POLITECNICO DI TORINO

MASTER’s Degree in Mechatronic Engineering

1tV Politecnico
i 22 il Torino
Nt

MASTER’s Degree Thesis

A Comparative Evaluation of LIDAR Odometry
Algorithms in Urban and Unstructured Scenarios

Supervisors Candidate
Prof. M. CHIABERGE Federica ZETTI
M. MARTINI

M. AMBROSIO

G. FRANCHINI

G. AUDRITO

October 2025






Abstract

LiDAR-based odometry is a cornerstone of autonomous navigation, robotic per-
ception, and mapping, offering precise pose estimation even when cameras or GPS
become unreliable. However, most existing algorithms are designed and benchmarked
for structured, urban-like environments, leaving their robustness in unstructured
settings—such as vineyards, forests, and off-road terrains—insufficiently validated.
This gap poses a critical limitation for deploying autonomous systems in agricultural
robotics and other non-urban applications where localization failures can compromise

safety and mission success.

Four state-of-the-art LIDAR odometry algorithms—KISS-ICP, Genz-ICP, MOLA-
LO, and SiMpLe—were evaluated on two contrasting datasets. The KITTI benchmark
represented structured urban roads, while a custom vineyard dataset collected by the
Interdepartmental Center PiC4SER, captured the irregular and repetitive geometry
of agricultural fields. Each algorithm was first tested using its default configurations
and then re-optimized for both environments. Performance was assessed through
standard KITTI odometry metrics (absolute and relative pose error) and qualitative

trajectory comparisons against GPS ground truth.

On the KITTI sequences, all methods demonstrated competitive accuracy, with
KISS-ICP and MOLA-LO exhibiting slightly lower drift. In the vineyard dataset,
performance differences became pronounced: Genz-ICP, which relies heavily on planar
and edge features, experienced substantial accuracy degradation; SiMpLe achieved
high computational efficiency but suffered frequent misalignments in repetitive row
patterns; and KISS-ICP maintained stable estimates through its adaptive correspon-
dence strategy.The findings reveal that benchmarking exclusively on urban data
overestimates odometry robustness in unstructured environments. Hybrid strategies
combining feature-rich techniques with adaptive correspondence models—such as
those employed by MOLA-LO—show strong potential for enhancing reliability in
agricultural robotics and similar contexts. Expanding benchmarking datasets to
include diverse, real-world scenarios is essential for advancing LiDAR odometry

toward dependable deployment beyond controlled urban settings.

II






Table of Contents

1 Introduction 1
1.1 Background and motivation . . . . ... ... ... ... ... .. 1
1.2 Current State of LIDAR odometry algorithms . . . . . . . ... ... 2
1.3 Thesis objective . . . . . . . ..o 3
1.4 Organization of the thesis . . . . . .. ... ... ... ... ..... 4

2 Literature review 5
2.1 Coordinate systems . . . . . . . . .. Lo 5

2.1.1 Coordinate systems and frames of reference . . . . .. .. .. )
2.1.2 Coordinate transformation . . ... ... ... ... ..... 7
2.1.2.1 Euler Angles . . . . . ... ... L. 7

2122 AxisAngles. . . . . . ... ... 8

2.1.2.3 Quaternions . . .. .. .. ... ... 8

2.1.2.4 Rotation Matrices . . . . .. . ... ... ... ... 9

2.2 Mobile robot localization. . . . . ... ... ... ... ... ..... 9
2.2.1 Taxonomy of localization problems . . . . . ... ... .. .. 11
2.2.2 Probabilistic Map-based Localization . . . . . . ... .. ... 12
2.2.2.1 Markov localization . . . ... ... ... ...... 13

2.2.2.2 Kalman filter localization . . . . . . ... ... ... 14

2.2.2.3 Extended Kalman filter localization . . . . .. . .. 15

2.3 Sensors for mobile robots . . . . .. ... Lo 17
2.3.1 Sensors Classifications . . . . . .. ... ... ... ...... 18
2.3.1.1  Global Navigation Satellite System (GNSS) . . . . . 19

2.3.1.2 Wheel Odometry . . . . . .. ... ... .. ..... 19

2.3.1.3 Inertial Navigation System (INS). . . . ... . ... 20

2.3.1.4 Acoustic Systems. . . . . . ... oL 20

2.3.1.5 Visual Systems . . . .. ... 21

3 LiDAR sensor 22

3.1 Basic of LIDAR Imaging . . . . . . . ... ... ... ... ...... 22

3.1.1 Measurement Principles . . . . . ... ... ... ... ... 23
3.1.1.1 Pulsed Approach . . . . . . ... ... ... ..... 23
3.1.1.2  AMCW Approach . . . ... ... ... .. ..... 24
3.1.1.3 FMCW Approach . . ... ... ... ... ... ... 25

v



TABLE OF CONTENTS

3.1.2 Imaging Strategies . . . . . . .. .. .. ... ... ...
3.1.2.1  Scanners . . . . .. ...
3.1.2.2  Detector Arrays . . . ... .. ... ... ...

3.2 Sources and Detectors for LiDAR Imaging Systems . . . . . . .

321 Sources . . ...

3.2.2 Photodetectors . . . . . .. ... oL

ROS: Robot Operating System

4.1 Overview . . . . . .. e
4.2 Graph Concepts . . . . . . . . ..
4.3 ROS Useful Tools . . . . . . ... .. ... .. ...,

State-of-the-art of LIDAR-Only Odometry algorithms

5.1 Introduction . . . . . . . . . . .. . ...
5.2 LIDAR Odometry . . .. ... ... .. .. .. .. .......
5.2.1 Foundations of Scan Registration . . . . . . . ... ...
5.2.2 Distance measure in Registration Residual . . . . . . . .
5.2.3 Determining Correspondences . . . . . . . .. ... ...
5.3 Direct matching approach . . . . .. . ... ... ... ... ..
5.3.1 KISS-ICP . . ... ... .. . . ...
5.3.2 GenZ-ICP . . ... ... .. . . ... .
53.3 MOLA-LO .. ... ... ... ... ... ...
5.3.4 SiMpLe . . . .. ...

Benchmark of the Selected Algorithms

6.1 KITTI Odometry Dataset . . . . . .. ... ... ... .....
6.2 Vineyard Dataset . . . . . . . .. .. ... o oL,
6.3 Test Environment Setup . . . . . . ... ...
6.3.1 Hardware and Software Components . . . . . . .. ...
6.3.2 Installation and Compilation of the Algorithms . . . . .
6.4 Experimental Procedure . . . . . . .. ... ... L.
6.4.1 KISS-ICP . .. .. ... . . .
6.42 GENZICP .. .. ... .. .. .. .. .. .. .. ...
6.4.3 MOLA-LO . ... .. ... .. .. .. .. ... ...,
6.4.4 SiMpLe . . .. ...
6.5 Evaluation Metrics . . . . . . . . ..o
6.5.1 Odometry Error Analysis . . . .. .. ... .. .....
6.5.2 Computational Efficiency . . .. ... ... ... ....

6.5.3 Robustness Evaluation . . . . . . . . .. ... ... ...

Experimental Results

7.1 Parameter Selection . . . . ... ... ... .
7.1.1 Parameter tuning strategy . . . . . . ... ... ... ..

7.1.2  Algorithm-Specific Configurations . . . ... ... ...

e

32
32
33
35

36
36
37
37
38
39
39
40
42
43
45

48
48
50
52
52
53
54
54
95
56
57
58
58
58
59



TABLE OF CONTENTS

7121 KISS-ICP . . . . ... 61

7122 GENZICP ... ... ... .. ... ... ... 62

7.1.23 MOLA-LO ... ... ... .. ... ... .. ... 63

7.1.24 SiMpLe . . . . . . 64

7.2 Results on the KITTI Odometry Dataset . . . .. ... ... .... 65
7.2.1 Quantitative Results . . . . ... ... ... ... ....... 65
7.2.1.1 Development Kit Analysis . . ... ... ... ... 65

7212 EvoTools. . ...................... 68

7.2.2 Qualitative Results . . . . . ... ... ... ... ....... 70
7.2.3 Critical Analysis . . . .. . ... ... o 74

7.2.3.1 Interpreting Quantitative Trends and Error Dynamics 75
7.2.3.2 Outlier Detection and Catastrophic Failure Modes . 76

7.2.3.3  Algorithmic Response to Feature Density . . . . . . 76

7.2.3.4 Summary and Implications . . . . . ... ... ... 77

7.3 Results on the Vineyard Dataset . . . ... ... ... ........ 78
7.3.1 Quantitative Results . . . . . . .. .. ... ... 78
7.3.1.1  Overview of Evaluation Metrics and Methodology . 78

7.3.1.2  Absolute Pose Error (APE) . . . . . ... ... ... 79

7.3.1.3 Relative Pose Error (RPE) . . ... ... ... ... 80

7.3.1.4  Straight Rows vs Turning Maneuvers Analysis . .. 84

7.3.2 Qualitative Results . . . . . ... ... ... ... ....... 87
7.3.3 Critical Analysis . . . .. .. ... ... . 89
7.3.3.1 Interpretation of Quantitative Trends . . . . . . . . 89

7.3.3.2 Interpretation of Error Dynamics Over Time . . .. 92

7.3.3.3 Data Analysis and Outlier Detection . . . . . . . .. 93

7.3.3.4 Segmented Error Analysis: Straight vs. Curved Paths 94

7.3.3.5  Summary of Results and Implications . . . . . . .. 95

7.4 Comparative Discussion . . . . . .. ... ... ... .. 97
7.4.1 Cross-dataset comparison . . . . ... ... ... ....... 97
7.4.2 Robustness and efficiency trade-offs . . . . . ... ... ... 98

8 Conclusion and Future Work 100
8.1 Summary of the Results . . . . . . ... ... ... .. ... ..., 100
8.2 Limitations and Future Work . . . . . ... .. ... ... ... .. 101
Bibliography 103

VI



List of Figures

2.1

2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

3.1
3.2

3.3

4.1
4.2
4.3
4.4

5.1

5.2

6.1

6.2

A coordinate system indicating the direction of the coordinate axes

and rotation around them [7]. . . . .. ... ... oL 6
Relationship between frames, followed by the REP-105 convention. [9] 6
Euler Angles [10]. . . . . . . . . ... L 7
Axis-angle representation of orientation [10]. . . . . . . . . ... ... 8
Markov localization algorithm [1].. . . . . ... ... ... ... ... 13
Kalman filter algorithm [12] . . . . . . ... ... ... ... .. .. 16
The Extended Kalman filter algorithm [13] . . .. .. ... ... .. 17
Classification of sensors used in mobile robotics applications [14]. . . 19
Optical encoder [15]. . . . . . . .. ... ... L 20
Pulsed time-of-flight (TOF) measurement principle [16]. . . . . . . . 23
TOF phase-measurement principle used in amplitude modulation of a
continous wave (AMCW) sensor [16]. . . . . . . ... ... ... ... 25
Frequency modulation and detection in the frequency-modulated
continuous-wave (FMCW) method: main parameters involved [16]. . 26
ROSlogo [20] . . . . . . . o o 33
Nodes communication example in ROS 2 [22]. . . . . ... ... ... 34
Example of rqt_graph [23]. . . . . . ... ... 35
Example of RViz window [24]. . . . . . . ... ... ... ... 35
Typical distance metrics used in ICP. (a) Point-to-point distance is a
straight-forward as the Euclidean distance between two points. (b) and
(¢) The point-to-higher-level feature (e.g. line or plane) is calculated
as the shortest distance to the reconstructed line or plane using the
target points [25]. . . . ... L. L 38
The overarching summary of LiDAR-only odometry. Direct, Feature,
and Deep represent Direct, Feature-based, and Deep Learning-based
matching each [2]. . . . . .. ... Lo oo 40

Example images from the KITTI Odometry dataset (sequence 00,
frame 000066). Left: grayscale version. Right: original color image. [28] 49
Aerial view of the trajectory of the vehicle in the vineyard, indicating

the start (red) and end (green) points. . . . . . . ... ... ... .. 50

VII



LIST OF FIGURES

6.3

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

Screenshot from the onboard camera, showing the dense vegetation

and uneven terrain of the vineyard environment. . . .. ... .. ..

Average translational error (%) as a function of segment length for
KITTI sequences 00-10. The four subfigures show the results for the
individual algorithms: (a) KISS-ICP, (b) GENZ-ICP, (¢) MOLA-LO,
and (d) SiMpLe. . . . . ...
Average rotational error (deg/m) as a function of segment length for
KITTT sequences 00-10. The four sub-figures show the results for the
individual algorithms: (a) KISS-ICP, (b) GENZ-ICP, (c) MOLA-LO,
and (d) SiMpLe. . . . . ...
Representative grayscale frames from the KITTI Odometry Dataset.

(a) Sequence 01 with sparse landmarks and open road; (b) Sequence

06 in a structured urban environment with multiple reference features.

Trajectory comparison for Sequence 01 (sparse-road scenario). The
four subfigures show the paths reconstructed by (a) KISS-ICP, (b)
GENZ-ICP, (c) MOLA-LO, and (d) SiMpLe, overlaid with the ground-
truth trajectory from the KITTI Odometry Dataset. . . . . . .. ..
Trajectory comparison for Sequence 06 (urban scenario). The four
subfigures display the paths reconstructed by (a) KISS-ICP, (b) GENZ-
ICP, (c) MOLA-LO, and (d) SiMpLe, overlaid with the ground-truth
trajectory from the KITTI Odometry Dataset. . . . ... ... ...
Evolution of estimated and ground-truth x, y, and z coordinates over
frame index for sequence 01, shown for all four algorithms. Highlights
axis-specific deviations in the sparse-road scenario. . . . .. . .. ..
Evolution of estimated and ground-truth x, y, and z coordinates over
frame index for sequence 06, shown for all four algorithms. Highlights
axis-specific deviations in the sparse-road scenario. . . . .. ... ..
Detailed Qualitative Analysis of Best- and Worst-Case Lidar Odometry
Performance on the KITTI Odometry Dataset. . . . . .. ... ...

Translational Absolute Pose Error of the four algorithms, shown with

(a) temporal evolution, (b) histogram, (c) box plot, and (d) violin plot.

Rotational Absolute Pose Error of the four algorithms, shown with

(a) temporal evolution, (b) histogram, (c) box plot, and (d) violin plot.

Translational Relative Pose Error of the four algorithms, shown with

(a) temporal evolution, (b) histogram, (c) box plot, and (d) violin plot.

Rotational Relative Pose Error of the four algorithms, shown with (a)
temporal evolution, (b) histogram, (c) box plot, and (d) violin plot.

Estimated trajectory of MOLA-LO. Top: 2D top-down projection;
Down: 3D trajectory overlaid on the ground truth. . . . ... .. ..
Estimated trajectory of KISS-ICP. Top: 2D top-down projection;

Down: 3D trajectory overlaid on the ground truth. . . . .. ... ..

VIII

51

68

69

69

72

73

74

74

74

81

82

83

83

88

89



LIST OF FIGURES

7.15 Estimated trajectory of GENZ-ICP. Top: 2D top-down projection;

Down: 3D trajectory overlaid on the ground truth. . . . ... .. .. 90
7.16 Estimated trajectory of SiMpLe. Top: 2D top-down projection; Down:

3D trajectory overlaid on the ground truth. . . ... ... ... ... 91
7.17 Temporal evolution of the Translational and Rotational Components

of the trajectory estimated by MOLA-LO. . . . . ... ... ... .. 92
7.18 Temporal evolution of the Translational and Rotational Components

of the trajectory estimated by KISS. . . . . .. ... ... ... ... 93
7.19 Temporal evolution of the Translational and Rotational Components

of the trajectory estimated by GENZ. . . .. ... ... ... .... 94
7.20 Temporal evolution of the Translational and Rotational Components

of the trajectory estimated by SiMpLe. . . . . . . . .. .. .. .. .. 95

7.21 Overlay of all four algorithm trajectories with the ground truth in the
Vineyard, showing overall alignment and localized deviations. . . . . 96
7.22 Overlay of all four algorithms showing (a) translational components
(x, y, z) over time and (b) rotational components (roll, pitch, yaw)

over time, highlighting deviations relative to the ground truth. . .. 96

X



List of Tables

3.1
3.2

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

Summary of Measurement Principles [16] . . . . ... ... ... ..

Summary of the main features of sources for LIDAR sensors [16]

Average Translational Error (%) of KISS-ICP, GENZ-ICP, MOLA-LO,
SiMpLe, on sequences 00-10. In bold characters are reported the
lowest value of the error per sequence. . . . .. ... .. ... ....
Overall average translational error (%) of the evaluated algorithms on
KITTI sequences 00-10, compared with the reference average values
reported in their original publications. . . . . . ... ... ... ...
Average rotational error (deg/m) of the four evaluated algorithms
across KITTI sequences 00-10. The lowest error value for each se-
quence among the four methods is highlighted in bold. . . . . . ..
Overall average rotational error (deg/m) of the evaluated algorithms
on KITTI sequences 00-10, compared with the reference average values
reported in their original publications. . . . . . . . ... .. ... ..
Absolute Pose Error w.r.t translational part (m) for sequence 01
(sparse-road scenario). Reported statistics: mean, median, RMSE,
standard deviation, minimum, and maximum. Lowest values are
highlighted in bold. . . . . . .. ... ... ... ... ... ...
Absolute Pose Error w.r.t translational part (m) for sequence 06
(urban scenario). Reported statistics: mean, median, RMSE, standard
deviation, minimum, and maximum. Lowest values are highlighted in
bold. . . . . . . .
Absolute Pose Error w.r.t rotational part (deg) for sequence 01 (sparse-
road scenario). Reported statistics: mean, median, RMSE, standard
deviation, minimum, and maximum. Lowest values are highlighted in
bold. . . . . . ..
Absolute Pose Error w.r.t rotational part (deg) for sequence 06 (ur-
ban scenario). Reported statistics: mean, median, RMSE, standard
deviation, minimum, and maximum. Lowest values are highlighted in
bold. . . . . . ..

30

66

66

67

67

70

70

70



LIST OF TABLES

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

7.17

7.18

Relative Pose Error w.r.t translational part (m) for sequence 01 (sparse-
road scenario). Reported statistics: mean, median, RMSE, standard
deviation, minimum, and maximum. Lowest values are highlighted in
bold. . . . . ..
Relative Pose Error w.r.t translational part (m) for sequence 06 (ur-
ban scenario). Reported statistics: mean, median, RMSE, standard
deviation, minimum, and maximum. Lowest values are highlighted in
bold. . . . . ..
Relative Pose Error w.r.t rotational part (deg) for sequence 01 (sparse-
road scenario). Reported statistics: mean, median, RMSE, standard
deviation, minimum, and maximum. Lowest values are highlighted in
bold. . . . . ..
Relative Pose Error w.r.t rotational part (deg) for sequence 06 (urban
scenario). Reported statistics: mean, median, RMSE, standard de-
viation, minimum, and maximum. Lowest values are highlighted in
bold. . . . . ..
Absolute Pose Error (APE) statistics for the translational component
of the error (in meters) on the vineyard dataset. The table reports
mean, median, minimum, maximum, standard deviation, and RMSE

for each of the four evaluated algorithms. Lowest values are highlighted

Absolute Pose Error (APE) statistics for the rotational component of
the error (in degrees) on the vineyard dataset. The table reports mean,

median, minimum, maximum, standard deviation, and RMSE for each

of the four evaluated algorithms. Lowest values are highlighted in bold.

Relative Pose Error (RPE) statistics for the translational component of
the error (in meters) on the vineyard dataset. The table reports mean,

median, minimum, maximum, standard deviation, and RMSE for each

of the four evaluated algorithms. Lowest values are highlighted in bold.

Relative Pose Error (RPE) statistics for the rotational component of
the error (in degrees) on the vineyard dataset. The table reports mean,

median, minimum, maximum, standard deviation, and RMSE for each

of the four evaluated algorithms. Lowest values are highlighted in bold.

Aggregated translational Absolute Pose Error (APE) for straight row
and turning maneuver segments, with alternating row shading to
differentiate segment types. Columns report mean, median, minimum,
maximum, standard deviation, and RMSE. . .. ... ... .. ...
Aggregated rotational Absolute Pose Error (APE) for straight row
and turning maneuver segments, with alternating row shading to
differentiate segment types. Columns report mean, median, minimum,

maximum, standard deviation, and RMSE. . .. ... ... ... ..

XI

71

71

71

71

80

80

82

82

85

85



LIST OF TABLES

7.19 Aggregated translational Relative Pose Error (RPE) for straight row
and turning maneuver segments, with alternating row shading to
differentiate segment types. Columns report mean, median, minimum,
maximum, standard deviation, and RMSE. . . ... ... ... ...

7.20 Aggregated rotational Relative Pose Error (RPE) for straight row
and turning maneuver segments, with alternating row shading to
differentiate segment types. Columns report mean, median, minimum,
maximum, standard deviation, and RMSE. . . . ... ... ... ..

7.21 Robustness vs Efficiency trade-offs on mid-range CPU hardware.

XII

86



Acronyms

LiDAR Light Detection And Ranging.
LOAM LiDAR Odometry And Mapping.

Fast-LIO  Fast LiDAR-Inertial Odometry.
NDT Normal Distributions Transform.

LIO-SAM LiDAR-Inertial Odometry via Smoothing And Map-

ping.
ROS Robot Operating System.
IMU Inertial Measurement Unit.
GPS Global Positioning System.
GNSS Global Navigation Satellite System.
INS Inertial Navigation System.
TOF Time-Of-Flight.
SNR Signal-to-Noise Ratio.

AMCW Continuous-Wave Amplitude Modulated.

FMCW Continuous-Wave Frequency Modulated.

ICP Iterative Closest Point.

XIII



Chapter 1

Introduction

1.1 Background and motivation

Overview of robot localization

The main topic of the thesis represents the crucial problem of robot localization,
that is fundamental for autonomous systems in order to achieve goals[l]. Robot
localization can be divided into two subproblem: the determination of robot’s position
and orientation, that combined together is the problem of determining the robot’s
pose. Localization is the foundation for autonomous navigation, launching some

more intricate tasks like obstacle avoidance, path planning and mapping. [1]

In this thesis, this problem will be addressed from two points of view: the problem
of localization will be studied in a very structured environment and in a very chal-
lenging one, in order to study this issue under some major challenges like unsteady
terrain, noisy data coming from the sensor and limited or sparse features of the
environment. These challenges increase the probability of localization drift, i.e. small
localization that accumulates over time. This has been done in order to highlight
how performances of traditional methods become less and less promising in these
latter conditions and to acknowledge the need to improve localization system in order

to be used in the future in a wider range of applications.

LiDAR as a localization sensor
In the experiments and formulation of this thesis, the main sensors used for robot’s
odometry is the LiDAR (Light Detection and Ranging) sensor, which is a largely
used technology in robotics. It generates high-resolution 3D point clouds, providing
precise spatial data even in low-light or challenging environments. The LiDAR sensor
is perfect for this type of double localization problem because of its leading accuracy,
with a precision in the range of centimeters. The biggest dilemma regards the cost
of the LiDAR sensor, because it can be prohibitively expensive in a lot of different
scenario and this can limit their use, highlighting the need to develop more affordable

options to make LiDAR more accessible.



Introduction

1.2 Current State of LIDAR odometry algorithms

Review of existing solutions LiDAR Odometry (LO) is a fundamental component
of modern autonomous navigation systems, dedicated to accurately estimating the
robot’s pose (position and orientation) through the sequential analysis of raw LiDAR
point cloud data [2]. State-of-the-art algorithms primarily rely on scan matching
techniques, such as the Iterative Closest Point (ICP) method, or on feature-based
optimization approaches to effectively track motion. The following review focuses on

recent algorithms notable for their efficiency and robustness:

¢ GenZ-ICP: This algorithm focuses on maximizing pose estimation accuracy,
employing advanced ICP variants. It optimizes the selection and quality
of features (e.g., point-to-point or point-to-plane correspondences) used for

matching, aiming for excellent precision [3].

e KISS-ICP: Designed with the goal of keeping things simple and fast, KISS-ICP
relies on a lean but solid point cloud matching strategy. It performs alignment
operations efficiently without resorting to heavy or complex data structures for
nearest neighbor computation, which makes it especially suitable for real-time

use on systems with limited processing power [4].

e MOLA: MOLA is an architectural framework designed to fuse multiple odom-
etry and sensor sources flexibly. It is distinguished by its robustness and
scalability, often integrating LiDAR odometry with Inertial Measurement, Units
(IMU) and graph-based optimization to maintain accuracy over long distances

and in dynamic environments [5].

e SiMpLe: By using efficient and selective mapping techniques, SIMPLE aims
to maintain high localization precision especially when point clouds are dense,
highlighting the limitations of traditional methods that demand an abundance

of geometric data for effective scan matching [6].

Limitations in real-world applications The accuracy of these latter algorithms
tends to drop when used irregular or poorly structured settings, even if they perform
very well under ideal conditions, like urban areas with many structural features [2].

Specifically:

e Feature Scarcity or Ambiguity: In contexts such as tunnels, dense forests,
or agricultural fields, the lack of distinct geometric features or the presence
of repetitive structures (e.g., straight rows in the vineyard) compromises the
robustness of scan matching methods (like ICP variants), leading to significant

localization drift.

e Noisy Data and Unsteady Terrain: The combined effect of sensor noise and
irregular robot motion over rough terrain (factors not typically present in

urban driving) degrades input data quality. This disproportionately penalizes



Introduction

algorithms that are not explicitly designed for robust noise handling, like
SiMpLe.

In this study, these drawbacks are especially important because the tested envi-
ronments often have few distinctive features and include dynamic elements. Such
conditions make it clear that there is still a gap in current research: the need for
LiDAR odometry methods that remain accurate and dependable even when the data
are noisy or the structure of the scene is weak. Addressing this issue is the main

reason and motivation behind the development of this thesis.

1.3 Thesis objective

The main goal of this thesis is to benchmark the performance of innovative LIDAR
odometry algorithms against the distinct realities of challenging environments. While
the field of robotics has witnessed great success in structured settings, particularly
urban driving, where high-resolution 3D LiDAR sensors are standard, a critical

deployment barrier remains: reliable operation outside these ideal conditions.

The existing body of work confirms that current state-of-the-art algorithms—such
as KISS-ICP, MOLA, and SiMpLe—vacillate when confronted with feature-sparse
settings such as tunnels or agricultural fields [2]. These scenarios introduce unique
operational challenges, like severely limited sensor data, high levels of noise, and

constraints on the computational power of the robot platform itself.

This thesis takes on this gap in robustness as one of its central challenges. My

objective is double:

e Rigorous Performance Assessment: To establish an objective performance
baseline, we will quantitatively evaluate the selected algorithms for accuracy,

robustness, and computational efficiency.

e Real-World Applicability Insight: To determine which odometry methods are
best suited for deployment in service robotics where reliable, low-cost local-
ization is of greatest importance. This includes applications like autonomous
inspection in hazardous areas, where sacrificing slight accuracy for massive

gains in efficiency and robustness is a necessary trade-off.

By testing four different approaches with limited computational resources, this
work aims to understand where current methods fail and what kind of design or
algorithmic changes could make them more reliable. The results are intended to
help guide in future works the creation of LiDAR odometry systems that are more

resilient and robust in unstructured environments.



Introduction

1.4 Organization of the thesis

This thesis is organized into eight chapters, each addressing critical components
necessary to understand, implement, and evaluate LiDAR odometry algorithms.
Chapter 1 introduces the topic, providing background information, an overview of
the current state of LIDAR odometry algorithms, and outlining the specific objectives
of this work.

Chapter 2 presents a literature review covering fundamental concepts in mobile
robot localization. This includes coordinate systems, localization techniques for
mobile robots, and the main types of sensors used in this domain.

Chapter 3 focuses on the LiDAR sensor. It discusses the basic principles of LIDAR
imaging, along with a detailed description of sources and detectors commonly used
in modern LiDAR systems.

Chapter 4 is dedicated to the Robot Operating System (ROS). The chapter pro-
vides an overview of its architecture, graph-based communication model and useful
development tools.

Chapter 5 reviews the state of the art in LiDAR-only odometry algorithms. Tt
introduces two main categories: direct matching approaches and feature-based ap-
proaches.

Chapter 6 presents the experimental evaluation and benchmarking of the four
selected LiDAR odometry algorithms. Initially, performance is tested on open-source
datasets such as KITTI. Subsequently, data collected from the PIC4SeR platform is
used to assess algorithm behavior in real-world scenarios.

Chapter 7 provides a detailed analysis of the results obtained in the previous chapter
from both a quantitative and qualitative perspective. It compares algorithm perfor-
mance in terms of accuracy and computational efficiency, identifying key strengths
and limitations.

Chapter 8 concludes the thesis by summarizing the obtained results and outlining

future research directions.



