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Abstract

The number of electric vehicles (EVs) has increased every year in the recent past,
and we expect it to continue growing in the future. EVs lower emissions and reliance
on fossil fuels compared to conventional vehicles, but they also increase the strain on
the grid of electricity. The fact that many cars frequently charge at the same hours,
which can waste opportunities to use, raises costs, and overloads the electricity
grid with peaks of energy demand. Nowadays, the most common strategy used to
manage the charging of EVs is the so-called First-In First-Served rule (FIFS), which
only prioritizes EVs charging based on their arrival time. Smarter algorithms can
be instead implemented to make the charging process more efficient, cheaper and
faster, depending on our goals. At the same time, we may require techniques that
are not just inexpensive but also more environmentally friendly moving towards a
greener future.

The main contribution of this thesis is the development of a digital twin platform
in Python. Beyond serving as a simulator, our control panel acts as a practical
tool for safely testing charging strategies before they are applied in real systems.
Thanks to its interactive and easy-to-use design, the platform supports researchers,
operators, and policymakers in exploring different approaches and in shaping
charging systems that are efficient, sustainable, and responsive to user needs.
Technically speaking, we used several libraries such as CVXPY, matplotlib, numpy,
pandas, and customtkinter for making our panel complete and professional in order
to test any smart charging models desired using different values and scenarios.

Three distinct smart charging models are also presented in this thesis and tested
using our simulation platform. The first is the Power Allocation model, which aims
to reduce the electricity costs of EVs charging by shifting the power allocation
to low-peak periods, without failing the user demand satisfaction. The second is
the CO, Emission model, which aims to minimize the carbon emission due to the
electricity usage, together with a usual cost minimization. The third is the Cohort
model, which enables the management of big fleets of EVs by aggregating them into
different classes according to their similarities and energy demand. These models
collectively address the three primary objectives of smart charging: cost reduction,
emission reduction, and efficiency.

Thanks to the easily accessible control panel of our digital twin simulator, we
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can virtually apply these smart charging models to evaluate their performances,
especially comparing them to the FIFS approach. As expected, the smart charging
models show better performances than FIFS both in cost-saving and lowering
emissions, depending on the model used. The Cohort model in particular shows
how the charging of large groups of vehicles can be managed efficiently in the
future.

The control panel allows users to change any parameter like the electricity price
used, the fleet size, time resolution, and other power-related constraints parameters.
These features allow for an easy comparison of the models by examining how
they respond to shifting circumstances. The results are instantly displayed in
several plots, and any end-user would be able to analyze them thanks to an Al-
generated assistant. Ultimately, our digital twin bridges the gap between theory and
deployment, accelerating smarter, greener EV charging. The platform’s explainable
outputs and what-if analysis help operators and policymakers understanding trade-
offs among cost, emissions and efficiency, paving the way for the development of
future smart cities.
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Chapter 1

Introduction

1.1 Electric Vehicles and Smart Charging

Electric vehicles (EVs), are playing a crucial role in the global shift toward environ-
mentally friendly ways of transportation. Government funding, battery technology
advancements, and growing public interest in cleaner mobility are all contributing
to their rapidly increasing popularity [1].

Figure 1.1: An electric vehicle charging at a public station [1].

This transformation not only affects how we move but also impacts energy
systems and infrastructure.

The evolution of electric vehicles (EVs) over time is shown in Figure 1.2: By
early 2025, electric vehicles will account for over 40% of the global market. This
demonstrates how electric vehicles are gradually replacing traditional internal
combustion engine (ICE) cars that run on gasoline or diesel. A number of factors,
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Figure 1.2: Projected growth in global EV market share (2020-2025) [2].
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including dropping battery prices and advancements in charging infrastructure that
make EVs more feasible for daily use, are contributing to the acceleration.

Rules and policies introduced by governments are equally important. Stricter
emission standards, financial rewards for buying EVs, and an increase of charging
stations all speed up adoption. At the same time, people are more worried about
climate change and want to use less oil and gas. This promotes the use of electric
vehicles by both consumers and automakers.

In addition to the rate of adoption, the figure shows the breaking point in the
industry, where EVs are moving from a specialized technology to the general public.
This change highlights the need to develop efficient charging strategies, such as
those discussed in this thesis, to ensure that infrastructure and grid management
can satisfy demand.

As EV numbers grow, electricity demand rises especially during peak hours when
many users plug in after work. If not managed well, this concentrated demand
can overload distribution grids and raise operational costs [3]. Research has shown
that independent EV charging could increase peak load by up to 20%, leading
to the need for expensive grid upgrades [4]. Simple methods like First In First
Served (FIFS) are still commonly used due to their ease of implementation. These
strategies ignore key factors, such as time-varying electricity prices, that can lead
to ineffective outcomes.

For fixing these issues, we decided to use smart charging techniques. Using
real-time measurements such as grid load, energy prices, and renewable output,
they move the charging to times when costs are lower or emissions are lower. This
ensures electrical stability, increases efficiency, and minimizes the impact on the

2



Introduction

environment. At the same time, it is important to maintain convenience for users,
vehicles must be charged and ready when needed. One of the main reasons behind
the optimization models used in this thesis is achieving this balance.

1.2 Literature Review

Optimization Approaches

To make charging EVs better, researchers have been coming to develop a lot of
different models. Others try to reduce costs by using state of charge data [5],
while others use scheduling strategies that find a balance between user needs and
efficiency [6]. Model Predictive Control (MPC) has also been used to change
schedules in real time using predicted electricity prices [7]. Another significant
factor to think about is uncertainty. To deal with prices that change and demand
that isn’t always predictable, strong optimization strategies have been suggested.
These includes chance-constrained formulations [8], robust cost models utilizing L2-
norms [9], and methodologies for worst-case scenario preparedness [10, 11]. These
methods (discussed in Chapter 2) provide a strong mathematical foundation for
robust solutions by focusing on convex optimization and stochastic programming.

Environmental Perspectives

Not every source of electricity are actually clean, and the volume of carbon they
make can change depending on the time of day and the mix of energy sources.
Charging electric vehicles (EVs) when the grid gets its power from renewable sources
can cut emissions by a lot. Several studies combine goals for the economy and the
environment. For example, stochastic unit commitment models [1] and two stage
stochastic formulations for solar powered charging stations [2] have been developed.
More advanced frameworks even use both stochastic and robust optimization to
find a balance between cutting costs and cutting emissions [12].

Towards Practical Tools and Digital Twins

Most real charging stations still use simple rules like FIFS, even though these
changes have been developed. This shows the difference between research and
everyday life. Digital twins have been suggested as a way to connect both of these
factors. They give operators and researchers a virtual copy of the charging system
so they can try out different strategies before using them in the real world [13, 14].

Since they allow for complicated grid interactions, integrate real data, and record
user behavior, digital twins are incredibly powerful tools. They are therefore ideal
to evaluate optimization models in practical settings.
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1.3 Scope of This Thesis

This thesis implements and compares three smart charging optimization models for
electric vehicle (EV) infrastructure: the Power Allocation Model [9], the Emission
COy Model [15], and the Cohort Model [16]. Every model analyzes at a different
facet of the EV charging problem, such as the cost, the environmental impact, and
recommendations for improving smart charging methods.

These models are implemented using a digital twin framework created for this
project via Python. This simulation platform integrates real electricity price data
from Italy with synthetic EV arrival scenarios to assess each model’s performance
under controlled and repeatable conditions [17]. Researchers and decision-makers
can modify crucial parameters like emission intensity, power capacity, number of
EVs, and time horizon due to the framework’s modular design.

Our work in this thesis includes two key goals. Evaluating each model’s per-
formance in terms of cost, emissions, and user satisfaction is the first step. The
second is to show how digital twins can be used to test and simulate smart charging
strategies before they are put into practice in real systems. By analyzing the models
in both theoretical and simulated environments, the work demonstrates the differ-
ences in complexity, scalability, and performance. A flexible data-driven framework
that can speed up the shift to smarter and greener EV charging infrastructure is
presented in the thesis’ conclusion.



Chapter 2

Preliminaries

In this chapter, we briefly introduce the mathematical basis needed for the following
of this thesis. Concepts like convex optimization theory, Monte Carlo simulations,
robust optimization under uncertainties, are very useful when dealing with these
kind of smart charging problems.

2.1 Optimization Models

Generally speaking, optimization is useful because it allows us to convert multiple
goals such as cutting emissions, energy expenses, or customer wait times into
exact formulas. Following that, these formulations are resolved within the realistic
parameters defined by the operational and technical limitations of the system.

A basic deterministic optimization problem can be written as:

min - f(z)

st gi(r) <0 Vie{l,...,m},
hj(z) =0 vje{l,...,p},
where f(x) is the objective function to be minimized (usually related to some cost

function), ¢;(z) are inequality constraints (like power or resource limits), and h;(z)
are equality constraints (e.g., balance constraints or conservation laws).

2.2 Convex Optimization

The field of mathematics known as convex optimization studies problems in which
the feasible region and the objective function share a structural characteristic
called convexity. Convex problems are more predictable than general optimization
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problems, which can have unstable solutions or multiple local minima. For real-
world applications in engineering, economics, machine learning, control systems,
and operations research, they enable effective algorithms with provable convergence
guarantees [18, 19].

Formally, a convex optimization problem takes the form:

min f(r),

reX

where f: R™ — R is a convex function, and X C R" is a convex set. A function f
is convex if for all z,y € X and v € [0,1], it satisfies:

fOyx+ (1 =y)y) <vf(x) + 1 =) f(y).

This implies that the graph of f lies below the chord connecting any two points,
ensuring that local minima are also global.

One of the good features that relates to convex optimization involves duality
theory. For a primal problem, a lower bound on the optimal value provides a
corresponding dual problem. Strong duality does hold under Slater’s condition.
This means that the primal and dual problems have optimal values that coincide.
This property forms the basis for many algorithms as primal-dual interior point
methods [18], plus aids in theoretical analysis.

Convex problems frequently appear in machine learning. Algorithms such as
support vector machines (SVMs), logistic regression, ridge regression, and LASSO
are formulated as convex optimization problems:

mmel )+ AR(x),

z€R™

where f;(z) measures prediction error, R(x) is a convex regularization term (e.g.,
¢y or {5 norm), and A balances the trade off [19].

For large scale or high-dimensional problems, first order methods like gradient
descent and subgradient descent are widely used. These are especially effective
in black box settings where only noisy gradient information is available. When
curvature information is accessible, second order methods such as Newton’s method
or interior point methods can offer much faster convergence [20].

As dimensionality grows, non Euclidean techniques become valuable. Mirror
descent, for example, generalizes gradient descent by incorporating a distance
generating function ¢, leading to the iteration:

mﬂ_a%mm%Vﬂu>>+;Damuﬁ,

where Dy(-, ) is the Bregman divergence induced by . Similarly, dual averaging
methods aggregate gradients over time and adjust updates accordingly. These
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algorithms are especially useful in sparse learning, constrained optimization, and
distributed systems [19].

Even when the original problem is non convex, convex optimization plays
a critical role through relaxation. In these cases, constraints or objectives are
approximated by convex counterparts. The relaxed problem is easier to solve, and
the resulting solution can be rounded or refined post optimization. This approach
is common in integer programming, control, and power systems optimization [18].

We can use convex optimization in many applications. For instance, Google’s
AdWords system allocates ad slots under budgetary constraints by solving a large-
scale convex optimization problem [21].Effective and scalable power scheduling
has been made possible in electrical grid operation by semidefinite relaxations of
Optimal Power Flow (OPF [22]). Convex programs are used by model predictive
control (MPC) frameworks in autonomous vehicles to plan trajectories in real
time [23]. Convex resource allocation in wireless networks guarantees effective
spectrum use while meeting QoS requirements [24]. Sparse recovery in MRI and
compressed sensing has been revolutionized in medical imaging by total variation
minimization [25].

