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Abstract

Invasive species spread rapidly outside their natural range and can disrupt ecosys-
tems, damage economies, and threaten health. Early identification is therefore
critical, yet current ecological practice remains largely manual and existing deep
learning pipelines provide little insight into the morphological traits that define
invasiveness. This thesis addresses this gap by developing an explainability-driven
deep learning pipeline that links morphological traits to a model’s classification
prediction of invasiveness and exposes why the model fails on specific images. The
approach trains a classifier on image embeddings extracted with BioCLIP-2 and
adopts an imageomics perspective, treating images as high-dimensional phenotypes.
Saliency-guided region extraction (Integrated Gradients) identifies the image pixels
most critical to the model’s predictions. By clustering the embeddings of these
regions and manually annotating them, we are able to define interpretable visual
concepts. These clusters are then independently validated and propagated across
the dataset to produce image-level concept labels. By analyzing the co-occurrence
between labels and model outputs, the pipeline identifies which structures sup-
port correct invasive detections and which spurious cues drive misclassifications.
This method is demonstrated on a dataset of images of Lythrum, a plant genus
of around 40 species in the family Lythraceae, offering a scalable path toward
more transparent and trustworthy deep learning systems in ecology. Future works
could extend the pipeline beyond Lythrum to other taxa of ecological importance,
also integrating complementary data sources to link image-derived concepts more
directly to measurable biological traits.
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Chapter 1
Introduction

Invasive species are organisms that humans have transported, intentionally or not,
outside their natural range. Once they settled in a new environment, they spread
quickly and disrupt existing ecosystems.

However, not every species that is moved to a new environment becomes invasive.
To considered invasive, a species must first be classified as ‘alien’ (that is, non-native
to a specific region), and only a portion of these alien species turn out to be invasive.

Preventing the arrival and spread of invasive species is vital and limiting their
effects is crucial to avoid the deterioration of ecosystems. Failing to do so can lead
to significant problems for the economy, food security, and even human health.

A well-known example of disruption caused by an invasive species is that of
the the water hyacinth (Pontederia crassipes). Native to South America, this
floating aquatic plant serves as a key food source for the Amazonian manatee,
which naturally limits its growth. When introduced into other ecosystems, however,
the water hyacinth has a strong impact: it can outcompete native aquatic plants,
hindering their photosynthesis and growth. By covering the surface of the water,
it blocks sunlight from reaching underwater vegetation, leading to their death.
The decomposition of this plant material then consumes large amounts of oxygen,
causing oxygen depletion and eventually resulting in fish kills.

The excessive presence of water hyacinth can also cause several health issues
for humans. This plant is capable of absorbing considerable amounts of heavy
metals and other substances that are toxic to people. When the plant dies and
decays, it releases these compounds back into the environment, polluting the water
and reducing its quality, sometimes even contaminating drinking water for nearby
populations.

The economic consequences of invasions by Pontederia crassipes are also highly
significant. One of the main reasons is that dense infestations in water bodies (such
as rivers or lakes) can severely limit or completely block transportation, both for
people and goods. In the United States, it has earned the nickname ‘million dollar
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Introduction

weed’, not because of its worth, but due to the enormous sums of money spent every
year by local authorities on its removal, which is often only partially successful.

For these reasons, it is essential to develop the ability to accurately identify
invasive species, either to reduce the consequences of an ongoing invasion or to
prevent one from occurring in the first place.

Many ecological studies have explored what makes certain alien species invasive.
These works focus on identifying functional traits (such as growth rate, dispersal
strategy, or seed mass) that allow a species to dominate others once introduced
into new environments. While this approach can predict invasiveness, it faces key
challenges: many studies cover only small groups of species or specific regions, and
they depend on biological or ecological data that can be hard to obtain consistently
across taxa.

To our knowledge, no previous work has focused on predicting invasiveness using
only image data. This is the central aim of our study: to design a pipeline capable
of estimating the potential invasiveness of a species within the same genus, based
solely on visual traits.

As a case study, we selected the genus Lythrum, part of the Lythraceae family,
which includes annual and perennial herbaceous species. This genus was chosen be-
cause one of its members (Lythrum salicaria, commonly known as purple loosestrife)
is listed by the IUCN (International Union for Conservation of Nature) among the
‘100 of the World’s Worst Invasive Alien Species’. Native to Europe, Asia, northern
Africa, and eastern Australia, L. salicaria has invaded wetland ecosystems in North
America, where it outcompetes native flora.

We collected images of Lythrum species from iNaturalist, a citizen science
platform where users upload and label photographs of living organisms. The genus
is well represented on this platform: we gathered images of 30 Lythrum species,
three of which are recognized as invasive outside their native range (Lythrum
hyssopifolia, Lythrum salicaria and Lythrum virgatum).

One of the main tools used in this work is BioCLIP, a state-of-the-art vision model
trained on biological data. It is based on OpenAI’s CLIP framework and trains a
vision encoder and a text encoder together through contrastive learning using image-
text pairs. BioCLIP has demonstrated the ability to extract detailed representations
from image data, capturing subtle biological structures and distinguishing between
species that have a similar appearance or are poorly represented in the training set.

In our study, we employ BioCLIP as a feature extractor to map images from
the dataset into multi-dimensional embeddings. These embeddings are then used
to train a classifier that can differentiate invasive species from non-invasive ones.

To improve the interpretability of the workflow, we introduce an explainabil-
ity component. For each image, we generate attribution maps using Integrated
Gradients, an algorithm designed to highlight the regions that most influence the
model’s predictions. We then extract these relevant regions and group them into
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clusters to determine which morphological structures they correspond to. This
approach allows us to identify the distinctive traits of each species that appear in
the images and to connect them with the model’s predictions.

Finally, we analyze the resulting data to uncover recurring patterns and to
better understand which visual morphological features affect a species’ likelihood
of being invasive or non-invasive.

This thesis is organized as follows:

o Chapter 2 reviews the existing literature, covering ecological studies on
invasive traits, applications of deep learning to plant identification, and recent
work on explainability models.

o Chapter 3 describes the full methodology, including the classification model,
the explainability pipeline, and the clustering analysis.

o Chapter 4 presents experimental results on the Lythrum dataset, discussing
classification accuracy, saliency maps, and the morphological patterns discov-
ered.

o Chapter 5 concludes the work, summarizing contributions, acknowledging
limitations, and outlining future directions such as applying the method to
other taxa or integrating complementary trait data.

The two main contributions of this thesis are:

o We demonstrate that invasiveness can be inferred from visual traits alone,
without relying on tabular or categorical ecological data;

e We introduce an interpretable framework that connects computer vision and
ecology, offering a foundation for future research that combines automated
image analysis with traditional biological knowledge.



Chapter 2

Related Works

2.1 Biological approach to the identification of
traits related to invasiveness

The study of traits that help invasive plant species survive beyond their native
ranges has long attracted in ecology. Researchers aim to identify which traits
predict whether a plant will become invasive.

Van Kleunen et al. (2015) [1] propose a framework consisting of a set of questions
aimed at understanding the success of alien species. Each question depends on
the answer to the previous one, reflecting the hierarchical structure of the invasion
process. The sequence of questions progresses from broader geographical regions to
smaller communities, and each step includes a group of traits that are considered
to influence the success of alien species.

Mathakutha et al. (2019) [2] focused on functional traits and asked two main
questions. Are invasive plants functionally different from native species? Which
traits set invasives apart from non-invasive aliens? They found that most traits
differed between invasive and native plants, suggesting that functional traits relate
to invasion success. The traits most tied to invasiveness were plant height, leaf
area, frost tolerance, and specific leaf area. Their dataset was small though (13
traits measured across 26 species from 13 families in the sub-Antarctic region), so
results should be read with caution.

A broader view comes from Van Kleunen et al. (2010) [3], who ran a meta-
analysis to test links between invasiveness and performance traits such as growth
rate, leaf allocation, and fitness. They compared 125 invasive with 196 non-invasive
species. Across all traits, invasive species differed more from native species than
from other alien species. When compared with native species that are invasive
elsewhere, no trait differences were significant. The authors concluded that future
invasions might be predicted from measurable species traits.
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Li et al. (2024) [4] examined how the traits of both invasive and native plants
interact during invasion. Their results show that the outcome depends on the
species pairing. For instance, native plants such as Artemisia argyi, Artemisia
lavandulifolia and Chenopodium album were more competitive when paired with
certain invasives. In contrast, Setaria viridis, Austrocylindropuntia vestita, and
Artemisia annua outcompeted Elodea canadensis, Galinsoga quadriradiata, and
Erigeron annuus respectively. They found that invasive success was linked mainly
to plant height, stem diameter, and biomass allocation. Native competitiveness
depended on biomass distribution, stem size, and functional group differences.

Both Mathakutha et al. [2] and Li et al. [4] tested ideas first outlined by
Ordonez et al. (2010) [5]: the ‘phenotypic divergence’ and ‘phenotypic convergence’
hypotheses. The divergence view holds that invaders succeed because they differ
from natives, exploiting open ecological niches. The convergence view suggests that
shared environmental pressures force similar traits in both groups. Evidence from
both studies ( [2, 4]) supports phenotypic divergence. Distinct functional traits,
rather than shared ones, appear to promote invasion.

Leffler et al. (2014) [6] offered a different take. They argued that the meaning of
trait differences depends on ecological context and warned that predicting invasion
from traits alone would be difficult. They proposed a rule: differences between a
native and an exotic invasive species must exceed the range of variation found among
co-occurring natives to be meaningful. Dawson et al. (2015) [7] later challenged
this view. They pointed out that Leffler’s rule cannot distinguish between cases
where alien traits fall within native variation but still function differently and cases
where traits are nearly identical.

These and other studies offer valuable insights for understanding the differences
between native species, non-invasive alien species, and alien species that become
successfully invasive. They also help in predicting whether a species is likely to
become invasive when introduced into a new environment. However, although
several works have shown that the invasion success of plant species can be inferred
from their functional traits, many of them face important challenges and limitations.
Among these are experimental conditions involving only a small number of plants
or studies confined to specific regions, which makes it difficult to extend the findings
to larger scales or to datasets with greater complexity. This raises the question
of whether such analyses could be made scalable through the use of deep learning
methods.

2.2 Deep learning for plant species identification

The development of systems for automatically recognizing plant species from images
is a critical interdisciplinary problem that bridges computer vision and biodiversity
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science. This challenge falls under fine-grained visual classification, where mod-
els must distinguish among thousands of species based on subtle morphological
features, such as leaf shape, venation, and flower structure. This complexity is
further intensified by large variability within species (induced by growth stage
and environmental conditions) and by strong visual similarity between species,
especially among closely related taxa [8, 9, 10].

Early approaches to automated plant species identification relied on predefined
feature engineering. Systems such as Leafsnap [11] employed traditional computer
vision techniques, extracting histograms of curvatures along the contour of the leaf,
to match against curated references. These methods successfully demonstrated
the potential of automated recognition, but they were limited in scalability and
struggled with noisy, real world data. The introduction of convolutional neural
networks (CNNs) revolutionized the field: by learning features directly from raw
pixels, CNNs rapidly outperformed traditional methods, establishing deep learning
as the dominant approach for fine-grained plant classification. Given the limited
size of many botanical datasets, researchers quickly adopted transfer learning from
pretrained models [12], which provided strong generalization even with limited
training examples.

This progress has been critically enabled by the release of large, real world
datasets, of which the iNaturalist collection is a primary example. Presented
by Van Horn et al.[13], this dataset contains over 859000 images across more
than 5000 species generated by a global community of citizen scientists, capturing
the visual diversity and ecological realism inherent in real-world observations.
Baseline performance on this dataset only achieved 67% top-1 accuracy, with severe
degradation on rare classes, highlighting the challenges of long-tail distributions.

Herbarium specimens serve as a complementary data source, providing a stan-
dardized yet fine-grained and taxonomically rich alternative. The potential of deep
learning in this domain was demonstrated by the Herbarium 2019 Challenge [14],
a dataset of more than 46000 expertly labeled images of the Melastomataceae
family across 683 species. Top performers in the associated FGVC6 competition
achieved 89.8% classification accuracy. The Herbarium 2021 dataset [15] expanded
to over 2.5 million images of 64500 taxa, particularly challenging for its pronounced
class imbalance (imbalance factor > 1650) and its broad representation of major
plant divisions. In the associated competition, model performance was measured
using the F1 score, and the best submitted result was 0.757. Carranza-Rojas et
al. [16] explored the application of CNNs to herbarium sheets. This analysis
provided valuable insights into the effective use of transfer learning in this domain,
identifying when its application is effective or counterproductive.

The PlantCLEF series has played a key role in driving progress in plant recogni-
tion by posing increasingly complex challenges. The 2022 edition [17], for example,
focused on identifying 80000 species from 4 million images from heterogeneous
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sources. The documentation mentions the difficulty of building models that can
generalize across different data quality and types. The 2024 competition [18] intro-
duced the task of identifying multiple species within single vegetation plot images
and treated plant identification as a weakly-labeled multi-label classification task.
Two pre-trained models were shared to solve this problem, both based on Vision
Transformer (ViT) architecture initially pretrained with the DinoV2 Self-Supervised
Learning approach [19].

More recently, BioCLIP [20] introduced a foundation model trained on a dataset
with 10 million biology images, using hierarchical contrastive learning with taxo-
nomic labels, and establishing a new state-of-the-art in the fine-grained biology
classification task. Its successor, BioCLIP 2 [21], scaled this approach using 214
million images.

2.3 Deep learning for identification of traits re-
lated to invasiveness

Many researchers have used deep learning to detect invasive species and reduce the
harm they cause to ecosystems.

Baron et al. (2018) [22] combined image processing with machine learning to
identify yellow flag iris (Iris pseudacorus, an invasive species) from drone images.
Jensen et al. (2020) [23] applied several machine learning classifiers to map kudzu
vine (Pueraria montana, an invasive species) across the southeastern United States
using spatial data. Likewise, Lake et al. (2022) [24] used WorldView-2 and
PlanetScope satellite imagery with convolutional neural networks to detect leafy
spurge (Euphorbia virgata, an invasive species) across complex landscapes. These
studies focused on locating known invasive species in the environment, not on
identifying the biological traits that make them invasive.

