LOCALITA)

Additional fields following the EFFIS schema—such as vegetation class percent-
ages and Natura2000 coverage—were retained as placeholders for schema compatibility

but not populated, as this data was not available from the Civil Protection source.

This curated dataset, served as the spatial foundation for the entire project. It
enabled the automated querying and retrieval of pre- and post-fire satellite imagery

from multiple platforms, including;:

e Sentinel-2 and Landsat: multispectral imagery for vegetation and burn index

computation
e Impact Observatory Land Cover: thematic land cover data
e Copernicus ERAS5 Data: wind,temperature and pressure data

o Copernicus Digital Elevation Models (DEM): terrain and elevation

analysis

The spatial and temporal precision of the piedmont_fa.geojson file was crucial
for aligning satellite data to fire events, allowing for targeted image extraction,

masking, and further analysis described in the Methodology chapter.

3.1.2 Sentinel-2 Level 2A

The Sentinel-2 mission consists of two polar-orbiting satellites that capture multispec-
tral imagery at 10-60 meter spatial resolution across 13 spectral bands [29]. These
satellites are designed primarily for land monitoring applications, including agricul-

tural assessment, forest management, and environmental change detection. Sentinel-2
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data is distributed in two main processing levels. Level-1C products contain top-of-
atmosphere reflectance values with geometric correction but without atmospheric
correction. Level-2A products undergo additional processing through the Sen2Cor
algorithm, which removes atmospheric effects to provide bottom-of-atmosphere re-
flectance values. This atmospheric correction process eliminates interference from
water vapor, aerosols, and other atmospheric components, resulting in surface re-
flectance data that is more suitable for quantitative analysis and multi-temporal
studies. The Sentinel-2 instrument captures data across 13 spectral bands with vary-
ing spatial resolutions. Four bands (Blue, Green, Red, Near-Infrared) are provided
at 10m resolution, six bands (Red Edge and SWIR bands) at 20m resolution, and
three atmospheric bands at 60m resolution. In the L2-A version of the dataset there

are 12 bands which are presented in the following table:

Lo Wavelength | Resolution
Band | Description
(nm) (m)
Coastal
BO1 443 60
Aerosol
B02 Blue 490 10
B03 Green 560 10
B04 Red 665 10
Vegetation
B05 705 20
Red Edge
Vegetation
B06 740 20
Red Edge
Vegetation
B0O7 783 20
Red Edge
B08 Near Infrared | 842 10
Vegetati
BSA eeetatIon | g6 20
Red Edge
B09 Water Vapour | 945 60
B11 SWIR 1610 20
B12 SWIR 2190 20

Table 3.1: Sentinel-2 L2A spectral bands characteristics

For this research, Sentinel-2 L2A data was acquired through Microsoft Planetary
Computer [30], a cloud-based geospatial data platform that provides free access to
analysis-ready Earth observation datasets. The platform offers Sentinel-2 data in
Cloud Optimized GeoTIFF format with STAC-compliant metadata, enabling efficient
data discovery and access.

In each query to Planetary Computer the following parameters are needed:

e collections: Specifies the STAC collection to search, in this case Sentinel-2 L2A

products.
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e bbox: Defines the bounding box coordinates derived from the fire geometry

with search buffer, specifying the geographic boundaries for image retrieval.

e datetime: Sets the temporal constraints for the search using a time range string

relevant to the study objectives.

e limit: Maximum number of search results to return, set to 500 to ensure

comprehensive coverage of available imagery within the specified criteria.

Data retrieval was implemented through the Planetary Computer STAC API,
which provides programmatic access to the complete Sentinel-2 archive with stan-

dardized query capabilities and metadata structure.

3.1.3 Landsat Collection 2 Level-2

The Landsat program represents the longest continuous record of Earth observation
from space, with the Collection 2 Level-2 products providing analysis-ready surface
reflectance and surface temperature data from multiple Landsat sensors [31]. These
products are derived from Landsat 4-5 Thematic Mapper (TM), Landsat 7 Enhanced
Thematic Mapper Plus (ETM+), and Landsat 8-9 Operational Land Imager (OLI)
and Thermal Infrared Sensor (TIRS) instruments, offering consistent 30-meter spatial
resolution multispectral imagery suitable for long-term environmental monitoring
and change detection studies.

Landsat Collection 2 represents a comprehensive reprocessing of the entire Landsat
archive, incorporating improved geometric and radiometric calibration, updated Digi-
tal Elevation Models, and enhanced cloud detection algorithms. The Level-2 products
undergo atmospheric correction to convert top-of-atmosphere reflectance to surface
reflectance values. For Landsat 4-5 TM and Landsat 7 ETM+ data, the Landsat
Ecosystem Disturbance Adaptive Processing System (LEDAPS) algorithm is applied,
while Landsat 8-9 OLI/TIRS products utilize the Land Surface Reflectance Code
(LaSRC) algorithm. These corrections remove atmospheric interference from water
vapor, aerosols, and scattering effects, providing bottom-of-atmosphere reflectance
values that enable accurate quantitative analysis and multi-temporal comparisons.

The Landsat Collection 2 Level-2 products include both surface reflectance and
surface temperature data products. Surface reflectance bands include coastal aerosol,
blue, green, red, near-infrared, and shortwave infrared bands at 30m resolution,
while surface temperature products include thermal infrared bands and associated
intermediate parameters for temperature derivation. The specific bands utilized in

this research are presented in the following table:

L Wavelength | Resolution
Band | Description
(m) (m)
Coastal
coastal 0.43-0.45 30
Aerosol
blue Blue 0.45-0.51 30
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Wavelength | Resolution

(m) (m)

Band | Description

green | Green 0.53-0.59 30

red Red 0.64-0.67 30

nir08 Near Infrared | 0.85-0.88 30

swirl6 | SWIR 1 1.57-1.65 30

swir22 | SWIR 2 2.11-2.29 30
Thermal

Iwirll 10.6-11.19 30%*
Infrared
Atmospheric

atran Transmit- - 30
tance

. Distance to

cdist - 30
Cloud
Downwelled

drad . - 30
Radiance

emis Emissivity - 30
Emissivity

emsd Standard - 30
Deviation
Thermal Ra-

trad . - 30
diance
Upwelled Ra-

urad . - 30
diance

Table 3.2: Landsat Collection 2 Level-2 bands used in this research (*resampled
from 100m)

For this research, Landsat Collection 2 Level-2 data was acquired through Mi-
crosoft Planetary Computer, a cloud-based platform that provides free access to
analysis-ready Earth observation datasets. The platform offers Landsat data in Cloud
Optimized GeoTIFF format with STAC-compliant metadata, enabling efficient data
discovery and programmatic access to the complete Landsat archive.

Data retrieval was conducted using the Planetary Computer STAC API, following
a similar approach as described for Sentinel-2, including bounding box and temporal
constraints tailored to each fire event. The "landsat-c2-12" collection was queried
using STAC-compliant requests to obtain both surface reflectance and thermal data

relevant to this study.

3.1.4 Copernicus DEM GLO-30

The Copernicus Digital Elevation Model (DEM) GLO-30 is a global Digital Surface
Model (DSM) providing worldwide elevation data at 30-meter spatial resolution
[32]. The dataset represents the Earth’s surface including natural topography,
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buildings, infrastructure, and vegetation, making it particularly suitable for terrain
analysis, hydrological modeling, and topographic characterization in remote sensing
applications.

The Copernicus DEM is derived from the WorldDEM product, which is based on
radar interferometry data acquired during the TanDEM-X Mission conducted by the
German Aerospace Center (DLR). The original WorldDEM underwent comprehensive
editing processes including flattening of water bodies, consistent flow modeling for
rivers, shoreline and coastline refinement, and correction of implausible terrain
structures. These processing steps ensure hydrological consistency and improve the
dataset’s reliability for quantitative geospatial analysis.

The dataset provides global coverage with notable vertical accuracy characteristics.
The Copernicus DEM GLO-30 achieves a global Root Mean Square Error (RMSE)
of approximately 4 meters, with the underlying TanDEM-X data demonstrating
absolute vertical accuracy of 3.49 meters and relative vertical accuracy of 0.99 meters
on flat terrain (slopes < 20°) and 1.37 meters on steep terrain (slopes > 20°). This
accuracy specification makes the dataset suitable for applications requiring precise
elevation information at regional and global scales.

For this research, Copernicus DEM GLO-30 data was accessed through Microsoft
Planetary Computer using the "cop-dem-glo-30" collection identifier. The dataset is
distributed in Cloud Optimized GeoTIFF format with STAC-compliant metadata,
enabling efficient spatial queries and seamless integration with other Earth observation

datasets in the analysis workflow.

