
Politecnico di Torino

Master’s Degree in Data Science and Engineering
A.y. 2024/2025
October 2025

Adaptation and Implementation of
an automated Corporate ETL

Framework on Microsoft Fabric
A Technical Approach to Integrating Data Workflows into a

Modern Cloud Platform

Academic Supervisor:
Prof. Paolo Garza
Company Supervisor:
Dr. Luca Bregata

Candidate:
Guillermo Josè Gallucci

Abstract

The exponential growth of data generated by computational systems, users, and
devices has introduced significant challenges for real-time processing, resource opti-
mization, analysis, and the provision of training material for AI systems. On-premise
infrastructures, while capable of high computational power, are constrained by hard-
ware and tool configuration, limiting scalability and collaboration. To address these
limitations, the research focuses on Microsoft Fabric, a SaaS cloud-based platform
integrating data processing and real-time analytics.

The research, carried out in partnership with Mediamente Consulting, aims to
adapt and implement the corporate data integration automated framework within
Microsoft Fabric, and to evaluate its performance relative to the on-premise version.
Furthermore, the study seeks to identify a best-practice architecture among the
various solutions provided by Fabric.

Data from CSV and Excel sources is ingested into Microsoft Fabric’s centralized
storage, OneLake. The pipeline loads the data in Delta Tables within a Data Lake
architecture. Downstream processing layers are designed for incremental loads,
propagating only new or updated records, which are subsequently evaluated to verify
compliance with data quality and referential integrity constraints. The final stage
has three different implementations to evaluate performance: Spark, SQL-based, and
Dataflows.

It resulted in outstanding performance from the Spark- and SQL-based imple-
mentations compared to the Dataflows. Nevertheless, the overall performance in
Fabric was worse than the metrics achieved in its on-premise version, except when
dealing with large datasets, where Fabric outperformed. These results are due to
Fabric’s optimized cloud engines. The SQL engine benefits from query optimization,
Spark excels with distributed computation for very large datasets, and Dataflows
introduces overhead and abstraction due to its low-code abstraction, resulting in
lower performance.

ii

Table of Contents

Abstract ii

List of Figures vii

1 Introduction 1
1.1 Goal . 2
1.2 Thesis structure . 4

2 Data Warehouse 6
2.1 OLAP and OLTP . 7
2.2 Structure of the Data Warehouse . 7

2.2.1 William H. Inmon’s Architecture 7
2.2.2 Ralph Kimball’s Architecture 9
2.2.3 Comparison Between Inmon’s and Kimball’s Architectures . . 11
2.2.4 Use Cases: Inmon and Kimball 11

2.3 Data Modeling . 12
2.3.1 Star-Schema . 12
2.3.2 Snowflake-Schema . 17

2.4 Data Marts . 18
2.5 Metadata . 19

3 Data Lake 20
3.1 Data Lake . 20

3.1.1 Comparison Between Data Warehouses and Data Lakes 21

4 Microsoft Fabric 22
4.1 Terminology used in Microsoft Fabric 22
4.2 OneLake . 23
4.3 Experiences . 25

4.3.1 Fabric Data Engineering . 25
4.3.2 Fabric Data Factory . 27
4.3.3 Fabric Data Warehouse . 28

4.4 Computation Engines . 29

iv

4.5 Limitations of Microsoft Fabric . 29
4.6 Alternatives to Microsoft Fabric . 30

4.6.1 Oracle Data Integrator (ODI) 30
4.6.2 Workato . 31

5 Proposed Solution: Mediamente Consulting’s ETL Framework 33
5.1 L0 . 33
5.2 L1 . 35

5.2.1 OK . 36
5.2.2 Operational Data Store (ODS) 37
5.2.3 Master Data Management (MDM) 37
5.2.4 OUT . 38

5.3 L2 . 39
5.4 Metadata tables . 39

5.4.1 FLOW MANAGER . 39
5.4.2 TABLE MANAGER . 40
5.4.3 METADATA MANAGER . 41

5.5 Scheduling of Layers and Execution Rules 41

6 Implementation of the Proposed Solution within the Microsoft
Fabric Environment 42
6.1 Reset_Pipeline . 43
6.2 L0 . 44

6.2.1 Metadata_Creator . 45
6.2.2 Create_Schema . 46
6.2.3 STG . 49
6.2.4 DLT . 52

6.3 L1 . 55
6.3.1 First solution: Spark . 55
6.3.2 Second solution: T-SQL Stored Procedures 67
6.3.3 Third Solution: Dataflow Gen2 74
6.3.4 Extra: Master Data Management (MDM) 80

7 Use Case: Mediamente Consulting ETL Framework 81
7.1 First ETL Execution – 2025-07-18 21:47:51 83
7.2 Second ETL Execution – 2025-07-18 22:15:25 85
7.3 Third ETL Execution – 2025-07-18 22:43:24 88
7.4 Forth and Last ETL Execution – 2025-07-18 23:18:27 92
7.5 Extra: Master Data Management (MDM) 93

8 Results 94
8.1 L0 performance . 94
8.2 L0 Oracle-Based Performance . 95

v

8.3 L1 Spark-Based Performance . 96
8.4 L1 SQL-Based Performance . 96
8.5 L1 DF-Based Performance . 97
8.6 L1 Oracle-Based Performance . 98
8.7 Comparison between the different L1 implementations 98
8.8 Final overall comparison between the Fabric implementations and the

Oracle implementation . 99

9 Discussion of results 101

10 Conclusion 104

Bibliography 107

vi

List of Figures

1.1 Global Data Generated Annually [1] 1
1.2 Trend of Corporate Data Stored in the Cloud Worldwide over the

Years [2] . 3
1.3 Cloud Migration Services Market Size, by region from 2019 to 2032

(estimated) [3] . 3

2.1 Structure of a Data Warehouse by William H. Inmon. [4] 8
2.2 Structure of a Data Warehouse by Ralph Kimball. [5] 9
2.3 Sample fact table. [5] . 13
2.4 Sample dimension table. [5] . 16
2.5 Sample Star Schema. [5] . 16
2.6 De-normalized product dimension table [5] 17
2.7 Snowflake product dimension [5] . 18

4.1 Microsoft Fabric’s architecture [6] . 24
4.2 Unified data from different sources in Delta Parquet Format [7] . . . 25
4.3 Microsoft Fabric serverless computations [7] 29
4.4 Gartner Magic Quadrant for Integration Platform as a Service [9] . . 32

5.1 ETL framework designed by Mediamente Consulting 33

6.1 Main Pipeline . 42
6.2 L0 Microsoft Fabric Pipeline . 44
6.3 Spark implementation of the L1 pipeline 56
6.4 Main pipeline for Level 1 . 67
6.5 Inside the ForEach block of the L1 pipeline 67
6.6 Inside the If condition block of the ForEach block of the L1 pipeline . 67
6.7 Main pipeline for the Dataflow L1 solution 75
6.8 Inside the first ForEach for the Dataflow L1 solution 75
6.9 Inside the If condition block of the ForEach activity 75
6.10 Inside the second ForEach for the Dataflow L1 solution 76
6.11 Inside the If condition block of the second ForEach activity 76
6.12 OK step, Dataflow Implementation 77

vii

6.13 Alternative Dataflow solution for Level 1 78
6.14 Alternative ForEach elements . 79
6.15 Switch Activity for the alternative L1 solution 79
6.16 Alternative Dataflow for the Switch Activity 79

7.1 Snowflake Data Model toy example 81
7.2 On the left, the metadata from the Excel file; on the right, its mapping

to a Delta Table . 83
7.3 Content of the FLOW_MANAGER after the first ETL process execution . 83
7.4 Content of the TABLE_MANAGER after the first ETL process execution . 84
7.5 Content of the table Vendite_STG after the first execution. 84
7.6 Content of the table Vendite_DLT after the first execution. 84
7.7 Content of the table Vendite_OK after the first execution. 85
7.8 Content of the table Vendite_ODS after the first execution. 85
7.9 Content of the table Clienti_PRE_LOAD after the first execution . . . 85
7.10 Content of the table Clienti_ODS at the first exection 85
7.11 Content of the table Clienti_STG after the second execution of the

ETL process . 86
7.12 Content of the table Clienti_DLT after the second execution 86
7.13 Content of the FLOW_MANAGER after the second execution 86
7.14 Content of Vendite_STG after the second execution. 87
7.15 Content of Vendite_DLT after the second execution. 87
7.16 Content of Vendite_ERR after the second execution 87
7.17 Content of Vendite_OK after the second execution 87
7.18 Content of Vendite_ODS after the second execution 87
7.19 Content of Clienti_PRE_LOAD after the second execution 88
7.20 Content of Clienti_ODS after the second execution 88
7.21 Content of Clienti_STG after the third execution of the ETL process 88
7.22 Content of Clienti_DLT after the third execution of the ETL process 89
7.23 Content of Clienti_OK after the third execution of the ETL process . 89
7.24 Content of Clienti_ODS after the third execution of the process . . . 90
7.25 Content of Flow_Manager after three executions. 90
7.26 Content of Località_DLT after the third execution 91
7.27 Content of Località_PRE_LOAD after three executions 91
7.28 Content of Località_ODS after three executions 91
7.29 Content of Vendite_STG after three executions 91
7.30 Content of Vendite_ODS after three executions 92
7.31 Content of Vendite_DLT in the last execution of the ETL process . . 92
7.32 Content of Vendite_DLT_HIS in the last execution of the ETL process 93
7.33 Content of Clienti_MDM . 93
7.34 Use case Star schema stored in the Data Warehouse 93

viii

8.1 L0 execution times in function of the number of rows in each processed
file . 95

8.2 Comparison between mean execution times of the L0 Fabric-based
implementation and L0 Oracle-based implementation 95

8.3 L1 - Spark-based execution times in function of the number of rows
in each processed file . 96

8.4 L1 - SQL-based execution times in function of the number of rows in
each processed file . 97

8.5 L1 - Dataflows - based execution times in function of the number of
rows in each processed file . 97

8.6 Comparison between the mean execution times of three L1 implemen-
tations . 98

8.7 Comparison between the mean execution times of three L1 implemen-
tations, and the Oracle-based implementation 100

ix

Chapter 1

Introduction

In today’s increasingly digital and automated world, data represents a vital resource,
experiencing exponential growth on a yearly basis [1] as Figure 1.1 displays. Often
referred to as "the new oil", data must be accurately captured, meticulously cleaned,
and efficiently processed to ensure high quality before being delivered to end users.
This requires an informed, precise, and timely decision-making processes.

Figure 1.1: Global Data Generated Annually [1]

Moreover, data are not only essential for managerial decisions, but also serve as
the fundamental input for Artificial Intelligence and Machine and Deep Learning
systems. These systems rely on datasets -commonly named as training sets- to learn
patterns and behaviors; subsequently, models are validated using separate validation

1

Introduction

sets and finally tested on tests sets to evaluate the autonomous decisions they make.

Due to the sheer volume, velocity, and variety of modern data, optimizing the
entire data pipeline has become a critical necessity. Efficiency and scalability are
no longer optional: they are foundational requirements to ensure that data can be
ingested, transformed, and delivered in a timely manner. Real-time or near-real-
time analytics capabilities are essential, as delayed insights can result in missed
opportunities, suboptimal decisions, and system failures. The value of data does
not lie in its accumulation, but rather in its timely transformation into actionable
information.

A data pipeline that cannot support rapid processing and intelligent distribution
across business units limits the organization’s ability to respond to market dynamics,
customer behavior, and internal operational needs. Therefore, the implementation of
a robust, automated and cloud-native ETL framework is crucial not only to maintain
data quality and integrity but also to ensure that data can effectively manage strategic
planning and real-time decision-making processes across the company.

1.1 Goal
The objective of this thesis is to design and implement an automated process in
Microsoft Fabric, a cloud-based environment capable of efficiently managing the
extraction of operational data from one or more sources, applying the necessary
transformation procedures to meet predefined quality standards, and ultimately
loading the refined data into a corporate Data Warehouse, then, evaluate if it can be
a possible competitor to established on-premise tools. This structured pipeline ensures
that data are prepared and made available for analysis and informed decision-making
across the organization.

The project has been developed in collaboration with Mediamente Consulting, a
technology and digital consulting firm that provides tailored solutions to support
the innovation and digital transformation of client organizations. The company
operates through several and specialized business units, the one that supervised
the development of this project is the Data Integration unit, which oversees data
ingestion, transformation, and synchronization processes, as well as the construction
of data warehouses, data marts and data lakes, in addition to enabling data-driven
operations through robust and scalable ETL architectures.

Several years ago, the Data Integration business unit developed a corporate
framework to manage automated and efficient ETL processes. This framework was
originally implemented using Oracle Data Integrator (ODI), an on-premise software
product that enables the integration of data from various sources, including Oracle
databases.

2

Introduction

However, over time, the landscape of enterprise data management has evolved
significantly. Clients now require cloud-based solutions that deliver comparable or
superior performance to traditional on-premise systems by reducing infrastructure
costs and hardware maintenance. Furthermore, Cloud platforms allow business to
allocate resources based on workload demands, which is very valuable in environments
where data volumes and process needs to fluctuate rapidly. In addition, cloud solutions
enable real-time collaboration among team members regardless of their department
or geographic location, fostering greater agility and faster decision-making.

Recent studies indicate that approximately 94% of companies worldwide have
adopted some form of cloud computing, and as of 2023, corporate data account for
60% of all data stored in the cloud [2]. As Figure 1.2 illustrates, this percentage
has been consistently increasing and is expected to continue its upward trend in the
upcoming years.

Figure 1.2: Trend of Corporate Data
Stored in the Cloud Worldwide over the
Years [2]

Figure 1.3: Cloud Migration Services
Market Size, by region from 2019 to 2032
(estimated) [3]

Figure 1.3 shows the growth of the market for cloud migration services over the
past several years and it is projected to continue expanding throughout the next
decade, with the United States leading this trend and Europe closely following [3].

It is within this context that Mediamente Consulting is exploring modern al-
ternatives to implement its automated ETL framework on cloud-based platforms,
aiming to maintain high performance and data quality standards while leveraging
the benefits of a modern, integrated cloud system.

The answer to this requirements and needs lie in Microsoft Fabric, that offers
an end-to-end solution for data movement, transformation and analysis. Microsoft
Fabric is built on top of Azure, leveraging its robust cloud infrastructure to deliver
scalable computing, high availability, and tight integration with other Microsoft
services such as Azure Data Factory and Power BI. This deep integration provides a
cohesive environment for developing data workflows.

3

Introduction

1.2 Thesis structure
The structure of the thesis is the following:

• Chapter 1 - Introduction: Explanation of the project’s objectives and underlying
motivation, the implementation of an automated ETL framework within a cloud
environment.

• Chapter 2 - Data Warehouse: Definition of a Data Warehouse, its main purpose
and key components. The chapter includes a comparison between the Kimball
and Inmon approaches in building a Data Warehouse, highlighting the advan-
tages and disadvantages of each, additionally, it outlines the differences between
OLTP and OLAP systems, and presents the Star and Snowflake Schema data
models. The chapter concludes with a brief description of Data Marts and the
role of metadata in the development of the Data Warehouse.

• Chapter 3 - Data Lake: Definition Data Lakes, its core purposes, and the
main advantages and disadvantages associated with its use. It also presents a
comparison with the Data Warehouse architecture.

• Chapter 4 - Microsoft Fabric: Presentation of Microsoft Fabric, a cloud plat-
form designed primarily for data extraction, transformation, and loading. It
introduces the core terminology used within Fabric, provides an overview of
OneLake as its centralized storage, and explores the main experiences offered by
the platform, including Data Factory, Data Engineering, and Data Warehouse.
The chapter also discusses Fabric’s limitations and reviews both on-premise and
cloud-based alternatives.

• Chapter 5 - Proposed Solution: Mediamente Consulting’s ETL Framework:
Definition of Mediamente Consulting’s solution to the problem addressed in this
thesis: a framework structured into three logical levels. Level 0 (L0) handles
data extraction from sources and incremental loading to the next level. Level 1
(L1) performs Data Quality checks and Data Transformation operations. Finally,
Level 2 (L2) is responsible for loading the processed data into a Data Warehouse.
This chapter also explains the fundamental role of metadata that enables the
automation of the ETL process.

• Chapter 6 - Implementation of the Proposed Solution within the Microsoft
Fabric Environment: Detailed explanation about how the theoretical framework
presented in the previous chapter is implemented on Microsoft Fabric through
pipeline orchestration, each pipeline is in charge of a logical level (L0, L1).
Specifically, Level 0 is realized by sequential execution of Spark Notebooks. For
Level 1, three different implementation options are proposed: Spark, T-SQL,
and Dataflows.

4

Introduction

• Chapter 7 - Use Case: Mediamente Consulting ETL Framework: Example
illustrating the framework functioning with a toy dataset, highlighting the key
instructions to give a practical perspective on the implementation described in
Chapter 6.

• Chapter 8 - Results: This chapter reports the metrics collected during the
execution of the ETL pipeline. The pipeline was tested with input files of
varying sizes—100, 1,000, 10,000, 100,000, and 1,000,000 rows. For each input
size, five executions were performed to measure execution times. Based on these
results, the mean, standard deviation, and 95% confidence interval (using the
Student’s t-distribution) were calculated. The evaluation covers L0 and the
three different implementations of L1, concluding with a comparative analysis
of the L1 alternatives.

• Chapter 9 - Discussion of results: Analysis and explanation of the results
obtained.

• Chapter 10 - Conclusion: A final reflection is provided based on the results
obtained, focusing on the maintainability and implementation aspects of the
ETL framework. Additionally, a conclusive assessment is given to determine
the most effective implementation among the proposed alternatives.

5

Chapter 2

Data Warehouse

A Data Warehouse is a centralized system specifically designed to collect, integrate,
and store large volumes of data from heterogeneous sources, with the primary goal
of supporting reporting, analysis, and decision-making processes. Unlike traditional
operational systems, Data Warehouses are optimized for historical and aggregated
analysis, enabling the frequent extraction of valuable business insights. These insights
are typically derived from a small number of complex queries based on dynamic
analytical needs. For instance, "What was the most acquired pharmaceutical drug
across Italian pharmacies before the COVID-19 outbreak, and which one was the
most acquired after?" Such a question requires access to integrated, time-variant
data, covering multiple periods, and the ability to perform comparative analysis over
aggregated purchase trends.

The main characteristics of a Data Warehouse, as defined by William H. Inmon,
(considered the father of data warehousing) can be defined as follows [4] :

• Subject Orientation: Data is organized around key or business domains. For ex-
ample, for a pharmaceutical company, the applications may include management
of drug inventories, tracking of sales transactions, monitoring of distribution
logistics and recording of prescriptions

• Integration: Data is collected from heterogeneous sources, often using different
formats, naming conventions or standards. As the data is fed to the warehouse,
it is converted, reformatted, encoded, transformed then unified into a consistent
structure.

• Non-volatility: When data is loaded in the Data Warehouse, it is loaded in a
static format called snapshot, when changes occur, a new snapshot record is
written; data is not updated or deleted by end-users, it can only be accessed.
This enables the preservation of historical data inside the Data Warehouse.

• Time-varying: Implies that data inside the Data Warehouse is accurate in a
specific point in time, indicated by a timestamp or a transaction date. A time

6

Data Warehouse

horizon refers to the temporal scope represented within a given data environment,
a Data Warehouse is capable of storing historical data over extended periods,
often ranging from 5 to 10 years, while an operational system can retain data
for a short period of time, usually between 60 and 90 days.

2.1 OLAP and OLTP
A Data Warehouse is usually supported by OLAP (Online Analytical Processing)
technology, since it enables efficient exploration and analysis of large volumes of
historical data. OLAP is specifically designed to support complex queries and multi-
dimensional analysis, making it ideal for decision-making and business intelligence
task, these systems are optimized for read-intensive operations and analytical perfor-
mance, they allow users to perform operations such as drill-down (examining more
details in data), roll-up (summarizing data), slice (filtering a specific dimension),
and dice (applying multiple filters). To enable fast querying and aggregation, OLAP
technologies typically use de-normalized data models like a Star Schema, where data
is organized into fact and dimension tables.

The opposite of OLAP technologies, are OLTP (Online Transaction Processing)
technologies, which are typically used in operational systems such as e-commerce
platforms, banking applications, and enterprise resource planning (ERP) systems.
OLTP systems are designed to handle day-to-day transactional operations, such as
inserts, updates, and deletes that occur in operational databases. These systems
ensure data consistency and integrity through normalized database structures.

Since the objective of this thesis is to build an ETL pipeline based on a de-
normalized data model, the focus will be on OLAP technologies, as they support a
Data Warehouse environment, particularly those involving data integration.

2.2 Structure of the Data Warehouse
The two Data Warehouse architectures that have endured over time and laid the
foundation for modern warehousing systems are those proposed by Ralph Kimball
and William H. Inmon.

2.2.1 William H. Inmon’s Architecture
In Inmon’s Building the Data Warehouse [4], data exists at multiple levels of granu-
larity, each serving different analytical needs. These levels include:

• Older detailed data, typically stored on an alternate, bulk storage

• Current detailed data, maintained for immediate analytical access

7

Data Warehouse

• Lightly summarized data, often corresponding to the data mart level

• Highly summarized data, used for executive dashboards and high-level reporting,
i.e., KPIs.

Data enters the Warehouse from operational systems through transformation
processes, to ensure consistency, quality and standardization. Once inside the Data
Warehouse, data transitions over time and through levels of aggregation: as it ages,
it moves from current detail to historical detail; as it is summarized, it moves from
detailed to lightly summarized, and eventually to highly summarized forms.

Figure 2.1: Structure of a Data Warehouse by William H. Inmon. [4]

Figure 2.1 illustrates Inmon’s proposed architecture, highlighting the various levels
of data granularity present within the Data Warehouse environments.

This Data Warehousing approach offers several advantages, particularly suited
to large and complex enterprise environments. First and foremost, it serves as
a centralized and integrated source of data for the entire organization, ensuring
consistency and integrity across all departments. Its normalized structure minimizes
data redundancy, reducing the risk of updates and simplifying data maintenance.
Moreover, the logical model is closely aligned with real business entities and processes,
making it easier for both technical and business stakeholders to understand and
work with. The architecture is adaptable, allowing data warehouse to accommodate
different business requirements and changes in source system. Finally, it provides a
high-quality, consolidated data foundation.

Nevertheless, the Inmon approach also presents possible drawbacks. As the
data model evolves and more tables are added, the overall architecture can become

8

Data Warehouse

increasingly complex and challenging to manage. Its implementation and maintenance
demand specialized data modeling skills, which are often difficult to find and expensive.
Additionally, the initial design and deployment phase tends to be time-consuming,
delaying the time-to-value for the organization.

2.2.2 Ralph Kimball’s Architecture
In The Data Warehouse Toolkit [5], Kimball presents a Data Warehousing architecture
structured around distinct functional components, each responsible for a specific set
of tasks within the overall data integration process. Unlike Inmon’s architecture,
which emphasizes hierarchical levels of data granularity,

Figure 2.2: Structure of a Data Warehouse by Ralph Kimball. [5]

Figure 2.2 presents the Kimball architecture along with the components previously
described.

Operational systems are responsible for capturing an organization’s transactional
data. These sources systems are external to the Data Warehouse, as their structure
and content are beyond the control of data warehouse designers. The primary
objectives of these systems are high processing performance and availability, which
is why queries executed against them are narrowly scoped, often retrieving data one
record at a time. It is therefore assumed that operational systems are not intended
for the complex queries intended for a Data Warehouse. Furthermore, they retain
only limited historical data, while a Warehouse has extended capacity.