Focusing on the identification of traits associated with invasive species, Keller et
al. (2011) [25] examined trait-based risk assessments for invasive species by using
six different datasets that range from regional to global scales and cover various
taxa, regions, and invasion stages. Among these six datasets, two refer to birds,
two to fish, one to molluscs, and one to pines. For the latter (Pinus [26]), the
authors considered several categorical and numerical traits, identifying seed mass,
dispersal mode, serotiny, generation time, reproductive intervals, fire tolerance, and
environmental tolerances as the main predictive traits. They also compared two
statistical approaches and seven machine learning algorithms, finding no significant
difference in the results produced by the two types of methods.

More recently, with advances in deep learning, the concept of imageomics has
emerged [27]. This field aims to extract biological traits directly from images by
embedding structured biological knowledge into learning algorithms. Within it,
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phenomics focuses on identifying phenotypic traits from image data [28, 29, 30].

In this context, Macleod (2017) [31] compared traditional geometric morpho-
metric techniques with more recent machine learning approaches for the analysis
of digital images of carnivore skulls. The study assessed how effectively each
method was able to describe group differences and examined their suitability for
morphometric analysis.

Liirig et al. (2018) [32] designed a pipeline aimed at simplifying the immediate
extraction of high-dimensional phenotypic data from digital images, enabling
biologists to concentrate on fast and reproducible data collection.

Similarly, Porto et al. (2020) [33] proposed a machine learning pipeline for
extracting detailed morphometric data from two-dimensional images of semi-rigid
biological structures.

Previous studies have largely concentrated on numerical or categorical tabular
traits (for example, seed mass or dispersal mode), using statistical or machine
learning techniques for their analysis. However, this type of approach may overlook
morphological characteristics that can only be observed visually, such as petal color
or stem structure.

At the same time, work using deep learning has focused mainly on species
identification, not on trait detection. To our knowledge, no published research has
yet used deep learning to identify visual morphological traits linked to the potential
invasiveness of plants.

2.4 Explainability mentions

The “black box" nature of deep learning models poses a challenge for their adoption
in ecological domains, where both accuracy and trustworthiness are critical. To
be reliable, predictions must be explainable, based on scientifically valid features
rather than spurious correlations. In fine-grained classification tasks, this means
verifying that models focus on biologically meaningful traits, such as leaf shape and
flower morphology, rather than irrelevant cues like lighting or background noise.
For critical applications like invasive species detection, explainability ensures that
models use true diagnostic traits, preventing misinformed decisions.

Explainability methods in computer vision generally fall into a few established
families:

« Saliency and gradient-based methods. Methods like CAM [34] and Grad-
CAM [35] produce heatmaps that highlight image regions responsible for a
given prediction by using class-specific gradients over the final convolutional
layer. Integrated Gradients [36] instead traces a linear path from a baseline
(e.g., a blank image) to the actual input and integrates the gradients along
that path to assess feature relevance.
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o Perturbation-based methods. These methods analyze a model’s behavior
by modifying its input. RISE [37] empirically identifies important pixels by
applying randomized masks and aggregating the corresponding model outputs.
SHAP [38] assigns a theoretical importance score to each input feature by
leveraging Shapley values from cooperative game theory. LIME [39] explains
individual predictions by generating perturbed samples around the input and
fitting a simple interpretable model (e.g., linear regression) to approximate
the local behavior of the complex model.

o Concept-based and prototype methods. This family is designed to offer
human-comprehensible reasoning, moving beyond simple feature attribution.
TCAV [40] quantifies the influence of user-defined concepts on model decisions.
ProtoPNet [41], and its successors, Deformable ProtoPNet[42], learn prototyp-
ical parts during training; predictions rely on similarity to these prototypes,
offering example-based explanations.

These explainability techniques have already shown promise in ecological applica-
tions. For instance, a study on herbarium specimen classification used Grad-CAM
to reveal that models often mimic expert behavior: first observing the overall plant,
then focusing on diagnostic parts, confirming that the model indeed pays attention
to biologically meaningful regions [43]. A more recent work applied concept-based
methods to plant disease detection, revealing both meaningful visual cues and
spurious biases [44]. Despite these promising examples, the systematic application
of explainability in biodiversity (and invasive species detection and monitoring) is
still underexplored. Moreover, existing methods face challenges such as instability,
the risk of highlighting visually salient but biologically irrelevant features, and the
absence of quantitative standards for validation. These problems are amplified in
ecological datasets due to complex backgrounds and metadata leakage. In this
research, explainability serves as a critical validation tool, ensuring that models
rely on biologically meaningful traits and that their predictions can be trusted for
scientific purposes.

2.5 Research question

In conclusion, while multiple research projects have investigated the identification
of morphological traits linked to the invasiveness potential of plants, we are not
aware of any study that relied solely on visual traits obtained from image data.
By concentrating on the plant genus Lythrum (Lythraceae) and applying deep
learning methods in a systematic manner, our goal is to distinguish invasive from
non-invasive species based on their specific morphological characteristics.



Chapter 3

Methods

We designed a pipeline to extract information on morphological traits from plant
images. It comprises three main modules, each containing several intermediate
steps:

1. Classification model to predict whether an image represents an invasive or
non-invasive species.

« Extraction of image embeddings using a foundation model fine-tuned
for the biological domain (BioCLIP 2);

o Training the classifier on the extracted embeddings;
2. Explainability pipeline:
« Generation of heatmaps to highlight the regions that most influence

the model predictions using Integrated Gradients as the XAI algorithm;

« Extraction of regions from the heatmaps by selecting bounding boxes
that encompass the most influential pixels;

o Clustering phase:

— Clustering of the regions after embedding each region individually
and reducing them to a two-dimensional space with UMAP;

— Cluster annotation to identify the biological structure represented
by each region (Leaf, Flower, Stem);

3. Final analysis: we analyze patterns and co-occurrences to discover the visual
traits that drive a species’ predicted invasiveness.

In the following sections, we will describe each step of the pipeline in detail,
explaining the methodology and the decisions made throughout the research process.
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3.1 Classification model

Linear

RelLU | Invasive /
Non Invasive
—_—

Linear
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BioCLIP-2 Classifier Head
-~
Image encoder

Figure 3.1: Classification model architecture.

In this section, we describe the procedure used to build the classification model.
The model takes an image from the dataset (Sec. 4.1) as input and predicts whether
it represents an invasive or non-invasive species. The complete architecture of the
classification pipeline is shown in Fig. 3.1.

First, we used BioCLIP 2 [21] as an embedding extractor, employing the model’s
image encoder to generate a multidimensional embedding for each image in the
dataset. These embeddings were then used to train a classifier. The image encoder
was not fine-tuned on our dataset, so we assessed its ability to produce meaningful
representations directly. While other embedding extractors could have been used,
BioCLIP is specifically trained for the biological domain and provides better
performance than a generic extractor, removing the need for additional training or
fine-tuning.

The classifier, which takes the embedding as input, consists of a Linear layer,
a ReLLU activation, and a final Linear layer with two outputs corresponding to
invasive and non-invasive classes.

We trained the classifier to predict whether an image, represented by its embed-
ding, corresponds to an invasive or non-invasive species, using cross-entropy as the
loss function. To handle the slight class imbalance in the dataset, class weights
were incorporated into the cross-entropy loss. These weights were calculated as the
inverse of the logarithm of the class sample counts, providing a balance between
compensating for underrepresented classes and avoiding excessive weighting of rare
categories. The cross-entropy loss formula and the method used to compute class
weights are presented in Eq. 3.1.

K 1
L=— Z WeYc lOg(QC)a We

c=1 B log(l + nc> (31)

Further details on the embedding models considered, the evaluation metrics,
and the classifier’s hyperparameters are provided in Sec. 3.4.1.
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The classification task presents an inherent challenge. Invasiveness is not an
absolute property: some species may behave invasively in one region and not in
another. Researchers often differ in how they frame this distinction. Some studies
compare invasive alien species with native species, aiming to isolate the traits
that allow a non-native species to succeed locally. Other research contrasts only
non-native species, comparing successful invaders against non-invasive aliens to
identify the features that enable widespread establishment [1, 3, 2].

This study does not investigate the correlation between species traits and
geographical distribution, but rather focuses on the relationship between a species’
appearance and its invasiveness potential. Accordingly, we take a broader approach
by considering any species that is invasive in at least one location as ‘invasive’ (at
least potentially), and any species that is not invasive anywhere as ‘non-invasive’.
For this reason, we do not make distinctions between ‘native’ and ‘non-native’
species, concentrating exclusively on the potential for a species to become invasive.

3.1.1 BioCLIP

This section outlines what BioCLIP is and explains why we selected it as the feature
extraction model for our study.

BioCLIP is a domain-specific vision-language foundation model designed to
generalize across the entire tree of life [45]. It captures visual features that span
diverse taxa and can distinguish among organisms that are morphologically similar.
Another advantage is its robustness in low-data settings: BioCLIP can generate
informative embeddings even for species that are underrepresented (or entirely
absent) in the training data.

The model was trained on TreeOfLife-10M [20], a large, diverse dataset built
by integrating multiple existing biological image collections, including iNat21 [46],
BIOSCAN-1M [47] and the Encyclopedia of Life!.

In terms of architecture, BioCLIP is based on OpenAl’s CLIP framework [48],
which uses transformer architectures and relies on the self-attention mechanism
to capture contextual relationships between elements in a sequence. In the vision
domain, as in this case, this concept is implemented through Vision Transformers
(ViT), which divide an image into patches (instead of tokens, as in a standard
transformer), serialize these patches into vectors, and process them through a
transformer encoder like regular tokens. In BioCLIP, the vision encoder is a
ViT-B/16, while the text encoder is a 77-token causal autoregressive transformer.
Both encoders map their inputs into a shared embedding space, allowing for the
measurement of similarity.

Thttps://eol.org
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CLIP (and consequently BioCLIP) relies on a contrastive learning objective.
During training, the model receives batches of paired image-text samples and learns
to maximize similarity between matching pairs while minimizing it for mismatched
ones. The contrastive loss function is expressed as

L= —log ;XP(@z‘,tz‘)/T)

> ey exp((vi ) /7)

where v; and t; are the normalized embeddings of the i-th image-text pair in a
batch, and 7 is a learnable temperature parameter [48].

In BioCLIP, the text encoder takes as input various combinations of common
names, scientific names, and taxonomic names (Tab. 3.1 shows examples of these
combinations as described in the original paper by Stevens et al. [20]). This multi-
level textual supervision enhances the contrastive alignment process: the model
does not simply learn to match an image with a single label, but also captures the
semantic relationships across different linguistic representations, providing greater
flexibility during testing.

(3.2)

Text Type Example

Common black-billed magpie

Scientific Pica hudsonia

Taxonomic Animalia Chordata Aves Passeriformes Corvidae Pica
hudsonia

Scientific + Common Pica hudsonia with common name black-billed magpie
Taxonomic + Common  Animalia Chordata Aves Passeriformes Corvidae Pica
hudsonia with common name black-billed magpie

Table 3.1: Text types considered in the training of BioCLIP, as presented in the
original paper [20].

We decided to use BioCLIP in our study because it is pre-trained, avoiding the
need for a long and computationally intensive training process, on a large dataset
that extensively covers the species we are considering. We also take advantage of
its ability to generate fine-grained image representations (important in our case,
as several species have very similar morphologies) and its capacity to produce
meaningful embeddings even for species that are rarely represented in the dataset
(as is the case here, see Fig. 4.1).

In this work, we use the most recent version, BioCLIP-2 [21]. It incorporates
a stronger vision transformer and is trained on TreeOfLife-200M, an expanded
dataset built with the same structure as TreeOfLife-10M but on a much larger
scale.
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3.2 Explainability pipeline

We developed an explainability pipeline to provide insight into our classification
model’s decision process. Our goal is to validate whether the model’s prediction
of plant invasiveness is based on meaningful biological traits (and which ones
specifically) or is influenced by spurious correlations like background noise. To
achieve this, we designed the following procedure:

1. Generate heatmaps of model predictions to identify the image regions that
drive classification decisions;

2. Extract the highlighted regions from the original images based on the heatmaps;

3. Label each extracted region to determine the biological structures it represents.

This process is shown in Fig. 3.2.

3.2.1 Heatmap generation

To ensure a comprehensive evaluation of feature attributions, we applied two
complementary techniques for generating heatmaps: Integrated Gradients [36]
and Gradient SHAP, a variant of SHAP [38]. These methods were chosen
to cover different approaches to explainability: Integrated Gradients provides a
deterministic, path-based gradient attribution, while Gradient SHAP introduces
randomness and connects to Shapley values for fair feature attribution.

Integrated Gradients is a saliency and gradient-based method that computes
feature attributions by integrating the gradients of the model’s output with respect
to the input along a straight path from a baseline to the input. This approach satis-
fies key axioms such as Sensitivity and Implementation Invariance, while requiring
only a modest number of gradient evaluations for implementation. Intuitively, it
measures how much each pixel contributes to moving the prediction away from the
baseline.

Gradient SHAP builds on the same principle but introduces randomness: it
samples multiple noisy versions of a baseline input and computes expectations
of integrated gradients with respect to these perturbations. This formulation
is theoretically linked to Shapley values from cooperative game theory, which
guarantee a fair attribution of the model output among features.

Both methods were applied directly to our full classification pipeline (i.e., frozen
BioCLIP-2 image encoder followed by the classifier head). This was Step I of
Fig. 3.2. Following a comparative analysis of their clustering outcomes, one method
was chosen for final heatmap generation based on clustering performance.
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Figure 3.2: Explainability pipeline. The entire process is shown, with the result
of the first step being the heatmaps of images, the second step the extracted regions
and the last step the labels associated to each extracted region.
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3.2.2 Regions extraction

After generating the attribution map, we designed a systematic procedure to extract
and save the most salient image regions (Step 2 in Fig. 3.2). Fig. 3.3 illustrates in
detail all steps:

1. Normalization and preprocessing: the original input tensor is converted
back into an RGB image and normalized to the [0, 1] range. The attribution
map is resized to match the resolution of the input image and normalized
similarly. If the attribution map has multiple channels, it is converted to
grayscale;

2. Thresholding: to isolate the most influential pixels, we apply percentile-
based thresholding. Specifically, we build a binary mask of the most important
regions by keeping only pixels above the 90th percentile;

3. Morphological processing: to create clean and contiguous masks, we use a
sequence of morphological operations: “closing” fills any small gaps or holes,
and “opening” removes isolated noisy pixels;

4. Connected components: the binary mask is decomposed into connected
components. For each component, we compute a bounding box; very small
regions (with width or height < 10 px) are ignored as noise. Each bounding
box is then expanded by 20 px in all directions to capture entire morphological
structures;

5. Region cropping and saving: the corresponding crop from the normalized
RGB image is extracted and saved as a separate region. These regions represent
candidate salient biological traits that will later be clustered and labeled.

