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Abstract

Extract, Transform, Load (ETL) processes are an essential part of building
data warehouses. They allow data from many different systems to be collected,
cleaned, and stored in a form that can be used for analysis. In Microsoft SQL
Server Integration Services (SSIS), these processes are usually created by man-
ually configuring packages. Although this approach provides flexibility, it is
repetitive, slow and prone to errors, especially when the system must handle
a large number of sources or when several developers are working on the same
project. This thesis proposes a metadata driven automation framework writ-
ten in Python to simplify this task.
Instead of separately building each SSIS package by hand, the system utilizes
metadata stored in structured, developed by hand, Excel files and automati-
cally generates packages in XML format. The metadata describes source and
target tables, grouping information and referential constraints. This informa-
tion allows the system to generate packages for the staging layer (L0 level),
the operational data storage layer (L1 level) and a pre load step, a special
level used to check referential integrity between fact and dimension tables.
The solution is built around reusable XML templates, which are filled dy-
namically by the Python scripts. In this way, the packages follow a common
structure defined by the company’s integration framework. Tests carried out
on real scenarios show that this method reduces development time, improves
consistency, and lowers the risk of human error. Future changes in table struc-
tures or business rules can also be managed more easily, as they only require
updates to the metadata files. The results obtained confirm that metadata
driven automation can improve ETL development in SSIS, make it more reli-
able, easier to maintain and scalable.
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Chapter 1

Introduction

In today’s era of digital transformation, data represents an important strate-
gic resource for companies, both to support decision making and to optimize
operational processes.
The growth of heterogeneous data sources and the exponential increase in
data volume have made of central importance to adopt dedicated infrastruc-
tures and tools for data management, such as Data Warehouses and ETL
(Extract, Transform, Load) processes. These technologies allow to con-
solidate data from various systems, ensuring data quality, consistency and
historical tracking, which are fundamental properties for reliable and strate-
gic data analysis.

Among the main challenges companies have to take is the increasing com-
plexity of ETL processes. In particular, the manual development and main-
tenance are often time consuming, subject to errors and difficult to scale in
large and evolving environments. To solve these challenges, it is essential to
adopt approaches which introduce automation and standardization.

The following thesis work is relevant to this context and it arises from the
internship experience at Mediamente Consulting, a consultancy company spe-
cialized in digital transformation. The main objective was to develop an au-
tomatic system for the generation of SSIS (SQL Server Integration Services)
packages, based on the company’s standardized integration framework, reduc-
ing manual workload and guaranteeing efficiency and scalability.

To reach such a goal, a Python based program was created, capable of generat-
ing automatically XML code, which SSIS packages are based on, starting from
hand compiled metadata Excel files. The project has developed a program
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capable of covering diverse levels of the ETL integration framework:

• Staging Area - L0 level: layer responsible for data ingestion from
different heterogeneous sources, with a copy procedure, incremental load
and monitoring.

• Operational Data Store - L1 level: for data validation and historical
tracking through control logics.

• Pre Load step: manages the case where a fact table record does not
have a referential match in the corresponding dimension table, allowing
referential integrity.

The first chapters of this thesis introduce the historical context of reference,
with a panoramic view of Data Warehouse architectures, data models and the
important difference between OLTP and OLAP systems.

The following chapter focuses on ETL processes and the main challenges they
introduce. After, it is introduced and explained the standardized integration
framework used by the company.

The next chapter is central in this thesis as it is dedicated to the descrip-
tion of the automation system developed. Firstly, the metadata Excel files
are introduced and explained how they are constructed. Next, the base logics
of the Python program are presented along the modules developed and how
the construction of the SSIS package is performed.

In the end, three different scenarios are presented along with the results of
the execution of the generated packages to show the obtained results, which
proves the functionality of the program in this context.

Last chapter gathers conclusions and suggest different possible future ap-
proaches, such as the extension of the developed system to other framework
of the company, integration of generative AI in the creation of the metadata
files and generalization of the system to cloud based tools.
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Chapter 2

Data Warehouse and its state
of the art

The term Data Warehouse refers to a centralized system that aggregates
a large quantity of historical structured data that originates from various
types of sources. It is specifically designed to support analysis processes and
strategic decision-making within a company.
Unlike transactional databases, which are optimized for daily operations, a
data warehouse has a structure such that it stores historical data over time,
which allows for an analysis during a long period of time. Before being stored,
the data coming from heterogeneous sources is cleaned and transformed into
congruent data, which is suitable for tools that use data to perform analysis.

According to William H. Inmon [11], often considered the father of Data
Warehousing, a Data Warehouse is defined by the following distinguishable
characteristics:

• Subject-Oriented: the data is organized around key business subjects,
such as customers, sales or products.

• Integrated: Data originates from multiple sources which are different
in terms of format and are then integrated into the Data Warehouse

• Time-Variant: the data presented in the Data Warehouse is associ-
ated to specific time periods, allowing the tracking of changes and the
evolution of information over time.

• Non-Volatile: once data has entered into the data warehouse, becomes
immutable, meaning that it cannot be updated or deleted, ensuring
integrity over time.
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Ralph Kimball provides a complementary definition, which can be sum-
marized in the statements: a copy of transaction data specifically structured
for query and analysis [15]. Many other sources summarize the definition of a
data warehouse under the same four key properties previously stated [4] [1].

2.1 From Data Mart to Data Lakehouse

It is crucial to understand that Data Warehouses are important within a
company but they are not the only options in terms of data archiving.
We are now going to see the various possibilities to store structured data:

2.1.1 Data Mart

Data Marts are databases that are subject-oriented, meaning that they contain
data related to a specific area or domain, such as customers or products.
While they follow the same principles of a Data Warehouse, they only contain
a subset of the information. This structure allows for faster access to needed
information and a more targeted analysis. It is also good to note that, in some
architectures, a Data Warehouse can be composed of multiple data marts,
where each one of them has a focus on a particular area of the company.[9] [2]
[20].

2.1.2 Data Lake

Data Lakes are centralized repositories that allow the storage of vast volumes
of raw data in its original format, which can be structured, semi-structured or
unstructured. Unlike Data Warehouses, which need a defined schema and
structured data, data lakes follow the ”schema-on-read” approach, which
means that the data can be ingested without prior transformation and the
structure is applied only when the data is queried. Advanced analytics, such
as machine learning and real-time analytics, are supported given this allowed
flexibility. Figure 2.1 show a simplified process view of how data is ingested,
stored, and subsequently utilized within a data lake. However, the other side
of the coin is that without proper governance and metadata management, data
lakes risk becoming the so called ”Data Swamps”, which are poorly organized
and difficult to navigate through [22].
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Figure 2.1: Example of a Data Lake

”If you think of a data mart as a store of bottled water, cleansed, packaged
and structured for easy consumption, the data lake is a large body of water in
a more natural state. The contents of the lake stream in from a source to fill
the lake, and various users of the lake can come to examine, dive in, or take
samples” [5].

2.1.3 Data Lakehouse

The most modern data architecture currently in use is the Data Lakehouse,
which is a hybrid solution that merges the benefits of the Data Warehouse
with the benefits of Data Lakes.
It introduces the following features:

• Data reliability ensured by the support for ACID transactions.

– Atomicity: means that each transaction either is fully completed
or it has no effect.

– Consistency: means that each transaction brings the database from
a valid state to another valid state.

– Isolation: there is no interference among transactions.

– Durability: once a transaction is committed, the changes made by
it are permanent.

• A unified storage formats.
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• Governance and indexing supported by a common metadata layer.

• Ability to handle both batch and streaming data in the same environ-
ment.

As a result, data management is then simplified by combining the reliability
and performance of data warehouses with the scalability and flexibility of data
lakes [3] along with the capability to work with both structured and unstruc-
tured data in the same data platform.

2.2 DataWarehouse modelling (Star, Snowflake and
Data Vault schemas)

The process of defining how data is stored, organized and accessed within a
database is called Data Modelling. It plays a crucial role in shaping how
the business data is logically represented for analytical use.
The goal is to translate real-world companies’ business requirements into a
formal design that supports

• efficient querying.

• data integration.

• consistency across the system.

For this purpose several modelling approaches have been developed. Each
model offers different trade-offs and there is no universal best choice.
We are now going to see more in detail these data models.

2.2.1 Star Schema

One of the most widely used data modelling techniques for the design of
Data Warehouse is the Star Schema. As suggested by the name, this model
technique resembles a star: a large central table, called fact table, that is sur-
rounded by several smaller tables, known as dimension tables.
The fact table stores quantitative business metrics such as sales revenue, order
quantities or transaction amounts. These metrics, also called measures, are
typically associated with multiple perspectives, such as time, product, cus-
tomer, location or others, where each one is represented by a corresponding
dimension table. Figure 2.2 shows an example of how conceptually is modelled
a star schema.
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A peculiarity of the star schema is the asymmetry property: only the fact table
presents multiple foreign key references linking it to various dimension tables.
In contrast, dimension tables are not connected to each other and are gen-
erally denormalized, meaning that the tables contain redundant or repeated
information to reduce the complexity of joins and improve query performance.
To be able to identify the records in the fact table, the primary key is com-
posed, in most cases, from the foreign keys of the dimension tables. However,
since some of these keys may involve complex attributes, such as fiscal code,
artificial primary keys are introduced, called surrogate keys. These are
just some simple, auto incremented, numeric fields that serve as primary keys
with no business meaning. Their use simplifies joins and improves efficiency
by avoiding long and variable string based joins [16].
The star schema remains a foundational technique in dimensional modelling
as is particularly efficient in large-scale business contexts where queries are
focused on aggregating data across multiple dimensions [7][11]

Figure 2.2: Star schema example

2.2.2 Snowflake schema

The Snowflake Schema resembles the star schema in its overall structure,
containing a central fact table linked to multiple dimension tables. Figure 2.3
illustrates the snowflake schema starting from the star schema of the previous
example. However, there is a distinguishable feature of the snowflake model:
dimension tables are normalized. This aims to reduce data redundancy and
improve storage efficiency by organizing dimension data into multiple levels
of hierarchy [16].

10



For instance, a Date dimension can be decomposed into separate tables for
Year, Month and Day, all linked through foreign keys that maintain the logical
relationships among these components. This structure allows for more refined
and maintainable hierarchies within the data model [7].
The primary advantage of this model schema is its efficient use of storage which
comes from minimizing duplicated data within dimension tables. However,
this comes at the cost of increases query complexity as retrieving data often
requires more joins across related tables. These additional joins can lead
to longer query execution times and may reduce performance, especially in
systems where fast query execution is critical [16] [11].

Figure 2.3: Snowflake schema example

2.2.3 Data Vault schema

The Data Vault is a modern data modelling approach that has been designed
to address the limitations of the star and snowflake schemas. Proposed by
Dan Linstedt in the early 2000s, this data model is intended for agile data
warehousing and is especially effective in scenarios involving frequent schema
evolution and large volumes of historical data [17].
The schema is composed of three main entities:

• Hubs: it stores unique business keys, such as ”CustomerID”, and rep-
resent core business entities.

• Links: capture the relationships between hubs, such as ”Customer”
purchased ”Product”.

• Satellites: store descriptive attributes and historical changes associated
with hubs or links, such as names of customers or description of products.
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This structure separates relationships, business keys and contextual data,
making the model highly scalable and extensible. Since satellites are times-
tamped and versioned, the model supports historical data tracking and data
lineage, which align with regulatory and audit requirements [7].
The Data Vault model is highly normalized, trading off query simplicity for
flexibility and data traceability. This results in a model that is well-suited
for enterprise data warehouse that consolidate data from multiple operational
systems and require consistent and reliable data ingestion over time [16].