3.1.5 Copernicus ERA5

ERA5-Land is a climate reanalysis dataset produced by the European Centre for
Medium-Range Weather Forecasts (ECMWF) as part of the Copernicus Climate
Change Service (C3S)[33]. It provides a consistent and high-resolution reconstruction
of land-surface variables over time by combining model data with observations
through a data assimilation process governed by physical laws. Unlike traditional
observations, reanalysis generates spatially and temporally complete climate fields
over multiple decades, enabling robust climate and environmental studies.

ERAS5-Land is generated by replaying the land component of the ERA5 reanalysis,
using corrected atmospheric variables such as temperature, humidity, and pressure to
drive land-surface simulations. While observations are not directly assimilated into
ERAb5-Land, they influence the dataset indirectly via the atmospheric forcing fields.
The higher spatial resolution (0.1°) and improved representation of land processes
make ERA5-Land especially suitable for localized analysis.

For this research, we used the post-processed Derived ERA5-Land Daily Statistics
product, which aggregates the original hourly data to daily time steps using statistical
summaries such as daily mean. This version was downloaded via the Copernicus
Climate Data Store (CDS).

The following daily variables were selected to capture key atmospheric and soil
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conditions relevant to fire dynamics:

o 2m Temperature (t2m): Daily average air temperature at 2 meters above

ground.

e 10m Wind Components (ul0, v10): Zonal and meridional components of

wind at 10 meters height.

These variables are particularly relevant to wildfire risk assessment, as they
influence fuel dryness, ignition potential, and fire behavior. Spatial and temporal
extraction procedures, including reprojection and resampling to match the spatial

extent of fire patches, are detailed in the Data Processing section.

3.1.6 Piedmont Streets Data

The road network information used in this work was obtained from the Global
Roads Inventory Project (GRIP4) dataset [34]. GRIP was developed to provide a
harmonized and up-to-date global representation of road infrastructure, with the
specific aim of supporting environmental and biodiversity modelling frameworks such
as GLOBIO. Unlike datasets intended for navigation, GRIP emphasizes consistency
and completeness at global and regional scales, integrating nearly sixty individual
data sources (including OpenStreetMap) under the UNSDI-Transportation data-
model. This harmonization process ensures cross-border continuity and attribute
compatibility across different regions of the world.

The GRIP4 release provides data in both vector and raster formats: regional and
global road networks in ESRI File Geodatabase and Shapefile formats, and global
rasters of road density at a resolution of 5 arcminutes (approximately 8 km). The
dataset is openly available under a Creative Commons Zero (CC-0) license, which
allows unrestricted scientific use. Access to the data is provided through the official
GLOBIO portal [34, 35].

For the purposes of this study, the European shapefile was extracted from
GRIP4 and subsequently restricted to the Piedmont region (Italy). This produced
a regional vector dataset containing the full road network of Piedmont, including
both major and minor roads, as represented in the global inventory. This cropped
dataset serves as the road network input for the wildfire analysis, and in later steps
it was converted into raster layers aligned with the spatial patches of each fire event
(see Section 3.2.6).

3.1.7 Dynamic World Land Cover (IO-LULC Annual v2)

The Dynamic World Land Cover dataset (I0-LULC Annual v2) provides global annual
maps of land cover at 10-meter spatial resolution [36]. The dataset characterizes the
Earth’s surface across multiple land cover classes, including water, trees, grass, crops,
shrubland, built-up areas, bare ground, and snow /ice. Its high spatial detail and

annual temporal granularity make it well suited for monitoring landscape changes,
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analyzing human—environment interactions, and supporting applications in ecology,
agriculture, and wildfire risk assessment.

The product is generated through machine learning models trained on multispec-
tral observations from Sentinel-2 imagery, incorporating extensive reference data
to ensure robust classification performance across diverse geographic regions. The
methodology emphasizes consistency over time, enabling the detection of gradual
as well as abrupt land cover transitions. This design makes the dataset particularly
relevant for long-term environmental monitoring and for studies requiring harmonized
global land cover information.

The dataset is distributed as annual global mosaics in Cloud Optimized GeoTIFF
format, accompanied by STAC-compliant metadata to support efficient search and
retrieval in cloud-based environments. For this research, the IO-LULC Annual v2
collection was accessed through Microsoft Planetary Computer using the identifier
io-lulc-annual-v02, allowing seamless integration with other Earth observation

datasets in the workflow.

3.1.8 Ground Truth Mask

A Dbinary raster image was generated to represent the fire extent. The raster contains
a single band, where pixels with a value of 1 correspond to the fire-affected area and
pixels with a value of 0 correspond to the background. The fire perimeter used to
produce this binary image was derived from the vector geometry provided in the file

piedmont_fa.geojson.

3.2 Data Processing

3.2.1 Sentinel-2 Image Selection and Preparation

The Sentinel-2 component of the dataset was constructed starting from the fire
perimeter information contained in the piedmont_fa.geojson file, which provided
the spatial reference for each fire event. For every fire, the corresponding geometry
was projected into a target coordinate system (EPSG:32632) and buffered in order
to ensure that the area surrounding the fire was also included in the analysis. The
buffered geometry was then re-projected into WGS84 coordinates, which are required
to define the bounding box for the image search through the STAC catalogue.
Since the objective was to capture the conditions prior to each fire, a temporal
filter was applied to retrieve images acquired in the days immediately before the
ignition date. In this work, a configurable temporal window of seven days was used.
Fire events that occurred before the availability of Sentinel-2 data (June 2015) were
discarded. The Microsoft Planetary Computer STAC API was then queried for
Sentinel-2 Level-2A products matching both the spatial and temporal constraints,
and only those acquisitions that effectively intersected the fire geometry were retained

for further processing.
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Once the candidate images had been identified, they were converted into fixed-size
patches of 256 x 256 pixels, corresponding to an area of approximately 2.56 km x
2.56 km at 10 m spatial resolution. Each patch was centered on the centroid of the
fire perimeter in order to guarantee that the fire area was always included in the
extracted image. Sentinel-2 spectral bands, which are provided at different native
resolutions (10 m, 20 m and 60 m), were resampled to a uniform 10 m grid to ensure
consistency across the dataset.

To improve data quality, a similarity check was carried out on images acquired
on the same date. Patches were compared at the band level, and whenever two
acquisitions differed by less than 0.5% in relative pixel values, the redundant image
was discarded. This procedure avoided storing duplicate information and ensured
that only unique acquisitions were preserved.

In parallel with the image extraction, a binary ground truth mask was generated
for each fire event. The fire geometry was rasterized onto the same spatial grid as the
Sentinel-2 patches, assigning a value of 1 to all pixels inside the fire perimeter and 0
to the background. This produced a single mask per fire, spatially aligned with the
Sentinel-2 imagery, which serves as the reference for supervised learning tasks.

Through this pipeline, every fire event was thus associated with one or more
Sentinel-2 image patches and a corresponding ground truth mask, forming a consistent

and spatially aligned dataset for further analysis and model training.

Figure 3.1: Sentinel-2 image patch (256 x 256 pixels at 10 m resolution) centered
on the fire perimeter.
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3.2.2 Landsat Image Selection and Preparation

The Landsat component of the dataset was derived using the same fire perimeter
information from the piedmont_fa.geojson file. As for Sentinel-2, each fire geometry
was buffered and re-projected to define the area of interest and then used to query the
Microsoft Planetary Computer STAC API [30]. In this case, the search targeted the
Landsat Collection 2 Level-2 Science Products [31], which provide atmospherically
corrected surface reflectance data for the Landsat 8 and Landsat 9 missions. Fires
occurring before 2013, i.e. before the availability of Landsat 8 data, were discarded.

To maintain temporal consistency with Sentinel-2, images were retrieved within
a seven-day window preceding the ignition date of each fire. Candidate images were
then subjected to two quality filters. First, acquisitions with more than 30% of
pixels flagged as nodata were removed. Second, products with an unexpected number
of bands (i.e. not equal to 15, corresponding to the surface reflectance bands and
ancillary quality layers) were discarded. These steps ensured that only complete and
usable images were retained.

Because of the different native resolutions of the two missions, an additional
resampling step was necessary. Landsat bands, originally acquired at 30 m, were
resampled to 10 m resolution so that they could be made consistent with the
Sentinel-2 grid. Patches of 256 x 256 pixels were then extracted from the resampled
imagery, centered on the centroid of the fire perimeter. Before resampling, each patch
represented an area of approximately 7.68 km x 7.68 km, which was subsequently
aligned with the Sentinel-2 patch size of 2.56 km x 2.56 km.

Unlike Sentinel-2, for Landsat no independent ground truth masks were produced.
Instead, the binary masks derived from Sentinel-2 were used directly after resampling,
ensuring that both datasets shared the same reference geometry. This choice avoided
inconsistencies that would arise from generating separate rasterized masks at different
resolutions.