The data staging area of the Warehouse serves a dual purpose: it acts both as a
temporary storage zone and as the core environment for Extract, Transform and Load
processes (ETL). This area bridges the gap between the operational source systems
and the data presentation layer, functioning as a space where raw data is cleaned,
integrated and restructured into a format suitable for decision-making and analysis.
«It is somewhat analogous to the kitchen of a restaurant, where raw food products

9

Data Warehouse

are transformed into a fine meal. Similar to the restaurant’s kitchen, the backroom
data staging area is accessible only to skilled professionals. The Data Warehouse
kitchen staff is busy preparing meals and simultaneously cannot be responding to
customer inquiries. Customers aren’t invited to eat in the kitchen. It certainly isn’t
safe for customers to wander into the kitchen. We wouldn’t want our Data Warehouse
customers to be injured by the dangerous equipment, hot surfaces, and sharp knives
they may encounter in the kitchen, so we prohibit them from accessing the staging
area. Besides, things happen in the kitchen that customers just shouldn’t be privy
to.»[5]

The extraction phase represents the initial step in the process of integrating
into a Data Warehouse. This phase involves identifying and reading the relevant
data from various source systems. The extracted data is then transferred to a
staging area, where it undergoes preliminary processing in preparation for subsequent
transformation activities. These operations typically include data cleansing (e.g.,
correcting typographical errors, resolving inconsistencies in domain values, handling
missing or null values, and converting data into standardized format), the integration
of data from different, heterogeneous sources, de-duplication and the assignment of
surrogate or warehouse-specific keys. The final step in the ETL process is the loading
phase. Here, the cleansed and transformed data is transferred into the presentation
layer of the Data Warehouse, typically by means of bulk loading systems provided
by the data mart systems. Following the loading process, the data mart indexes the
newly ingested data to optimize query performance. Once the data marts are fully
populated, indexed, and validated, the publishing phase commences, which means
notifying the user community of the availability of the updated data.

The data presentation area serves as the portion of the Data Warehouse where
data is systematically organized, stored, and made accessible for direct querying
by end users, report generators, and various analytical applications. It is build
with a series of integrated data marts. This area represents the visible face of the
Data Warehouse and the only part of the system where the business community can
directly interact with, typically with data access tools and visualization platforms.

The Kimball architecture offers several advantages. One key benefit is the speed
of development, as dimensional modeling does not involve normalization, allowing
for rapid execution of initial design phase. Furthermore, the system footprint is
minimal, since the focus is on individual processes rather than the entire enterprise,
resulting in reduced database space requirements. The architecture also supports
fast data retrieval, as data is organized into clearly defined fact and dimension
tables. Additionally, the approach requires only a small team of designers and
planners due to the process-oriented nature of the warehouse. Query optimization
is also straightforward, and manageable. Finally, Kimball promotes a conformed
dimensional structure, which supports data quality and consistency across business

10

Data Warehouse

processes.

Despite many strengths, the Kimball Data Warehousing also presents several
limitations. One of the primary concerns is that data is not fully integrated prior
to reporting. Additionally, the de-normalized structure is inherent in the Kimball
approach can lead to data redundancy, increasing the risk of inconsistencies during
updates. Performance issues may also arises as fact tables grow in complexity.
Moreover, the dimensional model is less flexible.

2.2.3 Comparison Between Inmon’s and Kimball’s Architec-
tures

Aspect Inmon Architecture Kimball Architecture
Design approach Top-down Bottom-up
Data modeling Normalized De-normalized
Data integration Before reporting During reporting
Complexity and de-
velopment time

More complex; longer ini-
tial development time

Faster to implement and
easier to understand

Flexibility High flexibility Low flexibility
Query performance Complex joins, slower Optimized for fast query-

ing
Data marts Created after DW Built first and integrated

Table 2.1: Comparison between Inmon and Kimball data warehouse architectures

2.2.4 Use Cases: Inmon and Kimball
Both the Kimball and Inmon methodologies regard the Data Warehouse as centralized
repository that supports business reporting and rely on ETL processes for data
loading. However, they differ fundamentally in their data modeling techniques and
the sequence in which data is integrated into the Warehouse. The choices between
these approaches significantly affects the initial delivery time of the Warehousing
project and the system’s ability to accommodate future modifications in the ETL
design, therefore, the following factors should be considered:

• Reporting needs: For organization-wide, fully integrated reporting, the Inmon
approach is more appropriate, while if reporting is focused on a specific business,
the Kimball method tends to be more effective.

• Project Deadline: The normalized data modeling in the Inmon method is
more complex and time-consuming compared to Kimball’s de-normalized design.
Hence, Kimball is preferred when faster project delivery is required.

11

Data Warehouse

• Team and Resources: Inmon is more efficient when there is a whole team of
developers working behind this warehousing architecture. Kimball’s simpler
dimensional models can be managed by smaller teams.

• Flexibility and Change Management: Inmon’s approach offers greater adaptabil-
ity to frequent changes in reporting needs. Kimball is better suited for relatively
stable environments with predictable requirements.

For the development of an ETL process on Microsoft Fabric, where data modeling
will follow the star schema, and considering the need for a rapid pipeline deployment,
the individual nature of this thesis work, as well as the limited variability in the
requirements of Mediamente Consulting’s clients, the most suitable architecture is
the one proposed by Kimball.

2.3 Data Modeling
A data model is a conceptual framework that defines how data is structured, stored,
and accessed in a database. It outlines the organization of data elements and
relationships between them, providing a blueprint for how information will be stored
and retrieved. They can be classified into several types, such as hierarchical, network,
relational, and multidimensional models, depending on the specific needs and goals
of the system.

The key components of a data model are entities, attributes, relationships and
constraints. Entities represent the main objects within the system, such as clients,
products or orders. Attributes describe the specific characteristics of each entity,
such as a name, price, or date. Relationships define the logical connections between
different entities, such as the link between a customer and the orders they place.
Finally, constraints establish the rules that ensure the consistency and validity of
the data, such as unique identifiers or required values.

2.3.1 Star-Schema
One of the most commonly used data models in Data Warehousing is the star schema,
which is a multidimensional, de-normalized data model that organizes data into a
central fact table and peripheral dimension tables.

The Fact Table

Kimball, in The Data Warehouse Toolkit [5], defines the fact table as the primary
table in a dimensional model, used to store the quantitative performance metrics
generated by the business processes. It captures the measurable outcome of specific
business activities and typically resides within a single data mart to ensure clarity

12

Data Warehouse

and consistency. Because factual data represent the bulk of the storage in any data
mart, it is essential to avoid redundancy by not duplicating these data across multiple
locations in the enterprise.

In this context, the term fact refers to a numerical business measure. For example,
as Figure 2.3 illustrates, by looking transactions in a drugstore and recording, for
each day, the number of units sold and the corresponding revenue for each drug in
each store. These recorded values are the facts. Each measurement occurs at the
intersection of multiple dimensions - such as time, product, store. This intersection
defines the grain of the table, which specifies the exact level of detail or granularity
at which the data is stored.

Figure 2.3: Sample fact table. [5]

A row in a fact table corresponds to a measurement, and all the measurements in
a fact table must be in the same level of granularity.

A measure must posses the property of additivity because, in Data Warehousing
applications, users typically analyze aggregated data rather than individual records
in the fact table. While querying, the results often involve multiple rows, and
summarizing these rows usually requires performing sum operations to ensure a
meaningful aggregation across different dimensions. This constraint excludes the
possibility of textual measures in practice, yet, such a scenario is theoretically
possible, though rare. Often, textual measurements are descriptive and come from
a limited set of predefined values. Designers should strive to include these textual
attributes within dimension table rather than fact tables, as this allows for better
correlation with other textual dimension attributes and reduces storage requirements.
Redundant textual data should never be stored in fact tables. Unless the text is
unique for every fact record, it belongs in a dimension table.

Returning to Figure 2.3, if there is no sales activity on a given day for a given
product, the record is out of the table. It is very important to not fill the fact
table with zeros representing nothing, because these values would overwhelm it and
uselessly increase the size of the table. By only including true activity data, fact
tables tend to be sparse. Despite this sparsity, they typically account for around 90%
or more of the total storage space in a dimensional database. Fact tables are deep,

13

Data Warehouse

which means they have a large number of rows but relatively few columns (narrow).

In addition to numerical measures, a fact table includes multiple foreign keys. A
foreign key is an attribute that creates a link between the fact table and a related
dimension table by referencing the primary key of that dimension, thereby enabling
multidimensional analysis. The set of all foreign keys in a fact table constitutes the
table’s composite primary key, which uniquely identifies each row. In this context,
any table possessing a composite key is, by definition, a fact table, as it encapsulates
a many-to-many relationship among dimensions. As illustrated in Figure 2.3, a
foreign key such as the product key in the fact table corresponds to a marching
primary key in the product dimension. When each foreign key in the fact table
correctly matches its associated dimension’s primary key, the schema is set to preserve
referential integrity. This structural consistency ensures reliable joins between fact
and dimension tables.

Dimension Tables

Dimension tables play a central role in providing contextual and descriptive informa-
tion for the numeric data stored in fact tables. These tables contain attributes that
describe each row in detail. As such, dimension tables are intentionally designed to
include a large number of descriptive, often-like attributes and reporting, therefore,
it is common for a dimension to contain between 50 and 100 attributes, each con-
tributing to the understanding of the underlying data. From a structural perspective,
dimension tables are typically shallow in terms of row count -usually consisting of
fewer than one million rows- but wide in terms of the number and size of columns;
each dimension is uniquely identified by a primary key (denoted as PK), which also
functions as the foreign key reference in the fact table, thus maintaining the integrity
of the star schema.

The dimension attributes serve as the primary source for query constraints,
groupings, and report labels. When formulating analytical queries, these attributes
are frequently by terms such as "by week" or "by brand", where "week" and "brand"
are explicitly defined as dimension attributes. This role makes dimension attributes
essential for filtering and aggregating data in user-driven reporting.

The analytical power and value of a Data Warehouse are directly proportional to
the quality, completeness, and semantic clarity of its dimension attributes.

In a dimensional data model, the best attributes for dimension tables, are often
textual and discrete, these attributes should be expressed using clear, business-
relevant terminology rather than cryptic abbreviation or codified values. For instance,
in the case of a product dimension, commonly used attributes include a short
description (typically 10 to 15 characters), a long description (30 to 50 characters),
brand name, category name, product size, among others, as Figure 2.4 shows.

14

Data Warehouse

While certain attributes, such as size, may appear numeric, they are still treated as
dimension attributes because they function as static descriptors that classify and
describe a product, rather than computed quantity. As a matter of fact, a key
challenge in dimensional modeling arises when determining whether a particular data
field should be classified as a fact or as a dimension attribute. One of the primary
criteria involves the role the attribute plays in calculations. Facts are quantitative by
nature, hence if a field is used in such arithmetic operations, it is most likely a fact,
i.e., sales revenue, units sold, operating costs. Another important consideration is
the variability of the data field, attribute that vary frequently across time or entities,
particularly in a transactional context, tend to be modeled as facts. In contrast,
dimension attributes are usually more stable and slowly changing, which supports
their use in classification and filtering operations. For instance, the standard cost of
a product might appear to be a static descriptive attribute. However, if this value
is updated regularly due to supplier changes or production costs, it may be better
represented as a fact to capture its dynamic nature.

A third factor, attributes that serve to filter results, define grouping categories
or appear in reporting hierarchies are more appropriately classified as dimension
attributes. These are the fields that analysts refer to in "by" clauses - such as "sales
by store" "sale by region" or "sales by month".

Cardinality plays a crucial role in choosing if a semantic logic is a fact or a
dimension, high cardinality fields that vary substantially and are time-dependent are
often treated as fact, whereas low-to-moderate cardinality attributes that describe
categories or classifications are usually modeled as dimension attributes.

A final consideration is whether the attribute is descriptive or transactional in
nature. Dimension attributes provide context; facts, by contrast convey the "how
much" or "how many".

In some cases, however, the classification remains ambiguous. A field may possess
characteristics of both a fact and a dimension attribute, depending on business
requirements and usage patterns. For instance, a company might treat the standard
cost of a product as a stable attribute in some reporting scenarios and as a variable
measurement in others. In such scenarios, it may be possible to model the data field
either way, as a matter of designer’s prerogative.

Star Join Schema

The star join schema, as illustrated in Figure 2.5 represents the structure of the Data
Warehouse by displaying all dimension and fact tables, along with the relationships
between them. These relationships are established through the use of primary keys
in the dimension tables and corresponding foreign keys in the fact table.

15

Data Warehouse

Figure 2.4: Sample dimension table. [5]

Figure 2.5: Sample Star Schema. [5]

One of the most noticeable characteristics of a dimensional schema is its inherent
simplicity and symmetry, which means that every dimension is equivalent; all
dimensions are symmetrically equal entry points into the fact table. This simplicity
is not just a matter of design elegance - it provides tangible benefits to users by
making the data model significantly easier to comprehend and navigate.

Beyond usability, the simplicity of the dimensional model also yields substantial
performance advantages. Database query optimizers are able to process these schemas
more efficiently due to the limited number of joins required and the predictable
structure of the relationships. Specifically, the database engine can apply filters early
by constraining the highly indexed dimension tables, and then proceed to access the
fact table using the Cartesian product of the dimension keys that satisfy the query
conditions. Remarkably, this strategy enables the evaluation of complex n-way joins
in a single pass over the index of the fact table, ensuring scalable performance even
with large volumes of data.

Atomic, non-aggregated data represents the most granular and expressive form
of information in a Data Warehouse. For this reason, the foundation of every fact
table should be based on atomic data, ensuring that the design can accommodate

16

Data Warehouse

the diverse and often unpredictable nature of business users ad hoc queries. By
storing data at its lower level of granularity, dimensional models provide a flexible
and extensible framework that supports analytical requirements both foreseen and
unforeseen at the time of initial modeling.

One of the key advantages of dimensional modeling is its adaptability, it is possible
to add entirely new dimensions to the schema, provided that each fact row can be
associated with a single, well-defined value from the new dimension. Similarly, new
facts can be incorporated into the fact table as long as they conform with the same
level of granularity. In addition, dimension tables can be enriched by introducing
new attributes, even if these attributes were not anticipated during the design phase.

This model also allows for increasing granularity of existing dimensions from a
given point in time onward. For example, a dimension which was previously tracked
at a monthly level can be broken down into daily or hourly intervals as more detailed
data becomes available. Such enhancements an often be implemented in-place, simply
by appending new rows or columns to existing tables without disrupting the current
architecture, in other words, the dimensional model is inherently modular.

2.3.2 Snowflake-Schema
As stated in the previous section, a de-normalized dimensional model refers to a
schema design in which attribute values are intentionally repeated across multiple rows
within a dimension table. As illustrated in Figure 2.6, the Department Description
column contains recurring values such as Bakery and Frozen Foods, which appear
numerous times.

Figure 2.6: De-normalized product dimension table [5]

If this model is subjected to a normalization process, the resulting structure is
referred to as a Snowflake Schema. This modeling approach introduces additional
layers of normalization within dimension tables by organizing descriptive attributes
into separate related tables. Some data modelers advocate for this schema due to its
potential storage efficiency. For example, instead of redundantly storing a 20-byte
textual description for a department across 50,000 product records, data engineers
may choose to store a compact 2-byte department code in the product dimension and

17

Data Warehouse

delegate the corresponding description to a separate department dimension table.
In doing so, the size of the primary dimension table is reduced, as it contains only
cryptic identifiers rather than lengthy textual attributes. From this point of view, a
snowflake schema not only reduces redundancy but also facilitates maintenance. If a
descriptor, such as department name, needs to be updated, the change is applied
to a single row in the normalized secondary table rather than across thousands of
records in a de-normalized dimension table.

Figure 2.7: Snowflake product dimension [5]

Figure 2.7 illustrates a partial snowflake schema for the product dimension. It is
important to know that there is always a join path from every peripheral dimension
table to the central fact table, ensuring referential integrity across the schema.

Since the company’s framework was designed for a de-normalized data model -
where query performance and fast data access are prioritized over storage optimization
and maintenance - and given that the data warehouse architecture follows the Kimball
approach, the data model adopted for the development of this thesis will be a star
schema rather than a snowflake schema.

2.4 Data Marts
The Data Mart is a type of data storage architecture. Both Data Warehouses and
Data Marts are used for storing and managing data to support decision making
processes. However, a data mart is project-oriented or department specific, focusing
on the analytical needs of a particular business unit or functional area. As such, it is
limited in scope compared to a Data Warehouse and generally contains a subset of
the data stored in the data warehouse, optimized for specific user requirements.

Similarly to the Data Warehouse, a data mart is subject-oriented, although faster
to implement due to its narrower scope and smaller size.

Moreover, a data mart can be independent, which means it does not rely on a
centralized warehousing system. Instead, it extracts and processes data from various

18

Data Warehouse

heterogeneous operational sources to create a specialized data set for a specific
business need. Otherwise, it can be a dependent data mart, built from an existing
Data Warehouse, with this approach, data is extracted, transformed, and loaded
from the Warehouse to the data mart, which then focuses in a specific business
function.

An hybrid solution combining both dependent and independent approaches is also
possible, extracting data from the Warehouse and from the operational sources; with
this approach, organizations can merge structured and unstructured data in a single
system for specific analysis.

2.5 Metadata
Metadata encompasses all information related to the system that is not the actual
data itself. It exists in multiple forms, each designed to address the specific needs of
different user groups within the Data Warehouse ecosystem. At the operational level,
source system metadata describes the structure and format of input data sources.
This include schema definitions, file layouts, and copybooks, which are essential for
guiding the data extraction process. Once data enters the staging area, another layer
of metadata is introduced: staging metadata, which supports the transformation and
loading procedures (ETL). It defines mapping between source and target structures,
specifies transformation rules, outlines data cleansing protocols, and establishes
aggregation logic.

Additionally, it includes metadata related to the scheduling and execution of ETL
jobs - such as batch run logs, and error tracking records. Furthermore, ETL scripts
and custom code written to implement these procedures can also be considered
metadata, as they encapsulate the logic behind data manipulation tasks.

On the other hand, DBMS-level metadata includes system catalog information such
as system tables, partitioning configurations, indexing strategies, view definitions,
and database security configurations - such as user privileges, roles, and grants.

In the implementation of the company’s ETL framework on Microsoft Fabric,
metadata tables play a crucial role in ensuring efficient and reliable data processing.
These metadata tables are responsible for managing the lifecycle of the tables involved,
orchestrating the different data ingestion and reading flows, and overseeing overall
process control.

19

Chapter 3

Data Lake

3.1 Data Lake
A Data Lake is a centralized data repository designed to store both raw and trans-
formed data, serving as a foundational layer for analytical and reporting workflows.
Unlike traditional databases that enforce strict schema at write-time (schema-on-
write), Data Lakes follow a schema-on-read approach, allowing data to be ingested
in its native format and structured later as needed. This flexibility enables the
storage of diverse data types, including structured data (such as relational tables),
semi-structured data (e.g., CSV, JSON; XML), unstructured data (text files, emails,
log files) and binary data (images, videos, audio files). As a result, querying a Data
Lake often resembles a search engine-like operation, where exploratory and ad-hoc
queries are performed across heterogeneous data formats.

One of the primary reasons for adopting a Data Lake is that, in many cases,
the questions that data can help answer are not known in advance. By storing all
data - structured, semi-structured, unstructured, and binary - in its raw format, a
Data Lake preserves the potential value from it at any point in the future. Another
significant advantage is that Data Lakes help eliminate data silos, which are isolated
data repositories that prevent seamless access and integration. Moreover, Data
Lakes are typically built on low-cost, scalable storage systems integrated with high-
performance compute engines, often provide by cloud platforms. These platforms
enable on-demand processing, allowing transformation in the ETL pipeline to occur
at query time, rather than requiring preprocessing; this is a schema-on-read approach.
Since data is stored in its original, unprocessed format, a data lake is inherently
adaptable and highly flexible. It can quickly accommodate changes in business
requirements, or data sources without costly redesign. Lastly, users can access raw
data in real time, enabling rapid exploration and experimentation.

Despite their flexibility, scalability and real-time access to data, Data Lakes also
presents notable disadvantages. One of the primary concerns is that data is ingested

20

Data Lake

and stored in its raw form, without any immediate quality checks and standardization.
This can lead to a disorganized and unmanageable repository, called a data swamp,
where data lacks structure, clarity, and reliability. In such environments, without
robust governance mechanisms, including metadata management, data cataloging,
and access controls, the Lake becomes difficult to navigate and interpret, making
the stored information practically unusable. Besides, since data is extracted from
heterogeneous sources, it often remains non-integrated, creating silos within the
lake itself and complicating cross - functional analysis. The absence of a clear,
predefined purpose can lead to inefficient storage use, thus, increasing operational
costs. Furthermore, complex analytical queries over raw or semi-structured data may
demand high computational resources, which can result in significant performance
bottlenecks that affect the entire system.

3.1.1 Comparison Between Data Warehouses and Data Lakes

Aspect Data Lake Data Warehouse
Data Storage Contains raw, unstructured

data, and can store the data
indefinitely.

Contains structured, cleaned
and processed data.

Users Data is used by scientists and
engineers due to interest in its
raw forms.

Data is used by managers and
business-end users for analyti-
cal purposes.

Analysis Predictive analytics, machine
learning, data visualization, BI,
big data analytics.

Data visualization, BI, data an-
alytics.

Schema Schema-on-read. Schema-on-write
Processing ELT (Extract, Load, Trans-

form). In this process, the data
is extracted from its source for
storage in the data lake, and
structured only when needed.

ETL (Extract, Transform,
Load). In this process, data
is extracted from its source(s),
scrubbed, then structured so
it’s ready for business-end
analysis.

Cost Inexpensive, also data lakes
are also less time-consuming to
manage, which reduces opera-
tional costs.

Data warehouses cost more
than data lakes, and also re-
quire more time to manage,
resulting in additional opera-
tional costs.

Table 3.1: Comparison between Data Lake and Data Warehouse

In this project, the initial source files and tables will be stored in a Data Lake, then,
as the ETL framework enters the second level of processing, tables will be stored in
the Warehouse.

21

Chapter 4

Microsoft Fabric

Microsoft Fabric is an advanced, integrated data analytics platform designed to
unify the entire data life-cycle within a single, coherent, and scalable environment.
Specifically, Fabric seamlessly combines the process of data extraction and loading
(Extract, Load), processing, ingestion, and transformation (Transform), real-time-
event routing, and comprehensive, interactive reporting.

A key distinguishing feature of Microsoft Fabric is its ability to harmoniously
integrate multiple tools and components that have traditionally been separated,
such as Data Warehouses, ETL, pipelines, business intelligence tools like Power BI,
and machine learning environments. Fabric also integrates within its system Office
365 and it is supported by Microsoft Copilot. Besides, Copilot Microsoft Fabric
natively incorporates artificial intelligence capabilities, providing predictive analytics,
automation, and advanced data analysis tools without requiring manual integrations
or external solutions.

The platform is delivered as a Software-as-a-Service (SaaS) platform, a software
distribution model in which a cloud provider hosts applications and make them
available to end users over the internet.

4.1 Terminology used in Microsoft Fabric

A capacity refers to a set of computing resources that are available at a given time for
use within Microsoft Fabric. There resources are allocated to support the execution
of operations such as data processing, and analysis across the platform.

An Experience is a collection of specialized features and tools designed to fulfill a
specific purpose or use case. In Microsoft Fabric, experiences are tailored to various
data-centric domains and include: Fabric Data Warehouse, Fabric Data Engineering,
Fabric Data Science, Real-Time Intelligence, Data Factory, Power BI. Each experience

22

Microsoft Fabric

provides a contextual interface and a suite of functionalities optimized for its intended
tasks.