3.2.3 Clustering phase

After generating the heatmaps and extracting the salient regions, the next step is to
assign a label to each extracted region. The goal is to determine whether a region
corresponds to a meaningful biological structure (and, if so, which one specifically),
or if it reflects a spurious focus on irrelevant elements such as background or human
hands. This is Step 3 visualized in Fig. 3.2.

We embedded each region into a semantic feature space using the image encoder
of BioCLIP-2 [21], the same one already used in our classification model (see Sec. 3.1).
Since the raw embedding space is high-dimensional, we applied Uniform Manifold
Approximation and Projection (UMAP[49]) to reduce the dimensionality while
preserving local neighborhood structures. UMAP works by constructing a high-
dimensional graph representation of the data and then optimizing a low-dimensional
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Figure 3.3: Detailed procedure showing how salient regions are extracted from
an image and its heatmap.

graph to be as structurally similar as possible, measured using cross-entropy. The
reduced embeddings facilitated both visualization and downstream clustering.
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We then used a centroid-based clustering method, KMeans, an iterative al-
gorithm that repeatedly assigns data to the nearest cluster centroid and then
recalculate the centroid’s position.

The final output of this stage was a mapping between each extracted region and
its assigned cluster.

By visually inspecting the regions within the generated clusters, we manually
assigned to each cluster the labels: Leaf, Flower, Stem, Hand and Back-
ground /undefined.

3.3 Final analysis

These preliminary steps enable the final analysis. To extract meaningful patterns
from the data, we designed the pipeline illustrated in Fig. 3.4, which consists of
three main stages:

1. Region Extraction: from the images of the entire dataset, we extract salient
regions following the procedure described in Sec. 3.2.3;

2. Regions Labeling: the extracted regions are then assigned to clusters using
the KMeans model with fixed centroids trained in Sec. 3.2.3. Since clusters
were manually annotated in advance, each region inherits the labels of its
corresponding cluster.

3. Pattern Analysis and Discovery: finally, in Sec. 3.3.1, we analyze the
distribution of labeled regions across the dataset in order to identify recurring
structures and discover patterns underlying predictions.

—]
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Dataset pipeline clustering
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Figure 3.4: Final analysis pipeline. From the dataset we extract regions, we
cluster them (using the trained model from Sec. 3.2.3), and label them accordingly.
These labeled regions are then used to discover and analyze patterns in the data.

For this final analysis, we expanded the cluster labels: instead of just using Leaf,
Flower, Stem for plant structures, we included characteristic traits specific to each
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species and each plant structure (see Appendix A). Hand, Backgroung/undefined,
instead, remained the same as previously defined.

3.3.1 Pattern Analysis and Discovery

Region-level outputs were aggregated at the image level. For each image, we
computed:

Ground truth and predicted class computed by our classification model;

Prediction correctness: binary indicator (if ground truth and predicted
class correspond) and error type:

— True Positive (TP) = Invasive plants correctly predicted;

— True Negative (TIN) = Non Invasive plants correctly predicted;

— False Positive (FP)= Non Invasive plants predicted as Invasive;

— False Negative (FIN) = Invasive plants predicted as Non Invasive.
Regions metrics: number of regions extracted from the image, Hand and
Background/undefined fractions (representing the proportions of regions that

contain these labels), coverage fraction (computed as the sum of the areas
covered by the regions divided by the total area of the image);

Trait metrics: presence of each characteristic trait (listed in Appendix A),
relative frequency within the image, total count of distinct traits present
(richness), and the Pielou evenness index, defined as

H/
- log S

!

where H' = — ZiS:l p; log p; is the Shannon diversity of the trait distribution,
p; is the relative frequency of trait ¢ in the image, and S is the number of
distinct traits (richness). The index J’ ranges from 0 (uneven distribution,
dominated by a few traits) to 1 (perfectly even distribution across all traits).

3.4 Experimental settings

3.4.1 Classification Model

In this study, we evaluated three models as image feature extractors for our dataset:

ResNet18: a convolutional neural network (CNN) pretrained on ImageNet,
used here as a baseline due to its strong and well-established performance in
generic image recognition tasks [50].
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o BioCLIP-1: a contrastive learning vision model trained on TreeOfLife-10M,
a large scale collection of biological images covering plants, animals, and fungi
[20].

o BioCLIP-2: an improved version of BioCLIP-1 that uses a larger vision
transformer and a broader dataset, TreeOfLife-200M, which extends the
original collection to a much greater scale and diversity [21].

The three models were compared as embedding extractors. Each model was used
to generate a multidimensional embedding for every image in the dataset, which was
then employed to train a classifier. For ResNet18 (imported from torchvision),
the final fully connected layer was removed, while BioCLIP 1 and BioCLIP 2
were imported from HuggingFace and only their image encoders were used. These
embedding extractors were not fine-tuned on the dataset, so we evaluated solely
their ability to produce meaningful representations without additional training.

After generating embeddings, we divided the dataset into 80% for training and
20% for validation. The distribution of samples across both splits is reported in
Tab. 3.2.

Invasive Non-invasive Total

Training set 19898 16390 36288
Validation set 4935 4138 9073
Total 24733 20528 45361

Table 3.2: Support of the training and validation sets for invasive and non-invasive
species

To compare the models, we trained the classifier described in Sec. 3.1 for 50
epochs using embeddings extracted by each model. After every epoch, the classifier
was evaluated on the validation data. Early stopping was enabled, with a patience
of 20 epochs and no minimum improvement threshold, to prevent overfitting and
to stop training once the validation loss no longer improved.

The main training parameters are summarized in Tab. 3.3.

Model performance was assessed by the classifier’s accuracy after the final
training epoch. Results are presented in Tab. 3.4. As expected, BioCLIP-2 achieved
the highest performance and already satisfying results, despite no fine-tuning and
a relatively short training phase. This confirms its suitability as a feature extractor
for our task (see Fig. 3.5).

3.4.2 Explainability and Clustering phase

For both explainability methods (Integrated Gradients and Gradient SHAP) we
use the implementation from the Captum library; while for UMAP we use its

20



Methods

Parameter Value
Optimizer Adam
Learning rate 1x10~*

Loss function Cross-entropy
Number of epochs 50
Batch size 32
Validation split 20%
Early stopping Enabled
Random seed 42

Table 3.3: Training parameters used for the classification model. For the Cross-
entropy loss, we used as weights the inverse of the logarithms of the class samples,
to counter the slight imbalance in the class distribution.

Model Final accuracy Final recall Final F1 score Final loss
ResNet18 0.779 0.78 0.78 0.483
BioCLIP 1 0.918 0.92 0.92 0.200

BioCLIP 2 0.959 0.96 0.96 0.114

Table 3.4: Results for the evaluation of the different models taken into consider-
ation, tested as feature extractors from the images. The values for the different
metrics report the scores obtained after the last epoch of training.

homonymous library. For Integrated Gradients, we approximate the path integral
using 100 interpolation steps with an internal batch size of 5. For both Integrated
Gradients and Gradients SHAP, we set the baseline to a completely black image,
and the resulting attributions were aggregated across the RGB channels to obtain
a single normalized heatmap.

To identify the most suitable explainability method for our pipeline, as well
as the optimal hyperparameters for KMeans and UMAP, we systematically
explored different combinations of settings. The range of values considered for
each hyperparameter is reported in Tab. 3.5. The quality of each configuration was
assessed using the silhouette score computed on the final clustering assignments,
as it provides a standard measure of both intra-cluster cohesion and inter-cluster
separation.

By combining all the hyperparameter values, we obtained a total of 900 possible
configurations for each explainability method, resulting in 1800 experiments overall.
The clustering was performed on extracted regions from a subset of 2000 images:
Integrated Gradients produced 7509 regions, while Gradient SHAP generated
20021 regions. We observed that a small number of UMAP neighbors (5-10) and
low min__dist values (0.01-0.025) tend to produce higher silhouette scores. Both
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Loss over Epochs Accuracy over Epochs
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Figure 3.5: Validation loss and validation accuracy throughout the training of
the classifier using BioCLIP-2 embeddings. Both metrics have not yet reached
a plateau, suggesting that improvements on the results are possible with further
training.

Hyperparameter Values

Explainability method Integrated Gradients, Gradient SHAP

Kmeans n_clusters (30, 35, ..., 100]
n_neighbors [5, 10, 15, 20, 30, 50]
UMAP min_dist [0.01, 0.025, 0.05, 0.075, 0.1]
distance metric euclidean, manhattan

Table 3.5: Hyperparameters explored for the clustering pipeline.

explainability methods achieved similar silhouette scores, although Integrated
Gradients generally resulted in slightly higher values. The configuration with the
highest silhouette score was selected for subsequent analysis and is reported in
Tab. 3.6: its results are shown in Tab. 3.7.

Explainability n n min dist
method clusters neighbors dist metric
Integfated 30 ) 0.025 manhattan
Gradients

Table 3.6: Selected configuration for the clustering pipeline.
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Cluster size Silhouette
min max mean entropy score
88 441  250.3 0.984 0.428

Table 3.7: Clustering results for the configuration (Tab. 3.6) with the best
silhouette score.

3.4.3 Final Analysis

Predictive Feature Analysis

We applied a Random Forest classifier to identify which image-level features are
associated with prediction correctness. The input features included both trait
presence and frequency, the number of extracted regions, the number of distinct
traits (richness), the coverage fraction, the Pielou evenness index, the hand and
background /undefined fractions. Two complementary analyses were performed:

1. a global analysis, ranking predictors of correct vs incorrect classifications,
and

2. a error-type analysis, conducted in a one-vs-all manner (TP, TN, FP, FN)
to identify features contributing to specific error patterns.

Feature importance was quantified in two ways. First, impurity-based importance
measured each feature’s average contribution to reducing node impurity across
the forest, providing a fast estimate. However, it can be biased toward variables
with many categories or continuous scales, and it may overestimate the importance
of features that produce strong splits for a small subset of samples. Second,
permutation-based importance assessed the decrease in forest accuracy when the
values of a single feature were randomly shuffled, offering a measure of each feature’s
true predictive influence that is less susceptible to biases from feature’s scale or
cardinality.

Metric-specific correlation with accuracy

To further investigate the Random Forest analysis, we analyzed the correlation
between specific image metrics and prediction correctness. Each metric was binned
into discrete categories, chosen either by quantiles (for continuous metrics) or fixed
intervals (for counts), and the average prediction accuracy was computed per bin.

Within each bin, species composition was analyzed by computing the distribution
of taxa and comparing it to the overall dataset using the Kullback-Leibler (KL)
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divergence:

P(i)

Qi)

where P(i) and Q(i) are the proportions of species ¢ in the bin and in the overall
dataset, respectively. This analysis allowed us to assess whether bins with distinct
accuracy patterns also had broadly comparable species distributions; if a bin’s
accuracy differed but the distribution was highly skewed, the observed difference
might reflect species composition rather than the metric itself.

Differences in accuracy across bins were tested using one-way ANOVA, which
evaluates whether the mean accuracy differs significantly between two or more
groups (bins). In this context, ANOVA determines whether variation in prediction
correctness is actually associated with the binned metric, while accounting for
within-bin variance.

This approach allowed us to quantify how the chosen metrics are associated with
model performance while controlling for potential confounding effects of species
composition, completing the feature importance analysis from the Random Forests.

KL(P || @) = 3 P(i)log,

Pairwise Trait Importance and Masked Image Analysis

—_

Characteristic Pair

traits of each combinations
specie: of traits
Random
Forest
— —m — —
Traits pairs L —
importances
—— L~ E—
Top 5 trait Images with re;g:?:x;ﬁ at Masked
airs both traits images
P least one trait of g
the pairs

Dataset

Figure 3.6: Creation of masked images: after identifying the top 5 most important
pairs of traits, for each pair, images having both traits are selected. Within these
images, regions labeled with at least one of the traits are masked.
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To investigate which combinations of traits most strongly influenced model
predictions, we performed a pairwise predictive feature analysis at the image
level. The process is shown in Fig. 3.6.

First, all possible combinations of characteristic traits (defined per species and
per plant structure; see Appendix A) were generated. These combinations were
grouped into three categories based on their taxonomic specificity: Common
(traits shared by both invasive and non invasive species), Non-invasive only, and
Invasive only.

Random Forest classifiers were trained using these pairwise features to predict
whether the classification was correct. Again, feature importances were computed
globally and separately for each error type (True Positive, True Negative, False
Positive, False Negative), allowing us to identify the most predictive pairs of traits
that contributed to model success or failure. The top five pairs were retained for
further analysis.

For each selected pair, all images containing both traits were identified, and
the corresponding segmented regions (labeled with at least one of the traits) were
localized within the original images. These regions were then masked out (replaced
by transparent holes): the resulting ‘masked’ images were used as inputs for a new
round of classification, with the goal of quantifying how the model’s prediction
accuracy and confidence changed when the most predictive traits were removed.

Comparing model behavior between pairs labeled as Common and Non-invasive
only (no Invasive only pairs were available in the dataset) allowed us to assess
whether predictions relied more heavily on general morphological patterns shared
across taxa or on features distinctive of non-invasive species.
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Chapter 4

Results

4.1 Dataset construction

To assemble a dataset of species within the same genus, we first selected a species
of interest. We chose purple loosestrife (Lythrum salicaria), a member of the family
Lythraceae and listed among the world’s 100 most invasive species [51].

Our analysis focused on the 40 species in the Lythrum genus [52], identifying
three as invasive: Lythrum salicaria [53, 54], Lythrum hyssopifolia [55, 56] and
Lythrum virgatum [57, 58].

Image data for all species were obtained from iNaturalist.org, a large citizen-
science platform where users upload photographs of organisms observed worldwide.
The iNaturalist API provides several access points. We began by querying the API
to match each species name to its internal iNaturalist taxon ID. Species without a
valid taxon ID (meaning they were absent from iNaturalist) were removed from
consideration. Similarly, species present in the database but lacking any public
images were excluded from the dataset.

Using the retrieved taxon IDs, we then downloaded all available images for
the remaining species (as of June 20, 2025 [59]). This process yielded 30 species
with usable data. The full distribution of images per species is shown in Fig. 4.1.
Representative samples from the dataset are presented in Fig. 4.2.