2.3 Difference between OLTP and OLAP

At this point it is essential to distinguish between Online Transaction Pro-
cessing (OLTP) and Online Analytical Processing (OLAP) systems.
Even though both involve the storage and the processing of data, they serve
fundamentally different purposes within an organization and are optimized
for distinct use cases.
OLTP systems are designed to handle day-to-day transactional operations
in real-time. They are commonly used for activities such as processing pur-
chases, recording sales, managing customer interactions, and handling finan-
cial transactions. These systems usually adopt highly normalized and entity-
relationship models to ensure data consistency and integrity during frequent
updates, inserts and deletions [16]. OLTP systems require high availability,
low latency and robust ACID compliance to be able to ensure that every
transaction is correctly recorded, even when systems fail.
In contrast, OLAP systems are focused on the analysis of historical and ag-
gregated data, serving as a foundation for strategic decision-making. OLAP
systems are optimized for executing complex, read-intensive queries that may
involve aggregations, slicing, dicing and drill-down operations across multiple
dimensions, such as time, geography or category of a product [7]. These sys-
tems are often denormalized and rely on multidimensional data models, such
as star and snowflake schemas.
A key operational difference is the way each system manages data quality
and structure. In OLTP, temporary data imperfections (such as an ongoing
update or partially completed transaction) are tolerated, provided the final
integrity of the system is preserved. On the opposite, OLAP systems require
clean and consolidated data, as the presence of nulls or inconsistencies can
compromise the accuracy of aggregated analyses. As such, data cleansing and
transformation operations are an integral part of preparing data for OLAP
environments [7].
The user profiles for each system also reflect these differences. OLTP tools are
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typically used by operational users, such as customer service representatives,
sales agents, and clerical staff, who interact with data in real time. OLAP
tools, on the other hand, are geared toward analytical users, including busi-
ness analysts, data scientists, and executives, who rely on historical data to
generate reports, perform forecasts, and drive strategic initiatives [19].
OLTP and OLAP systems often coexist within modern enterprises. Data from
OLTP systems is extracted, transformed and then loaded into OLAP systems,
such as data warehouses or data lakehouses, where it can be leveraged for busi-
ness intelligence.
Table 2.1 summarizes OLTP vs OLAP systems.

Table 2.1: OLTP vs OLAP systems

Aspect OLTP OLAP

Function Daily management Decision making sup-
port

Orientation Application base ori-
ented

Subject oriented

Frequency daily Scheduled or on de-
mand

Data Recent and detailed Aggregate, historical
and multidimensional

Access Read and write Read only

Users destination Operational users Analysts or decision
makers

Dimensions From 100 MB to GB From 100 GB to TB

Example Order processing Business performance
reporting
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2.4 Cloud and On-Premise solutions

Data warehouses systems can follow two main architectural models: on-
premise and cloud-based. Each approach offers distinct advantages and
trade-offs in terms of scalability, control, cost and operational complexity.

2.4.1 On-Premise Solutions

On-premise architectures refer to systems where the hardware, software
and networking infrastructure are fully owned, installed and maintained by
the organization itself. This model provides the maximum control over data,
compliance and customization of the system, which becomes the preferred
choice in industries with strict regulatory requirements.
However, on-premise systems involves significant capital expenditure for hard-
ware acquisition and operational expenses for system maintenance, upgrades
and staff. Scalability is also inherently limited by the physical infrastructure
as it requires the acquisition and installation of new hardware, along with
adequate power supply and physical space [10] [24].

2.4.2 Cloud Solutions

On the contrary, cloud based architectures has transformed the way orga-
nizations build and operate data warehouses. The cloud offers on-demand ac-
cess to virtually unlimited computational and storage resources, which enable
more scalability, availability, reliability and reduces the overhead of managing
physical infrastructure.
Cloud providers offer a variety of service models which are categorized by the
level of abstraction and customer responsibility:

• Infrastructure-as-a-Service (IaaS): are services which provide low-
level computing resources such as virtual machines, storage, and net-
working. Users manage the operating system and applications, offering
flexibility at a lower cost, but with higher operational responsibility.

• Platform-as-a-Service (PaaS): are services which deliver a higher
level of abstraction, supplying managed platforms where users can de-
velop, deploy, and maintain their applications without managing the
underlying infrastructure. This model is popular for ETL pipelines and
custom analytics workflows.

• Software-as-a-Service (SaaS): offers complete applications delivered
via the web, typically through subscription models. In this case, the
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provider manages the full stack, and users interact directly with the
software, without concern for infrastructure or platform management.

Many of the commercial and open-source Data Warehouse platforms now op-
erate within cloud service models. For example:

• SaaS: Google Big Query, Amazon Redshift, Snowflake

• PaaS/IaaS: Microsoft Azure Synapse Analytics, Apache Hive, Click-
House

These platforms vary in their level of abstraction and flexibility: SaaS solu-
tions offer ease of use and rapid deployment with minimal configuration, while
PaaS and IaaS platforms offer greater customization, typically requiring more
setup and operational oversight [6].
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Chapter 3

ETL pipeline foundations

3.1 ETL Concepts and Challenges

Given the vast variety of data sources, such as SQL and NO-SQL databases,
Excel files and other heterogeneous sources, moving data from a source to a
Data Warehouse necessitate a series of operations able to standardize, unify
and ensure coherence of the data. These operations are essential to transform
raw information into a consolidated and consistent and suitable for analysis
dataset.
For this to be achievable, organizations rely on ETL (Extract, Transform,
Load) pipelines, which define a structured process for data integrations.
ETL pipelines contain a series of operations designed in a standardized way
such that enables the passage of data from a raw state to a new, unified,
consolidated and high quality data state.
The pipeline, as Figure 3.1 shows, consists of three steps [16]:

Figure 3.1: ETL procedure
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• Data Extraction: in this initial step, the goal is to gather data from
different sources systems with minimal impact on the source systems
itself and preserving data integrity during the transfer.

• Data Transformation: the second step consists of transforming the
gathered data. Transformations consist of cleaning, normalization, data
enrichment and general transformations to match the structure of the
target system. Common operations include handling missing values,
removing duplicates, converting types, performing aggregations and ap-
plying business rules.

• Data Loading: in the final step the transformed data is loaded into
the target system, the Data Warehouse. This step can be done either in
batch or near-real-time.

– Batch loading : this term indicates collecting and loading large vol-
umes of data at scheduled intervals, for example hourly or daily.
This is a good approach when data latency is not critical as it intro-
duces a delay between the data being generated and the availability
for the analysis.

– Near-real-time loading : differently than the batch loading, this
method involves updating the Data Warehouse with small amounts
of data in a frequent or continuous way, often within seconds or
minutes from the creation of the data. This method is essential
when up-to-date information are required, for example for fraud
detection systems or operational dashboards.

Despite all the positive features of ETL pipelines, their implementation and
maintenance introduce a lot of challenges such as system performance, oper-
ational reliability and data quality.
Among the primary difficulties there is the management of heterogeneous data
sources, which often differ in format, schema and quality. A simple, yet com-
mon, example is the date format: in Europe the format dd/mm/yyyy is widely
used, while in the United States is more common the format mm/dd/yyyy.
Additionally, date formats can appear in shorter formats, such as dd/mm/yy
or more explicit formats, for example 01-January-2025.
Integrating all of these sources, and formats, can require extensive configu-
ration and custom logic, especially when dealing with unstructured or semi-
structured data formats [25].
Errors such as duplicates, missing values or schema mismatches can be intro-
duced during the phases of an ETL pipeline, as a consequence ensuring data
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quality and data consistency along the pipeline represent another challenge
that need to be addressed as they can lead to incorrect business insights. Data
validation and data cleansing becomes essential [16].
Scalability is another challenge, as ETL systems must be designed to handle
increasing data throughput, more complex transformations and business logic,
without making the system less efficient.
The continuous update of data sources and business requirements requires,
in most cases, updates to the ETL logic. As a consequence, maintaining and
versioning ETL systems over time, can become time-consuming and prone to
errors.

3.2 ETL and ELT

ETL processes, even if considered the classic approach, are not the only option
that can be adopted in the world of data integrations. In recent years an alter-
native has emerged: ELT processes (Extract, Load, Transform), which
are increasingly adopted in cloud-based and modern data environments.
In contrast to ETL processes, ELT processes reorder the workflow by perform-
ing the transformation phase after the loading has happened as, in this model,
the data is extracted and then immediately loaded in the data warehouse in
its raw form.
Transformations are executed within the data warehouse itself by leveraging
its computational capabilities, especially in cloud-based or parallel processing
environments. This step inversion allows ELT processes to be particularly
effective when handling large scale or semi structured data [23].

• ETL processes are well-suited for on-premise environments and for
when data must be validated or enriched before the analytical phase as
it offers strict control over the transformations. However, it may become
less efficient when data volumes grow significantly.

• ELT processes have the benefit of a simplified pipeline architecture
and scalability, especially in the cloud environment. More flexibility is
allowed thanks to the transformations happening post data load and it
also allows the raw data to be used again in future. ELT processes may
be less efficient in traditional on-premise systems, where there is the lack
of the necessary performance for intensive transformations [23].

A natural question that may arise is regarding how to choose the right ap-
proach. The decision should be guided by factors such as data volume, the
type of infrastructure available, complexity of the business logic and data
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governance requirements. ETL choice remains the preferred one when data
needs to be controlled, cleaned and validated before the analysis while ELT
processes is a better choice in modern, cloud based architectures, when the
workload can be distributed within the data warehouse itself [23].
Table 3.1 shows a recap of the difference between ETL and ELT.
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Table 3.1: ETL and ELT confront

Aspect ETL (Extract, Trans-
form, Load)

ELT (Extract, Load,
Transform)

Transformation Lo-
cation

in external ETL engine In the Data Warehouse

Ideal Architecture On-premise Cloud-based

Data Handling Data is transformed be-
fore loading

Raw data is loaded

Performance Dependent on external
engine resources

Leverages power of
scalable DWH engines

Flexibility Lower as transforma-
tions are pre-defined
and rigid

Higher as transforma-
tions can be delayed
and adapted as needed

Latency Suitable for batch pro-
cessing

Suitable for near-real-
time and large-volume
processing

Data Governance Strong pre-load control
and validation

Requires stronger con-
trol after data is al-
ready loaded

Development Com-
plexity

Requires dedicated
ETL tools and trans-
formation logic

Simplifies architecture,
but depends on DWH
capabilities

Best Suitability Regulated industries,
stable processes, strong
pre-load requirements

Dynamic environ-
ments, large datasets,
data lakehouse archi-
tectures
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3.3 Company data integration framework

The company Mediamente Consulting has developed a Data Integration frame-
work with the goal to standardize and simplify the development and mainte-
nance of ETL pipelines.
The framework is developed in three main layers, as is shown in Figure 3.2,
with the addition of a metadata layer to keep track of the data and the status
along the pipeline.

• Staging area: to store data from different sources without performing
any transformation.

• Operational data storage: data is prepared and transformed to be
loaded in the data warehouse

• Publication data layer: data is finally loaded into the data warehouse
and it is ready to be used for analysis.

Figure 3.2: ETL framework steps

We are now diving into the details of this framework and see every step.

3.3.1 L0 - Staging Area

The staging area contains a one to one replica of the raw data from the dif-
ferent sources.
Data ingestion happens in batches on a periodical schedule for each table, or
object, of the source data inside a job. A job is an independent iteration of the
load operations, and successive steps, for a single output table. It is managed
by the metadata tables, in the metadata layer, called FLOW MANAGER
and TABLE MANAGER. Each job is identified by a feature called jobid, a
numeric value with the format YYYYMMDDHHmmss.

There are two methods of performing this steps: Full Extraction and Ini-
tial Load with Delta Computation.
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Full Extraction in this method all data is transferred from the source to
the target each time. It is easier to perform and it guarantees data complete-
ness but it is not efficient when managing large amount of data.