An item is a unit of functionality within a given experience. Users can create,
modify, and delete items depending on their permissions. Each item type supports
specific capabilities and workflows. For instance, within the Data Engineering
experience, common item types include: Lakehouses and Spark Job Definition.

A Tenant represents a unique instance of Microsoft Fabric assigned to an organiza-
tion. It is linked to the organization’s Microsoft Entra ID and provides identity and
access management, tenant-wide configuration, and centralized governance across
experiences. An organization posses a single Tenant.

4.2 OneLake
OneLake is a core component of Microsoft Fabric, built on top of Azure Data Lake
Storage (ADLS) Gen2, providing a SaaS data storage solution unified at the tenant
level. It is designed to serve both professional developers and citizen developers (non-
technical users) requiring streamlined access to advanced data capabilities. Unlike
ADLS, which necessitates manual configuration steps - including creation of storage
accounts, role-based access controls (RBAC), regional and redundancy configurations,
and management via Azure Resource Manager - OneLake is provisioned natively at
the time a Microsoft Fabric tenant is granted, requiring no additional setup.

OneLake addresses data fragmentation by providing a unified storage architecture
that prevents formation of data silos. This design facilitates consistent data discover-
ability, secure sharing, and coherent enforcement of governance policies across the
organization, thereby promoting centralized and governed data management.

There is only one OneLake instance for each organizational tenant. It offers a
global namespace that spans users, regions, and cloud environments. Its hierarchical
structure, shown by Figure 4.1, consists of:

• The tenant at the root level, representing the highest organizational scope.

• Multiple workspaces within the tenant, which serve as logical organizational units
enabling different departments or teams to delegate ownership and implement
access control policies with fine granularity. Workspaces function as containers
for data assets, and all data stored within OneLake is accesses through these
data objects.

• Several lakehouses within each workspace.

23

Microsoft Fabric

Figure 4.1: Microsoft Fabric’s architecture [6]

Analogous to Microsoft Office applications save Word, Excel, and PowerPoint files
to OneDrive, Microsoft Fabric stores its key data artifacts (lakehouses, warehouses...)
within OneLake. Importantly, all Fabric data entities, persist their underlying data
in OneLake using the Delta Parquet format. This standardization facilitates seamless
interoperability: for example, a data engineer may ingest data into a lakehouse
using Apache Spark, while concurrently, a SQL developer can load data into a fully
transactional data warehouse using T-SQL; both activities contribute to the same
data lake.

Figure 4.2 shows how data generated by Microsoft Fabric workloads, as well as
data from ADLS-compatible applications, is stored in Delta Parquet format within
OneLake, regardless of the workspace to which it belongs. Although data resides in
separate workspaces, users who have appropriate permissions can access data across
different workspaces - for example, a user with access to Workspace B can also access
Workspace A’s data if granted the necessary permissions.

The key point is that all data is physically stored in a single location, but logically
organized into workspaces, making it accessible to a variety of tools without the need
for duplication. Users can easily explore data in OneLake through the OneLake File
Explorer for Windows.

Microsoft Fabric avoids data redundancy through the use of shortcuts. A shortcut

24

Microsoft Fabric

Figure 4.2: Unified data from different sources in Delta Parquet Format [7]

is a reference to data stored in other file locations, which may reside within the
same workspace, across different workspace, or even outside of OneLake, in external
sources such as ADLS, Amazon S3, or Dataverse. Regardless of the physical location,
shortcuts make files and folders appear as if they are stored locally within the
workspace, enabling unified access and interaction without duplication. Shortcuts
are dynamic rather than static, meaning they always reflect the current state of
the data they reference. If the underlying information changes, those modifications
are immediately visible in OneLake through the shortcut. Hence, users always have
access to up-to-date without replication or manual synchronization; nevertheless,
historical versions of the referenced data are not preserved, therefore, it is the user’s
responsibility to implement appropriate mechanisms for capturing or archiving data
snapshots before any changes occur in the source, if historical traceability is required.

4.3 Experiences

4.3.1 Fabric Data Engineering
It is designed specifically to support the development, orchestration, and execution
of data engineering workflows at scale. It provides a comprehensive set of tools and
services that enable engineers to prepare, transform, and manage large volumes of
data across structured and unstructured sources.

25

Microsoft Fabric

Lakehouse

A Lakehouse in Microsoft Fabric is built on top of OneLake. The term Lakehouse
derives from the fusion of Data Lake and Data Warehouse, reflecting its hybrid
architecture.

This models enables to store both structured and unstructured data in its raw
form (as in data lake), while also supporting ACID transactions, schema enforcement,
and high-performance analytical queries (as in a traditional warehouse)

In the context of Lakehouse architecture, data is typically stored using the Delta
Parquet format. However, to fully understands the significance and capabilities of this
format, it is essential first to examine the underlying Parquet file format on which is
built. Parquet is a columnar storage file format, enabling efficient compression since
values within a column are often of the same type and similar in nature, archiving
high compression ratios.

Delta Parquet format is an open-source layer that can be described as the union
of Parquet Format, ACID transactions, transaction log and metadata management.
A substantial difference between Delta Parquet and Parquet format lies in mutability
and data management capabilities. While traditional Parquet files are essentially
immutable, Delta Parquet introduces an incremental and transactional model that
allows modifications such as MERGE, UPDATE, and DELETE operations directly on the
dataset. This is made possible through the Delta transaction log, which records a
complete history of all changes applied to a Delta table. As a result, Delta Parquet
supports time travel, enabling users to query previous versions of a table and observe
how its contents have evolved over time.

From a data engineering perspective, this capability has significant advantages.
For example, when working with a fact table, instead of reloading the entire dataset
after each ingestion cycle, one can simply ingest only the new data (the delta) and
apply it incrementally. The same approach applies to dimension tables. This leads to
reduce processing time, improve performance, and lower storage and compute costs.

SQL Analytical Endpoint

Microsoft Fabric provides a SQL-based experience for Delta tables within the lake-
house. This SQL-based interface is referred to as the SQL Analytical Endpoint.
Users can analyze data in Delta tables using T-SQL (Transactional SQL), define,
and store functions, generate views, and implement SQL-level security. The creation
of a lakehouse instance automatically provisions a SQL Analytical Endpoint, which
is configured to reference the storage location of the lakehouse’s Delta tables. Once
a Delta table is created within the lakehouse, it becomes accessible for querying
through the SQL Analytics Endpoint. It operates in read-only mode with respect to
the the Delta tables in the lakehouse, nevertheless, it exists the flexibility to define

26

Microsoft Fabric

functions, create views, and enforce SQL object-level security to effectively manage
data access and structural organization.

Spark Application

An Apache Spark application is a distributed data processing program developed using
one of the supported Spark APIs, in Microsoft Fabric’s case, is Python (PySpark).
A Spark application is designed to process large scale datasets across a cluster
of machines, leveraging Spark’s in-memory computation and parallel processing
capabilities. Each Spark application consists of a driver process, which defines the
application logic and coordinates execution, and a collection of executors, which run
tasks on the data distributed across the cluster.

When submitted for execution, the application is logically broken down into jobs,
where each job corresponds to a specific action on a Spark DataFrame or RDD. Each
job is further divided into stages, which are sequences of tasks that can be executed
in parallel. The division into stages is determined by data shuffling or transformation
that requires data movement across partitions. A task represents the smallest unit
of work in Spark and is executed on a single partition of the data. This architecture
allows Spark to scale efficiently, handling petabyte-scale datasets with fault tolerance,
thanks to its DAG (Directed Acyclic Graph) execution model and support for lineage
tracking and recomputation in case of node failures.

In the context of Microsoft Fabric, Spark applications are deeply integrated into
the platform and can be run as part of Spark Job Definitions within the Data
Engineering experience.

4.3.2 Fabric Data Factory
Microsoft Fabric’s Data Factory offers similar a service to the Data Engineering
experience in terms of transformation and orchestration. However, the key difference
lies in the tools employed and level of coding required. Data Engineering provides a
high-code environment, primary leveraging Spark notebooks where users are expected
to be proficient in Python or Scala. In contrast, Data Factory is designed for users
with less programming experience, offering a low-code interface through Dataflows
Gen2, which enables data transformation via a graphical, drag-and-drop approach.

Dataflow Gen2

At its core, Dataflow Gen2 maintains the intuitive, low-code interface facilitated by
Power Query, a data transformation and preparation engine developed by Microsoft,
it allows users to perform complex operations without extensive programming lan-
guage, for example renaming elements, using first rows as headers, changing data
types, filtering, formatting, adding custom columns or even merging queries. These

27

Microsoft Fabric

transformations are recorded in a dedicated pane within the Power Query Editor,
providing a clear, step-by-step view of the data transformation process. Users can
easily modify, delete, or reorder these steps.

«Microsoft Fabric Dataflow Gen2 connects to various data sources and performs
transformations using Power Query Online, which is part of Microsoft Fabric. It
enables users to create and manage data pipelines that can ingest, prepare, transform,
and analyze data. Finally, it delivers the output to destinations such as Azure SQL,
Lakehouse, Warehouse, and Azure Data Explorer» [8]

Notably, Gen2 extends its functionality by supporting a wide array of data
destinations, including Fabric Lakehouse, Warehouse and even SQL Databases.

A distinguishing feature of Dataflows Gen2 is its enhanced integration with data
pipelines. Users can incorporate dataflows as activities within pipelines, facilitating
more complex and orchestrated data processing scenarios. This integration supports
conditional logic and dependencies.

From a usability perspective, Dataflows Gen2 introduces several user-friendly
features, such as auto-save and background publishing, which streamline the de-
velopment process. Enhanced monitoring and refresh history functionalities offer
detailed insights into Dataflow executions, significantly aiding in troubleshooting
and performance tuning.

Dataflows are designed with a graphical user interface (GUI) that closely resembles
other Microsoft Office 365 applications and Power BI. This familiar interface targets
users who need to perform data transformations without having any programming
experience. For more advanced users, Dataflows also support the use of M scripts,
enabling the definition of complex transformations through code. Moreover, Dataflows
automatically manage dependencies between scripts, inputs, and outputs by allowing
users to reference one script from another simply by passing its name, thus simplifying
the orchestration of transformation logic.

4.3.3 Fabric Data Warehouse

The Fabric Data Warehouse experience is designed to deliver the familiar capabilities
of a classical data warehouse while leveraging the scalability, high performance, and
centralized storage architecture provided by Microsoft Fabric. It enables users to
work with large-scale datasets using T-SQL, offering an environment that integrates
directly with OneLake.

28

Microsoft Fabric

4.4 Computation Engines
Although modern applications often decouple storage from compute, data is frequently
optimized for a specific processing engine, limiting its reuse across heterogeneous
analytical workloads. Microsoft Fabric addresses this limitation by enabling multiple
analytical engines, as shown in Figure 4.3, to operate on data stored in Delta Parquet
format. This approach removes the need for data duplication when switching between
engines and ensures all workloads access the same version of the data.

Figure 4.3: Microsoft Fabric serverless computations [7]

As a result, users are free to choose the most appropriate engine for their specific
task. For instance, a team of SQL engineers can leverage the T-SQL engine to build
a fully transactional Data Warehouse. Concurrently, a data scientist can directly
analyze the same datasets using the Spark engine and its associated open-source
libraries, without requiring data export, transformation, or specialized connectors.

4.5 Limitations of Microsoft Fabric
In the previous sections, several advantages of Microsoft Fabric were described.
Nevertheless, considering that the platform released in May 2023, it still presents
notable flaws and limitations that should not be overlooked.

29

Microsoft Fabric

Being a SaaS platform, Fabric inherently offers less customization compared to on-
premise applications. Users have limited control over core infrastructure components
such as networking, compute, storage, and security. This abstraction layer, while
beneficial for ease of use and rapid deployment, reduces flexibility for advanced
or highly regulated scenarios. Consequently, companies needing to enforce strict
security or privacy standards may find the pre-configured and opaque nature of
Fabric’s security controls insufficient.

In complex enterprise use cases that involve intricate data pipelines or highly
optimized query patterns, Fabric’s performance can become a bottleneck. While it
is effective for standard workflows, its capabilities might fall short when handling
mission-critical applications that demand high configurability and precise resource
tuning.

Another critical concern is the absence of standardization across similar com-
ponents. For instance, Fabric offers both Data Pipelines and Dataflows, which
serve comparable functions. Despite their conceptual similarity, Data Pipelines can
be edited at any time and moved across workspaces by coping them. In contrast,
Dataflows require explicit ownership for modifications and can only be moved after
being exported locally. These inconsistencies, while seemingly minor, contribute to a
fragmented user experience and can introduce friction in cross-functional teams.

4.6 Alternatives to Microsoft Fabric
An alternative on-premise data integration tool that is natively supported by Oracle
Databases is Oracle Data Integrator (ODI). In contrast, Microsoft Fabric relies on
a file-based architecture using Delta Parquet files as its backend storage format,
which imposes some limitations on table structure definitions and standard DML
operations.

"On-premise" means that the software is installed and managed directly on the
company’s local servers, within its own infrastructure. As a result, it does not
rely on the cloud, data and applications remain entirely within the organization’s
systems. The company is fully responsible for updates, maintenance, and security.
This flexibility can increase operational overhead.

4.6.1 Oracle Data Integrator (ODI)
In addition to being the foundation for the Mediamente Consulting ETL framework,
ODI offers several advanced features that make it a powerful tool for data integration.
Notably, it allows for the creation and customization of Knowledge Modules (KMs),
which are useful to automate operations. For example, KMs can automatically
detect primary and foreign keys of a table without requiring explicit user definitions.

30

Microsoft Fabric

Additionally, ODI supports integration with a wide range of databases and data
sources, including technologies such as Cassandra and Hadoop. Furthermore, ODI
benefits from comprehensive documentation and robust support from Oracle, unlike
Fabric, which is relatively a new product on the market, the documentation provided
by Microsoft is still limited in scope, often requiring users to adopt a learn-as-you-
go approach. Finally, ODI is generally considered more robust and reliable for
complex data loading and transformation processes, particularly when working with
high volumes of structured data. Nevertheless, being an on-premise solution, its
performance is inherently tied to the capacity and health of the underlying hardware,
potentially limiting scalability compared to cloud-based alternatives, such as Fabric.

ODI also presents several notable limitations. The setup process is relatively
complex, the user interface is not particularly user friendly, and error handling it often
non-intuitive. In addition, integration with cloud environments is not straightforward
and typically requires the use of Oracle Data Integrator Cloud, a separated tool.

4.6.2 Workato

Gartner, a leading provider of expert guidance and tools for strategic decision-
making, has classified Workato as one of the top Platform-as-a-Service (PaaS) tools
for 2025, as illustrated by the Magical Quadrant in Figure 4.4. It achieved the highest
score in Completeness of Vision - a metric that assesses the vendor’s innovation,
understanding of market needs, and long-term strategy - and ranked among the top
three in Ability to Execute, which evaluates the vendor’s capacity to deliver products,
services, customer support, and overall viability. Notably, Workato obtained an
overall higher positioning than Microsoft, which is also included in the Leaders
quadrant.

Workato stands out for its ease of use and intuitive interface, enabling the design
of complex workflows through a fully visual and code-less approach. In addition to its
low-code environment, Workato—like Microsoft Fabric—also allows the use of SQL
and Python for more advanced data transformations and logic. It includes a library of
pre-built connectors that streamlines integration across heterogeneous systems such
as ERPs, CRMs, collaboration tools, and cloud services. Automation is both flexible
and scalable, supported by advanced features such as error handling, conditional
logic, and real-time monitoring, all enabled by the user interface. Furthermore,
Workato’s responsive technical support and an active community further enhance
the overall platform experience, by helping users with on-the-road difficulties.

A main difference with Microsoft Fabric is the storage of data, as stated, the
central storage of Fabric, OneLake, stores data as Delta Parquet files. Workato, on
the other hand, relies on proprietary storage components designed for structured
and file-based data management:

31

Microsoft Fabric

• Data Tables: structured, spreadsheet-style datastore built on an entity–attribute–value
(EAV) model, fully managed and created via the Workato UI with no backend
SQL database required.

• FileStorage: Provides secure storage for files such as CSV or JSON.

Figure 4.4: Gartner Magic Quadrant for Integration Platform as a Service [9]

Despite its leadership in the Integration Platform as a Service (iPaaS) market,
Workato presents several limitations that may affect adoption and long-term us-
ability in specific contexts. One of the primary concerns are API rate limits and
functional constraints may restrict performance in data-intensive scenarios, reducing
scalability for enterprise-grade use cases. Development flexibility is also affected
by limited debugging tools and restrictions on API call visibility, which can hinder
troubleshooting and fine-tuning of integrations. The Software Development Kit
(SDK), while powerful, introduces a steep learning curve. Moreover, support for
complex use cases may require custom coding, partially offsetting the benefits of the
low-code environment. Although the user interface is intuitive, the configuration
of more advanced workflows and technical integrations still demands a non-trivial
learning period.

32

Chapter 5

Proposed Solution:
Mediamente Consulting’s
ETL Framework

A possible solution to implement an automated pipeline that is capable of managing
an Extract, Transformation, Load process could be structured as follows. The
framework consists of three levels: L0, L1, and L2, with each level performing a
different function as Figure 5.1 shows.

Figure 5.1: ETL framework designed by Mediamente Consulting

5.1 L0
The L0 represents the initial or staging phase of the Data Warehouse (DWH), where
data extraction from various source systems. These systems can vary in nature; the
most common include operational database systems and files produced by external
providers.

The proposed framework supports two primary data extraction strategies.

• The first approach is Full Extraction involves retrieving the entire dataset from
the source system without accounting for previously loaded records. While

33

Proposed Solution: Mediamente Consulting’s ETL Framework

this approach ensures data completeness and simplifies implementation, it is
generally inefficient for large-scale datasets, as it demands considerable time
and computational resources.

• The second approach is a combination between Initial Load and Delta Compu-
tation. Initial Load is in charge of the first loading into the DWH, while Delta
Computation adopts an incremental extraction approach, wherein only changes
since the previous data load are retrieved. This method is suitable for environ-
ments where the DWH is periodically updated, as it minimizes data movement.
Two main scenarios can arise in the application of Delta Computation:

– Presence of update data: When source systems maintain update timestamps,
the framework can monitor these indicators to detect modified or newly
inserted records. This approach is particularly effective when dealing with
large tables, as it prevents unnecessary full reloads. However, a notable
limitation is the inability to detect physical deletions at the source. To
overcome this, a dedicated log table can be implemented to track and
reconcile deletions across extractions.

– Absence of update data: In cases where the source data lacks explicit
indicators of change, the solution involves extracting the entire dataset
into a staging table (STG), where each record is labeled with a unique
job identifier (JOBID) representing the extraction timestamp in the format
YYYYMMDDHHMMSS. Additionally, a human-readable timestamp (INS_DATE)
is stored in the format DD-MM-YYYY HH:MM:SS reflecting the time at which
data were loaded into the table. This mechanism enables the framework to
infer changes and capture deletions by comparing data across extractions.
However, it is computationally expensive and less efficient for large datasets.

The records are loaded into the STG table using an APPEND operation, meaning
the table is never cleared during the ETL process; new records are added after
the existing ones. The DLT tables also use an APPEND strategy. These tables can
either retain all delta records from every ETL run without ever being emptied, or
alternatively, store only the current and the previous N readings. In this second case,
an additional table called DLT_HIS is populated to maintain the full historical record
of all deltas generated since the beginning of the ETL process.

In summary, for each data ingestion flow, all source tables will be read first and
their content will be loaded into a corresponding staging table (STG), with additional
columns for JOBID and INS_DATE. Subsequently, only the newly inserted, deleted
and modified records will be stored in delta tables named DLT and DLT_HIS, with
an additional column denominated FLG_NEG, which accepts binary values, 0 if the
current record is new, 1 if the record has been deleted from the source.

34

Proposed Solution: Mediamente Consulting’s ETL Framework

Descriptive
Field 1

... Descriptive
Field n

JOBID INS_TIME

Table 5.1: STG table structure

Descriptive
Field 1

... Descriptive
Field n

JOBID INS_TIME FLG_NEG

Table 5.2: DLT table structure

Descriptive
Field 1

... Descriptive
Field n

JOBID INS_TIME FLG_NEG

Table 5.3: DLT_HIS table structure

5.2 L1
The L1 layer is responsible for data transformation tasks, including activities such as
«cleansing the data (e.g., correcting misspellings, resolving domain conflicts, handling
missing values and parsing into standardized formats), integrating data from multiple
sources, removing duplicates, and assigning warehouse surrogate keys»[5]

Data cleaning involves several phases [10]:

• Data Analysis: Detection of errors and inconsistencies to be removed.

• Definition of transformation workflow and mapping rules: Use of a schema
translation to map sources into a common data model, for a Data Warehouse, a
relational representation is typically employed. It should be defined a transfor-
mation workflow.

• Verification: Test and evaluation of the output of the transformation workflow.

• Execution of the transformation operations

• Backflow of Cleaned Data: The cleaned data should ideally be written back
to the original sources to ensure that legacy applications also benefit from
the improved data quality and to prevent redundant cleaning in the future
extraction processes. Since Mediamente Consulting does not have any control
over the sources, the proposed framework uses DLT tables to help mitigate
repeated cleaning of the same data by storing and reusing previously processes
delta records.

35

Proposed Solution: Mediamente Consulting’s ETL Framework

As mentioned, the input of this layer consists of the DLT tables. During the
execution of the functions defined at this level, four additional tables will be generated:
OK, ODS, MDM, and OUT.

5.2.1 OK

Records extracted from the DLT table are first processed through a temporary table,
which is not physically stored. A ROW_NUMBER function is then applied using the
following query:

ROW_NUMBER() OVER (PARTITION BY PRIMARY_KEY ORDER BY JOBID DESC,
FLG_NEG ASC)

SELECT * FROM ... WHERE ROW_NUMBER = 1

This ensures that, for each record identified by a primary (or aggregate) key,
only the most recent version is selected, giving priority to newly added records over
deleted ones.

After this step, referential integrity constraints are verified, followed by data
quality operations, which include:

• Data Validation: Ensures that the data is accurate, complete, and complies
with predefined rules (e.g., correct format, valid ranges, non-null values)

• Data cleansing: Removes incorrect, duplicate, or missing data.

Records that do not pass the ROW_NUMBER query are permanently discarded. In
contrast, records that fail referential integrity or data quality checks are stored in
a table named E$ or ERR. These records are reconsidered during each new data
ingestion cycle when the temporary table is created, in order to determine whether
new information has been added that would allow them to be successfully processed.
This table includes a DESCRIPTION column that details the reason of failure during
quality and validation checks.

Once these operations are completed, the cleaned records are stored in the OK
table.

The loading mode used for any OK table is TRUNCATE-INSERT, meaning that for
each data ingestion cycle, the table’s contents are completely cleared before the
newly processed records are inserted. Instead, the records on the E$ tables are kept
until they pass validation and quality controls or after a specific number of ingestion
cycles are completed, this number is specified in a metadata table.

36

Proposed Solution: Mediamente Consulting’s ETL Framework

Descriptive
Field 1

... Descriptive
Field n

JOBID INS_TIME FLG_NEG

Table 5.4: OK table structure

Descriptive Field
1

... Descriptive Field
n

JOBID INS_TIME FLG_NEG DESCRIPTION

Table 5.5: E$ table structure

5.2.2 Operational Data Store (ODS)
This step is responsible for the historization of data, where information is consolidated
to ensure consistency and uniformity. At this stage, a certified copy of the operational
data is stored - validated, secure, and considered reliable.

The ODS tables are the first to be given physical primary keys that uniquely
identify each record. In previous stages, record uniqueness was managed through
references to table names and composite keys; in the ODS, a concrete primary key is
formally established.