Through this procedure, the Landsat dataset was built to mirror the Sentinel-
2 dataset in structure, while accounting for the differences in spatial resolution
and sensor design. This alignment allows the two datasets to be used jointly in
subsequent analyses and supports comparative and multi-sensor approaches to burned

area mapping.
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Figure 3.2: Landsat image patch (256 Figure 3.3: Landsat image patch after
x 256 pixels at 30 m resolution) centered  resampling (10 m resolution).
on the fire perimeter.

3.2.3 Digital Elevation Model (DEM) Data

In addition to the optical imagery, a digital elevation model was extracted for each fire
in order to provide topographic context to the dataset (see 3.1.4 ). The DEM patches
were generated following the same spatial logic adopted for Sentinel-2 and Landsat.
For each fire geometry, the centroid of the burned area was used as the reference point
and a square patch of 256 x 256 pixels was defined. At the native DEM resolution,
this corresponds to an area of approximately 7.68km x 7.68 km. To ensure spatial
consistency, only fires with an area larger than 200 m? were considered suitable for
DEM extraction, as smaller events would not provide meaningful information at
30 m.

DEM tiles intersecting each fire geometry were identified via STAC queries,
downloaded, and cropped to the target extent. The extracted patches were then
reprojected to the target UTM CRS (EPSG:32632) to match the reference system
used for the optical imagery. Finally, as in the case of Landsat, a resampling step was
applied in order to bring the DEM from its native 30 m resolution to 10 m, thereby
ensuring compatibility with the Sentinel-2 grid. This resampling allowed a direct
overlay between DEM, Sentinel-2 and Landsat patches, facilitating multi-source
analysis.

Each resulting DEM patch was stored as a single-band GeoTIFF with no-
data values set to —9999. The files were named according to the convention
fire_{id}_dem.tif and placed in the corresponding fire folder within the dataset
structure. This procedure guarantees that every fire event is associated with a DEM
patch aligned in extent, resolution and reference system with the optical data, making
the topographic information immediately usable for downstream applications such as

burned area mapping or fire behavior analysis.
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Figure 3.4: Dem image patch (256 x 256 pixels at 10 m resolution) centered on
the fire perimeter.
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3.2.4 ERAS5-Land Processing

To integrate ERA5-Land variables with fire events, a dedicated processing pipeline
was implemented. The procedure starts by selecting the optimal pre-fire Sentinel-2
image for each fire event, ensuring minimal cloud contamination. CloudSenl2 was
used to generate cloud masks, and a cloud contamination score was computed over
the ground-truth fire footprint. The image with the lowest score was retained as
the reference pre-fire scene. Its acquisition date and spatial reference provided the
temporal and spatial anchors for ERA5-Land data retrieval.

For each selected event, the centroid of the Sentinel-2 fire patch was computed in
WGS84 coordinates, and a bounding box of £0.5° around the centroid was defined
to query ERA5-Land data via the Copernicus Climate Data Store (CDS) APIL. The
Derived ERA5-Land Daily Statistics dataset was downloaded for the exact acquisition
day of the selected pre-fire image. Three variables were retrieved: 2m air temperature
(t2m), and the zonal (u10) and meridional (v10) components of 10m wind.

The retrieved data, originally provided in NetCDF format with a native spatial
resolution of 0.1°, were reprojected from geographic coordinates (EPSG:4326) to the
UTM zone of the corresponding Sentinel-2 patch (EPSG:32632 for the study area).
Each variable was resampled to a fixed 256 x 256 grid with a target spatial resolution
of 10m, matching the spatial footprint of Sentinel-derived fire patches (2.56 km
x 2.56km). Bilinear interpolation was used for the resampling step to preserve
continuous fields. The three variables were then stacked into a single multi-band

GeoTIFF file, with metadata annotations for each band. Invalid values were masked
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and replaced with a consistent nodata flag.

Finally, a logging mechanism was employed to track processed fire IDs and prevent
redundant downloads. The resulting multi-band ERAb rasters are spatially and
temporally aligned with the fire patches, enabling direct integration of meteorological

predictors into subsequent fire modeling and analysis workflows.

3.2.5 Land Cover Data

In addition to topographic information, annual land cover data was extracted for
each fire event to characterize the surrounding environment (see 3.1.7). The land
cover patches were generated using the same spatial logic adopted for DEM and
optical imagery. For each burned area, the centroid of the fire geometry was used
as the reference point, and a square patch of 256 x 256 pixels was defined. At the
native resolution of the IO-LULC Annual v2 dataset (10 m), this corresponds to an
area of approximately 2.56 km x 2.56 km. To ensure the reliability of the extracted
data, only fires with an area larger than 200 m? were considered, as smaller events
would not provide meaningful information at this resolution.

Land cover tiles intersecting each fire geometry were identified through STAC
queries to the Microsoft Planetary Computer. For each fire, all available items
within a broad temporal window (from five years before to five years after the event,
limited to 2012-2024) were retrieved. From these candidates, the land cover map
corresponding to the year closest to the fire date was selected, ensuring temporal
consistency between the fire occurrence and the environmental description.

Once the most suitable land cover item was identified, the corresponding raster
was downloaded and cropped to the target patch extent. The data was reprojected to
the reference UTM CRS (EPSG:32632), preserving the categorical nature of the land
cover classes. This procedure ensured spatial alignment and resolution compatibility
with Sentinel-2, Landsat, and DEM patches.

Each resulting land cover patch was stored as a single-band GeoTIFF with
nodata values preserved from the source dataset. Files were named according to
the convention fire_{id}_landcover.tif and placed within the corresponding fire
folder in the dataset structure. This guarantees that every fire event is associated
with a land cover raster aligned in extent, resolution, and reference system with the

optical and DEM data, enabling integrated multi-source analysis.
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Figure 3.5: Landcover image patch (256 x 256 pixels at 10 m resolution) centered
on the fire perimeter.

3.2.6 Streets Rasterization and Preparation

The road network information extracted from the GRIP4 dataset (see Section 3.1.6)
was processed into raster layers aligned with the wildfire event patches. For each fire
directory, the corresponding Sentinel-2 image was used as a spatial reference in order
to guarantee identical extent, resolution, and coordinate system between satellite
and ancillary layers.

The procedure began by identifying a Sentinel-2 patch within each fire folder and
reading its spatial metadata (bounding box, affine transform, image dimensions, and
CRS). The Piedmont road network vector layer was then spatially filtered using this
bounding box, retaining only the geometries intersecting the area of interest. This
filtering was accelerated by means of a spatial index, which allowed efficient queries
even on the full regional dataset.

The selected road geometries were subsequently rasterized on the same grid as
the Sentinel-2 patch. Each pixel intersected by a road segment was assigned the
categorical value corresponding to the GP_RTP attribute of the GRIP dataset, which
encodes the type of road (e.g., highway, primary, secondary). All other pixels were
assigned a value of zero, indicating the absence of roads. The rasterization was
performed with the all_touched option enabled, ensuring that all pixels touched by
a road geometry were included.

The resulting product is a single-band raster, saved in GeoTIFF format as
fire_ID_streets.tif, perfectly co-registered with the Sentinel-2 data and the
other ancillary layers. This guarantees spatial consistency across modalities and
allows the road network information to be seamlessly integrated into subsequent

analyses and model training.
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Figure 3.6: Streets raster image patch (256 x 256 pixels at 10 m resolution) centered
on the fire perimeter.

3.2.7 Cloud Masking with CloudSen12

A recurring issue in the analysis of Sentinel-2 imagery is the presence of clouds
and their shadows, which can obscure important land features and compromise
the reliability of downstream analyses. In order to mitigate this problem, cloud
masking was performed using the CloudSen12 model [37], a semantic segmentation
network trained on Sentinel-2 Level-2A data. The model produces a four-class mask
distinguishing between clear sky, thick clouds, thin clouds (or haze/smoke), and
cloud shadows.

The output mask assigns a categorical label to each pixel, as summarized in

Table 3.3. An example of a CloudSen12 output mask is shown in Figure 3.7.

Table 3.3: CloudSenl2 mask classes, corresponding description and color.

Class Description Pixel Value

0 Clear sky [ |
1 Thick cloud

2 Thin cloud / haze / smoke

3 Cloud shadow |

For each fire event, the pre-fire Sentinel-2 images were processed with CloudSen12
to generate the corresponding cloud masks. To ensure that the images used in
training were minimally affected by cloud contamination, a quantitative cloud score
was computed over the fire area. Specifically, the ground-truth (GT) fire mask was
combined with the cloud mask so that only the pixels within the burned area (GT =
1) were considered. Their cloud values were then summed to obtain the score, with
lower values indicating less cloud coverage.

Based on this metric, the best pre-fire image for each fire event was selected, i.e.,

the one with the lowest cloud contamination over the fire footprint. This step was
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crucial to guarantee the reliability of the training dataset. Once the optimal image
was identified, its acquisition date and spatial reference were extracted and used to

retrieve the corresponding ERA5 meteorological data for the same location and time.