Chapter 2

Literature review

This chapter introduces the foundational concepts and methodologies that set up the
analysis presented in this thesis. It begins with an overview of basic knowledge on
coordinate systems and transformations in Sec. 2.1. Section 2.2 illustrates the core
concept of localization next to a discussion of different methodological approaches.
Finally, Sec. 2.3 lists the most common sensors used in mobile robotics, with the
exception of the LiDAR sensor, which is detailed in Chapter 3.

2.1 Coordinate systems

2.1.1 Coordinate systems and frames of reference

A prerequisite for any mobile robotics application is the consistent and efficient
representation of the robot’s position and velocity in space [7]. To achieve this, the
concept of coordinate frames was introduced to facilitate the accurate exchange of

geometric information between interfacing systems [8].

The first step in this process is defining spatial conventions, as the initial ar-
rangement of axes can produce two fundamentally incompatible coordinate systems
(left-handed versus right-handed). Every robot’s placement in the real world is
described by its pose (position x,y,z and orientation roll, pitch, yaw) relative to the

three major axes of a Cartesian Coordinate system [7].

Such a coordinate system is shown in Figure 2.1. While the directions and orien-
tations of the coordinate axes are theoretically arbitrary, the right-handed coordinate
system is the dominant convention in the world of robotics, including the Robot

Operating System (ROS), and is thus the convention adopted in my thesis.

The required level of detail—specifically, the choice of origin, the type of coor-
dinate system, and which degrees-of-freedom are tracked—depends entirely on the
specific application. For instance, a mobile robot typically requires its representation
relative to a building or the Earth’s coordinate system, whereas a static manipulator

uses its base as the origin. These local coordinate systems are known as Frames of



Literature review

> X

Figure 2.1: A coordinate system indicating the direction of the coordinate axes
and rotation around them [7].

earth ——— map —— odom —— base_link

Figure 2.2: Relationship between frames, followed by the REP-105 convention. [9]

Reference. Furthermore, depending on the robot’s degrees-of-freedom, it is customary

to ignore any positional or orientational components that remain constant.

Following these definitions, the robot’s pose—the common abbreviation for the
combination of position and orientation—can be uniquely addressed. This description
must always be made relative to a coordinate frame. In typical robotics applications,
the tracking requires multiple coordinate frames, which are usually organized in a
hierarchical tree, starting with the highest-level Inertial Reference Frame (or world
frame). The remaining non-inertial and local frames follow established guidelines,
specifically the REP-105 (Coordinate Frame Conventions) [9], which defines four

principal frames: base_link, odom, map, and earth, as illustrated in Figure 2.2.

This tree architecture allows for the connection of multiple systems within the same
global earth context. The base_link frame is rigidly affixed to the robot body. The
map and odom frames are world-fixed frames whose origins are typically aligned with
the robot’s start position. While the map frame provides the most accurate position
estimate and should be free of long-term drift, it may exhibit discontinuities (jumps).

Conversely, the odom frame drifts over time but is guaranteed to be continuous



Literature review

r—-:} WELW

roll pitch

Figure 2.3: Euler Angles [10].

and is accurate enough for local planning and navigation [9]. Any secondary frames
created by rigidly mounted sensors are typically connected to the base_link frame.
Ideally, this frame tree should mirror the physical connections between all components

involved.

2.1.2 Coordinate transformation

Having established a rigid transformation tree using the adopted conventions, the
next step requires defining the mechanism to translate a point between any two
coordinate frames [8]. To accomplish this, the representation of the pose needs to be
defined together with the mechanism for converting coordinate representations from
a parent frame to a child frame, and vice-versa [7]. This is the purpose of coordinate

transformations [8].

The pose of an object, which may be a robot or another coordinate frame, must
encapsulate both its position and orientation relative to its parent frame [7]. While
position is simply represented by three coordinates representing a pure translation
along the parent frame’s axes, orientation requires more sophisticated and non-trivial

conventions [7].

Translations. Since pose includes both position and orientation relative to the
parent frame [7], the position component is straightforward. Three numbers represent
the translation along each of the three axes [7]. When two coordinate frames are
separated by a pure translational offset, transforming points is achieved simply by

adding or subtracting the three coordinate offsets [10].

2.1.2.1 Euler Angles

Specifying orientation in three dimensions is mathematically more complex than
position [7]. Among several available representations, each with its own trade-offs,
Euler angles are often the most intuitive representation for visualization [7]. Figure

2.3 illustrates this concept. Orientation is expressed as a sequence of three successive



Literature review

o _ —, .——f")f“"““ﬁ .

Figure 2.4: Axis-angle representation of orientation [10].

rotations around the coordinate axes, typically referred to as roll, pitch, and yaw
[7]. A critical consideration when working with Euler angles is that the sequence in
which the rotations are applied fundamentally alters the final result [7]. Furthermore,
it is necessary to define whether rotations are applied relative to the parent frame
or around the axes of the previously rotated frame. Combining these possibilities
yields twenty-four possible conventions [7]. Although intuitive, Euler angles suffer
from mathematical discontinuities (gimbal lock). In specific configurations, small
changes in spatial orientation can cause large, non-smooth jumps in the numerical
representation, making them inconvenient for applications requiring smooth kinematic
updates [7].

2.1.2.2 Axis Angles

An alternative to encoding orientation via three successive Euler angles is to represent
it as a single rotation § around an arbitrary unit vector(ky, ky, k.]7 [7]. This is known

as the axis-angle representation [7]. The geometric idea is illustrated in Figure 2.4.

2.1.2.3 Quaternions

The quaternion is one of the most widely used methods for encoding orientation in
computational robotics [7]. There is a close, direct relationship between quaternions
and the axis-angle representation [7]. If 6 and [k, ky, k)7 describe an orientation in

axis-angle form, the quaternion representation ¢ = (x,y, z,w) is defined as [7]:

x:kxsin§
0

= k. sin —
Y yst
z:kzsin§
0

w = oS —
2

The resulting four-tuple q is referred to as a unit-quaternion because it holds the
property |g| =1 [7]. While quaternions are not geometrically intuitive, their popular-

ity in robotics stems from their computational efficiency and, crucially, their ability



Literature review

to avoid the singularities and discontinuities associated with Euler angles [7].

2.1.2.4 Rotation Matrices

Spatial coordinates are often represented as three-dimensional column vectors: [zyz]T
[7]. This perspective is convenient because various spatial transformations can be
performed using matrix operations [7]. Specifically, any rotation around the origin
can be encoded as a 3x3 rotation matrix (R) [7]. Pre-multiplying the matrix by a

point p performs the desired rotation: p’ = Rp [7].

The three elementary rotation matrices around the x, y, and z axes are [7]:

1 0 0
Ry(¢) = |0 cos(¢) —sin(g)
0 sin(®)  cos(¢)

R, (0) = 0 1 0
| —sin(f) 0 cos(6)

[ cos(d) 0 sin(&)]

cos(¢) —sin(yp) 0
R.(¢) = |sin(¢) cos(¢) 0
0 0 1

The product of these three matrices, R;, Ry, R., can represent any desired orien-
tation [7]. This matrix will be responsible for the transformations from the robot’s
body frame to the world frame within the implementation of this work [7].

cos(1)) cos(0) sin(e)) sin(0)—cos()cos(0) sin())sin(0)cos(0)+cos(p)sin(6)

0
R:Cyz (gb, 0, ¢) = | sin(®) cos(0) sin(y)sin(0)+cos(¢) cos(f) — sin(¢) sin(@) cos(0)—cos(¢)) sin(h)
—sin(0) cos(0) sin(¢) cos(0) cos(¢)

The product of three elementary rotation matrices around the x, y, and z axes can
represent any orientation [7]. For static rotations, the matrices must be multiplied
in the order the rotations are intended to be applied [7]. The main advantage of
rotation matrices is the convenient mechanism they provide for composing rotations
and applying them to points , while the downside is the high redundancy of the

nine-element representation [7].

2.2 Mobile robot localization

Mobile robot localization is the problem of determining the robot’s pose relative to
a given map of the environment. This process is commonly referred to as position
estimation or position tracking [1]. Knowing the robot’s pose is the first fundamental

problem of autonomous navigation, addressing the core question:

"Where am 12"



Literature review

Localization is one of the four essential building blocks of navigation, which include:
perception (interpreting sensor data to extract meaningful information), localization
(determining the robot’s position within the environment), cognition (deciding how
to act to achieve a goal), and motion control (modulating motor outputs to execute
the desired trajectory) [11].

Localization can be framed as a problem of coordinate transformation [1]. Maps
are defined in a global coordinate system, independent of the robot’s current state.
Localization is the act of establishing the correspondence between the map coordi-
nate system and the robot’s local coordinate system [1]. Knowing the robot’s pose,
expressed as x; = (x,,0)” in 2D space or as x; = (z,y, 2, roll, pitch, yaw)” in 3D
space, is sufficient to determine this transformation, provided the pose is expressed

in the same frame as the map [11].

However, a robot’s exact pose cannot be measured directly, which is one of the
main challenges in mobile robot localization [1]. Instead, the pose must be estimated
over time from the data the robot collects. A single sensor reading usually does
not contain enough information, so the system must combine data from multiple
measurements, often using temporal or multi-sensor fusion methods [1]. This problem
arises from the limited precision and incomplete nature of the robot’s sensors and

actuators.

Sensor noise Sensors provide the fundamental input for the perception process,
making the quality of their readings critical [11]. Sensor noise imposes a fundamen-
tal limitation on the consistency of sensor readings, meaning the amount of useful
information available from any single measurement is limited [1]. To counteract this
reduction in information content, robots must integrate multiple readings, often using

temporal or multi-sensor fusion to enhance the overall certainty of the input [1].

Sensor aliasing A second major limitation in mobile robot sensing is sensor
aliasing, which refers to the non-uniqueness of a sensor reading (where multiple
distinct positions yield the same measurement) [1]. This is a common occurrence in
robotics. A classic example is navigating a uniform maze without unique landmarks:
even noise-free sensor data may be insufficient to pinpoint the robot’s position from a
single measurement alone [1]. Consequently, localization techniques must be employed
that base the robot’s position recovery on a series of readings integrated over time,

ensuring sufficient information is collected to resolve the ambiguity [1].

Effector noise Localization challenges are not limited to sensor technologies;
robot effectors are also noisy, introducing uncertainty into the system [1]. A single
movement command executed by a mobile robot can result in several possible
outcomes, even when the initial state is well known [1]. This means that the simple

act of moving tends to increase the robot’s pose uncertainty over time. The primary

10



Literature review

source of this inaccuracy often lies in an incomplete model of the environment,
resulting in discrepancies between the intended motion, the physical motion, and the

robot’s proprioceptive estimates of motion [11].

2.2.1 Taxonomy of localization problems

Not every localization challenge presents the same degree of difficulty. To system-
atically understand the complexity of a specific problem, localization tasks can be
categorized along several dimensions, particularly concerning the nature of the envi-
ronment and the robot’s initial knowledge. This brief taxonomy is primarily derived

from the foundational work in probabilistic robotics [1].

e Local versus Global Localization: Localization problems can be grouped accord-
ing to how much is known about the robot’s initial position when the process

begins:

— Position tracking: assumes that the robot’s starting pose is already
known with reasonable accuracy. The uncertainty is therefore local,
confined to a small region near the true position, and can usually be

represented by a single, unimodal distribution such as a Gaussian.

— Global localization: in this case, the initial pose is unknown. This case
is harder than the first one because the pose uncertainty is unlimited and

the algorithm must consider several different hypotheses.

— Kidnapped robot problem: a special and difficult case of global lo-
calization where, after normal operation, the robot is suddenly moved
to a new and unknown location. The challenge lies in detecting this
major localization failure and quickly re-establishing the correct position
using global methods. Tests involving this situation evaluate how well an

algorithm can recover from unexpected errors.

e Static Versus Dynamic Environments: The persistence of objects within the

environment defines another key dimension of difficulty:

— Static environments: In these settings, the only variable component
(state) is the robot’s pose. All other objects remain permanently fixed in

their location.

— Dynamic environments: These environments contain objects, besides
the robot itself, whose location or configuration changes over time (e.g.,
moving people or vehicles). Localization in dynamic environments is
more complex than in static ones, as the solution must incorporate addi-
tional computational and modeling overhead to accommodate the moving

elements.

o Passive Versus Active Approaches: This distinction describes whether the

localization process can influence how the robot moves:

11



Literature review

— Passive localization: The system only observes what the robot is doing.
The robot’s path is planned by a separate module, and its motion is not

adjusted to improve localization accuracy.

— Active localization: In this kind of problems, the results are statistically
better than passive ones because here the algorithm regulate the robot’s
motion in order to minimize localization error and/or reduce the risk of

entering hazardous areas while poorly localized.

e Single-robot Versus Multi-Robot: The number of agents involved in the local-

ization process:

— Single-robot localization: Data collection and processing are centralized
on a single robot platform, eliminating issues due to communication

between robots.

— Multi-robot localization: with this implementation, one robot’s esti-
mated position (or belief) can influence another’s, as long as their relative
positions are known; this usually involves handling complex communication

links and data fusion between robots.

2.2.2 Probabilistic Map-based Localization

The core strategy for addressing the general robot localization problem involves
continuously combining motion estimates with environmental observations within
a known map [1]. Consider a mobile robot starting its movement from a precisely
known location; it initially tracks its position using odometry (proprioceptive sensors).
However, due to inherent odometry uncertainty, the pose uncertainty grows rapidly
over time. To prevent this uncertainty from becoming unbounded, the robot must
localize itself relative to its environment map using exteroceptive sensor data (e.g.,

LiDAR, vision, ultrasonic sensors) [1].

The information derived from the robot’s odometry and the information provided
by these environmental observations are combined to achieve the best possible pose
estimate with respect to the map. This fusion process is typically separated into a

general two-step update cycle:

o Prediction (Motion Update): Updating the robot’s pose belief based on its

motion (odometry).

o Correction (Measurement Update): Refining the estimated pose using the latest

sensor readings from the environment..

The fundamental difference between probabilistic localization approaches lies
in how the pose uncertainty (or belief state) is represented [1] [11]. This leads to
distinct advantages and disadvantages between methods like Markov Localization
and Kalman Filter Localization: Markov localization allows for localization starting

from any unknown position and can thus recover from ambiguous situations because

12



Literature review

Algorithm Markov_localization(bel(z;—1), us, ¢, m):
for all x; do
bel(xy) = [ p(@ | ug, w—1,m) bel(v4—1) da
bel(z:) = n p(z; | 2, m) bel(x;)
endfor

AN A A SR ATy

return bel(x+)

Figure 2.5: Markov localization algorithm [1].

the robot can track multiple, completely disparate possible poses; on the other hand,
the required memory and computational power can thus limit the precision and the

size of the environment map that can be handled [1] [11].

Conversely, Kalman filter localization tracks the robot from an initially known
position and is inherently both precise and computationally efficient [1] [11]. This
approach is particularly well-suited for continuous world representations [11]. However,
if the robot’s uncertainty becomes too large and thus not truly uni-modal, the Kalman
filter’s assumption of a single Gaussian distribution can fail to capture the multitude

of possible robot positions, potentially leading to localization failure [1] [11].

2.2.2.1 Markov localization

Markov localization tracks the robot’s pose belief state by using an arbitrary proba-
bility density function to represent the robot’s position [1]. It typically begins by fit
together the robot’s continuous configuration space into a finite, discrete number of

possible poses within the map [1].

Given this general representation of the robot’s position (which can be multi-
modal), a robust update mechanism is necessary to compute the resulting belief
state when new information is incorporated into the prior belief [1]. Probabilistic
localization algorithms are fundamentally variants of the Bayes filter, and the direct
application of Bayes filters to the localization problem is precisely what is termed
Markov localization [1]. The algorithm, derived from the general Bayes filter structure,

is depicted in Figure 2.5.

As shown in Figure 2.5, the algorithm requires a map (m) as input, which plays a
role in the measurement model p(z¢|z¢, m). Just like the Bayes filter, Markov localiza-
tion transforms a probabilistic belief at time ¢-1 into an updated belief at time ¢ [1].
This method is capable of addressing the global localization problem, the position

tracking problem, and the kidnapped robot problem within static environments [1].

The initial belief, bel(x¢), reflects the robot’s initial knowledge of its pose and is

initialized differently depending on the specific localization task:

13



Literature review

o Position tracking If the initial pose is precisely known (denoted zy), bel(xo)

is initialized by a point-mass distribution:

1 ofxyg =
bel(zp) = feo 0
0 otherwise

In practical scenarios, the initial pose is often known only approximately.
In such cases, the belief bel(zg) is usually initialized by a narrow Gaussian

distribution centered around x:
_1 1 \T—1 _
bel(xzp) = det(2mY) 2exp[—§(x0 —x0)" X7 (x9 — To)]

where X is the covariance of the initial pose uncertainty [1].

o Global localization If the initial pose is unknown, bel(zy) must be initialized

by a uniform distribution over the space of all legal poses in the map:

1
bel(xo) = m

where | X| stands for the volume of the space of all poses within the map [1].

2.2.2.2 Kalman filter localization

The Kalman filter (KF) was initially developed as a technique for filtering and
prediction in linear systems, implemented as a specific case of the Bayes filter [1].
The KF functions as an optimal estimator for systems that are linear and subject
to zero-mean Gaussian noise [1]. It addresses the general problem of estimating the
state X of a discrete-time controlled process governed by the linear system state
transition equation:

Trt1 = Agxr + Brug + wy

Here, A is the nxn system matrix, B is the nxm input gain matrix (where m is
the dimension of the input vector uy, and x; is the n-dimensional state vector. The
term wy is an n-dimensional vector representing zero-mean Gaussian plant noise,

included to model the uncertainty arising from the system dynamics and actuators [1].

The measurement equation is defined by
zi. = Hxp, + v,

where H is a ¢ z n matrix that relates the state zj to the measurement zj (with g
being the dimension of the measurement vector). The term vy is a g-dimensional
zero-mean Gaussian noise vector, known as the measurement noise vector, which

incorporates the uncertainty of the measurement process [1].

The Kalman Filter is made up of two steps: a prediction phase followed by an

14



Literature review

update (or correction) phase.

Prediction Step. In the prediction step, the state is projected forward using
the state transition equation. Crucially, the uncertainty of the state must also be
propagated forward in time. Since the state is modeled as a Gaussian distribution,
fully characterized by its mean &} and covariance Py, the covariance is updated

according to the following equation:
Py = AP AT +Q

In this equation, A is the same system matrix used to propagate the state
mean, and Q represents the covariance matrix of the random Gaussian process
noise. After this phase, the original Gaussian distribution defined by xj and P is
transformed into a new Gaussian, characterized by the predicted mean zj,1 and

predicted covariancePj;. This concludes the prediction step of the algorithm [1].

Update Step. The update step, also known as the correction step, fuses a
new measurement (zj) of an observable variable with the prior estimate from the

prediction step [1]. First, the Kalman Gain (K) is calculated:
K=P H'HP H" +Q)!

Next, the calculation of the difference between the expected observation and the
actual observation is performed. This result is known as the residual or innovation
equation [1]:

T = (Zk — H(i‘;)

Finally, the mean and the covariance are corrected through these two final equations
[1]:
Tk =T + 1%
P, = (I - KyHy)P,

The Figure 2.6 summarizes the sequence of these prediction and update steps.

2.2.2.3 Extended Kalman filter localization

The Extended Kalman Filter (EKF) is a widely used adaptation of the Kalman filter
for nonlinear systems, and it remains fundamentally a Gaussian filter [1]. Its core
mechanism involves applying a linearization around the current value of the state
estimate whenever the system dynamics or measurement models are nonlinear [1].
In this context, the robot’s dynamics are considered a nonlinear system, which is

described by the nonlinear state transition function [1]:

Tpg1 = f(wp, ug) + wy

15



Literature review

m&mrﬂu&m Update (“Correct™)

(1) Compute the Kalman gain

[lJPmJec_’[the state ahead Kk — P;_HT(UP;_UT+R)_]
X, = A% _ | +Bu,

Time Update (“Predict™)y

(2) Update estimate with measurement z;

(2) Project the error covariance ahead 'l\\’k = ?ci. + KI\'("-’I{ — H',?E;)

P:(. = AP;\._ ]AT +Q (3) Update the error covariance

L_/ PJ(- - (IiKAI!)Pi

Initial estimates for &, and P

Figure 2.6: Kalman filter algorithm [12]

Here, 111 represents the robot’s system state at time k+1, f is the nonlinear state
transition function, and wy, is the process noise, which is assumed to be normally
distributed. The term wuy represents the control inputs [1]. The measurements from

the environment can be described by the following nonlinear sensor model [1]:
2z = h(xg) + vk

In this equation, zj represents the measurements at time k, h is the nonlinear sensor
model that maps the state into the measurement space, and vy is the normally

distributed measurement noise [1].
The EKF algorithm proceeds through the standard two-step cycle:

Prediction Step. The first stage of the algorithm is the prediction step, which
projects the current state estimate and its error covariance forward in time using the

nonlinear function f [1]:
Ty = f(2k-1,0)
Py = APy 1A + WgQp Wi
The function f can often be described as a standard 3D forward kinematic model
derived from Newtonian mechanics [1]. Crucially, the estimated error covariance (P)

is propagated using the linearized models A and W, which are the Jacobians of the

process evaluated at step k, perturbed by Q, the process noise covariance matrix [1].

Correction Step. The next phase is the correction step, where the latest
measurement is fused with the predicted state. The first calculation involves deter-
mining the Kalman gain (K), which uses the measurement Jacobians H and V, the

measurement covariance R, and the predicted covariance P [1]:

Ky = Py Hf (Hy P HE + ViR Vi)™

16



Literature review

/—\Mrmunmml Update (“Correct™)

Time Update (“Predict”
me Update ("Hredid ) (1) Compute the Kalman gain
( oject the state ahead - , , 1
1) Project the state ahead K, = !’AHE"H;]',‘H:} a1 ;R;_‘ : )
Go= SR e 0)
(2) Update estunate with measurement z;
(2) Project the emror covariance ahead i; = i., + ,\‘; (z,— hi ‘T:- 0))
P; = -"‘1"; |A,([ + “.;Q,( {“;f (3) Update the error covariance
P, = (I-K.H,)P,

I

Imtial estimates for v, _, and Py

Figure 2.7: The Extended Kalman filter algorithm [13]

he calculated gain is then used to update the state vector by calculating the difference
between the actual observation and the expected observation (innovation) and
applying the gain [1]:

&, =2, + Kp(z, — h(2y,0)

As the final step, the Joseph form covariance update equation is used to promote
filter stability by ensuring that the resulting covariance matrix Pg remains positive
semi-definite [1]:

P, = (I — KyHg)Py

The entire process, including the prediction and correction phases of the Extended

Kalman Filter, is summarized in Figure 2.7.

2.3 Sensors for mobile robots

A sensor is a device designed to convert a physical parameter or an environmental
characteristic (such as temperature, distance, or speed) into a measurable signal
that can be digitally processed to perform specific tasks [14]. Mobile robots rely
on sensors to gather information about their environment, a prerequisite for safe
navigation, complex perception, coordinated actions, and effective interaction with

other agents [14].

Mobile robot sensors range from basic tactile devices, like bumpers, to advanced
vision systems, such as structured light RGB-D cameras [14]. Regardless of the
type, all sensors produce a digital output (e.g., a data string or a matrix) that the
robot’s computer can process. This output is typically created by discretizing one or
more analog electrical signals using an Analog-to-Digital Converter (ADC) embedded

within the sensor [14].

A sensor is inherently a type of input transducer. A transducer converts a signal

17



Literature review

from one form of energy (e.g., thermal, mechanical) into another [14]. Transducers
can either inject energy into the environment (called emitters or actuators) or capture
energy from the environment (called receivers) [14]. A receiver that converts a
measurable physical quantity, such as light or sound, into an electrical signal is
precisely what is termed a sensor. In practical mobile robotics, the term "sensor"
commonly refers to an integrated ensemble of transducers and associated devices

packaged together to execute a specific sensing function [14].

2.3.1 Sensors Classifications

Sensors can be categorized in several ways. The most common classifications used
in robotics are based on the source of the excitation signal and the domain of the

measurement [14]:

o Excitation Signal Source:

— Passive Sensors: These sensors generally do not require an external power
supply to operate, except for minimal power needed for signal amplification

and digital conversion [14].

— Active Sensors: These sensors require an external power supply to self-
generate and emit an excitation signal, measuring the environment’s

reaction to that signal (e.g., time-of-flight) [14].
¢ Measurement Domain:

— Proprioceptive Sensors: These measure quantities dependent only on the
robot’s internal system and its current state (e.g., wheel position or joint
angle) [14].

— Exteroceptive Sensors: These measure quantities that depend on both the
robot’s state and the surrounding environment, such as the distance to
the nearest obstacle [14].

Figure 2.8 illustrates a classification of common sensor types used in mobile robot

applications.

Over recent years, researchers have developed numerous techniques and systems
to detect and determine a robot’s position [14]. No single approach is universally
applicable; rather, every method possesses unique strengths and weaknesses [14].
These approaches are commonly categorized based on the primary sensors employed,
such as Global Navigation Satellite Systems (GNSS), Wheel Odometry (Encoders),
LiDAR or Ultrasonic Odometry, Inertial Navigation Systems (IMU), and Visual
Odometry (Camera sensors) [14]. These techniques are usable for both indoors and
outdoors, with the only exception of the Global Positioning System (GPS), which is

generally unreliable indoors [14].

18



Literature review

General classification Sensor PC or AorP
(typical use) Sensor System EE
Tactile sensors Contact switches, bumpers EC P
(detection of physical contact or Optical barriers EC A
closeness; security switches) Noncontact proximity sensors EC A
Wheel/motor sensors Brush encoders PC P
(wheel/motor speed and position) Potentiometers PC P
Synchros, resolvers PC A
Optical encoders PC A
Magnetic encoders PC A
Inductive encoders PC A
Capacitive encoders PC A
Heading sensors Compass EC P
(orientation of the robot in relation to | Gyroscopes PC P
a fixed reference frame) Inclinometers EC AP
Ground-based beacons GPS EC A
(localization in a fixed reference Active optical or RF beacons EC A
frame) Active ultrasonic beacons EC A
Reflective beacons EC A
Active ranging Reflectivity sensors EC A
(reflectivity, time-of-flight, and geo- Ultrasonic sensor EC A
metric triangulation) Laser rangefinder EC A
Optical triangulation (1D) EC A
Structured light (2D) EC A
Motion/speed sensors Doppler radar EC A
(speed relative to fixed or moving Doppler sound EC A
objects)
Vision-based sensors CCD/CMOS camera(s) EC P
(visual ranging, whole-image analy- Visual ranging packages
sis, segmentation, object recognition) | Object tracking packages

A, active; P, passive; P/A, passive/active; PC, proprioceptive; EC, exteroceptive.

Figure 2.8: Classification of sensors used in mobile robotics applications [14].

2.3.1.1 Global Navigation Satellite System (GNSS)

A Global Navigation Satellite System is a satellite-based system that transmits
signals to provide location information, including longitude, latitude, and altitude.
Any receiver on Earth’s surface can determine its position using GNSS, making it a
highly popular technique for mobile robot localization [14]. The Global Positioning
System (GPS), operated by the US, is a well-known satellite system consisting of

twenty-four operational orbiting satellites.

Advantages and Disadvantages A major pro of GNSS is its ability to deter-
mine absolute position without error accumulation over distance, providing stable
localization [14]. However, commercial GNSS accuracy is often limited to the meter
level, which is insufficient for applications requiring high precision. Furthermore,
GNSS signals are prone to blockage by walls and are sensitive to environmental factors
(e.g., weather, metal structures), making them unsuitable for indoor applications
[14].

2.3.1.2 Wheel Odometry

Odometry is an ancient concept derived from the Greek words hodos (journey or
travel) and metron (measure). The term was first applied to wheel odometry, where
a robot’s motion is estimated by counting the number of wheel revolutions over a

traveled distance to calculate linear displacement [14]. Wheel revolutions are typically

19



Literature review

Figure 2.9: Optical encoder [15].

measured by Encoders, such as the optical encoder shown in Figure 2.9.

Advantages and Disadvantages While wheel odometry is simple, inexpensive,
and provides a relative position, it is significantly affected by wheel slippage [14]. This
slippage causes error accumulation that increases proportionally with the distance

covered, making wheel odometry suitable only for short-term navigation tasks [14].

2.3.1.3 Inertial Navigation System (INS)

The Inertial Navigation System provides the mobile robot’s position and orientation
relative to a known starting point [14]. The core component is the Inertial Measure-
ment Unit (IMU), which typically contains three accelerometers (providing linear
accelerations) and three gyroscopes (providing rotational rates around three axes)
[14]. Linear velocity and position are obtained by integrating the linear acceleration
with respect to time, while the agent’s orientation is obtained by integrating the

rotational rates over time.