The loading mode for these tables relies on a MERGE statement, which either
inserts new records or updates existing ones based on the defined primary key. This
process introduces two additional columns: JOBID_UPD and UPD_TIME, which record
the update data for each row. The format of these columns is identical to JOBID and
INS_TIME, respectively.

In the case of a new record being loaded into the ODS for the first time, all
four columns (JOBID, INS_TIME, JOBID_UPD, and UPD_TIME) will be populated with
identical values corresponding to the current ingestion cycle. If the primary key
already exists in the ODS, only JOBID_UPD, and UPD_TIME are updated to reflect the
new ingestion cycle, while JOBID, and INS_TIME preserve the data from the original
insertion.

Descrpt Field
1

... Descrpt Field
n

JOBID INS_TIME FLG_NEG JOBID_UPD UPD_TIME

Table 5.6: ODS table structure

5.2.3 Master Data Management (MDM)
This stage is in charge of data enrichment, which consists in augmenting records
with additional attributes derived from both internal and external sources - such as
master data, addresses, or contact details.

37

Proposed Solution: Mediamente Consulting’s ETL Framework

Additionally, this stage performs the generation of surrogate keys, which are
internally generated unique identifiers used in place of natural keys (e.g., customer
codes). Surrogate keys are introduced to ensure data independence, as they remain
stable even when natural keys change over time. Furthermore, surrogate keys facilitate
data integration by avoiding conflicts that may arise from differing key definitions
across heterogeneous sources. Finally, they contribute to improved performance,
being generally more efficient in terms of storage space and join operations compared
to natural keys.

Similarly to ODS tables, MDM tables are loaded with a MERGE operation.

Descrpt Fields ... JOBID INS_TIME FLG_NEG JOBID_UPD UPD_TIME SURROGATE
KEY

Table 5.7: MDM table structure

5.2.4 OUT

The OUT table serves as a temporary staging area designed to contain only the most
recent data modifications immediately before their final insertion into the designated
target table. One of the defining characteristics of the OUT table is its structural
consistency with the target table: it shares the exact same schema, ensuring that
data transferred during the final loading phase remains coherent to the expected
format without requiring further structural adjustments.

The population of the OUT table is not a generic process but is instead driven by
functional requirements derived from detailed business analyses. Data are selected
and transformed through a series of join operations and logic rules tailored to
the specific needs of the business workflow. These transformations may include
field derivations, conditional mappings, or enrichments aligned with operational or
analytical goals. The OUT table, therefore, acts as a critical bridge between the raw,
processed data and its final, business-ready form, enabling a flexible yet controlled
integration into the target system.

At this stage, the data model used to structure the target system is also defined.
The choice is typically between a star schema and a snowflake schema, depending
on the complexity and normalization level required by the use case. As detailed in
chapter 2, this project adopts the star schema approach.

Records are loaded into OUT tables using a TRUNCATE-INSERT operation.

Descrpt Fields ... JOBID INS_TIME FLG_NEG JOBID_UPD UPD_TIME SURROGATE
KEY

Table 5.8: OUT table structure

38

Proposed Solution: Mediamente Consulting’s ETL Framework

5.3 L2
This layer represents the final stage of the data pipeline and is the closest to the
end-users. At this point, data are fully loaded into the data warehouse in a form that
is ready for reporting, analysis, and decision-making processes. The data contained
in this layer is aggregated, structured, and optimized to support efficient and high-
performance querying. It is organized in a way that aligns with business needs,
enabling fast access to insights through dashboards, analytical tools, or custom
reports.

5.4 Metadata tables
There are three metadata tables that support the automation of the data processing
flows: FLOW MANAGER, TABLE MANAGER, and METADATA MANAGER

The FLOW MANAGER table contains information related to the data flow of
the different business areas.

The TABLE MANAGER table stores information concerning the management of
the tables involved in the process.

The METADATA MANAGER table holds metadata associated with the execution
of the various Data Warehouse processes.

5.4.1 FLOW MANAGER
The FLOW MANAGER table contains the following fields:

• IDENTITY: Specifies the name of the execution environment in which the process
is running

• NUM_LEVEL: Indicates the logical level of the data flow within the architecture.
Conventionally, 0 corresponds to Level 0 (L0), 1 to Level 1 (L1), and 2 to Level
2 (L2).

• GRP_NAME: Represents the functional domain or business area associated with
the data flow.

• TRG_JOBID: A unique identifier assigned to the job of the current ETL execution,
used to track its progress and lineage.

• SRC_JOBID: It has no operational meaning, during L0 assumes a default value
19000101000000 and for L1 assumes the value of TRG_JOBID

• STATUS: Denotes the current state of the process. The possible values are:

39

Proposed Solution: Mediamente Consulting’s ETL Framework

– 0: Successfully completed
– 1: Execution in progress
– 3: Terminated with errors.

• LOAD: Indicates the availability of data for the subsequent level in the data
pipeline. Its values are interpreted as follows:

– 0: Data has already been consumed
– 1: Data is ready to be consumed
– 2: Data is not yet ready for consumption
– 5: Data cannot be consumed further, as the final logical level has been

reached.

• START_DATE: Timestamp marking the start of the process execution

• END_DATE: Timestamp marking the end of the process execution.

The FLOW MANAGER table adopts a MERGE insertion strategy, if a match is
found for the keys IDENTITY, GRP_NAME, LEVEL, and TRG_JOBID, LOAD, STATUS,
END_DATE are subject to updates post-insertion.

5.4.2 TABLE MANAGER
The fields of the TABLE MANAGER contain information about:

• IDENTITY: Offers the same information as the IDENTITY field in the FLOW
MANAGER

• LEVEL: Identical content as in FLOW MANAGER

• GRP_NAME: Presents data equivalent to those of the FLOW MANAGER table.

• TABLE_NAME: Name of the table

• JOBID: Identifier of the current ingestion cycle, it is equivalent to the field
TRG_JOBID in the FLOW MANAGER table.

• NUM_ROWS: Number of rows read from the table during the current ingestion
cycle.

• LOAD_DATE: Timestamp describing when the table terminated its loading

The TABLE MANAGER also follows an APPEND strategy, whereby a new row is
inserted for each table read operation during an ingestion cycle.

40

Proposed Solution: Mediamente Consulting’s ETL Framework

5.4.3 METADATA MANAGER
The METADATA MANAGER table does not posses a fixed schema, unlike the
previously described metadata table. The only consistently present attributes are
IDENTITY, GRP_NAME, PARAM_NAME, and PARAM_VALUE. The latter two fields describe
variables and parameters essential for pipeline automation. Examples include pa-
rameters specifying the number of ingestion cycles after which the E$ in Layer L1
should be cleared, the maximum number of cycles allowed to persist in the DLT table
at Level L0, or a list of email addresses to notify in case of pipeline failure. All other
attributes are dynamic and may vary depending on the client, the nature of data,
and the types of source-extracted tables.

5.5 Scheduling of Layers and Execution Rules
Each layer in the ETL framework is designed to function independently. However,
specific coordination rules must be enforced to ensure consistency and integrity across
the pipeline:

1. Dimension Processing : Each step related to a dimension (as defined in the star
schema model): can proceed independently up to Layer L1, provided that there
are no other active processes of the same type.

2. Parallel Execution at L0: All steps operating at Layer L0 can be executed in
parallel, including multiple processes of the same type.

3. Exclusive Execution at L1: Before initial processing at Layer L1, each step must
ensure it is the only process currently executing, to maintain data consistency
during transformation and loading.

4. Prerequisites for L2 Loading: Loading into Layer L2 can only occur once all L1
steps have completed successfully, ensuring coherent and complete input to the
data consolidation layer.

The implementation of Mediamente Consulting’s framework on Microsoft Fabric
will be developed up to the ODS stage within the L1 layer, including the creation of
all necessary metadata tables.

41

Chapter 6

Implementation of the
Proposed Solution within the
Microsoft Fabric
Environment

To automate the ETL process, Microsoft Fabric offers Data Pipeline components,
which enable the orchestration and scheduling of various activities, by allowing to
connect functional blocks with different types of branches:

• On-Success: If the current activity is executed successfully, the next one is
triggered.

• On-Failure: If the current activity raises an exception during its execution, call
the next one.

• On-Completion: Regardless of whether the current activity succeeds or fails,
trigger the following one

• On-Skip: If the current activity is skipped, execute the next one.

Figure 6.1: Main Pipeline

In this project, the main pipeline is composed of three sub-pipelines connected
with on-success branches as 6.1 shows: Reset_Pipeline, L0 and, L1. The L1 pipeline

42

Implementation of the Proposed Solution within the Microsoft Fabric Environment

can be implemented using PySpark notebooks, T-SQL stored procedures, or Microsoft
Fabric’s low-code interface DataFlows Gen2.

All input files utilized by the L0 pipeline are stored in a Lakehouse environment.
Similarly, the tables created and populated during the execution of the L0 pipeline
are also stored within the same Lakehouse. In contrast, the destination of the tables
created by the L1 pipeline will either be stored in the Lakehouse or in a Warehouse,
depending on the implementation strategy of L1.

6.1 Reset_Pipeline

The Reset_Pipeline is executed once at the beginning to prepare the environment.
It performs a cleanup of the workspace by deleting all Delta tables from both the Data
Warehouse and the Lakehouse, and by moving any files located in subdirectories to
the main Lakehouse directory Files. Its execution is controlled by a Lookup activity,
and an If-Else conditional block, if the conditional block enters the True branch,
the Reset_Pipeline is executed, otherwise does nothing. The Reset_Pipeline
is formed by a Reset_All PySpark notebook, a Reset_Warehouse T-SQL stored
procedure and the Update_Stater PySpark notebook.

Lookup activity named Get_Started is used to read a file named start.xlsx,
which contains a single column named started with one row with a single Boolean
value: either True or False. This value indicates whether it is the first execution in
the pipeline’s lifetime. If the value is False, it means that the pipeline has not yet
been executed, otherwise, the value is True. This activity outputs a pseudo-JSON
text. Then, the JSON output of the Loopkup activity is passed to the If-Else
conditional block, named starter. If the output is False, it triggers the execution
of the Reset_Pipeline and subsequently the notebook Update_Starter updates
the same Excel file, overwriting the started value with True.

The Reset_All notebook retrieves the name of all the Delta Lake tables stored
in the Lakehouse and then issues DROP TABLE commands for each. In the following
step, the notebook moves all files from the Lakehouse subfolders to the root Files
directory of the Lakehouse. The T-SQL Stored Procedure named Reset_WH on the
other hand, cleans the Warehouse.

The first activity is connected with an on-success branch to the L0 pipeline, which
is responsible for the extraction of data from source and metadata files, also, filters
and forwards the relevant records to the L1 pipeline.

43

Implementation of the Proposed Solution within the Microsoft Fabric Environment

6.2 L0
The L0 pipeline is responsible for the Extraction phase of the ETL process. It is
implemented through a combination of PySpark notebooks and Microsoft Azure Data
Factory pipeline components, including the email notifications and If-Else blocks.

As illustrated in Figure 6.2, the pipeline is initiated by the parallel execution
of two notebooks, Metadata_Creator, that creates the metadata tables, namely
FLOW MANAGER and TABLE MANAGER, which are essential to register respectively all
information related to the flow of data and the tables involved; and, Create_Schema
which ingests an input Excel file which is stored in the Lakehouse main directory; it
contains metadata information definitions for all the tables to be processed in the
pipeline.

Figure 6.2: L0 Microsoft Fabric Pipeline

If the Create_Schema notebook fails, an automated email notification is sent to
the designated supervisor of the pipeline. If it completes successfully, the pipeline
proceeds with the execution for the STG notebook, responsible for reading and staging
the source data from CSV files. The following conditional logic governs the flow after
the STG execution: If STG fails, an email is sent to notify the failure; if STG succeeds,
but some CSV could not be processed, an email is sent notifying which files failed,
then triggers the execution of the DLT notebook; last scenario, if all files are processed

44

Implementation of the Proposed Solution within the Microsoft Fabric Environment

successfully, the DLT notebook is executed.

The DLT notebook performs incremental data extraction, identifies, and processes
only new, changed, and deleted records to be passed forward to the L1 layer. In cases
where certain tables could not be read during this stage, an additional notification is
dispatched.

6.2.1 Metadata_Creator
The task of the notebook is to verify if the tables FLOW_MANAGER and TABLE_MANAGER
exist within the Lakehouse storage. If they are not found, the notebook proceeds
to create them. Table 6.1 and table 6.2 display respectively the schema and header
for the FLOW_MANGER, table 6.3 and table 6.4 show the schema and header for the
TABLE_MANAGER

Column Name Data Type Nullable
IDENTITY StringType() False
GRP_NAME StringType() False
LEVEL IntegerType() False
SRC_JOBID StringType() False
TRG_JOBID StringType() False
STATUS IntegerType() False
LOAD IntegerType() False
START_DATE TimestampType() False
END_DATE TimestampType() True

Table 6.1: FLOW_MANAGER Schema

IDENTITY GRP_NAME LEVEL SRC_JOBID TRG_JOBID STATUS LOAD START_DATE END_DATE

Table 6.2: FLOW_MANAGER Header

Column Name Data Type Nullable
IDENTITY StringType() True
LEVEL IntegerType() True
GRP_NAME StringType() True
TABLE_NAME StringType() True
JOBID StringType() True
NUM_ROWS IntegerType() True
LOAD_DATE TimestampType() True

Table 6.3: TABLE_MANAGER Schema

45

Implementation of the Proposed Solution within the Microsoft Fabric Environment

IDENTITY LEVEL GRP_NAME TABLE_NAME JOBID NUM_ROWS LOAD_DATE

Table 6.4: TABLE_MANAGER Header

6.2.2 Create_Schema
As an initial setup, the notebook ensures the creation of three specific subdirectories,
if they are not already present. The first, Dimensions, contains the source CSV
files representing the dimension tables; the second, Movements, stores the CSV files
corresponding to the fact tables; and the third, Metadata, holds all files related to
the metadata necessary for the correct interpretation and processing of the data
structures.

Subsequently, a user-defined function named parse_type(string_parameter) is
introduced, it takes a string and maps it to the corresponding data type recognized
by Apache Spark.

The next step involves reading an input Excel file located in the main directory
of the Lakehouse. Since Apache Spark does not natively support reading Excel files,
the pandas library is employed to perform this operation.

The file contains tables related to the ETL workflow. Specifically, it provides
detailed information for each table, including structural and relational properties
essential for the schema construction and data validation. A simplified generic
example of the content of this metadata file is presented in Table 6.5

Table Identity Grp Column Type PK FK Ref_Table Ref_Col
table_1 Dim Tab_1 col_1_1 Int Y N
table_1 Dim Tab_1 col_1_2 String N N
table_1 Dim Tab_1 col_1_3 String N N
table_1 Dim Tab_1 col_1_4 String N N
table_1 Dim Tab_1 col_1_5 String N N
table_1 Dim Tab_1 col_1_6 Int N N
table_3 Dim Tab_3 col_3_1 Int Y N
table_3 Dim Tab_3 col_3_2 String N N
table_4 Dim Tab_4 col_4_1 Int Y N
table_4 Dim Tab_4 col_4_2 String N N
table_4 Dim Tab_4 col_4_3 Int N N
table_4 Dim Tab_4 col_4_4 Double N N
table_6 Fact Tab_6 col_6_1 Int Y Y table_1 col_1_1
table_6 Fact Tab_6 col_6_2 Int Y Y table_4 col_4_1
table_6 Fact Tab_6 col_6_4 Int Y Y table_3 col_3_1
table_6 Fact Tab_6 col_6_5 Int N N
table_6 Fact Tab_6 col_6_6 Double N N

Table 6.5: Sample content of the Excel metadata file

46

Implementation of the Proposed Solution within the Microsoft Fabric Environment

It includes several key fields:

• Table: Specifies the name of each table within the data model.

• Identity: Indicates whether the table is a fact or a dimension table.

• Grp: Defines the logical group to which the table belongs, multiple tables can
belong to the same group, but a table can belong to only one group.

• Column: Specifies the name of each attribute associated with the table.

• Type: Defines the corresponding data type.

• PK: Indicates whether a column serves as a part of the primary key, the
presence of multiple columns marked with "Y" (Yes) for the same table denotes
a composite primary key.

• FK, Ref_Table and Ref_Col: FK identifies whether a column is a foreign key,
and if so, the Ref_Table and Ref_Col fields specify the referenced table and
the column to reference, respectively, thus enabling the definition of inter-table
relationships.

Additionally, the Excel metadata file may include further columns that define
data quality constraints.

The Excel file is initially read using the pandas.read_excel() function, then a
set of transformations is applied to the resulting Pandas DataFrame: binary columns
with "Y"/"N" values are mapped to Boolean True/False, and the values "Fact" and
"Dim" in the Identity column are standardized to "FACT" and "DIMENSION",
respectively. Since the metadata is required throughout the entire ETL process, the
transformed Pandas DataFrame is subsequently cast to an Apache Spark DataFrame
and stored in the Lakehouse storage as a Delta Table named Metadata_Schema

The next step in the notebook involves generating the schema for the staging
(STG) tables by reading the Metadata_Schema Delta Table. For each unique table
name listed in Metadata_Schema, the corresponding column names and data types
are extracted and used to construct a schema for a Spark DataFrame. This schema
serves to define the structure of an empty STG table, also, JOBID and INS_DATE
columns are added to the schema. Subsequently, the process checks whether an STG
table with the same schema already exists. If it does, the algorithm compares the
existing schema with the newly generated one. In the event of a mismatch, the old
schema is overwritten with the updated schema, and default values are assigned to
existing records for any newly added columns.

At the end of this process, an STG table is created for each distinct table defined
in the Metadata_Schema Delta Table.

47

Implementation of the Proposed Solution within the Microsoft Fabric Environment

Finally, for each table, the algorithm moves the corresponding source csv file from
the Lakehouse’s main directory to the appropriate subdirectory depending on the
Identity value for such table. If the table is labeled as a dimension by the Identity
column, then the csv file is moved to the Dimensions subdirectory, otherwise, it is
moved to the Movements subdirectory.

Algorithm 1 Pseudo-code for the Create_Schema notebook
1: file_dim_read ← []
2: file_fact_read ← []
3: df_schema ← read_excel(metadata_schema_file)
4: for table_name in df_schema["Table"] do
5: fields ← []
6: subset ← df_schema[df_schema["Table"] == table_name]
7: for row in subset.iterrows() do
8: col_name ← row["Column"]
9: fields.append(StructField(col_name, parse_dtype(row["Type"]))

10: end for
11: fields.append(StructField("JOBID", StringType())
12: fields.append(StructField("INS_TIME", TimestampType())
13: schema ← StructType(fields)
14: if table_name_STG exists in Lakehouse then
15: if old_schema = schema then
16: continue
17: else
18: overwrite_(table_name)_STG_old_schema(schema)
19: end if
20: else
21: create_STG_Table(schema)
22: end if
23: identity ← subset["Identity"]
24: if identity = ’Dimension’ then
25: move_(table_name).csv_to_Dimensions_folder
26: file_dim_read.append(table_name)
27: else
28: move_(table_name).csv_to_Facts_folder
29: file_fact_read.append(table_name)
30: end if
31: end for

The notebook exports the arrays of dimensions and facts to the STG notebook.

48

Implementation of the Proposed Solution within the Microsoft Fabric Environment

6.2.3 STG

Firstly, the notebook retrieves the output produced by the Create_Schema note-
book. Then, the notebook imports the utility functions from an auxiliary module,
METADATA_TABLES_HANDLER, designed to manage operational metadata, it contains
two functions write_flow_manager and write_table_manager which write on the
FLOW_MANAGER and TABLE_MANAGER tables respectively.

write_flow_manager accepts the following parameters: identity, grp_name,
level, src_jobid, trg_jobid, status, load, start_date, end_date. It performs
a MERGE operation on the FLOW_MANAGER table using a composite key consisting of
identity, grp_name, level and trg_jobid. If a record with matching keys exists,
the field status, load, and end_date are updated. If no matching records exists, a
new row is inserted. The end_date is left None, indicating that processing for the
specified level, target job and group name has just commenced.

Unlike write_flow_manager, write_table_manager function follows an APPEND
insertion mode. Each invocation adds a new record to the TABLE_MANAGER. It takes
the following input parameters: identity, level, grp_name, table_name, jobid,
num_records, insert_time, none of them are optional.

It is important to recall that the FLOW_MANAGER records information related to
the executions within a single run of the ETL process. Specifically, it tracks the
progress at the flow level, for each logical group of tables. The TABLE_MANAGER, on
the other hand, stores metadata related to the individual tables being processed
during the execution of the ETL process.

After importing the utility functions, the STG functions computes the JOBID
corresponding to the current ETL execution and defines a function named load_STG,
which takes as input a string representing the name of a CSV file to be loaded into its
corresponding STG table. For each input file, the function extracts the table name and
retrieves the associated GRP_NAME and IDENTITY from the Metadata_Schema Delta
Table. It also queries the FLOW_MANAGER table to obtain the most recent STATUS for
the logical group (GRP_NAME) to which the table belongs, filtered by LEVEL = 0 and
the current TRG_JOBID. If a status is found and its value is equal to -3, an exception
is raised. This mechanism is designed to handle cases in which multiple tables share
the same logical group: if an error occurs during the loading of one table, all other
tables belonging to the same group are skipped to prevent inconsistent group-level
processing. Subsequently, a new record is inserted into the FLOW_MANAGER table. The
function write_flow_manager is invoked with the following parameters: IDENTITY,
GRP_NAME, LEVEL = 0, a default source job identifier SRC_JOBID = 19000101000000,
the current job identifier (TRG_JOBID = JOBID), LOAD = 1, STATUS = 2, the current
timestamp as START_DATE and None as END_DATE. This insertion serves to indicate
the start of the data loading process from the specified CSV file into the corresponding

49

Implementation of the Proposed Solution within the Microsoft Fabric Environment

STG table. Next, the CSV file is read, the previously calculated JOBID and the
current timestamp are appended to the extracted data, and finally the data is loaded
with an append strategy into the corresponding STG Delta table; and a new record
is inserted into the TABLE_MANAGER to log the recently loaded table, including the
number of records read during the loading process.

If an exception or error occurs during the loading process, the file name and
the corresponding group name are record in dedicated arrays. Additionally, the
FLOW_MANAGER is updated by setting the STATUS to -3 for the specified IDENTITY,
GRP_NAME, TRG_JOBID, and LEVEL = 0. Importantly, despite the occurrence of errors,
the overall ETL process continues execution and is never halted.

The STG notebook invokes the load_STG function for each table to be loaded
into its respective STG table. Upon completion, only those logical groups that did
not raise exceptions during the loading phase proceed further through the pipeline,
other than this, the output of the notebook also includes the associated tables and
identities the job identifier (JOBID) of the current execution flow and the table names
and associated groups that raised exceptions.

Algorithms 2-4 provide an overview of the core functions involved in the data
ingestion process: algorithm 2 presents the pseudocode describing the logic behind
the MERGE operation performed within the write_flow_manager function; algo-
rithm 3 details the pseudocode for the corresponding INSERT operation used in the
write_table_manager function; finally, algorithm 3 illustrates the complete logic
for loading data from CSV files into the corresponding STG Delta tables.