(a) CloudSenl12 output mask (b) Corresponding Sentinel-2 RGB image

Figure 3.7: Example of Sentinel-2 image (b) and corresponding CloudSen12 output
mask (a).

3.3 Dataset Information

The dataset is composed of 1,090 directories, each corresponding to a single
wildfire event. These were derived from the original 1,231 fire polygons contained
in the official geojson database, covering the period 2012—2024. Since Sentinel-2
imagery is only available from late 2015 onwards, events without valid Sentinel
coverage were excluded, resulting in the final set of 1,095 fire samples.

Among these:

» 529 fires include both Sentinel-2 and Landsat (resampled to 10 m resolution)
data.

o 561 fires include only Sentinel-2 data (Landsat is missing or represented by

placeholders).
Each directory contains the following information:
o Satellite imagery (Sentinel-2, and Landsat when available),
 Digital Elevation Model (DEM),
« ERASJ climate variables,
o Landcover

e Streets data
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e Ignition point data.

All raster patches are standardized to a fixed size of 256 x 256 pixels, regardless
of the actual fire extent. This ensures consistency across the dataset but also
introduces strong variation in the proportion of burned area contained in each patch.
The fires show a highly unbalanced distribution: the majority of events correspond
to very small burned areas, while only a few represent very large fires. A statistical

summary is reported in Table 3.4.

Table 3.4: Statistical summary of fire sizes (in pixels, 10 m resolution).

Statistic Value
Total fires analyzed 1,090
Smallest fire (ID 7073) 4 pixels
Largest fire (ID 5440) 65,536 pixels
Mean fire size 1,473.42 pixels
Standard deviation 5,937.24 pixels

3.3.1 Fire Size Distribution

Figure 3.8 illustrates the distribution of burned area sizes across the dataset. The
plot confirms the skewed nature of the data, with many small events and only a

handful of extreme cases.

Fire Size Distribution (Pixel Count)

1000

600 +

Frequency

400 +

7 T T T T T
] 10000 20000 30000 40000 50000 60000
Burning Pixel Count

Figure 3.8: Distribution of burned area sizes (in pixels).
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Chapter 4

Methodology

This chapter presents the methodology developed to address the research objectives,
with a particular focus on the design of a multimodal deep learning framework. The
approach integrates heterogeneous geospatial and environmental data to predict
wildfire burned areas, and is described through the problem formulation, the model

architecture, and the fusion methods employed.

4.1 Problem Statement

This thesis focuses on the delineation of wildfire burned areas in the Piedmont region
using pre-fire imagery and ancillary data. The objective of the proposed model is
to predict the final extent of a wildfire, given a set of heterogeneous inputs: digital
elevation model (DEM) data, ERA5 meteorological variables corresponding to the
date of the Sentinel-2 acquisition, pre-fire Sentinel-2 imagery, Landsat imagery when
available, road network data, and the ignition point.

The model is therefore required to learn the expected propagation dynamics of a
wildfire from these pre-event conditions. This task is particularly challenging, as it
differs fundamentally from conventional burned area segmentation approaches, where
post-fire satellite images are employed to directly identify affected regions. Instead,
the aim here is predictive: to estimate the final burned area footprint before the
fire occurs, based solely on the pre-fire state of the landscape and meteorological

conditions.

4.2 Multi-Modal Approach

In traditional remote sensing applications, the task of mapping wildfires is usually
framed as a post-fire semantic segmentation problem. The model receives satellite
images collected after the event and learns to distinguish burned from unburned sur-
faces. This setup is particularly effective because spectral differences are pronounced:
for example, combinations such as SWIR, NIR, and red bands make burned areas
stand out in false-color composites.

In this thesis however, the problem is different. The aim is not to delineate
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Figure 4.1: Burned Scars for the 1998 summer forest fires on the Elba Island,
overlaid on a Landsat 5 TM false colour composite. [38]

fire scars after the event, but to predict the final burned extent using only pre-fire
information. This changes the nature of the challenge significantly, since the obvious
spectral signatures of burned surfaces are absent. Early trials using only pre-fire
imagery confirmed this difficulty: the network often converged to degenerate solutions,
for example by predicting no burned pixels at all, simply because no clear spectral
evidence was available.

To overcome this, a multi-modal strategy was adopted, combining different
sources of information into a single predictive framework. Instead of relying on a
single encoder, the model is built around several parallel encoders, each processing a
different modality but producing feature maps at the same spatial resolution. The
main branch is dedicated to Sentinel-2 optical imagery, which captures vegetation
and surface conditions across twelve spectral bands. A second encoder processes
Landsat imagery, which contributes fifteen bands plus a binary presence flag; this
flag is used to suppress spurious activations when Landsat data are unavailable or
incomplete. Topographic information is added through a digital elevation model
(DEM), which has a strong influence on fire behavior, especially in mountainous
terrain. In addition, an ignition map is provided to the model, giving it a spatial prior
on where the fire started. Meteorological conditions, which are key drivers of wildfire
spread, are incorporated through ERAS reanalysis data: wind components are treated
as raster inputs and processed by a dedicated encoder, while tabular variables such
as near-surface temperature are handled by a small multilayer perceptron and then
broadcast across the spatial grid so that they can interact with the convolutional
features.

All these streams of information are fused progressively during encoding. At each
depth of the network, the features from Sentinel-2, Landsat, DEM + Streets, ignition

point, ERAS5 rasters, and the expanded tabular embeddings are concatenated and
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Figure 4.2: Schematic representation of the proposed multimodal architecture

passed through a fusion block. This ensures that the complementary information
from different sources is integrated before being fed to the decoder. The decoder
itself follows the design of a Feature Pyramid Network (FPN) [39], which upsamples
the fused features and produces outputs through two separate segmentation heads:
the primary head generates a burned-area probability mask, while a secondary head
predicts land cover classes. This multi-task learning approach leverages the shared
representations learned by the decoder to improve generalization, as the auxiliary
land cover prediction task encourages the model to develop more robust feature

representations of the underlying landscape characteristics.

4.3 Network Architectures

The predictive framework is implemented as a multi-modal convolutional neural
network that extends the Feature Pyramid Network (FPN) design with multi-task
learning capabilities. Each modality is processed by a dedicated FPN encoder with
a ResNet backbone, which extracts hierarchical features at multiple spatial scales.
These include Sentinel-2, Landsat, digital elevation and street layers, ignition maps,
and ERAD raster variables. In addition, tabular ERA5 variables are processed by a
multilayer perceptron (MLP), transformed into low-dimensional embeddings, and
spatially broadcast to align with the convolutional feature maps. At each resolution
stage, the outputs of all encoders and the tabular embeddings are concatenated and
passed through a fusion block, ensuring that complementary information is integrated
before decoding.

The shared FPN decoder then upsamples the fused features and feeds them to two
separate segmentation heads: the primary head produces the burned-area probability
mask, which is the main objective of the model, while the auxiliary head performs

land cover classification. This multi-task learning setup serves as a regularization
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mechanism that encourages the shared decoder to learn more generalizable feature
representations. The land cover prediction task, while not the primary focus of this
work, helps the model develop a better understanding of the underlying landscape
characteristics that influence fire behavior, ultimately improving the quality of burned

area predictions.

4.3.1 Feature Pyramid Network

The Feature Pyramid Network (FPN) is a convolutional neural network architecture
introduced by Lin et al. [39] designed to improve multi-scale feature representa-
tion in dense prediction tasks such as object detection and segmentation. Unlike
standard convolutional backbones that naturally build a hierarchy of feature maps
but typically utilize only the deepest layer for downstream tasks, FPN explicitly
combines information across different levels of the feature hierarchy. This design
enables the network to leverage both fine-grained spatial details from shallow layers
and high-level semantic information from deeper layers.

The FPN architecture consists of two main components: a bottom-up pathway
and a top-down pathway with lateral connections.

Bottom-up pathway: This corresponds to the feedforward computation of a
conventional convolutional backbone, such as ResNet, which produces a sequence
of feature maps at progressively decreasing spatial resolutions. At each stage of
the backbone, spatial resolution is reduced through pooling operations or strided
convolutions, while the semantic abstraction level of the features increases. This
process generates a set of feature maps {Cs, C3,Cy, Cs} at multiple resolution levels,
where the subscript indicates the pyramid level.

Top-down pathway and lateral connections: The top-down pathway reconstructs
semantically strong feature maps at higher resolutions by progressively upsampling the
deeper feature maps. At each resolution level, the upsampled features are combined
with the corresponding bottom-up features of the same spatial scale through lateral
connections. These lateral connections employ 1 x 1 convolutions to match channel
dimensions before element-wise addition for feature fusion. This process yields a
new set of enhanced feature maps { P, P3, Py, P5}, where each pyramid level encodes
both rich semantic information and fine spatial details.