In conclusion, convex optimization is basically a method of problem solving
with a solid basis in math. It is beneficial as it is not only theoretical but also
successfully utilized in real world situations. That makes it practical in fields where
decisions depend on data, resources are limited, or safety is important.

Convex Relaxations and Tractability

Many practical problems are non convex due to integer constraints or nonlinearities.
In such cases, conver relazations are employed to approximate the original problem
while preserving tractability. For instance, binary decision variables can be relaxed
to continuous ones in [0,1], and non convex feasible regions can be over approximated
by convex hulls [18].

A convex relaxation of a mixed-integer problem may take the form:

min  f(z) s.t. x € conv(Xiy),
rzeR?
where conv(-) denotes the convex hull of the original feasible integer set.
Such relaxations are common in large scale EV charging problems where real
time decisions need to be computed efficiently. While the relaxed solution may not
be strictly feasible, rounding and post processing can yield good practical solutions.

In summary, optimization models show an organized mathematical framework
for decision-making in both uncertain and deterministic scenarios. Energy system
stakeholders can create scalable and resilient control policies that strike a balance
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between performance, dependability, and cost effectiveness in complex environments
by utilizing convex relaxation techniques, stochastic programming, and robust
optimization.

2.3 Multi Objective Optimization

In real world EV charging scenarios, decisions are rarely based on a single goal.
Instead, trade offs must be made between multiple, sometimes conflicting, objectives.
For example, reducing electricity cost may lead to increased emissions if fossil fuel
based energy is used, while minimizing emissions might require more expensive
energy sources or additional delays.

Formulation

A typical multi objective optimization problem is written as:
min [fi(z), fo(z), ..., fi(z)],
zeX

where each function f;(x) represents a different objective (e.g., cost, emissions,
waiting time). Since there is generally no single solution that minimizes all objectives
simultaneously, the goal is to find Pareto optimal solutions.

Pareto Optimality

A solution z* is said to be Pareto optimal if there is no other feasible solution that
improves one objective without worsening another. The set of all such solutions
forms the Pareto front, which helps decision makers understand the trade offs
involved.

Weighted Sum and Scalarization

A common method to handle multiple objectives is to use a weighted sum:
k

min Z:ZI i fi(x),
where \; > 0 are weights reflecting the relative importance of each objective. In this
thesis, such scalarization is used to combine cost and emissions using a trade-off
parameter 7y, as detailed in later chapters.

When creating EV charging plans that are both cost effective and ecologically
friendly, multi objective optimization is essential. By adjusting weights or exploring
the Pareto front, system operators can choose policies that best suit their specific
goals [26, 27].
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2.4 Sources of Uncertainty

The charging of electric vehicles (EVs) consists of a number of unknown and
unavoidable variables that must be considered during simulation and optimization.
These parameters will be explained below.

e Arrival and Departure Times:
The behavior of EVs when they arrive and depart is one of the primary causes
of uncertainty. Depending on their daily routines, charging habits, or work
schedules, drivers may plug in their cars at different times. Both the energy
demand and the scheduling flexibility are impacted by this fluctuation.

o State of Charge and Energy Demand:
The amount of energy needed by each EV can vary significantly based on the
initial state of charge (SoC) at arrival, battery capacity, and intended trip
distance. This makes it difficult to predict how much energy each vehicle
requires in advance.

e Electricity Prices:
In systems with dynamic pricing, electricity costs change throughout the day
based on supply, demand, and market conditions. These fluctuations introduce
price uncertainty that directly affects the cost of charging.

 Renewable Generation and Grid Conditions:
In grids that integrate solar or wind power, the available energy supply can
be highly variable due to weather conditions. Similarly, grid overload or
unexpected failures can impact the feasibility of charging decisions.

Incorporating these uncertainties into optimization models requires stochastic
or robust techniques, as discussed in earlier sections. Accurate modeling of these

factors leads to better decisions, especially in large-scale or real time systems [28,
29].

2.5 Stochastic Programming

Before talking about stochastic models, it’s useful to compare them with determin-
istic programming. In deterministic optimization, all parameters such as arrival
times, electricity prices, and energy demands are assumed to be known in advance.
Stochastic programming, on the other hand, insert uncertainty directly into the
model by treating unknown parameters as random variables with known probability
distributions. This approach helps produce more reliable and flexible solutions
under uncertain conditions [30, 31].



Preliminaries

In many energy systems, key parameters such as electricity price, renewable
generation, and user arrivals are uncertain. In these cases, stochastic programming
is used to specifically include randomness into the model [30, 31]. The canonical
two-stage stochastic programming problem is the following.

min {/(2) + BlQ(r, )]}

where: z is the first stage decision (e.g., scheduling EVs), £ is a random vector
capturing uncertainty (e.g., arrival time or price), Q(x,&) is the optimal value of a
second stage problem (the recourse function), defined as:
- T
x,§) = min ,

Qz,§) = min gy
with y being second stage decisions (e.g., actual energy allocation), and Y (z, )
defining feasible decisions under scenario &.

When a closed form of the expectation is unavailable, the Sample Average
Approzimation (SAA) is used [32]:

1 ¥ :
i Bl (i)
min {f(fv) + ;Q(aﬁ,é )} :
where {£0), ... €M) is a set of N sampled scenarios from the distribution of ¢.
As N — oo, the solution converges almost surely to the true optimum.

2.6 Robust Optimization

While in stochastic programming we model uncertainties assuming to know their
probability distributions, the robust optimization approach does not require any
knowledge of them but instead optimizes against worst-case realizations within a
predefined uncertainty set U. The robust counterpart of a problem becomes [33]:
w0
where U can be a box, ellipsoid, or polyhedral set. This formulation ensures
performance under all possible values of £ € U, providing a conservative but highly
reliable solution.

For example, in energy systems where price volatility is significant (like the
electricity price in smart charging), one may model uncertainty in prices 7 within
bounds:

TE[T—0, T+0],

and optimize:

min  max 'l

zeX mwe[n—4, T+4]
10
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2.7 Monte Carlo Simulations

A popular numerical method for simulating and examining complex systems with
uncertainty or unpredictable behavior is Monte Carlo simulation. Its fundamental
idea is to estimate deterministic or stochastic quantities of interest through repeated
random sampling. The method was first developed in the 1940s by scientists working
on nuclear weapons research during the Manhattan Project and named after the
gambling city of Monte Carlo to reflect its reliance on random outcomes [34].

Instead of relying on a single deterministic outcome, Monte Carlo simulation
models thousands of possible system realizations to produce a more complete
picture. This approach enables us to examine the probability of different outcomes,
which aids in our understanding and management of the associated uncertainty.
For example, just as repeatedly flipping a coin yields a better estimate of the
probability of heads, increasing the number of simulations produces more accurate
statistical predictions. Because of its intuitive appeal, Monte Carlo simulation
is especially useful when system behavior is too complex or unpredictable to be
modeled analytically [35].

Monte Carlo simulation can be used to generate multiple estimates of uncertain
inputs, like electricity prices and EV arrival times, in the context of energy systems
and smart charging. The effectiveness of various charging techniques in various life
situations can then be evaluated using these insights.

Types of Monte Carlo Simulations

Monte Carlo techniques can be broadly classified into:
o Static vs. Dynamic: Static simulations focus on systems without time de-

pendencies, while dynamic simulations (often called discrete-event simulations)
model systems evolving over time.

e Deterministic vs. Stochastic outputs: Some simulations produce fixed

outputs per input (e.g., Monte Carlo integration), while others include random-
ness throughout the process (e.g., agent-based energy demand simulations).

Monte Carlo Integration and Estimation

Mathematically, suppose we want to evaluate an expectation of the form:

n=E[f(©) = [ F©p(©)s.
11
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where ¢ is a random variable with density p(§), and f(§) is the function of interest.
Monte Carlo approximates this expectation using /N independent samples {£ (i)}fll:

1 Y 4
v = 5 S0,

By the law of large numbers, this estimate converges almost surely to p as N — oo,
and the central limit theorem ensures that the error decreases at a rate of O(1/v/N).

Sample Average Approximation (SAA)

In stochastic optimization, expectations often appear in the objective function or
constraints. The Sample Average Approximation (SAA), which provides a sample
based average for the true expectation, is a popular method for resolving such
issues. For a problem of the form:

min {/(2) + BlQ(r, )]}

the SAA formulation becomes:

min {f(x) + ]1[ i@(%f("))} ,

zeX -1

where £ ~ p(€) are i.i.d. samples. As N increases, the SAA solution converges
almost surely to the solution of the true problem under mild conditions [36].

Advanced Techniques: Variance Reduction and MLMC

While simple Monte Carlo estimation is unbiased, its convergence rate may be slow.
To improve efficiency, variance reduction techniques are used:

o Control Variates: Leverages correlation with known variables to reduce
variance.

o Antithetic Sampling: Uses pairs of negatively correlated samples.

o Importance Sampling: Samples more frequently from important regions of
the input space.

Another advanced method is Multilevel Monte Carlo (MLMC'), which reduces
computational cost by combining simulations at different levels of resolution. The
idea is to simulate many inexpensive low-fidelity samples and only a few high-fidelity
ones, balancing cost and accuracy [37].
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Applications in the Real World
Monte Carlo methods have been applied in a range of domains:

» Finance:
They are used to evaluate derivative pricing under uncertain market dynamics,
model credit risk, and optimize portfolios by simulating thousands of future
asset price paths [38].

e Energy Systems:
Operators simulate probabilistic grid conditions to evaluate reliability, optimize
power flow under renewable variability, and assess blackout risk [37].

» Reliability Engineering:
Monte Carlo is used to estimate the failure probability of mechanical parts. For
example, in the automotive industry, it models fatigue in vehicle components
subjected to variable load cycles [39].

o Logistics:
Supply chain models use stochastic sampling to simulate demand fluctuations,
supplier delays, and stockout probabilities, helping firms optimize inventory
policies under uncertainty [40].
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Strengths and Limitations

Monte Carlo methods are appreciated for their:
o Simplicity and ease of implementation,
o Flexibility in handling non-linear, non-convex, or high-dimensional problems,
o Compatibility with black-box models and simulation-based systems.
However, they also come with drawbacks:
e Require large sample sizes to achieve low error,
e May be computationally expensive for real-time applications,

e Accuracy depends on quality and independence of samples.

In conclusion, Monte Carlo simulation provides a useful and efficient way to deal
with uncertainty. It is a fundamental component of simulation-based approaches,
which are widely utilized in both academic research and industrial practice due to
its flexibility and ability to handle complex systems.

2.8 What is a heuristic?

Not all charging strategies are built from optimization models. In practice, many
depots and public stations rely on simple rules heuristics that are easy to implement
and understand. In this thesis, we use First In First Served (FIFS) as our main
heuristic baseline. A heuristic is a rule based policy that makes decisions quickly
without solving a mathematical program. Heuristics are useful as:

o Baselines to compare against optimized solutions,
« Fast fallbacks when computation or data is limited,

« Explainable policies that operators can implement immediately.

FIFS policy (queue discipline)

FIFS assigns charging power to vehicles strictly by arrival order. When power or
sockets are limited, early arrivals are served first; later arrivals wait.

Notation. Let Q(t) be the queue of connected electric vehicles ordered by arrival
time, P, the total available power at time ¢, p the limit of the per EV rate, and S
the number of sockets (if applicable).

14
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Rule. At each time step t:
1. Serve the first min{|Q(¢)|, S;} vehicles in the queue.
2. Allocate to each served EV up to min{p, P,/served}.

3. Update the queue by removing EVs that become fully charged or depart.

Why include FIFS?

FIF'S reflects how many real-world sites operate today. It is:
« Simple: no forecasts, no solvers.
« Predictable: operators and users understand the rule.
o Computationally light: O(N) per step with a queue.

However, FIFS ignores price and emissions signals and may be unfair to later
arrivals, which can increase cost and occasionally leave users undercharged at
departure.