Algorithm 2 Write flow manager function
1: function write_flow_manager(identity, grp_name, level, src, trg, status, load,

start_date, end_date)
2: merge delta_table (alias "t") with source (alias "s") on:
3: t.IDENTITY = s.identity and
4: t.GRP_NAME = s.grp_name and
5: t.LEVEL = s.level and
6: t.TRG_JOBID = s.trg
7: if matched and s.END_DATE is not null then update:
8: STATUS = s.status
9: LOAD = s.load

10: LEVEL = s.load
11: SRC_JOBID = s.src
12: END_DATE = s.end_date
13: if not matched then insert identity, grp_name, level, src, trg, status,

load, start_date, end_date
14: execute merge
15: end function

50

Implementation of the Proposed Solution within the Microsoft Fabric Environment

Algorithm 3 Write table manager record
1: function write_table_manager(identity, level, grp_name, table_name, jobid,

num_rows, load_date)
2: merge delta_table (alias "t") with new_row (alias "s") on:
3: t.IDENTITY = s.identity and
4: t.LEVEL = s.level and
5: t.GRP_NAME = s.grp and
6: t.TABLE_NAME = s.table_name and
7: t.JOBID = s.jobid
8: if matched then update identity, grp_name, level, src, trg, status, load,

start_date, end_date
9: if not matched then insert identity, grp_name, level, src, trg, status,

load, start_date, end_date
10: execute merge
11: end function

Algorithm 4 Load CSV file into STG table
1: function load_STG(csv_file, no_valid_grp, error_files)
2: table_name ← extract name from csv_file (without extension)
3: grp_identity ← run query on Metadata_Schema to get GRP_NAME, IDENTITY

where TABLE_NAME = table_name
4: identity ← grp_identity["IDENTITY£]
5: grp ← grp_identity["GRP_NAME"]
6: status ← run query on FLOW_MANAGER to get STATUS where GRP_NAME = grp,

LEVEL = 0, TRG_JOBID = jobid
7: if status exists and status = -3 then
8: raise exception
9: end if

10: write_flow_manager(identity, grp, 0, ’19000101000000’, jobid, 1, 2,
current_time, None)

11: if identity = "DIMENSION" then
12: df ← read csv_file from Dimensions folder
13: else
14: df ← read csv_file from Movements folder
15: end if
16: add columns JOBID = jobid and INS_TIME = current_time to df
17: write df in delta format with append mode to table table_name_STG
18: write_table_manager(identity, 0, grp, table_name_STG, jobid,

count_rows(df), current_time)
19: return no_valid_grp, error_files
20: Catch exception e

append csv_file to error_files
append grp to no_valid_grp

write_flow_manager(identity, grp, 0, ’19000101000000’, jobid, -3, 2,
None, current_time)

21: end function

51

Implementation of the Proposed Solution within the Microsoft Fabric Environment

6.2.4 DLT
Like the STG notebook, the DLT notebook receives as input the the output pro-
duced by its predecessor, specifically it considers only the table names and related
groups that were loaded correctly in the STG tables, the notebook also imports the
METADATA_TABLES_HANDLER module. It then initiates the extraction of incremental
data, this is achieved by selecting only rows whose JOBID is greater than the most
recent successfully processed JOBID for that table. The LAST_JOBID computation
and record extraction can be explained easily with SQL syntax.

SELECT LAST_JOBID = ISNULL(MAX(JOBID), 19000101000000)
FROM TABLE_MANAGER TM, FLOW_MANAGER FM
WHERE JOIN_CONDITION

AND FM.STATUS = 0
AND FM.LIVELLO = 0
AND TM.TABLE_NAME = nome_tabella

SELECT * AS NON_PROCESSED_DATA
FROM Table_STG
WHERE JOBID > LAST_JOBID

SELECT * AS LAST_PROCESSED_DATA
FROM Table_DLT
WHERE JOBID = LAST_JOBID

These conceptual queries were translated into the Apache Spark environment.
The first MINUS NON_PROCESSED_DATA - LAST_PROCESSED_DATA was used to retrieve
only the new records that have appeared in the STG table since the last successful
Level 0 (L0) load that specific table. These new records are tagged with a new
column named FLG_NEG, set to 0, indicating they represent new inserted data; the
second MINUS operation, LAST_PROCESSED_DATA - NON_PROCESSED_DATA serves to
identify records that were present in the previous successful load but are no longer
available in the source. These are treated as physical deletions, and each record is
assigned FLG_NEG = 1.

The resulting record from both MINUS operations are unified into a single dataset,
assigned the current JOBID, and then written to the DLT table. The DLT table
is append-only, however, to manage storage efficiently, older records in the DLT
are periodically deleted after several ETL executions. For this reason, a second
table named DLT_HIS exists. It contains the same records as the DLT, with the key
distinction that no data is ever removed from it.

Algorithm 5 is executed for each table listed in the output of the STG notebook.

52

Implementation of the Proposed Solution within the Microsoft Fabric Environment

Algorithm 5 DLT Data Processing and Minus Logic
1: function process_DLT(table_name, identity, grp_name, no_valid_grp, jobid,

error_files)
2: Try
3: if The Status indicated by the FLOW_MANAGER for the GRP_NAME on Level 0 and

on the current JOBID == -3 then
4: Skip the execution for this table
5: end if
6: joined ← join FLOW_MANAGER and TABLE_MANAGER on IDENTITA, GRP_NAME and

JOBID
7: filter joined where LEVEL = 0, STATUS = 0, TABLE_NAME = table_name
8: result ← COALESCE(MAX(JOBID), ’19000101000000’) from joined
9: NON_PROCESSED_DATA ← SELECT * FROM table_name_STG WHERE JOBID > result

10: LAST_PROCESSED_DATA ← SELECT * FROM table_name_STG WHERE JOBID = result
11: if result = ’19000101000000’ then
12: new ← execute NON_PROCESSED_DATA and drop JOBID, INS_TIME
13: old ← empty DataFrame with same schema
14: else
15: old ← execute LAST_PROCESSED_DATA and drop JOBID, INS_TIME
16: new ← execute NON_PROCESSED_DATA and drop JOBID, INS_TIME
17: end if
18: new_minus_old ← new MINUS old
19: old_minus_new ← old MINUS new
20: Add columns JOBID = jobid, INS_TIME = now, FLG_NEG = 0 to new_minus_old
21: Add columns JOBID = jobid, INS_TIME = now, FLG_NEG = 1 to old_minus_new
22: dlt ← UNION of new_minus_old and old_minus_new
23: write dlt to table_name_DLT in append mode
24: write dlt to table_name_DLT_HIS in append mode
25: write_table_manager(identity, 0, grp, table_name_DLT, jobid,

count_rows(dlt), current_time)
26: write_flow_manager(identity, grp_name, 0, ’19000101000000’, jobid, 0, 0,

None, current_time)
27: return no_valid_grp, error_files
28: Catch exception e

append table_name to error_files
append grp to no_valid_grp

write_flow_manager(identity, grp_name, 0, ’19000101000000’, jobid, -3,
2, None, current_time)

29: end function

The DLT table retains only the most recent records defined by the retention_time
parameter. Specifically, it holds the data corresponding to the latest retention_time
distinct JOBID values, as retrieved from the FLOW_MANAGER for the logical group
(GRP_NAME) associated with the table. Algorithm 6 shows the pseudo-code of the
previous logic

As in the STG phase, the TABLE_MANAGER is updated by inserting a new row where
the table name is Table_Name_DLT, along with the number of rows written to the DLT.
If any of the DLT operations described above raise an exception, the affected table

53

Implementation of the Proposed Solution within the Microsoft Fabric Environment

name and associated logical group are recorded. Additionally, the FLOW_MANAGER
is updated for the group by setting the STATUS to -3 and writing the END_DATE,
signaling an error in the process for that specific load attempt. For the groups
that were successfully loaded into both the STG and DLT tables, their corresponding
records in the FLOW_MANAGER associated with the current processing level (0) and
JOBID are updated accordingly. The STATUS field is set to 0, indicating a successful
execution, and both the LOAD_DATE and END_DATE fields are recorded to reflect the
completion of the process.

Algorithm 6 Extract Retained JOBIDs
1: Inputs of the code: identity, grp, table_name, retention_time
2: Select distinct TRG_JOBID from FLOW_MANAGER as FM and

TABLE_MANAGER as TM
3: Where:
4: Join Conditions
5: AND FM.IDENTITA == input identity
6: AND FM.GRP_NAME == input grp
7: AND TM.TABLE_NAME == input table_name
8: Order results by TRG_JOBID in descending order
9: Limit the result to retention_time rows

10: Filter the DLT table where JOBID is in the list
11: Store the result in a temporary DeltaTable DLT_TMP
12: Save DLT_TMP as a new table named <table_name>_DLT_TMP
13: Drop the original table <table_name>_DLT
14: Rename <table_name>_DLT_TMP to <table_name>_DLT

The output of this notebook consists solely of two elements: the JOBID and the
names of the tables that raised exceptions during execution. The JOBID serves as an
essential reference for the next logical level of the ETL pipeline, Level 1 (L1). On the
other hand, the list of names of tables that failed is sent to the If-Else conditional
block connected on success to the DLT notebook as seen in Figure 6.2, if this list is
not empty, then an email is sent to the pipeline supervisor notifying the failures. It
is of no interest to send other types of information to the next level, since each level
operates independently. Therefore, groups that failed during L0 do not interfere with
the execution of L1.

Since L0 and L1 are implemented as separate pipelines connected on success -as
illustrated in Figure 6.1- the output of the DLT process is stored in an Excel file.
This file is then read during the execution of the L1 pipeline.

According to the theoretical definition of the company’s ETL framework, configu-
ration elements such as the retention_time parameter and the list of supervisor

54

Implementation of the Proposed Solution within the Microsoft Fabric Environment

email addresses should be stored within the METADATA_MANAGER. However, Microsoft
Fabric provides an alternative through its built-in library of variables, which can
be used to store and manage such configuration information in a centralized and
reusable manner across different pipelines and notebooks.

6.3 L1
The pipeline is responsible for transforming the incremental data extracted from
the Level 0 layer to ensure compliance with relational and data quality constraints.
Three different implementation approaches were developed: The first uses Spark
Notebooks to perform transformations, with the resulting Level 1 (L1) tables stored
in the Lakehouse; the second relies on several T-SQL stores procedures orchestrated
with the help of pipeline activities, in this case, the related tables will be stored inside
the Data Warehouse; the third adopts a more user-friendly, low-code approach using
Dataflows Gen2, which provides a graphical interface for defining transformation
logic, making it accessible to users with limited coding experience.

6.3.1 First solution: Spark
This solution reduces the number of components within the pipeline by consolidating
all operations into a single notebook PRE_LOAD, OK, ERR, ODS. This design choice
aligns with the scheduling and execution conditions defined by the company’s frame-
work: as cited in section 5.5 «at Layer L1, each step must ensure it is the only
process currently executing». Specifically, once the processing of a given table begins,
all the other tables must wait until that process completes - whether successfully or
with failure - before initiating their own execution.

As 6.3 demonstrates, the first activity to be executed when the L1 pipeline is
running is the Lookup activity Output_L0, which reads an Excel file stored in the
Lakehouse. This file contains the output generated by the DTL notebook during the
execution of Level 0 and includes the current JOBID of the flow and the list of table
names - sourced from the Metadata_Schema Delta table - that must be processed in
Level 1. All listed tables are processed in accordance with the framework’s rule that
mandates full independence between levels. This means that even if certain tables
could not be processed or encountered errors during the Level 0 execution, they
are not excluded from the processing in Level 1. The Lookup activity is connected
on-success to the notebook. Additionally, in the event of a complete notebook failure
or crash, a separate email is sent. The PRE_LOAD, OK, ERR, ODS notebook contains
distinct functions that contribute to the overall data quality and consistency process.
The PRE_LOAD function is responsible for ensuring that referential integrity constraints
between tables are respected before any further processing, if the constraints is not
respected, acts accordingly. The OK function filters out rows from each table that

55

Implementation of the Proposed Solution within the Microsoft Fabric Environment

violate specific data quality constraints, such as null or negative values in mandatory
columns. Rows that meet the criteria are stored in the corresponding OK Delta table,
while those that do not are redirected to the ERR. Finally, the ODS function collects
and stores the validated data from the OK tables, preparing it to be passed on the
next processing level.

Figure 6.3: Spark implementation of the L1 pipeline

PRE_LOAD, OK, ERR, ODS

As in the notebooks of the L0 layer, this one also imports the write_flow_manager
and write_table_manager functions from the METADATA_TABLES_HANDLER notebook.
Then establishes an execution sequence for the input tables based on their depen-
dencies. The processing order prioritizes: first, dimension tables with no references
to other dimensions; second, dimension tables that reference other dimensions; and
finally, fact tables. The logic is as follows: From the Metadata_Schema Delta table,
for each table name, the referenced tables are grouped, producing a DataFrame with
the structure source table name, referenced table name. Then checks, if for a
given source table, references exists and the source table is a dimension, then it is
labeled as a Dimension with references, if it is a fact, then it labeled as a Fact; if the
given source table is a dimension, but there are no referenced tables, it is labeled as
a Dimension without references.

56

Implementation of the Proposed Solution within the Microsoft Fabric Environment

This reasoning can be easily illustrated by algorithm 7

Algorithm 7 Define table execution sequence
1: Inputs of the code: tables_to_process
2: dimensions ← [], dim_to_dim ← [], facts ← []
3: Select TABLE_NAME, IDENTITY from Metadata_Schema
4: Where TABLE_NAME is in tables_to_process
5: Group by TABLE_NAME, IDENTITY, collect the list of referenced

tables as REFERENCED_TABLES
6: Store the result in a DataFrame called Metadata_Tables
7: for row in Metadata_Tables do
8: table_name ← row["TABLE_NAME"]
9: identity ← row["IDENTITY"]

10: referenced_tables ← row["REFERENCED_TABLES"]
11: if exists referenced_tables then
12: if identity is Dimension then
13: dim_to_dim.append(table_name)
14: else
15: facts.append(table_name)
16: end if
17: else
18: dimensions.append(table_name)
19: end if
20: end for
21: tables ← dimensions + dim_to_dim + facts

After this classification, the notebook defines three auxiliary functions that support
the data processing logic. The first function, check_status, retrieves the current
status of a given logical group (grp_name) and JOBID from the FLOW_MANAGER table
at Level 1, returns True if the STATUS is -3. This is to avoid further processing of
groups that failed in previous steps.

The second function, row_number, identifies the most recent successful JOBID for
a given identity and group name in Level 1 by querying the FLOW_MANAGER. It then
filters the rows in <Table>_DLT to include only those with a JOBID greater than the
last successful one; this ensures that only records which have not yet been processed
in Level 1 are considered. These filtered rows are combined with the existing rows in
<Table>_ERR using unionByName, the resulting DataFrame undergoes a Row Number
operation. This operation partitions the data by the table’s primary keys and orders
the rows with by JOBID in descending order and FLG_NEG in ascending order. Finally,
only the rows with ROW_NUMBER = 1 are selected and returned, ensuring that the
most recent and valid entry for each key is kept. The pseudocode in Algorithm 8

57

Implementation of the Proposed Solution within the Microsoft Fabric Environment

clearly illustrates the logic implemented in the row_number function.

Algorithm 8 ROW_NUMBER function
1: function row_number(table_name, df_metadata_schema_filtered_by_table, identity,

grp_name, jobid)
2: Try:
3: LAST_SUCC_JOBID ← from COLAESCE(MAX(JOBID), ’19000101000000’), from

FLOW_MANAGER, where LEVEL == 1 and STATUS == 0 and GRP_NAME == grp_name and
IDENTITY == identity

4: DLT_DF ← select * from <table_name>_DLT where JOBID > LAST_SUCC_JOBID
5: ERR_DF ← read_Delta_Table(<table_name>_ERR).select(DLT_DF.columns)
6: UNION_DF ← DLT_DF unionByName ERR_DF
7: primary_keys ← select COLUMN_NAMES as PK, from

df_metadata_schema_filtered_by_table, where PrimaryKey == True
8: (select * over ROW_NUMBER(Partition By PK, Order by JOBID DESC, FLG_NEG

ASC) AS RN) AS Temp
9: return Temp.filter(RN == 1)

10: Catch exception e
return -1

11: end function

Finally, the third function, buildDF, takes as input a table schema and a list of
primary keys from another table, then constructs a new schema that includes: all
columns present in both the input schema and the primary keys, standard technical
columns such as JOBID, INS_TIME, and FLG_NEG, the rest of columns present in the
input schema are set to null.

PRE_LOAD

To verify referential integrity constraints between tables, the typical approach involves
performing JOIN operations. However, it is well known that JOINs can significantly
impact performance, especially on large datasets. For this reason, a different strategy
is adopted in the implementation, the pre-load operation: consist in extracting values
from the foreign key column(s) of the source table (in this case, <table>_DLT) that
are not present in the foreign key column(s) of the referenced <table>_ODS, instead
of discarding these missing values, they are inserted into the foreign key columns(s)
of the destination table (<table>_PRE_LOAD). During this step, all technical fields
are populated - specifically, JOBID, INS_TIME and FLG_NEG - while the remaining
fields are filled with default values.

For a given source table - obtained through the row_number function described
earlier - the referential integrity check begins by identifying all the destination
tables that it references. For each referenced destination, the Metadata_Schema
Delta Table allows the extraction of the foreign key relationships: specifically, the
columns in the source table that perform the referencing and the corresponding
columns in the destination table being referenced. This information is assembled

58

Implementation of the Proposed Solution within the Microsoft Fabric Environment

into a DataFrame named fks. Then, the function iterates through each row of fks.
For each referenced table, it retrieves the corresponding GRP_NAME and IDENTITY
from the Metadata_Schema. If the destination table exists, the process continues
by collecting the distinct key values from both the source (source_PK_Values) and
destination (dest_PK_Values) tables. At this point, two scenarios are handled based
on the value of a control flag passed to the pre_load function:

• Dimension-to-Dimension Check (flag = 1): This scenario validates the
referential integrity between one dimension table and another. A set differ-
ence operation (dest_PK_Values MINUS source_PK_Values) is performed to
identify keys that are present in the destination but not yet in the source. If
the result is empty, the function is interrupted early. Otherwise, the buildDF
function is used to construct a new DataFrame using the schema and the pri-
mary keys of the source. This DataFrame, which contains the key columns, the
technical columns (JOBID, INS_TIME, and FLG_NEG) and default values for the
non-key attributes, is inserted into the <source>_PRE_LOAD table.

• Fact-to-Dimension Check (flag = 0): This scenario verifies the integrity
between a fact table and its associated dimensions. Here, the set difference
operation is inverted: source_PK_Values MINUS dest_PK_Values is used to
find keys present in the fact table that are missing in the referenced dimen-
sion. Again, the buildDF function is used with the schema of the dimension
and the primary key values from the fact. The resulting DataFrame is in-
serted into the <destination (dimension)>_PRE_LOAD table. Additionally,
two technical columns are appended to the DataFrame: UPD_JOBID, populated
with the current execution identifier, and UPD_TIME, set to the current system
timestamp, the newly modified DataFrame is inserted into the <destination
(dimension)>_ODS table.

After each insertion, the write_table_manager function is called to log the
operation into the TABLE_MANAGER, recording the number of rows inserted into the
referenced table. If an error occurs at any point during the function’s execution,
the GRP and table name passed as input are logged, and a failure status code -3 is
recorded in the FLOW_MANAGER for level L1, using the current JOBID, source grp_name
and identity.

The PRE_LOAD table for a given table, uses a DELETE-INSERT insertion mode, it
means that on each execution, all existing records in the PRE_LOAD table are deleted
and the table is entirely repopulated with the rows form the current data flow.

The OK and ERR table, which will be introduced in the following sub-section,
also operate using a DELETE-INSERT insertion mode, unlike the tables created and
populated in Level 0 (STG, DLT, DLT_HIS), that follow an APPEND insertion mode

The pseudocode describing the previous logic is implemented through algorithm 9

59

Implementation of the Proposed Solution within the Microsoft Fabric Environment

Algorithm 9 pre_load function
1: function pre_load(table, metadata_schema, jobid, grp_name, identity, valid_files, error_files,

no_valid_grp, flag_dim_dim)
2: Try:
3: metadata_filtered ← metadata_schema.filter(TABLE_NAME == table)
4: source_df ← row_number(table, metadata_filtered, identit, grp_name, jobid)
5: if source_df == None then
6: return error_files, no_valid_grp, valid_files
7: else if source_df == -1 then
8: raise An error verified during the row_number function
9: end if
10: fks ← select * from Metadata_Schema, where TABLE_NAME == table and FK == True
11: fks ← select REFERENCED_TABLE, list of referenced column names, list of source column names

from fks, groupBy REFERENCED_TABLE
12: for each fk_row in fks do
13: dest_table ← fk_row["REFERENCED_TABLE"]
14: grp_ref, identity_ref ← select GRP_NAME, IDENTITY from Metadata_Schema where TABLE_NAME =

dest_table
15: if dest_table_ODS exists then
16: dest_df ← read(dest_table_ODS)
17: else
18: skip
19: end if
20: source_cols ← fk_row[list of source column names]
21: dest_cols ← fk_row[list of referenced column names]
22: source_PK_Values ← source_df.select(source_cols)
23: dest_PK_Values ← dest_df.select(dest_cols)
24: if flag_dim_dim == 1 then
25: missing_keys ← dest_PK_Values MINUS source_PK_Values
26: if missing_keys is empty then
27: skip
28: end if
29: preload_schema ← schema of source table_PRE_LOAD
30: columns ← buildDF(preload_schema, source_cols)
31: preload_df ← missing_keys.select(columns)
32: insert preload_df into source table_PRE_LOAD
33: else
34: missing_keys ← source_PK_Values MINUS dest_PK_Values
35: if missing_keys is empty then
36: s
37: end if
38: columns ← buildDF(schema of dest_df, source_cols)
39: preload_df ← missing_keys.select(columns)
40: insert preload_df into dest_table_PRE_LOAD
41: ods_df ← preload_df.withColumn(UPD_JOBID = jobid, UPD_TIME = sysdate)
42: append ods_df to dest_table_ODS
43: end if
44: write_table_manager(identity_ref, 1, grp_ref, dest_table_PRE_LOAD, jobid,

missing_keys.count(), sysdate)
45: valid_files.append(table)
46: end for
47: return error_files, no_valid_grp, valid_files
48: Catch exception e
49: error_files.append(table)
50: no_valid_grp.append(grp_name)
51: write_flow_manager(identita, grp_name, 1, jobid, jobid, -3, 2, sysdate, sysdate)
52: end function

60

Implementation of the Proposed Solution within the Microsoft Fabric Environment

OK

The OK function is responsible for cleaning tables from records that do not meet
the quality constraints. For this project, the relevant constraints are : Not-nullable
columns: Records containing null values in mandatory fields are discarded; Numeric
Columns: Negative values are not allowed an result in the record being discarded

The records that respect the constraints will be stored in an OK Delta table, while
those that rejected will be stored in the corresponding ERR Delta table.

The data quality validation process begins by querying the Metadata_Schema
associated with a given table to identify the column that must not contain NULL
values and the columns that must not contain negative values.

Subsequently, the dataset to be validated is obtained via the row_number. Initially,
a flag is assigned to all records that contain NULL values in any of the previously
identified non-nullable columns. These flagged records are isolated and appended to
the corresponding error table (<table>_ERR). In addition to these records, an extra
column (Descr_Err) is added to describe the reason for exclusion. The remaining
records, which passed the null-check phase, are further evaluated for non-negativity
constraints. Records that contain negative values in columns that must only accept
non-negative inputs are similarly flagged and redirected to the <table>_ERR table,
also with an accompanying descriptive message.

At the end of the validation process, two datasets are produced, <table>_OK
containing only the records that fully satisfy all quality constraints and <table>_ERR
that collects invalid records along with diagnostic information about the constraint(s)
they violated.

Finally, a log entry is created in the TABLE_MANAGER for the <table>_OK table,
indicating the number of successfully loaded rows.

In the event of an exception during processing, the system captures the name of
the affected table and its associated group. The FLOW_MANAGER is updated, an entry
is recorded with a status code of -3 and the end date for the given group name,
jobid and level 1.