This architectural design enables FPN to construct a feature pyramid that
maintains semantic richness across all resolution levels, contrasting with traditional
single-scale approaches that rely solely on the deepest feature layer. The multi-scale
representation is particularly advantageous for tasks involving objects or regions
of interest that exhibit significant scale variation, such as fire scars in our wildfire
prediction application, where burned areas can range from small isolated patches to
extensive regions.

In our implementation, FPN serves as the encoder backbone for each input
modality (Sentinel-2, Landsat, DEM with street layers, ignition points, and ERA5

raster data). By adopting this multi-scale architecture across all modalities, the
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model preserves hierarchical feature representations from each data source prior to
cross-modal fusion. Additionally, our decoder architecture is also based on the FPN
design, ensuring that the reconstruction of the final segmentation mask benefits
from the same principle of combining semantic richness with spatial precision across
multiple scales.

The original FPN architecture from [39] is illustrated in Figure 4.3, showing the

bottom-up pathway, top-down pathway, and lateral connections that enable effective
multi-scale feature fusion.

w predict‘

—»{ 1x1 conv

Figure 4.3: Feature Pyramid Network architecture (adapted from Lin et al. [39]).
The bottom-up pathway extracts hierarchical features, while the top-down pathway
with lateral connections (1x1 convolutions) enables multi-scale feature fusion.

4.3.2 ResNet

The Residual Network (ResNet) architecture, introduced by He et al. [he2016deep],
serves as the backbone encoder for each modality-specific FPN in our implementation.
ResNet addresses the vanishing gradient problem in deep networks through the
introduction of residual connections, enabling the training of significantly deeper
networks while maintaining gradient flow and representational capacity.

The core innovation of ResNet lies in its residual blocks, which implement
skip connections that allow information to bypass one or more layers. Instead of
learning a direct mapping H(x), each residual block learns the residual function
F(x) = H(x) — x, making the final output H(x) = F(x) + x. This formulation
transforms the optimization problem from learning an unreferenced mapping to
learning perturbations around the identity function, which empirically proves easier
to optimize and enables the construction of much deeper networks.

In our multi-modal architecture, we employ different ResNet variants tailored
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to the complexity and information content of each input modality, as detailed in
Table 4.1. This graduated approach to backbone selection reflects a careful balance
between computational efficiency and representational capacity requirements for each

data source.

Table 4.1: ResNet backbone configurations for different input modalities

Input Modality Architecture Layers Pre-trained Weights

Sentinel-2 ResNet-50 50 ImageNet
Landsat ResNet-34 34 ImageNet
DEM + Streets ResNet-18 18 ImageNet
Ignition Maps ResNet-18 18 None (random initialization)
ERAS5 Raster ResNet-18 18 None (random initialization)

The selection of ResNet-50 for Sentinel-2 data processing reflects the rich spectral
information content and high dimensionality of this primary optical satellite imagery
modality. Sentinel-2’s multispectral bands capture diverse vegetation indices and
land surface characteristics that are crucial for fire risk assessment, necessitating
a deeper network architecture to extract complex hierarchical features from this
information-dense input stream.

For Landsat data, ResNet-34 provides sufficient representational capacity while
maintaining computational efficiency. This intermediate complexity aligns with
Landsat’s role as a complementary optical imagery source that, while valuable, isn’t
always present. The 34-layer depth enables adequate feature extraction without the
computational overhead required for the primary Sentinel-2 modality.

The auxiliary data modalities—digital elevation model with street layers, ignition
point maps, and ERA5 raster variables—utilize ResNet-18 architectures. This choice
reflects the more focused information content of these data sources compared to
the comprehensive spectral imagery modalities. Digital elevation and infrastructure
data provide topographical and accessibility constraints, ignition points offer dis-
crete spatial indicators of fire initiation, and meteorological raster data contribute
environmental conditioning factors. The lighter ResNet-18 architecture efficiently
processes these specialized inputs while preserving computational resources for the
more complex optical imagery modalities.

Our implementation adopts a selective approach to pre-trained weight initial-
ization based on domain compatibility considerations. Landsat and DEM encoders
leverage ImageNet pre-trained weights to benefit from learned low-level visual fea-
tures that translate effectively to natural imagery and elevation data visualization.
Conversely, Sentinel-2, ignition map, and ERADH raster encoders are initialized from
scratch, reflecting the domain-specific nature of these modalities where standard nat-
ural image features may not provide optimal initialization for specialized geospatial
and meteorological data representations.

Each ResNet encoder within the FPN framework generates hierarchical feature

representations at multiple spatial scales, producing feature maps at four different
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resolution levels that correspond to progressively increasing levels of semantic ab-
straction. These multi-scale representations are essential for capturing fire-related
patterns that manifest across various spatial scales, from localized ignition points
and fine-grained vegetation characteristics to large-scale topographical influences and

regional meteorological conditions affecting fire propagation dynamics.

4.3.3 Multi-Layer Perceptron for Tabular Data Processing

The Multi-Layer Perceptron (MLP) component of our architecture addresses the
integration of tabular meteorological variables from the ERA5 dataset, specifically
temperature measurements that provide crucial atmospheric conditioning informa-
tion for fire propagation modeling. Unlike the raster-based ERA5 variables that
maintain spatial structure and can be processed through convolutional layers, this
tabular meteorological parameter represent point measurements or spatially-averaged
values that require a different processing approach to extract meaningful feature
representations.

The MLP architecture employed for tabular ERA5 data processing consists of a
compact two-layer fully connected network designed to transform raw meteorological
measurements into dense feature embeddings suitable for spatial integration with
convolutional feature maps. The network begins with an input layer that accepts the
tabular meteorological variables, followed by a first hidden layer with 64 neurons and
ReLU activation. This intermediate representation undergoes further transformation
through a second hidden layer that compresses the features into a 16-dimensional
embedding space, again followed by ReLU activation to maintain non-linearity in
the learned representations.

This architectural design reflects several key considerations for effective tabular
data integration. The initial expansion from input variables to 64 dimensions
allows the network to learn complex non-linear relationships between meteorological
parameters, capturing interactions between temperature and pressure that may not
be immediately apparent from raw measurements. The subsequent compression
to 16 dimensions creates a compact yet informative representation that balances
expressiveness with computational efficiency, particularly important given that these
embeddings must be spatially broadcast across multiple resolution levels in the feature
pyramid.

The choice of ReLLU activation functions throughout the MLP ensures com-
putational efficiency while providing sufficient non-linearity for learning complex
meteorological relationships. ReLLU activation also maintains gradient flow during
backpropagation, which is crucial for end-to-end training of the entire multi-modal
architecture. The relatively shallow depth of the MLP reflects the structured nature
of tabular meteorological data, where excessive depth could lead to overfitting given
the limited dimensionality of the input space compared to the rich spatial information
content of the imagery modalities.

Following feature extraction, the 16-dimensional embeddings undergo spatial

37



Methodology

broadcasting to align with the multi-resolution convolutional feature maps generated
by the various FPN encoders. This broadcasting process replicates the tabular feature
embeddings across all spatial locations at each resolution level, effectively providing
every spatial location with access to the global meteorological context. The broadcast
embeddings are then concatenated with the corresponding convolutional features at
each pyramid level before fusion processing.

This integration strategy acknowledges that while temperature provides important
regional atmospheric conditioning for fire behavior, the relatively homogeneous spatial
distribution at our study scale makes spatial averaging an appropriate preprocessing
step. By broadcasting the temperature-derived features spatially, the model can
leverage this atmospheric conditioning information throughout the spatial domain
while allowing the fusion blocks to learn how local topographical characteristics,
vegetation patterns, and spatially-variable wind conditions interact with the regional

temperature context to influence fire behavior and propagation dynamics.

4.3.4 Multi-Modal Fusion Blocks

The fusion blocks constitute a critical component of our multi-modal architecture,
responsible for integrating feature representations from all input modalities at each
resolution level of the feature pyramid. These blocks operate at every encoder stage,
combining features from Sentinel-2, Landsat, DEM with street layers, ignition points,
ERADS raster data, and spatially-broadcast temperature embeddings before passing
the unified representations to the shared FPN decoder.

At each pyramid level, the fusion process begins with feature concatenation along
the channel dimension. The input channels to each fusion block consist of the sum
of output channels from all five FPN encoders plus the 16-dimensional temperature
embeddings, resulting in varying input dimensionalities across different pyramid
stages. For example, at the deepest encoder stage (ResNet stage 5), the fusion block
receives features with combined channel dimensions reflecting the full representational
capacity of each modality-specific encoder.

The fusion blocks employ a straightforward yet effective architecture consisting
of a single convolutional layer followed by batch normalization and ReLU activation.
The choice of kernel size represents a key architectural decision that influences the

spatial integration characteristics of the fusion process.

