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Summary

Understanding and classifying the emotional content of dream descriptions is a
unique challenge that sits between psychology and natural language processing.
This thesis tackles this issue by creating a machine learning pipeline that can
automatically predict sentiment labels from free-text dream narratives.

The main method uses handcrafted lexical-semantic features for sentiment clas-
sification. Specifically, Term Frequency—Inverse Document Frequency (TF-IDF)
extracts lexical patterns, while Empath, a psychologically grounded lexicon, pro-
vides high-level semantic signals. To address extreme class imbalance in the labeled
data, a targeted resampling strategy based on SMOTE is used to ensure balanced
representation across all sentiment categories.

A Multi-Layer Perceptron (MLP) classifier is trained on the engineered features
and evaluated using both 5-fold stratified cross-validation and Leave-One-Out
Cross-Validation (LOOCV). The model achieves a high accuracy of 86% and strong
macro Fl-scores across folds and samples. This shows robust generalization with
minimal overfitting. In addition to this main pipeline, the thesis also looks into
fine-tuning large language models. A DeBERTa transformer was adapted using
parameter-efficient LoRA (Low-Rank Adaptation), allowing for modeling emotional
language in context. Although this was not integrated into the main system,
this parallel investigation highlights the potential of transformer-based models for
understanding emotions in narrative text. Beyond model performance, the thesis
examines how consistent the sentiment labels are by comparing multiple sources.
Cross-dataset accuracy matrices and correlation analyses (Cohen’s Kappa and
Spearman’s rho) show significant disagreements among annotators. This highlights
the subjective nature of emotional labeling in dreams.

Overall, this work provides a reproducible affective computing pipeline for narra-
tive data and offers insights into the challenges of subjectivity in human-labeled
sentiment datasets, especially in areas like dream interpretation.
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Chapter 1
Introduction

Understanding the emotional content of human experiences has long been a topic
of interest in both psychology and computational fields. Among these experiences,
dreams present a particularly rich yet underexplored form of subjective expression.
Free-text dream descriptions offer insights into the subconscious but pose significant
challenges for computational modeling due to their unstructured, symbolic, and
emotionally nuanced nature. This thesis focuses on the application of natural
language processing (NLP) and machine learning techniques to automatically
decode the sentiment embedded in such dream narratives.

The central goal of this research is to develop a sentiment analysis framework
capable of classifying dream descriptions into discrete emotional categories. This
problem is made complex by several factors, including subjective annotation variabil-
ity, semantic ambiguity in dream language, and severe class imbalance in available
labeled datasets. Moreover, existing models in affective computing often overlook
the specific challenges posed by dream data, such as its abstract vocabulary and
lack of contextual anchors.

To address these challenges, this work proposes a hybrid feature extraction
pipeline that combines TF-IDF (to capture lexical frequency patterns) and Empath
(to represent high-level semantic categories). To mitigate the impact of class imbal-
ance, a resampling strategy is applied using SMOTE. A Multi-Layer Perceptron
(MLP) classifier is then trained and evaluated using both 5-fold Stratified Cross-
Validation and Leave-One-Out Cross-Validation (LOOCV), achieving consistently
high performance across multiple metrics.

Beyond the technical implementation, this thesis also examines the quality and
consistency of sentiment annotations across multiple sources, such as participant
self-ratings, external judges, and research-generated labels. The study includes a
correlation and cross-dataset generalization analysis to explore whether models
trained on one annotation source can generalize to others. The findings reveal major
discrepancies in labeling standards, which significantly affect model transferability

1



Introduction

and highlight the subjectivity inherent in emotion labeling tasks.

This work contributes not only a high-performing sentiment classification model
but also a deeper understanding of the limitations of human-annotated affective data.
By focusing on dream narratives, a domain deeply tied to emotion and meaning.
This research aims to support future efforts in psychological AI, personalized
mental health technologies, and the broader study of human internal states through
language.



Chapter 2

Literature Review

Dreams, especially those that occur during REM (rapid eye movement) sleep,
have long been viewed as emotionally rich and personally meaningful experiences.
According to Hartmann [1], dreaming may help us process emotions by symbolically
connecting our feelings and memories. Rather than showing events exactly as they
happened, dreams tend to highlight what is emotionally significant, even if the
dream content appears strange or disconnected.