Algorithm 10 shows the pseudocode for the OK function.

61

Implementation of the Proposed Solution within the Microsoft Fabric Environment

Algorithm 10 ok function
1: function ok(table, jobid, grp_name, identity, metadata_filtered_by_table, valid_files, er-

ror_files, no_valid_grp)
2: notnull_cols ← select column_name from metadata_filtered_by_table where

Nullable == False
3: gt0_cols ← select column_name from metadata_filtered_by_table where

less_than_zero == False and Type in (INT, DOUBLE)
4: row_number_df ← row_number(table, metadata_filtered_by_table, identity,

grp_name, jobid)
5: if row_number_df == None then
6: return
7: end if
8: if row_number_df == -1 then
9: raise An error occurred during the row_number function

10: end if
11: cnull_df ← row_number_df with column contains_null flagged to 1 where null

values appear in notnull_cols
12: clean_1_df ← select * from cnull_df where contains_null == 0
13: enull_df ← select *, "contains null value" as Descr_Error from cnull_df

where contains_null == 1
14: cgt_df ← clean_1_df with column contains_neg flagged to 1 where negative

values appear in gt0_cols
15: clean_2_df ← select * from cgt_df where contains_neg == 0
16: egt_df ← select *, "contains negative value" as Descr_Error from cgt_df

where contains_neg == 1
17: temp_err_df ← enull_df union by name egt_df
18: Store temp_err_df as <table>_ERR Delta Table
19: clean_2_df ← clean_2_df.withColumn("JOBID", jobid).withColumn("INS_TIME",

sysdate)
20: Store clean_2_df as <table>_OK Delta Table
21: write_table_manager(identity, 1, grp_name, <table>_OK, jobid, num_rows,

datetime.now())
22: return
23: Catch exception e:
24: error_files.append(table)
25: no_valid_grp.append(grp_name)
26: write_flow_manager(identity, grp_name, 1, jobid, jobid, -3, 2,

datetime.now(), datetime.now())
27: end function

MERGE

The merge function is responsible for synchronizing the computed data into the
ODS table. Specifically, if a new record with the same keys already exists in the
ODS table, it is updated; otherwise, a new record is inserted. The function begins
by constructing the merge condition, which ensures that the keys from the input
DataFrame match the corresponding keys in the ODS table. Next, the columns to
be updated are defined: these include all columns from the union of the OK and
PRE_LOAD DataFrames, as well as the additional columns UPD_JOBID and UPD_TIME.

62

Implementation of the Proposed Solution within the Microsoft Fabric Environment

Notably, the columns JOBID and INS_TIME are excluded from the update clause.
The insert clause includes all columns from the computed DataFrame, along with
UPD_JOBID and UPD_TIME. The final merge operation is then performed from the
computed DataFrame into the ODS table. This operation leverages the merge
capability provided by Delta Lake, which allows for atomic operations based on
user-defined matching conditions. It requires specification of the keys to match on,
the columns to update when a match is found, and the columns to insert when no
match is present.

An additional benefit of this approach is that the ODS table is not rewritten in
its entirety, instead, only the affected rows are updated or inserted, ensuring better
performance and transactional integrity.

Algorithm 11 merge function
1: function merge(table_ODS, table, keys)
2: merge_condition ← keys
3: columns_to_update_set← columns from table except JOBID and INS_TIME
4: columns_to_update_set["UPD_JOBID"] ← table["JOBID"]
5: columns_to_update_set["UPD_TIME"] ← sysdate
6: columns_to_insert_set ← all columns from table
7: columns_to_insert_set["UPD_JOBID"] ← table["JOBID"]
8: columns_to_insert_set["UPD_TIME"] ← sysdate
9: table_ODS.merge(table, merge_condition)

10: .whenMatchUpdate(columns_to_update_set)
11: .whenNotMatchedInsert(columns_to_insert_set)
12: end function

ODS

Finally, in the last stage of level L1, the ODS function processes the data by taking
the contents of the PRE_LOAD and OK tables and performing a union by name
operation. During this process, two additional columns are added: UPD_JOBID, which
records the current JOBID value, and UPD_TIME, which captures the system date of
the update. The purpose of this step is to merge the newly computed DataFrame
into the ODS table. To accomplish this, the key columns required for the merge are
extracted from the Metadata_Schema and are passed, along with the ODS table and
the DataFrame, to the merge function.

Since this represents the final stage of the L1 processing pipeline, it is possible
at this point to determine whether a logical group has successfully completed all
operations defined for level 1. If no errors or exceptions are encountered during the
creation and population of the tables described in the previous section - namely, the
PRE_LOAD, OK, and ERR - then the corresponding record in the FLOW_MANAGER table is

63

Implementation of the Proposed Solution within the Microsoft Fabric Environment

updated. Specifically, for the given logical group at level 1 and for the current JOBID,
the STATUS, and LOAD fields are set to 0, and the end date is recorded. This update
serves as confirmation that the group has successfully completed all L1 processing
steps.

As with the previous function, if an error occurrs during execution, the correspond-
ing logical group name and table name are recorded. Additionally, the FLOW_MANAGER
table is updated, for the specified grp_name, JOBID, and level 1, the STATUS field is
set to -3 and the end date is inserted, indicating that hte processing failed at this
stage.

Algorithm 12 ods function
1: function ods(table, identity, grp_name, jobid, error_files, no_valid_grp,

valid_files)
2: table_OK ← get_table(<table>_OK)
3: table_PRE_LOAD ← get_table(<table>_PRE_LOAD)
4: df_Union ← table_OK union by name table_PRE_LOAD
5: table_ODS ← get_table(<table>_ODS)
6: Try:
7: keys ← select COLUMN_NAME from Metadata_Schema where TABLE_NAME ==

table and PK == True
8: merge(table_ODS, df_Union, keys)
9: write_flow_manager(identity, grp_name, 1, jobid, jobid, 0, 0,

datetime.now(), datetime.now())
10: Catch exception e:
11: error_files.append(table)
12: no_valid_grp.append(grp_name)
13: write_flow_manager(identity, grp_name, 1, jobid, jobid, -3,

2, datetime.now(), datetime.now())
14: end function

Algorithms 11 and 13 present the pseudocode implementations of the merge and
ods functions, respectively.

Prior to the main execution block that orchestrates the functions described above,
for each table requiring processing, the PRE_LOAD, OK, ERR, and ODS are created for
the given table and initialized as empty tables if they do not already exist. The
schema for each is derived from the corresponding DLT: PRE_LOAD and OK share
the same schema of the DLT table; the ERR table includes an additional column,
Descr_Err, to record the reason for discarded records; the ODS table contains two
additional columns, UPD_JOBID and UPD_TIME.

64

Implementation of the Proposed Solution within the Microsoft Fabric Environment

Main Execution Flow

As stated previously, the processing of tables in the L1 layer follows a specific ordering:
dimension tables without foreign key are processed first, followed by dimension
tables that reference other dimensions, and finally the fact tables. For each table
scheduled for processing, the corresponding group name and identity are retrieved
from Metadata_Schema. Prior to any processing , the function check_status is
invoked to determine whether the group assigned to the table being processed has
previously encountered errors. If check_status returns True, the processing for
that table is skipped, and the loop proceeds to the next table. After each processing
function invocation (pre_load, ok, ods), check_status is called again to ensure
that groups that raise exceptions during intermediate steps are not further processed.

The processing logic depends on the table type:

• Dimension tables without references: only the functions ok and ods are executed,
since no referential contraints need to be validated.

• Dimension tables with references: The functions pre_load, ok and ods are
executed sequentially. In this case, the flag parameter passed to pre_load is
set to 1

• Fact tables: Same sequence, but the flag parameter passed to pre_load is set
to 0.

Algorithm 13 get_status function
1: function get_status(grp_name, jobid)
2: status ← select STATUS from FLOW_MANAGER where GRP_NAME ==

grp_name and LEVEL == 1 and TRG_JOBID = jobid
3: return True if status != -3, else return False
4: end function

The pseudocode depicting this logic is represented by Algorithm 14.

The output returned by this notebook is the list of files that encountered errors
during the execution of this phase. This list is intended to be used for sending an
email notification to the designated supervisor.

65

Implementation of the Proposed Solution within the Microsoft Fabric Environment

Algorithm 14 Execute processing functions for each table in L1
1: Inputs of the code: tables, jobid
2: for table in tables do
3: metadata_filtered_by_table ← select * from Metadata_Schema where

TABLE_NAME = table
4: grp_name, identity ← select GRP_NAME, IDENTITY from Metadata_Schema where

TABLE_NAME = table
5: if check_status(grp_name, jobid) then
6: continue
7: end if
8: if table in dimensions then
9: ok(table, jobid, grp_name, identity, metadata_filtered_by_table,

valid_files, error_files, no_valid_grp)
10: if check_status(grp_name, jobid) then
11: continue
12: end if
13: ods(table, identity, grp_name, jobid, error_files, no_valid_grp,

valid_files)
14: else if table in dim_to_dim then
15: flag_dim_to_dim ← 1
16: pre_load(table, metadata_schema, jobid, grp_name, identity, valid_files,

error_files, no_valid_grp, flag_dim_to_dim)
17: if check_status(grp_name, jobid) then
18: continue
19: end if
20: ok(table, jobid, grp_name, identity, metadata_filtered_by_table,

valid_files, error_files, no_valid_grp)
21: if check_status(grp_name, jobid) then
22: continue
23: end if
24: ods(table, identity, grp_name, jobid, error_files, no_valid_grp,

valid_files)
25: else if table in facts then
26: flag_dim_to_dim ← 0
27: pre_load(table, metadata_schema, jobid, grp_name, identity, valid_files,

error_files, no_valid_grp, flag_dim_to_dim)
28: if check_status(grp_name, jobid) then
29: continue
30: end if
31: ok(table, jobid, grp_name, identity, metadata_filtered_by_table,

valid_files, error_files, no_valid_grp)
32: if check_status(grp_name, jobid) then
33: continue
34: end if
35: ods(table, identity, grp_name, jobid, error_files, no_valid_grp,

valid_files)
36: end if
37: end for

66

Implementation of the Proposed Solution within the Microsoft Fabric Environment

6.3.2 Second solution: T-SQL Stored Procedures
The decision to design the L1 layer within the Warehouse, rather than in the
Lakehouse, stems from the opportunity to leverage the powerful computation engine
provided by the Warehouse. This choice comes at the cost of reduced flexibility
compared to the capabilities offered by Spark and results in a more complex, yet
explicit data pipeline.

Figure 6.4: Main pipeline for Level 1

Figure 6.5: Inside the ForEach block of the L1 pipeline

Figure 6.6: Inside the If condition block of the ForEach block of the L1 pipeline

67

Implementation of the Proposed Solution within the Microsoft Fabric Environment

As previously stated, the implementation of the L1 pipeline using T-SQL stored
procedures necessitates the orchestration of a significant number of interdependent
pipeline activities. The primary orchestrator for the L1 level is depicted by Figure
6.4. The process begins with the parallel execution of two operations:

• The first operation is carried out by the Lookup activity named Output L0,
which reads the Excel output file produced by the DLT notebook during the
execution of the L0 pipeline. This file contains the list of tables that are to be
processed in the current L1 execution, as well as the JOBID associated with the
execution instance

• Concurrently, a SQL script is executed to delete the content of the FLOW_MANAGER
and TABLE_MANAGER tables located in the Data Warehouse. These tables stored
in the Warehouse are temporary, it means that are populated during the current
execution and, upon completion, their content is appended to the corresponding
persistent tables stored in the Lakehouse. Consequently, at the beginning of
each L1 execution, the Warehouse versions of these tables are cleared.

If the FLOW_MANAGER and TABLE_MANAGER do not exist in the Warehouse at the
time of execution, they are created by the Create Manager Tables procedure.
Following this initialization activities, a ForEach activity is executed, this activity
iterates over the list of table names to be processed during the current L1 execution.
The iterator variable in this context corresponds to the table name, as extracted
form the output of the L0 pipeline.

As illustrated in Figure 6.5, the internal logic of the ForEach activity comprises
sequential steps. For each table name in the iteration, the pipeline first invokes a
Stored Procedure responsible for creating the corresponding empty tables - if they
are not present - in the Warehouse, which are the PRE_LOAD, OK, ERR, and ODS tables.
Subsequently, a Lookup activity is executed to retrieve the processing status of
the logical group associated with the current table name. This lookup queries the
FLOW_MANAGER using the current JOBID and the pipeline level (in this case, Level
1). If the retrieved status is different from -3, the condition within the If activity
is satisfied, and the subsequent processing steps for that table are executed. This
conditional mechanisms ensures that if any table within a given logical group fails
during the processing, all other tables belonging to the same group are intentionally
skipped in the same execution cycle.

The If condition block, as depicted in Figure 6.6, encapsulates the core processing
logic for each table. Specifically, inside this block, several stored procedures are
executed in sequence, these are responsible for populating the FLOW_MANAGER and
TABLE_MANAGER, and the PRE_LOAD, OK, ERR, and ODS tables associated with the
current table name. In addition to the data transformation and control flow logic,
email notification activities are integrated into the pipeline connected on-failure to
the store procedures. These activities are triggered in the event of an error during

68

Implementation of the Proposed Solution within the Microsoft Fabric Environment

the execution of a Store Procedure. Specifically, when a processing step fails, an
email is automatically sent to notify the supervisor , this notification includes the
step in which the failure verified and the table name that caused the exception.

Store Procedure: Write_Manager_Tables

This stored procedure serves the same purpose as the METADATA_TABLES_HANDLER
notebook introduced in Level 0: It is designed to insert and update records in the
FLOW_MANAGER and TABLE_MANAGER. The procedure receives the following parameters
input parameters:

• table_name: The name of the table beign processed

• JOBID

• FLAG_FM: A binary flag indicating whether a new record should be inserted or
updated in the FLOW_MANAGER (value 1).

• FLAG_TM:A binary flag indicating whether a new record should be inserted or
updated in the TABLE_MANAGER (value 1).

• STATUS, LOAD

• STEP; A string that must be one of the following predefined stages : PRE_LOAD,
OK, ERR or ODS

The first operation performed by the stored procedure consists in retrieving the
identity and grp_name corresponding to the provided table name. This information
is obtained by querying the Metadata_Schema Delta table, which is accessible in read-
only mode from the Warehouse environment due to the linkage established between
Warehouse and Lakehouse. Subsequently, the procedure computes the number of rows
inserted into the table corresponding to the current step, i.e., <table_name>_<STEP>,
during the ongoing execution, if the computed number of rows is greater than
zero and the FLAG_TM parameter is set to 1, a new record is inserted into the
TABLE_MANAGER. The inserted record includes the following fields: identity, level
(set to 1), grp_name, <table_name>_<STEP>, JOBID and the computed num_rows.

With regard to the FLOW_MANAGER population, the procedure first checks whether
a record with the given grp_name, JOBID and identity already exists in the
FLOW_MANAGER with a STATUS equal to -3 (indicating a previous failure). If such
record is found, no further insertion is performed for that group. This condition
ensures that if a failure has already been registered for a logical group during the
current execution, all subsequent tables within the same group are skipped.

If the FLAG_FM is set to 1 and SKIP = 0, the procedure proceeds to either insert
or update the corresponding record in the FLOW_MANAGER. if a record exists for the

69

Implementation of the Proposed Solution within the Microsoft Fabric Environment

combination identity, grp_name, level = 1, and JOBID, an update operation is
performed: the store procedure sets the new STATUS and LOAD values based on the
current input parameters and sets the end_date to the SYSDATE. Conversely, if no
such records exists, a new insertion is carried out. This new entry includes identity,
grp_name, LEVEL, SRC_JOBID and TRG_JOBID (both equal to JOBID), STATUS, LOAD,
the current start_date, and a NULL value for end_date, which will be populated
upon completion or failure of the transformation process.

Table 6.6 tabulates the input parameters for the Initial Write FM call

table_name JOBID FLAG_FM FLAG_TM STATUS LOAD STEP
<iterator> <jobid from the

DLT output Excel
file>

1 0 1 2 PRE_LOAD

Table 6.6: Parameters for the Initial Write FM stored procedure call

Store Procedure: PRE_LOAD

It receives as input the JOBID of the current execution and the table_name of
the table being processed. The logic implemented in this stored procedure closely
resembles that of the pre_load function described in the PRE_LOAD, OK, ERR, ODS
notebook used in the Spark-based Level 1 Pipeline. However, there are key differences
arising from the limitations of T-SQL within the Fabric environment.

First, unlike in Spark SQL, where it is possible to define a ROW_NUMBER function
directly over a distributed DataFrame to identify the latest record per key, in T-SQL
such operations require manual implementation. This is due to the fact that T-SQL
does not support applying window functions in the same flexible way as Python
Spark does, especially when dynamic table and column names are involved in the
logic. As a result, the logic must be expressed explicitly using dynamic SQL.

Another significant difference lies in the absence of support for temporary ta-
bles and table variables in Fabric T-SQL. Consequently, to maintain intermediate
results, it is necessary to create a physical table. This auxiliary table named
DependenceStaging stores metadata regarding referential integrity: for the table
passed as input to the stored procedure, it lists the referenced destination tables, the
columns in the destination tables used for reference, and the corresponding source
columns.

A toy example to illustrate the contents of the DependencesStaging table is
shown in Table 6.7.

Once this reference mapping table is created, the procedure iterates over its rows.
For each referenced table, if referential relationships are present, the corresponding

70

Implementation of the Proposed Solution within the Microsoft Fabric Environment

pre-load data is computed following the same logic adopted in the PRE_LOAD, OK,
ERR, ODS notebook. Subsequently, a record is inserted into the TABLE_MANAGER to
log the reference table name and the number of rows loaded during the operation.

Considering the metadata in Table 6.5, if the current table being processed is
table_6, that represents a fact table referencing several dimensions, the Dependences
Staging table will be populated as follows:

Referenced_Table Dest_Columns_To_Referentiate Src_Columns_That_Referentiate
table_1 col_1_1 col_1_1
table_4 col_4_1 col_4_1
table_3 col_3_1 col_3_1

Table 6.7: Example of DependencesStaging contents when processing

On the other hand, if the current table being processed is table_1, which is a
dimension table not referencing any other tables, the DependencesStaging table
will remain empty. This is expected, as only fact tables (such as table_6) and
secondary dimensions in a Snowflake schema typically contain foreign keys pointing
to dimension tables, whereas primary dimensions do not have outbound dependencies.

To conclude, this stored procedure populates the PRE_LOAD tables of the tables
referenced by the current table being processed. Specifically, it inserts into the
destination tables the values of the key columns that are present in the source table
but no yet available in the corresponding destination tables, ensuring compliance
with referential integrity constraints

This stores procedure is linked to four distinct activities

• A success path to the Write_Manager_Tables store procedure named Write
TM PRE_LOAD, which logs into the TABLE_MANAGER the PRE_LOAD of the current
table being processed and the number of rows inserted

• An on-failure connection to the Write_Manager_Tables store procedure named
Write FM fail PRE_LOAD, which sets STATUS = - 3 and end_date = SYSDATE
corresponding to the group associated to the current processed table, the Level
1 and the JOBID

• An email notification activity that informs the supervisor of the failure in the
PRE_LOAD step for the current table.

• An on-success connection to the OK store procedure

The parameters used by the Write TM PRE_LOAD and Write FM fail PRE_LOAD
procedures are detailed in Tables 6.8 and 6.9, respectively.

71

Implementation of the Proposed Solution within the Microsoft Fabric Environment

table_name JOBID FLAG_FM FLAG_TM STATUS LOAD STEP
<iterator> <jobid from the

DLT output Excel
file>

0 1 1 2 PRE_LOAD

Table 6.8: Parameters for the Write TM PRE_LOAD stored procedure call

table_name JOBID FLAG_FM FLAG_TM STATUS LOAD STEP
<iterator> <jobid from the

DLT output Excel
file>

1 0 -3 2 PRE_LOAD

Table 6.9: Write FM fail PRE_LOAD

Store Procedure: OK

For the OK stored procedure, the process used to extract the data for the table
currently being processed follows the same approach described in the PRE_LOAD
stored procedure. Specifically, the row_number function is manually implemented
due to the limitations of Fabric T-SQL. Apart from this technical adaptation, the
stored procedure replicates the same logic as the ok function found in the PRE_LOAD,
OK, ERR, and ODS notebook used in the L1 PySpark-based implementation pipeline.
It can be stated that the logic expressed in the notebook and the one implemented
in the stored procedure are equivalent in terms of functionality. The main difference
lies in the programming languages and execution environments.

For a given input table name, the store procedure populates the OK and ERR
tables. The OK table contains the records that satisfy the data quality controls -
specifically, check nullability and the presence of negative values in numeric columns.
Conversely, the ERR table stores the records that fail these quality checks, along with
a description indicating the reason for their exclusion.

As in the previous step, the OK stored procedure is connected - upon success-
ful execution - to two subsequent procedures: the ODS stored procedure and the
Write_Manager_Tables stored procedure named Write TM OK, which logs in the
TABLE_MANAGER the name of the corresponding OK table and the number of rows
inserted.

On failure, the OK procedure triggers two actions: first, it calls the Write_Manager_
Tables stored procedure named Write FM Fail OK, which registers a failure for
the OK step associated with the group name of the table being processed in the
FLOW_MANAGER at Level 1; second, it triggers an email activity to notify the supervisor
of the failure in the OK step

Tables 6.10 and 6.11 illustrate the parameters passed, respectively, to the Write
TM OK and Write FM Fail OK stored procedures.

72

Implementation of the Proposed Solution within the Microsoft Fabric Environment

table_name JOBID FLAG_FM FLAG_TM STATUS LOAD STEP
<iterator> <jobid from the

DLT output Excel
file>

0 1 1 2 OK

Table 6.10: Parameters for the Write TM OK stored procedure call

table_name JOBID FLAG_FM FLAG_TM STATUS LOAD STEP
<iterator> <jobid from the

DLT output Excel
file>

1 0 -3 2 OK

Table 6.11: Write FM fail OK

Store Procedure: ODS

It is equivalent to the ods function implemented in the PRE_LOAD, OK, ERR, and
ODS notebook of the L1 PySpark-based pipeline. In this step, the records from the
OK and PRE_LOAD tables are unified into a single DataFrame, which is then used
to populated the corresponding ODS table. While the overall logic mirrors the
PySpark implementation, there is a fundamental difference related to the MERGE
operation. The PySpark notebook allows to import the DeltaTable API which
natively supports the MERGE operation on Delta Tables. However, in the Microsoft
Fabric Warehouse Experience, the standard T-SQL MERGE clause is not supported.

This limitation arises because Microsoft Fabric does not rely on a traditional
relational database engine. Instead, it uses Delta Lake tables stored as Parquet Files
in OneLake.

Therefore, to simulate the behavior in the ODS stored procedure, first, an UPDATE
operation is executed, matching on the key columns, to update records in the ODS
table; then, an INSERT is performed to add any new records that were not updated. A
drawback of this approach is the use of JOIN operations, which may reduce efficiency
when processing large-scale datasets.

As with the previous steps, the ODS process is also connected on-success to the
store procedure that logs the table name and the number of rows inserted into
the ODS table in the TABLE_MANAGER. It is also connected, on-failure, to the store
procedure that registers the failure in the FLOW_MANAGER and consequently trigers
an email notification activity.

Additionally, it is connected on-success to a Write_Manager_Tables stored proce-
dure named Write Succ FM, which, for the group associated with the current table
name being processed (at Level 1 and for the current JOBID), sets STATUS = 0,
LOAD = 0, and end_date = SYSDATE, indicating successful completion of Level 1 by
that group. This stored procedure will only be executed if the previous steps did not

73

Implementation of the Proposed Solution within the Microsoft Fabric Environment

raise errors or if none of the tables belonging to the same group failed when they
were processed.