4.2 Classification model

4.2.1 Leave-One-Species-Out Cross-Validation

To assess the accuracy and robustness of the classifier in Sec. 3.1, we applied a Leave-
One-Species-Out (LOSO) cross-validation scheme (Fig. 4.3). In this procedure, 30
separate models are trained, one for each species included in the dataset. For each

26


iNaturalist.org

Results

Lythrum salicaria b
Lythrum alatum
Lythrum hyssopifolia
Lythrum junceum
Lythrum portula
Lythrum californicum
Lythrum virgatum
Lythrum lineare
Lythrum tribracteatum
Lythrum flagellare
Lythrum maritimum

Lythrum ovalifolium

Lythrum thymifolia Il Invasive species

Lythrum gracile I Non Invasive species
Lythrum borysthenicum
Lythrum volgense
Lythrum flexuosum
Lythrum intermedium
Lythrum acutangulum
Lythrum vulneraria
Lythrum album
Lythrum curtissii
Lythrum rotundifolium
Lythrum bryantii
Lythrum paradoxum
Lythrum wilsonii
Lythrum netofa
Lythrum baeticum
Lythrum silenoides

Lythrum thesioides

0 2000 4000 6000 8000 10000 12000
Number of images

Figure 4.1: The distribution of the total number of images retrieved for each

species. The invasive species are shown as a red column whereas the non-invasive
species are shown in blue.
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(d)

Figure 4.2: Examples of images representing different species in the dataset,
obtained from iNaturalist: (a) and (b) show invasive species (Lythrum salicaria and
Lythrum hyssopifolia, respectively), (c¢) and (d) show non-invasive species (Lythrum
ovalifolium and Lythrum album, respectively).
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Figure 4.3: Leave One Species Out Cross Validation scheme. Each iteration
produces a model tested on a certain species, and is trained on the entire dataset
except for that species. Unlike K-Fold Cross Validation, each fold here represents
a species, therefore they are not equivalent in sample size (see Tab. 4.1).

iteration, all images except those belonging to a single species are used for training,
while the excluded species serves as the validation set.

This approach allows us to examine the behavior of the model when it encoun-
ters a species that was not included in the training phase, relying solely on the
morphological traits of other species in the same genus to make predictions.

The results of the Leave One Species Out (LOSO) Cross Validation are reported
in Tab. 4.1. These results differ from the accuracy obtained by the classifier trained
on all species using an 80-20 split (Tab. 3.4). The average accuracy under LOSO
is lower than the overall accuracy of the model trained on all species together, and
the standard deviation indicates variability in the results. Several species show
moderate accuracy (L. salicaria, L. junceum, L. virgatum, L. tribracteatum), while
a few have very low accuracy (L. thymifolia and L. wilsonii, although the small
sample size for L. wilsonii may limit the significance of this result). For two species
(L. hyssopifolia, L. intermedium), the model is almost entirely unable to classify
them correctly.

These observations suggest that when the model is trained on all species simul-
taneously, it may be learning to identify the taxon and its classification rather than
the traits that determine invasiveness. In contrast, LOSO Cross Validation forces
the model to rely on morphological features for predicting invasiveness, which often
results in low or unsatisfactory performance when presented with a species it has
never seen during training.
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Species Accuracy Samples
Lythrum salicaria (I) 0.5138 13105
Lythrum alatum 0.8123 10491
Lythrum hyssopifolia (I) 0.0057 9583
Lythrum junceum 0.3173 3290
Lythrum portula 0.8250 2417
Lythrum californicum 0.8599 2149
Lythrum virgatum (I) 0.5888 2145
Lythrum lineare 0.9753 445
Lythrum tribracteatum 0.3343 362
Lythrum flagellare 0.8902 337
Lythrum maritimum 0.7743 226
Lythrum ovalifolium 0.7875 160
Lythrum thymifolia 0.1370 146
Lythrum gracile 0.8443 122
Lythrum borysthenicum 0.7816 87
Lythrum volgense 0.7037 81
Lythrum flexuosum 0.9630 54
Lythrum intermedium 0.0000 33
Lythrum acutangulum 0.8333 24
Lythrum vulneraria 1.0000 22
Lythrum album 1.0000 18
Lythrum curtissii 0.8667 15
Lythrum bryantii 1.0000 14
Lythrum rotundifolium 1.0000 14
Lythrum paradoxum 0.8750 8
Lythrum wilsonii 0.2500 4
Lythrum baeticum 1.0000 3
Lythrum netofa 1.0000 3
Lythrum silenoides 1.0000 2
Lythrum thesioides 1.0000 1
Mean £ Std 0.7313 £+ 0.3088 -

Table 4.1: Model accuracy and sample sizes for Lythrum genus in the Leave One
Species Out Cross Validation. Species indicated with (I) are invasive.

4.2.2 Two-Dimensional Mapping of Species Embeddings

To explore how different species are represented in the embedding space, we
applied Uniform Manifold Approximation and Projection (UMAP) to the image
embeddings generated by BioCLIP-2. This step reduced the high-dimensional
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vectors to a two-dimensional map (Fig. 4.4), allowing a clearer visual comparison
among species. The parameters used for UMAP are listed in Tab. 4.2.

14 + lythrum_acutangulum
- lythrum_alatum

+ lythrum_album
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Figure 4.4: Two-dimensional UMAP projection of image embeddings. The
invasive species are represented as follows: Lythrum salicaria (blue) occupies the
region between UMAP1: —5 to 5 and UMAP2: 3 to 6.5; Lythrum virgatum (red)
spans UMAP1: —5 to 6 and UMAP2: 4 to 8; Lythrum hyssopifolia (green) is
located between UMAP1: 7-12 and UMAP2: 5 to 11.

Parameter Value
n_neighbors 15
min_dist 0.01
metric euclidean

random_state 42

Table 4.2: Parameters used to map the embeddings in two dimensions with
UMAP.
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We then measured the average distance between species by calculating the mean
pairwise distance between their projected points in this 2D space. This provided an
estimate of visual similarity and divergence. To keep comparisons reliable, species
with fewer than 15 samples were excluded. Across all valid species pairs, the mean
distance was 6.584 + 3.073.

Species 1 Species 2 Distance
Lythrum salicaria (I) Lythrum intermedium 2.867
Lythrum salicaria (I) Lythrum virgatum (I) 4.203
Lythrum salicaria (I) Lythrum lineare 8.431
Lythrum salicaria (I) Lythrum curtissii 8.885
Lythrum salicaria (I) Lythrum alatum 8.891
Lythrum salicaria (I) Lythrum junceum 11.512
Lythrum salicaria (I) Lythrum hyssopifolia (I) 11.608
Lythrum salicaria (I) Lythrum acutangulum  11.744
Lythrum salicaria (I) Lythrum tribracteatum  11.801
Lythrum salicaria (I) Lythrum flexuosum 12.386

Table 4.3: Closest (top) and most distant (bottom) species relative to L. salicaria,
computed using average BioCLIP-2 image embeddings projected in the UMAP
space. Only species with at least 15 samples were considered. Invasive species are
indicated with (I).

Tab. 4.3 shows the results for Lythrum salicaria, the most represented invasive
species in our dataset. Its closest neighbor is the non-invasive Lythrum intermedium,
followed by an invasive species, Lythrum virgatum. This proximity suggests that
species within the same invasiveness class may share visual traits.

A different pattern emerges for Lythrum hyssopifolia, also invasive and well
represented in the dataset (Fig. 4.1). Surprisingly, it ranks among the most distant
species in the 2D embedding space. The distances listed in Tab. 4.4 show that
its five nearest neighbors are all non-invasive, while the other two invasive species
occupy the second and third furthest positions. The farthest species overall is again
Lythrum intermedium.

Finally, for Lythrum intermedium (Tab. 4.5), the two invasive species L. salicaria
and L. virgatum appear as its nearest neighbors. The five most distant species are
mostly non-invasive, except for L. hyssopifolia. The mean distance from Lythrum
intermedium to the rest of the species is 11.332 4 2.934.

Some taxonomic sources, as World Flora Online database [60], list Lythrum
intermedium as a subspecies of Lythrum salicaria. This classification helps explain
their close spatial proximity in the embedding map and the classifier’s inability to
correctly identify Lythrum intermedium as non-invasive.
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Species 1 Species 2 Distance
Lythrum hyssopifolia (I) Lythrum thymifolia 2.480
Lythrum hyssopifolia (I) Lythrum tribracteatum 2.569
Lythrum hyssopifolia (I) Lythrum junceum 3.921
Lythrum hyssopifolia (I) Lythrum acutangulum  3.923
Lythrum hyssopifolia (I) Lythrum flexuosum 4.045
Lythrum hyssopifolia (I) Lythrum lineare 7.093
Lythrum hyssopifolia (I) Lythrum album 7.197
Lythrum hyssopifolia (I) Lythrum virgatum (I)  10.825
Lythrum hyssopifolia (I) Lythrum salicaria (I) 11.608
Lythrum hyssopifolia (I) Lythrum intermedium  13.321

Table 4.4: Closest (top) and most distant (bottom) species relative to L. hys-
sopifolia, computed using average BioCLIP-2 image embeddings projected in the
UMAP space. Only species with at least 15 samples were considered. Invasive
species are indicated with (I).

Species 1 Species 2 Distance
Lythrum intermedium Lythrum salicaria (I) 2.867
Lythrum intermedium Lythrum virgatum (I) 3.878
Lythrum intermedium Lythrum lineare 9.413
Lythrum intermedium Lythrum alatum 10.006
Lythrum intermedium Lythrum curtissii 10.167
Lythrum intermedium Lythrum volgense 13.155

Lythrum intermedium Lythrum acutangulum 13.246
Lythrum intermedium Lythrum hyssopifolia (I) 13.321
Lythrum intermedium Lythrum tribracteatum  13.524
Lythrum intermedium Lythrum flexuosum 13.870

Table 4.5: Closest (top) and most distant (bottom) species relative to L. inter-
medium, computed using average BioCLIP-2 image embeddings projected in the
UMAP space. Only species with at least 15 samples were considered. Invasive
species are indicated with (I).

4.2.3 Lythrum hyssopifolia exclusion

The results in Tab. 4.1, together with the distances shown in Tabs. 4.3 and 4.4, led
us to reconsider the role of Lythrum hyssopifolia in the dataset.

During the cross-validation experiments, L. hyssopifolia reached an accuracy
close to zero. This poor performance likely stems from its large visual distance from
other invasive species and its proximity to non-invasive ones (Tab. 4.4). Likewise,
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Lythrum salicaria and Lythrum virgatum showed only moderate accuracy. Their
separation from L. hyssopifolia may have reduced their performance, though their
mutual closeness (Tab. 4.3) partially offsets this effect. This pattern supports the
idea that invasive species share visual traits, while distant embeddings can weaken
classification.

To verify this, we repeated the LOSO cross-validation, this time excluding L.
hyssopifolia entirely. The modified experiment used 29 folds instead of 30.

Species Accuracy 1 Accuracy 2 Difference Samples
Lythrum salicaria (I) 0.5138 0.6520 +0.1382 13105
Lythrum alatum 0.8123 0.8485 +0.0362 10491
Lythrum hyssopifolia (I) 0.0057 - - 9583
Lythrum junceum 0.3173 0.9675 +0.6502 3290
Lythrum portula 0.8250 0.9818 +0.1568 2489
Lythrum californicum 0.8599 0.9595 +0.0996 2149
Lythrum virgatum (I) 0.5888 0.5706 -0.0182 2145
Lythrum lineare 0.9753 0.9663 -0.0090 445
Lythrum tribracteatum 0.3343 0.9641 +0.6298 362
Lythrum flagellare 0.8902 1.0000 +0.1098 337
Lythrum maritimum 0.7743 0.9690 +0.1947 226
Lythrum ovalifolium 0.7875 0.9875 +0.2000 160
Lythrum thymifolia 0.1370 1.0000 +0.8630 159
Lythrum gracile 0.8443 0.9754 +0.1311 122
Lythrum borysthenicum 0.7816 0.9885 +0.2069 87
Lythrum volgense 0.7037 0.9630 +0.2593 81
Lythrum flexuosum 0.9630 0.9630 +0.0000 54
Lythrum intermedium 0.0000 0.0000 +-0.0000 33
Lythrum acutangulum 0.8333 1.0000 +0.1667 30
Lythrum vulneraria 1.0000 1.0000 +0.0000 22
Lythrum album 1.0000 1.0000 +0.0000 18
Lythrum curtissii 0.8667 0.8667 +0.0000 15
Lythrum bryantii 1.0000 1.0000 +0.0000 14
Lythrum rotundifolium 1.0000 1.0000 +0.0000 14
Lythrum paradoxum 0.8750 1.0000 +0.1250 8
Lythrum wilsonii 0.2500 1.0000 +0.7500 4
Lythrum baeticum 1.0000 1.0000 -+0.0000 3
Lythrum netofa 1.0000 1.0000 +0.0000 3
Lythrum silenoides 1.0000 1.0000 -+0.0000 2
Lythrum thesioides 1.0000 1.0000 +0.0000 1
Mean 4+ Std 0.731 £0.31 0.929+ 0.12 40.198 + 0.24 -

Table 4.6: Comparison of classification accuracy results for the LOSO Cross
Validation of the model, when each fold includes Lythrum hyssopifolia in the
training set (Accuracy 1) or not (Accuracy 2).
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As shown in Tab. 4.6, removing this species led to a notable rise in mean accuracy
across folds and a clear reduction in result variability.

Examining individual species, L. salicaria shows a 13.8% increase in accuracy,
while L. virgatum remains consistent. Results for both remain mediocre but above
random chance, partly due to dataset imbalance: after removing L. hyssopifolia,
there are 15,150 ‘invasive’ and 20,528 ‘non-invasive’ samples. For LOSO Cross
Validation, folds for L. salicaria and L. virgatum are highly unbalanced in the
‘invasive’ class, which should be considered when interpreting results.

The largest gains in accuracy are observed for L. junceum, L. tribracteatum, and
L. thymifolia (L. wilsonii has too few samples to allow for a meaningful analysis),
which are the three species most closely related to L. hyssopifolia, and all of them
are non-invasive.

Overall, these results strenghten confidence in BioCLIP-2 as a reliable embedding
extractor and validate our training methodology. We therefore treat Lythrum
hyssopifolia as a potential outlier and exclude it from the dataset.

We decided to keep the 29 models (each trained by excluding a single species
from the training set) separate for the subsequent analyses and experiments. This
approach ensures completely unbiased results, as each species is evaluated using a
model that has never encountered it during training.