Cohort-style FIFS

For comparison with our Cohort Model, we also use cohort style FIFS: EVs are
grouped into energy demand classes and the service proceeds class by class in
arrival order. This aggregated version keeps the spirit of FIF'S while matching the
state representation used in Chapter 3.

When to use a heuristic

Heuristics are appropriate when:
« data is scarce or forecasts are unreliable,
 strict response-time constraints preclude optimization,
e an interpretable, "no surprises" policy is preferred.

In this thesis, FIFS serves as a transparent baseline to highlight the gains achieved
by optimization in terms of cost, emissions, and user satisfaction.
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Chapter 3

Models

Building on the optimization concepts introduced in Chapter 2, this chapter presents
the three main mathematical models developed and implemented in this thesis,
together with a simple baseline strategy (FIFS). Each model addresses smart
charging of electric vehicles (EVs) from a different angle. The models considered
are the following:

Power Allocation Model [41]. The main goal of this model is to minimize
the overall electricity cost, while at the same time taking into account the
dissatisfaction of users if their charging demand is not fully met.

Emission COy Model [15]. Here, the emphasis shifts to environmental aspects:
the optimization explicitly includes COq emissions in the objective, providing
a trade off between cost and sustainability.

Cohort Model [16].The model groups EVs into classes that reflect their charging
requirements and availability, and tracks how these groups shift from one state
to another as time progresses.

First In First Served (FIFS) Model. This is a straightforward reference strategy
in which vehicles are charged in the order of their arrival until they are either
fully charged or leave the system. Although FIFS is not an optimization
problem, it is useful as a baseline for comparison. To make the comparison
fair with the Cohort Model, we implement a cohort style version of FIFS: EVs
are divided into discrete classes, their transitions are tracked over time, and
charging power is allocated sequentially following arrival order. While clearly
less efficient than optimization based strategies, this heuristic reflects how
many real world charging stations actually operate.

Together, these models show different ways to manage EV charging: lowering
costs, reducing environmental impact, and improving fairness and efficiency across
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the fleet. Despite their different perspectives, all models share the same mathemat-
ical backbone of convex optimization, which allows them to be solved reliably with
standard numerical solvers and compared consistently.

Each formulation translates the smart charging problem into a set of mathemat-
ical components:

« Objective functions that capture the goals of the system whether minimizing
cost, emissions, or energy deficit;

e Decision variables representing charging allocations or fleet states;

o Constraints that reflect physical limitations, such as charger capacity, vehicle
availability, or power budgets.

Despite these shared foundations, the models differ significantly in how they
handle system complexity and uncertainty. For example, the Power Allocation and
Emission CO5 models operate at the individual vehicle level with explicit constraints
per EV, whereas the Cohort Model adopts a more aggregated, class based approach
to capture the collective dynamics of a fleet. Moreover, models vary in how they
address uncertainty: deterministic parameters can be replaced with scenario based
inputs using Monte Carlo simulations (as described later), enabling realistic stress
tests under price volatility, fluctuating arrivals, and changing emission intensities.

Each model changes theory into helpful instruments to manage EV charging
in actual operating environments by building on the optimization concepts previ-
ously discussed, such as convexity, dual objectives, and stochastic methods. Each
model’s formulation, underlying presumptions, and decision-making guidelines are
thoroughly explained in the remaining portion of the chapter.

3.1 Power allocation Model

This model is formulated as a classical convex optimization problem that integrates
both economic and service quality considerations. Its primary goal is to minimize
the total electricity cost incurred by charging a fleet of electric vehicles, using real
or simulated electricity price profiles. However, unlike traditional cost minimization
approaches, this model also explicitly accounts for customer dissatisfaction by
penalizing any shortfall in the energy delivered to each EV.

In practice, energy shortfalls may occur when available power is limited or when
vehicles are connected for a shorter period than required to meet full charging
needs. To reflect this, the model introduces a decision variable that captures the
energy deficit per vehicle, the difference between the requested energy and the
energy actually received during the stay of the vehicle.

The objective function combines two components:
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e The first term captures the monetary cost of energy drawn from the grid,
calculated by multiplying the allocated power by time varying electricity
prices;

e The second term introduces a dissatisfaction penalty, linearly proportional
to the energy deficit, and scaled by a parameter v that reflects how much
importance the operator assigns to meeting user demand.

By tuning the weight v, one can balance the trade off between minimizing cost
and ensuring high service quality. A low v places more emphasis on reducing grid
expenses, possibly at the cost of user satisfaction, while a higher ~ prioritizes full
energy delivery even if it means accepting higher electricity prices.

Because all variables and constraints in this formulation are linear, and the
objective is convex, the model can be solved efficiently using standard linear
programming solvers. Its simplicity makes the model practical for real time
use or large scale simulations where fast solutions are needed. Additionally, it
provides a point of comparison with advanced algorithms which consider dynamic
or environmental factors, that are covered in the following sections.

Objective and Structure

The decision variable Y denotes the charging power assigned over time to each
electric vehicle, and e captures the energy deficit (the amount of energy requested
but not delivered). The objective includes:

« the total cost of charging, computed via the price vector 7, and

« a dissatisfaction penalty scaled by a tunable weight v, which reflects the trade
off between minimizing cost and meeting energy demand.

H}l/in T 0Y1+~1"e

st. Y1 > L —e,
Y1<C, (3.1)
Y >0, Y<pl, e>0,
Y, =0, Vt,i:A;=0.

The parameters are:

o L € RY: energy demand, with L; representing how much energy EV ¢ wants
to receive during its stay.

o C € RT: power capacity of the grid or charging station at each time step.
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o p: Europe’s most widely used charging ports limit

o A€ {0,1}7*N: availability matrix, where A;; = 1 indicates that vehicle i is
connected to the charger at time t.

Using known or predicted values for availability and price, this formulation takes a
deterministic approach. The problem can be solved quickly and reliably because it
is convex. A technique for examining various price scenarios and evaluating the
precision of the findings is provided by Monte Carlo sampling.
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Figure 3.1: Illustration of the Power Allocation model under historical price
data [9]. Top: electricity price profile; Middle: EV parking occupancy; Bottom:
comparison of energy allocation between the optimized strategy and the FIFS
baseline.

Figure 3.1 illustrates how the Power Allocation model operates. The top plot
shows daily electricity prices, the middle plot shows the number of EVs parked, and
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the bottom plot compares the optimized schedule with the naive FIF'S approach.
The optimized model shifts charging to cheaper hours and avoids peaks, whereas
FIFS ignores price signals, resulting in higher costs.

3.2 Emission COy; Model

This model looks not only at the cost of charging but also at its environmental
impact. Alongside lowering electricity expenses, it considers the carbon emissions
from grid power.These elements support a more economical and ecologically re-
sponsible method of energy management. If we look for decarbonization goals and
develop more flexible and cleaner power systems, this kind of strategy is essential.
In practice, the model is set up as deterministic, with electricity prices and carbon
emission rates treated as known beforehand. However, these inputs are allowed to
vary dynamically over time, enabling the model to adapt to changing grid conditions
such as increased renewable energy penetration or peak emission periods. In this
sense, the model integrates time sensitive environmental signals, acknowledging
that the carbon intensity of electricity is not constant throughout the day.
Mathematically, the objective function is the weighted sum of two terms:

o The total electricity cost, computed by multiplying the amount of energy
allocated at each time step by the corresponding electricity price; and

e The total CO4 emissions, calculated by using time varying emission factors
that reflect the environmental impact of electricity consumption.

The weighting parameter A allows for a flexible trade off control between economic
and environmental goals. A value of A\ = 0 reduces the model to pure cost
minimization, while higher values shift the focus to emission reduction. System
operators, energy planners, or charging station managers can match optimization
to their sustainability goals or policy objectives thanks to this flexibility.

Figure 3.2 shows how the Emission CO, Model operates. The top plot compares
the price of electricity and the cost of CO5 emission over time, highlighting that
cheaper energy is not always cleaner. The bottom plot illustrates how the optimized
model shifts charging to periods with lower prices and emissions, unlike the FIF'S
strategy, which ignores these signals. This demonstrates the value of combining
cost and environmental factors in the decision making process.

Model Motivation

In this formulation the model balances electricity cost with the carbon footprint
associated with charging. It is particularly useful when the electricity supply is
mixed.
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Figure 3.2: Example of the Emission COy Model in action. electricity price and

CO4 emission cost compare the optimized model (blue) with the FIFS strategy
(red). [15]

Mathematical Formulation

T T
m}jn Zwt Z oYy +)\Z7Tf02 Z oYy (3.2)
t=1

t=1 i:te[ai,di] i:te[ai,di]

d;

t=a;

N
ZY;tz < Ct> Vt7

i=1
0<Y,; <p, Vit
Yti == 0, ‘v’t ¢ [ai, dz],\V/Z

The parameters are as follows.

o L € RY: energy demand, with L; representing how much energy EV ¢ wants
to receive during its stay.
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C € RT: power capacity of the grid or charging station at each time step.
p: maximum charging rate per EV (kW), determined by the station limits.

A € {0,1}7*V: availability matrix, where Ay = 1 indicates that vehicle i is
connected to the charger at time t.

Y € R™N: the charging power matrix, where Y;; denotes the power allocated
to vehicle ¢ at time step t.

7¢02: Emission adjusted electricity price at time ¢, derived from the emissions
vector eco, (in g/kWh) scaled by a carbon cost constant. Specifically,

7Tt002 = C() . 6002 (t)

where Cp = 70 $/ton = 64 £ /ton, and in the Vietnamese context used in our
study.
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Discussion

The weighting parameter A is the most crucial component of the Emission CO,
Model. The operator can choose whether to prioritize more on cost reduction or
emissions by adjusting this parameter, which functions as a slider. For instance, if

Since A is small, the optimizer’s primary goal is to maintain a low electricity
bill. The model prioritizes charging when the grid is cleaner if \ is large, even if it
means paying a marginally higher price. In a way, the model provides flexibility to
different operational plans or goals.

The model also makes the assumption that the production and consumption of
electricity are separate. The carbon intensity of electricity, represented by 792, is
taken as an external input that varies over time. This reflects the fact that the
emissions linked to grid electricity are not constant during the day they change
with the mix of renewable and fossil fuel generation.

From a mathematical perspective, the formulation remains linear and convex,
which means it can be solved quickly and reliably even for large systems. This
makes it practical for real time applications or large scale fleet simulations.

Key advantages:

o Promotes charging at times when the grid is cleaner, leading to lower emissions.

o Can be adapted to different seasons, regions, or future changes in emission
profiles.

« Provides a balance between economic savings and environmental sustainability,
depending on the chosen value of \.
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3.3 Cohort Model

The Cohort Model is inspired by state based control frameworks and offers a scalable,
system level representation of electric vehicle (EV) charging dynamics. Rather
than managing each EV individually which becomes computationally intensive as
the fleet grows this model adopts a class based approach. Vehicles are grouped into
cohorts or charging classes based on their remaining energy demand. From almost
empty batteries to fully charged ones, each class stands for a step in the charging
process.

This abstraction shifts the focus from micro level decisions (per EV charging
profiles) to macro level behavior (how many EVs are in each state and how
they transition between states over time). It is especially helpful for centralized
management in huge public or commercial charging infrastructures because it shows
the overall dynamics of an entire EV fleet.

The mathematical formulation that supports it is dynamic. The system evolves
according to a discrete time state transition model, where the number of vehicles
in each class at time ¢ + 1 depends on the current state z(t), arrivals a(t), and
control decisions ¢(t) (i.e., how many vehicles to charge in each class). Transition
matrices A(t) and B govern how vehicles naturally progress due to departures and
how charging actions impact state shifts.

Goals for service quality and the economy are combined in the objective function.
It includes:

o The total electricity cost incurred over time, weighted by dynamic price signals

o A dissatisfaction penalty based on the number of vehicles remaining in lower
charge states, weighted by class specific coefficients.