Neuroscience research supports this view. Studies show that during REM sleep,
brain regions involved in emotion, such as the limbic system, become more active,
while areas responsible for logic and self-control, such as the dorsolateral prefrontal
cortex, are less active [2]. This pattern helps explain why dreams often feel intense,
emotional, and surreal.

2.1 The Emotional Nature of Dreaming and Its
Computational Analysis

More recently, researchers have started using tools from artificial intelligence and
natural language processing to study dream reports. For example, Kim et al. [3]
used computational models to analyze the emotional content of dream texts, aiming
to connect narrative structure and sentiment with real psychological traits. This
new approach brings together neuroscience, psychology, and Al to better understand
what dreams can reveal about the human mind.

Sentiment and emotion analysis have become key tasks in natural language
processing, particularly when dealing with short, subjective texts. While traditional
sentiment analysis often focuses on binary or ternary classification (e.g., positive,
negative, neutral), emotion classification expands this scope by identifying specific
emotional states such as joy, anger, fear, or sadness. In their comparative study,
et al. [4] evaluated various machine learning approaches for classifying emotions
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from short texts such as tweets, highlighting the effectiveness of lexicon-based
labeling using the NRC Emotion Lexicon in combination with classical models
like SVM and logistic regression. Their results showed that term frequency-based
features (e.g., TF-IDF) could outperform word embeddings in certain emotion
classes, especially when the input texts are brief and context-limited. These findings
are particularly relevant for analyzing dream narratives, which are often short,
symbolic, and emotionally rich. By comparing multiple classifiers and feature sets,
the study provides a strong methodological foundation for multi-class emotion
classification tasks, supporting the choice of techniques such as TF-IDF and lexicon
features in this thesis.

One of the earliest attempts to classify sentiment in dreams was proposed
by Nadeau et al. [5], who labeled 100 dream reports using a 4-level negative
sentiment scale and tested several feature extraction techniques for automated
classification. They compared traditional lexicon-based tools (General Inquirer
and LIWC), weighted semantic lexicons, and a Bag-of-Words (BoW) baseline.
Among these, the General Inquirer achieved the highest accuracy (50%) and lowest
mean squared error (0.577), while LIWC performed similarly well. In contrast,
the BoW and weighted lexicons performed significantly worse. Given these results,
using lexicon-based features is a must for our work: two of the top-performing
methods relied on emotional lexicons, highlighting their strength in capturing the
symbolic and emotionally rich nature of dream language. This supports our choice
to incorporate tools like GI, LIWC, and Empath in our own sentiment classification
pipeline.

2.2 Deep Learning in Sentiment Analysis

Deep learning has become a major force in sentiment analysis research. Tang, Qin,
and Liu [6] review many successful deep learning methods and show that these
models often outperform older approaches when there’s plenty of data. However,
they also emphasize that before deep learning dominated, lexicon-based features
(manually built lists of sentiment words) were among the most reliable tools. Not
only do lexicon methods provide strong baselines, but they also help in domains
where data is scarce or where interpretability matters.

For our work on dream reports, which are symbolic, emotionally rich, and
often limited in quantity, this means lexicon-based features are not optional: they
are essential. Given their past top performance, we will include lexicons like
Empath, alongside more modern embeddings and deep nets, to ensure both strong
performance and emotional validity.

Tang, Qin, and Liu [6] provide a foundational overview in which they compare
traditional methods relying heavily on feature engineering (such as sentiment
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lexicons, bag-of-words, manual features) with newer deep learning approaches.
They argue that while deep models (e.g. RNNs, CNNs, gated recurrent networks)
have improved performance by automatically learning semantic representations
from data, lexicon-based features remain highly valuable, particularly when data
are limited or when interpretability is important.

Figure 2.1 illustrates the general workflow for deep learning-based sentiment
analysis. The process begins with raw text, moves through tokenization and word
or token embedding, and proceeds with network training via forward and backward
propagation using a loss function. Transformer-based models fit neatly into this
pipeline, with their embeddings and self-attention components allowing richer
representation of context and meaning.