The input parameters for the different instances of the Write_Manager_Tables
stored procedure - namely Write TM ODS, Write Succ FM, and Write FM Fail ODS
- are detailed in Tables 6.12, 6.13, and 6.14, respectively.

table_name JOBID FLAG_FM FLAG_TM STATUS LOAD STEP
<iterator> <jobid from the

DLT output Excel
file>

0 1 1 2 ODS

Table 6.12: Parameters for the Write TM ODS stored procedure call

table_name JOBID FLAG_FM FLAG_TM STATUS LOAD STEP
<iterator> <jobid from the

DLT output Excel
file>

1 0 0 0 ODS

Table 6.13: Parameters for the Write Succ FM stored procedure call

table_name JOBID FLAG_FM FLAG_TM STATUS LOAD STEP
<iterator> <jobid from the

DLT output Excel
file>

1 0 -3 2 ODS

Table 6.14: Parameters for the Write TM fail ODS stored procedure call

Figure 6.4 shows that once the ForEach activity finishes, the records from the
FLOW_MANAGER and TABLE_MANAGER populated during the L1 level will be appended
to the existing and persistent FLOW_MANAGER and TABLE_MANAGER tables, respectively
stored in the Lakehouse, thanks to the Write LH Flow Manager and Write LH
Table Manager Copy Data activities.

6.3.3 Third Solution: Dataflow Gen2
For the purpose of this thesis, Dataflows are used exclusively in the step responsible
for data cleansing, which corresponds to the function ok in the first solution and the
stored procedure ok in the second solution.

Figures 6.7 - 6.11 illustrate the pipeline employed for this solution, it is shown
how several store procedures and Lookup activities from the SQL-based solution have
been retained, such as those for the insertion in TABLE_MANAGER, FLOW_MANAGER,
PRE_LOAD and ODS. However, only the OK step has been replaced by the Dataflow.
Some variations are introduced in this architecture. For example, in the two previous
solutions, the steps PRE_LOAD, OK, and ODS were executed sequentially for each table.

74

Implementation of the Proposed Solution within the Microsoft Fabric Environment

In contrast, this approach executes PRE_LOAD for all tables first, then performs the
OK step for all tables, and finally the ODS step for all tables

Figure 6.7: Main pipeline for the Dataflow L1 solution

Figure 6.8: Inside the first ForEach for the Dataflow L1 solution

Figure 6.9: Inside the If condition block of the ForEach activity

75

Implementation of the Proposed Solution within the Microsoft Fabric Environment

Figure 6.10: Inside the second ForEach for the Dataflow L1 solution

Figure 6.11: Inside the If condition block of the second ForEach activity

76

Implementation of the Proposed Solution within the Microsoft Fabric Environment

Figure 6.12 shows the detailed implementation of the Dataflow.

Figure 6.12: OK step, Dataflow Implementation

In this Dataflow, several components are present, including table imports such as
Table6, Table4, and others. Two main functions are also defined: GetRowNumber
and CheckConstr. The GetRowNumber function retrieves data from the DLT table
by selecting records with a JOBID greater than the most recent successful JOBID
at level 1 for the corresponding group. The function then applies a ROW_NUMBER()
operation, partitioning the data by key and ordering it by JOBID in descending order
and by FLG_NEG in ascending order; the CheckConstr function is responsible for
validating the records according to defined constraints - Nullability and Negative
values in numeric columns - the records that meet the constraints are considered
valid and returned as part of the <table>_OK output, whil those that fail validation
are redirected to the <table>_ERR output.

Each query named ROW_NUMBER_Tab<x> calls the GetRowNumber function, after
which the CheckConstr function is applied to separate valid records from the invalid
ones, resulting in two ouptuts: Tab<x>_OK and Tab<x>_ERR. This mechanism mirrors
the logic adopted in the previous solutions.

All the tables to be processed in this step are manually imported into the local
memory of the Dataflow element. Similary, the corresponding OK and ERR tables
for each input are manually obtained. This is due to the nature of Dataflows in
Fabric, which are explicetly designed as a low-code tool for users with limited (or
without) programming skills. Consequently, it is not possible to fully parametrize
and dynamically manage the logic within the Dataflow environment.

While more advanced users have the option to define transformations using M code
scripts, this approach still does not override the fundamental low-code paradigm of
Dataflows.

This limitation is also evident in the configuration of output destinations. Unlike

77

Implementation of the Proposed Solution within the Microsoft Fabric Environment

the input phase, where a single import action can reference multiple tables, each
output requires an explicit, manual destination configuration. Users must define
the destination of data via the graphical interface; additionally, for each export,
the table name in the destination must be specified, along with the list of exported
columns and the data type for each column. It is not possible to programmatically
define how data should be stored in the target systems, which further limits dynamic
configuration capabilities within Dataflows.

Another important consideration is that all operations executed within a Dataflow
are treated atomically. This means that if an error occurs in the processing of a
single table, none of the other tables - regardless of their independence - will be
processed. As a result, with the current implementation, it was not possible to
selectively update the FLOW_MANAGER with STATUS = -3 to indicate which specific
group failed. Instead, a workaround was adopted, in which a SQL script is executed
to assign a STATUS of -3 to all groups involved in the current execution, this is the
task of the Fail ALL SQL script present in figure 6.7. Nevertheless, this limitation
can be addressed through an alternative implementation that makes use of the
Switch activity within a pipeline. This activity is equivalent to an elif statement
in Python, depending on the value of a variable, a different branch is executed. A
preliminary draft solution is shown in Figure 6.13

This alternative allows a sequential execution pattern similar to that of the second
solution, enabling separate tracking of executions for each table, as figures 6.14 and
6.15, in this way, it becomes possible to monitor and record the status of each group
individually. However, the main drawback of this approach is that, for a total of N
tables the same execution sequence must be replicated N times. Moreover, it requires
the replication of N distinct Dataflows, each performing the same set of operations
but with different input tables and output destinations, figure 6.16 displays the
structure of the Dataflow with this alternative solution.

Figure 6.13: Alternative Dataflow solution for Level 1

78

Implementation of the Proposed Solution within the Microsoft Fabric Environment

Figure 6.14: Alternative ForEach elements

Figure 6.15: Switch Activity for the alternative L1 solution

Figure 6.16: Alternative Dataflow for the Switch Activity

79

Implementation of the Proposed Solution within the Microsoft Fabric Environment

Finally, the query blocks located on the rightmost side of Figure 6.7 are instead
responsible for updating the TABLE_MANAGER for each table, by writing the number
of rows successfully loaded into the OK table during the current execution.

6.3.4 Extra: Master Data Management (MDM)
The implementation of the corporate ETL framework is designed to extend up to the
ODS layer, as any processing beyond this point depends on specific client requirements.

Nevertheless, for the purposes of this project, the MDM layer has been included
exclusively for demonstration purposes. This step handles the de-normalization of the
Snowflake schema into a Star Schema, which is then stored in the Data Warehouse.

For source dimension tables that reference other target dimension tables, a
left join is performed from the target to the source, resulting in a table named
<target_table>_MDM. This table includes all columns from the source table for those
records whose keys match the corresponding foreign keys.

The MDM is considered an extra layer, meaning it is excluded from the perfor-
mance evaluations presented in the Results chapter.

80

Chapter 7

Use Case: Mediamente
Consulting ETL Framework

In this chapter, it is presented a case study based on a sample business dataset to
further support and illustrate the theoretical concepts introduced in the previous
chapter.

The initial data model follows a Snowflake Schema, representing the sales of a local
store. It consists of a single fact table, Vendite (Sales), and five dimension tables:
Prodotti (Products), Tempo (Time), Clienti (Customers), Pagamento (Payment),
and Località (Location). Località is connected to Clienti through a foreign key. The
overall data model is depicted in Figure 7.1

Figure 7.1: Snowflake Data Model toy example

81

Use Case: Mediamente Consulting ETL Framework

The Vendite table includes six columns: ID_Cliente, ID_Prodotto, ID_Tempo,
and ID_Pagamento, which together form the composite primary key of the table, also,
the table contains two measures: Quantità (Quanity) and Prezzo di vendita
(Sales Price). On the other hand, the dimension tables are defined as follows:

• Clienti: ID_Cliente (Primary Key), Nome (Name), Cognome (Last Name),
Data di Nascita (Birthdate), Telefono (Cellphone Number), Punti (Fidelity
card points), ID_Località (Foreign Key)

• Prodotti: ID_Prodotto (PK), Nome (Name), Quantità disponibile (Avail-
able Stock)

• Tempo: ID_Tempo (PK), Data di vendita (Sales Date), Mese (Month), Anno
(Year)

• Pagamento: ID_Pagamento (PK), Tipo di Pagamento (Payment Type)

• Località: ID_Località (PK), Indirizzo (Address), Città (City), Provincia
(Province)

Since the dataset is available only in Italian while the documentation and ex-
planations are provided in English, it is crucial to define a consistent legend for
interpreting metadata values, particularly those used in the metadata tables. The
adopted mapping is as follows:

• Dimension = Anagrafica

• Fact = Movimento

The data is extracted from CSV files loaded by the client into the Lakehouse’s
main directory Files, then the program moves each file to either the Anagrafiche
or Movimenti subfolders, according to its related IDENTITA specified by the Excel
metadata file

Figure 7.2 displays the completed Excel metadata file, which is used to inform
the system about table identities, group affiliations, table and column names, pri-
mary and foreign keys, non-nullable fields, non-negative constraints, and inter-table
relationships. Additionally the corresponding Delta Lake table generated from the
metadata file and stored in the Lakehouse is portrayed.

For brevity’s sake, not all tables from every processing step will be shown. The
focus will be limited to a single dimension (Clienti), a dimension containing a
reference to another dimension (Località), and the fact table (Vendite). From
these, only the most relevant steps and resulting tables will be presented.

82

Use Case: Mediamente Consulting ETL Framework

In the following sections, the process will be executed five times, with each run
thoroughly explained to provide a comprehensive understanding of each ETL action
performed during the workflow.

Figure 7.2: On the left, the metadata from the Excel file; on the right, its mapping
to a Delta Table

7.1 First ETL Execution – 2025-07-18 21:47:51

The first execution of the worfklow started on the 18th of July, 2025 at 21:47:51
UTC, therefore, the identifier JOBID for this execution is 20250718214751.

The STG step successfully processed all tables. However, during the DLT phase,
the table Clienti raised an exception and was not loaded. Consequently, a STATUS
= -3 was registered in the FLOW_MANAGER for the group CLI as shown in Figure 7.3

Figure 7.3: Content of the FLOW_MANAGER after the first ETL process execution

Since Località belongs to the same group CLI as Clienti, and the group raised
an error, Località was also not loaded into Località_DLT, as displayed by the
Table_Manager in Figure 7.4. This happened even though Località itself did not
raise any error, because there is a dependency between tables belonging to the same
group.

83

Use Case: Mediamente Consulting ETL Framework

Figure 7.4: Content of the TABLE_MANAGER after the first ETL process execution

Clienti raised an error at Level 0. Nevertheless, since the processing levels
are independent, Clienti and Località were processed successfully at Level 1, as
shown in the FLOW_MANAGER in Figure 7.3, which reports STATUS = 0 for Level 1 and
group CLI, However, the input for Level 1 is Clienti_DLT table generated in the
previous level, where Clienti failed. Therefore, this table is empty, and consequently
Clienti_ODS is an empty table.

Focusing now on the Vendite table, Figures 7.5, 7.6, 7.7, and 7.8 show the
table processed successfully at the different stages: STG, DLT, OK, and ODS. It is
interesting to examine the keys in Vendite_DLT in the column ID_Cliente, because
the pre-load step verifies whether these keys exist in the ODS tables referenced by
Vendite. Specifically, the keys in Vendite_DLT should be present in Clienti_ODS; if
they are missing, they are added, with the other fields left as NULL or default values.
This is exactly what happens in this case: since Clienti_ODS is empty. Vendite
pre-loads the missing keys into Clienti_PRE_LOAD, and these records are then copied
into Clienti_ODS, as Figure 7.9 and 7.10 illustrate respectively.

Figure 7.5: Content of the table Vendite_STG after the first execution.

Figure 7.6: Content of the table Vendite_DLT after the first execution.

84

Use Case: Mediamente Consulting ETL Framework

Figure 7.7: Content of the table Vendite_OK after the first execution.

Figure 7.8: Content of the table Vendite_ODS after the first execution.

Figure 7.9: Content of the table Clienti_PRE_LOAD after the first execution

Figure 7.10: Content of the table Clienti_ODS at the first exection

To conclude the analysis of this first execution, the FLOW_MANAGER in Figure 7.3
shows that all groups successfully completed the process, except for group CLI at
Level 0. Conversely, the TABLE_MANAGER in Figure 7.4 displays all the tables that
were populated during this execution, along with the number of rows inserted into
each of them and the time at which the population happened.

7.2 Second ETL Execution – 2025-07-18 22:15:25
Between the first and the second execution, the user uploaded new data through the
Clienti.csv and Vendite.csv files.

In the second run, the new data from the Clienti file is correctly loaded into
Level 0. As previously explained, the STG step performs an append operation,
meaning that it includes both the data tagged with the previous execution’s JOBID
and the data from the current one (20250718221525). Since the CLI group has never
been successfully loaded in Level 0 so far, there is no recent JOBID identifying a
correct loading of these records, therefore, the records passed to the DLT step are
those whose JOBID is greater than the default JOBID (19000101000000). In this

85

Use Case: Mediamente Consulting ETL Framework

case, all the records in STG are considered new and will carry FLG_NEG = 0 and the
JOBID of the current execution. Figures 7.11 and 7.12 show the corresponding tables.

Figure 7.11: Content of the table Clienti_STG after the second execution of the
ETL process

Figure 7.12: Content of the table Clienti_DLT after the second execution

However, the Clienti table raises an exception during loading in Level 1, as
shown in the FLOW_MANAGER in Figure 7.13. Just as in Level 0 of the previous run,
this failure blocks the execution of the Località table — although it had passed
the STG step successfully — because both belong to the same group (CLI).

Figure 7.13: Content of the FLOW_MANAGER after the second execution

Regarding the Vendite table, new data has been correctly loaded in STG, as shown
in Figure 7.14, while some records from the previous flow have been deleted. As
illustrated in the DLT table (Figure 7.15), newly added records have FLG_NEG = 0,
while deleted records have FLG_NEG = 1.

86

Use Case: Mediamente Consulting ETL Framework

Figure 7.14: Content of Vendite_STG after the second execution.

Figure 7.15: Content of Vendite_DLT after the second execution.

During the data quality checks performed in the OK step, the row identi-
fied by aggregate key Id_Cliente = 0, Id_Prodotto = 2, Id_Tempo = 7, and
Id_Pagamento = 1 is discarded and moved to the ERR table because it contains a
NULL value in a non-nullable column (Quantità). This is shown in Figure 7.16.
Before inserting the valid records from the current data flow into Vendite_OK, the
records from the previous flow are deleted. As a result, the table represented by
Figure 7.17 will contain only up-to-date data that comply with the defined constraints

Figure 7.16: Content of Vendite_ERR after the second execution

Figure 7.17: Content of Vendite_OK after the second execution

Finally, the valid records from Vendite_OK are merged into the Vendite_ODS
table, portrayed by Figure 7.18

Figure 7.18: Content of Vendite_ODS after the second execution

87

Use Case: Mediamente Consulting ETL Framework

As in the previous run, the ID_Cliente values in the Vendite_DLT table that are
not found in Clienti_ODS (in this case, all of them, since Clienti_ODS is empty)
are first inserted into Clienti_PRE_LOAD, with the other fields left as NULL, and then
merged into Clienti_ODS, as shown in Figures 7.19 and 7.20.

Figure 7.19: Content of Clienti_PRE_LOAD after the second execution

Figure 7.20: Content of Clienti_ODS after the second execution

7.3 Third ETL Execution – 2025-07-18 22:43:24
This execution is identified by JOBID = 20250719224324. The user has uploaded
updated versions of the Clienti.csv and Vendite.csv files.

The new data contained in Clienti.csv is correctly loaded into Clienti_STG.
As shown in Figure 7.21, only a single new record with ID_Cliente = 30 and JOBID
= 20250719224324 is present in this execution.

Figure 7.21: Content of Clienti_STG after the third execution of the ETL process

For the population of the Clienti_DLT table, the records are extracted from
Clienti_STG using a JOBID greater than the most recent JOBID for which the CLI
group successfully completed level L0. In this case, the reference JOBID is not
the default 19000101000000, but rather 20250718221525, as L0 was successfully
completed during the second ETL execution. These records undergo a MINUS
operation with the records in Clienti_STG having JOBID = 20250718221525 (i.e.,
those loaded in the previous flow). The resulting records will be labeled with the
current JOBID = 20250718221525. As shown in Figure 7.22, the output contains

88

Use Case: Mediamente Consulting ETL Framework

one record with FLG_NEG = 0, corresponding to the new ID_Cliente = 30, and
three records with FLG_NEG = 1, indicating deletions from the source.

Figure 7.22: Content of Clienti_DLT after the third execution of the ETL process

A special case is observed in which two records share the same ID_Cliente =
30. In the previous flow, the name was "Bruce Wayne", while in the current flow, it
has changed to "Lebron James", indicating a modification in the source data. Since
the ROW_NUMBER function partitions by key and orders by JOBID in descending order
and FLG_NEG in ascending order, the updated record (i.e., the one with the name
"Lebron James") is selected to proceed because it is labeled with Row_Number = 1.
Furthermore, all records with a JOBID greater than the last JOBID for which the
CLI group successfully completed level L1 are loaded into the Clienti_OK table. In
this case, level L1 has never been completed for group CLI, so the default JOBID =
19000101000000 is used, and all records filtered by the ROW_NUMBER operation are
loaded into Clienti_OK, as shown in Figure 7.23.

It is interesting to notice how the records with TELEFONO = None are not discarded,
this is because the Metadata_Schema sown in 7.2 table defines the column TELEFONO
as nullable.

Figure 7.23: Content of Clienti_OK after the third execution of the ETL process

Finally, these records are merged with the existing ones in the Clienti_ODS
table, as highlighted in Figure 7.24. New records are inserted, and existing keys
are updated. As a result, all previously incomplete records (with NULL attributes)

89

Use Case: Mediamente Consulting ETL Framework

are now populated with valid data, except for the client with ID = 0, who remains
unchanged.

Figure 7.24: Content of Clienti_ODS after the third execution of the process

The FLOW_MANAGER shown in Figure 7.25 illustrates that, for this execution flow,
the CLI group has successfully completed both levels of processing. As a result, the
Località table has also been fully loaded to the ODS layer.

Figure 7.25: Content of Flow_Manager after three executions.

It is particularly interesting to observe that the clients with ID = 24 and ID =
27 in Figure 7.24 have ID_Localita values of 17 and 12, respectively, values that are
not present among the available keys in the Localita dimension table, Figure 7.26.
Consequently, in both Localita_PRE_LOAD and Localita_ODS, we find placeholder
records identified by these values, but with all other attributes set to NULL. This
behavior is illustrated in Figures 7.27 and 7.28.

90

Use Case: Mediamente Consulting ETL Framework

Figure 7.26: Content of Località_DLT after the third execution

Figure 7.27: Content of Località_PRE_LOAD after three executions

Figure 7.28: Content of Località_ODS after three executions

For the Vendite table, it is important to note that the record with Id_Cliente
= 0, Id_Prodotto = 2, Id_Tempo = 7, and Id_Pagamento = 1 previously dis-
carded in the earlier execution has now been inserted by the user correctly into the
Vendite_STG table (Figure 7.29), this time including the a value in the Quantità
field.

Figure 7.29: Content of Vendite_STG after three executions

During the execution of the ROW_NUMBER step in the OK phase, a temporary table
is populated with both the reprocessed record (originally from Vendite_ERR) and the
newly inserted one. Since these records share the same key, only the record with the
non-null Quantita field proceeds due to its higher JOBID. As a result, only this valid
record is included in Vendite_OK, and subsequently loaded into the Vendite_ODS
table, as illustrated in Figure 7.30.

91

Use Case: Mediamente Consulting ETL Framework

Figure 7.30: Content of Vendite_ODS after three executions

7.4 Forth and Last ETL Execution – 2025-07-18
23:18:27

The final execution is performed to demonstrate how the cleanup mechanism of the
DLT tables explained in the previous chapter operates. Once a DLT contains a number
of distinct JOBIDs equal to the defined retention_period - a parameter configured
by the supervisor during the pipeline deployment - only the records associated with
the most recent retention_period JOBIDs are retianed in the DLT table. Older
records are removed from DLT, but this data is not lost, as it is archived in the
corresponding table DLT_HIS.

In this case, the retention_period is set to 3, and the focus is placed on the
Vendite table.

The user uploads new sales data into the lakehouse through the Vendite.csv
file. This record, associated with JOBID = 20250718231827, is registered into the
Vendite_DLT table. Figure 7.31 shows that Vendite_DLT now contains records from
only the three distinct most recent JOBIDs even though four executions have occurred
in this scenario. Specifically, data associated with JOBID = 20250718214751 - the
identifier of the first execution - is no longer present in Vendite_DLT because the
automatic cleanup operation has been triggered, as per the configured retention policy.
However, these records are not lost, as illustrated in Figure 7.32 the Vendite_DLT_HIS
table retains all DLT records from the beginning of the case study.

Figure 7.31: Content of Vendite_DLT in the last execution of the ETL process

92

Use Case: Mediamente Consulting ETL Framework

Figure 7.32: Content of Vendite_DLT_HIS in the last execution of the ETL process

7.5 Extra: Master Data Management (MDM)
In this use case, the only dimension that references another dimension is Località,
which references Clienti via the foreign key ID_LOC. Therefore, processing Località
through the MDM step results in the creation of the table Clienti_MDM, as illustrated
in Figure 7.33

Figure 7.33: Content of Clienti_MDM

The Star Schema stored in the Data Warehouse is shown in Figure 7.34

Figure 7.34: Use case Star schema stored in the Data Warehouse

93

Chapter 8

Results

In this section, the results comparing the execution performance of the three proposed
alternatives in chapter 7 - Full Spark, T-SQL Stored Procedures and T-SQL +
Dataflow - are presented in both tabular and graphical formats. Additionally, the
Mediamente Consulting ETL framework was tested on SQL-Developer, an on-premise
tool backed by Oracle Databases, to further evaluate which solution—cloud-based,
with Delta Lake files (Fabric) or on-premise-database-backed (Oracle)—is more
suitable for the Mediamente Consulting ETL framework. The input tables used for
the test are the same as those described in the previous chapter.

To assess the behavior of each alternative under different workloads, multiple
executions of the data pipeline were performed using datasets of increasing size.
Specifically, the pipeline was executed with all input files containing: 100, 1,000,
10,000, 100,000, and 1,000,000 rows.

8.1 L0 performance

To gather these results, 5 executions of the ETL pipeline were performed.