Important aspects of fleet behavior in the real world are captured by this model:

o It enables prioritization of undercharged vehicles through the dissatisfaction
weights.

o It accommodates dynamic arrivals and departures through a(t) and A(t).

o It naturally scales to fleets of arbitrary size by adjusting the number of classes.

The Cohort model can find moderation between efficiency and accuracy. Because
it reduces the optimization problem while preserving key charging dynamics, it
is ideal for online control or long-term planning. Because Monte Carlo methods
can be used to sample uncertain arrivals, the model also easily integrates with
stochastic programming techniques (Section 2.1.1). So, the Cohort Model is a
practical replacement for individual EV scheduling. Its state transition foundation
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Figure 3.3: Cohort Model- park occupancy over time, power allocation comparison
between the optimized cohort schedule and the FIFS baseline.. [16]

makes it ideal for capturing changing system behavior under uncertainty, and its
class-based structure lowers dimensionality while maintaining accuracy.

Figure 3.3 shows how the cohort model uses class based states to track fleet
evolution (top) and schedule charging (bottom). As occupancy rises, the optimized
policy spreads charging over time and avoids high peaks, while the FIFS baseline
closely follows arrivals and creates larger bursts of power. This illustrates why
grouping EVs into classes enables scalable, smoother control at the fleet level.
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System Representation

The model uses the state vector x(t) to track the number of EVs in each class at time
t, and ¢(t) as the number of vehicles receiving charging in each class. Transition
dynamics are captured using a matrix model, and arrivals are included via a(t).
The model minimizes both cost and dissatisfaction using the this formulation:

T-1 T-1
min Y mAP L e(t) +7 Y Ba(t)
CX t=0 t=0
st. 0< Pl'c(t)< P, W, (3.3)

0<c(t) <x(t), W,
z(t+1) = A(t)x(t) + a(t) + Be(t), Vi.

Parameters

The parameters for the Cohort Model are as follows:

z(t) € R™"!: state vector at time ¢, where each entry represents the number
of EVs in a given energy class (grouped by remaining energy to be charged).

c(t) € R™!: control vector/matrix at time ¢, indicating the number of EVs
from each class being charged during that time step.

a(t) € R™: arrival vector/matrix, denoting the number of new EVs entering
each class at time ¢. It is generated via probabilistic models (Poisson).

A(t) € R+ departure transition matrix at time ¢, modeling the
proportion of EVs that remain or depart from each class.

B € RO+Ux(+1): charging transition matrix, describing how the control
action c(t) shifts vehicles from one class to another as energy is supplied.

[ € R+ dissatisfaction weight vector, assigning higher penalty to vehicles
with higher remaining demand (i.e., lower charging class).

m € R: electricity price at time ¢ (€/kWh), used to compute the cost of
charging over time.

A € R: duration of each time step (minutes), used to convert power to energy.

Py € R: fixed charging power allocated per vehicle (kW), assuming uniform
charging rates across all classes.

P € R: total power limit of the charging station (kW), representing the
maximum grid capacity at any time.
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The framework of stochastic programming naturally supports this formulation.
Because it is convex and allows for flexible arrival modeling using Monte Carlo
techniques, the method is scalable even as the state space grows.

Summary

All three models are grounded in the optimization frameworks introduced in
Chapter 2, but each takes a unique approach to smart EV charging:

« Power Allocation Model: This model captures the trade off between elec-
tricity cost and user dissatisfaction due to unmet energy demand. Advantages:
It is simple and fast to solve, balances cost and service quality effectively, and
is well suited for individual EV tracking. Limitations: It does not account
for emissions, scales poorly for very large fleets, and assumes fixed vehicle
availability.

e Emission CO, Model: This model extends the objective function to incor-
porate environmental costs. Advantages: It explicitly includes environmental
objectives, leverages real price and emissions data, and provides flexibility
through a tunable trade off parameter. Limitations: It assumes perfect knowl-
edge of future conditions (deterministic), does not capture fleet dynamics, and
its results are sensitive to the choice of emission weight.

o Cohort Model: This model adopts a state transition structure that groups
EVs by energy class, allowing scalable fleet level scheduling under uncertainty.
Advantages: 1t captures fleet evolution, is efficient for large populations, and
naturally accommodates probabilistic arrivals and departures. Limitations: It
requires discretization of energy states, is less detailed at the level of individual
EVs, and needs more calibration for transition matrices (A, B).

These three models all present three distinct methods for EV smart charging:
reducing individual costs, reducing environmental impact, and enhancing large
scale coordination.Depending on the specific goals or preferences, each model can
be used independently. In the following chapter, simulations that represent real
world scenarios are used to evaluate their performance.
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To provide a meaningful baseline for comparison, we also implemented a First
In First Served (FIFS) strategy. Unlike the optimization-based models, FIFS
simply allocates charging power in arrival order, ignoring prices, emissions, or
demand forecasts. Advantages: It is very simple, predictable, and computationally
light, making it easy to implement in real world systems. Limitations: It ignores
market signals and emissions, can lead to unfairness for later arrivals, and often
results in higher costs or undercharged users.

In the context of the Cohort Model, we extended FIFS into a class based version,
applying the same arrival order logic within each group of vehicles sharing similar
energy demand characteristics.
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Chapter 4
Simulations and Results

This chapter presents the simulation setup to evaluates the three optimization
models introduced in Chapter 3, selected parameters, and numerical results for the
three models described in Chapter 3: the Power Allocation Model, the Emission
CO;, Model, and the Cohort Model. Here the focus is on testing how each model
responds to different conditions such as shifts in electricity prices, differences in
energy demand, and variations in EV arrivals. Each model is simulated over a 24
hour period. The results are evaluated based on key performance indicators like
total cost, COy emissions, user satisfaction (measured through unmet demand or
dissatisfaction metrics).

While the general structure of the simulation remains consistent, the specific
parameter values such as arrival distributions, power limits, or weights may differ
between models to better reflect their individual assumptions and design goals.
To manage this, a modular simulation framework was implemented in Python,
allowing flexible configuration and easy switching. The chapter is organized in which
each section looks at a single model, explaining its numerical analysis, simulation
results, and parameter choices. The key results and insights are compiled in a final
comparison and discussion.
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4.1 Power Allocation Model Results

This section presents the simulation environment and results for the Power Alloca-
tion Model, based on the implementation of the optimization problem discussed in
Chapter 3. Evaluating the model’s capacity to allocate power efficiently, control
charging expenses, and minimize customer dissatisfaction under actual charging
situations is the purpose.

Simulation Setup

We simulate a typical day of electric vehicle charging over a 24 hour horizon, which
is discretized into 288 time steps of 5 minutes each (§ = 5 minutes). The scenario
involves a fleet of N = 100 electric vehicles, representing a charging station of an
appropriate size, like a commercial lot or workplace.

To reflect realistic user behavior, each EV’s arrival time a; is generated using
a Beta distribution Beta(a = 5.52, 5 = 12), scaled to the 24 hour window. This
produces a natural concentration of arrivals around 7:00 AM similar to what one
might observe in morning commute scenarios. Departure times d; are drawn from
a normal distribution centered at 6 hours after arrival, with a standard deviation
of 1 hour, ensuring that most vehicles remain parked for a typical workday.

The energy demand L; of each vehicle is defined as a fraction of its theoretical
maximum, based on its parking duration. Specifically, L; = w; - L;, where w; is
randomly drawn from a uniform distribution between 0 and 1, and L= p(d; — a;)
represents the maximum energy that could be delivered to EV 7 during its stay.
The maximum charging rate per vehicle is set to p = 22 kW, and the charging
station has a constant total power capacity of C; = 1130 kW available at each time
step.

The electricity price profile m; used in the simulations is based on actual data
from the Italian energy market. We used hourly averages collected over 10 years
(2015-2024), then interpolated and resampled them to match the 5 minute resolution
of our simulation.

To incorporate user satisfaction, we assign a dissatisfaction penalty v = 0.157
€/kWh. This parameter encourages a fair balance between price and user satisfac-
tion while guaranteeing that the optimizer is not entirely focused on reducing costs
at the risk of overcharging vehicles.
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Results and Discussion

Our simulations show the Power Allocation Model functions well in practical
situations. The optimizer automatically shifts charging to less expensive hours,
saving users money without asking them to make any adjustments. By finding a
balance between energy consumption and the actual availability of vehicles, it also
makes the allocation more realistic than with a naive approach. Another important
aspect of the model is how close it was to grid limits, which guarantees that the
system won’t be overloaded during times of high demand. Together, these actions
show that the Power Allocation Model can successfully find a balance between
affordability, usefulness, and grid stability.

a
Availability
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R

Figure 4.1: EV Availability Matrix — sorted by arrival time.

The availability matrix of the 100 EVs is shown in Figure 4.1, with the presence
of vehicles in each time slot shown in darker (red) areas. There is a certain pattern:
the majority of cars arrive early in the morning, filling the parking spots, and then
slowly leave in the late afternoon. This is similar to how employees usually charge
their cars at work, plugging them in at the beginning of the day and unplugging
them at the end of their shift. Because it creates unexpected availability peaks
that the model must control, this type of pattern is significant. There is a strong
competitor for charging resources in the middle of the day when the lot is almost
full. On the other hand, as cars depart in the evening and at night, demand falls
rapidly. Since these dynamics have a direct impact on charging scheduling and
the optimizer’s ability to maintain a balance between cost reduction and user
satisfaction, it is essential to capture them.
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Number of EVs in parking over time

Number of EV in parking

Figure 4.2: Number of EVs parked over time.

The number of electric cars in the parking lot changes during the day, shown
in Figure 4.2. As cars arrive in the morning, the curve rises rapidly. It levels off
around midday, when most of the fleet is parked, and then it gradually decreases
as cars depart in the evening. Because cars are typically plugged in during working
hours and unplugged before drivers leave for home, this produces a typical daily
charging cycle that simulates workplace or campus settings.

The management of charging is directly affected by this pattern. The demand
for charging rapidly increases as the lot fills up in the morning, putting pressure
on the system to allocate power effectively. Since most cars are already connected
during the midday peak, the optimizer can move loads to less expensive hours
or times when the grid isn’t under as much demand. There are fewer scheduling
opportunities in the evening when cars disconnect, making any missing demand
obvious. Since it affects the timing and the total amount of power that can be
distributed, it is crucial to know this daily cycle.
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Figure 4.3: Electricity Price Profile (Resampled from Historical Data).

The electricity price profile used in the simulation is shown in Figure 4.3. It
features two main peaks: a smaller one in the morning and a more pronounced
spike in the late afternoon, consistent with typical residential and commercial load
patterns in the Italian energy market.

Covariance Matrix of Hourly Electricity Prices (2015-2024)
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Figure 4.4: Hourly Covariance of Electricity Prices (2015-2024).

To capture how prices vary over time, Figure 4.4 shows the covariance matrix
of hourly electricity prices based on 10 years of data. A covariance matrix is a
compact way of describing how different variables move together. While evaluating
different possible outcomes through scenario-based modeling or stochastic sampling,
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this information is helpful.In our case, however, we relied on the nominal price
profile for the simulations.

Total Power Allocated per Time Step

—— Optimal
FIFS

1000

Total Power Allocated

S

Figure 4.5: Total Power Allocated over Time — Optimal vs. FIFS.

It is clear in Figure 4.5 how the optimal model differs from the basic First-In-
First-Served (FIFS) method. The optimal plan stops charging initially and then
shifts the majority of charging to the late morning and early afternoon, when
electricity is less expensive. By doing so, it profits on the price plateau, maintains
cost reductions, and keeps the grid from experiencing too much stress at the wrong
times.

In contrast, FIFS does not take into account price changes or grid conditions;
instead, it charges cars as soon as they arrive. It means that energy is used less
effectively, frequently during more costly hours, which raises the final cost. This
side-by-side comparison shows why optimization is important: the optimal model
listens to external signals and makes smarter choices that balance cost and system
stability rather than adopting a simple "plug-and-charge" approach.
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Figure 4.6: Mean Charging Cost per EV — Optimal vs. FIFS.