Initial Load with Delta Computation: this second method consists of
a first phase where a first Data Warehouse population happens and then an
incremental extraction happens: periodic update of the Data Warehouse with
capture of the changed data only (new, deleted or updated). More specifically,
this method is characterized by the possibility to be performed in two different
ways:

• Minus: two tables named STG and DLT are created where:

– STG: table 3.2 shows the schema of a STG table.

Table 3.2: STG table schema
FIELD 1 ... FIELD N JOB ID INS TIME

It contains a one to one copy of the batch of read data. There are
two additional columns, JOB ID and INS TIME, which represent
respectively the id of the actual job in which the batch of data was
extracted and the time it was inserted in datetime format.

– DLT: A similar schema to the STG table but with one additional
column, as table 3.3 shows.

Table 3.3: DTL table schema
FIELD 1 ... FIELD N JOB ID INS TIME FLG NEG

This table captures only the change that has happened in the source
data, such as added, updated and removed records. To do this the
JOB ID column come in help as it is used to get the batch of
data of the actual job and the previous one. Once this is done the
Current DataBatch - Last DataBatch and Last DataBatch - Cur-
rent DataBatch set operations are computed, getting respectively
the new data and the data that was updated or removed.
The FLG NEG column is a numeric field that can contain the value
0 or 1. When a record is inserted for the first time the value 0 is
assigned, while when a record is deleted the record is still inserted,
in the batch with the current JOB ID, but with value equal to 1.
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When a record is updated the old record is inserted, in the cur-
rent batch of data, with value 1 and the updated one with value 0.
Figure 3.3 shows the workflow of the Minus operation

Figure 3.3: L0 with MINUS operation

• Change Data Capture: differently with respect to the Minus, in
the following method only a DLT table is created while the STG table
is skipped as a direct copy of the data it is not performed anymore.
Source’s tables, or objects, are monitored to intercept automatically the
delta of data, with respect to the last batch of extracted data. This
method necessitates the date of update, or a status field, in the source
and the owner of the sources must have a log table which keeps track of
removed records.
It is the suggested method when tables with big quantity of data need
to be replicated, as it avoids the need to copy data. The only downside
is the necessity of the log table as it is not possible to keep track of the
removed rows in the Staging Area. Table 3.4 represents the CDC steps,
up to the Operational Data Storage area.

Figure 3.4: L0 with CDC

3.3.2 L1 - Operational Data Storage

The second level represent the core of the data integration framework as it
manages complex and computationally intensive procedures of the ETL pro-
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cess. The purpose of this phase is to transition the raw data, copied in the pre-
vious phase, to a more clean state by performing transformations and checking
data quality and business rules. Finally, the L1 is where historical tracking
and data harmonization are performed as it enables the integrations of data
from heterogeneous systems into a unified model. Figure 3.5 visually shows
the steps that this level include, and that we will see in detail.

Figure 3.5: L1 - Operational Data Storage - steps

OK Table

The first step of the process consist in the population of the table named OK.
Data arriving from the DLT table of the previous step, considering only the
records where the JOB ID is the most recent one, is subject to data quality
controls, such as:

• Referential Integrity: for each table that contains at least one foreign
key, a join operation is performed between the tables to check relations
among tables.

• Data cleaning: some transformations are performed to modify the
data so that it meets needed requirements. Records having an empty
field and the column that cannot contain null values, have the field
value in question changed to the default value based on the type of
the column [16] and data types are modified to be aligned with the
specified one. In addition, general checks are performed to ensure the
data is correct, such as integer columns must contain number, duplicates
must be removed and anomalies such as a date field containing the date
29/02/2025 should be addressed as the year 2025 is not a leap year.

• Data Validation: Data is controlled to be compliant with the require-
ments needed, such as business rules. For instance, a requirement may
be that the revenue must lie in the interval [0,∞].
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• Error Handling: when records do not respect validation requirements,
they are inserted into another table called E$. At every iteration the
records in this table are re-checked to see if they respect the require-
ments, if they are met then the rows move to the OK table with the
JOB ID of the actual JOB.

ODS Table

ODS represent a table with validated and historicized data. From this point
on the table presents a primary key, which was not present in the previous
tables thus duplicates were allowed. The population of the table happens with
a MERGE sql statement in an incremental update fashion, the possible cases
are:

• Invariant data: if a record from the OK table is already present in the
ODS table then no operation is executed.

• New records: if a record from the OK table is not present in the ODS
table then the new record from the OK goes into the ODS.

• Updated records: if a record from the OK table is already present in
the ODS table and a variation of the record from the OK table has been
updated then it will update the record in the ODS table.

For historicization to happen two more columns are added: JOB ID UPD and
UPD TIME, of the same format as JOB ID and INS TIME.

MDM Table

Master Data Management (MDM) represents a key step where two main
operations are performed: Data Integration and Data Enrichment.

The first operation, Data integration from different sources unite to-
gether different tables from different sources to generate a unique table, e.g
different ODS products table, each one representing the products sold in a
specific country are then united together to have a unique product table.

Secondly, Data Enrichment is performed on those tables where additional
information are added through join operations with dimensional tables.
In this step the primary key management is essential, as the join operations
are costly. To address this, a surrogate key is inserted in this step, which is a
unique identifier of a row used for the join operations.
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Generally, surrogate keys are defined with compact data types, such as inte-
gers, with a growing pattern.

OUT Table

In the final step of the L1, after the integration and enrichment, data are
prepared to be published. A table named OUT will contain the data ready
for the next step, the L2. Aggregations operations and Denormalization
operations are the main operations in this step .

3.3.3 L2 - Publication Data Layer

This is the final level and it only requires one step, Publishing. In this level
tables contain data divided into thematic areas, which are usually aligned
with business processes. The division of the table will be into:

• Dimension tables: tables which contain attributes used to group,
browse or constrain data from the fact table.

• Fact tables: tables which contain numerical measurements of the busi-
ness process aligned with. The data is related to each dimension table
by a foreign key or a combination of foreign keys.

These tables make up the Data warehouse, which can be configured as:

• Star schema: multidimensional representation of data made of a fact
table and unnormalized dimension tables.

• Snowflake schema: obtained starting from a star schema by normal-
izing the dimension tables.

Depending on the specific needs of the company one can choose between the
two dimensional models as both models have advantages and disadvantages.
Though, generally the preferred model is the one that minimizes the number
of required joins, the most computationally expensive operation, for analyses.

For an accurate analysis to be performed, the most recent images from the
OUT phase must be selected from all the available ones, in the same fashion
as in the delta phase.

3.3.4 Metadata Tables

In order to describe and manage metadata, which is descriptive information
about the data, an additional layer is present. Company’s framework present
two metadata tables: FLOW MANAGER and TABLE MANAGER.
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Flow Manager Table

This table keeps chronological track of ETL iterations, giving detail about the
current state and the outcome of each layer for each ingestion flow.

• JOB ID: Describes ETL iterations instances with a timestamp in the
format YYYYMMDDHHmmss.

• IDENTITY: Defines and aggregates flows with a common working area,
e.g. facts or dimensions.

• NUM LEVEL: Numerical representation of the ETL stage that is per-
formed, i.e. L0, L1 or L2.

• GROUP: This field indicates to which group an ETL instance belongs
to, e.g. customers or region.

• STATUS: Based on the numeric value, it indicates if the state of the
current job, as shown in Table 3.4.

Table 3.4: STATUS field values meaning

VALUE MEANING

0 Job is completed without errors
1 Job is running
2 Job data is ready to be loaded in the

next stage
-3 Job is aborted as there are errors

• START DATE: Indicates, in the data format, the start of the job.

• END DATE: Indicates, in the data format, the end of the job.

Each record is identified by the primary key composed of the fields JOB ID,
IDENTITY, GROUP and NUM LEVEL.

Table Manager Table

The TABLE MANAGER table is dedicated to the monitoring of the read
operations in the level L0. Each record of this table indicates how many rows
have been copied from the source to the STG area for the specific table.
The table presents the following fields:
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• IDENTITY: as in the FLOW MANAGER, it represents flows with a
common working area.

• GROUP: Indicates to which group an ETL instance belongs.

• TABLE NAME: Specifies the name of the table.

• JOBID: Describes ETL iterations instances with a timestamp.

• NUM ROWS: A numeric value which indicates how many rows have
been copied from the sources.

• INS TIME: Indicates, in date format, the time when the Job has been
completed.

the primary key is composed of IDENTITY, JOB ID, GROUP and TA-
BLE NAME.
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3.4 Overview of Microsoft SQL Server Integration
Services (SSIS)

SQL Server Integration Services (SSIS) is a data integration and trans-
formation solution offered by Microsoft [18]. This tool is utilized for complex
integration problems for organizations, such as copy of data from different
sources, cleaning and data extraction based on companies’ needs and load
them in data warehouses.
The first SSIS version was released along with SQL Server back in 2005 as a
substitute to Data Transformation Services (DTS), available with SQL Server
7.0 and SQL Server 2000 [14].
SSIS distinguishes itself from other integration tools for its better integration
with Microsoft’s ecosystem, which makes the best integration tool for compa-
nies which already utilizes SQL Server or other Microsoft technologies.
From a business context, SSIS is an essential tool for automating data manage-
ment. It can be used to update data warehouses on a daily basis, synchronize
data across different systems and perform preliminary data analysis through
transformation and data enrichment operations. Its key features include:

• Wide range of built in tasks.

• Graphical tools that provide a visual interface for designing ETL work-
flows.

• SSIS catalog database for storing and managing packages.

Among the additional advantages that this tool offers there are:

• Easy to use as a low code tool.

• Possibility of integrating custom code.

• Low cost compared to other commercial platforms offering similar ser-
vices.

The fundamental building block in SSIS is the package, which acts as the main
operational unit for designing, and executing, ETL processes. A package
is a collection of tasks, control logic, connections and workflows which are
organized to extract, transform and load data from one or more sources to
a destination. Each package is designed to perform a task, such as copying
data, automating recurring processes or executing transformations.
A SSIS package it is typically composed of three principal elements:
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• Control Flow: Defines the logic sequence of activities in the package.
It contains tasks, such as:

– Data Flow Tasks: tasks for data operations.

– Execute SQL Tasks: which allows to execute a specific SQL query
or Stored Procedures.

– Script Tasks: which allow to execute personalized code in VB.NET
or C#.

• Data Flow: this task manages data movement from one or more
sources, such as:

– OLE DB.

– CSV or TXT files.

– XML and JSON.

to one or more destinations, with same supported types, and data trans-
formations operations, such as:

– Data Conversion: to convert the type of data to be aligned with
needs.

– Derived Column: to add specific columns as needed.

– Lookup: to unite data coming from different sources based on a
common key.

• Event Handlers: allow to manage specific events, such as errors or
completion, during the execution of the package.

These packages can be configured with dynamic parameters and monitored
through logging tools, providing flexibility and control in enterprise ETL work-
flows. SSIS offers different tools to handle different scenarios.
Regarding error handling, the Error Output enables the redirection of data
that does not meet specific requirements to error tables or log files, facilitating
analysis and problem resolution.
SQL Server Agent, a service that allows the automatic execution of packages
at specific intervals or in response to specific events, manages the automation
and scheduling of ETL operations.
ETL development and debugging are carried out using SQL Server Data Tools,
an integrated development environment that offers a drag and drop interface
for designing workflows and advanced debugging tools.
All of these features make SSIS a robust and efficient solution for managing
data integration processes.
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Chapter 4

SSIS ETL Pipeline
automation

This chapter describes the overall methodology and the implementation of the
SSIS ETL Pipeline automation project. The chapter first outlines the moti-
vations for this project and its benefits in terms of scalability, maintainability
and efficiency. It goes then into details, such as the proposed methodology
and technical design, including the metadata files structure and the use of
XML templates. In the end, the overall Python code structure for the pack-
age generation is presented.