4.3 Explainability pipeline

In Sec. 3.2 we described the explainability pipeline (see Fig. 3.2). In this section,
the results of this process are described.

4.3.1 Heatmap generation

To illustrate the outcome of the explainability methods (Step 1 of Fig. 3.2), Fig. 4.5
presents, for selected samples, the original image alongside the computed heatmap
and the resulting overlay highlighting the most influential regions. As illustrated
in the examples, in some cases the attribution maps align well with biologically
meaningful traits, such as specific plant structures (Figs. 4.5a to 4.5d). However,
in other cases, the highlighted regions do not correspond to relevant biological
features: for instance, in Fig. 4.5e the method emphasizes a human hand present
in the image, while in Fig. 4.5f the attribution is diffuse and does not clearly point
to any identifiable structure.
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Figure 4.5: Examples of generated heatmaps. For each sample, the original image,
the heatmap created and the overlay between the original image and the heatmap
are displayed from left to right. Both Integrated Gradients (top row) and Gradient
SHAP (bottom row) results are displayed for each sample. In most samples (a-d),
the highlighted regions correspond to meaningful biological structures, whereas in
some cases (e-f) they do not align with expected features.
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4.3.2 Regions extraction

For the first two samples shown in Fig. 4.5, we illustrate the outcome of the region
extraction process (Step 2 in Fig. 3.2) in Figs. 4.6 and 4.7. We can visually note
that Gradient SHAP (Figs. 4.6a and 4.7a) systematically produces a larger set of
patches compared to Integrated Gradients (Figs. 4.6b and 4.7b). For instance, in
Sec. 3.4.2 we already observed that from a sample of 2000 images randomly taken
from our dataset, Gradient SHAP extracts 20021 regions while Integrated Gradients
produced only 7509. For both methods, the extracted regions naturally vary in
size (and consequently in resolution), as expected from their creation pipeline.

From a visual inspection, it is not clear whether Integrated Gradients or Gra-
dient SHAP performs better within our pipeline. The final choice of the most
suitable explainability technique was guided by the analysis performed in the clus-
tering hyperparameters search (see Sec. 3.4.2): as shown in Tab. 3.6, Integrated
Gradients is chosen.

(b)

Figure 4.6: Extracted regions for Fig. 4.5a by Gradient SHAP (a) and by
Integrated Gradients (b).
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Figure 4.7: Extracted regions for Fig. 4.5b by Gradient SHAP (a) and by
Integrated Gradients (b).

4.3.3 Clustering phase

Sec. 3.2.3 described the implementation of the clustering phase (Step 3 in Fig. 3.2):
in this section we analyze its results; parameters used here are shown in Tab. 3.6.

Clustering was first performed on a representative subset of 2000 images from
our dataset. This allowed us to manually inspect the resulting clusters and assign
them labels based on visual inspection. Once the clusters were labeled, the same
cluster model (with fixed centroids) was applied to the entire dataset in the final
analysis (see Sec. 3.3). Selecting Integrated Gradients as the explainability method
yields a total of 7509 extracted regions, which are then partitioned in 30 clusters
(see Tab. 3.6).

We employed MiniBatchKMeans: this is a scalable variant that updates the
centroids using small random batches of the data rather than the entire dataset,
significantly reducing computational cost while retaining similar clustering quality.

To analyze the clustering result, we provide a set of complementary visualizations.
The UMAP scatter plot in Fig. 4.8 shows the spatial distribution of embeddings
together with their final cluster assignments. The bar chart in Fig. 4.9 reports the
distribution of cluster sizes, highlighting the overall homogeneity of the partition
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and complementing the cluster size entropy values (see Tab. 3.7). Finally, Fig. 4.10
quantifies centroid convergence by showing their average displacement across
batches, illustrating that movements progressively decrease and stabilize after a
few iterations.

Final clustering with 30 clusters
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Figure 4.8: UMAP projection of the embeddings with final cluster assignments.
Colors denote clusters and black markers indicate the final centroid positions.
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Figure 4.9: Distribution of cluster sizes for the final configuration. Colors match
the corresponding clusters in Fig. 4.8.
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Average centroid movement across batches
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Figure 4.10: Average centroid displacement across minibatch updates. The line
shows the mean movement across all centroids, the area represents the standard
deviation.

Cluster labeling

In this phase, clusters were manually annotated through visual inspection of the
regions assigned to them. Each cluster received one or more labels describing
the dominant visual content. For clarity, we organized the labels into two main
categories:

e Plant structures:

— Leaf: clusters primarily showing leaves;
— Flower: clusters characterized by the presence of flowers;

— Stem: clusters clearly depicting stems.
o Spurious or non-informative features:

— Hand: clusters containing primarily parts of human hands or skin;

— Background/undefined: clusters dominated by background fragments
or visually ambiguous regions.

Labels within the same category are not mutually exclusive (e.g., a cluster may
simultaneously be labeled Leaf and Flower), whereas labels from different categories
are mutually exclusive. For instance, a cluster cannot be labeled both Leaf and
Hand. This design reflects the aim of our analysis: to discriminate between clusters
that capture biologically meaningful traits of the plants and clusters that correspond
to irrelevant or spurious visual cues.
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Visualizations of labels distribution resulting from this phase are shown in
Fig. 4.11. As expected, most extracted regions correspond to plant structure, with
Leaf being the most frequent. Non-biological features are still a relevant number,
especially those labeled Background/undefined.

Examples of regions assigned to different clusters, with the correspondent
labeling, can be observed in Fig.4.12, 4.13, 4.14, 4.15.

Global label distribution by regions
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Figure 4.11: Results of manual cluster labeling: global distribution by number of
regions (a) and labelset assigned to each cluster (b) are shown.
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(b) (c)

Figure 4.12: Three of the regions from the cluster with id=0, which was assigned
the label Hand. Regions (a) and (c) correspond to Lythrum alatum, while region
(b) corresponds to Lythrum californicum.

(a) Lythrum junceum (b) Lythrum alatum (c) Lythrum salicaria

Figure 4.13: Three of the regions From the cluster with id=16, which was assigned
the label Leaf, Flower, Stem. Region (a) corresponds to L. junceum, region (b)
to L. alatum, and region (c) to L. salicaria.

(b)

Figure 4.14: Three of the regions from the cluster with id=23, which was assigned
the label Flower. Region (a) corresponds to L. californicum, region (b) to L.
junceum and region (c) to L. lineare.

Clustering validation

To validate both the KMeans clustering results and our manual cluster labeling, we
applied an alternative density-based clustering method, HDBSCAN. Using the
same set of extracted regions, we re-cluster the data and analyze how HDBSCAN
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.
(a) (b) (c)

Figure 4.15: Three of the regions from the cluster with id=27, which was assigned
the label Background/undefined. Region (a) corresponds to L. californicum,
region (b) to L. salicaria, and region (c) to L. portula.

partitions the regions, with particular attention to the consistency of these partitions
with our assigned labels. We followed the same pipeline previously adopted for
KMeans (see Sec. 3.2.3): the extracted regions were embedded with BioCLIP-2
image encoder, reduced in dimensionality using UMAP, and then clustered. To
ensure comparability, we used the regions extracted with Integrated Gradients and
used the same UMAP parameters reported in Tab. 3.6. For HDBSCAN the key
parameter is the minimum cluster size; to obtain a comprehensive analysis, we
explored values in the range

min__cluster _size = [5,6,...,71]

To achieve comparability with the KMeans results, we discarded HDBSCAN
configurations that produced fewer than 10 clusters or more than 100 clusters. As
a consequence, out of 66 tested configurations, only 9 met this criterion. This
outcome is not surprising, as HDBSCAN follows a fundamentally different clustering
paradigm: unlike KMeans, which partitions the data into a predefined number of
clusters, HDBSCAN identifies clusters of varying density and labels points that do
not belong to any dense region as noise. Nevertheless, we consider this reduced
set of valid configurations as sufficient for our purposes: since the goal of this step
was not to optimize HDBSCAN itself, but rather to validate the consistency of the
KMeans results and of our manual labeling, even a modest number of data-driven
configurations provides a robust basis for comparison.

Fig. 4.16 summarizes the results: for each valid HDBSCAN configuration, we
computed the cluster label consistency ratio, defined as the fraction of images
belonging to the dominant label set in each cluster. This metric provides a measure
of cluster purity with respect to our manually assigned labels. Across all non-
skipped configurations, the average cluster consistency with our manually assigned
labels was 0.75, with the best configuration (min_ cluster__size = 16) reaching
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0.92 (see Fig. 4.16b). From Fig. 4.16a we can see that the vast majority of clusters
across all considered configurations achieve a 1.0 consistency ratio, meaning strong
agreement with our pipeline. Appendix B presents a more detailed analysis of our
clustering validation.

Distribution of cluster consistency ratios across config
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Figure 4.16: Clustering and labeling validation using HDBSCAN. For considered
configurations, the distribution of cluster consistency ratio (a) and the average
cluster consistency per configuration (b) is shown.
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Overall, these results demonstrate that our manually assigned labels reflect the
inherent structure of the data and are consistent with a density-based clustering
approach.

4.4 Final analysis

Fig. 3.4 illustrates the pipeline of our final analysis, as described in Sec. 3.3. In
this section, we present and analyze the corresponding results.

The dataset consists of 35678 images. From these, using our designed pipeline
(Sec. 3.2.2), we extracted a total of 132128 regions. The outcome of the subsequent
clustering phase are presented in Fig. 4.17. As shown in Fig. 4.17a, once a region is
assigned to a cluster, it inherits the labelset associated with that cluster. Figs. 4.17b
and 4.17c display the distribution of labels and labelsets, respectively, for all regions
extracted from the dataset.

4.4.1 Predictive Feature Analysis

As described in Sec. 3.4.3, we performed a predictive feature analysis with Random
Forests to assess the importance of features (both characteristic traits listed in
Appendix A and other metrics computed as described in Sec. 3.3.1). In Tabs. 4.7
to 4.9 results for the global analysis, for True Positive and True Negative analysis,
and for False Positive and False Negative analysis are displayed, respectively.

Foature Impurity Permutation
Importance Importance Std

coverage_frac 0.6198 0.2224 0.0017
pielou_ evenness 0.4101 0.0557 0.0007
background_ frac 0.0329 0.0729 0.0009
hand frac 0.0314 0.0571 0.0009
trait_erect_ freq 0.0287 0.0545 0.0005
trait_ rounded at_the base freq 0.0216 0.0387 0.0009
richness 0.0021 0.0486 0.0008
trait_rounded at the base present 0.0152 - -
n_regions 0.0149 0.0564 0.0008
trait_ sessile freq 0.0125 0.0304 0.0007

Table 4.7: Global feature importance analysis from Random Forest classification.
The table reports both impurity based importance and permutation importance
(accompanied by the standard deviation across 20 repetitions) for each feature. A
dash (-) indicates that the value was not computed or not meaningful for that
feature, typically due to low prevalence or insufficient variation in the subset.
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Figure 4.17: Results of the clustering and labeling of regions extracted from the
entire dataset. In particular, cluster sizes distribution colored by the corresponding
labelset of each cluster (a), labels distribution across all clusters (b) and labelset
distribution across all clusters (c) are shown.

Tab. 4.7 summarizes the global feature importance for correct predictions across
all images. The fraction of the image covered by extracted regions (coverage_frac)
is by far the most important predictor (impurity importance= 0.6198; permutation
importance= 0.2224), indicating that images with larger region coverage are much
more likely to be correctly classified. Secondary features include pielou_evenness,
background_frac and hand_frac, which contribute moderately to global pre-
diction accuracy. Permutation importance is generally smaller than impurity,
but confirms the rank order of the main predictors. Interestingly, features as
richness and n_regions show low impurity importance but moderate permuta-
tion importance, suggesting they might interact with other features to affect model
performance.
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Overall, the global analysis identifies the strongest single predictors but may
obscure feature-specific effects that vary across different types of predictions.

Impurity Permutation
Feature Importance Importance Std
TP TN TP TN TP TN
coverage frac 0.4099 0.1650 0.1642 0.0881 0.0013 0.0011
brait_rounded_at 0.0652 0.1015 0.0300 - 0.0006 -
the base_freq
trait_rounded _at 0.0613 0.0981 0.0219 - 0.0006 -

the base present

trait flowers in

whorled clusters freq
trait_flowers in
_whorled_clusters_ present

0.0331 0.0542 - - - -

0.0278 0.0426 - - - -

pielou_evenness 0.0272 0.0327 0.0294 0.0327 0.0006 0.0004
frait_attenuate at_ 00219 0.0320 - 0.0205 - 0.0003
_the base freq

background_ frac 0.0218 - 0.0508 0.0446 0.0006 0.0006
trait_ erect_freq 0.0209 - 0.0325 0.0220 0.0005 0.0005
hand_ frac 0.0193 - 0.0433 0.0276 0.0007 0.0005
richness 0.0185 0.0186 0.0273 0.0345 0.0005 0.0005
n_regions - - 0.0413 0.0352 0.0006 0.0008
trait_ sessile_ freq - - 0.0214 0.0222 0.0006 0.0006
trait__opposite_ freq - - - 0.0148 - 0.0003
trait floral tube i i i 0.0147 - 0.0004

cylindrical _freq

Table 4.8: Feature importance analysis from Random Forest for True Positive
(TP) and True Negative (TN) classifications. The table reports both impurity
based importance and permutation importance (accompanied by the standard
deviation across 20 repetitions) for each feature. A dash (=) indicates that the
value was not computed or not meaningful for that feature, typically due to low
prevalence or insufficient variation in the subset.