Advantages and Disadvantages Commercial inertial navigation systems are
generally cheap but suffer from inherent noise and bias [14]. The integration process
necessary to calculate position and orientation causes a large accumulation of error,
leading to significant drift from the actual state [14]. Consequently, the inertial
sensor alone is unreliable for determining position and orientation, but it is highly
valuable when used to supplement other navigation systems, such as GPS, cameras,

or LiDAR, to enhance overall reliability and accuracy [14].

2.3.1.4 Acoustic Systems

Acoustic systems utilize ultrasonic sensors to measure the distance between the
system’s location and obstacles by emitting acoustic energy [14]. The system trans-
mits ultrasonic pulses and measures the time required for the reflected echoes (from

surfaces or objects) to return, thereby calculating the distance traveled [14].

20



Literature review

Advantages and Disadvantages Acoustic systems can provide high-accuracy
motion estimation [14]. However, the accuracy is highly dependent on the reflection
quality of the ultrasonic waves, which can be affected by the orientation of surfaces
and the material properties of the objects [14]. Furthermore, the environment’s
acoustic noise can share the same frequency as the ultrasonic pulse, and the system
is susceptible to receiving multiple echo reflections, which introduces complexity and

error [14].

2.3.1.5 Visual Systems

Visual systems use a camera sensor to capture abundant information about the
environment, making mobile robot localization one of their key applications [14].
Computer vision algorithms then analyze the captured images to determine the

robot’s position and orientation [14].

Advantages and Disadvantages The camera is considered a low-cost sensor
compared to many other motion estimation sensors. Despite being inexpensive
and providing rich data, camera sensors are sensitive to ambient conditions such as
illumination changes, texture sparsity, motion blur, and shadows [14]. Moreover, most
visual navigation systems assume a static scene; operating in a dynamic environment
with frequently changing or moving objects presents a significant challenge. Lastly,
computer vision algorithms are often computationally expensive due to the intensive

processing required for feature extraction and image matching [14].

21



Chapter 3

LiDAR sensor

This chapter provides an introductory overview of the technology associated with

LiDAR imaging systems and its current state of development [16].

The term LiDAR (Light Detection and Ranging) first appeared in 1963, created as
a mix of the words "light" and "radar" [16]. Initially, its applications were concentrated
in military and aerospace fields, with development primarily focused on remote sensing
[16]. Today, LiDAR technology has matured significantly, largely driven by the recent

surge in development toward autonomous and robotic vehicles [16].

3.1 Basic of LiDAR Imaging

The fundamental measurement principle utilized for LIDAR imaging is Time-of-Flight
(TOF) [16]. This principle measures depth by calculating the time delay between the
emission of light from a source and its return to a detector [16]. Consequently, LIDAR
is an active, non-contact range-finding technique [16]. An optical signal is projected
onto an object (the target), and the reflected or back-scattered signal is detected and
processed to determine the distance [16]. This process enables the creation of a 3D
point cloud representing a segment of the unit’s environment [16]. Thus, the range
R, or distance to the target, is derived from the light waves’ round-trip delay time to
the target [16].

LiDAR systems employ several different measurement principles [16]. The most
straightforward is the Pulsed approach (Subsection 3.1.1.1), where a short light pulse
is emitted, and the arrival time of its echo at the detector sets the distance [16].
A second common approach is based on Amplitude Modulation of a Continuous
Wave (AMCW) (Subsection 3.1.1.2), which measures distance by comparing the
phase difference between the emitted and the backscattered detected waves [16].
Because AMCW emission is continuous, the reflected signal is less strong than in
the pulsed case, allowing the amplitude to remain below eye-safe limits at all times
[16]. Finally, a third technique, Frequency-Modulated Continuous-Wave (FMCW)

(Subsection 3.1.1.3), relies on the direct modulation and demodulation of signals in

22



LiDAR sensor

Pulsed ========= \ o Du N

laser

-
[ e Y o a
Timer -7
Re;;eop;or ___________ {}, - Target
Optics
DISTANCE

Figure 3.1: Pulsed time-of-flight (TOF) measurement principle [16].

the frequency domain, enabling distance detection through the coherent superposition
of the emitted and detected waves [16].

3.1.1 Measurement Principles
3.1.1.1 Pulsed Approach

Pulsed TOF techniques use the simplest form of illumination modulation: distance
is determined by multiplying the speed of light in the medium by the total time the
light pulse takes to travel to the target and back [16]. Since the speed of light is
constant in a given optical medium, the distance to the object is directly proportional
to the traveled time [16].

The measured time represents twice the distance to the object (the light travels
forth and back) and, therefore, must be halved to provide the actual range value to
the target [16]:

C
R = §toF

where R is the range to the target, c is the speed of light (¢ = 3210%m/s) in free
space, and t,r is the total time it takes for the pulse of energy to travel from its
emitter to the observed object and then back to the receiver [16]. Figure 3.1 shows a

simplified diagram of a typical implementation.

The attainable resolution in range (ARyy,) is directly proportional to the avail-
able resolution in time counting (Aty,i,) [16]. Consequently, the resolution in depth
measurement is fundamentally limited by the precision of the time counting electron-
ics [16]. A common depth resolution value is approximately 1.5 cm, based on a time
interval measurement resolution in the 0.1 ns range, which is constrained by jitter

and noise in the electronics [16].

Theoretically, the maximum range attainable (R4, ) is limited only by the maxi-

23



LiDAR sensor

mum time interval (q,) the counter can measure [16]. In practice, however, this
time interval is large enough that the maximum range is limited instead by the

signal-to-noise ratio (SNR) due to laser energy losses during travel [16].

The pulsed principle involves the direct measurement of the round trip time
between the emission of the light pulse and the return of the echo back-scattered
from a target object [16]. Therefore, the pulses must be as short as possible (typically
a few nanoseconds) with fast rise and fall times and high optical power [16]. Because
the pulse irradiance power significantly exceeds the background (ambient) irradiance
power, this method performs well outdoors under adverse environmental conditions
and is suitable for longer distance measurements (it is also effective indoors, where

the lack of solar background reduces power requirements) [16].

Advantages and Disadvantages The advantages of the pulsed approach include
its simple measurement principle (direct TOF measurement), its long ambiguity
distance, and the limited influence of background illumination due to the use of high-
energy laser pulses [16]. However, its performance is limited by the signal-to-noise
ratio (SNR) [16]. High laser energy is required while simultaneously adhering to
strict eye-safety limits, necessitating the use of highly sensitive detectors, which can

be expensive depending on the required detection range [16].

3.1.1.2 AMCW Approach

The Continuous Wave Amplitude Modulated (AMCW) approach utilizes the intensity
modulation of a continuous lightwave instead of the discrete laser pulses used previ-
ously [16]. This principle is also known as CW modulation, phase-measurement, or
amplitude-modulated continuous-wave [16]. The range value is obtained by measuring
the phase-shift ( A¢) induced in the intensity-modulated periodic signal during its
round-trip journey to the target [16]. The optical power is modulated with a constant
frequency fas, typically in the tens of megahertz range, resulting in the emitted beam
being a sinusoidal or square wave of frequency fys [16]. The measurement of the
distance R is thus derived from the phase shift A¢ between the reflected and the
emitted signal [16]:

27 fur ¢ A

knard R— R 597 far

where R is the range to the target, c is the speed of light in free space, ks is
the wavenumber associated with the modulation frequency, d is the total distance
traveled, and fy is the modulation frequency of the signal’s amplitude [16]. Figure

3.2 illustrates the schematics of a conventional AMCW sensor.

Various techniques can be employed to demodulate the received signal and extract
the phase information; for example, phase measurement can be achieved using signal

processing techniques involving mixers and low-pass filters [16].

24



LiDAR sensor

N\ T
————— -‘ -7
Phase M | Detector
Meter Target
DISTANCE

Figure 3.2: TOF phase-measurement principle used in amplitude modulation of a
continous wave (AMCW) sensor [16].

In the AMCW approach, the range resolution is determined by the frequency
far of the actual ranging signal (which can be adjusted) and the resolution of the
phase meter, which is fixed by the electronics [16]. Increasing fa; also increases
the resolution [16]. However, higher fj; frequencies lead to shorter unambiguous
range measurements, meaning the phase value of the return signal begins to repeat
itself after a 27w phase displacement [16]. Additionally, although phase measurement
may be coherent in certain domains, the sensitivity of the technique remains con-
strained by the limited sensitivity of direct detection in the optical domain [16].
From the perspective of the Signal-to-Noise Ratio (SNR), a relatively long inte-
gration time is required over multiple time periods to achieve an acceptable signal

rate, which, in turn, can introduce motion blur when dealing with moving objects [16].

In short, AMCW sensors are a simple and affordable option for indoor distance

measurements, but they suffer from phase ambiguity and sensitivity limitations [16].

3.1.1.3 FMCW Approach

In the Continuous Wave Frequency Modulated (FMCW) approach, the emitted
instantaneous optical frequency is periodically shifted, usually by varying the power
applied to the source [16]. The source is typically a diode laser to enable coherent
detection [16]. The reflected signal, which arrives at the receiver after a traveled
time top, is then mixed with a reference signal built from the emitter’s output [16].
The resulting mixture creates a beat frequency (f,) that is a measure of the probed
distance [16]. For a static target, the delay between the collected light and the
reference signal causes a constant frequency difference f, in the mixed beams [16]:
fr = slope - AT = %top = %? — R= fr%

where B is the bandwidth of the frequency sweep, T denotes the period of the
ramp, and A7 equals the total traveled time t,r [16]. Figure 3.3 depicts these main

parameters.

25



LiDAR sensor

frequency
r

Transmitted signal

Detected signal

A -

T AT : time

Figure 3.3: Frequency modulation and detection in the frequency-modulated
continuous-wave (FMCW) method: main parameters involved [16].

In practice, the frequency difference between the outgoing and incoming com-
ponents is translated into a periodic phase difference, which causes an alternating
constructive and destructive interference pattern at the frequency f,, resulting in
a beat signal [16]. By employing the Fast Fourier Transform (FFT), the peak of
the beat frequency can be easily translated into a distance measurement [16]. A
triangular frequency modulation is typically used instead of a simple ramp because
this detection method offers the significant advantage of simultaneously measuring

not only the range but also the velocity and sign of the target [16].

The resolution of the FMCW technique is directly related to the total bandwidth
(B) of the signal [16]. Since the ramp period T can be chosen arbitrarily, the FMCW
method is capable of determining t,r values in the picosecond range, equivalent to
millimeter distances, by performing measurements in the kilohertz regime, which is
perfectly feasible [16]. Unfortunately, it is generally difficult to realize a perfect linear
or triangular optical frequency sweep by linearly modulating the control current,

and the frequency-current curve is often nonlinear, especially near the slope change

points [16].
Pulsed AMCW FMCW
) ) relative beat of
Parameter Intensity of emitted | Phase of modulated
. . modulated frequency
measured and received pulse amplitude )
and Doppler shift
Measurement | Direct Indirect Indirect
Detection Incoherent Incoherent Coherent
Use Indoor/Outdoor Only indoor Indoor/Outdoor
Main Simplicity of setup; Established Simultaneous speed
advantage long ambiguity range commercially and range measures

26



LiDAR sensor

Coherence length/
Main Low SNR of Short ambiguity Stability in
limitation returned pulse distance operating conditions

(e.g.,thermal)

Depth

resolution

1 cm 1 cm 0.1 cm

Table 3.1: Summary of Measurement Principles [16]

The FMCW technique, though more complex to implement, provides superior
resolution and simultaneous velocity estimation, making it attractive for advanced
LiDAR systems [16].

3.1.2 Imaging Strategies

The three main measurement strategies used in LiDAR imaging systems presented
previously are inherently pointwise measurements [16]. However, useful LiDAR
outputs are always 3D point clouds, which are necessary to accurately represent
fields of view (FOV) as large as 360° around the object of interest [16]. A variety of
strategies have been proposed to construct these LiDAR images from the repetition
of single point measurements, but they can generally be grouped into three families:

scanning components of different types, detector arrays, and mixed approaches [16].

3.1.2.1 Scanners

In the most common approach, a scanning element is used to reposition the laser
spot on the target by modifying the angular direction of the outgoing beam, thereby
generating a point cloud of the scene [16]. Numerous scanning strategies are found

in commercial LiDAR products, which can be categorized into three main types [16]:

e Mechanical scanners
LiDAR imaging systems based on mechanical scanners utilize high-grade optics
and some type of rotating or galvanometric assembly, typically involving mirrors
or prisms attached to mechanical actuators, to cover a wide FOV [16]. In these
LiDAR units, the sources and detectors often rotate jointly around a single
axis [16]. This process may involve sequentially pointing the beam across the
target in 2D or rotating the entire optical configuration around a mechanical
axis [16]. Mechanical scanners nearly always employ pulsed sources and are
typically large and bulky [16]. When using rotating mirrors, they can achieve
high spatial resolution in the direction of rotation (usually horizontal) but are
often limited in the orthogonal direction (usually vertical), where the point
cloud density depends on the number of parallel sources and detectors [16].

They are, however, highly effective for long-range applications [16].

27



LiDAR sensor

e Microelectromechanical scanners
Microelectromechanical systems (MEMS)-based LiDAR scanners enable pro-
grammable control of the laser beam position using tiny mirrors, only a few
millimeters in diameter [16]. The tilt angle of these mirrors changes when a
stimulus is applied, modifying the angular direction of the incident beam to
direct the light to a specific point in the scene [16]. In LiDAR applications, the
stimulus is most commonly voltage; the mirrors are steered by drive voltages
generated from a digital representation of the scan pattern stored in memory
[16]. These digital numbers are then converted to analog voltages using a

digital-to-analog converter [16].

e Optical Phased Arrays
An Optical Phased Array (OPA) is a novel, solid-state device that enables
beam steering using a multiplicity of micro-structured waveguides [16]. Its
operational principle is equivalent to that of microwave phased arrays: the
beam direction is controlled by tuning the phase relationship between arrays
of coherent transmitter antennas [16]. By aligning the phase of multiple
coherent emitters, the emitted light constructively interferes in the far-field at
specific angles, allowing the beam to be steered electronically [16]. OPAs offer
very stable, rapid, and precise beam steering [16]. Because they contain no
mechanical moving parts, they are robust, insensitive to external constraints

like acceleration, highly compact, and can be integrated onto a single chip [16].

3.1.2.2 Detector Arrays

Due to the drawbacks of scanning approaches that rely on macroscopic moving
elements, alternative imaging methods have been proposed to overcome their limita-
tions, moving beyond MEMS scanners and OPAs [16]. These scannerless techniques
typically combine specialized illumination strategies with arrays of receivers [16].
Transmitting optical elements flood-illuminate an entire scene, and a linear or matrix
array of detectors receives the signals from separate angular subsections in parallel
[16]. This parallelization allows range data of the target to be obtained in a single-

shot, which greatly simplifies real-time applications [16].

The scene illumination used in these array systems may be pulsed (flash imagers)
or continuous (AMCW or FMCW LiDARs) [16]:

o Flash imagers
In a flash LiDAR, imaging is obtained by flood-illuminating the target scene,
or a portion thereof, using a pulsed light source [16]. The backscattered light is
collected by the receiver, which is divided among multiple detectors [16]. Each
detector captures the image distance, and sometimes the reflected intensity,

using the conventional time-of-flight principle [16].

¢« AMCW cameras

28



LiDAR sensor

A second family of LiDAR imaging systems using detector arrays are the TOF
cameras based on the AMCW measuring principle [16]. As previously explained
in Subsection 3.1.1.2, these devices modulate the intensity of the source and
then measure the phase difference between the emitter and the detected signal
at each pixel on the detector [16]. This measurement is achieved by sampling
the returned signal at least four times [16]. Detectors for these cameras are
commonly manufactured using standard CMOS technology, making them small
and low-cost [16].

Some successful LIDAR imagers have employed mixed imaging modalities, combin-
ing a scanning approach with a multiple detector arrangement [16]. The cylindrical
geometry achieved by a single rotating axis paired with a vertical array of emitters

and detectors has proven particularly successful [16].

3.2 Sources and Detectors for LIDAR Imaging Systems

A LiDAR system’s core function is to illuminate a scene and use the returning
backscattered signal for range-sensing and imaging [16]. Therefore, the basic system
must include a light source (transmitter), a sensitive photodetector (receiver), the
data processing electronics, and a strategy for acquiring information across the target
area [16]. These components are essential for creating 3D maps and proximity data
images [16]. Data processing and device operation are typically managed by com-
binations of Field Programmable Gate Arrays (FPGAs), Digital Signal Processors
(DSPs), microcontrollers, or dedicated computers, depending on the complexity of

the system architecture [16].

Given the strict requirements for frame rate, spatial resolution, and Signal-to-
Noise Ratio (SNR) in LiDAR imaging, the light sources and photodetectors are
critical, state-of-the-art components undergoing intensive development [16]. The
overall performance of a LiDAR setup is intrinsically tied to the trade-offs and

performance limits of these two key elements [16].

3.2.1 Sources

LiDAR systems commonly employ laser sources operating in the infrared (IR) region to
leverage the atmosphere’s transmission windows, particularly where water absorption
is low, and to use beams invisible to the human eye [16]. Sources are primarily

concentrated in three wavelength regions [16]:

e A band from 0.8 pm to 0.95 pm, dominated by diode lasers.

o Lasers operating at 1.06 pm, often built with fiber-based sources, can still be

used with standard Silicon (Si) detectors.

e Lasers at 1.55 pm, readily available from the telecom industry, which require
Indium Gallium Arsenide (InGaAs) detectors.

29



LiDAR sensor

Wavelength selection is generally based on cost and eye safety considerations [16].

Sources are typically based on lasers or nonlinear optical systems driven by
lasers, although other sources, such as LEDs, are sometimes found in short-range
applications [16]. Several performance features must be considered, including peak
power, pulse repetition rate (PRR), pulse width, wavelength (purity and thermal
drift), emission characteristics (single-mode, beam quality, CW /pulsed), size, weight,
power consumption, shock resistance, and operating temperature [16]. These features
involve trade-offs; for example, achieving a larger peak power often compromises a

large PRR or spectral purity [16].

Currently, the most popular sources for LiDAR technology are solid-state lasers
(SSL) and diode lasers (DLs) [16]. The following table summarizes their key charac-

teristics.
Fibre Laser Microchip Laser | Diode Laser
o . . Semiconductor Semiconductor
Amplifying media | Doped optical fiber i )
crystal PN junction
Peak power (typ) | > 10 kW > 1 kW 0.1 kW
PRR < 1 MHz < 1 MHz ~ 100 kHz
Pulse width < 5 1ns < 5 ns 100 ns
) Pulse peak power,
Main ) Pulse peak power,
PRR, beam quality, ) Cost, compact
advantage . PRR, beam quality
Beam delivery
) Max output
Main Cost,
) Cost i power and PRR.
disadvantage beam delivery .
Beam quality

Table 3.2: Summary of the main features of sources for LiDAR sensors [16]

3.2.2 Photodetectors

Photodetectors are the other essential component of a LiDAR system, serving as the
critical photon-sensing device in the active receiver that enables the Time-of-Flight
(TOF) measurement [16]. A detector must possess high sensitivity for direct intensity
detection and sufficient bandwidth to detect short pulses [16]. The material composi-

tion of the detector dictates its sensitivity to the specific wavelength of interest [16].

Light detection in LiDAR imaging systems typically relies on five different types
of detectors [16]:

e PIN diodes: These are the most commonly used single-detectors. While they
can be very fast in detecting light events if sensitive enough for the application,
they do not provide internal gain; in optimal efficiency conditions, each photon

generates only a single photoelectron [16].

30



LiDAR sensor

Avalanche photodiodes (APD): APDs are the most useful receivers for appli-
cations requiring moderate to high sensitivity, as their structure provides a

certain level of multiplication of the current generated by incident light [16].

Single-photon avalanche photodiodes (SPAD): SPADs are essentially APDs
biased beyond their breakdown voltage, with their internal structure designed
to withstand repetitive, large avalanche events [16]. Unlike APDs, where
a single photon produces tens to hundreds of electrons, a SPAD produces
a large electron avalanche of thousands of electrons, resulting in detectable

photocurrents [16].

Multi-pixel photon counters (MPPC): MPPCs are a recent, interesting arrange-
ment of SPADs. They are pixelated devices formed by an array of SPADs where
all pixel outputs are summed into a single analog output, effectively enabling

photon-counting by measuring the combined intensity of the fired pixels [16].

Photomultiplier tubes (PMT): PMTs operate based on the external photoelectric
effect [16]. Electrons are emitted within a vacuum tube and collide with cascaded

dynodes, resulting in a true electron avalanche and high gain [16].

31



Chapter 4

ROS: Robot Operating System

4.1 Overview

The Robot Operating System (ROS) is an open-source, widely adopted middleware
platform for developing robotic applications [17]. Its official definition describes it as
[18]:

"ROS is an open-source, meta-operating system for your robot. It provides the
services you would expect from an operating system, including hardware abstraction,
low-level device control, implementation of commonly-used functionality,

message-passing between processes, and package management."

ROS was initially created over a decade ago at Stanford and has since been
maintained by Willow Garage and the Open Source Robotics Foundation (OSRF)
[17]. Tt provides numerous libraries and tools that significantly aid software developers

in creating complex robotics applications [17].

One of ROS’s main strengths is how it simplifies system integration. In complex
robots, managing different sensors—each with its own data format—can quickly
become cumbersome [17]. ROS helps by providing a consistent data structure and
many ready-to-use packages for common sensors, reducing the effort needed to process
and analyze data. It also makes it easier to send control commands from software to

the hardware motors of most mobile robots [17].

Due to the increasing demands of real-time performance and deployment on
distributed embedded systems, ROS underwent a substantial re-write, leading to
ROS 2 [17]. The older version, ROS 1, is still used in many legacy projects, but
the community is migrating toward ROS 2, which was released in 2017 to solve the

structural limitations of its predecessor [19].

As a meta-operating system, ROS still depends on an underlying host OS [19].
ROS 1 was limited to Linux systems, while ROS 2 expanded support to other

platforms, including Windows and iOS [19]. From a programming point of view,

32



ROS: Robot Operating System

00
000
000
Figure 4.1: ROS logo [20]

ROS follows an Object-Oriented approach, and most of its code is written in C++
or Python [19]. Using ROS tools usually involves extensive interaction through the
Command Line Interface (CLI) [19].

4.2 Graph Concepts

The foundation of a ROS 2 system is the ROS graph, defined as "the network of nodes
in a ROS system and the connections between them by which they communicate"

[21]. The graph is built from the following conceptual elements:

o Nodes: Independent computing processes that communicate with other nodes

using client libraries.

e Topics: Unilateral communication channels used by nodes to publish or sub-

scribe to messages.

o Messages: Simple data packets that nodes exchange with each other through

topics.

e Discovery: The automatic mechanism by which nodes locate each other and

establish initial connections.

Nodes
A node in the ROS graph is an independent computing process that leverages ROS
client libraries to communicate with other processes [22]. An application, whether a
single executable or multiple processes across different machines, can define one or
more nodes [22]. Ideally, each node should be responsible for a single, modular pur-
pose (e.g., a node to control wheel motors, another for reading laser range-finder data)
[22]. Nodes communicate primarily through Topics (publisher-subscriber model),
but ROS also provides Services and Actions for other communication patterns [22].

Additionally, nodes can be associated with configurable Parameters [22].

Messages and Communication Interfaces
Communication inside ROS is based on a few interface types: messages, services,
and actions. Each uses a simple data format defined with an Interface Definition
Language (IDL), from which ROS automatically generates code in different languages
(such as C++ or Python) or DDS types [22].

33



ROS: Robot Operating System

Service

Request

Response

Message Message

Figure 4.2: Nodes communication example in ROS 2 [22].

e Messages: These are simple data structures defined in a .msg file and ex-
changed via Topics [22]. A Topic is a unilateral channel: only one node can
publish messages to it, but multiple subscribed nodes can receive the data

stream [22].

o Services: Providing a request /response model, services offer a bilateral commu-
nication alternative to the publisher-subscriber pattern of topics [22]. Defined
in a .srv file, the interface contains two parts: a request message and a response
message. A server node offers the service, and a client node sends a request,

triggering the server to compute and return a response [22].

e Actions: Intended for long-running tasks, actions are a communication type
in ROS 2 that uses a client-server model similar to services but with the added
feature of publishing a data stream of feedback [22]. Defined in a .action file,
the structure comprises three message declarations: a goal, feedback, and a final
result. The action client sends a goal to the action server, which acknowledges

it and continuously publishes feedback until a final result is returned [22].

Discovery
The discovery of nodes in ROS 2 happens automatically via the underlying middleware

and the process generally consists of three phases during a node’s life cycle [22]:
e Startup: A node announces its presence on the network.

e Connection: Other nodes respond with the necessary information to establish

appropriate communications through the correct interfaces.

o Execution: Nodes regularly announce their presence to the network, allowing

new components to discover and connect to them.

o Shutdown: A node advertises its detachment from the graph before termination
[22].

34



ROS: Robot Operating System

fteleop_turtle Jturtiel/cmd_vel
@—» fimage_raw fimage_view_1499687028446158250

Figure 4.3: Example of rqt_ graph [23].

Figure 4.4: Example of RViz window [24].

4.3 ROS Useful Tools

ROS provides several tools for system analysis, debugging, and visualization, offering

users feedback on the system’s status [23].In this thesis, I primarly used:

e rqt_graph: This tool provides a graphical representation of the correlation
between active processes (nodes and topics) during execution [23]. It is invalu-
able for debugging, allowing quick visualization of which nodes are acting as
publishers and which are acting as subscribers, and ensuring correct operation
[23].

e« RViz: RViz is a powerful 3D visualization tool that can display any data
published by the software through its topics [24]. It can visualize laser distance
measurements (as points), Point Cloud Data from 3D sensors, camera imagery,
and the robot’s model and planned paths [24]. By representing the robot’s
point of view, RViz makes it easy to visualize what the robot is sensing and

how it is interacting with the environment [24].

35



Chapter 5

State-of-the-art of LIDAR-Only
Odometry algorithms

LiDAR sensors, alongside cameras, constitute one of the predominant sensing modal-
ities employed within the fields of robotics and computer vision [25]. As previously
explained in Chapter 3, LiDAR technology is founded upon the principle of active
laser transmission; it sends out laser light pulses and subsequently measures the
time delay of those pulses after they reflect off surfaces and return to the detector
[25]. This process yields a direct measurement of the distance to those surfaces [25].
Consequently, a LiDAR sensor can be leveraged both to perceive the structural layout
of its surrounding environment and to accurately estimate the sensor’s own motion,

or ego-location [25].

5.1 Introduction

Odometry represents a truly critical element of robot navigation, especially in oper-
ating environments where global positioning methods, such as the Global Positioning
System (GPS), are either unavailable or unreliable [2]. Diverse sensors, including
wheel encoders, Inertial Measurement Units (IMU), cameras, and LiDAR, are com-
monly integrated to perform odometry in robotics [2]. LiDAR, in particular, has
garnered substantial attention because it furnishes rich three-dimensional (3D) data

while remaining inherently immune to variations in ambient light [2].

The history of odometry in robotics shows a marked evolution and influential
publications [2]. Initial approaches relied heavily on wheel encoders and dead
reckoning; however, the accuracy of wheel odometry was intrinsically limited by sensor
errors arising from wheel slippage and inherent algorithmic inaccuracies [2]. During
this foundational phase, studies began to emerge focusing on obtaining odometry
via range sensors, paralleled by advancements in scan registration algorithms, most
notably the Iterative Closest Point (ICP) [2]. Subsequently, range sensor technology
matured, and 3D LiDAR emerged as a transformative force capable of measuring the

surrounding space in three dimensions, thereby vastly surpassing the capabilities of

36



State-of-the-art of LiDAR-Only Odometry algorithms

traditional 2D measurements [2]. Recognizing that precise location data is paramount
for autonomous robots’ decision-making processes, researchers decisively shifted their
focus toward LiDAR, which scans the surroundings in 3D without being affected by

external lighting conditions [2].

5.2 LIDAR Odometry

The core objective of LIDAR odometry is to precisely estimate the incremental
ego-motion of a robot or vehicle in real-time [25]. This estimation utilizes the current
LiDAR scan alongside past observations, which may include a single previous scan or
multiple scans aggregated into a local map [25]. A single scan typically encapsulates
one complete rotation or full sweep of the sensor, thus providing a contextual snapshot
of the surrounding environment at a specific moment [25]. At the very heart of
LiDAR odometry is the technique of scan registration, also frequently termed scan
matching [25]. Scan registration involves the meticulous alignment of a pair of scans
to determine the precise relative transformation between them [25]. Since a scan
fundamentally constitutes a set of points, or a point cloud, the well-established
Iterative Closest Point (ICP) algorithm serves as a foundational technique for point

cloud registration, capable of determining this relative transformation [25].