4.1 Motivations for Automation

Within a data driven company the development of ETL processes is a critical
but often repetitive task in data warehouse projects.
Usually, in SQL Server Integration Services (SSIS) the ETL workflow is de-
signed manually, while this approach provides flexibility and full control to
the developer, it also introduces several challenges:

• Designing packages by hand is highly time consuming, especially when
the data warehouse must integrate data from multiple sources.

• Each package has to be individually configured with connections, trans-
formations and error-handling logic, which often mean repeating the
same development patterns across multiple packages [11].

• Manual repetition can delay delivery and also increase the risk of human
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error and inconsistency in implementation, especially when multiple de-
velopers work on the same package [21].

Automation of the process addresses these issues by letting the repetitive
manual design be generated by a metadata driven structure. Instead of hav-
ing developers recreate the same package structures over and over again, a
program can interpret structured metadata and automatically produce SSIS
packages that are consistent with predefined standards [25]. This approach
reduces the overall development time, ensures consistency across packages and
makes the ETL process more scalable.
Errors that arise from manual configuration are minimized while updates and
maintenance are simplified since modification to the metadata can be propa-
gated automatically to regenerated packages [7].

An important motivation for automation in this project arises from the con-
text in which it was carried out. As explained in the previous chapter, Medi-
amente Consulting company has developed a standardized framework for the
ETL processes. This framework ensures that SSIS packages share a common
structure and follow strict best practices, but it also means that the design
of each package is repetitive. In this context, the benefits of automation are
amplified as a metadata driven approach allows SSIS packages to be gener-
ated automatically according to the company’s framework, ensuring that best
practices and standards are followed while drastically reducing the manual
development effort.

Ultimately, automating the creation of SSIS packages allows the organization
to accelerate data warehouse development cycles, improving reliability and
free developers from routine tasks so they can focus on activities of higher
value, such as optimization and business logic design [8].

4.2 Methodology and Technical Design

In this thesis, the proposed solution is based on a metadata driven approach.
Figure 4.1 shows the overall structure of the process, which relies on struc-
tured metadata that describes the source and target systems and mappings.
A Python script interprets this metadata and generates fully functional SSIS
packages in XML format, using predefined templates compliant with com-
pany’s framework.
More specifically, as Figure 4.1 shows, the first step is metadata ingestion by
a Python automation script, which captures the all the metadata necessary
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for the generation of the packages, the next steps.

Secondly, the SSIS package responsible for the initial staging layer, the L0
level, is generated.

Thirdly, the system creates a package designed to handle an exception case:
having transactions in the dimension table that have no reference in the re-
spective dimension tables.

Lastly, the system generates the SSIS package that manages the OK and
ODS tables within the Operational data management, the L1 level.

Figure 4.1: Steps for automated ETL develop

4.2.1 Excel Metadata File Structure

The metadata provided in the Excel files is crucial for the automation frame-
work. Instead of relying on developers to repeatedly configure SSIS packages,
they have to spend time just to correctly configure these three files which
capture all relevant information.

METADATA.xlsx

This file defines the structure of the tables from the sources and the tables
found in the level L0 and L1. Each Excel page represent a single table and
its tables in the framework.
As the Figure 4.2 and 4.4 shows, the schema of this Excel file consists of:

• Source table column with table name defined as:

[schema].[SRC table name]

The schema is the logical structure that defines how data is organized in
a database, including tables, relationships, and constraints, while table
name is simply the name of the table in the source. All the columns
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of the table in question are registered along with the type of the data
and the length if the type is of string type. This last Excel column is
needed only to be able to automatically generate the query to create the
necessary tables.

• STG table column with table name:

[L0].[STG table name]

L0 represents the schema of the company where the tables regarding the
staging layer are saved. We have the addition of the columns JOBID
and INS TIME.

• DLT table where in addition to the previous columns we have the
FLG NEG column. This table represent the end of the L0 stage.

[L0].[DLT table name]

• OK table column with table name:

[L1].[OK table name]

The schema L1 represent the schema containing all the information
about the operational data storage layer. All the previous columns are
presented but the data that will be inserted here are only the one that
have passed referential and business logic checks.

• ODS table, column with table name:

[L1].[ODS table name]

In addition to the previous table columns we have a change in the base
columns. Since in this step the primary key is inserted, we are no longer
allowed to have, as in the previous steps, duplicates rows, and as a
consequence the columns: JOBID INS, INS TIME, JOBID UPD and
UPD TIME are inserted to keep track of the updates to specific columns
and when they have happened instead of just JOBID and INS TIME.

• KEY column which will indicate, with a yes, if the source column is a
primary key and an empty string if it is not.

• NOT NULL column which will indicate, as in the previous case, with
a yes if the source column cannot present the value null.

• DEFAULT VALUE column that will contain, if present, the default
value of the specified source column.
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Figure 4.2: Schema describing tables in Excel metadata file

Figure 4.3: Schema describing tables in Excel metadata file

GROUPS.xlsx

Since all tables belonging to the same group must be in the same SSIS package,
this file is also extremely important as it contains the information about the
group of each table.
Additionally, in the Excel file there is presented an additional column for the
control of the METADATA Excel file.
The Excel schema, shown in Figure 4.4, consist of:

• TABLE NAME column where the source table name is written.

• GROUP column which contains the group to which the table belongs.

• IDENTITY column which will contain either ANAGRAFICHE or
MOVIMENTI to indicate if the table in consideration is a fact table or
a dimension table.
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Figure 4.4: Schema describing the Groups Excel File

TABLE REFERENCES.xlsx

This table contains the referential relationships between tables in the data
warehouse. Specifically, it lists the columns that are used to reference each
table. By explicitly documenting the foreign key constraints, the file provides
the necessary metadata for resolving data dependencies during the ETL pro-
cess.
The principal purpose of this file is to support the Pre Load step of the au-
tomation framework. During ETL, it is common to encounter the case where
a record is a fact table references a key that does not exist in the associated
dimension table. Such problems may arise due to missing or delayed dimen-
sion updates, leading to referential integrity issues and potential ETL failures
[16]. As a consequence, it would be wrong to directly remove the records with
no matching key.
The Excel schema, represented in Figure 4.5, is composed as follows:

• TABLE NAME column as in the previous Excel file, this column
contains the table names.

• GROUP column will contain the group to which a table belongs to.

• IDENTITY column which will identify if the source table is part of
ANAGRAFICHE or MOVIMENTI.

• To Table Reference column which contains the name of the table to
which is referencing to.

• Key Reference column which will contain a list of the columns that
are in common between the two tables that are referencing to each other.
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Figure 4.5: Schema describing the Excel file containing references between
tables

4.2.2 SSIS XML Package and Templates

As figure 4.1 shows, after the ingestion of the metadata files, the generation
of the package is next. This generation is allowed thanks to SSIS packages
being XML documents with a rigid internal structure that make them ideal
for a templated based generation.

XML is a markup language, a system for embedding tags and notations
within text or data to describe its structure, which allow the representation
of hierarchical data in a human readable but processable by machine format.
XML format allows for flexible and self describing structures, which makes
it suitable for metadata management, configuration files and communication
between heterogeneous systems.
XML documents are composed of elements, attributes and textual content
that are organized in a similar structure as tree. Each element is enclosed
within an opening and a closing tag, with attributes written inside to provide
additional information about the elements. The design, which is hierarchi-
cal, allows XML to model complex datasets, including, for example, nested
relationships, optional fields and repeated structures which can define the
structure of a dataset. Listing 4.1 shows an example of a simple XML code
describing a table Customers and its columns.

<Table name="Customers">

<Column name="CustomerID" type="int" />

<Column name="FirstName" type="string" />

<Column name="LastName" type="string" />

<Column name="Email" type="string" />

</Table>

Listing 4.1: Example of a simple XML table definition

In this project, reusable XML templates were designed to automate the
creation of SSIS packages in such a way to align with the standardized inte-
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gration framework of the company.
These templates are used as blueprints for the package structure as they in-
clude placeholders for values, in this way Python scripts dynamically insert
the appropriate values taken from the Excel file ingested in the first phase.
Each object of a package was treated individually for simplicity and put to-
gether at the end inside a unique XML file.

We are now going to see each XML template used for the generation of all the
packages.

Package generation XML Template

Listing 4.2 shows the main XML template which defines the structure of a
SSIS package. This template contains the essential information required for
a package to function, such as the creation date of the package, creator com-
puter name and creator username.
During the package generation, it is used as last XML template since it con-
tains the placeholders for all of the major components of a package. More
specifically:

• <DTS:PackageParameters> indicated the start of the XML code for
the package parameters

• <DTS:Variables> is the starting point for the XML code for the vari-
ables of the package.

• <DTS:Executables> indicates the start of the XML code for all the tasks
inside the package, such as SQL tasks, Excecute other packages, Data
Flow tasks and so on.

• <DTS:PrecedenceConstraints> tag is the start of the XML code that
will indicate which objects will be linked at package scope.

Additionally, the package itself and almost every SSIS object requires a
DTSID, which is effectively a UUID (Universally Unique Identifier), a 128-
bit identifier that guarantees uniqueness across systems and environments,
ensuring that no two objects are accidentally assigned the same identifier.

This design provides reusability and flexibility, allowing to generate a wide
variety of different SSIS packages.
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<?xml version="1.0"?>

<DTS:Executable xmlns:DTS="www.microsoft.com/SqlServer/Dts"

DTS:refId="Package"

DTS:CreationDate="{creation_info["creation_date"]}"

DTS:CreationName="Microsoft.Package"

DTS:CreatorComputerName="{creation_info["creator_computer_name"]}"

DTS:CreatorName="{creation_info["creator_name"]}"

DTS:DTSID="{{{dtsid_project}}}"

DTS:ExecutableType="Microsoft.Package"

DTS:LastModifiedProductVersion="16.0.5685.0"

DTS:LocaleID="1033"

DTS:ObjectName="{package_name}"

DTS:PackageType="5"

DTS:VersionBuild="{version_build}"

DTS:VersionGUID="{{{dtsid_project}}}">

<DTS:Property DTS:Name="PackageFormatVersion">8</DTS:Property>

<DTS:PackageParameters>

{package_parameters}

</DTS:PackageParameters>

<DTS:Variables>

{package_variables}

</DTS:Variables>

<DTS:Executables>

{package_tasks}

</DTS:Executables>

<DTS:PrecedenceConstraints>

{package_links}

</DTS:PrecedenceConstraints>

</DTS:Executable>

Listing 4.2: SSIS Package XML Template

Package Parameter and Variable XML

Listing 4.3 and Listing 4.4 describes the XML code to create, respectively, a
package parameter and a variable. These code fragments are not standalone as
they must be inserted into the placeholders defined in the template of Listing
4.2.
Specifically, package parameters are placed within the {package parameters}
section, while variables are inserted into the {package variables} section.
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It is important to notice that in SSIS there is an evident difference between
variables and parameters.

• Parameters are used in SSIS to provide external configurability to a
package. They allow values to be assigned at the moment of execution
or deployment and, once execution begins, parameters are read only.
Listing 4.3 shows the XML template, with placeholder for Python, to
generate a single parameter in a determinated SSIS package. Several
attributes are worth noting, such as:

– DTS:PackageParameter marks the start of the parameter defini-
tion, which will go in the specific placeholder in the Listing 4.2.

– DTS:DataType specifies the type of the parameter, such as String,
Int32, or Boolean and it is dynamically inserted.

– DTS:DTSID is automatically generated and guarantees uniqueness
of the parameter inside the package.

– DTS:ObjectName gives the parameter its logical name, which can
be used to reference it within the package.

– Inside the nested <DTS:Property> tag, the default value that will
be used if no external value is indicated.