Error-Type Analysis

To capture more detailed relationships, we performed a separate analysis for True
Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN)
(Tabs. 4.8 and 4.9). This approach allows us to determine which features drive
specific types of correct and incorrect predictions, providing a more nuanced
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Impurity Permutation
Feature Importance Importance Std
FP FN FP FN FP FN
coverage_frac 0.6493 0.5372 0.0684 0.1558 0.0008 0.0014
pielou_evenness 0.0470 0.0344 0.0287 0.0301 0.0004 0.0007
background_ frac 0.0357 0.0279 0.0263 0.0482 0.0004 0.0005
hand_frac 0.0344 0.0266 0.0177 0.0400 0.0005 0.0006
trait_ erect_ freq 0.0274 0.0262 0.0217 0.0313 0.0004 0.0005
trait_attenuate_at 4555 00128 0.0305 0.0074 0.0005 0.0001
the base freq
richness 0.0218 0.0198 0.0249 0.0294 0.0005 0.0005
n_regions 0.0172 0.0124 0.0195 0.0393 0.0004 0.0008
trait,_rounded _at 0.0403 - 00333 - 0.0007
the base freq
brait_rounded_at i 0.0341 - 0.0202 - 0.0005
the base present
trait_ sessile freq 0.0102 0.0120 0.0176 0.0166 0.0004 0.0007
trait_ opposite_freq 0.0106 - 0.0171 - 0.0004 -
trait_ opposite,
becoming alternate 0.0116 - 0.0215 0.0122 0.0005 0.0006
distally freq
trait stamens 6 freq 0.0125 - 0.0198 - 0.0003 -
trait_floral_tube - 07 00134 - 0.0003 -

cylindrical freq

Table 4.9: Feature importance analysis from Random Forest for False Positive
(FP) and False Negative (FN) classifications. The table reports both impurity
based importance and permutation importance (accompanied by the standard
deviation across 20 repetitions) for each feature. A dash (-) indicates that the
value was not computed or not meaningful for that feature, typically due to low
prevalence or insufficient variation in the subset.

understanding than the global analysis alone.

For TP and TN outcomes, coverage_frac remains the dominant predictor
(TP: 0.4099 impurity, 0.1642 permutation; TN: 0.1650 impurity, 0.0881 per-
mutation), confirming its strong influence on correct classification. Traits re-
lated to leaf base morphology (rounded_at_the_base) and to flower morphology
(flowers_in_whorled_clusters) also show elevated importance, suggesting that
these features help distinguish between true positive and true negative classifica-
tions. Permutation importance generally aligns with impurity ranking, supporting
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robustness of the identified predictors. Notably, while the overall patterns are
similar, TP outcomes show higher reliance on coverage_frac, whereas TN out-
comes emphasize certain trait-specific features slightly more, highlighting subtle
differences in the drivers of correct positive versus correct negative predictions.
For FP and FN outcomes, coverage_frac again dominates (FP: 0.6493 impurity,
0.0684 permutation; FN: 0.5372 impurity, 0.1558 permutation). Other contribu-
tors include pielou_evenness, background_frac and hand_frac. Permutation
importance highlights additional moderate contributors, such as n_regions and
attenuate_at_the_base_freq, suggesting that feature interactions and nonlinear
effects influence error patterns. Notably, FP and FN patterns are broadly similar.

4.4.2 Metric-specific correlation with accuracy
Region Coverage

As suggested by the Random Forest analysis, the fraction of the image covered
by extracted regions (coverage frac) emerged as the most influential predictor
of model correctness. To further investigate this relationship, we analyzed how
prediction accuracy varies across different levels of region coverage. Images were
grouped into eleven coverage categories, and the mean accuracy, sample size, and
corresponding species distribution divergence (KL divergence) were computed for
each bin (Tab. 4.10, Fig. 4.18).

Overall, results reveal that classification accuracy remains largely stable across
most coverage ranges, fluctuating between 0.76 and 0.79 up to 25% coverage
(Fig. 4.18a). Only the smallest (< 1%) and largest (> 25%) bins show deviations,
although these categories include very few samples (220 and 65 images respectively),
making their estimates less reliable. The extremely high accuracy in the last
bin (100%) is based on a single image and therefore not meaningful. Species
distribution divergence (KL) remains low across all major bins (< 0.01), confirming
that these accuracy patterns are not driven by differences in taxonomic composition
(Fig. 4.18b).

These findings indicate that, contrary to what the Random Forest importance
might suggest, region coverage alone does not strongly determine prediction ac-
curacy. The Random Forest model likely interpreted the separation between low-
and high-coverage samples as a strong discriminative signal, even though the
underlying relationship is weak or non-causal. This behavior is consistent with
how impurity-based importance in Random Forests operates: features that allow a
clear partition of the data, even if only over a small subset of samples, can receive
disproportionately high importance. In our case, a few extreme high-coverage
samples show higher accuracy and are easily separable from the rest. The model
therefore identifies coverage as a useful split criterion, despite its limited general
predictive power across the dataset.
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Sample KL
Category Accuracy size Divergence
0-1% 0.759 220 0.009
1-2% 0.778 2977 0.007
2-3% 0.776 2134 0.008
3-4% 0.770 3891 0.005
4-5% 0.781 3419 0.003
5-6% 0.783 3754 0.032
6-7.5% 0.783 5086 0.002
7.5-10% 0.787 6035 0.003
10-25% 0.769 6807 0.007
25-50% 0.862 65 0.201
50-100% 1.000 1 1.22

Table 4.10: Results of Region coverage correlation with accuracy analysis. For
each region coverage category, mean accuracy for the category, sample size and KL
divergence from the dataset distribution is shown.

ANOVA: F = 1.221, p = 0.2712; the highest mean accuracy is observed in the 50-100% coverage
category (1.000) and the lowest in the 0-1% category (0.759). No strong statistical evidence of

differences across categories.

It is also important to note that the vast majority of images in our dataset exhibit
very low coverage, while samples with higher coverage values are comparatively rare
and display larger KL divergence from overall species distribution. This indicates
that these images are not representative of the general dataset and may bias the
Random Forest’s assessment of importance. Consequently, within available data,
there is no clear evidence of a consistent dependency between coverage
and prediction accuracy, although such a relationship cannot be completely
excluded given the strong imbalance in the coverage distribution.

In addition to region coverage, the same analysis was extended to all other
metrics identified as potentially relevant by the Random Forests, including the
Pielou evenness index, the number of distinct traits (richness), hand and background
fractions, and image complexity. The detailed results of these analyses are reported
in Appendix C. Overall, no other metric showed a clear or consistent relationship
with prediction accuracy, except for weak or dataset-dependent effects. In particular,
while some metrics exhibit statistically significant trends, these patterns were often
accompanied by strong differences in species composition across bins (high KL
divergence), suggesting that the observed variations are likely driven by taxonomic
imbalance rather than intrinsic effects of the metrics themselves.
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Region Coverage
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Figure 4.18: For the Region coverage analysis, accuracy for each category (a)
and distribution of species for each category (b) is shown.
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4.4.3 Pairwise Trait Importance and Masked Image Analy-
sis

In Sec. 3.4.3 we described a new Random Forest analysis that differs from the
previous one by the use of combinations of pairs of traits, here we illustrate its
results. The analysis produced feature importance scores for each combination,
computed globally and separately for each error type (TP, TN, FP, FN). Tab. 4.11
lists top 15 evaluated pairs and their corresponding importance values across these
categories. The results were highly consistent across different Random Forest runs,
with only minor variations in exact rankings.

Importance

Feature A Feature B Global TP TN P N

erect sessile 0.3112  0.3051 0.3005 0.3055 0.3091
opposite sessile 0.1811  0.1755 0.1823 0.1326 0.1908
alternate subsessile 0.1777  0.1945 0.1860 0.1026 0.1846
erect opposite 0.1675  0.1508 0.1668 0.2016 0.1522
linear opposite 0.0574  0.0733 0.0610 0.0218 0.0672
erect linear 0.0521  0.0532 0.0554 0.0185 0.0518

opposite petiolated  0.0267  0.0217 0.0235 0.0716 0.0202
opposite subsessile 0.0065  0.0065 0.0064 0.0095 0.0063
opposite prostrate 0.0041  0.0044 0.0041 0.0040 0.0038

obovate sessile 0.0027  0.0026 0.0026 0.0038 0.0023
prostrate subsessile 0.0025  0.0024 0.0025 0.0034 0.0025
alternate sessile 0.0024 0.0024 0.0017 0.0769 0.0022
alternate erect 0.0019 0.0016 0.0017 0.0144 0.0014
erect obovate 0.0018 0.0031 0.0020 0.0026 0.0029

alternate creeping 0.0017  0.0009 0.0012 0.0126 0.0009

Table 4.11: Feature pair importances across global and per error-type outcomes
(TP, TN, FP, FN) for top 15 pairs.

From these results, we selected five pairs of traits for further analysis (Tab. 4.12).
Importantly, these were not the top five globally, but rather the top five in terms
of importance within the True Positive and True Negative categories, ensuring
that the selected pairs are most relevant for correctly predicting both invasive and
non-invasive species. The selected pairs belong either to the Common category,
shared by invasive and non-invasive species, or to the Non-Invasive only category,
characteristic of non-invasive species. No Invasive only pairs were available in the
dataset.

For each of the selected trait pairs, we next identified all images containing both
traits, along with the corresponding regions within those images that exhibited
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Feature A Feature B Category
Name Plant Structure Name Plant Structure
Erect Stem Sessile Leaf Common
Alternate Leaf Subsessile Leaf Non-Invasive only
Opposite Leaf Sessile Leaf Common
Erect Stem Opposite  Leaf Common
Linear Leaf Opposite  Leaf Non-Invasive only

Table 4.12: Selected pairs of traits for the pairwise analysis and their corresponding
category. For each trait is also specified the plant structure which refers to.

at least one of the traits, with the counts summarized in Tab. 4.13. This data
represents the subset of images and regions that were targeted for removal in the
subsequent masked-image experiments. Examples of these images and the relative
traits can be seen in Fig.4.19 and 4.20.

Figure 4.19: One of the images which contained the characteristic traits Linear-
Opposite, representing a Lythrum californicum. Both the original image and the
image with the masked regions were classified as Invasive despite being Non-Invasive.
However, after masking the regions containing the traits into consideration, the
classifier was 17.1% more confident into predicting the image as Invasive (82.1% vs
100%).

To assess how the removal of the most predictive trait combinations affected
model behavior, we evaluated classification performance and prediction confidence
on the masked images. Tab. 4.14 summarizes the results in terms of overall accuracy,
number and rate of label flips (images whose predicted label changed after masking),
and the variation in True Positive (TP) and True Negative (TN) counts. Changes
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Figure 4.20: One of the images which contained the characteristic traits Erect-
Opposite, representing a Lythrum virgatum. The original image was correctly
classified as Invasive with 77.0% confidence in the prediction. After masking the
regions containing one or more traits into consideration, the classifier predicted the
image to be Non-Invasive with 100% confidence in the prediction.

Pairs of Traits Number of Number of Avg Region

Images Regions per Image
Erect - Sessile 19844 49674 2.50
Alternate - Subsessile (NI) 2693 6011 2.23
Opposite - Sessile 24083 55310 2.30
Erect - Opposite 21567 53982 2.50
Linear - Opposite (NI) 1857 4311 2.32

Table 4.13: For each selected pair of traits, the table shows the number of images
containing both traits, the total number of regions within those images that include
at least one trait (of the pair) and the average number of considered region per
image. Pairs belonging to the Non-Invasive only category are tagged with (NI),
while the remaining pairs have the Common category.

in accuracy are also highlighted for each pair of traits considered in Fig. 4.21.

For pairs belonging to the Common category, the impact of masking was minimal.
Accuracy decreased by less than 2%, and flip rates remained around 17%. TP and
TN counts varied only slightly, indicating that these trait combinations, although
frequently present, are not strictly necessary for the classifier to make correct
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Pairs of Traits Accuracy Flips TP counts TN counts
Old New A Count Rate Old New A Old New A
Erect - Sessile 0.709 0.707 -0.002 3426 17.3% 6836 6756 -80 7239 7281 +42
Alternate - Subsessile (NI) 0.973 0.268 -0.705 1920 71.3% - 2619 721  -1898
Opposite - Sessile 0.733 0.713 -0.020 4242 17.6% 7530 7437 -93 10120 9743 -377
Erect - Opposite 0.729 0.722 -0.007 3593 16.7% 6836 6756 -80 8896 8821 -75
Linear - Opposite (NT) 0.959 0.889 -0.070 187 10.1% - 1781 1652 -129

Table 4.14: Results of the masked images analysis. For each considered pair of
traits is shown: accuracy before (old) and after (new) images were masked (with
relative difference (A computed), the number and the rate of flips of prediction
(i.e., times when the prediction of model changes), True Positive (TP) and True
Negative (TN) counts before (old) and after (new) images were masked (with relative
difference (A computed). Pairs belonging to the Non-Invasive only category are
tagged with (NI), while the remaining pairs have the Common category.

Classification Accuracy: Original vs Masked Images
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Figure 4.21: For each pair of traits, accuracy computed with original images (in
blue) and accuracy computed with masked images (in magenta) are shown; on top
of each bar, the difference in accuracy is computed in red.

invasiveness prediction.

In contrast, masking pairs belonging to the Non-Invasive only category produced
substantially larger effects. In particular, removing regions associated with the
pair Alternate-Subsessile caused a dramatic drop in accuracy (from 0.97 to 0.27)
and led to more than 70% of the images flipping their predicted class. Similarly,
although to a lesser extent, masking Linear-Opposite reduced accuracy by 7%.

For pairs belonging to the Common category (Erect-Sessile, Opposite-Sessile and
FErect-Opposite), the effect of masking on model confidence was limited, as shown
in Tab. 4.15 and Fig. 4.22. On average, masking these traits produced only small
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. . True Invasive True Non-Invasive
Pairs of Traits Mean Mean
11 Images AP(Invasive) SD AP | n images AP(Invasive) SD AP

Erect - Sessile 11357 +0.023 0.387 8487 -0.021 0.286
Alternate - Subsessile (NT) - 2693 +0.694 0.448
Opposite - Sessile 12545 +0.022 0.388 11538 +0.015 0.320
Erect - Opposite 11357 -+0.023 0.387 10210 -0.010 0.288
Linear - Opposite (NI) - 1857 +0.046 0.293

Table 4.15: Changes in predicted probabilities in the masked images analysis. For
each considered pair of traits, images were divided according to their true class
(Invasive or Non-Invasive). For each subset, the table reports the number of images
(n images), the mean change in the predicted probability of the Invasive class
(AP(Invasive)), and its standard deviation. Pairs belonging to the Non-Invasive
only category are tagged with (NI), while the remaining pairs have the Common
category.

changes in the predicted probability of the true class (mean AP(true class) ~
+0.02), confirming that these combinations did not play a critical role in the
classifier’s final decision.

Across all three pairs, the distribution of AP(true class) was centered close to
zero for both true invasive and true non-invasive images, indicating a generally
balanced impact. The confidence bin analysis (Fig. 4.22b) shows that for true
invasive samples, masking slightly decreased the probability of the invasive class at
high confidence levels (0.8 — 1.0 bin), while low confidence images (0 — 0.4 bins)
occasionally exhibited small positive shifts. For true non invasive samples, the
trend was similarly mild, with small positive shifts at low confidence level and
small negative ones at high confidence, implying that the model maintained stable
predictions even after trait removal.