4.3.4.1 Kernel Size Configuration

Two alternative configurations are considered for the fusion convolution:

3x3 Convolution Approach: This configuration employs a 3x3 convolutional
kernel with padding to maintain spatial dimensions. The larger receptive field enables
each fused feature to incorporate information from a local neighborhood, facilitating
the learning of spatial relationships between different modalities. This approach is
particularly beneficial when modalities exhibit spatially-correlated patterns, such as

the relationship between topographical features and vegetation characteristics, or
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the interaction between wind patterns and local terrain effects on fire propagation.

1x1 Convolution Approach: The pointwise convolution alternative processes
each spatial location independently, focusing purely on channel-wise feature inte-
gration without spatial mixing. This configuration emphasizes learning optimal
linear combinations of multi-modal features at each pixel, making it computationally
efficient while maintaining the spatial alignment of different modality inputs. The
1x1 approach is suitable when the primary integration challenge lies in balancing
the contributions of different modalities rather than learning spatial cross-modal
relationships.

Both configurations maintain identical output channel dimensions matching the
Sentinel-2 encoder specifications, ensuring compatibility with the subsequent FPN
decoder. The fusion blocks are replicated across all encoder stages, with each block
tailored to handle the specific channel dimensions corresponding to its pyramid level.
This staged fusion strategy ensures that multi-modal integration occurs at multiple
scales, allowing the model to leverage both fine-grained spatial details and high-level
semantic relationships across all input modalities.

The batch normalization component stabilizes training dynamics by normalizing
the fused feature distributions, while ReLU activation introduces non-linearity es-
sential for learning complex cross-modal interactions. This simple yet robust fusion
architecture enables effective integration of diverse geospatial and meteorological in-
formation streams while maintaining computational efficiency throughout the feature

pyramid.
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Experiment and Results

In this chapter, we outline the setup employed for training and evaluating the model.
Subsequently, we provide a concise overview of the losses and optimization techniques
applied in addressing the task. Lastly, a summary and discussion of the experimental

outcomes are presented.

5.1 Implementation Details

The process of training neural networks is intricate and requires significant resources,
demanding careful preparation of data and careful selection of hyperparameters. This
section delivers a comprehensive overview of the experiments performed, detailing

the methods used for both training and evaluation.

5.1.1 Experimental Setup

The purpose of this thesis is to evaluate the multi-modal multitask approach by
training and comparing the performance of the proposed MultiModalFPN architecture
against baseline models. The main model is based on a Feature Pyramid Network
(FPN) design extended with multiple encoders to handle different data modalities.
Each encoder utilizes ResNet backbones of varying complexity: ResNet50 for the
primary Sentinel-2 encoder to handle the complexity of the 12-band optical data,
ResNet34 for the Landsat encoder managing 15 bands plus a presence flag, and
ResNet18 for the lighter modalities including DEM, streets, ignition points, and
ERAS5 raster data. This hierarchical approach balances computational efficiency with
the representational capacity needed for each data source.

The multi-modal architecture receives as input multiple tensors of different
dimensions: Sentinel-2 imagery (256 x 256 x 12), Landsat imagery (256 x 256 x 16),
topographic data including DEM and street information (256 x 256 x 2), ignition
point maps (256 x 256 x 1), ERA5 meteorological raster data (256 x 256 x 2),
and tabular ERA5 variables processed through a multilayer perceptron. The model
produces two outputs: the primary burned area probability mask and an auxiliary
land cover classification mask, implementing a multitask learning approach that

serves as regularization and improves feature representation.
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The dataset has been divided into training and validation sets following an 80-20
split strategy. Specifically, the training set comprises 872 fire events (about 80% of
the total 1090), covering diverse geographical locations across the Piedmont region.
The remaining 218 events (20%) form the validation set, selected to maintain
geographical diversity while ensuring an independent evaluation. This division
ensures that the model is trained on a substantial portion of the available data while
preserving sufficient samples for robust validation.

The experiments were conducted on one NVIDIA RTX 2080i with 11GB GDDR6
memory. The substantial computational resources were necessary due to the multi-
modal nature of the data and the complexity of processing multiple high-resolution
satellite imagery sources simultaneously. Data preprocessing and analysis were
performed using Python with libraries including NumPy, pandas, and rasterio for
geospatial data handling. The neural network models were developed and trained
using the PyTorch framework with additional dependencies including segmentation-
models-pytorch for baseline architectures and specialized remote sensing libraries for
efficient data loading and augmentation. All Python packages and their versions are

summarized in Table 5.1

Library Version
python 3.10.12
torch 2.8.0
torchvision 0.23.0
pytorch-lightning 2.5.3
segmentation-models-pytorch 0.5.0
torchgeo 0.6.2
torchmetrics 1.8.1
rasterio 1.4.3
geopandas 1.1.1
xarray 2025.6.1
numpy 2.2.6
pandas 2.3.1
scipy 1.15.3
opencv-python-headless 4.12.0.88
albumentations 2.0.8
kornia 0.8.1
matplotlib 3.10.5
hydra-core 1.3.2
tqdm 4.67.1

Table 5.1: Python packages and versions used in the experiments

5.1.2 Training Process

The training methodology employed in this work incorporates several specialized
components designed to handle the unique challenges of multimodal wildfire prediction
and multi-task optimization. All input tiles are sampled at a resolution of 256 x 256

pixels, providing sufficient spatial context for local fire behavior patterns while
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maintaining computational efficiency. The dataset exhibits significant class imbalance,
with burned pixels representing a small fraction of the total pixel population for each
image. There are also cases of large burned areas that occupy the majority of the
256x256 tile, but most fires in the dataset are relatively small in spatial extent.

The model optimization employs a Stochastic Gradient Descent (SGD) optimizer
with momentum, configured with an initial learning rate of 0.01, momentum parameter
of 0.9, and weight decay of 1 x 10™* for regularization. This configuration provides
robust convergence characteristics for the multi-task learning scenario while preventing
overfitting through appropriate regularization. The learning rate scheduling follows
a Cosine Annealing strategy with a minimum learning rate threshold of 1 x 10~%.
This scheduler provides a learning rate pattern that begins with higher learning
rates for rapid initial convergence and gradually reduces the learning rate following a
cosine function. The cosine annealing approach enables effective exploration of the
parameter space during early training phases while allowing fine-grained optimization
in later epochs, facilitating escape from local optima and improved final convergence.

Training is conducted with a batch size of 16 samples over a maximum of 100
epochs, with each epoch processing the entire training dataset. The relatively modest
batch size accommodates the memory requirements of the multimodal architecture
while ensuring stable gradient estimates for the multi-task learning objectives.

The training process incorporates a multi-task learning framework that simul-
taneously optimizes burned area prediction and land cover classification objectives
through a combined loss function that balances both tasks. The specific loss function
formulation and weighting strategies are detailed in Section 5.2. To prevent overfitting
and ensure robust model generalization, the training process incorporates several
regularization mechanisms. Beyond the weight decay regularization applied through
the optimizer, an early stopping mechanism monitors validation performance to halt
training when convergence is achieved.

The early stopping implementation tracks validation IoU (Intersection over Union)
as the primary performance metric, with a patience parameter of 30 epochs and
a minimum improvement threshold of 0.001. This configuration allows sufficient
time for the model to recover from temporary performance plateaus while pre-
venting unnecessary prolonged training that could lead to overfitting. The early
stopping mechanism operates in 'maximum’ mode, seeking to maximize validation
IoU performance. Throughout training, the model with the highest validation IoU is
automatically saved as the best checkpoint, ensuring that the final model represents
the optimal performance state rather than the last training epoch.

Comprehensive training monitoring is implemented using TensorBoard logging to
track loss progression, performance metrics, and model predictions throughout the
training process. The monitoring system records separate loss values for both burned
area and land cover tasks, enabling detailed analysis of multi-task learning dynamics.
Visual monitoring includes periodic logging of prediction samples compared against
ground truth data, providing qualitative assessment of model performance evolution.

These visualizations display input satellite imagery using a false-color composite
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(SWIR/NIR/Red bands) alongside ground truth burned area masks and model
predictions, facilitating immediate assessment of prediction quality and potential
failure modes. The monitoring framework tracks key metrics including training
and validation loss for both tasks, IoU scores, and learning rate evolution, enabling
detailed post-training analysis of convergence patterns, task interaction effects, and
optimization dynamics specific to the multi-task learning framework.

The training implementation utilizes PyTorch as the primary deep learning frame-
work, with GPU acceleration for efficient computation. The multimodal architecture
requires substantial computational resources due to the processing of multiple high-
resolution satellite imagery channels combined with auxiliary geospatial data streams.
Data loading employs parallel processing with 4 worker threads and memory pinning
for optimal GPU utilization, while the training process incorporates computational
optimizations to manage memory requirements while maintaining numerical precision
for the multi-task optimization objectives.