5.2.1 Foundations of Scan Registration

Scan registration constitutes a fundamental component of both LiDAR odometry and
mapping systems, necessary for accurate alignment and environment mapping [25].
The objective is to identify the optimal transformation—specifically, the rotation
R € ?3%3 and the translation t € R3—that best brings the source scan (e.g., the
most recent sensor reading) into alignment with the target scan (e.g., a local map or

the previous scan) [25].

Iterative closest Point (ICP). A point cloud P is formally defined as a set
of points existing within a three-dimensional coordinate system, mathematically
represented as P = p; € R373 | § = 1,2, ..., N, where each p; = (;, s, 2;) specifies the

3D coordinates of an individual point [25].

In the context of scan registration, the ICP algorithm is designed to minimize
the total registration error between two point clouds, denoted P (source) and Q
(target) [25]. ICP operates iteratively, determining the transformations (R¥,t*) for

an optimization iteration k that will minimize the overall registration error [25]:

RY t% = arg ming ¢ Z d(p;; Rq; +t)
(pa) € C

Here, the set of correspondence C establishes the necessary links between points

37



State-of-the-art of LiDAR-Only Odometry algorithms

L
@ p. ¢
P °
R -\ \ p
o © O
o @ o
(a) point-to-point (b) point-to-line (c) point-to-plane

Figure 5.1: Typical distance metrics used in ICP. (a) Point-to-point distance is
a straight-forward as the Euclidean distance between two points. (b) and (c) The
point-to-higher-level feature (e.g. line or plane) is calculated as the shortest distance
to the reconstructed line or plane using the target points [25].

in the source point cloud P and points in the target point cloud Q:

C={(p,a)|pePqel}.

Within the ICP algorithm, the determination of the optimal transformation
between the source and target is achieved iteratively by recomputing a new set of
correspondences C in each subsequent iteration k [25]. This recomputation relies on
the last determined transformation, given by the rotation R*~! and translation t*~!,

from the previous iteration k1 [25].

5.2.2 Distance measure in Registration Residual

The first essential component of an ICP implementation involves determining the
specific geometric elements that will be used to define the error residual [25]. Points,
lines, and planes are the most frequently chosen geometric features, as summarized in
Figure 5.1. Point-to-point ICP represents the most basic implementation, minimizing
the Euclidean distance between the corresponding points in the two clouds [25].
While this point-to-point cost function is simple and easy to implement, it can be

highly susceptible to noise and outliers present in the data [25].

Distances to lines are also used as an error metric [25]. The point-to-line distance
measures how far each point in the source cloud is from nearby linear features
reconstructed in the target cloud [25]. This strategy often yields better results, es-

pecially in environments with clear structural patterns and strong linear geometry [25].

Distance can also be measured between points in the source cloud and planes
(local surfaces) identified within the target point cloud [25]. This point-to-plane
approach is generally more robust against noise and is capable of achieving higher
alignment accuracy when operating in environments that feature numerous planar

surfaces [25].

38



State-of-the-art of LiDAR-Only Odometry algorithms

5.2.3 Determining Correspondences

The second core component common to all ICP algorithms is the process of data
association, or the correspondence search, linking points between the source P and
the target Q [25]. In its most elementary form, determining the correspondences
between P and Q is achieved geometrically by finding the nearest neighbor ¢ in the
target Q for every point p in the source P [25]. This search specifically utilizes the

iteratively updated transformation (Rkil7 tk_l) and is formally expressed as:

C={(p,a) | p €Pa=argminge o|lp— (R*'a +¢*71)|| }

However, executing this nearest-neighbor operation is typically computationally
expensive [25]. To ensure that LIDAR odometry can operate in real-time, two widely
adopted strategies are employed to mitigate the correspondence search time: the
first involves reducing the set of potential candidates for a correspondence, and the
second entails utilizing a search strategy fundamentally different from the traditional

distance-based nearest neighbor approach [25].

5.3 Direct matching approach

As previously established, LiDAR-only odometry functions by meticulously analyzing
successive LiDAR scans through the process of scan matching to ascertain a robot’s
current position [2]. LiDAR-only odometry methodologies can be broadly categorized
into three distinct types, primarily based on the specific technique employed for
scan matching: direct matching, feature-based matching, and deep learning-based
matching [2]. Figure 5.2 illustrates the overarching summary of the literature

concerning LiDAR~only odometry approaches.

The direct matching method represents the most straightforward approach in
LiDAR-only odometry, as it explicitly computes the geometric transformation that
aligns two consecutive scans [2]. Among the available techniques, the Iterative Closest
Point (ICP) algorithm remains one of the most widely adopted solutions [2]. ICP
iteratively minimizes an error metric—typically the sum of squared distances between
corresponding points—until convergence [2]. The resulting transformations between

successive scans are then used to estimate the robot’s trajectory [2].

Notwithstanding its fundamental role, the ICP algorithm is known to have certain
limitations; notably, it exhibits susceptibility to falling into local minima during
optimization, a characteristic that makes a reliable initial pose guess crucial for
success [2]. Furthermore, the algorithm is sensitive to the presence of noise, which in-
cludes data artifacts generated by dynamic objects within the scene [2]. Additionally,
the inherent iterative nature of ICP can lead to substantial computational expense,
potentially resulting in prohibitively slow computation speed in real-time applica-

tions. Consequently, considerable research effort has been focused on enhancing the

39



State-of-the-art of LiDAR-Only Odometry algorithms

Method Year Contributions

ICP [9] 1992 iteratively calculate closest point with point-to-point distance
Chen and Medioni [25] 1992  point-to-plane ICP
TrICP [26] 2002 improves ICP with trimmed squared method
NDT [10] 2003 leverages normal distribution for registration
Generalized-ICP [122] 2009 integrates point-to-point ICP and point-to-plane ICP

Direct NICP [123] 2015 extends Generalized-ICP by incorporating surface normals
Hong and Lee [53] 2017 introduce probabilistic NDT representation
IMLS-SLAM [32] 2018 IMLS representation for scan-to-map matching
LiTAMIN [156], LITAMIN2 [157] 2021 faster registration and modified cost function using KL divergence
DLO [20] 2022 scan-to-map matching with selected keyframes using convex hull
CT-ICP [31] 2022 interpolates the positions for continuous trajectory
KISS-ICP [137] 2023 point-to-point ICP with adaptive thresholding
LOAM [162, 163] 2014  extract edge and planar feature points for registration
LeGO-LOAM [125] 2018  leverages ground segmentation within LOAM framework
SuMa [7] 2018 utilizes surface normals from surfel-based map
SuMa++ [24] 2019  performs semantic ICP with semantic labels from RangeNet++ [95]

Feature F-LOAM [139] 2021 emphasizes horizontal features to minimize false detections

U Zhou et al. [176], m-LSAM [177] 2021 introduces plane adjustment in indoor situations

MULLS [104] 2021  scan-to-map multi-metric linear least square ICP
NDT-LOAM [22] 2021  combines weighted NDT and feature-based pose refinement
E-LOAM [45] 2022 performs D2D-NDT with geometric and intensity features
R-LOAM [101], RO-LOAM [102] 2022 extracts 3D triangular mesh features from reference object
Wang et al. [141] 2022  coarse-to-fine odometry with NDT and PLICP
VoxelMap [160] 2022 leverages probabilistic plane representation and adaptive voxel construction
LO-Net [80] 2019  scan-to-scan LiDAR odometry network

Deep  LodoNet [173] 2020 select MKPs for odometry estimation
Cho et al. [27] 2020 unsupervised learning with VertexNet and PoseNet

Figure 5.2: The overarching summary of LiDAR-only odometry. Direct, Feature,
and Deep represent Direct, Feature-based, and Deep Learning-based matching each
[2].

practical performance of the ICP algorithm to achieve improved odometry results [2].

As will be demonstrated in subsequent subsections, conventional LiDAR odometry
typically calculates a discrete odometry estimate each time a new LiDAR point cloud
is received [2]. Conversely, an increasing number of methods are now aiming to model
a continuous trajectory, effectively emulating the smooth, continuous motion of an

actual physical robot [2].

5.3.1 KISS-ICP

The KISS-ICP method proposes a notably simple yet highly resilient approach for
incrementally estimating the trajectory of a moving LiDAR sensor, leveraging the
established Iterative Closest Point (ICP) algorithm [4]. This strategy departs signifi-
cantly from numerous contemporary odometry pipelines that frequently necessitate
intricate feature extraction or intensive optimization routines [4]. Instead, KISS-ICP
prioritizes both reliability and operational simplicity by judiciously integrating a
compact set of well-conceived techniques that collectively enhance its stability and
final pose accuracy. Key components incorporated into this framework include robust
motion prediction, dedicated motion compensation (deskewing), efficient voxel-based
subsampling, a sophisticated adaptive mechanism for correspondence association,

and ultimately, a robust optimization framework [4].
The methodology is meticulously structured around four principal phases:

Motion Prediction and Scan Deskewing

40



State-of-the-art of LiDAR-Only Odometry algorithms

To effectively counteract the geometric distortions inherent to the LiDAR acqui-
sition process—distortions introduced by the sensor’s continuous movement during
the scan—KISS-ICP implements a constant velocity motion model [4]. This model
is utilized to predict the robot’s forthcoming pose based upon an analysis of its
two most recent pose estimations. By employing this calculated model, the algo-
rithm can derive both linear (v; ) and angular (w;) velocities, subsequently applying
a temporal correction to each individual LiDAR point according to its relative
acquisition timestamp. This critical process yields a deskewed point cloud, ensur-

ing the geometric integrity of the data by eliminating motion-induced deformation [4].
Point Cloud Subsampling

Instead of relying on computationally heavy processes for the extraction of specific
geometric features, KISS-ICP opts for a voxel-based downsampling of the point cloud
[4]. This choice serves to drastically improve computational efficiency without sacri-
ficing the underlying spatial structure crucial for registration quality. The process
involves overlaying a 3D voxel grid onto the cloud, with each voxel constrained to
retain only a limited number of representative points [4]. This necessary subsampling
is strategically executed in a dual-stage manner, controlled by parameters o and [,
distinguishing between the required filtering for local map updates and the filtering
specifically optimized for the subsequent ICP registration step. This dual-filtering
approach effectively balances processing speed with the preservation of alignment

quality [4].
Local Map and Adaptive Correspondence Estimation

Following the deskewing and downsampling procedures, each processed scan is
meticulously registered against a local map, which is itself dynamically constructed
from the integration of multiple previous scans [4]. Point-to-point correspondences
are initially identified via a nearest-neighbor search within the established voxel grid,
but are then rigorously filtered using an adaptive threshold 7 [4]. Crucially, this
threshold is not static; rather, 7 is determined dynamically by estimating the pose
deviation (AT observed between the predicted motion and the corrected pose during
previous ICP iterations. This intelligent, data-driven mechanism ensures the robust
rejection of outliers and maintains the algorithm’s stability even when faced with

sensor noise or sudden, abrupt changes in motion [4].

Alignment Through Robust Optimization

The final stage is dedicated to refining the alignment by calculating the corrective
transformation AT, through a robust point-to-point ICP optimization [4]. The

residual errors existing between the corresponding points are minimized using the

41



State-of-the-art of LiDAR-Only Odometry algorithms

German—McClure robust kernel; this specific kernel is selected for its capacity to
significantly limit the influence of severe outliers on the optimization process [4]. The
algorithm continuously updates the overall global pose T} by effectively compounding
the predicted motion Tjreq+ with the calculated ICP correction AT, [4]. This
iteration continues until the magnitude of the applied correction drops below a defined
convergence threshold ~y, notably without imposing any fixed or predetermined limit

on the number of optimization iterations [4].

At its core, the design of KISS-ICP shows that focusing on a lean but carefully
crafted processing pipeline can achieve both simplicity and precision in LiDAR odom-
etry. This balance allows the algorithm to remain robust across diverse conditions

while keeping computational costs remarkably low [4].

5.3.2 GenZ-ICP

he GenZ-ICP (Generalizable and Degeneracy-Robust LIDAR Odometry) framework
introduces a methodology for LIDAR odometry that exhibits high generalizability and
robustness against geometric degeneration conditions [3]. It overcomes the inherent
limitations of conventional ICP approaches that rely on a single error metric [3].
Traditional systems can suffer significant performance degradation in geometrically
poor contexts, such as long corridors or open spaces, because the efficacy of point-
to-point and point-to-plane metrics varies considerably depending on the specific

environmental structure [3].

GenZ-1CP tackles this challenge innovatively by jointly leveraging both error
metrics within an adaptive, geometry-aware optimization scheme [3]. The algorithm
dynamically balances the contribution of point-to-point and point-to-plane resid-
uals using a weighting factor, a, which actively reflects the local planarity of the
environment. This adaptive weighting allows the system to autonomously calibrate
its behavior based on the context, thereby guaranteeing accurate and stable pose

estimation across diverse scenarios [3].
Problem Formulation

The algorithmic objective is to estimate the optimal rigid-body transformation
necessary for aligning consecutive LiDAR scans [3]. This goal is achieved by min-
imizing a cost function that explicitly incorporates the residuals of both metrics
(point-to-plane and point-to-point) [3]. The adaptive weight « is the crucial element,
as it determines the respective contribution of each residual based on the detected

geometry [3].

Planarity Classification

42



State-of-the-art of LiDAR-Only Odometry algorithms

Each individual correspondence is categorized as either planar or non-planar [3].
This distinction relies on analyzing the eigenvalue distribution of neighboring points,
a method that quantifies the local surface variation using the expression /\1+§7§+>\3
[3]. If the calculated variation is below a defined threshold, the point is considered
planar and utilizes the point-to-plane metric; otherwise, it is treated as non-planar

and uses the point-to-point metric [3].
Residual and Jacobian Definition

Error residuals are defined differently for the two categories [3]:

e In planar regions, residuals are calculated as the dot product between the

positional difference and the surface normal vector.
¢ In non-planar regions, the direct positional difference is used.

Both residuals are subsequently linearized to obtain their respective Jacobians, a

step necessary for solving the least-squares optimization problem [3].
Adaptive Weighting Optimization

The weight « is automatically updated at every iteration, calculated as the
ratio between the number of planar correspondences (IVp;) and the total number of

correspondences (Np + Npo) [3]:

Ny

Q= —"" "
Npl—i-Npo

This mechanism allows for seamless transitions between highly structured envi-
ronments (where planar features like floors and walls dominate) and unstructured
environments (such as vegetation or clutter) [3]. Consequently, the resulting cost
function fuses the strengths of both error models, significantly elevating the accuracy
and robustness in geometrically heterogeneous scenes [3]. Thanks to this adaptive
mechanism, GenZ-ICP demonstrates notable generalizability and resistance to de-
generation, maintaining high-precision pose estimation even in challenging or weakly

constrained conditions [3].

5.3.3 MOLA-LO

MOLA-LO (MOLA LiDAR Odometry) functions as a central module within the
broader MOLA (Modular Optimization for Localization and Mapping) framework,
offering an open-source, flexible solution specifically designed for LiDAR-based mo-
tion estimation [5]. Developed using C++, the system places a strong emphasis
on achieving configurability, modularity, and inherent robustness by integrating

customizable point cloud processing pipelines with highly optimized variants of the

43



State-of-the-art of LiDAR-Only Odometry algorithms

Iterative Closest Point (ICP) algorithm [5].
The operational sequence of MOLA-LO can be divided into the following stages:
Data Acquisition and Conditioning

MOLA-LO begins by processing raw 3D LiDAR point clouds [5]. To mitigate
geometric distortions resulting from the sensor’s motion during data capture, the
system offers optional motion compensation (deskewing), provided that per-point
timestamps are available [26]. Subsequent pre-processing steps, such as the removal of
outliers and voxel grid downsampling, are then applied to simultaneously reduce noise
and decrease the overall computational burden while critically preserving essential

geometric features [26].
Local Map Maintenance

In a departure from simple scan-to-scan approaches, MOLA-LO actively main-
tains and utilizes a local map [5]. This map is compiled from previously integrated
scans, thereby providing a robust and stable reference against which new scans can be
accurately aligned. The local map undergoes dynamic updates as the robot traverses
the environment, a feature that significantly enhances resilience in environments with
sparse features. Furthermore, the system incorporates keyframe selection capabilities,
facilitating the construction of sparser maps or supporting higher-level relocalization
tasks [26].

Scan-to-Map Registration

An initial pose estimate for the registration process is first obtained through
motion prediction (e.g., utilizing a constant velocity model or relying on the most
recent odometry estimate) [5]. MOLA-LO then employs the specialized mp2p__icp
filtering and ICP pipelines to align the current scan with the dynamic local map.
This alignment is achieved by determining nearest neighbor correspondences and

iteratively minimizing an error metric between the matched points [5].

The optimization routine seeks the rigid-body transformation (defined by rotation

R and translation t) that minimizes the total alignment error E(R,t):

N
E(R,t) = Z IRp; +t — q|”
i=1

Depending on the configuration, the core ICP process is highly flexible and may
implement variants such as point-to-point, point-to-plane, Generalized ICP (GICP),
or Normal Distributions Transform (NDT) [26]. The iterative optimization proce-

dure continues until a defined convergence criterion is met, at which point the final

44



State-of-the-art of LiDAR-Only Odometry algorithms

estimated transformation updates the robot’s pose [5].
Pose Update and Covariance Estimation

The transformation obtained from ICP registration represents the relative motion
between consecutive scans and is integrated over time to build the global trajectory
[5]. In addition, MOLA-LO estimates the covariance matrix of the current pose,
offering a quantitative expression of uncertainty. This uncertainty information is
particularly useful when integrating MOLA-LO into higher-level systems such as

SLAM or advanced sensor fusion frameworks [26].
System Output and Integration

The final 6-Degrees-of-Freedom (6-DOF') pose (position and orientation) is pub-
lished in real-time, often utilizing ROS 2 interfaces, for immediate consumption by
navigation and mapping systems [5]. MOLA-LO also furnishes dedicated visualization
tools (e.g., mola_ viz) that enable real-time monitoring of the robot’s trajectory, the

evolution of the local map, and the streaming LiDAR data [26].

In conclusion, MOLA-LO is a modular and high-performance LiDAR odometry
framework designed for adaptability across different environments and system setups.
Its main principles emphasize reliable motion estimation, reusability, and real-time
compatibility, making it a strong foundation for broader localization and mapping

pipelines [5, 26].

5.3.4 SiMplLe

SiMpLe (Simple Mapping and Localization Estimation) represents a LIDAR odome-
try algorithm distinguished by its minimal configuration requirements, offering an
efficient and precise solution for motion estimation without necessitating complex
front-end processing [6]. In common with all Simultaneous Localization and Mapping
(SLAM) systems, SiMpLe confronts the interdependent challenges of localization
and map construction, where the accuracy of one process inherently supports the
other [6]. The algorithm’s primary strength lies in its simplicity—it is intentionally
designed for ease of comprehension, implementation, and parameter tuning—while

consistently delivering robust performance in practical, real-world scenarios [6].

SiMpLe differentiates itself from traditional scan-to-scan registration techniques
by employing a scan-to-map registration approach [6]. This strategic design choice
is crucial, as it maximizes the spatial overlap between the current LiDAR measure-
ments and the comprehensive, previously mapped data. This method effectively
compensates for the inherent reduction in spatial resolution often observed at the

sensor’s longer sensing ranges [6].

45



State-of-the-art of LiDAR-Only Odometry algorithms

The workflow of the algorithm is structured into three main phases:
Input Scan Spatial Subsampling

The procedure commences with the spatial subsampling of the incoming LiDAR

scan Py to generate a reduced scan, IP’Z,, using a fixed radius 7pew [6].

In contrast to random or conventional voxel-based sampling, this technique is
designed to prevent aliasing artifacts that can arise from rigid discretization [6]. A
KD-tree structure is utilized to execute the efficient removal of redundant points.
Optionally, a minimum range filter (7,,;,) can be applied to discard points that are
too proximal to the sensor [6]. This phase significantly curtails the point cloud size
while preserving essential environmental information, thereby boosting computa-
tional performance. For applications where resources are abundant, such as offline
processing, this subsampling step can be bypassed to allow for full-resolution analysis
[6].

Point Cloud-to-Map Registration

Subsequently, SiMpLe registers the newly subsampled scan P} against the es-
tablished subsampled map M) _; [6]. The objective is to estimate the optimal

transformation T;_,; that best aligns the two sets of points.

This registration relies on two core elements: an objective function and a search
algorithm [6]. The objective function assigns a score to prospective pose hypotheses
based on the quality of alignment between the new scan points and the existing
map structure [6]. The search algorithm systematically explores the pose space to

maximize this score [6].

The SiMpLe objective function rewards alignments where new scan points are
located in close proximity to existing map points [6]. For any j-th pose estimate
Tlﬁk’j, each point p;C il from the current scan is paired with its nearest map point

m?ﬂ_lﬂ.‘j. The distance d;); is calculated as:

|7
d;); = H';e,i\j - >;c—1,i\j”

corresponding reward r;;:

2
iy
Tl|] X exp —20_27

reward
The transformation that maximizes the cumulative reward is ultimately selected

as the optimal estimate:

46



State-of-the-art of LiDAR-Only Odometry algorithms

n,
Ty = argmax; Zri\j
i=1
This reward-based formulation shares conceptual ties with ICP but substitutes
explicit error minimization with a proximity-based reward [6]. This eliminates the
requirement for complex pre-matching or feature extraction steps. The bandwidth
parameter opeward allows for tuning the sensitivity to point distances, balancing

precision against robustness [6].

To efficiently search for this optimal transformation, SiMpLe defaults to the
Broyden—Fletcher—Goldfarb—Shanno (BFGS) quasi-Newton optimization method,
although other gradient-based or stochastic alternatives can also be employed [6].
The optimization procedure halts when the improvement in the registration reward

drops below a specified threshold, ey [6].

A constant velocity motion model is employed to furnish an initial pose estimate,
a critical step that both accelerates convergence and helps mitigate the risk of falling
into local extrema:

Tiok = Tisg-nA

Where the incremental transformation A is derived from the previous two poses:

-1
A= Tl%(k*Q)Tlﬁ(k_l)

Map update

Upon successful convergence, the existing map is updated using the latest reg-
istration result Ty, [6]. The newly transformed scan P} is integrated into the
subsampled map M), _; while rigorously enforcing a minimum spatial separation ry,qp
between the map points [6]. To prevent unbounded map growth, any points situated
beyond the sensor’s maximum operational range 7,4, from the robot’s current pose
are selectively pruned [6]. The fundamental scan-to-map registration employed by
SiMpLe effectively mitigates alignment biases that are often introduced by LiDAR
scan patterns. Furthermore, this approach guarantees the maximum possible geomet-
ric overlap between consecutive observations, leading to enhanced overall registration

accuracy when compared to typical scan-to-scan matching techniques [6].

Thus, SiMpLe [6] offers a lightweight, efficient, and accurate LiDAR odometry
approach. Its effectiveness stems from combining scan-to-map alignment with a
reward-based optimization scheme. The algorithm’s minimal design, low compu-
tational load, and proven robustness in field conditions make it a solid choice for

standalone odometry or seamless integration within SLAM systems [6].

47



Chapter 6

Benchmark of the Selected
Algorithms

This chapter details the methodological framework used for comparing the perfor-
mance of four specific LIDAR odometry algorithms: KISS-ICP, GENZ-ICP, MOLA-
LO, and SiMpLe. The central objective of this benchmark is to rigorously assess the
effectiveness and resilience of each algorithm across two contrasting environments
[27]. The first, represented by the KITTI Odometry dataset, offers a canonical,
well-understood urban and rural scenario widely utilized by the research community
[28]. The second, a proprietary dataset collected by the PIC4SeR research center,
introduces unique challenges associated with minimal geometric texture, dense vege-

tation, and a significant scarcity of unique landmarks.

The evaluation relies on standard quantitative measures, mainly the Absolute
Trajectory Error (ATE) and the Relative Pose Error (RPE), which assess positional
and orientational accuracy [2]. Alongside these, computational efficiency is also
analyzed to understand each method’s overall practicality. This combined assessment
helps clearly outline the strengths and limitations of each approach, identifying which

algorithms are better suited for unstructured and demanding environments.

6.1 KITTI Odometry Dataset

The KITTI Vision Benchmark Suite, a seminal contribution from the Karlsruhe
Institute of Technology and the Toyota Technological Institute of Chicago, has solidi-
fied its position as a foundational standard for evaluating perception and odometry
algorithms in the context of autonomous driving [28]. The KITTI Odometry segment
is particularly prevalent for testing the capabilities of both visual and LiDAR-based
motion estimation systems [2, 27]. Data acquisition was performed using a synchro-
nized suite of sensors mounted on a vehicle, which included stereo cameras (grayscale
and color) and a Velodyne HDL-64E 64-beam LiDAR sensor [28].

The dataset is composed of 22 sequences. The initial 11 sequences (00 to 10)

48



Benchmark of the Selected Algorithms

Figure 6.1: Example images from the KITTI Odometry dataset (sequence 00, frame
000066). Left: grayscale version. Right: original color image. [28]

are designated for benchmarking, as they are accompanied by high-precision ground
truth data derived from a GPS/IMU system. The remaining 11 sequences (11 to
21) are reserved for official online challenges and lack publicly released ground truth
[28]. The data was collected across various driving and environmental conditions,
encompassing diverse urban, rural, and highway settings [28], as it can be seen in

Figure 6.1.

Despite its benchmark status, the KITTI dataset imposes significant constraints
that rigorously test algorithm robustness [27]. The limited angular resolution of
the Velodyne HDL-64F can compromise performance in environments where geo-
metric detail is sparse, such as long highway stretches or expansive parking areas
[2]. Furthermore, the sensor’s 10 Hz scan rate, coupled with vehicle velocity, of-
ten results in low overlap between consecutive point clouds, thereby complicating
the scan registration process. A critical aspect of many KITTI sequences is their
open-loop trajectory; trajectories do not close, preventing algorithms from employ-
ing loop closure techniques essential for correcting the long-term accumulation of
odometry errors [2]. This open-loop design means odometry errors, especially the

Relative Pose Error (RPE), tend to compound significantly over the trajectory length.

The presence of dynamic objects—moving vehicles, pedestrians, and cyclists —
introduces considerable complexity. These objects inject "outliers" or kinetic points
into the point clouds, which must be effectively identified and filtered to prevent
them from corrupting the inter-frame alignment [2]. This is a known vulnerability
for many standard Iterative Closest Point (ICP)-based methods unless they integrate
highly robust outlier rejection strategies. While the provided ground truth is gener-
ally reliable, its accuracy can degrade in areas with poor satellite signal reception
(e.g., under bridges), a factor that must be considered during detailed error analysis
[28], [29]. The need to rely on refined ground truth from sources like SemanticKITTI

for the most accurate evaluations further highlights this issue [29)].

The KITTI Odometry dataset provides a solid foundation for evaluating Li-
DAR odometry methods. However, its specific characteristics—such as sparse data,
the presence of dynamic objects, and limited opportunities for loop closure—pose

significant challenges that thoroughly test algorithm robustness.

49



Benchmark of the Selected Algorithms

45.3736

@ Start
® End

45.3734 §

45.3732

45.3730

Latitude

45.3728

45.3726

45.3724

7.7882 7.7884 7.7886 7.7888 7.7890 7.7892
Longitude

Figure 6.2: Aerial view of the trajectory of the vehicle in the vineyard, indicating
the start (red) and end (green) points.

6.2 Vineyard Dataset

This private dataset was collected by the PIC4SeR research center in a vineyard
near Torino, Italy, as shown in Fig 6.2. Data acquisition spanned approximately
25 minutes using a Husky Unmanned Ground Vehicle (UGV) and was stored in a
rosbag? file, constituting a unique and highly challenging benchmark for localization
systems. This environment presents a combination of factors that stand in sharp
contrast to typical urban benchmarks like KITTI, focusing on the difficulties inherent

to unstructured natural environments [30, 31].

The UGV is equipped with a rich and well-synchronized sensor suite. Its primary
odometry sources are two 3D LiDARs, which increase point density and widen the
field of view—an advantage in unstructured and complex environments. The UGV

also carried:

o An Inertial Measurement Unit (IMU), providing high-frequency angular velocity

and linear acceleration data.

e A high-precision GPS receiver, which supplies a reliable reference trajectory
confirmed by topics like /husky/global_localization/odometry/gps, essential

for performance evaluation.

« RGB and depth cameras, offering supplementary data on the visual character-

istics of the environment.

The UGV’s trajectory follows a repetitive back-and-forth pattern, characteristic

of agricultural operations. The environment is defined by parallel rows of grapevines,

50



Benchmark of the Selected Algorithms

Figure 6.3: Screenshot from the onboard camera, showing the dense vegetation and
uneven terrain of the vineyard environment.

mostly level ground (minor bumps notwithstanding), and a pronounced structural

monotony [5].