These results indicate that Common trait pairs are broadly informative features
shared across taxa but non decisive cues for distinguishing invasive from non-
invasive plants. Their removal causes only minor redistributions of prediction
confidence without substantially altering model performance or prediction direction.
This limited effect may also reflect the fact that, in many images, not all instances
of a trait were removed. Consequently, the model could still rely on remaining
occurrences to maintain a stable prediction.

In contrast, pairs belonging to the Non-Invasive only category displayed a much
stronger and more directional response to masking, as shown in Tab. 4.15 and
Fig. 4.23. When Alternate-Subsessile regions were masked, the predicted probability
for the non invasive class decreased sharply (mean AP(non invasive class) =
—0.69), corresponding to a large drop in classification accuracy. As illustrated
in Fig. 4.23b, this effect intensified with model confidence: for images the model
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originally classified as confidently non-invasive (confidence bins > 0.6), masking
consistently caused a large negative shift in AP, meaning the model became
substantially less confident (or even inverted its prediction) after removal of the
traits. This pattern indicates that Alternate-Subsessile acts as a strong and
distinctive visual cue for non-invasiveness, and its absence drives the model toward
invasive predictions.

The second pair, Linear-Opposite, exhibits the same general tendency but
with smaller magnitude (mean AP(non invasive class) = —0.05). The per-bin
distribution shows a mild positive shift at low confidence and small negative
shifts for highly confident images, suggesting a more modest but consistent role
in supporting non-invasive predictions. Compared to Alternate-Subsessile, this
combination appears less diagnostic but still contributes to stabilizing the model’s
confidence in correctly classified non-invasive samples.

Both Non-Invasive only trait pairs produced unidirectional effects on model
confidence, confirming that the classifier relied on these combinations as visual
trademarks of non-invasive species. Their removal caused a systematic bias toward
the invasive class, emphasizing their importance as discriminative, class-specific
features.

Overall, these results confirm that the model’s predictions are only marginally
affected by masking common combinations, which appear to provide redundant
information, while the removal of traits distinctive of non-invasive species strongly
alters both prediction accuracy and confidence.
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Figure 4.22: Effect of masking on model prediction probabilities for each trait pair
belonging to the Common category. (a) Distribution of changes in the predicted
probability of the true class (AP(true class) = Pev ... — P24 ) for true
Invasive and true Non-Invasive images. Positive values indicate a shift toward the
correct class after masking, while negative values indicate a shift toward the wrong
class. Mean AP(Invasive) values for each class are annotated in the top-right
corner of each subplot. (b) Mean change in predicted probability (AP(true class))
across bins of the model’s original confidence, split by true class. Bars represent
mean shifts with error bars denoting standard deviation. For True Invasive images,
dark purple bars indicate shift toward the Invasive class and bright pink bars
indicate shifts toward the Non Invasive class. For True Non Invasive images, dark
orange bars indicate shifts toward the Non Invasive class and light yellow bars
indicate shifts toward the Invasive class.
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Figure 4.23: Effect of masking on model prediction probabilities for each trait
pair belonging to the Non Invasive only category. (a) Distribution of changes in the
predicted probability of the true class (AP(true class) = P ... — P24 )
for true Invasive and true Non-Invasive images. Positive values indicate a shift
toward the correct class after masking, while negative values indicate a shift toward
the wrong class. Mean AP(Invasive) values for each class are annotated in
the top-right corner of each subplot. (b) Mean change in predicted probability
(AP(true class)) across bins of the model’s original confidence, split by true class.
Bars represent mean shifts with error bars denoting standard deviation. For True
Invasive images, dark purple bars indicate shift toward the Invasive class and bright
pink bars indicate shifts toward the Non Invasive class. For True Non Invasive
images, dark orange bars indicate shifts toward the Non Invasive class and light
yellow bars indicate shifts toward the Invasive class.
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Chapter 5

Conclusions

In this thesis, we present a pipeline for identifying morphological traits associated
with the potential invasiveness of plant species within a genus, using only image
data. We chose the Lythrum genus as a case study to determine which visual traits
are most informative for distinguishing invasive from non-invasive species.

First, we collected our image data from iNaturalist.org, a platform where
users can upload pictures of living organisms, making them available for citizen
science projects. We then used the state-of-the-art computer vision model BioCLIP-
2 to generate embeddings for the images in our dataset. BioCLIP 2 proved effective
for this task, distinguishing species with minimal morphological differences and
providing fine-grained representations of the data. Using these embeddings, a
classifier was trained to predict whether each input image corresponded to an
Invasive or a Non-Invasive species. Specifically, one classifier was trained per
species, using all images except those representing the target species, ensuring that
the classifier had never seen the species being analyzed.

Next, we incorporated explainability into the pipeline. We applied Integrated
Gradients, an XAI algorithm that produces feature attribution maps, to highlight
the regions in each image that the model considered most relevant for its prediction.
These regions were then clustered and manually annotated, either as one or more
biological structures (Leaf, Flower, Stem) or as non-informative elements (Hand,
Background/undefined) depending on what they represented.

With these labeled regions, we extracted patterns and quantified traits associated
with invasive or non-invasive species. We aggregated the labeled regions back into
the original images and calculated multiple metrics for each. Predictions from the
original models were separated by error type (True Positive, True Negative, False
Positive or False Negative). A Random Forest classifier was then applied to identify
which metrics or image features correlated with prediction accuracy.

Since single features did not yield strong results, we conducted a pairwise trait
importance analysis. Traits were combined in pairs and grouped according to
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class specificity. From the Random Forest, we selected the top five trait pairs by
importance and evaluated predictions after masking regions containing those traits.
We observed that for three pairs common to both invasive and non-invasive species,
accuracy remained largely unchanged. However, for the two pairs exclusive to
non-invasive species (Alternate-Subsessile and Linear-Opposite, all traits describing
leaf morphology), masking these regions caused a significant drop in accuracy, with
the classifier changing predictions for several images. In particular, masking the
traits of the Alternate-Subsessile pair led to a 70.5% decrease in accuracy, with
71.3% of the images changing their label from the original prediction to the masked
prediction.

This indicates that visual traits can effectively predict non-invasiveness. Due to
dataset limitations, we could not identify traits linked specifically to invasiveness,
as no exclusive trait pairs existed for invasive species. Nevertheless, the results
remain promising and support the validation of our methodology. It is also worth
noting that masking any of the top five trait pairs, both common and non-invasive,
resulted in a drop in accuracy, highlighting the potential for this approach to be
adopted and expanded in future research.

There are several considerations to address regarding the development of this
work.

First, we had to remove Lythrum hyssopifolia from the analysis because the
model was unable to classify it correctly. While this decision improved the overall
results, it was motivated by the identification of L. hyssopifolia as an analytical
outlier rather than a biological one. To the best of our knowledge, there are no
studies highlighting anomalies in the invasiveness of L. hyssopifolia, nor explaining
why the model treats it differently from the other two invasive species in the dataset.
Contrary to our initial assumption, this may suggest that either the model struggles
to embed L. hyssopifolia as a distinct species, or that not all invasive species can
be identified solely based on visual traits. We encourage future researchers building
on our work to explore this topic further.

The dataset itself also presents potential limitations: after removing Lythrum
hyssopifolia, only two invasive species remain compared to twenty-seven non-invasive
species, even though the sample sizes of the two classes are only slightly unbalanced.
This reduces the variability available for the model to learn from, forcing it to
rely on just two species and their images. Future studies adopting a similar
approach should aim to use a more diverse dataset, which would allow the model
to capture a wider range of traits and differences between species, potentially
exploring additional genera or families.

Another limitation can be found in the explainability pipeline: the original images
were not downloaded at the highest possible quality due to storage constraints
and API usage limits. While this does not appear to affect model performance, as
shown by our results, it does mean that some of the extracted regions are of lower
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resolution, which could impact their embeddings or subsequent analysis.

Manual cluster labeling presents another constraint. Although validated against
two algorithms, the labels were based on a subset of regions reviewed by a small
group of thesis researchers. This approach was necessary, as no pre-trained seg-
mentation or classification model exists to reliably identify the considered traits
from images.

The traits we used to label the clusters were limited and generic, but this was
necessary to ensure that we could accurately identify what was included in each
region (for example, a flower or a stem). In future studies, it could be valuable to
explore the inclusion of sub-traits to enrich the analysis and increase its overall
relevance.

Finally, we labeled every species that is invasive anywhere in the world as
‘Invasive’. This decision was based on the assumption that interspecific differences
are stronger than intraspecific ones (e.g., between native and invasive populations of
the same species). Since we had limited geolocalized data, we consciously discarded
image location information to access a greater amount of data. Future research
could investigate geographic variation, comparing locations where a species is
invasive, alien but non-invasive, or native, to determine whether invasiveness is an
inherent species trait or context-dependent.

Integrating additional metadata, such as phylogeny, temporal information, or
environmental data, could further enrich the analysis. Examining correlations
between visual traits and these categorical or numerical variables may reveal new
insights into the factors that drive invasiveness.

In conclusion, this thesis demonstrates that it is possible to identify invasive
species using only visual traits extracted from images, and highlights the taxon-
specific traits that are most relevant for these predictions. This study contributes
to the growing body of research on the morphological characteristics of invasive
species, supporting their identification and the mitigation of their impacts.

62



Appendix A

Labels enrichment with species
characteristic traits

We enrich the labels inherited from the cluster assignment (see Sec. 4.3.3) using specific traits
for each species and for each label. For each region extracted by images of our dataset, we
first identified the species it belonged to. Each region is labeled (after the clustering phase) to
indicate the presence of key biological structures Leaf, Flower and Stem. Using this information,
we assigned to the image the characteristic traits associated with the present structures for
that species, as defined in Tab. A.1. For example, a region of Lythrum anatolicum labeled as
containing both flower and stem would be annotated with the traits Petals purple, Stamens 12

for the flower and Erect for the stem.

Species Leaf Flower Stem
Lythrum - - -
acutangulum

Opposite Inflorescence raceme Erect

Opposite, becoming Petals purple
Lythrum alatum alternate distally

Sessile Floral tube cylindrical

Attenuate at the base Stamens 6
Lythrum album Alternate Petals white Erect
Lythrum Opppsite Petals purple Erect
amatolicum Sessile Stamens 12

Cordate at the base
Lythrum baeticum - - -
Lythrum Opposite, l?ecoming Petals reddish Erect
borysthenicum alter'nate distally .

Sessile Petals minute Erect or

decumbent

Obovate Stamens 6
Lythrum bryantii - - -
Lythrum Oppos%te . Inflorescence raceme Erect
californicum Opposite, b@commg Petals purple

alternate distally

Linear Stamens 5-8

Opposite Inflorescence raceme Erect

Lythrum curtissii

Opposite, becoming
alternate distally

Petals lilac to pink
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Species

Leaf

Flower

Stem

Sessile or subsessile

Attenuate at the base

Usually with a darker
midrib

Floral tube obconic
Stamens 6

Lythrum flagellare

Opposite
Petiolated

Rounded at the base
A discernible gap

between the stem and
the base of the blade

Inflorescence raceme

Floral tube obconic without
red dots

Petals purple

Stamens 6

Creeping to
weakly erect

Alternate Calyx with alternate long Creeping
Lythrum flexuosum and small teeth
Sessile Flowers solitary
Petals purple
Opposite Petals white to pink Erect

Lythrum gracile

Opposite, becoming
alternate distally
Rounded at the base

Alternate

Inflorescence raceme

Erect to weakly
erect

E}}flgshcfsilfrcl)lia Sessile Floral tube obconic without
red dots
Rounded at the base  Petals pink
Calyx with alternate long
and small teeth
Stamens 4-6
Opposite Inflorescence spikelike Erect
Sessile Flowers in whorled clusters
Lythrum Opposite, becoming Calyx with alternate long
intermedium alternate distally and small teeth

Rounded at the base

Floral tube cylindrical
Petals purple
Stamens 12

Alternate Inflorescence raceme Sprawling or
ascending
Lythrum junceum Subsessile Flowers solitary in leaf axils
Obtuse to truncate at  Floral tube obconic
the base
Floral tube red dotted
Petals purple
Stamens 12
Opposite Inflorescence raceme Erect
Sessile Floral tube cylindrical

Lythrum lineare

Attenuate at the base

Petals pale purple or
whitish

Usually with a darker
midrib
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Species Leaf Flower Stem
Stamens 6
Lythrum Opposite Petals pink Prostrate
maritimum Subsessile Usually with a darker
midrib
Sessile Flowers solitary Erect
Broader at the base Floral tube campanulate
Lythrum netofa Petals 4
Petals purple with a darker
midrib
Stamens 6-8
Alternate Inflorescence raceme Erect or
Lythrum decumbent
ovalifolium Sessile or subsessile Floral tube obconic without
red dots
Attenuate at the base Petals purple with a darker
midrib
Stamens 6
Lythrum Alternate Petals pink to purple Erect
paradoxum Sessile Stamens 10-12
Opposite Inflorescence spikelike Prostrate and
spreading
Lythrum portula Sessile Floral tube campanulate
Petals white to pink
Stamens 5-8
Petiolated Flowers solitary Prostrate
Lythrum . .
rotundifolinm Petals pll}k Fo purple with a
darker midrib
Stamens 8
Opposite Inflorescence spikelike Erect
Sessile Flowers in whorled clusters
. Opposite, becoming Calyx with alternate long
Lythrum salicaria alternate distally and small teeth
Rounded at the base  Floral tube cylindrical
Petals purple
Stamens 12
Lythrum silenoides - - -
.. Alternate Petals 4 Erect
Lythrum thesioides Petals pink
Needle-like One or few flowers in the Prostrate

Lythrum thymifolia

axil of leaves

Calyx with alternate long
and small teeth

Stamens 2-3

Lythrum
tribracteatum

Opposite
Sessile

Attenuate at the base

Inflorescence spikelike

Floral tube narrowly
cylindrical without red dots
Calyx with teeth of the
same length
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Species Leaf Flower Stem
Petals lavender
Stamens 4-6
Opposite Inflorescence spikelike to Erect
raceme
Lythrum virgatum  Sessile Flowers in whorled clusters
Narrower at the base  Floral tube cylindrical
Petals pink to purple
Stamens 10-14
Lythrum volgense Needle-like Petals pink Prostrate
Petals minute
Lythrum vulneraria Oppos%te ’ Petals pink Erect
Opposite, becoming
alternate distally
Alternate Petals pink to purple Erect
Lythrum wilsonii Sessile

Rounded at the base

Table A.1: Characteristic traits for each species for each biological structure.
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Appendix B

HDBSCAN clustering
validation details

In addition to the summary presented in the main text (see Sec. 4.3.3), we examined
cluster consistency and label distributions for all valid HDBSCAN configurations
in detail.