• Variables are used to store internal values that support the execution
logic of a package. Variables can hold temporary results or any informa-
tion that tasks in the package may need. Differently from parameters,
variables are mutable, as a consequence their value can change dynam-
ically during the execution of the package. Listing 4.4 shows us the
XML template to create a variable in the package, with some important
points:

– DTS:Variable marks the start of the variable definition, which will
go in the specific placeholder in the Listing 4.2.

– Like parameters, variables also have a DTS:DTSID to uniquely
identify them.

– TheDTS:Namespace=”User” attribute indicates that this is a user-
defined variable, as opposed to system variables that SSIS provides
by default.

– DTS:ObjectName specifies the variable’s name, which will be used
to reference it in tasks or expressions.

– The <DTS:VariableValue> tag defines the initial value of the vari-
able, with its own DTS:DataType attribute.
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– Additionally, when a variable is configured as an expression, the
template includes DTS:Expression, allowing its value to be calcu-
lated dynamically at runtime rather than being fixed.

<DTS:PackageParameter

DTS:CreationName="Microsoft.PackageParameter"

DTS:DataType="{data_type}"

DTS:DTSID="{{{generate_uuid4()}}}"

DTS:ObjectName="{object_name}">

<DTS:Property

DTS:Name="ParameterValue"

DTS:DataType="{data_type}">{default_value}</DTS:Property>

</DTS:PackageParameter>

Listing 4.3: SSIS XML Package Parameter

<DTS:Variable

DTS:DTSID="{{{generate_uuid4()}}}"

{eval_expression if is_expression==1 else ""}

{DTS:Expression="{expression}" if is_expression==1 else ""}

DTS:IncludeInDebugDump="6789"

DTS:Namespace="User"

DTS:ObjectName="{variable_name}">

<DTS:VariableValue

DTS:DataType="{variable_data_type}">{variable_value}</DTS:

VariableValue>

</DTS:Variable>

Listing 4.4: SSIS XML Package Variable
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SQL Task XML

In SSIS, an Execute SQL Task is used to run SQL queries against a rela-
tional database, allowing data definition, data manipulation and store proce-
dure to be executed within a package.
There are two different approaches to define the SQL statement that will be
executed. The first approach is to write directly the query within the task
configuration inside the Execute SQL Task component. The second one is
to pass, to the Execute SQL Task component, the SQL query as a variable,
making it more flexible. The second approach is more versatile because the
query is assigned at runtime, meaning that the same SQL statement can be
different depending on the execution context. For example a variable can store
the name of a target table and the SQL task can then execute a TRUNCATE
TABLE statement on that specific table.
The listing 4.5 presents the XML template of the SQL Task used in this
project.
Several attributes are particularly important:

• <DTS:Executable> marks the start of the task definition, which will
go inside the <DTS:Executables>in the main XML code presented in
Listing 4.2.

• DTS:refId uniquely identifies the task inside the package by combining
the package name with the task name.

• DTS:DTSID is a globally unique identifier generated for the task.

• <DTS:ObjectData> is a block that holds the details of the SQL state-
ment that will be executed. More specifically, the ”SQLTask:SqlStatementSource”
holds the actual SQL query that will be run.
In the template in Listing 4.5 it is represented by the placeholder {sql task statement}.

• If the task is expected to return a single row, the {single row result set}
option can be included. This ensures that the output is handled properly
when mapped to SSIS variables.

• In Listing 4.5, the {parameters} placeholder indicates where input or
output parameters for the SQL statement can be defined, allowing flex-
ible interaction between the task and other components of the package.
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<DTS:Executable

DTS:refId="Package\\{sql_task_name}"

DTS:CreationName="Microsoft.ExecuteSQLTask"

DTS:Description="Write in the flow manager the start of the L0"

DTS:DTSID="{{{generate_uuid4()}}}"

DTS:ExecutableType="Microsoft.ExecuteSQLTask"

DTS:LocaleID="-1"

DTS:ObjectName="{object_name}"

DTS:TaskContact="{description}; Microsoft Corporation; SQL Server

2022; 2022 Microsoft Corporation; All Rights Reserved;http://

www.microsoft.com/sql/support/default.asp;1"

DTS:ThreadHint="0">

<DTS:Variables />

<DTS:ObjectData>

<SQLTask:SqlTaskData

SQLTask:SqlStatementSource="{sql_task_statement}"

{single_row_result_set if single_result_set==1 else ""}

xmlns:SQLTask="www.microsoft.com/sqlserver/dts/tasks/

sqltask">

{parameters}

</SQLTask:SqlTaskData>

</DTS:ObjectData>

</DTS:Executable>

Listing 4.5: SSIS XML Package SQL Task
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Object Links XML

The execution flow between tasks is controlled by precedence constraints,
which are represented visually as arrows connecting tasks. These links de-
termines both order of execution and conditions needed to be met to run
another task. For example, a task may be executed only if the previous task
succeeds, fails or completes regardless of the outcome.
Listing 4.4 shows the XML templates used in this project to connect each
task:

• <DTS:PrecedenceConstraint> marks the start of the definition of a
precedence constraint and it will go and replace, in Listing 4.2, the
{package links} placeholder.

• DTS:refId uniquely identifies the constraint within the package by com-
bining the package reference with the constraint name. In this way you
select the scope where the object linking is happening, for example at
package or sequence container scope.

• DTS:DTSID, as in previous cases, provides a globally unique identifier
for the constraint.

• DTS:From and DTS:To specify the link between two tasks. More specif-
ically, DTS:From indicates the task whose completion triggers the next
task while DTS:To identifies the task that will be executed if the previ-
ous task is triggered.

• In Listing 4.6, optional error handling can be specified with {error link
if is error==1 else ””}. This allows the constraint to represent an error
path, allowing the case where a target task is executed when the source
task fails.

<DTS:PrecedenceConstraint

DTS:refId="Package{ref}.PrecedenceConstraints[{constraint_name}]"

DTS:CreationName=""

DTS:DTSID="{{{generate_uuid4()}}}"

DTS:From="Package\\{from_name}"

DTS:LogicalAnd="True"

DTS:ObjectName="{constraint_name}"

DTS:To="Package\\{to_name}"

{error_link if is_error==1 else ""} />

Listing 4.6: SSIS XML Package Variable
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Expression Task XML

An Expression Task is used to assign, at runtime, a value to a specific vari-
able or property through the use of expressions, which are formulas that can
perform calculations, evaluate conditions or concatenate strings. For example,
in this project the expression task is used to compute the value of the JOBID
in the current job and then assign it to the variable. The formula to compute
this is:

@[User :: JOBID] =

((DT I8)Y EAR(GETDATE())) ∗ 10000 ∗ 1000000
+MONTH(GETDATE()) ∗ 100000000

+DAY (GETDATE()) ∗ 1000000
+DATEPART (”HH”, GETDATE()) ∗ 10000
+DATEPART (”MI”, GETDATE()) ∗ 100

+DATEPART (”SS”, GETDATE())

Where:

• YEAR(GETDATE()) extracts the current year, converted to a 64-bit in-
teger (in SSIS is identified by DT I8). It is then multiplied by 10000*1000000
to shift it into the highest digits of the JOBID.

• MONTH(GETDATE()) is multiplied by 100000000, placing it immedi-
ately after the year.

• DAY(GETDATE()) is multiplied by 1000000, placing it after the month.

• DATEPART(”HH”, GETDATE()) provides the current hour, multiplied
by 10000.

• DATEPART(”MI”, GETDATE()) provides the current minute, multi-
plied by 100.

• DATEPART(”SS”, GETDATE()) provides the current second, which
fills the last two digits.

The resulting JOBID is a concatenation of the date and time in the format:
YYYYMMDDHHMMSS. For example, considering the data 17/09/2025 at
hour 09:00:00 the result will be: 20250917090000.

Listing 4.7 represent the XML template to generate an expression task,
with important attributes such as:
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• <DTS:Executable> marks the start of the task definition, which will
go inside the <DTS:Executables> in the main XML code presented in
Listing 4.2.

• DTS:refId uniquely identifies the constraint within the package

• DTS:DTSID which provides a globally unique identifier for the object
in the package.

• <DTS:ObjectData> tag which contain the expression to compute the
JOBID.

<DTS:Executable

DTS:refId="Package\\{name}"

DTS:CreationName="Microsoft.ExpressionTask"

DTS:Description="Expression Task"

DTS:DTSID="{{{generate_uuid4()}}}"

DTS:ExecutableType="Microsoft.ExpressionTask"

DTS:LocaleID="-1"

DTS:ObjectName="{name}"

DTS:TaskContact="Expression Task;Microsoft Corporation; SQL Server

2022; 2022 Microsoft Corporation; All Rights Reserved;http

://www.microsoft.com/sql/support/default.asp;1"

DTS:ThreadHint="0">

<DTS:Variables />

<DTS:ObjectData>

<ExpressionTask

Expression="{get_current_jobid}" />

</DTS:ObjectData>

</DTS:Executable>

Listing 4.7: SSIS XML Package Expression Task

46



Sequence Container XML

Sequence Containers are used to group tasks into logical units. Organizing
tasks within containers allow developers to manage complex workflows in a
more efficient way and allow to apply constraints or transactions to multiple
tasks at one.
It is important to understand that sequence containers do not perform trans-
formations themselves, they act as structural elements that improve clarity
and control within a SSIS Package.
Listing 4.8 shows the XML templates used in this project to create a sequence
container. The key attributes of the XML code are:

• As in previous explained objects, <DTS:Executable> marks the start of
the task definition, which will go inside the <DTS:Executables> in the
Listing 4.2.

• DTS:refId uniquely identifies the constraint within the package

• DTS:DTSID, as in previous cases, provides a globally unique identifier
for the constraint.

• <DTS:Executables> marks where all tasks that are grouped inside the
container will be placed. The placeholder {container tasks} is replaced
at runtime with the actual XML definitions of other tasks that will
belong to the container.

• <DTS:PrecedenceConstraints> defines the execution flow between the
tasks inside the container. In the Listing 4.8 the placeholder {link block}
is dynamically replaced with the XML that specifies how tasks are
linked.

<DTS:Executable

DTS:refId="Package\\{group_name}"

DTS:CreationName="STOCK:SEQUENCE"

DTS:Description="Contain all tables referring to a specific group"

DTS:DTSID="{{{generate_uuid4()}}}"

DTS:ExecutableType="STOCK:SEQUENCE"

DTS:LocaleID="-1"

DTS:ObjectName="{object_name}">

<DTS:Variables />

<DTS:Executables>

{container_tasks}

</DTS:Executables>
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<DTS:PrecedenceConstraints>

{link_block}

</DTS:PrecedenceConstraints>

</DTS:Executable>

Listing 4.8: SSIS XML Package Sequence Container

Data Flow Task XML

The core component of SSIS for performing ETL operations is the Data Flow
Task. This task is responsible for the movement and transformation of data.
Inside a data flow tasks, developers must define pipelines consisting of ele-
ments called components, such as Source connection, Destination connection
and Derived column.
Components work together to perform operations such as: extract and trans-
form data, apply business logics and load data.
Listing 4.9 represents the XML template used in this project to generate data
flow tasks according to needs. In the XML code elements of particular impor-
tance are:

• <DTS:Executable>, as in previous examples, marks the start of the task
definition, which will go inside the <DTS:Executables> in the Listing
4.2.

• DTS:refId uniquely identifies the constraint within the package

• DTS:DTSID provides a globally unique identifier for the constraint.

• The tag <pipeline>encapsulates the data flow logic, including all com-
ponents and paths for data movement.

• Inside the tag <pipeline> the tag <components> contains the defini-
tions of all pipeline components, such as Source, Destination, Derived
Column, Lookup, or Aggregate components. The {components} place-
holder is dynamically replaced with the actual XML of the components
for the specific data flow.