The principal technical challenge is the structural degeneracy caused by the rows
of grapevines [30, 32]. Unlike urban settings with diverse, rigid geometric features, the
vineyard consists of repetitive, parallel structures. This severe lack of non-repeating
landmarks makes it extremely difficult for standard LiDAR odometry (particularly
ICP-based algorithms) to establish unique correspondences between successive scans
[32]. This often leads to rapid pose divergence and accumulation of odometry drift
[32, 33]. The sharp 180-degree turns at the end of each row also impose significant
transient challenges. These environment’s physical characteristics can be seen in the

images Fig 6.2 and Fig 6.3.

Furthermore, the dense and complex vegetation is a major source of noise. The
foliage, high grass, and irregular growth create a highly unstructured and "soft"
point cloud [31]. LiDAR beams are frequently scattered or obstructed by leaves,
resulting in incomplete and noisy data. The soft nature of the vegetation means
points are not fixed to rigid bodies and can move with the wind, effectively adding a
layer of dynamic noise to the scene. The visual data confirms a scarcity of unique
visual landmarks, complicating multimodal odometry [33], [32] which must address

obstacles like "irregular planes" and insufficient vertical constraints [33].
In conclusion, the vineyard dataset is a rigorous benchmark that forces algorithms

to maintain accurate pose estimation in an environment characterized by repetitive

geometric structures, elevated noise levels from complex vegetation, and the absence

o1



Benchmark of the Selected Algorithms

of the clear, rigid features typically exploited by most localization algorithms. It
represents a crucial test for generalizability to natural, unstructured domains, similar
to the motivations behind Wild-Places [31].

6.3 Test Environment Setup

6.3.1 Hardware and Software Components

To guarantee a fair and reproducible evaluation of the selected odometry algorithms,
precisely documenting the computational setup is paramount. All experiments were
conducted on a desktop computer utilizing an AMD Ryzen 5 5600G with Radeon
Graphics, which provided a base clock frequency of 3.90 GHz. The system featured
16 GB of RAM operating at 2133 MT/s, dedicating 15.3 GB to the operating system.
Significantly, the experiments relied solely on CPU computation, lacking any dedi-
cated GPU acceleration. The available 466 GB of storage easily accommodated the
required datasets and all generated output files. As this hardware configuration falls
within the mid-range category, it intrinsically curtailed computational throughput,
meaning measured performance metrics will invariably appear lower than those

reported in original publications that often leverage specialized computing resources.

The software environment was based on a dual-boot setup, with Windows 11 Pro
(version24H2) as the host system. All experimental work was carried out in Ubuntu
22.04.5 LTS, running under the Windows Subsystem for Linux 2 (WSL2). This setup
hosted the ROS 2 Humble distribution, chosen for its compatibility with the LiDAR
drivers and stability under WSL2. Core dependencies for point cloud processing
included PCL, Eigen3, Ceres Solver, and yaml-cpp. To prevent version conflicts
and ensure consistent dependency management, all Python packages were isolated

within a dedicated virtual environment (venv).

It must be stressed that the performance values presented here do not aim for
perfect reproduction of the results reported in the original algorithm papers. The
deliberate use of a CPU-only, mid-range setup, coupled with the virtualization over-
head of WSL2, fundamentally restricted the achievable computational efficiency.
Consequently, algorithms known for their high computational complexity, such as
SiMpLe-LO, might show increased drift or reduced frame rates when compared
to their official benchmarks. Therefore, readers must interpret these results as a
balanced comparative analysis conducted under well-defined hardware limitations,

rather than a direct validation of published performance metrics.
Vineyard Dataset Acquisition Platform: Sensors and Calibration

The proprietary Vineyard dataset was collected utilizing a Clearpath Husky, a
robust, four-wheeled, teleoperated Unmanned Ground Vehicle (UGV) known for its

52



Benchmark of the Selected Algorithms

stability on uneven agricultural terrain. All sensors were firmly mounted onto a
custom rigid frame to minimize vibration and guarantee fixed relative positioning
during data collection. To ensure temporal integrity, the multi-sensor data streams

were precisely synchronized and recorded in the .mcap format.

A Livox Mid-360 LiDAR (10 Hz) served as the main ranging device. Its 360°
horizontal field of view and wide vertical coverage (from —7° to +52°) were crucial
for modeling both the ground and the dense canopy. With a range of 0.1-40 m, a
0.2 m resolution, and an angular accuracy of £0.15° (at 1o), this LIDAR generated
the dense, high-quality point clouds required for complex natural environments.
Complementary visual context was provided by an Intel RealSense D435 RGB-D
camera (30 Hz), which delivered 640 x 480 pixel resolution images and a depth sensing

range up to 30 m.

Motion refinement was handled by a MicroStrain 3DM-GX5 Inertial Measurement
Unit (IMU) (100 Hz), providing high-rate motion data crucial for mitigating drift
(accelerometer resolution: 0.02 mg; gyroscope: 0.003°/s). Ground-truth positioning
was established via a Swift Navigation Duro RTK-GPS receiver (5 Hz), delivering
centimeter-level accuracy (typically 1-2 ecm horizontal) under RTK correction, es-
sential for reliable benchmarking. This combination of wide-FoV LiDAR, depth
camera, high-precision IMU, and RTK-GPS enabled the generation of a consistent
and richly detailed dataset, capturing both static vineyard geometry and dynamic

vehicle motion.

6.3.2 Installation and Compilation of the Algorithms

Each odometry algorithm demanded a distinct installation process tailored to its

specific technical dependencies.

We used two approaches for KISS-ICP. The straightforward pip install
kiss-icp was used in KITTT trials. In order to decompress the.mcap.zstd files for
the ROS 2-based vineyard dataset, we compiled and installed a specialized zstd

plugin after cloning the official GitHub repository into the ros2_ws workspace.

GENZ-ICP installation began after strictly verifying prerequisites: Linux com-
patibility, CMake > 3.14, a C++17 compiler, and libraries such as Eigen3, PCL, and
ros2bag. The source code was then cloned and compiled using the colcon build
tool within the ROS 2 workspace.

The MOLA-LO framework required confirming ROS 2 dependencies (tf, sensor_|
msgs/PointCloud?2, evo, etc.). After activating the ROS 2 environment, we compiled
the main MOLA modules and the odometry package, validating the setup with the

mm-viewer visualization tool.

93



Benchmark of the Selected Algorithms

The SiMpLe-LO algorithm demanded the most extensive setup, including tools
such as git, g++, CMake, and libraries like Eigen, Intel TBB, nanoflann, and D1ib.
Following meticulous environment configuration, we cloned the repository and built
the source code using the standard make procedure, generating a standalone exe-

cutable.

In the end, the original laptop plan was shelved because virtualization limitations
made it impossible to install Ubuntu. In order to comprehend why the observed
computational efficiency is still marginally lower than the peak performance stated
in the original algorithm references, this constraint compelled the consolidation of all

tests onto the desktop computer.

6.4 Experimental Procedure

This section details the precise configurations and execution routines we adopted for
each odometry algorithm. Our primary objective was to establish a reproducible,
tightly controlled testing environment, essential for ensuring fair comparisons and
minimizing external variability. We executed all algorithms using semi-automated,

script-based workflows to guarantee consistency and maximize efficiency.

6.4.1 KISS-ICP

KITTI Odometry Dataset

For the KITTI dataset, we ran KISS-ICP following its official command-line
workflow. To maintain a clean and consistent runtime, we first created and activated
a dedicated Python virtual environment, isolating all dependencies for guaranteed

reproducibility.

The entire batch of KITTI sequences (00-10) was processed via a comprehensive
Bash script, achieving full automation. This script leveraged an iterative loop that
precisely invoked the kiss_icp_pipeline command, supplying specific, custom pa-
rameters. Essential to this process was the use of the -dataloader kitti option,
which designated the input format, alongside ~sequence "SEQ" to facilitate dynamic
sequence loading. Crucially, the -visualize flag was deliberately excluded to pre-
vent graphical overhead from skewing the performance measurements. Upon each
successful execution, the required trajectory estimates were automatically generated

and persisted for subsequent analysis.
Vineyard Dataset

Execution on the proprietary vineyard dataset demanded a two-phase approach.

54



Benchmark of the Selected Algorithms

Unlike the simple KITTI setup, the custom dataset’s ROS 2-based configuration
required the coordination of multiple terminals to handle the distinct LiDAR, IMU,
and GPS data streams.

The baseline evaluation used default parameters, coordinating several ROS 2

terminals simultaneously:

« Data Playback: We initiated streaming with ros2 bag play 2025_06_25_vin

eyard_runl_O.mcap -clock -start-paused.

o TF Relay: We utilized two distinct terminals to execute the ros2 run relay
commands. This setup was essential for republishing and seamlessly consoli-
dating both the static and dynamic TF data under one singular and unified t£
topic.

e Algorithm Node: We launched the odometry node via ros2 run kiss_icp
kiss_icp_node -ros-args, remapping the point cloud topic to /husky/senso

rs/lidar3d_0/points and correctly setting the appropriate frames.

e Recording: Finally, a separate terminal was deployed to execute ros2 bag
record, ensuring the reliable capture of the odometry, GPS, and encoder

outputs necessary for subsequent ground truth comparison.

Following the baseline, we conducted a refined run. We pre-processed the raw
ground-truth data to remove known timestamp errors and outliers. Crucially, we sup-
plied a tuned configuration file (advanced.yaml) to improve performance under vine-
yard conditions—specifically targeting robustness against dense vegetation, repetitive
geometry, and uneven surfaces. The modular launch system (odometry_launch.py)
managed node remapping, conditional RViz visualization, and parameter loading,

ensuring the process remained fully reproducible.

6.4.2 GENZ-ICP

KITTI Odometry Dataset

A preliminary step was essential here: unlike KISS-ICP, GENZ-ICP strictly
requires ROS 2-compatible sensor_msgs/PointCloud2 messages as input. We ad-
dressed this by converting the KITTI data from .bin to the .db3 ROS bag format
using a custom Python script that serialized each scan and its timestamp into
PointCloud2 messages.

The process required a multi-terminal ROS 2 setup to achieve completely syn-

chronized execution:

o Playback: We ran ros2 bag play with flags -clock -start-paused for

synchronization and -read-ahead-queue-size 50 to handle buffering.

95



Benchmark of the Selected Algorithms

e Algorithm: We launched the odometry via ros2 launch genz_icp odometry
.launch.py, mapping the topic to /points_raw and disabling visualization to

secure accurate performance profiling.

e Recording: The ros2 bag record command was initiated to capture all
necessary outputs, including the /genz_odometry topic and other relevant

debug streams.

Due to memory constraints on our mid-range hardware, process termination
(“Killed”) occasionally occurred on larger sequences (02, 08, 09); for these, we recorded
only essential topics. Post-processing required converting the output through three
stages: ROS bag — YAML — TUM — KITTI format, utilizing custom scripts
for quaternion to rotation matrix handling. Parameter tuning via the kitti.yaml

configuration was performed to ensure efficient data processing.
Vineyard Dataset

The evaluation using the vineyard data also proceeded via a two-phase protocol:
we first established a baseline using the default system parameters, followed by a
dedicated, optimized configuration. Synchronization was vital, achieved by aligning
multiple terminals to manage data replay, the republishing of TF frames, the launch of
the odometry node (ros2 launch genz_icp odometry.launch.py), and the output
recording. The subsequent optimization phase involved careful refinement of the
outdoor.yaml configuration file. This crucial step significantly reduced drift and
greatly enhanced the system’s robustness against the repetitive, dense vegetation

patterns characteristic of the vineyard environment.

6.4.3 MOLA-LO
KITTI Odometry Dataset
We executed MOLA-LO using the standalone command-line interface mola-lidar

-odometry-cli, which conveniently processes KITTT’s native .bin files directly. We

used a scripted loop for all sequences (00-10), invoking:

mola-lidar-odometry-cli -input-kitti-seq SEQ -output-tum-path

PATH-config lidar3d-O-default.yaml

Environment variables such as MOLA_INITIAL_VX and MOLA_SIMPLEMAP _MIN_ XYZ=10|
were set to precisely control the mapping behavior. We also included the -kitti-
correction-angle-deg flag, essential for correcting the known LiDAR mounting

offset. The final trajectories were exported directly in TUM format for objective

evaluation.

o6



Benchmark of the Selected Algorithms

Vineyard Dataset

Testing on the vineyard dataset began with the GUI tool mola-lo-gui-ros
bag2, which allowed us to perform quick, visual parameter tuning. The environ-
ment variable MOLA_USE_FIXED_LIDAR_POSE=true was necessary due to the dataset
lacking automated TF data. Following the visual tuning phase, final, quantitative
runs were performed using the CLI version with the optimized configuration file
lidar3d-0-default-vigna.yaml. This approach yielded quantitative reproducibil-
ity while successfully bypassing any computational overhead associated with the
GUI.

6.4.4 SiMpLe

KITTI Odometry Dataset

We executed SiMpLe-LO using its executable:
./simple -config config KITTI_offline.yaml

Each KITTI sequence was processed sequentially, producing pose estimates and
timing logs. Since these poses are generated in the LiDAR reference frame, we had to

apply a custom Python script to convert them to the KITTI standard camera frame:

-1
Team = Tvelo—scam Lvelo Tvelo_)cam

Here, Tyelo—scam 18 the rigid transformation matrix sourced from KITTI's calib.txt.
After transformation, we evaluated the results using both the internal devkit and the

official KITTT toolkit for a comprehensive accuracy assessment.
Vineyard Dataset

The original .mcap format of the vineyard dataset was incompatible with the
SiMpLe framework, which required standard .bin files. To address this, we developed
a custom script, convert_mcap_to_kitti_lidar.py. This tool efficiently extracted
point cloud data from the LiDAR topic and saved them in a format that replicated
the precise KITTI file structure. Simultaneously, we exported the ground-truth infor-

mation into a separate poses.txt file for streamlined comparison later in the analysis.

Two critical verification steps confirmed data integrity:

1. Sanity Check: check_values_pointcloud2.py verified non-NaN values and

range limits.

2. Visual Check: visualization3d_filebin.py rendered 3D point clouds using
Matplotlib, confirming the quality of the converted data visually.

o7



Benchmark of the Selected Algorithms

Finally, we performed intensive parameter optimization within a custom config.yaml,
a step necessary to ensure the algorithm’s stability and precision in the uniquely

challenging vineyard environment.

6.5 Evaluation Metrics

To conduct a comprehensive and standardized comparison of the selected LiDAR
odometry algorithms, we established a robust evaluation framework. We quantified
the performance of each algorithm using established metrics that assess both global
localization accuracy and computational efficiency. The evo library, recognized as
a standard tool for evaluating odometry and SLAM algorithms, was utilized for all

error calculations across both the KITTI and the private vineyard datasets.

6.5.1 Odometry Error Analysis

We assessed the accuracy of the estimated trajectories primarily through two metrics:
the Absolute Trajectory Error (ATE) and the Relative Pose Error (RPE).

The ATE serves as a direct measurement of the global path consistency achieved
by the estimation process. It functions by calculating the Root Mean Square Error
(RMSE) between the estimated poses and the corresponding ground truth poses,
following an initial rigid body alignment. This particular metric is indispensable for
accurately assessing the long-term accuracy and the total accumulated drift inherent
in an algorithm across the full trajectory length. To facilitate this analysis, the ATE

for each respective algorithm was computed using the specialized evo_ape tool.

Conversely, the RPE captures the local accuracy of the odometry. It calculates
the error in the pose transformation between consecutive or fixed-interval keyframes.
The RPE is particularly valuable for evaluating short-term drift and local consistency.

We derived the RPE for each algorithm using the evo_rpe tool.

Before computing either of these metrics, we ensured all estimated trajectories
were aligned with the ground truth using a rigid body transformation to neutralize
any initial positional or rotational offsets, thereby focusing the error analysis purely

on relative movement and drift.

6.5.2 Computational Efficiency

Measuring computational efficiency was vital for assessing each algorithm’s viability
for real-time applications. Our primary metric was the average processing time
per LiDAR scan. We measured this directly within the ROS 2 environment by
monitoring the time elapsed between an algorithm receiving a single point cloud and
outputting the corresponding odometry message. To guarantee the accuracy of these

measurements, we executed all tests without any graphical user interface (GUI), such

o8



Benchmark of the Selected Algorithms

as RViz, eliminating potential performance overhead from visualization. We also
recorded the total runtime for the complete trajectory, providing broader context for

the algorithm’s overall efficiency profile.

6.5.3 Robustness Evaluation

We assessed the robustness of each algorithm based on both its theoretical design
and its empirical performance within the challenging vineyard environment. This
analysis relied not on a single numerical metric but on a qualitative assessment of

how effectively each pipeline managed specific environmental stressors.

A key focus of this evaluation was the analysis of algorithm behavior when
confronted with structural monotony and a lack of distinctive features. Although the
algorithms generally demonstrated stability, certain parameter choices resulted in
significant drift, particularly evident during the 180-degree turns between vineyard
rows. This finding underscored that an algorithm’s practical robustness is highly
dependent on proper configuration. Furthermore, we assessed the algorithms’ ability
to manage occlusions and sparse data resulting from irregular foliage. We partially
mitigated this by restricting the LiDAR range, a tactic that reduced the influence
of distant, less informative data and forced a greater focus on close-range geometry.
The final parameter set adopted for each algorithm represents the best empirically
determined trade-off between accuracy and inherent robustness across the selected

datasets.

99



Chapter 7
Experimental Results

This chapter presents the experimental findings derived from the evaluation of the
selected LiDAR odometry algorithms. Our goal is twofold: to deliver both a quanti-
tative assessment and a qualitative analysis of their performance across two starkly
contrasting datasets. The first is the highly familiar KITTI odometry dataset,
which epitomizes a structured urban setting. The second is a proprietary dataset
meticulously collected within a Vineyard dataset, a domain that introduces unique

complexities such as dense vegetation, irregular terrain, and dynamic occlusions.

The chapter is organized to build a clear and logical narrative. I begin by describ-
ing the parameters chosen for each algorithm, outlining both the tuning procedure
and the reasoning behind each configuration. Next, I present the results obtained on
the KITTI dataset, followed by those derived from the vineyard experiments. Each
section includes summary tables of error statistics, visual trajectory plots comparing
estimates to ground truth, and an interpretative discussion of the outcomes. The
chapter concludes with a comparative overview that highlights the most significant
differences across datasets, examining robustness, computational cost, and the overall

suitability of each approach under distinct environmental conditions.

7.1 Parameter Selection

The performance obtained from any LiDAR odometry algorithm is critically depen-
dent on the choice of its internal parameters, which directly mediate both localization
accuracy and computational efficiency. Consequently, before detailing the experi-
mental results, it is imperative to provide an explicit and exhaustive overview of the
setup and parameter configurations adopted throughout this evaluation. This section
maps out the systematic strategy we followed for parameter tuning, covering initial
attempts and subsequent refinements, alongside the specific configurations ultimately
selected for each algorithm. Documenting these choices ensures full experimental
reproducibility and clearly explains the rationale underpinning the final parameter
selection, emphasizing the inherent trade-offs encountered between precision and

efficiency when moving between different datasets and challenging environmental

60



Ezxperimental Results

contexts.

7.1.1 Parameter tuning strategy

Parameter selection for each odometry algorithm followed a structured and iterative
process aimed at balancing accuracy and runtime efficiency. The first tests were
carried out using the default settings from the official implementations on both
the KITTI and vineyard datasets. As expected, the default configurations did not
always perform well—particularly in the vineyard dataset, where dense vegetation
and uneven ground introduced both geometric and computational difficulties. Adjust-
ments were therefore made progressively, based on repeated trials and error pattern

observation.

We then initiated a second iteration of testing, designated the "second attempt,"
specifically to refine the parameter values. During this intensive phase, we incre-
mentally adjusted individual parameters while meticulously observing their resulting
effects on both trajectory estimation and computational time. For instance, we
fine-tuned parameters such as the voxel grid resolution, the maximum number of
iterations, and the convergence thresholds to minimize drift and enhance robustness,
especially in regions characterized by sparse or noisy point cloud data. The final pa-
rameter set adopted for each algorithm represents an optimal compromise: achieving
minimal trajectory errors while maintaining execution times that allow for a fair and

meaningful comparison across all tested methods and datasets.

This systematic tuning method not only ensured fairness and repeatability across
experiments but also provided a transparent framework for comparing algorithm
performance in diverse environments and sensor conditions.

7.1.2 Algorithm-Specific Configurations

7.1.2.1 KISS-ICP

For the KISS-ICP algorithm, we employed two distinct configurations tailored to the
radically different characteristics of the KITTI and vineyard environments.

KITTI Odometry Dataset We ran the algorithm using the default basic.yaml
configuration provided by the repository [4]. Key settings included:

e deskew: True to compensate for motion distortion within the LiDAR scans.

e max_range: 100.0 m and min_range: 0.0 m, defining the LiDAR’s effective

sensing interval.

e max_ points_per_voxel: 20, limiting the number of points used for registration

within each voxel.

61



Ezxperimental Results

e Adaptive thresholding parameters were set as initial_threshold: 2.0 and
min__motion__th: 0.1, which provided an effective balance between sensitivity

and robustness for standard urban sequences.

Vineyard Dataset — First Attempt For the vineyard environment, we initially
used the advanced.yaml configuration without modification. Key parameters here

included:
o voxel_size: 1.0 m in the mapping module and max_ points_ per__vozel: 20.

o The adaptive threshold was substituted with a fixed threshold of 0.3, which

improved stability when operating in highly vegetated areas.

o Registration parameters used max_num_ iterations: 500 and

convergence__criterion: 0.0001, relying on automatic thread allocation.

Vineyard Dataset — Second Attempt To critically enhance performance in

the vineyard, we adopted a refined set of parameters:

e max_range: 20.0 m and min_range: 1.0 m to aggressively filter out distant

or noisy points.

o voxel_size: 0.5 m and maz_ points_per__voxel: 40 to increase map resolution

and capture finer details within the vineyard rows.

e The adaptive threshold was adjusted to fized_ threshold: 0.5 with min_ motio
n_th: 0.1.

o Registration parameters were kept unchanged (max_num__iterations: 500,
convergence__criterion: 0.0001) to maintain reliable convergence despite using

smaller voxel sizes.

These careful adjustments allowed KISS-ICP to maintain a strong trade-off between
accuracy and computational efficiency, especially crucial in the challenging vineyard

environment where occlusions and vegetation otherwise severely degrade performance.

7.1.2.2 GENZ-ICP

GENZ-ICP similarly required distinct parameter sets for the two datasets, including

a crucial refinement in the second testing phase for the vineyard scenario.

KITTI Odometry Dataset The algorithm utilized the default kitti.yaml

configuration, from the repository [3]:
o deskew: false
e max_range: 100.0 m, min_range: 5.0 m

e voxel_size: 0.6 m, desired_num_ voxelized_ points: 3000

62



Ezxperimental Results

e planarity_threshold: 0.18, max_ points_per_voxel: 3
e initial threshold: 2.0, min__motion_th: 0.1
o max_num_ iterations: 100, convergence_ criterion: 0.0001

These parameters were initially tuned to match the urban characteristics of KITTI
sequences, where structured roads and limited occlusions permit a coarser voxelization

scheme.

Vineyard dataset — First Attempt The first set of vineyard tests was
executed using the unmodified outdoor.yaml configuration file.

o deskew: false, max_range: 100.0 m, min_range: 0.5 m

e voxel_size: 0.6 m, desired__num_ voxelized_points: 3000

e planarity_threshold: 0.2, max_ points_per__voxel: 3

e initial__threshold: 2.0, min_motion_th: 0.1, max__num_ iterations: 100,

convergence__criterion: 0.0001

Vineyard Dataset — Second Attempt To achieve a significant performance

improvement, we adjusted the parameters as follows:

e max_range: 20.0 m, min_range: 1.0 m to effectively remove distant and

potentially noisy points.

e voxel_size: 0.15 m and desired__num_ voxelized_points: 5000 to increase

point cloud density and capture finer environmental details.

o planarity_threshold: 0.1 and max_ points_per__voxel: 10 to better preserve

critical surface features within the dense vegetation.
e initial_threshold: 2.0, min_motion_th: 0.1 remained consistent.

o Iteration and convergence settings: max_ num__iterations: 100, convergence__
criterton: 0.0001.

This critical optimization allowed GENZ-ICP to manage the vineyard environment
much more robustly, successfully reducing drift and significantly improving the

accuracy of trajectory estimation.

7.1.2.3 MOLA-LO

We evaluated MOLA-LO on both datasets, basing our configurations on the reposi-
tory’s default
lidar3d - default.yaml file [5].

63



Ezxperimental Results

KITTI Odometry Dataset For the KITTI experiments, we only adjusted a
small number of parameters to better suit the dataset’s characteristics. Specifically,
min__motion__model__xyz_cov_inv was reduced to 0.5 (from 1.0), the adaptive
threshold initial sigma was lowered to 1.5 m (from 2.0 m), and the local map’s voxel
size was fixed at 0.5 m. We configured the ICP solver to use a Gauss-Newton method
with a maximum of 300 iterations per step. Adaptive thresholding was enabled,
featuring a minimum motion of 0.1 m and a maximum sigma of 3 m, thereby allowing
the algorithm to dynamically adjust registration sensitivity based on the observed
motion. Keyframe selection and local map updates were controlled by minimum
translation and rotation thresholds, with a maximum distance of 100 m for keyframe

retention, which ensured efficient mapping and reliable trajectory estimation.

Vineyard Dataset For the vineyard dataset, we further adapted the
lidar3d-default.yaml configuration to account for the specific sensor setup and en-
vironmental context. We updated the LiDAR sensor topic to /husky/sensors/lidar
3d_0/points and appropriately set the corresponding IMU and GNSS topics. Pro-
viding a fixed sensor pose was necessary to improve initial alignment stability. While
the local map’s voxel size remained 0.5 m, we set the minimum rotation between
keyframes to 45° to better capture the sparse and irregular structure of the vineyard
rows. The adaptive threshold maintained the same settings as KITTI, and the
ICP solver remained configured with the Gauss-Newton method and 300 maximum
iterations. These crucial adjustments enabled MOLA-LO to handle the challenging
geometry and density variations of the vineyard dataset, ultimately yielding robust

odometry despite the highly unstructured environment.

7.1.2.4 SiMpLe

We evaluated SiMpLe on both the KITTI and vineyard datasets, starting with the

default configurations provided in the repository [6].

KITTI Odometry Dataset For the KITTI experiments, we employed the
config kitti_offline.yaml setup without alterations. The main parameters were
o= 0.3, rmap = 0.5, "New = 0.3, convergencer, = le — 6, minSensor Range = 0,
and maxSensor Range = 120. This configuration enabled efficient processing of

dense urban LiDAR scans while retaining strong registration precision.

Vineyard Dataset For the vineyard dataset, we initially selected a baseline
configuration adapted for a less structured environment (¢ = 0.5, 7arqp = 1.5, "New =
0.3, convergenceryy = le — 4, minSensor Range = 3, maxSensorRange = 80).
However, the resulting performance was insufficient due to the inherent sparsity and
irregularity of the vineyard LiDAR scans. This necessitated a series of parameter
tuning experiments, which ultimately led to the final optimized configuration: o =

0.5, "Map = 1.5, TNew = 0.3, convergencery, = le — 4, minSensorRange = 1,

64



Ezxperimental Results

mazSensor Range = 10. These final adjustments significantly improved odometry
estimation by limiting the influence of distant points and drastically increasing the
sensitivity to nearby features, which proved far more informative in the vineyard

environment.

7.2 Results on the KITTI Odometry Dataset

The KITTI odometry benchmark [28] stands as one of the most established references
for assessing LiDAR-based odometry and SLAM methods. It offers a comprehensive
range of realistic driving conditions, spanning structured urban areas and semi-rural
environments, each with its own diverse sensor trajectories and motion profiles. To
maintain consistency and ensure the reproducibility of our evaluation, we tested all
algorithms using the official KITTI development kit for odometry, which served as

our primary source for computing standard error metrics.

Alongside the core KITTI tools, we made extensive use of the evo framework to
extract additional insights. The evo_ape and evo_rpe commands were applied to
compute the Absolute Pose Error (APE) and Relative Pose Error (RPE), respectively.
Meanwhile, evo_traj provided an intuitive visualization of the estimated trajectories
compared to the ground truth. This visual confirmation helped ensure that numerical

findings matched the observed motion patterns.

In the subsequent pages, I will lay out both the quantitative and qualitative
outcomes achieved by the four evaluated LiDAR odometry algorithms on the KITTI
dataset. Our discussion emphasizes the distinct strengths inherent in each approach,
alongside any limitations observed under specific parameter choices and motion
conditions. We dedicate particular attention to identifying sources of drift, evaluating
robustness against dynamic objects, and assessing how sensitive each method proves
to careful parameter tuning. Collectively, these results offer a balanced, realistic
picture of algorithm behavior on this mature benchmark, establishing a clear and
necessary baseline for comparison with the challenging vineyard dataset discussed in

the next section.