A comprehensive summary of all training hyperparameters and configuration

settings employed in this work is provided in Table 5.2

Parameter Value
Batch size 16
Epochs 100
Input resolution 256 x 256
Optimizer SGD
Learning Rate 0.01
Momentum 0.9
Weight Decay 1x1074
Scheduler Cosine Annealing
Min Learning Rate 1x107*
Early Stopping Patience 30 epochs
Early Stopping Threshold 0.001

Table 5.2: Summary of training hyperparameters and configuration settings

The Python library for data augmentation considered in this thesis is albumenta-
tions, which provides a wide range of techniques for image augmentation. In this
work, the augmentation pipeline was specifically designed to improve the robustness
of the model when dealing with multi-source geospatial data (Sentinel, Landsat, DEM,
ERAS, ignition points, and landcover). The transformations are mainly geometric,
aiming to simulate realistic variations that may occur in remote sensing data.

The pipeline applies horizontal and vertical flips, random 90° rotations, small
affine transformations (shift, scale, and rotation), and random resized crops. These
operations introduce variability in orientation, scale, and position of the input data,
making the model more invariant to geometric transformations. All blank areas
resulting from transformations are filled with reflection at the image borders, thus
preserving local structures and continuity of visual features.

Table 5.3 summarizes the augmentations with their corresponding probabilities
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and parameter values.

Transformation Probability Values
Horizontal Flip 0.6 -
Vertical Flip 0.6 -
Random Rotate 90° 0.6 -

Shift 0.5 +0.15
Scale 0.5 +0.1
Rotation 0.5 +15°
Random Resized Crop 0.7 Scale: [0.7, 0.9]

Table 5.3: Data augmentation parameters used in the proposed pipeline.

By using these different augmentation techniques, the training set is enriched with
a greater diversity of possible image variations, allowing the model to increase its
robustness and generalization capabilities when applied to real-world remote sensing

scenarios.

5.2 Loss Functions

The choice of the loss function plays a fundamental role in guiding the optimization
process of the network and, consequently, in determining its performance on the target
tasks. In the proposed framework two tasks are learned jointly: the segmentation
of the burned area and the classification of landcover categories. For each of these
tasks, a different loss function has been adopted, selected according to the specific
characteristics of the problem.

For the segmentation of burned areas, the network is required to discriminate
between burned and unburned pixels, which corresponds to a binary segmentation
problem. In this context, a Dice loss has been employed. The Dice coefficient, from
which this loss is derived, measures the degree of overlap between the predicted
mask and the ground truth. Its value ranges from 0 to 1, where 1 corresponds to a
perfect overlap. The corresponding loss is defined as one minus the Dice coefficient,
thus forcing the model to maximize the similarity between predictions and actual
burned regions. This formulation is particularly effective when the classes are highly
imbalanced, as is often the case in wildfire mapping: the burned area typically
occupies only a small fraction of the input patch, and standard pixel-wise losses such
as Cross-Entropy may lead the model to favor the majority class (non-burned). By
focusing directly on the overlap, the Dice loss mitigates this problem and better
reflects the quality of the segmentation in real-world applications.

In parallel, the model also learns to predict landcover classes, which provide
additional contextual information about the type of surface affected by the fire.
This is formulated as a multi-class classification problem, for which a Cross-Entropy
loss has been used. This function measures the dissimilarity between the predicted
probability distribution and the true class distribution. Specifically, for each pixel

the prediction consists of a probability vector over the possible classes, and the loss
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penalizes strongly those cases in which the probability assigned to the correct class
is low. The logarithmic nature of the formulation ensures that misclassifications
with high confidence are penalized more severely, while correct predictions with high
probability contribute little to the loss. In order to prevent irrelevant background
pixels from influencing the optimization, all pixels labeled as background are ignored
in the computation of the Cross-Entropy loss. This design choice allows the model
to concentrate on the areas of real interest, improving the quality of the landcover
predictions.

The overall optimization objective of the network is obtained by combining the
two contributions into a single scalar value, which the model minimizes during

training. The total loss is expressed as a weighted sum of the individual losses:

L= Amask : LDice + )\lc . LCE- (51)

In the experiments both weights were set to Apask = Aie = 0.5, giving equal
importance to the two tasks. This balance reflects the dual objective of the frame-
work: on one hand, to accurately delineate the extent of the burned areas, which
represents the main output of the system, and on the other hand, to exploit auxiliary
landcover classification in order to encourage the network to learn richer and more
discriminative feature representations. By jointly optimizing these two complemen-
tary objectives, the model achieves improved robustness and generalization, which
are crucial in the context of wildfire mapping across heterogeneous landscapes and

varying environmental conditions.

5.3 Evaluation Metrics

The evaluation of model performance was carried out using the Intersection over
Union (IoU), also known as the Jaccard Index. This metric was chosen as the sole
performance indicator since the primary objective of the framework is the accurate
segmentation of burned areas. The auxiliary landcover prediction task, although
present during training, was not evaluated with a dedicated metric. Its role was
limited to serving as a form of regularization: it was sufficient to verify that the
corresponding loss decreased during training, ensuring that the network was effectively
learning also this auxiliary task.

Formally, the IoU between a predicted region Y and the ground truth region Y
is defined as

. yny]
IoU(Y,Y) = ma

(5.2)

where |Y N Y| denotes the number of pixels correctly predicted as belonging
to the target class, and |Y U 57] the total number of pixels belonging to either the
ground truth or the prediction. The value of the IoU ranges from 0 to 1, where 1

indicates perfect agreement between predicted and reference regions. This metric
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is particularly suitable in segmentation problems, as it provides a direct measure
of spatial overlap and is robust to class imbalance, which is especially relevant in

wildfire mapping where burned areas may represent only a small fraction of the scene.

5.4 Results

The experimental evaluation aimed at assessing the feasibility of predicting final
burned area extent from pre-fire observations using the proposed multimodal deep
learning architecture. Given the exploratory nature of this work, the focus was not on
reaching operational performance, but rather on understanding the model’s behavior
under different configurations and identifying promising directions for future research.
The evaluation strategy centered on systematic ablation studies, where individual
components were varied while maintaining all other factors constant, enabling a
clearer understanding of each design choice’s contribution to overall performance.

The best-performing configuration, obtained with the selected hyperparameters,
fixed data augmentations, balanced loss weights (0.5 for both land cover and mask
losses), and 1 x 1 convolutions in the fusion blocks, achieved a maximum Intersection
over Union (IoU) of 38.59%. While modest in absolute terms, this represents a
meaningful result considering the inherent complexity of the task and the experimental
constraints of this study. This baseline configuration was established after preliminary
hyperparameter tuning and served as the reference point against which all subsequent
variations were compared. The equal weighting between the two loss components
was motivated by the hypothesis that both environmental context (captured through
land cover classification) and direct spatial information (encoded in the burned area
mask) should contribute equally to the learning process.

To further explore the robustness of the model and investigate the sensitivity of
the architecture to specific design decisions, several controlled variations were tested
while keeping all hyperparameters constant and modifying only a single component
at a time. This experimental protocol was designed to isolate the effect of each
modification and provide insights into the relative importance of different architectural

and training choices:

e Fusion block convolution size. The first variation examined the impact
of kernel size within the fusion blocks, which are responsible for integrating
information from different modalities. Replacing 3 x 3 convolutions with 1 x 1
kernels led to a decrease in performance, with a maximum IoU of 37.73%. While
the difference appears relatively small, it suggests a consistent trend across
the validation set. A plausible explanation is that larger kernels introduced
additional parameters and a broader receptive field, which may have diluted the
capacity of the fusion block to integrate modality-specific features effectively in
the limited dataset scenario. The 1 x 1 convolutions, being more parameter-
efficient, may have provided a better inductive bias for the cross-modal fusion

task when training data is scarce. This finding highlights the importance of
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balancing model capacity with dataset size, particularly in fusion architectures

where different information streams must be combined effectively.

Loss weighting. The second experiment investigated whether altering the
balance between the two supervised signals could improve performance by
prioritizing one learning objective over the other. Adjusting the weights to 0.6
for land cover classification and 0.4 for burned area mask prediction resulted
in a maximum IoU of 34.69%, representing a more substantial drop compared
to the baseline. This suggests that deviating from equal weighting reduced
the model’s ability to jointly optimize environmental context and burned area
segmentation, potentially biasing the network toward one modality at the
expense of overall predictive coherence. The land cover classification task, while
providing valuable contextual information, may not directly encode the specific
spatial patterns required for accurate burned area prediction. Over-emphasizing
this auxiliary task appears to have diverted the model’s representational capacity
away from the primary segmentation objective, demonstrating the delicate

balance required in multi-task learning scenarios.