• <paths> tag defines the connections between components. The {links}
placeholder represents the logical paths linking outputs of one compo-
nent to inputs of another, effectively building the ETL pipeline.
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<DTS:Executable

DTS:refId="Package\\{group_name}\\{table_name}\\{

dataflow_task_name}"

DTS:CreationName="Microsoft.Pipeline"

DTS:Description="{description}"

DTS:DTSID="{{{generate_uuid4()}}}"

DTS:ExecutableType="Microsoft.Pipeline"

DTS:LocaleID="-1"

DTS:ObjectName="{dataflow_task_name}"

DTS:TaskContact="Performs high-performance data extraction,

transformation and loading;Microsoft Corporation; Microsoft

SQL Server; (C) Microsoft Corporation; All Rights Reserved;

http://www.microsoft.com/sql/support/default.asp;1">

<DTS:Variables />

<DTS:ObjectData>

<pipeline version="1">

<components>

{components}

</components>

<paths>

{links}

</paths>

</pipeline>

</DTS:ObjectData>

</DTS:Executable>

Listing 4.9: SSIS XML Package Data Flow Task
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4.3 Python Code Structure and Modules

To allow the creation of the automated framework generator several tools were
utilized. At the core of the development of the automated framework for SSIS
package generation is Python, a programming language that allows the flex-
ibility and power to manipulate XML structures and easily integrate external
metadata sources.
In addition to Python, as previously stated, Excel and SQL Server Inte-
gration Services (SSIS) were utilized to allow the creation of this project.
This section describes the role of these supporting tools, with particular focus
on the main tool: Python.

4.3.1 Base tools and Libraries

For the creation of this project only the use of Pandas library was nec-
essary. Pandas is a well known Python library used for data analysis and
manipulation. Originally created by Wes McKinney in 2008, it has become a
cornerstone of the Python data ecosystem and is widely used in fields such as
data science, machine learning and business intelligence.
The core Pandas’ data structures that were utilized in this project are:

• Series: one dimensional labeled array that is capable of holding data of
any type.

• DataFrames: two dimensional and tabular data structure with labeled
axes, similar to a spreadsheet.

Pandas was utilized to facilitate the manipulation of metadata stored in the
Excel files. Dataframes provided advantages as it allowed the metadata to be
managed in a tabular format, similar to the Excel spreadsheet. This allowed
for efficient filtering, grouping and other operations when generating SSIS
packages.
In addition to this the uuid, platform and datetime libraries were utilized.

• uuid: as previously stated, some SSIS objects need an uuid to be gen-
erated. This library allow to access to a specific function that allow to
generate an uuid.

• platform: is a library that allows us to get information about the user,
such as computer name and creator name. This information are needed
in the creation of a SSIS package.

• datetime this library is needed to get the time in which the SSIS pack-
age is created.

50



4.3.2 L0 Package Generation

After the ingestion of data from the Excel files, the following step, illustrated
in Figure 4.1, is the generation of SSIS packages responsible for populating
the tables in the staging layer of the company’s data integration framework.
Utilizing information stored in the METADATA.xlsx and GROUPS.xlsx files,
the algorithm generated SSIS packages with the naming convention
001 L0 IDENTITY GroupName, where IDENTITY and GroupName are both
dynamically changed. Each package corresponds to a specific group of source
tables and they ensure that data from heterogeneous systems are systemati-
cally ingested into the staging area.
The pseudo code for this generation process is presented in Algorithm 1.

Algorithm 1: Pseudo code for automated L0 package generation

Input: group name, tables list
Output: L0 SSIS package (XML)
Generate package parameters and base variables;
Generate start/end procedures for group name;
foreach table in tables list do

Generate task to retrieve last read date;
Generate STG dataflow task (copy source → STG);
Generate DLT dataflow task (minus-based comparison);
Generate table manager SQL task;
Build execution links: last date read → STG → DLT →
table manager;

Create a table container including tasks and links;
Append table container to group container;
Build table-specific variables (columns, minus query, table name);
Append variables to package variables;

end
Generate group-level variable (group name);
Build package-level links: start procedure → group container →
end procedures;

Assemble package with: parameters, variables, tasks, links;
Save final package as L0 IDENTITY group name.dtsx;

More specifically:

1. The basic variables of the package are generated, such as the variable
holding the group name and the variables holding the status value for
the procedures, as explained it chapter 4.

2. The Start Procedure, End Procedure OK and End Procedure
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Error SQL Tasks are generated. These objects will be unique per group,
which means unique inside the package. Their use is to write in the
FLOW MANAGER the start of the ETL process, end of the process if
it is successful and end of the process if it is unsuccessful. The status
variables created are used in this step.

3. A Last Date Read SQL task is generated for each table in the group.
This SQL task retrieves the JOBID of the last ETL process that has
been successfully completed and stores it in a package variable.

4. For each table in the group, two Data Flow Tasks are generated. The
first Data Flow Task transfers data from the source systems into the
corresponding STG table. This step is straightforward, as the data is
simply copied from the source into the staging layer without transfor-
mations.
The second task is more complex and is responsible for identifying
changes in the data and propagating them into the DLT table. This
is achieved by performing set operations between two different snap-
shots of the staging table: one corresponding to the most recent load
and one to the previous load. The SQL query used for this comparison
is shown in Listing 4.10. Two subqueries are used:

• The first identifies deleted records, i.e., rows present in the previous
load but not in the latest one. These records are marked with the
flag FLG NEG = 1.

• The second identifies newly inserted records, i.e., rows present in
the latest load but not in the previous one. These are flagged with
FLG NEG = 0.

An EXCEPT operator, which returns rows present in one dataset but
not in the other, is utilized in both subqueries.

The two results are combined with a UNION ALL and a unified dataset
of changes is obtained, which is then written into the DLT table.
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SELECT {joined_columns}, FLG_NEG

FROM (

SELECT 1 AS FLG_NEG, {joined_MINUS_NEG_cols}

FROM (

SELECT {joined_stg2_cols}

FROM [L0].STG_{table_name} stg2

WHERE stg2.JOBID = ’" + (DT_WSTR, 20)@[User::

LAST_DATE_READ] + "’

EXCEPT

SELECT {joined_stg1_cols}

FROM [L0].STG_{table_name} stg1

WHERE stg1.JOBID = ’" + (DT_WSTR, 20)@[$Package::JOBID
] + "’

) MINUS_NEG

UNION ALL

SELECT 0 AS FLG_NEG, {joined_MINUS_POS_cols}

FROM (

SELECT {joined_stg2_cols}

FROM [L0].STG_{table_name} stg2

WHERE stg2.JOBID = ’" + (DT_WSTR, 20)@[$Package::JOBID
] + "’

EXCEPT

SELECT {joined_stg1_cols}

FROM [L0].STG_{table_name} stg1

WHERE stg1.JOBID = ’" + (DT_WSTR, 20)@[User::

LAST_DATE_READ] + "’

) MINUS_POS

) UNION_1;

Listing 4.10: Minus-based comparison query for STG tables

5. For each table, an Execute SQL Task Table Manager is created. This
task executes a stored procedure which write inside the TABLE MANAGER
the number of records that are copied from the source systems to the
STG table.

6. Next, the links between all these previously generated tasks are built and
inserted in a table dedicated sequence container. Additionally, variables
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specific to the table are created and inserted at a package level scope.

7. Once all the XML for the single tables are generated, the links at the
package scope are created and all the different elements are put together,
inside the XML seen in Listing 4.2, to then generate the final XML and
saved in a specific output folder.

Figure 4.6 present the visual result of the Algorithm 1, i.e. how a SSIS
Package looks like, after being generated using the Python script, inside the
tool SSIS.

Figure 4.6: L0 SSIS Package Design
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4.3.3 PRE LOAD Package Generation

Recalling the Figure 4.1, the third step is the generation of the PRE LOAD
Package, which addresses the issue where records in a fact table have no
referential match in a dimension table is generated, for each group. This
situation can occur when transactional data references dimension attributes
that are missing or not yet available in the system.
More specifically, this problem is solved by preloading these unmatched records
into the dimension’s ODS table. To achieve this, the algorithm extracts the
distinct primary keys from the DLT table using the most recent JOBID. These
keys are first inserted into a dedicated PRE LOAD table of the dimension in
question. Since the related descriptive attributes are unavailable, only the
primary key values are inserted, while all non-key attributes are initialized
with default values according to their data type.
Algorithm 2 shows the steps to generate the package:
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Algorithm 2: Pseudo code for PRE LOAD SSIS Package Genera-
tion
Input: Grouped tables (MOVIMENTI with related

ANAGRAFICHE), output folder
Output: PRE LOAD SSIS packages
foreach group in grouped tables do

Extract group name;
foreach table in group do

Extract MOVIMENTI table name;
Get related ANAGRAFICHE tables;
foreach anagrafiche table do

Generate referential check SQL query and add to package
variables;
Generate Execute SQL Task to truncate PRE LOAD table;
Generate Dataflow Task for PRE LOAD population ( DLT
→ PRE LOAD);
Generate MERGE query;
Generate Execute SQL Task to merge data into ODS table;
Build execution links: PRE LOAD Dataflow Task →
Execute SQL Task Merge;
Build small container for this ANAGRAFICHE table;
Append small container to container task lists;

end

end
Build medium container combining truncate tasks and small
containers;

Build execution links: truncate PRE LOAD → medium container;
Build big container combining all medium containers;
Generate group-level variable;
Generate last date read dlt variable;
Assemble package with: parameters, variables, tasks, links;
Generate final SSIS package XML;
Save final package as L1 PRE LOAD group name.dtsx;

end

More specifically, the algorithm to generate such package is divided as
follows:

1. From the TABLE REFERENCES.xlsx file the group name is extracted
along with the division of the MOVIMENTI and ANAGRAFICHE ta-
bles.
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2. A referential check query is generated in order to retrieve the distinct
foreign key values that will later be used in the MERGE operation. As
the query in Listing 4.11 shows, it applies a ranking function to iden-
tify the most recent records from the DLT table, based on the primary
key columns, ordered by JOBID DESC and FLG NEG ASC. Only the top
ranked (rn=1) records are then selected, as it guarantees that are the
most recent one. The query is stored in a variable, and its placeholders
are dynamically replaced during execution by Python.
@[User::LAST DATE READ DLT group] is a package variable respon-
sible for retrieving the most recent JOBID in the DLT table.

WITH TopRanked AS (

SELECT {joined_columns}, JOBID, INS_TIME, FLG_NEG,

ROW_NUMBER() OVER(

PARTITION BY {joined_pk_columns}

ORDER BY JOBID DESC, FLG_NEG ASC

) AS rn

FROM [L0].DLT_{table_name}

WHERE JOBID >= @[User::LAST_DATE_READ_DLT_{group}]

)

SELECT DISTINCT({TR_joined_foreign_keys})

FROM TopRanked TR

WHERE TR.rn = 1;

Listing 4.11: Top-ranked query for DLT tables

3. An Execute SQL Task is then created to truncate the PRE LOAD ta-
ble. This ensures that the table is cleared before each iteration of the
framework.

4. A Data Flow Task to populate the PRE LOAD table is then created.
Using the SQL query previously generated, stored in a variable, the PRE
LOAD table is populated with the distinct foreign key values obtained.

5. A second Execute SQL Task is created to execute the MERGE query
shown in Listing 4.12, which inserts records into the ODS table only
when no matching record already exists. As a consequence, the primary
key values of the dimension tables are kept, while all non key columns
are initialized with their respective default values.