7.2.1 Quantitative Results
7.2.1.1 Development Kit Analysis

To guarantee a fair and reproducible evaluation of the LiDAR odometry algorithms
on the KITTI odometry benchmark [28], we initiated our analysis using the official
development kit provided by the dataset authors. This toolkit strictly adheres to
the benchmark’s standard protocol, computing two essential indicators for every
trajectory segment: the average translational error, expressed as a percentage of
the total distance traveled, and the average rotational error, measured in degrees

per meter. Crucially, we repeated the evaluation over increasing path lengths (from

65



Ezxperimental Results

00 01 02 03 04 05 06 07 08 09 10
KISS-ICP  0.528 0.786 | 0.537 | 0.677 | 0.385 | 0.342 | 0.281 | 0.376 | 0.820 | 0.534 | 0.512
GENZ-ICP 0.617 0.956 | 0.717 | 0.967 | 1.004 | 0.579 | 0.597 | 0.618 | 0.629 | 0.757 | 0.860
MOLA-LO 0.562 0.695 | 0.525 | 0.671 | 0.331 | 0.419 | 0.284 | 0.421 | 0.821 | 0.545 | 0.612
SiMpLe 0.514 0.858 | 0.526 | 0.697 | 0.397 | 0.297 | 0.278 | 0.299 | 0.804 | 0.549 | 0.506

Table 7.1: Average Translational Error (%) of KISS-ICP, GENZ-ICP, MOLA-LO,
SiMpLe, on sequences 00-10. In bold characters are reported the lowest value of the
error per sequence.

Average | Paper
KISS-ICP 0.56 0.50
GENZ-ICP 0.68 0.51
MOLA-LO 0.58 0.55
SiMpLe 0.55 0.55

Table 7.2: Overall average translational error (%) of the evaluated algorithms on
KITTT sequences 00-10, compared with the reference average values reported in their
original publications.

100 m, 200 m, up to 800 m), which allowed us to observe the evolution of the error

as a direct function of distance.

To deepen the analysis, we complemented the standard metrics with a full statis-
tical summary using the evo toolkit. For each KITTI sequence, we calculated both
the APE and RPE, then summarized them with key statistical measures—mean,
median, RMSE, maximum, and minimum. This allowed a balanced view of overall

accuracy and local consistency throughout the trajectories.

The following tables and figures summarize the complete evaluation results,
making it straightforward to compare the different algorithms. Table 7.1, for instance,
lists the average translational errors (%) for all 11 KITTI odometry sequences. Each
row corresponds to an algorithm, while the columns represent the sequences. The
last two columns contrast our experimental averages with the values reported in the

original papers.

To provide a concise overview of the comparative results, Table 7.2 reports the
mean translational error (%) obtained across KITTI sequences 00-10 for all evaluated
algorithms. For completeness, the reference averages drawn from the corresponding
original publications are also included. This side-by-side presentation allows an im-
mediate verification of how closely our experimental outcomes align with previously

reported benchmarks [28].

After assessing translational accuracy, we shifted focus to rotational performance,
measured in degrees per meter (deg/m). Table 7.3 compiles these data, organizing
the algorithms by rows and the KITTI sequences by columns. Each entry gives the

average rotational error for a given algorithm—sequence pair.

66



Ezxperimental Results

00 01 02 03 04 05 06 07 08 09 10

KISS-ICP 0.0019 | 0.0010 | 0.0015 | 0.0016 | 0.0013 | 0.0013 | 0.0008 | 0.0016 | 0.0019 | 0.0014 | 0.0019
GENZ-ICP | 0.0031 | 0.0014 | 0.0026 | 0.0033 | 0.0009 | 0.0033 | 0.0033 | 0.0057 | 0.0031 | 0.0031 | 0.0029
MOLA-LO | 0.0022 | 0.0014 | 0.0017 | 0.0017 | 0.0014 | 0.0019 | 0.0008 | 0.0024 | 0.0021 | 0.0017 | 0.0021
SiMpLe 0.0018 | 0.0009 | 0.0013 | 0.0014 | 0.0010 | 0.0013 | 0.0008 | 0.0018 | 0.0016 | 0.0012 | 0.0015

Table 7.3: Average rotational error (deg/m) of the four evaluated algorithms across
KITTI sequences 00—10. The lowest error value for each sequence among the four
methods is highlighted in bold.

Average | Paper
KISS-ICP 0.0016 0.0017
GENZ-ICP | 0.0029 N.A.
MOLA-LO 0.0019 0.0017
SiMpLe 0.0014 0.0015

Table 7.4: Overall average rotational error (deg/m) of the evaluated algorithms
on KITTI sequences 00-10, compared with the reference average values reported in
their original publications.

For a broader perspective, Table 7.4 reports the mean rotational errors (deg/m)
computed across sequences 00-10 for all algorithms. Reference values from the
respective publications are also included, allowing a direct comparison between our

findings and prior benchmarks.

To further characterize the performance profile of the evaluated LIDAR odometry
methods, we analyzed the average translational and rotational errors as a function
of segment length, ranging from 100 m up to 800 m. Each resulting curve repre-
sents the mean error across all KITTI sequences for a single algorithm, intuitively
revealing how drift evolves with increasing trajectory length. These visualizations
offer a direct comparison of both inherent accuracy and overall robustness. It
is particularly interesting to note that certain algorithms exhibit a stabilizing or
slightly decreasing trend in error for longer segments, a phenomenon which suggests

that accumulated drift tends to distribute more uniformly along extended trajectories.

Figure 7.1 explicitly illustrates the average translational error (%) as a function of
segment length for KITTT sequences 00-10. The figure utilizes four dedicated subplots
to present the individual algorithm data—Figure 7.1(a) (KISS-ICP), Figure 7.1(b)
(GENZ-ICP), Figure 7.1(c) (MOLA-LO), and Figure 7.1(d) (SiMpLe)—with each

curve depicting the mean error averaged over all sequences.

Figure 7.2 illustrates the mean rotational error (deg/m) as a function of segment
length for KITTI sequences 00-10. Each subfigure—7.2(a) (KISS-ICP), 7.2(b)
(GENZ-ICP), 7.2(c) (MOLA-LO), and 7.2(d) (SiMpLe)—shows the averaged error

trends for the corresponding method.

67



Ezxperimental Results

0.9 Translation Error —s— 1 Translation Error —a—
0.8 0.9
g 0.7 g 0.8
5 o6 5 07
I 0.5 I 0.6
c c 0.5
=l 0.4 =
k] T 04
% 0.3 g 0.3
E 02 £ o2
0.1 0.1
1] 0
100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800
Path Length [m] Path Length [m]
((a)) KISS-ICP ((b)) GENZ-ICP
g: Translation Error —s— g: Translation Error’ —a—
£ o7 = 07
§ o6 5 06
w 0.5 w o5
c c
S 04 S 04
% 03 2 03
8 0.2 g 0.2
= o
0.1 01
o 0
100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800
Path Length [m] Path Length [m]
((c)) MOLA-LO ((d)) SiMpLe

Figure 7.1: Average translational error (%) as a function of segment length for
KITTT sequences 00-10. The four subfigures show the results for the individual
algorithms: (a) KISS-ICP, (b) GENZ-ICP, (¢) MOLA-LO, and (d) SiMpLe.

7.2.1.2 Evo Tools

To effectively complement the preceding benchmark evaluation, we further scrutinized
the performance of the four LIDAR odometry algorithms using the evo framework,
focusing specifically on the Absolute Pose Error (APE) and the Relative Pose Error
(RPE) metrics.

We selected two representative KITTI sequences to highlight the significant
influence of environmental structure on odometry accuracy. Sequence 01 tra-
verses an open highway stretch where the inherent scarcity of distinctive landmarks
and geometric references typically exacerbates localization drift. Conversely, Se-
quence 06 navigates a densely built urban area, offering a rich collection of reference
features—buildings, vegetation, and parked vehicles—that generally boost motion
estimation reliability. While comparing sequences with inherently different trajecto-
ries can introduce bias, Sequences 01 and 06 are directly comparable given that both

comprise exactly 1100 frames.

For every algorithm, we computed APE and RPE using evo_ape and evo_rpe,
respectively. The analysis included all standard statistical descriptors (mean, me-
dian, RMSE, minimum, and maximum) to provide a comprehensive quantitative
comparison. We visually depict the contrasting scenes of these two sequences using
representative grayscale images from the KITTI Odometry Dataset, shown in Fig-
ure 7.3(a) and Figure 7.3(b). Finally, the resulting tables and plots clearly summarize

the APE and RPE outcomes, providing an accessible overview of how each algorithm

68



Ezxperimental Results

0.0035 0.012

Rotation Eror —a— Rotatioh Error —e—
g 0.003 E 0.01
g oo £ o008
5 0002 5 o006
i o :
s 00 S ooos
= 0.001 E :
€ 00005 ¢ 0002
0 ]
100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800
Path Length [m] Path Length [m]
((a)) KISS-ICP ((b)) GENZ-ICP
0.003 -
0.0035 Rotation Erfor —a— Rotation Eror —a—
g 0.003 E 0.0025
g 0002 £ oo
5 0.002 5
E E 0.0015
5 0.0015 5 o001
= 0001 = :
] k]
"4 0.0005 e 0.0005
0 o
100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800
Path Length [m] Path Length [m]
((c)) MOLA-LO ((d)) SiMpLe

Figure 7.2: Average rotational error (deg/m) as a function of segment length for
KITTTI sequences 00-10. The four sub-figures show the results for the individual
algorithms: (a) KISS-ICP, (b) GENZ-ICP, (¢) MOLA-LO, and (d) SiMpLe.

behaves under both structured and unstructured driving scenarios.

((a)) Sequence 01 - Frame 000336,/001100 ((b)) Sequence 06 - Frame 000767/001100

Figure 7.3: Representative grayscale frames from the KITTI Odometry Dataset. (a)
Sequence 01 with sparse landmarks and open road; (b) Sequence 06 in a structured
urban environment with multiple reference features.

For a consistent and thorough comparison of odometry performance, we analyzed
the translational and rotational components of both the Absolute Pose Error (APE)
and the Relative Pose Error (RPE) separately. Treating these quantities indepen-
dently makes it easier to see how each method manages position accuracy versus
orientation drift, rather than relying on a single mixed metric that can obscure their

individual contributions.

In practice, six complementary statistical indicators were used to describe each
algorithm’s behavior. The max and min values capture the extremes, while the
mean provides an overview of global accuracy. The median helps filter occasional
outliers, the std (standard deviation) shows the consistency around the mean, and
the RMSE emphasizes larger deviations. Combined, these indicators offer a complete

and nuanced picture of each method’s precision and reliability.

69



Ezxperimental Results

Max | Mean | Median | Min Std Rmse
KISS-ICP | 5.366 | 2.959 2.980 1.110 | 1.076 | 3.149
GENZ-ICP | 6.232 | 3.112 3.154 0.427 | 1.164 | 3.322
MOLA-LO | 8157 | 4.662 4.856 1.426 | 1.806 | 4.999

SiMpLe 4.912 | 2.333 2.299 0.989 | 0.888 | 2.496

Table 7.5: Absolute Pose Error w.r.t translational part (m) for sequence 01 (sparse-
road scenario). Reported statistics: mean, median, RMSE, standard deviation,
minimum, and maximum. Lowest values are highlighted in bold.

Max | Mean | Median | Min Std Rmse
KISS-ICP | 0.938 | 0.3710 0.366 0.066 | 0.193 | 0.418
GENZ-ICP | 2.288 | 1.043 1.039 0.143 | 0.349 | 1.100
MOLA-LO | 2.022 | 0.353 0.332 0.069 | 0.204 | 0.408

SiMpLe 0.868 | 0.293 0.269 0.009 | 0.172 | 0.340

Table 7.6: Absolute Pose Error w.r.t translational part (m) for sequence 06 (urban
scenario). Reported statistics: mean, median, RMSE, standard deviation, minimum,
and maximum. Lowest values are highlighted in bold.

Tables 7.5-7.12 report the APE and RPE statistics for both translation and
rotation, computed on the two selected KITTI sequences (01 and 06). These corre-
spond to a sparse-road scene and a structured urban scene, respectively. Presenting
them side by side allows an immediate visual comparison between algorithms under
contrasting conditions. For each statistic, the lowest error is highlighted in bold to

mark the best-performing method.

Overall, these numerical results provide a strong quantitative foundation for the
following qualitative and trajectory-based analysis, helping to interpret how each

odometry algorithm maintains accuracy across different driving contexts.

7.2.2 Qualitative Results

Although numerical statistics are essential for objective evaluation, visual inspection
can reveal aspects that numbers may overlook. Observing reconstructed trajectories
often helps explain specific algorithmic behaviors—such as how methods cope with

feature sparsity or recover after temporary localization loss. For this reason, we

Max Mean | Median | Min Std Rmse
KISS-ICP 1.822 0.891 0.791 0.464 | 0.298 0.940
GENZ-ICP | 178.992 | 93.845 | 90.585 0.630 | 39.935 | 101.987
MOLA-LO 2.452 1.261 1.026 0.630 | 0.458 1.318
SiMpLe 1.337 | 0.791 0.780 0.552 | 0.155 | 0.806

Table 7.7: Absolute Pose Error w.r.t rotational part (deg) for sequence 01 (sparse-
road scenario). Reported statistics: mean, median, RMSE, standard deviation,
minimum, and maximum. Lowest values are highlighted in bold.

70



Ezxperimental Results

Max Mean | Median | Min Std Rmse

KISS-ICP 0.986 0.303 0.252 0.026 | 0.166 0.346
GENZ-ICP | 179.823 | 96.085 | 90.871 0.917 | 39.935 | 104.049

MOLA-LO | 0.688 0.504 0.510 0.017 | 0.200 0,544

SiMpLe 0.875 0.303 0.267 0.070 | 0.152 | 0.340

Table 7.8: Absolute Pose Error w.r.t rotational part (deg) for sequence 06 (urban

scenario). Reported statistics: mean, median, RMSE, standard deviation, minimum,
and maximum. Lowest values are highlighted in bold.

Max | Mean | Median | Min Std Rmse

KISS-ICP | 3.097 | 1.799 1.725 0.436 | 0.818 | 1.976
GENZ-ICP | 6.788 | 2.841 2.726 0.226 | 1.268 | 3.111
MOLA-LO | 0.122 | 0.033 0.030 0.004 | 0.016 | 0.037
SiMpLe 0.098 | 0.032 0.030 0.002 | 0.015 | 0.035

Table 7.9: Relative Pose Error w.r.t translational part (m) for sequence 01 (sparse-
road scenario). Reported statistics: mean, median, RMSE, standard deviation,
minimum, and maximum. Lowest values are highlighted in bold.

Max | Mean | Median | Min Std Rmse

KISS-ICP | 0.936 | 0.564 0.607 0.160 | 0.252 | 0.617
GENZ-ICP | 5.269 | 2.055 1.993 0.221 | 0.809 | 2.209
MOLA-LO | 1.229 | 0.021 0.016 0.001 | 0.052 | 0.056
SiMpLe 0.079 | 0.015 0.013 0.001 | 0.010 | 0.018

Table 7.10: Relative Pose Error w.r.t translational part (m) for sequence 06 (urban

scenario). Reported statistics: mean, median, RMSE, standard deviation, minimum,
and maximum. Lowest values are highlighted in bold.

Max Mean | Median | Min Std Rmse

KISS-ICP 0.274 0.041 0.039 0.004 0.023 0.047
GENZ-ICP | 388.937 | 162.794 | 156.162 | 12.966 | 72. 626 | 178.259

MOLA-LO 0.268 0.040 0.038 0.005 | 0.002 0.048

SiMpLe 0.244 0.041 0.038 0.003 | 0.022 0.046

Table 7.11: Relative Pose Error w.r.t rotational part (deg) for sequence 01 (sparse-
road scenario). Reported statistics: mean, median, RMSE, standard deviation,
minimum, and maximum. Lowest values are highlighted in bold.

Max Mean | Median | Min Std Rmse

KISS-ICP 0.185 0.034 0.029 0.002 | 0.021 0.040
GENZ-ICP | 179.987 | 116.538 | 119.134 | 15.292 | 40.434 | 123.358

MOLA-LO 0.200 0.035 0.029 0.002 | 0.022 0.041

SiMpLe 0.170 0.030 0.025 0.002 | 0.020 | 0.036

Table 7.12: Relative Pose Error w.r.t rotational part (deg) for sequence 06 (urban

scenario). Reported statistics: mean, median, RMSE, standard deviation, minimum,
and maximum. Lowest values are highlighted in bold.

71



Ezxperimental Results

generated representative sequences from the KITTI dataset using evo_traj, visually

comparing estimated and ground truth trajectories.

Among the available sequences, we focused on Sequences 01 and 06, chosen for
their strong environmental contrast. Sequence 01 represents a long, mostly straight
road with very few static landmarks and minimal texture—conditions that tend
to magnify small pose errors and challenge LiDAR-based odometry. In contrast,
Sequence 06 takes place in a dense urban area, surrounded by buildings, trees, and
parked vehicles. This richer structure generally improves registration stability and

helps algorithms maintain alignment over time.

To preserve readability, only these two representative trajectories are shown out
of the full set of eleven KITTI sequences. Figures 7.4 and 7.5 illustrate the results
for both cases, displaying the paths estimated by the four evaluated algorithms.
These side-by-side plots make it easy to see where each method performs best—or
struggles—when transitioning from a feature-poor open road to a highly structured
city scene. The visual comparison adds an intuitive perspective to the quantitative

analysis presented earlier.

01._poses kit

<

\\\\ : s 2
((a)) KISS-ICP ((b)) GENZ-ICP
((c)) MOLA-LO ((d)) SiMpLe

Figure 7.4: Trajectory comparison for Sequence 01 (sparse-road scenario). The
four subfigures show the paths reconstructed by (a) KISS-ICP, (b) GENZ-ICP, (c)
MOLA-LO, and (d) SiMpLe, overlaid with the ground-truth trajectory from the
KITTI Odometry Dataset.

72



Ezxperimental Results

~1008

((c)) MOLA-LO ((d)) SiMpLe

Figure 7.5: Trajectory comparison for Sequence 06 (urban scenario). The four
subfigures display the paths reconstructed by (a) KISS-ICP, (b) GENZ-ICP, (c)
MOLA-LO, and (d) SiMpLe, overlaid with the ground-truth trajectory from the
KITTI Odometry Dataset.

In addition to the 3D trajectory visualizations, it proved useful to look more
closely at how each spatial coordinate evolves over time. By plotting the estimated
and ground-truth x, y, and z components against the frame index, we can directly
observe where drift tends to accumulate. In practice, this view helps identify whether
the largest deviations occur in lateral displacement, longitudinal motion, or
vertical drift. For example, in several cases the vertical component shows a slow
bias build-up, even when the horizontal path appears well aligned. Figures 7.6 and 7.7
present these coordinate-wise plots for Sequences 01 and 06, allowing a detailed

side-by-side comparison across all four algorithms.

To link numerical and visual analysis, we also introduced time—error plots (Fig-
ure 7.8) summarizing the main performance patterns observed. These plots show, for
example, the low cumulative drift achieved by SiMpLe in steady-motion sequences
and the rotational instability occasionally seen in GENZ-ICP during complex urban
paths like Sequence 06. Such visualizations make error evolution easier to interpret

frame by frame.

73



Ezperimental Results

((a)) KISS-ICP (b)) GENZ.ICP (<)) MOLA-LO ((d)) SimMpLe

Figure 7.6: Evolution of estimated and ground-truth x, y, and z coordinates over
frame index for sequence 01, shown for all four algorithms. Highlights axis-specific
deviations in the sparse-road scenario.

QM\ J‘ - /
\ ’/,/ - N 4 4
((a)) KISS-ICP ((b)) GENZ-ICP ((¢)) MOLA-LO ((d)) SiMpLe

Figure 7.7: Evolution of estimated and ground-truth x, y, and z coordinates over
frame index for sequence 06, shown for all four algorithms. Highlights axis-specific
deviations in the sparse-road scenario.

7.2.3 Critical Analysis

In this section, we provide a critical analysis of the odometry results obtained on
the KITTI dataset, integrating both the quantitative metrics and the qualitative
trajectory observations presented earlier. Our discussion aims to fully explain the
observed performance trends, including any slight deviations from the results reported
in the original publications. We examine the relative performance of the different
algorithms, explicitly highlighting why certain methods consistently outperform others

under specific driving and environmental conditions. e also investigated the variability

J——

I AR
A TR

A E— i W— : r
TN 7 N w 1 |

‘‘‘‘‘

((a)) APE w.r.t. translational part by SiMpLe ((b)) RPE w.r.t. rotational part by GenZ

Figure 7.8: Detailed Qualitative Analysis of Best- and Worst-Case Lidar Odometry
Performance on the KITTI Odometry Dataset.

74



Ezxperimental Results

in performance across different sequences, analyzing how factors like environmental
complexity, moving objects, or limited structural features affect trajectory accuracy.
This examination helped clarify each algorithm’s inherent strengths and weaknesses
and provided the context needed to interpret both numerical metrics and visual

outcomes.

7.2.3.1 Interpreting Quantitative Trends and Error Dynamics

This subsection provides a detailed interpretation of the quantitative results derived
from the official KITTI odometry metrics and the evo toolkit, clarifying key dif-
ferences in overall performance and assessing robustness among the four evaluated

algorithms.

SiMpLe consistently demonstrates the best overall balance and statistical con-
sistency. Its lowest average rotational error (0.0014 deg/m) across the entire dataset
emerges as the single most critical factor contributing to its high reliability. This
superior rotational stability strongly suggests a sophisticated and robust feature
weighting strategy that effectively minimizes the influence of less constrained degrees
of freedom, particularly the yaw axis, which is highly prone to drift. This outcome
translates directly into highly reproducible results that align closely with the original

publication’s benchmarks.

KISS-ICP follows immediately, achieving near-optimal translational accuracy
(0.56%). This high performance is a hallmark of the Generalized-ICP (G-ICP) ap-
proach, which efficiently capitalizes on the prevalent planar and structured features
of the KITTI environment by performing a weighted minimization that robustly
considers local surface geometry. Its accuracy powerfully confirms its efficacy as a

fast, feature-preserving, geometry-aware solution.

MOLA-LO provides solid, mid-range performance, with its error metrics clus-
tering near the group average. This behavior is typical of filter-based or slightly
more complex optimization architectures: they attain necessary stability but require

highly specific, scenario-tuned parameters to maximize performance.

GENZ-ICP emerged as a clear outlier, producing the largest translational and
rotational errors among all tested methods. This behavior indicates deep issues in its
optimization or outlier-handling mechanisms and confirms that it is not well-suited

for general-purpose odometry tasks, particularly outside controlled conditions.

Analyzing the error accumulation across increasing segment lengths (Figures 7.1
and 7.2) allows us to assess the algorithms’ capacity for long-term drift suppression.
The SiMpLe and KISS-ICP curves are characterized by the flattest slope for both

translational and rotational errors. This linearity confirms that their incremental er-

75



Ezxperimental Results

rors (RPE) are consistently managed and prevented from propagating uncontrollably,
demonstrating strong frame-to-frame convergence and stable geometric constraint

management.

On the contrary, GENZ-ICP displayed the most rapid accumulation of error,
suggesting that its local registration errors were not being properly corrected in
subsequent iterations. As a result, local misalignments quickly evolved into global

drift, making the approach unsuitable for longer trajectories.

7.2.3.2 Qutlier Detection and Catastrophic Failure Modes

The detailed evo statistics, particularly the Maximum values of the RPE Rotational
metric, shift the focus of our analysis from smooth drift accumulation to acute,

catastrophic failure modes and the effectiveness of outlier rejection.

The extremely high RPE rotational maximums observed for GENZ-ICP (for
example, 179.987 deg on Sequence 06) clearly indicate a solver breakdown. This
failure can be traced to weaknesses in its robust weighting strategy or the use of an
overly optimistic motion prediction. When faced with ambiguous correspondences,
the least-squares optimization converged to a false local minimum, effectively flipping

the LIDAR frame by 180 deg and causing a complete loss of alignment.

In sharp contrast, the low rotational Standard Deviation (Std) and Max values
of SiMpLe clearly demonstrate its success in outlier suppression. SiMpLe’s superior
performance is a direct result of its pipeline prioritizing the quality of correspondences
and employing robust statistics to aggressively down-weight points that induce high
instantaneous errors. This methodological design preserves the integrity of the

transformation matrix, even when localized noise or transient occlusions occur.

7.2.3.3 Algorithmic Response to Feature Density

The comparison between the feature-sparse Sequence 01 and the feature-rich Sequence
06 provides the essential acid test for each algorithm’s intrinsic feature dependency

and modeling strategy.

In the feature-rich urban setting of Sequence 06 (Figure 7.3(b)), the environment
provides an abundance of distinctive geometric features. Under these conditions,
both KISS-ICP and SiMpLe perform exceptionally well, reaching near-optimal APE
Translational RMSE values (for example, 0.340 m for SiMpLe). This result confirms
that both methods make effective use of clear planar and corner features. Inter-
estingly, their similar performance suggests that in well-structured environments,
the efficient voxel management of KISS-ICP can rival the more elaborate feature

extraction used by SiMpLe.

76



Ezxperimental Results

The sparse-road environment (Sequence 01, Figure 7.3(a)) fundamentally chal-
lenges the algorithms by offering ambiguous correspondences over long, straight

segments, primarily starving the yaw constraint.

MOLA-LO is the most severely penalized, recording the highest APE Transla-
tional RMSE (4.999 m). This strong performance degradation suggests that MOLA-
LO’s feature extraction or filtering is highly sensitive to the spatial distribution
of features. When points are scarce and distant, the algorithm clearly lacks the

necessary local geometric diversity to accurately constrain all six degrees of freedom.

SiMpLe, while showing some performance degradation in the vineyard data,
still achieves the lowest translational APE RMSE (2.496 m). This relative success
underlines the importance of its feature evaluation process. The algorithm’s con-
servative weighting and filtering steps appear to limit the influence of uncertain
correspondences, preventing them from distorting the final estimate and allowing

SiMpLe to maintain greater overall stability than the other methods tested.

7.2.3.4 Summary and Implications

The critical analysis of the KITTI benchmark confirms that the performance of
modern LIDAR Odometry is ultimately determined by its architectural response to

optimization instability.

e SiMpLe’s leading performance stems from its robust feature handling and
superior rotational stability, making it the most reliable solution for generalized
application, as it effectively manages both high-feature complexity and low-

feature ambiguity.

o KISS-ICP is confirmed as the most computationally efficient option for envi-
ronments with structured, abundant features, leveraging its optimized G-ICP

implementation.

e GENZ-ICP clearly illustrates how fragile odometry systems can become when
they lack strong solver robustness. In this case, temporary motion irregularities
or ambiguous data points can trigger severe rotational failures that the algorithm

cannot recover from.

Ultimately, this study underscores that for practical, long-term autonomous naviga-
tion, the rigor of the feature validation and optimization strategy (low RPE Max) is
a far more critical determinant of overall system reliability than achieving marginal

gains in mean translational accuracy.

7



Ezxperimental Results

7.3 Results on the Vineyard Dataset

We further evaluated the performance of the four LiDAR odometry algorithms on the
Vineyard Dataset, a private and exceptionally challenging benchmark. This environ-
ment is uniquely characterized by repetitive vegetation rows, a scarcity of distinctive
landmarks, and several tight, sharp turns. Unlike the structured, urban-like KITTI
benchmark, this agricultural setting introduces specific, difficult challenges such as
structural monotony, dense vegetation noise, and non-rigid features, all of which

substantially impair robust scan matching and accurate pose estimation.

This section presents both the numerical and visual results obtained on the
vineyard dataset. Quantitative analyses were carried out using the evo framework,
focusing on Absolute Pose Error (APE) and Relative Pose Error (RPE), for both
translational and rotational components. These metrics capture not only accumu-
lated drift but also short-term pose accuracy, providing a solid basis for comparing

algorithm performance under realistic agricultural conditions.

The qualitative evaluation complements these numerical results through trajectory
visualizations generated with evo_traj, including 3D paths, 2D projections, and
overlays with the ground truth trajectory. We also leveraged evo_res to generate
box plots and aggregated statistics, summarizing performance trends across different

trajectory segments.

Additionally, we include specific comparisons between straight vineyard rows
and sharp turning maneuvers to clearly highlight how environmental geometry
significantly affects algorithm behavior. Presenting these detailed results within this
section ensures that the vineyard-specific challenges and their impact on LiDAR
odometry are thoroughly understood before we proceed to the broader cross-dataset

comparisons in the subsequent chapter.