Figs. B.1 and B.2 provide per-cluster analysis for the best (with min_ cluster
size = 16) and the worst (with min_ cluster__size = 27) configurations, respec-
tively. Cluster -1 represents the noise cluster, and is therefore excluded from our
analysis. The distribution of consistency ratios (Figs. B.1la and B.2a) align with
the gloabl distribution (Fig. 4.16a), as expected. Figs. B.2a and B.2b depict the
detailed distribution of labelsets within each cluster. In most cases, even when
a cluster contains multiple labelsets, they are closely related. For instance, in
Fig. B.2b cluster 2 includes "flower’, "flower, leaf" and "flower, stem’. There are
also occasional cases where biological labels are mixed with non-biological ones (for
example, cluster 30 in Fig. B.1b has both "background/undefined" and "leaf"), but
usually, one of these represents only a small fraction of the cluster’s images. As
expected, the min_ cluster size = 27 configuration yields slightly worse results.
This settings produces only 9 clusters (summing it with the noise cluster is just
above the threshold): as shown in Fig. B.3, the number of clusters produced by a
configuration has a substantial impact on the resulting average consistency ratio.
Fewer clusters merge diverse samples, reducing consistency, whereas more clusters
capture finer homogeneity.
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HDBSCAN clustering validation details

Cluster label consistency (fraction in dominant label set)
for min_cluster size=16
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Figure B.1: Detailed clustering and labeling validation using HDBSCAN for the
best configuration found. Cluster label consistency ration for each cluster (a) and
distribution of labelsets per cluster (b) are shown.
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HDBSCAN clustering validation details

Cluster label consistency (fraction in dominant label set)
for min_cluster size=27
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Figure B.2: Detailed clustering and labeling validation using HDBSCAN for the
worst configuration found. Cluster label consistency ration for each cluster (a) and
distribution of labelsets per cluster (b) are shown.
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HDBSCAN clustering validation details

Consistency ratio vs. Number of clusters
per config
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Figure B.3: Correlation between the average consistency ratio of each configura-
tion and the number of clusters generated by the configuration.
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Appendix C

Metric-specific correlation
with accuracy

This appendix reports the detailed results of the metric-specific accuracy correla-
tion analysis described in Sec. 3.3.1. For each metric, images were divided into
discrete categories, and the corresponding mean prediction accuracy, sample size,
and Kullback-Leibler (KL) divergence from the overall species distribution were
computed. The goal of this analysis was to identify whether particular image level
characteristic were systematically associated with classification performance, while
also evaluating whether such effects could be attributed to differences in taxonomic
composition rather than the metric themselves.

C.1 Pielou Evenness

Accuracy varies across categories of the Pielou evenness index, with a significant
ANOVA result (p < 0.05), for details see Tab. C.1 and Fig. C.1. Images with
Simple or Low evenness values (i.e., dominated by few traits) show slighlty higher
accuracy (up to 0.81) compared to those with Medium High or Very High evenness,
where accuracy drops to around 0.74

However, KL divergence increases notably for intermediate categories, suggesting
that these differences may partly reflect changes in species composition.

Overall, the trend may indicate that images with more homogeneous trait
distributions are classified more reliably, although this effect is modest.
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Metric-specific correlation with accuracy

Category Accuracy SSizrénple giI\J/ergence
Simple 0.807 5736 0.023
Low 0.790 5729 0.012
Medium 0.798 5734 0.021
Medium High 0.738 5764 0.056
High 0.782 773 0.004
Very High 0.740 3653 0.060

Table C.1: Results of Pielou Evenness index correlation with accuracy analysis.
For each region coverage category, mean accuracy for the category, sample size and
KL divergence from the dataset distribution is shown.

ANOVA: F = 25.0784, p =~ 0.00; the highest mean accuracy is observed in the Simple category
(0.807) and the lowest in the Medium High category (0.738). Accuracy differences are
statistically significant (p < 0.05).

Category Accuracy SS;znple giI\J/ergence
Simple 0.790 2574 0.041
Low 0.885 3963 0.620
Medium 0.762 10390 0.072
Medium High 0.854 3954 0.580
High 0.764 11057 0.141
Very High 0.609 2451 0.759

Table C.2: Results of richness (i.e., the number of distinct traits for each image)
correlation with accuracy analysis. For each region coverage category, mean accu-
racy for the category, sample size and KL divergence from the dataset distribution
is shown.

ANOVA: F = 170.03, p =~ 0.00; the highest mean accuracy is observed in the Low category
(0.885) and the lowest in the Very High category (0.609). Accuracy differences are statistically
significant (p < 0.05).

C.2 Distinct Traits (richness)

Richness shows a statistically significant association with accuracy (p < 0.05),
but the pattern is irregular and influenced by species imbalance (see Tab. C.2
and Fig. C.2). Low and Medium High richness categories reach the highest accuracies
(around 0.85-0.88), while both Simple and Very High richness values correspond to
reduced accuracy (0.61-0.76).
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Metric-specific correlation with accuracy

Evenness (Pielou) - Accuracy per Category
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Figure C.1: For the Pielou Evenness analysis, accuracy for each category (a) and
distribution of species for each category (b) is shown.

lythrum netofa
lythrum ovalifolium
lythrum paradoxum
lythrum portula
lythrum rotundifolium
lythrum salicaria
lythrum silenoides
lythrum thesioides
lythrum thymifolia
lythrum tribracteatum
lythrum virgatum
lythrum volgense
lythrum vulneraria
lythrum wilsonii

However, the corresponding KL divergences are large (up to 0.76), indicating
that bins with extreme richness values are dominated by specific taxa.

Consequently, while images with moderate trait diversity appear more stable
for classification, this trend should not be interpret as causal.
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Metric-specific correlation with accuracy
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Figure C.2: For the Richness analysis, accuracy for each category (a) and

(b)

distribution of species for each category (b) is shown.

C.3 Hand Fraction

Accuracy remains remarkably stable across all categories of hand fraction, rang-
ing from 0.77 to 0.78, with no statistically significant differences (see Tab. C.3
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Metric-specific correlation with accuracy

Sample KL
Category Accuracy size v Divergence
Simple 0.778 26988 0.001
Low 0.779 5265 0.003
Medium 0.781 1554 0.007
Medium High 0.781 187 0.071
High 0.737 19 0.144
Very High 0.763 376 0.026

Table C.3: Results of Hand fraction correlation with accuracy analysis. For each
region coverage category, mean accuracy for the category, sample size and KL
divergence from the dataset distribution is shown.

ANOVA: F = 0.148, p = 0.98; the highest mean accuracy is observed in the Medium category
(0.781) and the lowest in the High category (0.737). No strong statistical evidence of differences.

and Fig. C.3).KL divergence values are consistently low.
These results indicate that the presence of human hands within the image does
not systematically bias the model’s predictions.

C.4 Background/undefined fraction

Sample KL
Category Accuracy size Divergence
Simple 0.774 13157 0.001
Low 0.780 9601 0.001
Medium 0.781 6889 0.002
Medium High 0.786 2242 0.008
High 0.761 627 0.026
Very High 0.784 1873 0.009

Table C.4: Results of Background/Undefined fraction correlation with accuracy
analysis. For each region coverage category, mean accuracy for the category, sample
size and KL divergence from the dataset distribution is shown.

ANOVA: F = 0.807, p = 0.55; the highest mean accuracy is observed in the Medium High
category (0.786) and the lowest in the High category (0.761). No strong statistical evidence of
differences.

Similarly, Tab. C.4 and Fig. C.4 display that the fraction of regions labeled
as background or undefined shows no consistent relationship with classification
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Metric-specific correlation with accuracy
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Figure C.3: For the Hand fraction analysis, accuracy for each category (a) and
distribution of species for each category (b) is shown.

accuracy. Accuracy values fluctuates minimally (0.76-0.79) across categories, and
KL divergence remains below 0.3.

This confirms that variation in background area does not influence model
correctness, suggesting that the model effectively focuses on relevant plant regions.
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Metric-specific correlation with accuracy
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Figure C.4: For the Background/undefined fraction analysis, accuracy for each
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category (a) and distribution of species for each category (b) is shown.

C.5 Image Complexity

Image complexity, expressed as the number of extracted regions per image, shows
a weak but statistically significant tren (see Tab. C.5 and Fig. C.5b). Accuracy
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Metric-specific correlation with accuracy

Sample KL
Category Accuracy size Divergence
Simple (1) 0.771 3978 0.008
Low (2-3) 0.775 12968 0.002
Medium (4-5) 0.786 10680 0.001
Medium High (6-7) 0.777 4820 0.007
High (8-10) 0.771 1729 0.026
Very High (10+) 0.850 214 0.098

Table C.5: Results of Image complexity (i.e., the number of regions per image)
correlation with accuracy analysis. For each region coverage category, mean accu-
racy for the category, sample size and KL divergence from the dataset distribution
is shown.

ANOVA: F = 2.554, p = 0.026; the highest mean accuracy is observed in the Very High (10+)
category (0.850) and the lowest in the Simple (1) category (0.771). Accuracy differences are
statistically significant (p < 0.05).

tends to increase slighlty with complexity, reaching its highest value (0.85) for very
complex images (more than ten regions). Nonetheless, these categories include few
samples and show higher KL divergence, indicating that the apparent trend may
be driven by species composition.

Overall, while more structurally complex images might provide richer information
for the model, the observed effect is limited.

78



Metric-specific correlation with accuracy

Accuracy
o
y

Image Complexity
Accuracy per Category

o
©
)

o
o
|

0.29 —-- Dataset Mean (0.778)
[ — accuracy

0.0 L——r— — T ' '

ST N S\ BN SR

< <& \s \ %" >
.@Q o & S 3 5
5\ v RS 3 & N
NS 3
S i

(a)

Species Distribution by Category
07 T
. . . . . : B |lythrum acutangulum lythrum netofa
H lythrum alatum lythrum ovalifolium
! mm lythrum album lythrum paradoxum
08 ! lythrum baeticum B |ythrum portula
: B |ythrum borysthenicum lythrum rotundifolium
: lythrum bryantii I |ythrum salicaria
c 06 ! B |lythrum californicum B |lythrum silenoides
o . 1 lythrum curtissii B lythrum thesioides
i 1
g = 1 B |ythrum flagellare lythrum thymifolia
S | . ! = lythrum flexuosum BN |ythrum tribracteatum
& 044 l . . | = lythrum gracile mm lythrum virgatum
L 1 ; ’
. . H . lythrum intermedium lythrum volgense
. ! | | mw lythrum junceum lythrum vulneraria
! lythrum lineare m lythrum wilsonii
0.2 H B lythrum maritimum
1
1
1
i
0.0 - - —
DA S A S D
e V¥ @ oY WD &
N \‘\\ N Nw o XX
SRR SRR SRS N
ORI IR ORI N
é@/ d Q,<b
6\\) K2 S
(2
3

(b)

Figure C.5: For the Image complexity analysis, accuracy for each category (a)
and distribution of species for each category (b) is shown.
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European Russia, Chad, Chile Central, Chile North, China North-Central,
China South-Central, Chita, Colombia, Colorado, Connecticut, Corse, Cuba,
Cyprus, Czechia-Slovakia, Delaware, Denmark, District of Columbia, Domini-
can Republic, DR Congo, Fast Aegean Is., Fast Furopean Russia, FEcuador,
Egypt, Ethiopia, Finland, Florida, France, Georgia, Germany, Great Britain,
Greece, Guatemala, Haiti, Hawaii, Hungary, Illinois, Indiana, Inner Mongolia,
Towa, Iran, Iraq, Ireland, Irkutsk, Italy, Japan, Juan Ferndndez Is., Kansas,
Kazakhstan, Kentucky, Kenya, Khabarovsk, Kirgizstan, Korea, Krasnoyarsk,
Kriti, Krym, Kuril Is., Lebanon-Syria, Libya, Louisiana, Madeira, Maine,
Malawi, Manchuria, Maryland, Massachusetts, Mexico Central, Mexico Gulf,
Mexico Northeast, Mexico Northwest, Mexico Southeast, Mexico Southwest,
Michigan, Minnesota, Mississippi, Missouri, Mongolia, Morocco, Nebraska,
Netherlands, Nevada, New Hampshire, New Jersey, New Mezico, New South
Wales, New York, North Carolina, North Caucasus, North Dakota, North
FEuropean Russia, Northern Territory, Northwest European Russia, Norway,
NW. Balkan Pen., Ohio, Oklahoma, Ontario, Pakistan, Palestine, Pennsyl-
vania, Peru, Poland, Portugal, Primorye, Qinghai, Queensland, Rhode I.,
Romania, Rwanda, Sakhalin, Sardegna, Saudi Arabia, Senegal, Sicilia, Sinai,
Socotra, Somalia, South Australia, South Carolina, South Dakota, South Fu-
ropean Russia, Spain, Sudan-South Sudan, Sweden, Switzerland, Tadzhikistan,
Tanzania, Tasmania, Tennessee, Texas, Tibet, Transcaucasus, Tunisia, Turk-
menistan, Tuva, Tirkey, Tirkey-in-Europe, Uganda, Ukraine, Uruguay, Utah,
Uzbekistan, Venezuela, Vermont, Victoria, Virginia, West Himalaya, West
Siberia, West Virginia, Western Australia, Wisconsin, Wyoming, Xinjiang,
Yemen, Alaska, Alberta, Argentina South, British Columbia, Cape Provinces,
Chile South, Idaho, Manitoba, Montana, New Brunswick, New Zealand North,
Newfoundland, Norfolk Is., Nova Scotia, Oregon, Prince Edward I., Québec,
Saskatchewan, Washington] observed between [21/07/1940 - 19/06/2025].
https://www.inaturalist.org. Exported from iNaturalist on [20/06/2025].
2025 (cit. on p. 26).

WFO. Lythrum salicaria subsp. intermedium (Fisch. ex Colla) H. Hara.
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