MERGE INTO [L1].[ODS_{anag_table_name}] AS target

USING [L1].[PRE_LOAD_{anag_table_name}] AS source

{fk_control_part_expression}

WHEN NOT MATCHED THEN
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INSERT ({joined_columns}, JOBID_l1_ins, INS_TIME, FLG_NEG

, jobid_l1_upd, upd_time)

VALUES ({joined_values_cols_list}, source.[JOBID],

GETDATE(), source.FLG_NEG, source.[JOBID], GETDATE())

;

Listing 4.12: Merge query for loading PRE LOAD into ODS

6. Once the tasks are defined, the execution links are created and the tasks
are grouped into containers for each dimension table. These are then
combined at higher levels into medium and big containers, which ensures
clarity in the execution flow.

7. Lastly, all tasks, containers, variables, and parameters are put together
into a complete package. The resulting SSIS package is then translated
into the XML structure shown in Listing 4.2 and saved in the designated
output directory.

Figure 4.7 shows the visual result of the Algorithm 2: how a SSIS Package
looks like, after being generated using the Python script, inside the tool SSIS.

Figure 4.7: PRE LOAD SSIS Package Design
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4.3.4 L1 Package Generation

Last step, as Figure 4.1 shows, is to generate the SSIS packages responsible
for the L1 layer.
Unlike the complete L1 level, used across the company, the automation devel-
oped in this project was limited until the creation of the ODS tables as going
beyond this point would have been inefficient given specific business require-
ments.
Algorithm 3 presents the algorithm used to generate the SSIS packages for
this step.

Algorithm 3: Pseudo code for automated L1 package generation

Input: group name, tables list
Output: L1 SSIS package (XML)
Generate package parameters and base variables;
Generate start/end procedures for group name;
Generate Last Date Read Dlt SQL query;;
foreach table in tables list do

Generate table specific OK SQL query;
Generate Truncate OK Execute SQL task to truncate OK table;
Generate OK Dataflow Task (move data DLT → OK);
Generate MERGE ODS Sql query and Execute SQL Task (merge
OK → ODS);

Build execution links: Truncate OK → OK Dataflow Task →
MERGE ODS;

Create a table container including tasks and links;
Append table container to group container;
Build table-specific variables;
Append variables to package variables;

end
Generate group-level variable (group name);
Build package-level links: start procedure → group container →
end procedures;

Assemble package with: parameters, variables, tasks, links;
Save final package as L1 IDENTITY group name.dtsx;

More specifically:

1. Package parameters and basic variables are initialized. Among these,
STATUS variables are defined to record the outcome of the L1 execution
in the FLOW MANAGER table.

2. Same as in the L0 step, the Start Procedure, End Procedure OK, and
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End Procedure ERROR are created for each group to manage the execu-
tion flow and ensure error handling by writing in the FLOW MANAGER
the result.

3. The query Last Date Read DLT is generated. This query is stored
inside a variable and its purpose is to retrieve the most recent JOBID
from the DLT table.

4. For each table, the query handling the movement and checks of data
from the DLT table to the OK table is created. The query, shown in
Listing 4.13, retrieves only the most recent records through the use of
the Last Date Read DLT variable (@[User::LAST DATE READ DLT]
in the Listing 4.13) from the DLT table using a ranking function. The
ranking function orders records by the primary key columns, sorts them
by JOBID in descending order and FLG NEG in ascending order, this
ensures that the row assigned rank 1 corresponds to the most recent
valid record.

SELECT {joined_columns}, JOBID,

COALESCE(FLG_NEG, 0) AS FLG_NEG,

COALESCE(INS_TIME, ’GETDATE()’) AS INS_TIME

FROM (

SELECT {joined_columns}, JOBID, INS_TIME, FLG_NEG,

ROW_NUMBER() OVER(

PARTITION BY {joined_pk_columns}

ORDER BY JOBID DESC, FLG_NEG ASC

) AS rn

FROM [L0].DLT_{table_name}

WHERE JOBID > " + @[User::LAST_DATE_READ_DLT] + "

) RankedRows

WHERE RankedRows.rn = 1;

Listing 4.13: Query to retrieve ranked rows from DLT table

5. Before loading new data, an Execute SQL Task to truncate the OK table
is generated. This guarantees that the OK table is empty at the start
of each iteration of the process.

6. A Data Flow Task is then generated to move the data, using the filtering
query previously generated, from the DLT to the OK table.

7. The Execute SQL Task containing a MERGE SQL query, represented in
Listing 4.14 is created. This query is responsible for synchronizing the
ODS table with the data in the OK table: existing records are updated,
and new records are inserted.
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MERGE INTO [L1].[ODS_{table_name}] AS target

USING [L1].[OK_{table_name}] AS source

{pk_control_part_expression}

WHEN MATCHED THEN

UPDATE SET

{joined_target_col_eq_source_col},

target.JOBID_l1_upd = source.JOBID,

target.FLG_NEG = source.FLG_NEG,

target.UPD_TIME = GETDATE()

WHEN NOT MATCHED THEN

INSERT ({joined_columns}, JOBID_l1_ins, INS_TIME, FLG_NEG

, upd_time, jobid_l1_upd)

VALUES ({joined_source_cols}, source.[JOBID], GETDATE(),

source.[FLG_NEG], GETDATE(), source.[JOBID]);

Listing 4.14: MERGE query for loading data into ODS table

8. Once the SQL and Data Flow Tasks are generated, execution links are
established between them (Truncate OK → Data Flow Task → MERGE
ODS). These are grouped into a dedicated table container that encap-
sulates all steps for a single table.

9. Finally, the containers for each table are appended to the group con-
tainer, package-level links are created (Start Procedure → Group Con-
tainer → End Procedures), and all components are assembled into the
final SSIS package. The result is stored as an XML file named
010 L1 IDENTITY GroupName.dtsx.

Figure 4.8 presents the visual result of the Algorithm 3, i.e. how a SSIS
Package looks like, after being generated using the Python script, inside the
tool SSIS.
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Figure 4.8: L1 SSIS Package Design
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Chapter 5

Experimental Evaluation

In this chapter the results of the execution of generated packages is going to
be shown. In the first part the set up of the example will be introduced, along
with how the Excel files are completed and how the data looks in source tables.
After, the creation of the package will be performed and then the results of
the execution of those packages will be provided, along with an explanation
of the results.

5.1 Validation Setup

5.1.1 Source Data

For the example provided, the source data is composed of 6 tables:

MA Customer: stores information about the customers who make pur-
chases. It is composed of the following columns:

• CustomerID : is an integer which uniquely identify the customer. It is
the primary key.

• CustomerName: is a varchar which contains name and surname of the
customer

• Region: is the region where the customer is from.

• Segment : the segment to which the customer is part of.

MA Date: serves as a date dimension, providing temporal details such as
the calendar date, weekday, month, and year.
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• DateID : is an integer which uniquely identify the date. It is the primary
key.

• Date: is a datetime which contains the date.

• Weekday : it is a varchar which indicates the day of the week.

• Month: it is a varchar which indicates the month of the year.

• Year : it is an integer which indicates the year.

MA Inventory: records product stock levels for each store on specific dates.
It links together stores, products, and dates, providing insights into how in-
ventory changes over time and across locations

• InventoryID : is an integer which identify the inventory. It is part of the
composed primary key.

• StoreID : is an integer which identify the store. It is part of the composed
primary key.

• DateID : is an integer which identify the date. It is part of the composed
primary key.

• ProductID : is an integer which identify the product. It is part of the
composed primary key.

• StockLevel : it is an integer which represent the quantity in stock.

MA Product: contains details about the products being sold. It is used to
analyze sales and inventory by product type

• ProductID : is an integer which uniquely identify the product. It is the
primary key.

• ProductName: is a nvarchar which contains the name of the product.

• Category : it is a varchar which indicates the category the product be-
longs to.

• Brand : it is a nvarchar which indicates the brand of the product.

MA Sales: represents individual sales transactions.

• SaleID : is an integer which identify the sale id. It is part of the composed
primary key.
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• CustomerID : is an integer which identify the customer who purchased.
It is part of the composed primary key.

• ProductID : is an integer which identify the date of the purchase. It is
part of the composed primary key.

• SaleDate: is an integer which identify the purchase date. It is part of
the composed primary key.

• Amount : it is an integer which represent the amount of the purchase.

MA Stores: describes the stores where inventory is kept and sales occur.

• StoreID : is an integer which uniquely identify the store. It is the primary
key.

• StoreName: is a nvarchar which contains the name of the store.

• Location: it is a varchar which indicates the location the store.

• Manager : it is a varchar which indicates the name of the manager of
the store.

It is important to clarify how they are related to one another, the data
model follows a star schema design, where MA Sales and MA Inventory
act as fact tables, while the remaining tables serve as dimension tables.

5.1.2 Excel data

As explained in the previous chapters, it is extremely important to fill cor-
rectly the Excel files in question.

Figure 5.1 and 5.2 shows the METADATA Excel sheet for the table: MA Customer.

Figure 5.1: MA Customer Source, STG and DLT tables.
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Figure 5.2: MA Customer OK, ODS tables and information.

Figure 5.3 and 5.4 shows the METADATA Excel sheet for the table:
MA Date.

Figure 5.3: MA Date Source, STG and DLT tables.

Figure 5.4: MA Date OK, ODS tables and information.

Figure 5.5 and 5.6 shows the METADATA Excel sheet for the table:
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MA Product.

Figure 5.5: MA Product Source, STG and DLT tables.

Figure 5.6: MA Product OK, ODS tables and information.

Figure 5.7 and 5.8 shows the METADATA Excel sheet for the table:
MA Store.

Figure 5.7: MA Store Source, STG and DLT tables.
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Figure 5.8: MA Store OK, ODS tables and information.

Figure 5.9 and 5.10 shows the METADATA Excel sheet for the table:
MA Inventory.

Figure 5.9: MA Inventory Source, STG and DLT tables.

Figure 5.10: MA Inventory OK, ODS tables and information.

Figure 5.11 and 5.12 shows the METADATA Excel sheet for the table:
MA Sales.
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Figure 5.11: MA Sales Source, STG and DLT tables.

Figure 5.12: MA Sales OK, ODS tables and information.
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Additionally, Figures 5.13 and 5.14 show the GROUPS Excel file and the
TABLE REFERENCES Excel file completed.

Figure 5.13: Excel file containing information about table’s group.

Figure 5.14: Excel file containing information about relations between tables.
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5.1.3 SSIS Packages

The step that follows is the SSIS packages generation. Before the packages
representing the ETL processes, three packages are created to simplify the
workflow of the project.
The first one is the MAIN package, represented in Figure 5.15, which is the
package that will be executed to execute all the other packages as it is de-
signed to execute two other packages and compute the JOBID to pass it to
the child packages.

The second one is the MAIN L0, represented in Figure 5.16, executes the
packages responsible for the staging area, the L0 level.

The last one is the MAIN L1, shown in Figure 5.17, executes the pack-
ages responsible for the population of the OK and ODS tables, along with the
execution of the package responsible for the PRE LOAD method.

Figure 5.15: Main Package.

71



Figure 5.16: MAIN L0 package.

Figure 5.17: MAIN L1 package.

For the sake of simplicity and avoiding repetitions, as all packages have
the same structure, only the SSIS package of the CustomerDomain group, is
going to be shown.
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L0 level - Staging Area Package

Figure 5.20 represent the visual interface of the SSIS package
001 ANAGRAFICHE CustomerDomain. Starting from the top and going to
the bottom:

1. START PROCEDURE: is the Execute Sql Task which writes into
the FLOW MANAGER the start of the procedure, keeping track of the
process.

2. Group Sequence container: the bigger sequence container Customer-
Domain is responsible for grouping the other two sequence container,
each one relative to the table belonging to the group.

3. Table Sequence Container: groups the tasks responsible for the ex-
ecution of the L0 level for each table.

4. LAST DATE READ: is a Execute Sql Task which read the last JOBID
from the FLOW MANAGER and assign it to a package variable.