The average charging cost per EV is plotted in Figure 4.6, which makes this cost
advantage more obvious. For almost all EVs, the best approach always results in
lower or comparable costs, particularly during peak hours, while FIFS experiences
more fluctuation and fluctuations.

The findings show that the Power Allocation Model efficiently meets user
requirements while cutting expenses. It is significantly more efficient than the
heuristic algorithm due to its sensitivity to price variation and its fairness adjustment
(via ). The total cost of electricity over the simulation horizon is one of the primary
performance indicators. The Power Allocation Model generated a cost of 550.751
€ by strategically allocating charging across less expensive time slots. The First In
First Served (FIFS) policy, on the other hand, led to a higher cost of 575,048 €
because it charges on arrival regardless of the price incurred.

The comparison illustrates the benefit of using price information in the opti-
mization. Despite being used as the standard for uncontrolled systems, FIFS’s
leads to ineffective energy distribution, especially during peak hours.
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4.2 Emission CO,; Model Results

Simulation Setup

With a 24-hour horizon split into 144 time steps of 10 minutes each (0 = 10
minutes), the simulation simulates an average day of EV charging. A total of
N = 300 electric cars are modeled. p = 22 kW is the fixed charging rate per EV.
C; = N - p gives the station’s total power capacity, which means it can support all
connected EVs at once. To balance cost and emissions in the objective function, a
trade-off coefficient A = 9 is added.

The EVs are divided into two groups (morning and afternoon), each of which is
modeled using a Beta distribution in order to produce realistic arrival and departure
patterns. Arrivals peak in the morning at :00AM andinthea fternoonat : 00 PM.
Accordingly, the beta distribution is scaled:

Q; ~ LT : Beta<05mor/after7 12”

with:
1+ hmor/after . (6 - 2)
Q'mor /after — 1

- hmor/after

where hyor = 7/24 and hug = 17/24.
Departure times d; are computed as:

d; = min(a; + 7,7)
where 7 is drawn from a normal distribution, depending on morning or afternoon

behavior: Toer ~ N (7,42) and 7. ~ N(3,1%) (in hours).
Each EV’s energy demand is computed as:

Li=p2,2)-p-(di — a)
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Results and Discussion
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Figure 4.7: Number of EVs in parking over time

The number of EVs in the parking lot varies during the day, as seen in Figure 4.7.
The pattern matches with a two-peak arrival model, with a first large wave of
arrivals occurring in the morning as people arrive for work, followed by a second,
smaller peak in the late afternoon when more cars arrive. The curve then gradually
drops as cars begin to leave, and by the end of the day, the lot is nearly empty
once more. Because it directly influences the charging demand, this daily routine
is significant. The system must manage a high volume of cars arriving quickly
during peak hours, which impacts the way charging is allocated. There is greater
flexibility to move loads into periods with lower prices or to balance out grid stress
during the slower hours. Since charging demand is never distributed evenly over
the day, it is essential to know about these availability fluctuations in order to test
how well the model fits reality.

During the day, Figure 4.8 displays the dynamic behavior of CO, and electricity
prices. The two curves show common daily patterns of consumption, with varying
heights at midday and late afternoon. Electricity costs rise during times of higher
demand, while CO, prices vary according to the grid’s generation mix, increasing
when fossil fuels are used most and decreasing when renewables are easier to access.

The optimizer makes charging decisions based on these profiles. The model
can postpone or move charging to more cost-effective and environmentally friendly
hours by identifying when expenses or emissions increase. In actuality, this includes
being sure that cars get the energy they require while avoiding times when emissions
are high or electricity costs are high. The model is able to reach a balance between
environmental responsibility and cost savings because of this dynamic adaptation.
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Electricity vs CO: Price Over Time
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Power allocation between the baseline First In First Served (FIFS) method and
the optimal emissions aware model is compared in Figure 4.9. The most efficient
plan option avoids early morning peaks and delays charging until times when
emissions and costs are lower. The FIFS approach, on the other hand, ignores
emission trends and begins charging as soon as the user arrives.

For evaluating the trade off between charging cost and CO4 emission changes,Figure 4.10
illustrates how these factors change as the trade off coefficient A increases. When
A is small, the model focuses mainly on keeping costs low, which results in higher
emissions. As A grows, the model starts to prioritize reducing emissions, and we
can clearly see CO, output drop. However, this comes at the expense of higher
charging costs.
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Charging Cost & COz Emissions vs y
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Figure 4.10: Trade-off between Charging Cost and CO, Emissions as A varies

Another significant meaning is shown by the curves’ shape. Giving emissions
more weight initially results in significant reductions with only a small cost increase.
However, the emission reductions decrease as A increases, and the additional cost
continues to rise. In other words, there are decreasing benefits, meaning that
reducing emissions further becomes significantly costly after a certain point. It
emphasizes the importance of balance. Decision makers can select the A value that
best fits their objectives based on whether reducing emissions or saving money is
the top priority.

However, when we find a balance between cost and environmental impact, the
COy Model shows how EV charging can be handled more effectively. In contrast
to the common First In First Served (FIFS) approach, which only charges cars
as they arrive, this model takes into account external influences such as emission
levels and electricity prices. It is therefore a good fit for strategies that are focused
on sustainability because it more efficiently schedules charging, lowering costs and
emissions. Cost and emissions are combined into a single goal in the emissions
aware case. The model looks for a compromise that takes into account rather
than treating them independently.Here our outcomes shows how well this strategy
works. The optimized model’s total charging cost was 1508.059 €, while the FIFS
strategy’s cost was 1569.445 €. This highlights the Emission CO, Model’s strength.
It indicates that when optimization is used, charging can be both cost-effective and
environmentally beneficial. Techniques like these will become more crucial as EV
adoption rises in order for building a charging system that is both economical and
in line with lowering carbon emissions
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4.3 Cohort Model Results

Simulation Setup

The Cohort Model is analyzed over a 24-hour period, split into 144 time steps
of 10 minutes each. Here our goal is instead of following each EV individually,
the vehicles are grouped into n = 10 energy classes based on their remaining
charge, ranging from class 0 (fully charged) to class 10 (empty). The model greatly
simplifies the management of large fleets of EVs by making charging decisions for
groups rather than individuals.

In order to simulate a standard charging facility with reliable infrastructure,
each charging point delivers a constant power of Py = 22 kW, and the total power
available at each time step is fixed at P(t) = 3300 kW.

Figure 4.11 shows that vehicle arrivals follow a realistic, time dependent Poisson
process A(t), which indicates two main daily charging peaks: one in the evening
(around 5 PM) for residential use and one in the morning (around 6 AM) for
workplace charging. A Poisson distribution with mean A(¢) is used to determine
the number of new EVs at each time step. considering that no EV arrives fully
charged, these arrivals are then allocated in fixed, increasing amounts among the
non-zero demand classes.

The probability that a vehicle is assigned to class 7 is given by:

i+1
Yia+1)

Then, the number of arrivals in class ¢ at time ¢ is computed as:

a;(t) =z - A-(t) +0.5], (t) ~ Poisson(A(t))

20=0, 2z = fort=1,...,n

Departures are modeled with a straightforward rule, vehicles that are closer to
being fully charged (in the lower demand classes) have a higher chance of leaving.
The probability that a vehicle in class ¢ departs is given by:

_n—i—l—z’

, fori=0,...,n
n+2

0%}

Historical Italian market data (January 2023-March 2024) is used to generate
the electricity price vector m;. A multivariate Gaussian distribution is used to
model the price in order to simplify stochastic simulations in the future. But we
use its average profile for this experiment.

We use a dissatisfaction vector § = (0,1, ..., 1), meaning that mostly all classes
except the fully charged class between cost minimization and fair charging. By
setting the weight of dissatisfaction to v = 1.3, the system prevents from neglecting
users with high energy demands while still trying to reduce the overall cost.
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Figure 4.11: Time-varying arrival rate A(t) of EVs (arrivals/hour)

EVs’ Poisson arrival rate is shown in Figure 4.11. The curve identifies two main
activity waves. The first is an important increase in the morning, which is caused
by cars arriving at public charging stations or places to work early in the day.
Early evening is when the second, even more obvious peak happens, signifying an
increase in residential or after-work charging as people return home.

These dynamics indicate what is frequently seen in actual urban charging
environments, so they are not just theoretical. Demand fluctuates over the day
based on traffic patterns, and households plugging in their electric vehicles (EVs)
simultaneously with other high consumption appliances in the evening creates
an additional challenge to the grid. It is crucial to include this behavior in the
model because it enables us to evaluate how different charging methods function in
real-world scenarios where demand is fluctuating rather than distributed equally
throughout the day.

Results and Discussion

The testing environment for the cohort based smart charging model tries to model
real world market signals and realistic vehicle behavior. This means that the model
is not static but rather responds to outside variables such as the arrival of EVs
during the day and the changes in electricity prices over time. To determine how
well the optimizer can adapt to these shifting inputs, it needs to find a balance
between efficiency (ensuring that overall energy and cost use remain optimal)
and fairness (ensuring that no group of vehicles get unreasonable choice). These
dynamics can be seen in the following figures, which show how the model modifies
charging choices based on user behavior and grid signals.
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Figure 4.12: Total number of EVs parked over time.

We can observe the total number of EVs present in the system at each time
step in Figure 4.12 . The parking occupancy naturally follows the arrival profile,
with peaks in the morning and evening and a dip in the afternoon. This occupancy
trend directly impacts the demand pressure on the charging infrastructure.
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Figure 4.13: Charging schedule (top: C;(t)) and vehicle states (bottom: X;(¢))
across classes.

A detailed look at the cohort level dynamics is provided in Figure 4.13 :

o The distribution of charging across demand classes is shown in the top plot.
The attention of our model is the efficiency that can be observed in a more
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reasonable charging of higher classes (vehicles with higher energy needs),
especially during times of low prices.

o The evolution of vehicle states appear in the bottom plot. As time goes on,
EVs transition from classes with higher demand to those with lower demand,
showing how energy is delivered gradually and how cars depart after being
fully charged.
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Figure 4.14: Power allocation comparison between the optimal cohort model and
the FIFS baseline.

2000

1500

Power allocated in kW

0

100

Finally,Figure 4.14 compared the cohort optimizer’s overall power allocation
with the more basic First-In-First-Served (FIFS) method. Vehicles are charged
immediately after arrival in FIFS, regardless of grid conditions or electricity prices.
In contrast, the cohort model avoids costly price peaks by moving charging timing
at a time, therefore taking better choices. This leads to a much smoother and more
cost effective power profile, one that aligns better with the valleys in the electricity
price curve.

The numbers clearly show the benefit of this strategy, the optimal cohort solution
reached a total cost of 3856.108 €, whereas the baseline FIFS method ended up at
4611.79 €. This difference highlights just how effective class based approach can
be in smart charging. By responding to both price signals and class dynamics, the
Cohort Model proves it can scale to large groups of EVs while keeping the system
efficient.
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4.4 Comparison and Discussion

This section summarizes and compares the performance of the three optimization
models Power Allocation, Emission COs, and Cohort against the First In First
Served (FIFS) baseline, based on the results observed in the simulation studies.

The FIFS is a naive baseline that is not sensitive to system load, price, or
emissions. EVs are just charged in the order that they arrive, which results in
wasteful power consumption and increased expenses,

The Power Allocation Model effectively reduces electricity expenses by
smartly moving charging to off peak hours. Real cost savings can be achieved by its
dynamic response to changing electricity prices. But because of its clear trade-off
between cost and user satisfaction, this model sometimes leaves a small percentage
of EVs partially undercharged, particularly during price peaks. A dissatisfaction
penalty v is introduced to improve fairness.

By integrating environmental factors, the Emission CO; Model expands on
the cost-based formulation. By optimizing for cost and emissions, it decreases
charging activity even when prices are low during times of high CO intensity. The
environmental benefit exceeds the trade-off, even though this may occasionally result
in somewhat higher energy costs than the only cost-minimizing model. However,
the model objective benefit showed in our simulation, as it improved over FIFS in
both cost and CO, awareness.