Data augmentation strategy. Given the limited size of the available dataset,
data augmentation plays a crucial role in preventing overfitting and improving
generalization. However, the third experiment revealed that augmentation
strategies must be carefully calibrated to the specific characteristics of the data.
Increasing the probability of geometric augmentations (e.g., flips up to 0.8) and
introducing additional pixel-level perturbations such as brightness and contrast
adjustments degraded performance to 29.74% IoU. This result indicates that
overly aggressive augmentations may have distorted the already limited data
distribution, reducing the model’s ability to learn meaningful spatial patterns
of burned area propagation. Wildfire spread patterns are inherently tied to
specific environmental conditions and topographical features, and excessive
augmentation may have broken these natural associations, creating synthetic
training examples that diverge too far from the underlying physical processes.
This finding underscores the need for domain-aware augmentation strategies

that respect the physical constraints of the prediction task.

Stratified batch sampling. An additional experiment attempted to address
the class imbalance inherent in the dataset by enforcing stratified sampling
within each batch. The dataset exhibits a strong imbalance in fire sizes, with
the vast majority of events being small fires, while large fires are relatively
rare but often of greater societal and ecological impact. To ensure that the
model received balanced exposure to fires of different scales during training,
fires were categorized by burned area extent into small (< 2000 pixels), medium
(2000-10000 pixels), and large (> 10000 pixels), and batches were constructed
to maintain equal proportions across these categories. The intent was to ensure

balanced exposure to different fire scales during training, potentially improving
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the model’s capacity to generalize across varying fire magnitudes and reducing
the bias toward predicting smaller burned areas. However, this approach yielded
a maximum IoU of 30.89%, representing a notable decline from the baseline
performance. This suggests that artificially enforcing uniform representation
may have disrupted the natural data distribution and prevented the model
from learning scale-dependent patterns effectively. The forced balancing may
have caused the model to encounter large fires with disproportionate frequency
relative to their true occurrence, potentially leading to a misalignment between
the learned distribution and the actual distribution of fire sizes encountered

during validation.

Dataset oversampling by fire size. To further investigate the model’s
sensitivity to fire scale and explore an alternative approach to addressing class
imbalance, an oversampling strategy was applied by selectively replicating
training samples based on their burned area extent. Specifically, medium-sized
fires were included twice and large fires three times in each training epoch,
while keeping small fires at their original frequency. The rationale was to
mitigate the dominance of small fires in the dataset and improve predictive
performance on larger burned areas, which are often of greater operational
interest for fire management agencies and pose more significant threats to
communities and ecosystems. This approach was expected to provide the
model with more learning opportunities from underrepresented fire scales
without completely disrupting the natural distribution, as would occur with
strict balanced sampling. Contrary to expectations, this strategy led to severe
performance degradation, with a maximum IoU of only 20.32%, the lowest
result across all tested configurations. The substantial drop suggests that
the introduced redundancy may have caused overfitting to the limited set
of large fire instances, while simultaneously reducing the model’s ability to
capture the diversity of smaller events that constitute the majority of real-world
cases. The repeated exposure to the same large fire examples likely led the
model to memorize specific patterns rather than learning generalizable features,
demonstrating the risk of naive oversampling approaches in scenarios where

the number of available samples in minority classes is already very limited.

These experiments highlight how small design changes can substantially affect model

performance in a task where signal-to-noise ratio is inherently low and where the

relationship between input features and target outputs is highly complex and nonlin-

ear. Notably, modifications to the data sampling and distribution strategy proved

particularly detrimental, underscoring the challenge of balancing dataset representa-

tiveness with the need to address class imbalance in wildfire prediction. The failures

of both stratified sampling and oversampling approaches suggest that the natural

distribution of fire sizes, despite its imbalance, may encode important information

about the underlying processes that the model needs to learn. Artificially altering

this distribution, whether through balanced sampling or selective replication, appears
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to interfere with the model’s ability to capture these patterns. The consistency of
reasonable performance across different configurations (with most variations yielding
IoU values above 30%) provides evidence that the core architecture is sound and
capable of extracting meaningful patterns from the available data.

Qualitative inspection further illustrates the model’s behavior and reveals specific
characteristics of its predictions. In many cases, predictions tend to favor compact and
homogeneous shapes, in contrast with the often irregular and fragmented geometries
of the true burned areas. This systematic bias toward smoother, more regular
predictions likely reflects both the inductive biases of convolutional architectures,
which naturally favor spatially coherent patterns, and the challenge of capturing the
stochastic nature of fire spread from deterministic environmental inputs alone. The
model appears to learn average fire spread tendencies but struggles to reproduce
the fine-grained spatial variations that emerge from local heterogeneities in fuel
distribution, micro-topography, and moment-to-moment changes in wind conditions.
Figure 5.1 shows examples where pre-fire Sentinel-2 imagery is compared with the
ground truth burned area and the predicted burned area, illustrating both cases
where the model successfully captures the general fire extent and cases where it fails
to predict irregular propagation patterns or fragmented burned areas.

The experimental results demonstrate that while the current approach shows
promise, significant technical challenges remain. The moderate IoU scores reflect
inherent limitations in predicting fire behavior from static environmental snapshots
without dynamic meteorological information during the fire event itself. Weather
conditions such as wind speed and direction, temperature, and humidity change
throughout a fire’s progression and play crucial roles in determining final burned
extent. The static nature of the pre-fire observations used in this study cannot
capture these dynamic influences, which likely accounts for much of the prediction
uncertainty. Additionally, the limited dataset size constrains the model’s ability to
learn robust representations across the diverse conditions under which fires occur.
The experiments with data augmentation and resampling revealed how sensitive
performance is to the characteristics of the training distribution, suggesting that
substantially larger and more diverse datasets would be necessary to achieve more

reliable predictions across varied fire scenarios.
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Figure 5.1: Examples of qualitative comparison: Sentinel-2 pre-fire acquisition
(left), ground truth burned area (center), and predicted burned area (right).



Chapter 6

Conclusion

This thesis set out to explore whether it is possible to predict wildfire extent before
the fire actually occurs, using only environmental conditions and the knowledge of
where ignition takes place. This represents a significant departure from traditional
approaches in wildfire remote sensing, which have predominantly focused on mapping
burned areas after fires have concluded. The challenge was substantial: rather
than identifying spectral changes caused by fire damage, the task required learning
complex relationships between landscape characteristics and fire behavior patterns
from environmental preconditions alone. The multimodal deep learning framework
developed in this work achieved a maximum validation IoU of 38.59% for burned
area prediction. While this performance level might initially seem modest, it must
be understood within the context of predicting future fire behavior rather than
classifying existing fire damage. The results demonstrate that environmental data
contains meaningful predictive signals about fire spread patterns, establishing that
pre-fire prediction is not only conceptually feasible but practically achievable with
current remote sensing and machine learning technologies. One of the most important
insights from this research concerns the critical role of ignition point information.
The prediction task becomes fundamentally different when the model knows where
a fire starts compared to scenarios where ignition location must also be inferred.
With ignition coordinates provided, the network can focus entirely on learning how
fires spread given specific environmental conditions, rather than simultaneously
solving the problems of where fires are likely to start and how they subsequently
propagate. This finding has important implications for operational applications,
suggesting that early detection systems combined with predictive models could
provide valuable decision support for emergency response teams. The systematic
experimentation conducted throughout this work revealed how sensitive multimodal
architectures can be to seemingly minor design choices. The optimal configuration
emerged from careful balancing of architectural components, loss function weighting,
and data augmentation strategies. These findings underscore the complexity of
the prediction task and the importance of methodical experimental approaches
when working in such unexplored research territory. Perhaps most importantly,

this work establishes a methodological foundation for future research in pre-fire
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wildfire prediction. The experimental framework, data integration strategies, and
evaluation methodologies developed here provide a starting point for researchers
who wish to advance this field further. The relatively modest performance achieved
suggests significant room for improvement, making this an exciting area for continued
investigation. Looking forward, numerous avenues exist for enhancing predictive
capabilities. Larger datasets encompassing diverse geographic regions and fire regimes
could improve model generalization. More sophisticated neural architectures might
better capture the complex spatial-temporal dynamics of fire propagation. Additional
environmental variables or higher temporal resolution data could provide richer
context for prediction models. Each of these directions builds upon the foundation
established in this thesis. The broader significance of this work extends beyond the
specific technical contributions. By demonstrating the feasibility of pre-fire burned
area prediction, this research opens possibilities for shifting wildfire management
from reactive to proactive strategies. Rather than responding to fires after they have
spread, future systems could potentially anticipate fire behavior patterns and inform
preventive measures or optimized resource deployment. This represents a meaningful
step toward more effective wildfire risk management in an era of increasing fire

frequency and intensity.
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