5. STG: is a Data Flow Task responsible for the copy of the data from the
source, Figure 5.18 shows how it is composed. SOURCE is a connection
task, responsible for connecting to the source, Colonna derivata is a task
which will add to the data just copied the JOBID and the INS TIME
columns while STG is a connection task to the STG table where the
data is going to be stored.
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Figure 5.18: How the Data Flow Task is made in the STG level.

6. DLT: is a Data Flow Task which performs the set operations, discussed
in the previous chapters, to identify the new, updated and deleted data
from the STG table and move it to the DLT table. Figure 5.19 shows
how the task is composed: MINUS which is a connection task to the
STG table where the data is read with the SQL query shows in Listing
4.10, Colonna derivata that is task to add the JOBID, INS TIME and
the FLG NEG columns and DLT, the connection to the DLT table.

Figure 5.19: How the Data Flow Task is made in the DLT level.
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7. TABLE MANAGER: is a Execute Sql Task responsible to track how
many rows are copied from the sources.

8. END PROCEDURE OK: this Execute Sql Task updates the record
inserted in the FLOW MANAGER adding the fact that the process has
ended successfully.

9. END PROCEDURE ERROR: this Execute Sql Task updates the
record inserted in the FLOW MANAGER adding the fact that the pro-
cess has ended unsuccessfully.

Figure 5.20: Package responsible for the execution of the L0 level.
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L1 level - staging area Package

Figure 5.22 represent the next step, the package
001 L1 ANAGRAFICHE CustomerDomain, responsible for the population of
the OK and ODS tables in the L1 level.
From the top to the bottom of the package we have:

• START PROCEDURE: is a Execute Sql Task which writes into the
FLOW MANAGER the start of the procedure, the difference with re-
spect to the previous package is that the NUM LEVEL column is set to
1.

• Group Sequence container: the bigger sequence container Customer-
Domain is responsible for grouping the other sequence container, each
one relative to the operations performed on a table belonging to the
group.

• Table Sequence Container: groups the tasks responsible for the ex-
ecution of the operations of the L1 level for each table.

• Truncate OK: is a Execute Sql Task which truncates the OK table.

• OK: is a Data Flow Task responsible for collecting the latest data from
the DLT and copy it to the OK table. Figure 5.21 shows the tasks
inside the Data Flow Task: a connection to the DLT table where data
is gathered with the SQL query shown in Listing 4.13 and a connection
to the OK table to move the data to the OK table.

Figure 5.21: OK Data Flow Task.

• ODS: is an Execute Sql Task responsible for the MERGE SQL query,
shown in Listing 4.14.
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• END PROCEDURE OK: this Execute Sql Task updates the record
inserted in the FLOW MANAGER adding the fact that the process has
ended successfully.

• END PROCEDURE ERROR: this Execute Sql Task updates the
record inserted in the FLOW MANAGER adding the fact that the pro-
cess has ended unsuccessfully.

Figure 5.22: Package responsible for the execution of the L1 level.
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Pre Load Package

Figure 5.23 represents the graphical interface of the SSIS package
001 PRE LOAD SalesTransactions for the PRE LOAD step, explained in the
previous chapter. As in the previous case, only the package related to the
SalesTransactions group is going to be shows for the sake of simplicity, as the
structure of the package is the same for different groups.
From the top to the bottom the tasks are:

• Group Sequence container: this sequence container groups the se-
quence containers regarding each table belonging to the group.

• Table Sequence container: this sequence container groups the tasks
of a single table.

• Dimension Table Sequence container: this sequence container is
created based on the relationships between the fact table and its dimen-
sion table. The number of sequence containers generated depends on
how many dimensions are linked to the fact table.

• Truncate PRE LOAD: a Execute Sql Tasks which executes the TRUN-
CATE query to remove all data from the dimension PRE LOAD table.
In this case the MA Sales has two linked tables, as a consequence two
Execute Sql Tasks.

• To Table PRE LOAD: is a Data Flow Task responsible for populat-
ing the PRE LOAD table with the necessary data.

• PRE LOAD ODS MERGE: is a Execute SQL Task which performs
a MERGE SQL query, shown in Listing 4.12, to insert the data in the
ODS table.
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Figure 5.23: Package responsible for the pre load of the group SalesTransac-
tions.
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5.2 Results

Results of the execution of the packages are going to be presented in three
scenarios. The first scenario one represent the initial data extraction from
the source system. The second scenario shows how the program behaves
when new and updated data, after the first upload, is introduced. Lastly,
the third scenario addresses the case in which a record in a fact table has no
corresponding entry in the related dimension table.

First scenario: initial data extraction

Since only the data from the tables belonging to the CustomerDomain group
are going to be considered, we are narrowing the results to only the table
shown in Figure 5.24 for sake of simplicity.

Figure 5.24: MA Customer source data

Following the workflow of the package responsible for the L0 level, repre-
sented in the Figure 5.20, in the FLOW MANAGER is added a row repre-
senting the current status of the job, Figure 5.25 show the table at this point,
with status = 1 as the process is running.

Figure 5.25: FLOW MANAGER table after first insert.

Subsequently, the data are copied from the source and the STG table is
populated, as Figure 5.26 shows. Next, set operations are performed, and the
resulting data are copied from the STG table to the DLT table, Figure 5.27
represents the results.
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Figure 5.26: STG table populated

Figure 5.27: DLT table populated

Following the population of the STG and DLT tables, the TABLE MANAGER
is populated, as Figure 5.28 shows.

Figure 5.28: Table Manager table showing the number of rows copied to the
STG table.

Lastly, since the procedure has ended successfully, the FLOW MANAGER
is updated and the status is updated to 3, for success, and the end date is
updated as well, as Figure 5.29 shows.

Figure 5.29: FLOW MANAGER after level L0 package has successfully exe-
cuted.

Next, the package responsible for the L1 step is executed.
The FLOW MANAGER is again updated with a new record representing the
status of the process of the level L1, as Figure 5.30 shows.

Figure 5.30: FLOW MANAGER table as soon at the package responsible for
the level L1 is executed.
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Next, the OK table is truncated and then populated with the new con-
trolled data coming from the DLT table of the level L0, as shown in figure
5.31.

Figure 5.31: OK table after the population with the SQL query.

Following the population of the OK table, the MERGE SQL query is
performed to populate the ODS table, with results shown in Figure 5.32.

Figure 5.32: ODS table after the population with the MERGE query

The process ends, successfully, with the updated of the FLOW MANAGER
table, shown in Figure 5.33, as in the previous level.

Figure 5.33: FLOW MANAGER after level L1 package has successfully exe-
cuted.

Second scenario - Updating Data

Considering now an updated version of the MA Customer, shown in Figure
5.24, with the Region of the customer with CustomerID = 3 updated to
’North’.
The procedure is the same as in the previous scenario. First, the FLOW MANAGER
table is updated with the new entry representing the actual process, Figure
5.34 shows the result.

Figure 5.34: Flow manager table after the execution of the package.
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The whole source data is again copied into the STG table, this time with
updated JOBID and INS TIME, as Figure 5.35 shows.

Figure 5.35: STG table

The main difference, with respect to the previous scenario, happens during
the population of the DLT table. The Minus Sql Query, shown in Listing 4.10,
is executed and the result is shown in Figure 5.36. The old row is inserted
with FLG NEG = 1 while the new one with FLG NEG = 0

Figure 5.36: DLT table

Again, as in the previous scenario, in the TABLE MANAGER will be in-
serted the number of row copied in the STG table.
The process finishes with the update of the FLOW MANAGER table to note
the success of the procedure, as Figure 5.37 shows.

Figure 5.37: FLOW MANAGER table after the package has completed suc-
cessfully.

Following the end of the package responsible for the L0 level, the package
for the L1 level is now executed. As in the previous case, the FLOW MANAGER
is updated to indicate the execution of the procedure, shown in Figure 5.38.
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Figure 5.38: FLOW MANAGER table after the execution of the package
responsible for the L1 level.

Next, the OK table is truncated and repopulated, with results shown in
Figure 5.39. Note that only the record with FLG NEG=0 is passed, this is
due to how the SQL query, shown in Listing 4.13, works.

Figure 5.39: OK table

Since in the ODS table is already presented the record not updated, the
MERGE Query will update the existing one, Figure 5.40 shows the result.

Figure 5.40: ODS table updated

Lastly, Figure 5.41 shows the result on the TABLE MANAGER of the
successful execution of the package.

Figure 5.41: FLOW MANAGER table after the successful execution of the
L1 level package.

Third Scenario - Pre Load

For this scenario, the table MA Sales from SalesTransactions group, shown
in Figure 5.42, it is also considered.
The behaviour of the program when records do not have a referential check
is going to be shown: in this case CustomerID=5 and CustomerID=7, from
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table represented in Figure 5.42, do not exist in the MA Customer source
table, shown in Figure 5.24.

Figure 5.42: MA Sales source table

The procedure until the PRE LOAD package is the same as in the pre-
vious scenarios, the difference is that the PRE LOAD package sends data to
the ODS of the MA Customer table.

Considering the PRE LOAD package represented in figure 4.7, the PRE LOAD
tables are first truncated. Next, the data is taken from the DLT table to the
PRE LOAD table with the SQL query shown in Listing 4.12.
Figure 5.43 show the result in the PRE LOAD table, which still includes all
records from the fact table, both those with corresponding entries in the re-
lated dimension table and those without.

Figure 5.43: PRE LOAD table

The last step of the PRE LOAD package is to merge the obtained data
with the ODS table of the dimension in consideration, MA Customer in this
case. The SQL MERGE query, shown in Listing 4.12 is now executed and
figure 5.44 show the result, in the ODS table. It is noticeable that records
without a referential match have their non key attributes set to default values,
this serves as a flag to easily identify them and facilitate discussion on how
the issue, in future, should be addressed.
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Figure 5.44: ODS table after pre load step has successfully completed.
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Chapter 6

Conclusion and future
directions

The goal of this thesis was to design and implement a metadata driven au-
tomation framework for SSIS package generation. By using metadata files and
Python scripts, the program automatically generates SSIS packages following
the data integration framework designed by the company.
This approach drastically reduces the time needed by developers to just create
the packages and set up the parameters. For instance, a project with multiple
tables per group could take up to two working days to be manually created
while, once spent the time to create the metadata files, the process creation
is reduced to just a few hours.

The framework was validated through experiments and results confirmed
that the generated packages perform as expected. The PRE LOAD step
proved effective in ensuring referential consistency between fact and dimen-
sion tables by inserting placeholder records flagged for further review.

Overall, this work demonstrates that metadata-driven automation can make
ETL development more scalable, maintainable, and aligned with the evolving
needs of data integration projects.

6.1 Future Directions

Although the proposed solution successfully achieves its objectives, there are
several directions that could lead to future improvements, such as:

Generative AI for the metadata files generation, as instead of manually creat-
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ing the metadata Excel files, generative AI, as large language models, could
help in their creation. Recent research shows how generative AI can stream-
line pipeline and transformation tasks in data engineering [12].

ELT and cloud architectures adaptation, as the current solution is designed
specifically for SSIS and on premise ETL. Extending the solution to support
ELT processes would improve the program’s future applicability as a shift
from ETL to ELT is widely discussed in modern data integration literature
[13].

User friendly graphical interface, as creating a graphical interface or a web
frontend for managing metadata and executing the package generation with-
out direct Excel file edits would make the tool more accessible to less technical
users and reduce the potential for errors.

Implementing Change Data Capture method discussed in Chapter 4, where,
differently than the MINUS solution that was implemented, the direct copy of
all the data will no longer be performed and the STG table would be removed,
keeping only the DLT table in the L0 level.

In the end, this thesis work approaches one of the most significant chal-
lenges in data engineering: the automation of ETL pipeline creation in re-
sponse to specific user requests and gives a strong foundation with also the
possibility for future improvements.
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