L0 1st Exec. 2nd Exec. 3rd Exec. 4th Exec. 5th Exec. Mean STD 95% CI
100 rows 7m37s 7m19s 8m49s 7m26s 8m11s 7m52s 37s [7m5s, 8m38s]

1,000 7m15s 9m14s 7m26s 7m40s 9m0s 8m7s 55s [6m57s, 9m16s]
10,000 9m0s 7m42s 8m1s 8m25s 7m40s 8m9s 33s [7m28s, 8m51s]
100,000 9m0s 7m31s 7m32s 9m9s 7m11s 8m4s 55s [6m55s, 9m13s]

1,000,000 13m14s 11m4s 11m19s 11m59s 11m35s 11m40s 53s [10m34s, 12m47s]

Table 8.1: Execution times (minutes, seconds) for L0 query with increasing input
size, including 95% confidence interval

94

Results

Figure 8.1: L0 execution times in function of the number of rows in each processed
file

8.2 L0 Oracle-Based Performance

L0 - Oracle 1st Exec. 2nd Exec. 3rd Exec. 4th Exec. 5th Exec. Mean STD 95% CI
100 rows 6.48s 4.60s 4.50s 4.36s 4.91s 4.97s 0.80s [4.00s, 5.94s]

1,000 6.35s 4.84s 5.01s 4.76s 5.14s 5.22s 0.57s [4.51s, 5.93s]
10,000 10.52s 6.71s 6.48s 6.49s 6.93s 7.43s 1.53s [5.93s, 8.93s]
100,000 14.36s 10.26s 10.41s 10.38s 10.23s 11.13s 1.57s [9.59s, 12.67s]

1,000,000 44.94s 52.42s 52.57s 52.61s 52.37s 50.98s 3.26s [46.93s, 55.03s]

Table 8.2: Execution times (seconds) for the L0 Oracle-Based implementation
across increasing input size

Figure 8.2: Comparison between mean execution times of the L0 Fabric-based
implementation and L0 Oracle-based implementation

95

Results

8.3 L1 Spark-Based Performance

L1 - Spark 1st Exec. 2nd Exec. 3rd Exec. 4th Exec. 5th Exec. Mean STD 95% CI
100 rows 10m9s 9m0s 8m59s 9m10s 8m45s 9m12s 32s [8m31s, 9m53s]

1,000 12m40s 9m33s 9m21s 9m46s 10m12s 10m18s 1m21s [8m37s, 11m59s]
10,000 9m36s 10m9s 9m0s 9m31s 9m12s 9m29s 26s [8m56s, 10m2s]
100,000 9m31s 9m15s 8m58s 8m26s 9m47s 9m8s 27s [8m34s, 9m42s]

1,000,000 15m0s 13m10s 14m4s 14m19s 15m13s 14m21s 48s [13m20s, 15m21s]

Table 8.3: Execution times (minutes, seconds) for L1 (Spark implementation) with
increasing input size

Figure 8.3: L1 - Spark-based execution times in function of the number of rows in
each processed file

8.4 L1 SQL-Based Performance

L1 - T-SQL 1st Exec. 2nd Exec. 3rd Exec. 4th Exec. 5th Exec. Mean STD 95% CI
100 rows 7m32s 8m17s 8m41s 8m43s 8m31s 8m20s 0m29s [7m44s, 8m57s]

1,000 7m6s 8m58s 8m41s 7m24s 8m13s 8m4s 0m48s [7m4s, 9m4s]
10,000 8m10s 7m48s 7m15s 7m30s 7m59s 7m44s 0m22s [7m16s, 8m11s]
100,000 9m0s 9m5s 8m58s 9m7s 8m55s 9m1s 0m4s [8m54s, 9m7s]

1,000,000 14m59s 15m10s 14m37s 14m54s 15m13s 14m58s 0m14s [14m40s, 15m16s]

Table 8.4: Execution times (minutes, seconds) for L1 (T-SQL implementation) with
increasing input size.

96

Results

Figure 8.4: L1 - SQL-based execution times in function of the number of rows in
each processed file

8.5 L1 DF-Based Performance

L1 - DF 1st Exec. 2nd Exec. 3rd Exec. 4th Exec. 5th Exec. Mean STD CI 95%
100 rows 11m9s 15m11s 15m0s 14m58s 15m41s 14m23s 1m50s [12m6s, 16m40s]

1,000 13m29s 13m14s 13m11s 13m48s 13m5s 13m21s 0m17s [12m59s, 13m42s]
10,000 17m28s 15m42s 16m17s 17m49s 16m10s 16m41s 0m54s [15m33s, 17m48s]
100,000 34m6s 31m28s 32m42s 36m3s 32m14s 33m18s 1m48s [31m3s, 35m33s]

1,000,000 Fail Fail Fail Fail Fail Fail Fail [Fail, Fail]

Table 8.5: Execution times (minutes, seconds) for L1 (T-SQL + Dataflow imple-
mentation) query with increasing input size

Figure 8.5: L1 - Dataflows - based execution times in function of the number of
rows in each processed file

97

Results

8.6 L1 Oracle-Based Performance

L1 - Oracle 1st Exec. 2nd Exec. 3rd Exec. 4th Exec. 5th Exec. Mean STD 95% CI
100 rows 6.7s 3.23s 3.15s 3.24s 3.95s 4.45s 1.36s [2.78s, 6.13s]

1,000 6.42s 4.33s 4.86s 4.32s 4.91s 4.97s 0.87s [3.73s, 6.21s]
10,000 10.24s 7.00s 7.14s 7.02s 7.35s 7.75s 1.23s [5.72s, 8.78s]
100,000 35.706s 1m14s 1m26s 1m4s 1m6s 1m5s 16s [49s, 1m22s]

1,000,000 2h52m 1h38m 1h44m 1h39m 1h41m 1h51m 0h29m [1h25m, 2h17m]

Table 8.6: Execution times for L1 (Oracle implementation) with increasing input
size

8.7 Comparison between the different L1 imple-
mentations

Figure 8.6: Comparison between the mean execution times of three L1 implemen-
tations

98

Results

8.8 Final overall comparison between the Fabric
implementations and the Oracle implementa-
tion

File Size L0 Spark L1 Spark Total Fabric L0 Oracle L1 Oracle Total Oracle ∆
100 7m52s 9m12s 17m4s 4.97s 4.45s 9.42s 16m55s

1,000 8m7s 10m18s 18m25s 5.22s 4.97s 10.19s 18m15s
10,000 8m9s 9m29s 17m38s 7.43s 7.75s 15.18s 17m23s
100,000 8m4s 9m8s 17m12s 11.13s 1m5s 1m16s 15m56s

1,000,000 11m40s 14m21s 26m1s 50.98s 1h51m 1h51m51s -1h25m50s

Table 8.7: Comparison between L0 + L1-Spark performances and L0+L1 Oracle
Performance

File Size L0 Spark L1 SQL Total Fabric L0 Oracle L1 Oracle Total Oracle ∆
100 7m52s 8m20s 16m12s 4.97s 4.45s 9.42s 16m3s

1,000 8m7s 8m4s 16m11s 5.22s 4.97s 10.19s 16m1s
10,000 8m9s 7m44s 15m53s 7.43s 7.75s 15.18s 15m38s
100,000 8m4s 9m1s 17m5s 11.13s 1m5s 1m16s 15m49s

1,000,000 11m40s 14m58s 26m38s 50.98s 1h51m 1h51m51s -1h25m13s

Table 8.8: Comparison between L0 + L1-SQL performances and L0+L1 Oracle
Performance

File Size L0 Spark L1-DF Total Fabric L0 Oracle L1 Oracle Total Oracle ∆
100 7m52s 14m23s 22m15s 4.97s 4.45s 9.42s 22m5s

1,000 8m7s 13m21s 21m28s 5.22s 4.97s 10.19s 21m18s
10,000 8m9s 16m41s 24m50s 7.43s 7.75s 15.18s 24m35s
100,000 8m4s 33m18s 41m22s 11.13s 1m5s 1m16s 40m6s

1,000,000 11m40s Fail Fail 50.98s 1h51m 1h51m51s –

Table 8.9: Comparison between L0 + L1-DF performances and L0+L1 Oracle
Performance

99

Results

Figure 8.7: Comparison between the mean execution times of three L1 implemen-
tations, and the Oracle-based implementation

100

Chapter 9

Discussion of results

Table 8.1 and Figure 8.1 show that, for input sizes below 1.000.000 rows, the
execution times of L0 do not exhibit a clearly increasing trend. Contrary to intuitive
expectations that processing time should increase with the size of input data, the
measured execution time remain relatively stable across varying inputs sizes. For
instance, the mean execution times for files with size 1.000, 10.000, and 100.000
are around 8 minutes, although there is an increase in file sizes by a factor of 10.
It is only when the input size reaches 1.000.000 rows that a noticeable increase
in execution time occurs, with a mean of 11 minutes and 40 seconds, which is a
clear deviation from the previous trend and reflects the impact of data scale on
computational resources.

On the other hand, Table 8.3 and Figure 8.3 report the execution times for the
Spark-based implementation of Level 1, the overall trend in performance is not strictly
monotonic with respect to the input size. Surprisingly, for certain configurations,
increasing the size of the input files containing 1.000 rows to those with 10.000 rows,
where the mean execution time drops from 10 minutes and 18 seconds to 9 minutes
and 29 seconds. The decreasing trend continues for inputs of 100.000 rows, where
the execution time reaches 9 minutes and 8 seconds. Furthermore, as expected,
the average execution times per number of processed rows in the L1 Spark-Based
implementation are higher than those observed in Level 0. This increase is due to
the greater number of operations involved in L1, including ROW_NUMBER, PRE_LOAD,
OK, ERR, and ODS transformations. In contrast, Level 0 only performs the initial data
load along with the STG and DLT steps.

The implementation of the L1 pipeline using T-SQL yields promising results.
The approach shown in Figures 6.4, 6.5, and 6.6 achieves lower execution times
compared to the Spark-based alternative, as also confirmed in Table 8.4, despite
certain limitations such as the absence of the MERGE clause in the ODS stored procedure.
Moreover, execution times obtained with T-SQL appear to be more consistent than
those observed with the Python-based implementation, as indicated by lower standard

101

Discussion of results

deviations.

This behavior has an explanation, in Microsoft Fabric, Spark sessions are provi-
sioned through either starter pools or custom Spark pools offering fast startup times
- typically 5-10 seconds - as soon as compute nodes are already running. However,
this rapid initialization depends on shared cluster capacity availability and the pool’s
dynamic auto-scaling configuration. Consequently, with small datasets, the fixed
overhead of session startup and task planning in Spark can outweigh actual data
processing time. This results in non-linear performance, where intermediate work-
loads may execute more efficiently than very small workloads, then, as the input size
grows, Spark has enough data to effectively leverage parallel executors, improving
processing efficiency. However, as it is expected, for files with about 1,000,000 rows,
due to resource contention, and memory pressure can significantly contribute to an
increase in execution times. Furthermore, the higher standard deviation observed in
Spark-based L1 executions may come from its multi-node distributed architecture
and dynamic scheduling, which contribute to variable run-times. By contrast, T-SQL
stored procedures execute within a single, highly optimized engine, resulting in much
tighter runtimes across multiple executions.

Table 8.5 shows that Dataflows exhibited the highest execution times during
the L1 phase of the ETL process, which in general exceeded 30 minutes for files
containing 100,000 rows. When tasked with processing files with 1,000,000 rows
each, the Dataflow failed entirely, as they were unable to load into local memory the
content of each table.

Figure 8.6 summarizes the performance results, clearly highlighting Dataflows
as the least effective solution. In contrast, T-SQL, and Spark achieved comparable
execution times, with T-SQL demonstrating greater stability, as evidenced by its
lower standard deviation in execution times compare to Spark

Regarding the performance of the ETL framework on SQL Developer, for file sizes
smaller than 1,000,000 rows, it clearly outperformed all the implementations of both
the L0 and L1 levels in Microsoft Fabric, as shown in Figures 8.2 and 8.7. Specifically,
SQL Developer was able to complete the ETL process in under 2 minutes for every
tested file size, whereas Fabric never managed to complete the process in less than 15
minutes, as evidenced by the mean execution times displayed in Tables 8.7, 8.8, and
8.9. However, this trend does not hold when processing files containing 1,000,000
rows. In this case, all Fabric implementations (except for the DataFrame-based
one) significantly outperformed SQL Developer, as shown in Figure 8.7. In fact, for
the first execution of Level 1, SQL Developer nearly reached a 3-hour runtime, as
reported in Table 8.8, which is extremely slow compared to Fabric’s performance.
Moreover, Table 8.2 and Table 8.6 show that overall, SQL-Developer implementation
is also more stable than Fabric, as demonstrated by the lower standard deviations for
each file size. This is reasonable, considering that SQL Developer is an on-premise

102

Discussion of results

tool where files are stored and processed locally on the hardware. Therefore, its
performance is directly tied to the capabilities of the underlying infrastructure.
In contrast, Microsoft Fabric is a cloud-based SaaS platform, where performance
depends on the scalability and resource allocation of the cloud service.

103

Chapter 10

Conclusion

In conclusion, Dataflows offer a compelling solution for small organizations or
teams with limited technical expertise, particularly where low-code approaches are
preferred over programming languages such as Spark or T-SQL. Their graphical
user interface enables users to perform data transformations without writing code.
However, significant limitations arise when attempting to integrate Dataflows into
a standardized and automated ETL framework, which is the core objective of this
thesis.

The graphical nature of Dataflows restricts parametric configuration, especially
for destination tables, which must be defined manually through the UI and cannot
be dynamically controlled via M scripts. Moreover, Dataflows are atomic in struc-
ture, meaning that individual table-level traceability is not feasible unless separate
Dataflows are created for each table - changing only the input and destination config-
uration. This approach leads to increased manual effort, reduced maintainability, and
contradict the principles of re-usability and scalability essential for the development
of Mediamente Consulting’s ETL framework. Another major drawback is the lack of
effective debugging capabilities. Frequent errors, such as those indicated by code
20302 (which aggregates various user configuration issues), produce generally generic
error messages, offering no actionable insight into the root cause. Finally, Dataflows
demonstrate limited scalability, particularly in scenarios involving large data volumes.
The system interface becomes unresponsive under heavy loads, and in critical cases,
fails to execute the transformation process entirely.

For these reasons, while Dataflows may be suitable for simple uses cases, their
integration into a scalable, automated and maintainable enterprise ETL framework
is not viable. Consequently, the Dataflow-based solution was discarded in favor of
the SQL or Spark solutions.

Although Spark and T-SQL delivered comparable performance, with T-SQL
slightly outperforming Spark in terms of execution time, performance alone is not

104

Conclusion

the sole criterion for selecting the technology to be officially integrated into the
company’s ETL framework. Maintainability and alignment with internal expertise
are also essential factors, at Mediamente Consulting, Python based programming
required for Spark is not a core competency, whereas T-SQL is a mandatory skill
within the organization, in addition, the company’s ETL framework developed in
other Data Integration applications, like SSIS, ODI, and Workato, are developed
using SQL, as part of a strategic approach to maintain a consistent and reusable
ETL backbone across platforms, thus minimizing learning curves and on-boarding
time. Another key aspect concerns data storage architecture. The T-SQL solution
stores data directly into the enterprise Data Warehouse, a centralized and structured
environment that is accessible to the client, whereas the Spark implementation
outputs data into a Data Lakehouse, which is not part of the current access strategy
for external stakeholders. Moreover, the T-SQL based pipeline demonstrates greater
execution stability. The standard deviation of execution times observed during testing
were consistently lower for T-SQL compared to Spark, indicating more predictable
and stable performance. This is largely attributed to the high performance SQL
engine of the Data Warehouse, as opposed to Spark where execution times can vary
significantly depending on the initialization overhead of the Spark session and the
dynamic provisioning of compute resources. Finally, the T-SQL-based pipeline is
structurally more explicit and modular, being composed of clearly defined stored
procedures, unlike the Spark implementation, where all logic is embedded within a
single notebook, reducing transparency and maintainability.

For all these reasons, the T-SQL stored procedure-based solution was selected as
the official implementation for the step L1 within the company’s ETL framework

Nevertheless, this more effective solution becomes slower than the performance
offered by SQL Developer when processing files smaller than 1,000,000 rows. This
suggests that an on-premise alternative like SQL Developer may be more suitable
for developing an automated ETL process. However, this is not a straightforward
decision.

Being an on-premise tool, SQL Developer often requires manual configuration
by users who may not be experts in database or infrastructure setup, potentially
increasing deployment times. In contrast, Microsoft Fabric benefits from centralized
configuration managed by the tenant administrator and offers a much more intuitive
and user-friendly interface. This significantly reduces both deployment and learning
times.

A major advantage of SQL Developer lies in its native integration with Oracle
databases. Unlike Fabric, which relies on OneLake and Delta files as its underlying
storage, SQL Developer can execute DML operations like MERGE and MINUS - which
were commonly used in this project - directly and efficiently. In Fabric, these
operations often require manual implementation, which increases complexity and

105

Conclusion

decreases maintainability. Moreover, Oracle databases support native enforcement
of primary key constraints— a feature that simplifies operations such as MERGE.
In Fabric, by contrast, this schema information was frequently extracted from the
Metadata_Schema Delta Table, adding additional steps to the ETL process.

However, Fabric also has its strengths, like its seamless integration into the
broader Microsoft ecosystem. For example, data models defined in the Fabric
Warehouse are natively accessible in Power BI, Microsoft’s business intelligence and
data visualization tool.

The choice between an On-Premise Oracle Data Integration tool and Microsoft
Fabric ultimately depends on the client’s context. If the client requires fast and
efficient data processing, a tool backed by Oracle databases—such as ODI or SQL
Developer—is the preferred option. On the other hand, if the client is heavily invested
in the Microsoft ecosystem, processing speed is not a primary concern, data resides
in a cloud storage service such as Azure, AWS, Google Cloud..., and reporting might
be part of the deliverables, then Microsoft Fabric becomes the more suitable choice.

106

Bibliography

[1] Fabio Duarte. Amount of Data Created Daily (2025). Exploding Topics. Apr.
2025. url: https://explodingtopics.com/blog/data-generated-per-day
(cit. on p. 1).

[2] Edge Delta Team. How Many Companies Use Cloud Computing in 2025? [10
Statistics and Insights]. Edge Delta. May 2024. url: https://edgedelta.com/
company/blog/how-many-companies-use-cloud-computing (cit. on p. 3).

[3] Polaris Market Research. Cloud Migration Services Market Overview. Polaris
Market Research. Feb. 2024. url: https://www.polarismarketresearch.
com/industry-analysis/cloud-migration-services-market (cit. on p. 3).

[4] W.H. Inmon. Building the Data Warehouse. Ed. by Robert Elliott. Third. New
York, NY, United States of America: Robert Ipsen, 2002 (cit. on pp. 6–8).

[5] Margy Ross Ralph Kimball. The Data Warehouse Toolkit. Ed. by Robert Elliott.
Second. New York, NY, United States of America: Robert Ipsen, 2002 (cit. on
pp. 9, 10, 12, 13, 16–18, 35).

[6] Gerd Saurer et al. What is Microsoft Fabric? Microsoft. May 2025. url:
https://learn.microsoft.com/en-us/fabric/fundamentals/microsoft-
fabric-overview#onelake-and-lakehouse-data-hierarchy (cit. on p. 24).

[7] Elizabeth Oldag et al. OneLake, the OneDrive for data. Microsoft. July 2024.
url: https://learn.microsoft.com/en-us/fabric/onelake/onelake-
overview (cit. on pp. 25, 29).

[8] Gökberk Uzuntaş. Understanding DataFlow Gen2 in Microsoft Fabric And
Comparison with DataFlow Gen1. Medium. Aug. 2024. url: https://medium.
com / @uzuntasgokberk / understanding - dataflow - gen2 - in - microsoft -
fabric - and - comparison - with - dataflow - gen1 - 18de2e547087 (cit. on
p. 28).

[9] Naga Surendran. Microsoft named a Leader in 2025 Gartner® Magic Quad-
rant™ for Integration Platform as a Service. Microsoft - Gartner. June 2025.
url: https://azure.microsoft.com/en-us/blog/microsoft-named-a-
leader-in-2025-gartner-magic-quadrant-for-integration-platform-
as-a-service/ (cit. on p. 32).

107

https://explodingtopics.com/blog/data-generated-per-day
https://edgedelta.com/company/blog/how-many-companies-use-cloud-computing
https://edgedelta.com/company/blog/how-many-companies-use-cloud-computing
https://www.polarismarketresearch.com/industry-analysis/cloud-migration-services-market
https://www.polarismarketresearch.com/industry-analysis/cloud-migration-services-market
https://learn.microsoft.com/en-us/fabric/fundamentals/microsoft-fabric-overview#onelake-and-lakehouse-data-hierarchy
https://learn.microsoft.com/en-us/fabric/fundamentals/microsoft-fabric-overview#onelake-and-lakehouse-data-hierarchy
https://learn.microsoft.com/en-us/fabric/onelake/onelake-overview
https://learn.microsoft.com/en-us/fabric/onelake/onelake-overview
https://medium.com/@uzuntasgokberk/understanding-dataflow-gen2-in-microsoft-fabric-and-comparison-with-dataflow-gen1-18de2e547087
https://medium.com/@uzuntasgokberk/understanding-dataflow-gen2-in-microsoft-fabric-and-comparison-with-dataflow-gen1-18de2e547087
https://medium.com/@uzuntasgokberk/understanding-dataflow-gen2-in-microsoft-fabric-and-comparison-with-dataflow-gen1-18de2e547087
https://azure.microsoft.com/en-us/blog/microsoft-named-a-leader-in-2025-gartner-magic-quadrant-for-integration-platform-as-a-service/
https://azure.microsoft.com/en-us/blog/microsoft-named-a-leader-in-2025-gartner-magic-quadrant-for-integration-platform-as-a-service/
https://azure.microsoft.com/en-us/blog/microsoft-named-a-leader-in-2025-gartner-magic-quadrant-for-integration-platform-as-a-service/

BIBLIOGRAPHY

[10] Erhard Rahm and Hong Do. «Data Cleaning: Problems and Current Ap-
proaches». In: IEEE Data Eng. Bull. 23 (Jan. 2000), pp. 3–13 (cit. on p. 35).

108

	Abstract
	List of Figures
	Introduction
	Goal
	Thesis structure

	Data Warehouse
	OLAP and OLTP
	Structure of the Data Warehouse
	William H. Inmon's Architecture
	Ralph Kimball's Architecture
	Comparison Between Inmon's and Kimball's Architectures
	Use Cases: Inmon and Kimball

	Data Modeling
	Star-Schema
	Snowflake-Schema

	Data Marts
	Metadata

	Data Lake
	Data Lake
	Comparison Between Data Warehouses and Data Lakes

	Microsoft Fabric
	Terminology used in Microsoft Fabric
	OneLake
	Experiences
	Fabric Data Engineering
	Fabric Data Factory
	Fabric Data Warehouse

	Computation Engines
	Limitations of Microsoft Fabric
	Alternatives to Microsoft Fabric
	Oracle Data Integrator (ODI)
	Workato

	Proposed Solution: Mediamente Consulting's ETL Framework
	L0
	L1
	OK
	Operational Data Store (ODS)
	Master Data Management (MDM)
	OUT

	L2
	Metadata tables
	FLOW MANAGER
	TABLE MANAGER
	METADATA MANAGER

	Scheduling of Layers and Execution Rules

	Implementation of the Proposed Solution within the Microsoft Fabric Environment
	Reset_Pipeline
	L0
	Metadata_Creator
	Create_Schema
	STG
	DLT

	L1
	First solution: Spark
	Second solution: T-SQL Stored Procedures
	Third Solution: Dataflow Gen2
	Extra: Master Data Management (MDM)

	Use Case: Mediamente Consulting ETL Framework
	First ETL Execution – 2025-07-18 21:47:51
	Second ETL Execution – 2025-07-18 22:15:25
	Third ETL Execution – 2025-07-18 22:43:24
	Forth and Last ETL Execution – 2025-07-18 23:18:27
	Extra: Master Data Management (MDM)

	Results
	L0 performance
	L0 Oracle-Based Performance
	L1 Spark-Based Performance
	L1 SQL-Based Performance
	L1 DF-Based Performance
	L1 Oracle-Based Performance
	Comparison between the different L1 implementations
	Final overall comparison between the Fabric implementations and the Oracle implementation

	Discussion of results
	Conclusion
	Bibliography