7.3.1 Quantitative Results
7.3.1.1 Overview of Evaluation Metrics and Methodology

We carried out the quantitative evaluation of LIDAR odometry performance on
the vineyard dataset using the evo toolkit, which provides an indispensable, robust
framework for trajectory comparison and error analysis. Specifically, we employed
evo_ape (Absolute Pose Error) and evo_rpe (Relative Pose Error) to compute both
the translational and rotational components of the error across the entire trajectory.
These complementary metrics are essential for assessing both global consistency
(APE) and local drift behavior (RPE).

To provide a broader and deeper statistical perspective, we used evo_res to gen-

erate aggregated statistics and comparative visualizations among all four algorithms.

78



Ezxperimental Results

For each error type—translational error and rotational error in degrees—evo_res

produced:
¢ Time-series plots of error evolution over the full trajectory

o Histograms comparing the four algorithms for key statistics (mean, median,

minimum, maximum, RMSE, and standard deviation)
e Box plots and violin plots to highlight the distribution, spread, and outliers.

All metrics were computed along the full trajectory using a high-precision GPS
reference, ensuring consistent and fair comparison across methods. To better un-
derstand performance in different motion scenarios, the trajectory was divided into
ten straight rows and nine turning segments. Each metric (evo_ape and evo_rpe,
for both components) was recalculated separately for these two motion types. This
segmentation allows a clearer view of how each algorithm behaves in repetitive linear

paths versus sharp directional changes.

7.3.1.2 Absolute Pose Error (APE)

This subsection presents the quantitative evaluation of the four LiDAR odometry
algorithms on the vineyard dataset. We performed all computations using the evo
toolkit to ensure both consistency and reproducibility [34]. We evaluated the errors
over the entire recorded trajectory, critically using the exact same GPS ground truth
reference and trajectory length for all methods, thus guaranteeing direct compara-
bility [34]. Our quantitative analysis focuses on the Absolute Pose Error (APE)
and Relative Pose Error (RPE), considering both their translational and rotational

components [34].

Two summary tables are provided for the APE results. Table 7.13 lists the
translational errors, expressed in meters, while Table 7.14 reports the rotational
components in degrees. Each table includes standard statistical indicators such as
mean, median, minimum, maximum, standard deviation, and RMSE. Together, they
give a concise yet complete picture of the absolute positioning accuracy achieved by

the evaluated algorithms.

69) To complement these tables, we also present the corresponding evo_res visu-
alizations, which show the detailed behavior of the APE errors. For both translational
and rotational components, four plots are displayed: the time evolution of the error,
a histogram showing its distribution, a box plot summarizing spread and outliers,
and a violin plot depicting the distribution’s overall shape. These visualizations offer
a more intuitive grasp of the error dynamics and effectively support the quantitative

results.

Figures 7.9 and 7.10 present the evo_res visualizations of the Absolute Pose

Error (APE) for the translational and rotational components, respectively. For each

79



Ezxperimental Results

Max | Mean | Median | Min Std Rmse
MOLA-LO | 1.970 | 0.682 0.652 0.123 | 0.241 | 0.723
KISS-ICP | 24.677 | 5.672 5.666 0.283 | 2.967 | 6.402
GENZ-ICP | 30.259 | 6.779 4.452 0.618 | 5.905 | 8.989

SiMpLe 68.445 | 21.505 17.714 0.563 | 15.231 | 26.352

Table 7.13: Absolute Pose Error (APE) statistics for the translational component
of the error (in meters) on the vineyard dataset. The table reports mean, median,
minimum, maximum, standard deviation, and RMSE for each of the four evaluated
algorithms. Lowest values are highlighted in bold.

Max Mean | Median | Min Std Rmse
KISS-ICP | 27.890 | 19.049 | 20.569 | 0.255 | 6.868 | 20.249
MOLA-LO | 38.663 | 24.518 31.775 8.610 | 12.062 | 27.324
GENZ-ICP | 74.874 | 35.839 26.886 2.121 | 27.589 | 45.228
SiMpLe 173.232 | 54.962 51.375 | 25.463 | 18.148 | 57.881

Table 7.14: Absolute Pose Error (APE) statistics for the rotational component
of the error (in degrees) on the vineyard dataset. The table reports mean, median,
minimum, maximum, standard deviation, and RMSE for each of the four evaluated
algorithms. Lowest values are highlighted in bold.

metric, we provide four essential, complementary plots: the temporal evolution of
the error along the trajectory, a histogram detailing the error distribution, a box
plot summarizing the spread and the outliers, and a violin plot illustrating the
underlying distribution shape. These comprehensive visualizations enable a detailed,
multi-faceted assessment of the error behavior and clearly highlight the performance

differences among the four LiDAR odometry algorithms.

7.3.1.3 Relative Pose Error (RPE)

This subsection delivers the quantitative evaluation of the four LiDAR odometry al-
gorithms, specifically focusing on the Relative Pose Error (RPE) within the vineyard
dataset. We performed all computations using the evo toolkit to ensure consistency
and full reproducibility. As with the APE analysis, we evaluated the errors over the
entire recorded trajectory using the same ground-truth GPS reference, ensuring all
methods remain directly comparable. This quantitative assessment concentrates on

the RPE, examining both its translational and rotational components.

70) Two additional tables summarize the RPE analysis. Table 7.15 presents the
translational results (in meters), while Table 7.16 reports the rotational values (in
degrees). Each table lists the key statistical descriptors—mean, median, minimum,
maximum, standard deviation, and RMSE—providing a clear overview of local pose

accuracy and short-term stability for each algorithm.

To complement these numerical summaries, we include the corresponding evo_res

visualizations, presented in Figures 7.11 and 7.12. These figures are essential for

80



Ezperimental Results

((a)) Time evolution ((b)) Histogram

)
20
! 10
10
N —_—
o —_—
tajectory_Genz ICPrum  trajectory_Kiss_ICPrum _ trsjectory_MOLA_LOXum  trajectory_SMple_tum.tum trajectory_GenZ ICPtum  trajectory_Kiss ICPum _ traject

1y MOLA LOtum  trajectory_SMple_tum tum

((c)) Box plot ((d)) Violin plot
Figure 7.9: Translational Absolute Pose Error of the four algorithms, shown with

(a) temporal evolution, (b) histogram, (c) box plot, and (d) violin plot.

moving beyond tabular data and visually assessing the algorithms’ local stability.
For each of the two RPE metrics (rotational and translational), we provide four key

complementary plots:
e The temporal evolution of the error along the trajectory,
e A histogram detailing the error distribution,
e A box plot summarizing the spread and outliers, and
e A violin plot illustrating the underlying distribution shape.

These visualizations allow a detailed assessment of the error behavior and clearly
highlight the differences in performance among the four LIDAR odometry algorithms

under the repetitive vineyard conditions.

81



Ezxperimental Results

3
Nmmﬂﬂw

((a)) Time evolution ((b)) Histogram

((c)) Box plot ((d)) Violin plot

Figure 7.10: Rotational Absolute Pose Error of the four algorithms, shown with
(a) temporal evolution, (b) histogram, (c¢) box plot, and (d) violin plot.

Max Mean | Median | Min Std Rmse

MOLA-LO | 4.607 | 0.192 0.074 0.002 | 0.424 | 0.466

KISS-ICP | 21.691 | 0.292 0.146 0.000 | 0.743 | 0.798

GENZ-ICP | 34.812 | 0.371 0.121 0.002 | 1.143 | 1.202

SiMpLe 2.305 | 0.189 0.129 0.003 | 0.181 | 0.261

Table 7.15: Relative Pose Error (RPE) statistics for the translational component
of the error (in meters) on the vineyard dataset. The table reports mean, median,
minimum, maximum, standard deviation, and RMSE for each of the four evaluated
algorithms. Lowest values are highlighted in bold.

Max Mean | Median | Min Std Rmse

MOLA-LO | 14.658 | 0.725 0.565 0.001 | 0.755 | 1.047

KISS-ICP | 7.993 | 0.309 0.196 0.000 | 0.495 | 0.583

GENZ-ICP | 73.665 | 1.411 0.656 0.001 | 5.140 | 5.330

SiMpLe 8.836 | 0.986 0.824 0.006 | 0.700 | 1.210

Table 7.16: Relative Pose Error (RPE) statistics for the rotational component of
the error (in degrees) on the vineyard dataset. The table reports mean, median,
minimum, maximum, standard deviation, and RMSE for each of the four evaluated
algorithms. Lowest values are highlighted in bold.

82



Ezperimental Results

((a)) Time evolution ((b)) Histogram

((c)) Box plot ((d)) Violin plot

Figure 7.11: Translational Relative Pose Error of the four algorithms, shown with
(a) temporal evolution, (b) histogram, (¢) box plot, and (d) violin plot.

\ o
1 A " 4 e |=
((a)) Time evolution ((b)) Histogram
|

((c)) Box plot ((d)) Violin plot

Figure 7.12: Rotational Relative Pose Error of the four algorithms, shown with (a)
temporal evolution, (b) histogram, (c¢) box plot, and (d) violin plot.

83



Ezxperimental Results

7.3.1.4 Straight Rows vs Turning Maneuvers Analysis

To comprehensively analyze how trajectory structure influences LiDAR odometry per-
formance, we segmented the vineyard dataset into distinct straight row segments
and turning maneuvers. Straight rows feature highly repetitive visual patterns that
can dramatically amplify drift, whereas turning maneuvers involve sharp directional
changes that severely challenge scan-matching algorithms. Segmenting the trajectory
in this manner allows for a focused, controlled evaluation of algorithmic behavior

under these two fundamentally distinct motion patterns.

For each motion category, all APE and RPE metrics were computed sepa-
rately for both translational and rotational components. To ensure clarity, we
aggregated the statistics across all segments within each category, averaging the
six key indicators—mean, median, minimum, maximum, standard deviation, and

RMSE—independently for straight paths and turning maneuvers.

Tables 7.17 through 7.20 present these aggregated results. Each table corresponds
to a specific metric: translational APE (7.17), rotational APE (7.18), translational
RPE (7.19), and rotational RPE (7.20). Within each table, the four algorithms are
reported as rows, with alternating background shading used to clearly distinguish
straight row segments (white) from turning maneuvers (gray). Columns report the
six statistical metrics, facilitating a clear and immediate comparison across both

algorithms and motion scenarios.

The final column in Tables 7.17 and 7.18 introduces the relative average error,
a key metric for normalizing performance across segments. We calculated this value
by dividing the root mean square error (RMSE) for each segment by its average path
length. For the translational APE table, the relative error is expressed as a percentage
of the path length, while for the rotational APE table, it is given in degrees per
meter. This normalization is critical because it accounts for the significant difference
in length between the long straight rows and the short curved turns. By normalizing
the error, the metric allows for a direct comparison of algorithmic performance on a
per-meter basis, eliminating any bias introduced by segment length variations and
providing a more robust measure of long-term drift. We assume a constant speed

throughout the trajectory to ensure consistency in this analysis.

84



Ezxperimental Results

Max | Mean | Median | Min | Std | Rmse | Relative (%)
MOYIC‘SV'LO 0,801 | 0,230 | 0,199 | 0,042 | 0,136 | 0,269 0,266
M%{‘lﬁ;Lo 130,244 | 0,526 | 0500 | 0,248 | 0,177 | 0,559 2,747
KISri;iCP 10,714 | 2,353 | 1,903 | 0,547 | 1,558 | 2,853 2,790
KISS-ICP | 507 | 0920 | 0820 | 0120 0527 | 1,074 5,604
turn
CENZACE | 7622 | 3122 | 2736 | 0388 | 1842 | 3631 3,589
GENZ-ICP | 75 | 0875 | 0862 | 0,172 | 0.385 | 0,965 4,741
turn
Sll;gvae 24,932 | 10,098 | 9,269 | 0,190 | 6,347 | 11,969 11,881
Sltl\l/ffrfe 6,250 | 2,418 | 2,213 | 0,630 | 1,229 | 2,722 12,255

Table 7.17: Aggregated translational Absolute Pose Error (APE) for straight row
and turning maneuver segments, with alternating row shading to differentiate segment
types. Columns report mean, median, minimum, maximum, standard deviation, and

RMSE.

Max | Mean | Median | Min Std | Rmse | Relative (deg/m)
MO;‘:‘V'LO 50,086 | 57,236 | 57,288 | 55,222 | 0,703 | 57,242 0,566
MOtI:IﬁILO 36,277 | 24,602 | 25,506 | 14,628 | 9,086 | 24,628 1,210
KIS]S;;CP 54,145 | 49,181 | 50,976 | 42,702 | 3,672 | 51,854 0,507
Klff;flcp 95,846 | 14,384 | 11,652 | 5810 | 7,320 | 16,305 0,851
GETOZV‘VICP 85,016 | 77,827 | 79.257 | 59,968 | 5652 | 78,437 0,775
GEI:i'nICP 69,780 | 32,679 | 27,852 | 15,466 | 18,751 | 39,451 1,938
SIMPLe | g3.870 | 71131 | 71322 | 60845 | 557 | 71506 0,710
Sitl\l/ffrf‘e 92,127 | 52,906 | 54,503 | 16,985 | 23,307 | 51,887 2,355

Table 7.18: Aggregated rotational Absolute Pose Error (APE) for straight row and
turning maneuver segments, with alternating row shading to differentiate segment
types. Columns report mean, median, minimum, maximum, standard deviation, and

RMSE.

85



Ezxperimental Results

Max | Mean | Median | Min | Std | Rmse
MOLA-LO 2,675 | 0,198 | 0,008 | 0,011 | 0,391 | 0,439
row
MOLALO 1 150 | 0128 | 0066 | 0,013 | 0,210 | 0,247
turn
KISS-ICP | o061 | 0,306 | 0,152 | 0,015 | 0,669 | 0,741
row
KISS-ICP 1,423 | 0,207 0,098 | 0,007 | 0,26 | 0,337
turn
GENZ-ICP 8,757 | 0,393 0,135 0,018 | 0,969 | 1,051
row
GENZ-ICP 1,332 | 0,191 0,105 | 0,017 | 0,253 | 0,319
turn
SIMPLe 1 4o1 | 0203 | 0144 | 0,011 | 0,184 | 0,274
row
SiMpLe 0,785 | 0,122 0,093 0,01 | 0,104 | 0,161
turn

Table 7.19: Aggregated translational Relative Pose Error (RPE) for straight row
and turning maneuver segments, with alternating row shading to differentiate segment
types. Columns report mean, median, minimum, maximum, standard deviation, and

RMSE.

Max | Mean | Median | Min | Std | Rmse
MOLA-LO | 5 )11 | 0681 | 0577 | 0,055 | 0,471 | 0,830
row
MOLA-LO 8,464 | 1,058 0,647 | 0,127 | 1,507 | 1,862
turn
KISS-ICP 1 400 | 0280 | 0,192 | 0,008 | 0,326 | 0,435
row
RISSTOP |5 151 | 0482 | 0202 | 0,026 | 0,494 | 0,703
turn
GENZICE | 91000 | 1008 | 0586 | 0,067 | 2434 | 2,689
GENZ-ICP | o 670 | 2,485 | 0,744 | 0,146 | 7,961 | 8372
turn
SIMpLe | 5 593 | 0900 | 0,794 | 0,061 | 0578 | 1,073
row
SiMpLe | 168 | 1480 | 1313 | 00840926 | 1,754
turn

Table 7.20: Aggregated rotational Relative Pose Error (RPE) for straight row and
turning maneuver segments, with alternating row shading to differentiate segment
types. Columns report mean, median, minimum, maximum, standard deviation, and

RMSE.

86



Ezxperimental Results

7.3.2 Qualitative Results

Beyond the numerical scores, it is often the visual analysis of trajectories that reveals
how each odometry system truly behaves in the field. In the vineyard environment,
visual comparisons help to capture effects that numbers alone cannot—such as how
the algorithms cope with repetitive vine rows, dense foliage, and the abrupt turning

maneuvers typical of agricultural navigation.

To better visualize these outcomes, representative trajectory plots were produced
using evo_ traj, directly comparing the estimated paths with the GPS-based ground
truth. Both 3D views and 2D top-down projections were included, offering com-
plementary perspectives that emphasize global accuracy as well as localized drift.
Particular attention was paid to sections where repetitive geometry or sharp direction

changes typically cause alignment errors.

These visualizations work as the natural counterpart to the quantitative results,
helping to expose subtle error patterns that aggregate metrics may overlook. Observ-
ing full trajectories from different perspectives also makes it easier to understand
where and why deviations appear, turning the statistical summaries into tangible

visual evidence of each algorithm’s behavior.

Figure 6.2 presents an overhead, satellite-based view of the robot’s route across
the vineyard. This path, recorded via GPS, acts as the ground truth baseline for all
subsequent odometry evaluations. The start and end points are clearly labeled, and
the coordinate axes correspond to latitude and longitude, with North indicated for
spatial reference. This overview establishes the physical context in which the LiDAR

trajectories should be interpreted.

Figures 7.13 to 7.16 show the estimated trajectories produced by the four LiDAR
odometry algorithms. Each figure contains two panels: the left side displays the
2D top-down projection, while the right side offers the full 3D trajectory overlaid
with the GPS reference path. This dual view highlights both planar deviations and
vertical inconsistencies, providing a more complete picture of performance under the

vineyard’s complex terrain.

The combined use of 2D and 3D representations allows for immediate recognition
of localized errors while keeping the visual comparison straightforward and readable.
Together, these qualitative results complement the numerical analyses, clarifying
how each algorithm adapts—or fails to adapt—to the subtle, repetitive geometry of

real-world agricultural environments.

Figures 7.17-7.20 depict how each LiDAR odometry algorithm evolves over time

across all six degrees of freedom. For every method, two subplots are provided: the

87



Ezxperimental Results

35 —— trajectory MOLA LO

0 20 40 60 80 100

--- Ground truth
— trajectory_MOLA_LO

.
a0

g
* (m§® ‘ <
=20

Figure 7.13: Estimated trajectory of MOLA-LO. Top: 2D top-down projection;
Down: 3D trajectory overlaid on the ground truth.

first presents the translational components z(t), y(t), and z(t), while the second
displays the rotational components—roll, pitch, and yaw—across the same temporal

window.

Analyzing these plots makes it possible to see where errors concentrate along
specific spatial axes. Deviations from the ground truth in the translational curves
indicate the directions most affected by drift or misalignment, while discrepancies in
the rotational plots reveal orientation instabilities that may disrupt overall trajectory
consistency.

To enable a direct visual comparison among the four LiDAR odometry algorithms,
Figure 7.21 overlays all estimated trajectories with the GPS-based ground truth.
This combined visualization clearly shows how closely each method aligns with the
reference path, while also exposing the regions where deviations emerge. In a single
view, it offers a compact yet informative summary of overall trajectory accuracy and

spatial consistency.

In addition to the trajectory overlays, Figure 7.22 shows how translational and
rotational components evolve over time for all four algorithms. This combined view
allows a direct comparison of how pose estimates diverge across the six degrees of
freedom, offering a clear and compact understanding of translation and rotation

behavior side by side.

88



Ezxperimental Results

X (m)

== Ground_truth
—— trajectory Kiss_ICP

80 -20

100

Figure 7.14: Estimated trajectory of KISS-ICP. Top: 2D top-down projection;
Down: 3D trajectory overlaid on the ground truth.

7.3.3 Critical Analysis

The critical analysis presented in this section evaluates the performance of the four
LiDAR odometry algorithms in the complex agricultural setting of the vineyard
dataset. Unlike the highly structured KITTT benchmark, the vineyard introduces
distinct challenges that can strongly influence scan matching and pose estimation.
These include long, repetitive vine rows that promote cumulative drift, dense foliage
that adds irregular noise and non-rigid features, and sharp U-turns that severely test

each algorithm’s ability to adapt to sudden direction changes.

This discussion connects the quantitative indicators—such as translational and
rotational APE and RPE, aggregate statistics, and relative error measures—with the
qualitative visualizations and component-wise comparisons. By correlating numerical
trends with visual deviations, it provides a comprehensive explanation of why certain
methods sustain stable performance while others suffer localized failures or systematic

drift when exposed to agricultural conditions.

7.3.3.1 Interpretation of Quantitative Trends

This subsection interprets the quantitative outcomes obtained from the vineyard
dataset, focusing on how each algorithm balances translational and rotational accu-

racy over time. The analysis extends beyond numerical metrics to identify patterns

89



Ezxperimental Results

—— trajectory_GenZ_ICP
35
30
25

/
100

Figure 7.15: Estimated trajectory of GENZ-ICP. Top: 2D top-down projection;
Down: 3D trajectory overlaid on the ground truth.

in robustness, cumulative drift, and error dispersion, revealing how specific vineyard

characteristics—such as repetitive geometry and abrupt turns—influence performance.

MOLA-LO stands out as the best-performing algorithm overall. It achieves the
lowest translational APE (mean 0.682 m) and RPE (mean 0.192 m), with moderate ro-
tational APE and RPE values (24.518 deg and 0.725 deg/m). Even in curved sections,
errors increase only slightly—about 0.266% on average. This consistency stems from
MOLA-LQO’s effective filtering and optimization steps, which minimize the impact
of vegetation noise and keep the estimated path closely aligned with the ground truth.

KISS-ICP delivers intermediate results, with an average translational APE
of 5.672 m and translational RPE of 0.292 m. Rotational errors remain moderate
(APE = 19.049 deg, RPE = 0.309 deg/m). Although stable overall, the algorithm
tends to accumulate drift over long, straight paths, and yaw deviations become more
noticeable during sharp turns. This pattern aligns with the pairwise nature of ICP,
which performs well under mild noise but lacks strong global correction, making it

more sensitive to fast orientation changes.
GENZ-ICP exhibits high initial error that progressively decreases. Average

translational APE reaches 6.779 m, with RPE = 0.371 m, and rotational APE =
35.839 deg, RPE = 1.411 deg/m. Errors peak at the start—where repetitive vine

90



Ezxperimental Results

0

—— trajectory_SiMpLe
| \

|

\

i

\
20

y (m)

(w) x

--- Ground_truth
—— trajectory_SiMpLe

40

i) ao/ a
.

100

Figure 7.16: Estimated trajectory of SiMpLe. Top: 2D top-down projection; Down:
3D trajectory overlaid on the ground truth.

structures trigger misalignments—but later stabilize as the algorithm converges
toward the ground truth. Despite partial recovery, residual yaw offsets persist during
curves. This early instability underscores GENZ-ICP’s dependence on accurate initial

alignment and its vulnerability to ambiguous geometric patterns.

SiMpLe performs poorest overall. Its translational APE averages 21.505 m
(RPE = 0.189 m), and rotational APE and RPE reach 54.962 deg and 0.986 deg/m,
respectively. Drift accumulates along straight rows and becomes extreme during
turns, with vertical deviations up to £15 m and roll/pitch errors surpassing +40-60
deg. These issues indicate strong sensitivity to environmental noise and the absence

of robust filtering or global correction.

In summary, the vineyard experiment clearly highlights how crucial it is for
odometry systems to handle repetitive patterns, dense vegetation, and frequent turns.
Among the tested methods, MOLA-LO stands out thanks to its strong filtering and
optimization framework. KISS-ICP remains generally stable, though it accumulates
drift gradually over time. GENZ-ICP manages partial recovery after early misalign-
ments, while SiMpLe experiences severe difficulties when confronted with complex

and irregular environments.

91



Ezxperimental Results

-~ Ground_truth

! (..ymmc
HM

M’ f‘“» u}
WA M
My *v*”"w hy

Ground_truth

) / -
< . / \ V/ \t‘ oy MOLA_LO
:: /\ A\ /\\ //
£ \ / /
1t
%

W \)‘l,m
[

roll (deg)

!

pitch (deg)
L T T

L WW W ) Wﬂw%\

1 /
o
. [ 100 Py I - oty T, frveny
Z j ~ " ‘f\ f o t'(ﬁ;ﬁMAqRJ‘ }wﬁ: 7—«‘ L""""\"l ‘P“',‘ M !-.wm
o o\ ")'\M,ff v \\W/ \W lw/!'\\ / \\ / fj g ] ’ [ ’ 1 ’ 1 I
02 f \ / —s0 | {
=\ W/ »u\\J FVONY [ WO ) U S Y

1200 1400 1600 1800 2000 2200 2400 2600

2000 2200 2400
te) 17508660 1200 1400 1600 1800

2600
t(s) +1.75086e9

((a)) Translational Components vs Time ((b)) Rotational Components vs Time

Figure 7.17: Temporal evolution of the Translational and Rotational Components
of the trajectory estimated by MOLA-LO.

7.3.3.2 Interpretation of Error Dynamics Over Time

The temporal evolution of APE and RPE clarifies how each algorithm reacts to
the vineyard’s main challenges—long rows, tight turns, and recurring structures.
Examining the time series of translational (z,y, z) and rotational (roll, pitch, yaw)

components reveals the dynamics of error growth and recovery.

MOLA-LO remains remarkably stable, with translational APE nearly constant
and vertical deviations within +0.4 m, peaking at 0.8 m. These small fluctuations

confirm effective drift suppression and robust handling of repetitive geometry.

KISS-ICP shows moderate translational errors that grow gradually along x
and y, while z stays within £0.1 m. High-frequency fluctuations suggest sensitiv-

ity to local geometry, without a global correction mechanism to smooth residual noise.

GENZ-ICP displays early instability: large initial errors that diminish after
roughly 400 s. The algorithm stabilizes once sufficient spatial information is accumu-

lated, though residual yaw offsets persist through turns.

SiMpLe is highly unstable, with substantial translational deviations and vertical
drift up to £15 m. Peaks align with turning segments, indicating an inability to
compensate for cumulative drift.

From a rotational perspective, all algorithms reveal a similar “square-wave”
pattern in yaw during 180° turns. MOLA-LO limits errors to about +7° in roll, +4°
in pitch, and roughly 30° in yaw. KISS-ICP shows smaller deviations—around 42°
in roll and pitch, with yaw drift reaching about 20°. GENZ-ICP initially suffers from

92



Ezperimental Results

-~ Ground_truth
—— trajectory _Kiss_ICP

--- Ground_truth
—— trajectory Kiss_ICP.

pitch (deg)

0.20
015
0.10

£ 005

yaw (deg)

N 0.00

~0.05

-0.10 i
ity
-0.15 -

1200 1400 1600 1800 2000 2200 2400 1200 1400 1600 1800 2000 2200 2400 2600

600
+1.75086e9 t(s) +1.75086e9

((a)) Translational Components vs Time ((b)) Rotational Components vs Time

Figure 7.18: Temporal evolution of the Translational and Rotational Components
of the trajectory estimated by KISS.

large ~ 90° yaw offsets that gradually diminish, whereas SiMpLe shows fluctuations
between +40 and 60°, especially when turning. These results confirm that orientation

changes remain a major challenge in natural, vineyard-like environments.

7.3.3.3 Data Analysis and Outlier Detection

The statistical box and violin plots offer deeper insight into algorithmic stability by
revealing variance, skewness, and outlier presence beyond mean metrics. The box
plots summarize spread and central tendency, while violin plots display the full error

density.

In terms of APE, MOLA-LO is the most consistent: both translational and
rotational distributions are narrow, symmetric, and centered near zero, confirming

minimal drift and strong reliability.

SiMpLe, conversely, shows extreme dispersion with a long right tail—clear evi-
dence of large, infrequent error spikes that distort the mean. This asymmetric spread

exposes major stability issues over time.

GENZ-ICP and KISS-ICP occupy intermediate positions. GENZ’s rotational
APE violin plot is bimodal, implying two distinct operational states—one accurate
and one prone to severe error bursts around 70 deg. Both algorithms display more

outliers and wider distributions than MOLA, signifying reduced robustness.
Looking at the RPE behavior, the situation changes slightly. MOLA-LO and SiM-

pLe produce compact, nearly symmetric error plots centered close to zero, suggesting
strong short-term consistency. By contrast, GENZ-ICP and KISS-ICP display wider,

93



Ezxperimental Results

-~ Gro --- Ground_truth

! M .‘M 'WH' Iy

(m)
=
£
3
>
L
A
’///a_
yaw (deg)
<

: | | ] : ]
R 7 v e v Rl 4L L]
SRV \/ ™ v R VU R O S SV

1200 1400 1600 1800 2000 2200 2400 1200 1400 1600 1800 2000 2200 2400
t(s)

2600 600
+1.750869 R t(s) +1.75086e9

((a)) Translational Components vs Time ((b)) Rotational Components vs Time

Figure 7.19: Temporal evolution of the Translational and Rotational Components
of the trajectory estimated by GENZ.

right-skewed distributions, indicating occasional local failures despite acceptable
frame-to-frame accuracy. Overall, these observations imply that MOLA-LO main-
tains stability on both global and local scales, while the other methods—particularly

SiMpLe—are more prone to cumulative drift.

7.3.3.4 Segmented Error Analysis: Straight vs. Curved Paths

Path segmentation reveals how motion type affects performance. Straight segments
dominate the trajectory length and thus heavily influence average metrics, whereas

turns impose sharper dynamic loads that expose weaknesses in rotational handling.