Large scale implementations are especially well-suited for the Cohort Model.
Scheduling is made easier and scalability is improved by classifying EVs according
to demand. It makes sure that vehicles with greater demand are given priority
earlier in the day and effectively handles class changes.

Summary of Insights:

o Power Allocation Model: Best for cost driven settings with moderate compu-
tational effort. Sensitive to v tuning.

o Emission CO, Model: 1deal when sustainability goals are prioritized alongside
cost.

o Cohort Model: Most scalable and efficient for large deployments; delivers
strong performance under uncertainty and population level dynamics.

These results illustrate that optimization, when properly formulated, can provide
substantial benefits in cost savings, emission reduction, and operational fairness.
The choice of model depends on the scale of the system, computational resources,
and policy goals.
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Chapter 5
Digital Twin panel

5.1 Introduction

To maintain sustainable and efficient operations, real time monitoring and future
behavior prediction tools must be developed due to the complexity of EV charging
systems. We created a digital version of the smart charging models described in
Chapter 3 in order to satisfy this demand. This digital twin serves as a simulation
of the real system, allowing users to change parameters and see how the models
respond in different situations.

The capabilities, architecture, and implementation of the Python based digital
twin system which includes a specially created graphical control panel for real-time
scenario exploration—are presented in this chapter.

5.2 System Architecture
The digital twin is structured into modular components:

o Model Core: Integrates the three optimization models: Power Allocation,
Emission CO,, and Cohort with an interface.

o Parameter Input Engine: Allows users to select values such as number of
EVs, time resolution, price type, and penalty coefficients.

e Scenario Engine: Supports both historical data and stochastic price profile
via Monte Carlo simulations.

e Visualization Panel: Displays charging behavior, power allocation, occu-
pancy, cost, and emissions over time using Matplotlib and Customtkinter.
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Design Choices and Rationale

One of the main goals in developing the digital twin was to make it both user-
friendly and useful for research. For the graphical interface, we decided to use
the Python CustomTkinter library. We considered alternatives such as Dash or
Streamlit, but those are more web-focused and would have required setting up a
server. Since our priority was to keep the tool lightweight and easy to run locally,
CustomTkinter turned out to be the best option. It also works smoothly with
Matplotlib, which we were already using for visualizations, allowing the whole
system to be managed within a single Python workflow.

The system’s modular design makes it much easier to grow and maintain over
time. To enable separate development and testing, the framework’s Model Core,
Input Engine, Scenario Engine, and Visualization Panel are all kept separate.
For instance, updating the scenario generator does not require us to touch the
visualization panel. During development, it was very helpful that we could debug
and refine individual modules before integrating them into a complete system.

How the Components Interact

There is a step-by-step description of the workflow between the modules. Because
of the way the system is set up, every model and its logic is coded in a different
function. Through the control panel created with CustomTkinter, a main script
then connects everything. Following the user’s selection of a model and plots, the
script executes the relevant function and presents the visualizations and outputs.

The user can choose at the outset whether to use scenario based profiles or
historical data for price inputs. The script calls the price generation function first,
chooses the relevant scenario, and then uses that data to run the model if the
scenario option is selected. The workflow remains straightforward but adaptable in
this way: models can be executed separately, and the panel offers a simple means
of interacting with the system and viewing results right away.

Why a Digital Twin Panel and Not Just Scripts?

We now think about why developing a digital twin panel platform was necessary
rather than just employing Python scripts to run the optimization models. Usability
is the main cause. Scripts are useful for researchers with coding experience, but
they are not very useful for operators, policymakers, or students who just want
to test scenarios without working with the code. This issue is resolved by the
digital twin, which offers an interactive environment in which users immediately
see the results in plots and change parameters as needed. This bridges the gap
between theoretical models and practical applications and simplifies significantly
optimization concepts.
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5.3 Interactive Control Panel

Using Python’s CustomTkinter library, we created a unique graphical user interface
to make the digital twin system easier to use. With the GUI, users can:

o Select the optimization model to simulate.
o Choose between historical or scenario based electricity prices.
o Modify simulation parameters such as:

— Time steps (A)

— Number of EVs (N)

— Penalty weight ()

— Number of classes for the cohort model
— Grid and Socket Capacity

o Visualize the results: power allocation, number of EVs, cost per EV, emissions,
and class transitions.

D &v Digital Twin — =) X

—— Electricity Price (€/kWh)

Historical CSV file:
C:/Users/Envy 15/OneDrive/Desk

Browse...

H (hours): E / \
(hours); a0 /, \ // ‘\

/ / \
2 / \ / \

At (minutes): / / \ /
/ \\ //
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/ \. e \
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Model: Power Allocation
cost: 588.5008013156486

Figure 5.1: Python GUI control panel of the EV Digital Twin input parameters
(left) and real time simulation result (right).

The GUI created for the EV Digital Twin is shown in Figure 5.1. Users can
modify the model type, time step, fleet size, grid capacity, and penalty factors in
the left panel. The dynamic output, such as the electricity price curve over the
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simulation horizon, is displayed on the right panel. This configuration facilitates
scenario testing and allows for the visualization of model behavior in various
scenarios.

The results panel automatically updates when the parameters are changed and
the simulation is rerun, and the interface has a modular design.

Output Visualizations and Feedback

The developed Digital Twin’s ability to visually represent each smart charging
model’s behavior under different input conditions is one of its main advantages.
Through dynamic plots, the system offers real time visual feedback after simulation
parameters are set, and a model and pricing mode are chosen.

Depending on its goal, each model generates different results.

Power Allocation

\\\\\\\\\\\\\\\\\\\\\

Figure 5.2: EV parking occupancy pattern in Power Allocation model scenario.

The interface in the Power Allocation Model displays how charging loads
are moved to less expensive hours in order to reduce electricity expenses. The
optimized power profile effectively avoids price peaks, as shown in Figure 5.1, while
the more basic First-In-First-Served (FIFS) approach is unable to adjust and results
in a higher total cost. Additionally, Figure 5.2 shows how parking occupancy varies
over time, highlight times of high demand and the way the system responds to
cars coming and going. This view is particularly useful for testing how charging
behavior is affected by different v values or time resolutions.
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Figure 5.3: Power Allocation model with At = 10 minutes and v = 0.2. The
optimizer strongly prioritizes cost minimization, leaving some user demand unmet.
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Figure 5.4: Power Allocation model with At = 5 minutes and v = 0.2. Finer
resolution provides smoother allocation decisions, though cost remains the main
driver.
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Figure 5.5: Power Allocation model with N = 200 and v = 0.3. A slightly higher
dissatisfaction weight shifts energy earlier to improve user comfort.

The Power Allocation Model’s response to changes in the dissatisfaction weight
~ and the time resolution At is shown in these figures.

The optimizer mainly focuses on cost reduction when  is set low (Figures 5.3
and 5.4). This results in a significant shift in charging toward the most economical
hours, but not all user demands are satisfied. Here, the trade-off becomes clear:
while the system maintains low costs, service quality is negatively impacted.

We can compare At = 10 minutes (Figure 5.3) with At = 5 minutes (Figure 5.4)
to examine the impact of time resolution. The allocation profile appears smoother
and more accurately reflects charging behavior with smaller time steps. In practice,
this means shorter time intervals give the system more flexibility to follow price
changes closely, though this comes at the cost of higher computational effort.

The model responds by scheduling more charging earlier in the day to decrease
dissatisfaction when both the fleet size and ~ are increased (Figure 5.5). The effect
of v = 0.3 is evident: the optimizer balances price and user comfort by allocating a
certain amount of the demand earlier rather than waiting only for low priced hours.
Small changes in v have a greater impact due to the larger number of electric
vehicles (N = 200), which also increases overall effects.

The optimizer better distributes charging when the grid capacity is limited
to 1000 kW (Figure 5.6), but it is unable to completely match demand peaks.
Consequently, in comparison to situations with greater capacity, certain vehicles
suffer from greater deficits.

The model becomes more flexible when the grid capacity is increased to 1500
kW (Figure 5.7). In order to minimize deficits and enhance service quality, the
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Figure 5.7: Power Allocation model with grid capacity set to 1500 kW.

allocation carefully tracks vehicle arrivals and electricity prices.

All things considered, these results indicate how heavily the parameters selected
affect the Power Allocation Model’s behavior. The balance between cost reduction
and user satisfaction is determined by the dissatisfaction weight v; low values
motivate the optimizer to reduce costs, while higher values encourage earlier
charging to prevent demand from remaining ignored. The time step At is also
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important because, although it requires more computation, smaller intervals enable
more precise and seamless charging adjustments. Because the effects of allocation
strategies are increased at all levels in larger systems, fleet size makes these trade-offs
even more clear.

Grid capacity is an additional crucial factor. The model is forced to schedule
more precisely when capacity is limited, and some demand might go unused. Higher
capacity allows charging to be distributed more uniformly, remaining closer to
user demands and price signals. When combined, these experiments demonstrate
how the Power Allocation Model’s parameters have a significant impact on how
charging strategies are adjusted to actual conditions.

Emission CO,
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Figure 5.8: Emission CO,; model: optimal vs. FIFS strategy.

For the Emission CO, Model, the control panel shows a clear comparison
between the optimized charging profile and the baseline FIFS strategy. As shown
in Figure 5.8, the optimized approach concentrates power usage during cleaner grid
periods, reducing both emissions and costs. The blue bars represent the optimized
schedule, while the red line shows the less efficient FIFS charging pattern.

Figures 5.9 and 5.10 show the response of the Emission CO5 model to increasing
fleet size and dissatisfaction weight. The optimizer begins shifting charging earlier
in the day with N = 200 and v = 5, ensuring that more vehicles depart with
enough charge while remaining true to emission signals. This effect becomes clearer
when the fleet reaches N = 500 and v = 10. This is because the model allocates a
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Figure 5.9: Emission CO5 model with N = 200 vehicles and v = 5. The optimizer
shifts charging away from high-emission hours, balancing cost and sustainability.
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Figure 5.10: Emission CO5 model with N = 500 vehicles and v = 10. Scaling up
the fleet and dissatisfaction weight highlights the trade-off between user comfort
and emission reduction.

significant amount of power earlier and keeps a higher baseline to meet the increased
demand. In the meantime, it continues adjusting to cleaner grid periods. These
findings show the model’s scalability ,environmental impact and user satisfaction.
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Figure 5.11: Emission CO, model with N = 800 vehicles, v = 9, and CO4 cost of
0.006 €/g.

In this experiment, a higher dissatisfaction weight (v = 9) was combined with
an increase in the fleet size (N = 800) and the CO; cost parameter (0.006 €/g).
The optimal model shifts charging aggressively into periods with lower emissions,
even if prices are not minimal, proving how environmental objectives dominate
when the carbon cost is high. These settings amplify the trade-offs.

The FIFS baseline (red line), in contrast, ignores emission signals and immedi-
ately saturates capacity by simply following vehicle arrivals. Costs and emissions
increase as a result. The comparison shows how the optimizer prioritizes greener
charging schedules when the CO, penalty is increased, particularly at scale where
unmanaged strategies like FIF'S become more inefficient.
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Cohort Model

The Cohort Model panels show how cars move between charging classes over
time. The number of EVs actively charging in each class (C') shows up in the top
plot of Figure 5.12, while the total number of EVs per class (X) is indicated in the
bottom plot. This dual view provides important insights into fleet dynamics by
highlighting the way the system handles departures, allocations, and transitions.
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Figure 5.12: Behavior of matrices C' and X in the Cohort Model.

We evaluated various degrees of class discretization in order to test the model
further. While a larger number (n = 50) captures finer detail in energy states and
transitions, a smaller number (n = 10) groups vehicles more coarsely.

The impact of class resolution is shown in Figures 5.13 and 5.14. The dynamics
are easier to calculate and visualize when n = 10 is used, but the grouping obscures
some of the fleet’s variation in energy requirements. Although it requires more
computing power, the model gives an accurate picture of how cars transition between
classes over time when n = 50. Behavior is also influenced by the dissatisfaction
parameter v; higher values encourage the system to charge vehicles earlier, lowering
the possibility of unmet demand.
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Figure 5.13: Cohort model with n = 10 classes and v = 0.9. Coarser discretization
simplifies the system but reduces resolution of charging dynamics.
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Figure 5.14: Cohort model with n = 50 classes and v = 1.3. Finer discretization
captures smoother transitions and allows more precise scheduling.
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Figure 5.15: Cohort model with v = 1 and total power limit P = 2000 kW. The
optimal allocation (blue) adapts to price signals within capacity limits, while FIFS
(red) quickly saturates the grid.

Figures 5.15 The cohort model is evaluated with a dissatisfaction weight v =1
and a total grid capacity of 2000 kW. The findings shows how, while staying to the
power limit, the ideal approach (blue bars) properly distributes charging over time.
The FIFS benchmark, on the other hand, quickly overloads the system, resulting
in inefficient allocation and increased expenses.

This experiment shows that the cohort model can manage user demand and cost
while managing limited capacity. While the capacity limit emphasizes the system’s
ability to prevent overloads, something FIFS cannot do, the tunable parameter
guarantees that charging stays fair across vehicle classes.

Overall, these findings support the flexibility of the cohort approach, which
can be adjusted for detail (more classes, smoother dynamics) or simplicity (fewer
classes, faster computation), depending on the purpose of the application.
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5.4 Scenario Exploration

The ability to perform what if experiments is one of the digital twin’s greatest
benefits. In other words, without putting the real charging system, we can instantly
observe how the models respond by adjusting system parameters on the go. Because
of this, the twin becomes a secure environment where we can experiment, observe
how the system functions, and better comprehend the relationships at play.

You can try a variety of scenarios. For instance, the model begins to prioritize
users who want their batteries fully charged before departing if we increase the
dissatisfaction parameter . This makes it simple to understand how the model
achieves a balance between user comfort and other objectives, such as reducing
emissions or expenses.
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Figure 5.16: Power allocation under a scenario-based electricity price compared
with historical data. The model adapts by shifting charging toward cheaper periods.

Changing from historical to scenario-based electricity prices is another scenario.
A multivariate Gaussian (normal) distribution is used to generate these prices; the
covariance matrix captures the variability and correlation between time periods,
while the mean vector represents the historical average. In this way, the digital
twin can test how flexible the charging strategies are and simulate realistic changes
in market conditions. This situation is shown in Figure 5.16, where charging is
moved toward less expensive times while maintaining operational bounds, and
power allocation varies based on the price profile.
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Figure 5.17: Scenario-based Power Allocation with v = 0.5. The optimizer
balances cost reduction with user satisfaction, scheduling charging earlier compared
to pure cost-focused runs.

A different perspective is included in Figure 5.17, where the dissatisfaction
weight is set to v = 0.5, representing a balanced compromise between ensuring that
users depart with sufficient energy and minimizing costs. With this configuration,
the optimizer considers driver comfort in addition to price reduction. In order to
prevent undercharging of cars with limited parking times, charging is therefore
planned to start earlier.

This behavior reacts to the price signals of the scenario-based input while
lowering the risk of dissatisfaction in comparison to purely cost driven runs (low 7).
Without compromising user confidence in the system, the schedule dynamically
adjusts to changes in the market. This balance is crucial for real-world applications
because, if the model solely focused on obtaining the lowest prices, users might
frequently depart without the energy they require, which could damage trust in
smart charging systems. However, the model would ignore price fluctuations and
lose a large portion of the economic benefit if it placed too much of emphasis on
comfort (very high 7).

This example therefore shows how parameter tuning can create flexible strategies
that adapt to both external conditions (electricity markets, emission sign) and
internal requirements (user satisfaction, fleet needs).
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Figure 5.18: Cohort model with n = 15 to test the behavior and adaptability of
the model.
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Figure 5.19: Emission COy model under scenario-based prices with COs cost set
to 0.006 €/g. Electricity (blue) and CO, (orange) prices vary dynamically across
the day.

Instead of using historical data, the emission model in this experiment uses a
scenario based price profile. Realistic fluctuations and correlations are introduced
by the multivariate Gaussian distribution used to generate the price of electricity
and CO,. These scenario profiles, as opposed to historical curves, show potential
market futures as compared to fixed historical conditions.
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Even if electricity is slightly more expensive, the optimizer will strongly prioritize
charging during times when the orange line (COy price) is lower because the COq
cost parameter is set to a high value (0.006 €/g). As a result, the model becomes
more emission-driven and less cost-driven, demonstrating how scenario generation
can be used to stress test strategies under future or uncertain price conditions.

The final result indicates how the system adjusts by linking charging with the
cleaner windows in the scenario when environmental penalties are high. Unmanaged
strategies, such as FIFS, on the other hand, would not respond to these signals,
which would result in increased expenses and emissions.

The digital twin is a valuable tool for researchers, system operators, and pol-
icymakers due to these types of scenario exploration. Stakeholders can better
understand trade-offs and make more informed decisions regarding the management
and design of smart charging systems by seeing how the model adjusts to various
situations.

5.5 Implementation Overview

A modular and extensible architecture has been employed in the Python devel-
opment of the digital twin for smart charging of electric vehicles. The system is
divided into discrete parts, each of which is in charge of carrying out a particular
simulation workflow task. The platform is easier to test, maintain, and add new
features to in the future thanks to this design.

CVXPY’s ECOS solver, which offers stable results for linear and convex opti-
mization tasks across all three models, is used to solve all optimization problems.

The main script runs a graphical user interface (GUI) created with CustomTk-
inter and manages the simulation process. This interface allows users to choose a
model, set parameters like the time step, the number of vehicles, or the dissatis-
faction weight v, and then see the results in interactive plots. A separate module
handles visualization, making sure that results are transparent and comparable
across various contexts.

The system also has an experimental AI component that can produce plot
explanations. This feature is intended to make it easier for users to understand
results, particularly when those results are complex. This is explained in more
detail in the following subsection since it is a crucial component of improving the
digital twin’s usability.

To sum up, the modular architecture guarantees that every part can be created
and tested separately while still integrating perfectly into the system as a whole.
Because of this, the digital twin can be used as a flexible research tool as well as a
useful platform for testing by engineers, operators, and policymakers.
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AT Integration

In addition to its optimization and visualization features, the system also includes
an experimental Al component, implemented through the OpenAl API. This
feature is designed to generate automatic explanations of simulation results. By
turning complex graphs into simple narratives, the Al helps bridge the gap between
technical outputs and user understanding.

For example, the Al can explain how charging demand peaks align with electricity
price fluctuations, or why certain vehicle classes dominate the charging process at
specific times. Figure 5.20 shows an example for the COy model, where the Al
highlights key patterns in the charging schedule and links them to changes in grid
emissions and costs.
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Figure 5.20: Al-generated explanation accompanying a COy price plot. The
system provides automatic insights into observed patterns and their meaning for
charging optimization.

A second example is shown in Figure 5.21, where the Al interprets the outputs of
the cohort model. The top plot (C') shows the number of vehicles actively charging
in each class, while the bottom plot (X) shows how many vehicles are in each
state overall. The AI highlights important relationships, such as how grid capacity
affects simultaneous charging or how high-demand classes dominate the schedule.
For system operators, these insights can support better grid management, while
fleet managers can use them to improve planning and reduce user dissatisfaction.

To ensure meaningful outputs, the Al assistant only works when a plot is already
selected. If a user requests Al feedback without choosing a plot, the system displays
an alert message reminding them to first select the relevant visualization. This
safeguard prevents empty or misleading explanations and keeps the interaction
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Figure 5.21: Al-generated explanation for the Cohort Model, interpreting the
relationship between charging states (X) and active charging classes (C).

intuitive.

Although still in an experimental stage, the Al module shows the potential of
combining digital twins with intelligent assistants. It lowers the entry barrier for
non technical users, turning the simulator into not only a tool for research and
analysis but also a platform for communication and decision support.
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5.6 Structure and Usage

The digital twin has been uploaded to a Git repository to make it easier to share
and reproduce. The code is organized into clear modules so that each part of the
system can be maintained separately, while the graphical interface in GUI_TK. py
connects everything together into a working application.

File and Folder Overview
These are the primary files and folders:
e GUI_TK.py: The system’s entry point. It imports every model function and
shows the CustomTkinter interface. The user can choose a model, configure

parameters, and launch the simulation after running this file. When required,
the user can activates the Al explanation module inside the panel.

o defdeficit_e.py: Includes the Power Allocation model’s implementation.
o defC02.py:The Emission CO, optimization model is defined in this file.
o defCohort.py: The Cohort model solver is included in this section.

o defFIFS.py / defFIFS_co2.py: offer the standard First-In-First-Served tac-
tics for comparison.

o defA.py, deflam.py, defA_Cohort.py: Control input generation and ar-
rival procedures for various models.

o defprice.py: Creates historical and scenario-based electricity price profiles.
The cohort version of the FIFS benchmark is implemented by

o cohort_fifs.py: The cohort version of the FIFS benchmark is implemented
here.

Executable Packaging with Nuitka

During the development of the digital twin, one of the goals was to create a
standalone .exe file that could be easily shared with others. This not only makes
the tool more user—friendly (no need to install Python or extra packages), but it
also prevents direct access to the source code. To achieve this, several adjustments
were necessary.
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What is Nuitka and Why We Use It

Nuitka is a Python compiler that translates Python code into C++ and then
compiles it into native machine code.The result is a standalone executable that runs
without having Python installed on the target machine. Compared to interpreted
Python, Nuitka offers faster execution and better compatibility with libraries such
as cvxpy, scipy, and numpy, which are essential in this project.

What We Achieved

By applying these changes, the final digital twin executable reached the following
milestones:

« A distributable .exe that works on any Windows machine.
« Stable integration of Al features inside the packaged executable.

With these improvements, the application is now robust, portable, and ready
for distribution.

5.7 Summary

The digital twin of this work is not just a simulator. It works as an interactive
platform that lets users test out different smart charging methods and observe the
outcomes instantly. A clear comparison of cost, environmental impact, and user
satisfaction is made possible by the integration of the power allocation, emission
COg, and cohort based models into a single framework. Users can quickly adjust
parameters and see how the system responds with the graphical control panel.

The charts make it clear where optimization works and where traditional strate-
gies, such as First In, First Served, don’t work. The tool tests a variety of scenarios,
including changes in electricity prices, fleet size adjustments, or stronger com-
fort rules, to provide researchers, policymakers, and grid operators with accurate,
practical guidance on system performance.

One of the main characteristics of the system is the experimental integration
of AI. It can generate straightforward plot and trend explanations, making the
results easier for non technical users to understand. Along with complex graphs,
the system provides bright insights. This feature shows that digital twins can be
used to analyze and more easily explain data. Future improvements to the platform
could include adding real time data, connecting to charging hardware, or adding
more objectives like multi station control and battery health. The foundation
for future systems that are feasible and ready for real world deployment may be
strengthened by these additions to the digital twin.
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Chapter 6
Conclusion

Electric vehicles (EVs) are becoming more common around the world. They bring
clear benefits, such as cutting emissions and reducing the use of fossil fuels, but
they also create new challenges for energy systems. One of the main challenges
is how to design charging strategies that keep costs low, satisfy user needs, and
support environmental goals. This thesis worked on this challenge by developing
optimization models and building an interactive digital twin system. The digital
twin makes it possible to study charging behavior, test different scenarios, and
visualize the results in a clear and accessible way.