For translational APE, MOLA-LO again leads: despite slightly higher errors
in turns, its results remain far superior, with only one outlier linked to a specific
maneuver. Surprisingly, KISS-ICP and GENZ-ICP sometimes perform better
in turns than on straight paths, likely because turns introduce richer geometric
constraints. SiMpLe, however, fails in both contexts, with severe degradation during

rotations.

Rotationally, the trend intensifies. MOLA-LO preserves accuracy even under
abrupt changes, while GENZ-ICP and SiMpLe experience steep error increases,

demonstrating their limited resilience to fast orientation shifts.

RPE analysis complements these findings: MOLA-LO and SiMplLe maintain
excellent local accuracy with low dispersion, even during curves. KISS-ICP and
GENZ-ICP, instead, show higher variability, pointing to unstable short-term align-

ment.

94



Ezxperimental Results

S e, W= SOOI
M> ™ | MTWMW u«w&

-~ Ground_truth
—— trajectory_SiMpLe

roll (deg)

LR
c |

pitch (deg)

€ § L] ‘

. N ~

): |/ -60 M w \.“ \*\‘

i j“r\»\ /(\, H f:m tl [prh F‘Jﬁm r*“‘“ﬁ
! AN N U A VO “5“5'

LSv i / 1 2 i ; ‘ f ‘ ‘ :

~100

0 2000 4000 6000 8000 10000 12000 o 2000 4000 6000 8000 10000 12000
index index

((a)) Translational Components vs Time ((b)) Rotational Components vs Time

Figure 7.20: Temporal evolution of the Translational and Rotational Components
of the trajectory estimated by SiMpLe.

Overall, the segmented results reinforce MOLA-LO’s leading performance. It
consistently converts local reliability into globally precise trajectories, unlike GENZ-
ICP and KISS-ICP, which lose accuracy under complex motion, or SiMpLe, whose

drift rapidly grows over time.

7.3.3.5 Summary of Results and Implications

The comprehensive analysis confirms clear performance hierarchies. MOLA-LO
proves the most reliable, achieving low APE and RPE, minimal variance, and symmet-
ric error distributions. Its ability to preserve stability across both straight and curved
sections demonstrates effective drift control—essential in agricultural navigation,

where straight paths dominate total travel.

SiMpLe displays large dispersion and positive skewness, confirming instability
and noise sensitivity. Its good short-term accuracy fails to translate into global
consistency. GENZ-ICP and KISS-ICP perform moderately but remain prone to
drift on long paths and instability during turns; GENZ-ICP’s bimodal error behavior

particularly reflects abrupt degradation rather than gradual decline.

In conclusion, while several algorithms show acceptable local precision, only
MOLA-LO successfully converts local robustness into globally coherent trajectories.
Its combination of filtering, optimization, and resilience to repetitive geometry makes
it the most suitable solution for LiDAR-based odometry in complex, unstructured

agricultural environments.

95



FEzxperimental Results

=== Ground_truth

—— trajectory_GenZ_ICP
——— trajectory_Kiss_ICP
—— trajectory_MOLA_LO
—— trajectory_SiMple_tum

=60

z (m)

40 A

60
*(’77) L
80 ’ —20

Figure 7.21: Overlay of all four algorithm trajectories with the ground truth in the
Vineyard, showing overall alignment and localized deviations.

E 60 H
H \ -
w0 === Ground_truth 2 --- Ground_truth
~— trajectory_GenZ_ICP. -40 | — trajectory_GenZ_ICP
. —— trajectory_Kiss_ICP. —— trajectory_Kiss_IcP
—— trajectory_MOLA_LO —— trajectory_MOLA_LO
o —— trajectory_SiMple_tum 60 | trajectory_SiMple_tum
60
w
50
w
40
R @ 20
E3 N
> 5
20 a-20
10 o
. —60
. S s0
. g
= =z
0 2 °
-5
-100
-10
wo e e we a0 2 0
s FLTS0BEED g te FL7R086e0
((a)) Translational Components vs Time ((b)) Rotational Components vs Time

Figure 7.22: Overlay of all four algorithms showing (a) translational components (x,
y, z) over time and (b) rotational components (roll, pitch, yaw) over time, highlighting
deviations relative to the ground truth.

96



Ezxperimental Results

7.4 Comparative Discussion

The preceding chapters examined the performance of four LIDAR odometry frame-
works—KISS-ICP, GENZ-ICP, MOLA-LO, and SiMpLe—tested across two
environments that differ radically in structure and feature density: the KITTI
Odometry Benchmark, representing a well-organized urban setting, and a Vineyard
Dataset, characterized by repetitive geometry and significant vegetation noise. This
comparative discussion integrates the outcomes from both datasets to provide a
unified interpretation of each method’s reliability, adaptability, and efficiency across
contrasting conditions. This chapter moves beyond the separate dataset evaluations
and focuses on three main aspects. First, a cross-dataset analysis highlights how
each algorithm adapts—or fails to adapt—to changes in scene structure and feature
variability. Second, a robustness-versus-efficiency study explores how accuracy and
computational demand trade off under limited hardware resources. Finally, the dis-
cussion draws general conclusions to guide algorithm selection for both autonomous
navigation and agricultural robotics, emphasizing real-world applicability rather than

ideal laboratory conditions.

7.4.1 Cross-dataset comparison

Comparing the results from the KITTI and Vineyard datasets reveals how envi-
ronmental structure strongly influences algorithm behavior. The KITTI sequences
feature rich geometry—with roads, facades, and sharp corners—while the vineyard
environment introduces repeating patterns, vegetation noise, and narrow turns that
amplify drift and misalignment. This contrast clearly shows that approaches per-
forming well in structured, urban settings often struggle to generalize in unstructured

or semi-natural contexts.

SiMpLe achieves exceptional accuracy in KITTI due to its advanced feature-
weighting and filtering pipeline, which benefits from dense and varied geometry.
However, this same complexity becomes a weakness in the vineyard scenario. When
confronted with repetitive vine rows and high vegetation noise, its optimization
process misinterprets redundant features, leading to severe pose drift and instability.
In short, the algorithm’s precision in feature-rich contexts translates poorly to envi-

ronments with low structural variability.

MOLA-LO, in contrast, adopts a more conservative approach. Its emphasis
on global optimization and noise suppression results in only average accuracy on
KITTI, but proves advantageous in the vineyard. The algorithm’s resilience stems
from its reduced reliance on distinctive features and its ability to maintain long-term
trajectory consistency. In highly repetitive conditions, this design prevents the accu-

mulation of drift and maintains better overall stability.
KISS-ICP occupies an intermediate position. On KITTI, it efficiently exploits

97



Ezxperimental Results

local planar geometry, achieving strong translational accuracy at a modest compu-
tational cost. Yet, in the vineyard, it gradually accumulates drift and yaw offsets,
particularly during turning maneuvers. The lack of a strong global correction mecha-

nism limits its robustness under noisy, repetitive conditions.

GENZ-ICP demonstrates particularly uneven performance across both datasets.
On KITTI, it is highly sensitive to initialization errors and outliers, leading to un-
stable optimization. In the vineyard tests, it sometimes manages partial recovery
after misalignment but remains inconsistent overall. Its weak error suppression and
reliance on clear geometric cues make it unsuitable for environments dominated by

vegetation or repetitive layouts.

Minor discrepancies between our KITTI results and the values reported in the
original algorithm papers are attributable not to methodological issues, but to
computational limitations. All experiments were conducted on a CPU-only setup
(Ryzen 5 5600G, 16 GB RAM, no dedicated GPU) within WSL2 on Windows. Such
hardware restricts correspondence searches, voxel filtering, and optimization effi-
ciency. Consequently, algorithms with heavy computational pipelines—especially
SiMpLe—experience degraded performance relative to published benchmarks, which
typically rely on high-end GPU-enabled systems. In conclusion, the cross-dataset
analysis shows that algorithmic complexity does not guarantee robustness. Sophis-
ticated models like SiMpLe perform exceptionally in structured benchmarks but
degrade in unstructured domains. Simpler, globally consistent designs like MOLA
maintain accuracy across diverse conditions. KISS-ICP offers a balanced trade-off,
while GENZ-ICP remains unstable under real-world constraints. This reinforces the
importance of evaluating odometry systems across heterogeneous datasets and under

realistic hardware limitations.

7.4.2 Robustness and efficiency trade-offs

Selecting an appropriate LIDAR odometry system involves balancing two competing
demands: robustness, defined as stability and accuracy under noise and drift, and
efficiency, which depends on computational cost and real-time feasibility. The present
evaluation highlights how algorithmic design and environmental complexity interact
with hardware performance. All experiments were executed on a mid-range CPU
system (Ryzen 5 5600G, 16 GB RAM, Ubuntu on WSL2). This setup lacks GPU
acceleration and thus emphasizes CPU efficiency. In such conditions, algorithms that
rely heavily on iterative optimization, complex filtering, or feature extraction incur

significant runtime penalties.
Within this context, SiMpLe stands out for its precision in structured datasets

like KITTT but at the cost of high computational load. Its detailed feature-weighting

and filtering pipeline, while powerful, increases latency and reduces frame rates.

98



Ezxperimental Results

When exposed to the repetitive geometry and vegetation noise of the vineyard, this
computational overhead amplifies drift and reduces stability, illustrating that heavy

algorithmic design does not guarantee robustness in resource-limited scenarios.

MOLA-LQO, in contrast, operates efficiently with relatively low computational
demand. Thanks to its simpler matching strategy and global optimization scheme, it
achieves stable results even without GPU acceleration. While its accuracy on KITTI
is slightly below the top performers, its resilience in the vineyard data highlights
excellent generalization and makes it a practical choice for systems running on mid-

range hardware.

KISS-ICP achieves a middle ground. Its G-ICP formulation balances efficiency
and accuracy, avoiding heavy feature extraction while maintaining solid translational
estimates. It performs near-optimally on KITTI and only moderately degrades in the
vineyard, confirming that lightweight ICP variants can sustain acceptable robustness

under constrained computational conditions.

GENZ-ICP shows how lack of robust initialization and outlier handling can
compromise performance, especially when computation per scan is limited. Its unsta-
ble convergence and sensitivity to noise suggest that increased iteration counts do
not compensate for weak data association. As a result, the algorithm becomes less

efficient and more prone to cumulative drift.

Similar findings are echoed in recent literature, where feature-based methods
often trade computational efficiency for robustness, while lightweight ICP formu-
lations achieve higher frame rates but require careful initialization [27]. Overall,
our experiments suggest that, under CPU-only conditions, algorithms emphasizing
global optimization, outlier rejection, and minimal per-frame computation—as in
MOLA-LO—yield the best balance between robustness and efficiency. SiMpLe excels
in idealized conditions but struggles under hardware and environmental constraints,

while KISS-ICP remains a balanced, reliable alternative for general-purpose use.

Algorithm Robustness Efficiency Trade-off
SiMpLe High on KITTI, Low Accurate in
fails in vineyard structured, poor
generalization
MOLA-LO Stable Moderate-High Balanced, robust
KITTI/vineyard and efficient
KISS-ICP Good KITTI, High Efficient,
moderate moderate
vineyard drift robustness
GENZ-ICP Low, unstable Moderate Neither robust nor
efficient

Table 7.21: Robustness vs Efficiency trade-offs on mid-range CPU hardware.

99



Chapter 8

Conclusion and Future Work

This chapter concludes the benchmark analysis by summarizing the principal findings,
interpreting performance tendencies across datasets, and discussing their implications
for practical deployment. It also outlines the limitations of this study and identifies

future research directions that could extend and refine these results.

8.1 Summary of the Results

This work has benchmarked four LIDAR, odometry frameworks—SiMpLe, MOLA-
LO, KISS-ICP, and GENZ-ICP—across two complementary datasets: the struc-
tured, urban-oriented KITTI Odometry Benchmark and a private Vineyard Dataset
designed to capture repetitive and unstructured agricultural geometry. These two
datasets collectively represent the contrast between feature-rich urban scenes and

environments dominated by vegetative noise and geometric repetition.

On the KITTI dataset, SiMpLe demonstrated the highest overall accuracy,
particularly in minimizing rotational drift. Its complex filtering and feature-weighting
modules effectively exploited the diversity of geometric cues present in structured
city environments. KISS-ICP closely followed, achieving strong translational con-
sistency through its efficient G-ICP formulation. MOLA-LO achieved intermediate
results, providing smoother yet slightly less optimized trajectories, while GENZ-ICP
exhibited severe instability and large-scale drift, confirming weak robustness under
structured conditions. Minor discrepancies with previously published values (Ta-
bles 7.2 and 7.4) are explained by the mid-range CPU-only setup used here, which

lacks GPU acceleration and thus limits computational throughput.

In contrast, the Vineyard dataset emphasized the drawbacks of complex,
feature-dependent algorithms. SiMpLe, despite its strength on KITTI, struggled
in the presence of repetitive rows and high vegetation noise, leading to alignment
failures and severe drift. KISS-ICP maintained moderate stability but gradually
accumulated error along straight segments and turns. MOLA-LO, however, emerged

as the most stable method, benefiting from its simpler feature handling and emphasis

100



Conclusion and Future Work

on global consistency. GENZ-ICP remained inconsistent, occasionally recovering

after initial misalignments but suffering persistent yaw drift and curve errors.

The cross-dataset analysis suggests that excessive algorithmic complexity can
become a drawback in poorly structured settings. SiMpLe performs well in urban,
feature-rich scenes but loses adaptability in environments with noisy or ambiguous
geometry. MOLA-LO, with its more conservative design, proves to be more ver-
satile, striking a balance between simplicity and robustness. KISS-ICP occupies a
middle ground—efficient, fairly accurate, and reasonably stable—while GENZ-ICP
consistently falls short in both domains. These insights underline the importance of
evaluating algorithms across multiple, contrasting environments to obtain a realistic

view of their performance.

The trade-off between robustness and computational efficiency was also evident.
SiMpLe, although highly accurate on KITTI, incurs a substantial runtime cost under
limited hardware resources. MOLA-LO achieved the best compromise, maintaining
reliable accuracy across environments with manageable computation time. KISS-ICP
proved highly efficient but less tolerant to noise and repetitive structures, while GENZ-
ICP was both unstable and inefficient. Table 7.21 summarizes these relationships,
underscoring that practical deployment requires balancing algorithmic precision with

hardware feasibility.

8.2 Limitations and Future Work

Despite providing valuable insights into LIDAR odometry performance under con-
trasting conditions, this benchmark has several limitations that inform directions for

future research.

e Hardware limitations.
All experiments were performed on a mid-range CPU-only system (Ryzen 5 5600G]|
16 GB RAM, no dedicated GPU). This setup constrained the processing rate
and may have affected the numerical stability of computationally intensive algo-
rithms, particularly SiMpLe. Consequently, part of the observed performance
gap with respect to published results likely arises from limited computational

resources rather than inherent algorithmic deficiencies.

e Hardware limitations.
All experiments were performed on a mid-range CPU-only system (Ryzen 5 5600G/|
16 GB RAM, no dedicated GPU). This setup constrained the processing rate
and may have affected the numerical stability of computationally intensive algo-
rithms, particularly SiMpLe. Consequently, part of the observed performance
gap with respect to published results likely arises from limited computational

resources rather than inherent algorithmic deficiencies.

101



Conclusion and Future Work

e Dataset constraints.

The vineyard dataset, though representative of unstructured agricultural en-
vironments, covers only a single crop type and configuration, with fixed row
spacing and limited trajectory diversity. This restricts the generalization of
the conclusions to other agricultural or off-road contexts. Factors such as
seasonal variation, lighting changes, or moving obstacles were not incorporated,
potentially masking dynamic effects that could further influence odometry
stability.

e Sensor modality limitations.
This evaluation focused solely on LiDAR-based odometry. In practical robotic
applications, most navigation systems combine multiple sensors—such as cam-
eras, IMUs, or GNSS—to improve reliability and precision. As a result, this
study does not account for the potential benefits achievable through sensor
fusion or hybrid SLAM approaches, which often deliver more robust localization

in real-world conditions.

e Scenario and sampling diversity.
The datasets used operate at fixed scanning frequencies and trajectory complex-
ities. Algorithms may behave differently with higher-density LiDARs, faster
motion, or dynamic scenes. Additionally, while this benchmark examined both
straight and curved motion segments, extreme maneuvers and irregular paths
were not included, limiting insight into performance under aggressive motion

dynamics.

Future Work

Extending this benchmark should include a broader set of datasets covering
diverse crops, terrains, and environmental conditions to evaluate adaptability and
long-term drift behavior. Implementing GPU-accelerated versions of computation-
heavy algorithms would yield a more realistic estimate of runtime efficiency. Future
work could also explore hybrid LiDAR-visual-inertial pipelines to mitigate weak-
nesses of single-modality odometry in repetitive environments. Finally, large-scale,
long-duration experiments are needed to study cumulative drift behavior, loop closure

potential, and real-time deployability in both structured and natural environments.

102



Bibliography

D. Fox S. Thrun W. Burgard. Probabilistic Robotics. Cambridge, Massachusetts:
MIT Press, 2005 (cit. on pp. 1, 9-17).

W. Yang D. Lee M. Jung and A. Kim. “LiDAR Odometry Survey: Recent
Advancements and Remaining Challenges”. PhD thesis. Seoul, 08826, Republic
of Korea: Seoul National University, Dec. 2023. URL: https://arxiv.org/
abs/2312.17487 (cit. on pp. 2, 3, 36, 37, 39, 40, 48, 49).

Dachan Lee, Hyungtae Lim, and Soohee Han. “GenZ-ICP: Generalizable and
Degeneracy-Robust LIDAR Odometry Using an Adaptive Weighting”. In: I[EEE
Robotics and Automation Letters (RA-L) 10.1 (2025), pp. 152-159. por: 10.
1109/LRA. 2024 .3498779 (cit. on pp. 2, 42, 43, 62).

B. Mersch 1. Vizzo T. Guadagnino et al. “KISS-ICP: In Defense of Point-to-
Point ICP - Simple, Accurate, and Robust Registration If Done the Right Way”.
In: https://arxiv.org/abs/2209.15397 (July 2023) (cit. on pp. 2, 40-42, 61).

Jose Luis Blanco-Claraco. “A flexible framework for accurate LiDAR odometry,
map manipulation, and localization”. In: The International Journal of Robotics
Research 0.0 (2025), p- 02783649251316881. DOI: 10.1177/02783649251316881
(cit. on pp. 2, 43-45, 51, 63).

Phillips TG Bhandari V. “Minimal configuration point cloud odometry and
mapping”. In: The International Journal of Robotics Research 43.11 (2024),
pp. 1831-1850. DOI: 10.1177/02783649241235325 (cit. on pp. 2, 45-47, 64).

Nikolaus Correll. Introduction to autonomous Robots. Magellan Scientific, 2016

(cit. on pp. 5-9).
Elias Maia Azevedo dias Ferreira. “Improving LiDAR Odometry and Mapping

in real-time using Inertial Measurements”. MA thesis. Porto: Universidade do
Porto, 2021 (cit. on pp. 5, 7).

Wim Meeussen. “Coordinate frames for Mobile Platform”. In: ROS.org (Oct.
2010) (cit. on pp. 6, 7).

Tim Whiteman. “Frames”. In: Academia (2016) (cit. on pp. 7, 8).

I.R. Nourbakhsh R. Siegwart. Introduction to Autonomous Mobile Robots.
Cambridge, Massachusetts: MIT Press, 2004 (cit. on pp. 10-13).

103


https://arxiv.org/abs/2312.17487
https://arxiv.org/abs/2312.17487
https://doi.org/10.1109/LRA.2024.3498779
https://doi.org/10.1109/LRA.2024.3498779
https://doi.org/10.1177/02783649251316881
https://doi.org/10.1177/02783649241235325

BIBLIOGRAPHY

[20]
[21]

22]

23]

[24]

[25]

[26]

S. Esmaeelpourfard M. A. Sharbafi M. Hoshyari et al. “MRL Team Description
2010 - Small Size Robot League”. In: International RoboCup Competition. June
2010 (cit. on p. 16).

G. Dobie B. Das and S. G. Pierce. “AS-EKF": a delay aware state estimation
techniquefor telepresence robot navigation”. In: 2019 Third IEEE International
Conference on Robotic Computing (IRC). February 2019 (cit. on p. 17).

T. Stoyanov H. Andreasson G. Grisetti et al. “Sensors for Mobile Robots”. In:
Encyclopedia of Robotics. Springer. September 2023 (cit. on pp. 17-21).

John Farid Nasry Henawy. “Visual inertial odometry and LiDAR inertial
odometry for mobile robot”. MA thesis. Singapore: Nanyang Technological
University, 2021 (cit. on p. 20).

Santiago Royo and Maria Ballesta-Garcia. “An Overview of Lidar Imaging
Systems for Autonomous Vehicles”. In: Applied Sciences, MDPI (Sept. 2019)
(cit. on pp. 22-31).

T.Azumi Y. Maruyama S. Kato. “Exploring the performance of ROS2”. In:
Proceedings of the 13th International Congference on Embedded Software. EM-

SOFT ’16, Pittsburgh, Pennsylvania: Association for Computing Machinery,
2016. (Cit. on p. 32).

Jason M. O’Kane. A gentle introduction to ROS. Columbia, South Carolina:
University of South Carolina, 2014 (cit. on p. 32).

Paolo Vanella. “Implementation of ROS-based Multi-Agent SLAM Centralized
and Decentralized Approaches”. MA thesis. Torino: Politecnico di Torino, 2023
(cit. on pp. 32, 33).

“ROS Brand Guide”. In: ROS.org Branding Guidelines (2020) (cit. on p. 33).
ROS.org. “ROS Concepts”. In: https://wiki.ros.org/ROS/Concepts (2022) (cit.
on p. 33).

ROS.org. “Understanding nodes”. In: ROS 2 Documentation: Humble () (cit. on
pp. 33, 34).

R. Y Y. Pyo H. Cho et al. ROS Robot Programming. GeumCheon-gu, Seoul,
Republic of Korea: ROBOTIS Co.,Ltd., 2017 (cit. on p. 35).

Riccardo Tassi. “Design of a Behavior-Based Navigation Algorithm for Au-
tonomous Tunnel Inspection”. MA thesis. Torino: Politecnico di Torino, 2022
(cit. on p. 35).

M. Fallon J. Behley et al. SLAM handbook Chapter 10: LiDAR SLAM. Cam-
bridge, United Kingdom: Cambridge University Press, March 2025 (cit. on
pp. 36-39).

J. L. Blanco-Claraco and R. Aguilera Lopez. GitHub. 2025. URL: https://

github.com/MOLAorg/mola_lidar_odometry/tree/develop (cit. on pp. 44,
45).

104


https://github.com/MOLAorg/mola_lidar_odometry/tree/develop
https://github.com/MOLAorg/mola_lidar_odometry/tree/develop

BIBLIOGRAPHY

[30]

[31]

[32]

[33]

Jianke Zhu Xin Zheng. “Efficient LIDAR Odometry for Autonomous Driving”.
In: IEEE Robotics and Automation Letters 6 (2021), pp. 8458-8465. DOI:
10.1109/LRA.2021.3110372 (cit. on pp. 48, 49, 99).

Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for Au-
tonomous Driving? The KITTI Vision Benchmark Suite”. In: Conference on
Computer Vision and Pattern Recognition (CVPR). 2012 (cit. on pp. 48, 49,
65, 66).

HKUST-Aerial-Robotics. Benchmark for LiDAR-based 3D global registration.
https://github . com/HKUST - Aerial - Robotics /LiDAR-Registration-
Benchmark. Accessed: 2025-10-09. Cites SemanticKITTI for more accurate
ground truth. 2024 (cit. on p. 49).

Z. Zhao, Y. Zhang, J. Shi, and L. Long. “Robust Lidar-Inertial Odometry
with Ground Condition Perception and Optimization Algorithm for UGV”.
In: Sensors (MDPI) 22.19 (2022), p. 7424. DOI: 10.3390/s22197424 (cit. on
pp. 50, 51).

J. Knights, K. Vidanapathirana, et al. Wild-Places: A Large-Scale Dataset for
Lidar Place Recognition in Unstructured Natural Environments. 2023. arXiv:
2211.12732 [cs.RO]. URL: https://arxiv.org/abs/2211.12732 (cit. on
pp. 50-52).

Jingyi Zhou Zhigiang Dai and Tianci Li. “An intensity-enhanced LiDAR SLAM

for unstructured environments”. In: Measurement Science and Technology 34
(2023). DOT: 10.1088/1361-6501/ac£38d (cit. on p. 51).

Bing Zhang, Xiangyu Shao, Yankun Wang, Guanghui Sun, and Weiran Yao.
“R-LVIO: Resilient LiDAR-Visual-Inertial Odometry for UAVs in GNSS-denied
Environment”. In: Drones 8.9 (2024). 1SsN: 2504-446X. DOI: 10.3390/drones8
090487. URL: https://www.mdpi.com/2504-446X/8/9/487 (cit. on p. 51).

T. Kern, L. Tolksdorf, and C. Birkner. Comparison of Localization Algorithms
between Reduced-Scale and Real-Sized Vehicles Using Visual and Inertial Sensors.
2025. DOT: 10.48550/arXiv.2507.11241 (cit. on p. 79).

105


https://doi.org/10.1109/LRA.2021.3110372
https://github.com/HKUST-Aerial-Robotics/LiDAR-Registration-Benchmark
https://github.com/HKUST-Aerial-Robotics/LiDAR-Registration-Benchmark
https://doi.org/10.3390/s22197424
https://arxiv.org/abs/2211.12732
https://arxiv.org/abs/2211.12732
https://doi.org/10.1088/1361-6501/acf38d
https://doi.org/10.3390/drones8090487
https://doi.org/10.3390/drones8090487
https://www.mdpi.com/2504-446X/8/9/487
https://doi.org/10.48550/arXiv.2507.11241

	Introduction
	Background and motivation
	Current State of LiDAR odometry algorithms
	Thesis objective
	Organization of the thesis

	Literature review
	Coordinate systems
	Coordinate systems and frames of reference
	Coordinate transformation
	Euler Angles
	Axis Angles
	Quaternions
	Rotation Matrices


	Mobile robot localization
	Taxonomy of localization problems
	Probabilistic Map-based Localization
	Markov localization
	Kalman filter localization
	Extended Kalman filter localization


	Sensors for mobile robots
	Sensors Classifications
	Global Navigation Satellite System (GNSS)
	Wheel Odometry
	Inertial Navigation System (INS)
	Acoustic Systems
	Visual Systems



	LiDAR sensor
	Basic of LiDAR Imaging
	Measurement Principles
	Pulsed Approach
	AMCW Approach
	FMCW Approach

	Imaging Strategies
	Scanners
	Detector Arrays


	Sources and Detectors for LiDAR Imaging Systems
	Sources
	Photodetectors


	ROS: Robot Operating System
	Overview
	Graph Concepts
	ROS Useful Tools

	State-of-the-art of LiDAR-Only Odometry algorithms
	Introduction
	LIDAR Odometry
	Foundations of Scan Registration
	Distance measure in Registration Residual
	Determining Correspondences

	Direct matching approach
	KISS-ICP
	GenZ-ICP
	MOLA-LO
	SiMpLe


	Benchmark of the Selected Algorithms
	KITTI Odometry Dataset
	Vineyard Dataset
	Test Environment Setup
	Hardware and Software Components
	Installation and Compilation of the Algorithms

	Experimental Procedure
	KISS-ICP
	GENZ-ICP
	MOLA-LO
	SiMpLe

	Evaluation Metrics
	Odometry Error Analysis
	Computational Efficiency
	Robustness Evaluation


	Experimental Results
	Parameter Selection
	Parameter tuning strategy
	Algorithm-Specific Configurations
	KISS-ICP
	GENZ-ICP
	MOLA-LO
	SiMpLe


	Results on the KITTI Odometry Dataset
	Quantitative Results
	Development Kit Analysis
	Evo Tools

	Qualitative Results
	Critical Analysis
	Interpreting Quantitative Trends and Error Dynamics
	Outlier Detection and Catastrophic Failure Modes
	Algorithmic Response to Feature Density
	Summary and Implications


	Results on the Vineyard Dataset
	Quantitative Results
	Overview of Evaluation Metrics and Methodology
	Absolute Pose Error (APE)
	Relative Pose Error (RPE)
	Straight Rows vs Turning Maneuvers Analysis

	Qualitative Results
	Critical Analysis
	Interpretation of Quantitative Trends
	Interpretation of Error Dynamics Over Time
	Data Analysis and Outlier Detection
	Segmented Error Analysis: Straight vs. Curved Paths
	Summary of Results and Implications


	Comparative Discussion
	Cross-dataset comparison
	Robustness and efficiency trade-offs


	Conclusion and Future Work
	Summary of the Results
	Limitations and Future Work

	Bibliography