We started by creating three complementary optimization models, each looking
at the problem from a different angle. The first, the power allocation model, aimed
to reduce charging costs by shifting loads away from expensive periods. The second,
the emission aware model, added COs intensity into the decision making, showing
how charging could be shifted to cleaner grid periods to reduce environmental
impact. The third, the cohort model, grouped vehicles by energy demand and
tracked their transitions over time. This gave better insight into how large fleets
can be managed in a scalable way.

All models passed testing under realistic vehicle arrival, time resolution, and
power supply conditions after being mathematically described and implemented
in Python using CVXPY. The results of numerous tests demonstrated that
optimization-based techniques performed significantly better than the simple First
In First Served (FIFS) approach. They produced better outcomes in terms of user
satisfaction, cost savings, emissions reduction, and change adaptability.

This thesis presented a digital twin platform with a graphical control panel to
facilitate the use of these models. Users can adjust parameters like the number
of electric vehicles or the electricity price mode using this interface, and they can
observe the system’s response right away. Comparing models and strategies is
made simpler with side-by-side visualizations, and scenario testing offers additional
flexibility. For instance, we tested robustness using stochastic prices based on
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Gaussian distributions, and we demonstrated how the system responds to increased
demand by increasing the number of EVs. Because of these characteristics, the
simulator becomes more than just a technical tool; it becomes a useful environment
for education, experimentation, and decision-making.

Main contributions of this work include:

o Development of three optimization models (cost, emission, cohort) imple-
mented consistently in Python.

o Creation of an interactive and ready-to-use digital twin platform with a
CustomTkinter based graphical interface.

e Real time adjustment of parameters and visualization of results such as power
allocation, occupancy, cost, and emissions.

e Scenario exploration using both historical and stochastic electricity prices.

o Comparison with the First-In-First-Served baseline, showing the clear advan-
tages of our optimization models.

o Experimental use of Al to automatically explain plots and simulation results.

Another contribution is the AI feature. Despite its early stages, it suggests
the potential for collaboration between Al and digital twins. People without a
technical background can use the tool more easily because it simplifies complicated
plots into brief, understandable explanations. As a result, the simulator serves as a
communication tool for a larger audience in addition to being a research tool.

Future research can go in a number of ways. The system would become more
useful if it included real-time data from electricity markets and charging stations.
Studying urban charging systems would be helpful by expanding the platform to
larger networks, such as city-scale simulations. The model might be more realistic
if it included more specific elements like vehicle to grid (V2G) features, and battery
aging. For actual deployment, decisions involving several charging hubs would
also need to be coordinated. Last but not least, enhancing the Al assistant might
improve the digital twin’s decision support capabilities by helping planners and
operators in real time trade off understanding.

In conclusion, this thesis develops the foundation for effective, sustainable, and
user focused charging solutions by fusing optimization, a digital twin platform, and
an experimental Al assistant. In this way, the work supports the global transition
to cleaner and smarter energy systems while also contributing to research.

67



Bibliography

IEA. Global EV Qutlook 2024. https://www.iea.org/reports/global-ev-
outlook-2024. 2024.

Ellen Kennedy, Hannah Lindsell, and Nick Pesta. «Electric Vehicles Are on
the Road to Mass Adoption». In: Rocky Mountain Institute Insight (2025).
Updated July 29, 2025. URL: https://rmi.org/electric-vehicles-are-
on-the-road-to-mass-adoption/.

S. P. M. Deb and A.-S. M. Deb. «Smart Charging: A Comprehensive Review.
In: IEEE Access (2022).

Andreas Schuller, Bernhard Dietz, Michael Flamme, and Ludwig Karg.
«Charging strategies for electric vehicles in smart grids». In: Energy Procedia
78 (2015), pp. 207-212. pOI: 10.1016/j.egypro.2015.11.621.

Yijia Cao, Shengwei Tang, Canbing Li, Peng Zhang, Yi Tan, and Zhikun
Zhang. « An Optimized EV Charging Model Considering TOU Price and SOC
Curvey. In: IEEE Xplore (2011).

W. Sun, F. Neumann, and Harrison. « Robust scheduling of electric vehicle
charging in LV distribution networks under uncertainty». In: IEEE Transac-
tions on Industry Applications (2020).

A. Di Giorgio, A. Di Maria, F. Liberati, V. Suraci, and F. Delli Priscoli.
«Lagrangian Decomposition based Multi Agent Model Predictive Control for
Electric Vehicles Charging integrating Real Time Pricing». In: arXiv (2016).

S. Pirouzi. «Two alternative robust optimization models for flexible power
management of electric vehicles in distribution networks». In: Energy (2017).

T. D. Tran, N.-D. Nguyen, H. T. M. Chu, L. El Ghaoui, L. Ambrosino, and G.
Calafiore. «A Robust Optimization Model for Cost-Efficient and Fast Electric
Vehicle Charging with L2-norm Uncertainty». In: (2025).

Y. Cao, L. Huang, Y. Li, K. Jermsittiparsert, H. Ahmadi-Nezamabad, and
S. Nojavan. «Optimal scheduling of electric vehicles aggregator under market
price uncertainty using robust optimization technique». In: International
Journal of Electrical Power & Energy Systems (2020).

68


https://www.iea.org/reports/global-ev-outlook-2024
https://www.iea.org/reports/global-ev-outlook-2024
https://rmi.org/electric-vehicles-are-on-the-road-to-mass-adoption/
https://rmi.org/electric-vehicles-are-on-the-road-to-mass-adoption/
https://doi.org/10.1016/j.egypro.2015.11.621

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]

[22]
[23]

[24]

A. Soroudi and A. Keane. «Robust optimization based EV charging». In:
(2014).

X. Xu, W. Hu, W. Liu, and Y. Du. «Robust energy management for an
on-grid hybrid hydrogen refueling and battery swapping station based on
renewable energyy. In: (2022).

B. Chen, X. C. Liu, R. Wei, J. Chen, and Z. Chen. «An agent-based modeling
approach for public charging demand estimation and charging station location
optimization at urban scale». In: (submited).

J.-U. Yu, K.-S. Cho, S.-W. Park, and S.-Y. Son. «Digital Twin System
Framework and Implementation for Grid-Integrated Electric Vehicles». In: ().

L. Ambrosino, K. M. Nguyen, M. B. Vu, R. Zorgati, L. El Ghaoui, and G. C.
Calafiore. « A Multi-Criterion Approach to Smart EV Charging with CO,
Emissions and Cost Minimization». In: Under Submission (2025).

G. C. Calafiore and L. Ambrosino. «A Cohort-Based Optimization Model for
Electric Vehicles Charging». In: (2025). URL: https://doi.org/10.1016/j.
ifacol.2025.08.130.

EMBER. European wholesale electricity price data. https://ember-climate.
org/data-catalogue/european-wholesale-electricity-price-data/.
Accessed: 2025-08-11.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2004. URL: https://web.stanford.edu/~boyd/cvxbook/.

Sébastien Bubeck. «Convex Optimization: Algorithms and Complexity». In:
Foundations and Trends in Machine Learning 8.3-4 (2015), pp. 231-358.

Aharon Ben-Tal and Arkadi Nemirovski. Lectures on Modern Convex Opti-
mization: Analysis, Algorithms, and Engineering Applications. SIAM, 2001.

Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. « AdWords
and Generalized Online Matching». In: Proceedings of the 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS). 2007.

Javad Lavaei and Steven H. Low. «Zero Duality Gap in Optimal Power Flow
Problemy. In: IEEE Transactions on Power Systems (2012).

James B. Rawlings and David Q. Mayne. Model Predictive Control: Theory
and Design. Nob Hill Publishing, 20009.

Mung Chiang, Chih-Wei Tan, Daniel P. Palomar, Daniel O’Neill, and David
Julian. «Geometric Programming for Communication Systems». In: Founda-
tions and Trends in Communications and Information Theory 2 (2005).

69


https://doi.org/10.1016/j.ifacol.2025.08.130
https://doi.org/10.1016/j.ifacol.2025.08.130
https://ember-climate.org/data-catalogue/european-wholesale-electricity-price-data/
https://ember-climate.org/data-catalogue/european-wholesale-electricity-price-data/
https://web.stanford.edu/~boyd/cvxbook/

BIBLIOGRAPHY

Michael Lustig, David Donoho, and John M. Pauly. «Sparse MRI: The
Application of Compressed Sensing for Rapid MR Imaging». In: Magnetic
Resonance in Medicine (2007).

R. T. Marler and J. S. Arora. «Survey of multi-objective optimization methods
for engineeringy. In: Structural and Multidisciplinary Optimization 26.6 (2004),
pp. 369-395.

Himanshu Jain and Kalyanmoy Deb. «Evolutionary multi-objective optimiza-
tion: A review of the state of the art». In: IEEE Transactions on Evolutionary
Computation 22.3 (2017), pp. 408-432.

Gi-Hyoug Lee and Jiyong Kim. «Uncertainty analysis for electric vehicle
charging demand and its impact on power distribution networks». In: Energies
12.3 (2019), p. 453.

Joel Goh and Melvyn Sim. «Distributionally robust optimization: A review».
In: Operations Research 58.4-part-1 (2010), pp. 902-917.

John R. Birge and Francois Louveaux. Introduction to Stochastic Programming.
Springer, 2011.

Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczynski. Lectures
on Stochastic Programming: Modeling and Theory. STAM, 2009.

Yuri Ermoliev and Roger Wets. «Stochastic Programming: Survey of Appli-
cationsy. In: Annals of Operations Research (1988).

Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust Opti-
mization. Princeton University Press, 2009.

Nicholas Metropolis and Stanislaw Ulam. «The Monte Carlo method». In:
Journal of the American Statistical Association 44.247 (1949), pp. 335-341.

GeeksforGeeks. What is Monte Carlo Simulation? Accessed: 2025-08-01. 2022.
URL: https://wuw.geeksforgeeks.org/artificial-intelligence/what-
is-monte-carlo-simulation/.

Tito Homem-de-Mello and Giizin Bayraksan. «Monte Carlo Sampling-Based
Methods for Stochastic Optimization». In: Surveys in Operations Research
and Management Science (2014).

Jiaxin Zhang. «Modern Monte Carlo Methods for Efficient Uncertainty Quan-

tification and Propagation: A Survey». In: arXiw preprint arXiv:2011.00680
(2020).

Paul Glasserman. Monte Carlo Methods in Financial Engineering. Springer,
2003.

70


https://www.geeksforgeeks.org/artificial-intelligence/what-is-monte-carlo-simulation/
https://www.geeksforgeeks.org/artificial-intelligence/what-is-monte-carlo-simulation/

BIBLIOGRAPHY

[39]

[40]

Ramin Manouchehrynia, Salwani Abdullah, and Sarbani Singh Karam Singh.
«Fatigue reliability assessment of an automobile coil spring under random
strain loads using probabilistic technique». In: Metals (2020).

Shabbir Ahmed and Alexander Shapiro. «Sampling-based methods for stochas-
tic optimization: A comprehensive survey». In: Mathematics of Operations
Research (2020).

G. C. Calafiore, L. Ambrosino, K. M. Nguyen, R. Zorgati, D. Nguyen-Ngoc,
and L. El Ghaoui. «Robust Power Scheduling for Smart Charging of Electric
Vehiclesy. In: Proceedings of the 23rd European Control Conference (ECC2025)
(2025).

71



	List of Figures
	Introduction
	Electric Vehicles and Smart Charging
	Literature Review
	Scope of This Thesis

	Preliminaries
	Optimization Models
	Convex Optimization
	Multi Objective Optimization
	Sources of Uncertainty
	Stochastic Programming
	Robust Optimization
	Monte Carlo Simulations
	What is a heuristic?

	Models
	Power allocation Model
	Emission CO2 Model
	Cohort Model

	Simulations and Results
	Power Allocation Model Results
	Emission CO2 Model Results
	Cohort Model Results
	Comparison and Discussion

	Digital Twin panel
	Introduction
	System Architecture
	Interactive Control Panel
	Scenario Exploration
	Implementation Overview
	Structure and Usage
	Summary

	Conclusion
	Bibliography