Input Representation Deep learning Workflow
Raw N Desired Outcome
B romr g R Tokcnization S Tokens
Tokenization Mapping - Backward o s <
Pass Function |H
1 ]
Optimised 1
Prediction—p Word | “ptimise Predicted 1
Training ===p Embedding

Weights Outcome |
{  Network it *
Forward Pass [ S ONig

Figure 2.1: Supervised sentiment analysis workflow with deep learning. This
diagram shows how raw text is preprocessed (preprocessing, tokenization), converted
into embeddings, and then used in a neural network, where training includes forward
and backward passes guided by a loss function.

More recently, Abdullah & Ahmet [7] show a clear shift toward transformer-based
architectures such as BERT, RoBERTa, and DeBERTa in sentiment analysis. These
transformer models consistently outperform earlier recurrent and convolutional
networks by capturing richer contextual information, modeling long-distance depen-
dencies, and detecting subtle emotional cues. The survey also identifies persistent
challenges: domain adaptation when text styles or content shift, interpretability
since deep models are often opaque, and data scarcity, especially in domains with
emotionally rich or symbolic language.



Chapter 3

Dataset Description and
Text Pre-Processing

3.1 Dataset Description

This study draws upon a rich dataset of dream narratives, originally collected
via questionnaire-based protocol. Each participant (referred to as a "dreamer")
was asked to describe a recent daydream, and to rate the emotional tone of their
experience. These ratings, along with the narrative texts, form the foundation of
this research.

Dream content was self-reported by participants using open-ended questionnaire
items. Each entry consisted of a free-text dream description and a set of metadata
fields capturing emotional and contextual aspects. Of particular interest were two
components:

e Dream Description: A narrative provided by the participant, capturing the
content of the daydream in natural language.

« Emotional Rating: A numerical score ranging from 0 to 7, where 0 indicates
the most negative emotion and 7 the most positive. This self-assessed score
reflects the participant’s personal affective evaluation of the dream.

In total, the initial dataset contained 401 entries. However, upon inspection,
many entries were found to be incomplete or unsuitable for computational analysis.
Common issues included:

 Placeholder or irrelevant text (e.g., “Private,” “Open-Ended Response”).
o Missing or duplicated fields.

o Ambiguities in question phrasing or inconsistent formatting.
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These limitations restricted the usefulness of the raw dataset for direct modeling
but provided valuable insights for refining the annotation scheme and preprocessing
pipeline.

3.1.1 Refined Dataset Construction

A curated dataset of 178 high-quality entries was developed by filtering out low-
quality responses and structuring the sentiment annotations. Each entry in the
final dataset contains:

o Narrative Text: Cleaned, lemmatized, and preprocessed dream descriptions.
o Sentiment Labels: Annotations from three different perspectives:

— Dreamers (7-class): The original dream authors who rated their own
emotional experience on a 0-6 scale. These labels reflect deeply personal
and introspective evaluations.

— Independent Judges: A group of independent annotators who rated
each dream description without any background context about the dreamer.
Their evaluations reflect an external, text-based interpretation of emotional
tone. The judges annotated each dream using a 3-class format, with
sentiment labels ranging from 0 (Negative) to 2 (Positive).

— Expert Annotator: An expert annotator who applied a consistent psy-
cholinguistic framework for sentiment evaluation, drawing on theoretical
and empirical guidelines from affective computing and emotion psychology.
This rater provided sentiment annotations in both the 3-class format (0-2)
and a more fine-grained 7-class scale ranging from 0 (Very Negative) to 6
(Very Positive), enabling multi-resolution analysis and model evaluation.

Table 3.1 and figure 3.1 summarize the distribution of sentiment labels across
the three annotator sources in both the 3-class and 7-class formats. In the 3-class
setting, all three annotators, Expert Annotator, Independent Judges, and Dreamers,
labeled 178 unique dream narratives. While label coverage is consistent across
sources, the class distributions differ notably.

For example, the Dreamers rated 94 of their own dreams as positive, compared
to only 53 by Fxpert Annotator and 43 by the Independent Judges. This suggests
a positive self-bias in self-assessment, whereas the Independent Judges showed a
more balanced distribution skewed slightly toward neutrality. These variations
reinforce the importance of cross-source agreement analysis later in this study.

In the 7-class format, the distribution becomes even more differentiated. The
Dreamers heavily used the upper end of the scale, whereas the Ezpert Annotator
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annotations are more evenly distributed, with the highest concentration around
classes 3 to 5.

These distributional discrepancies highlight the subjective nature of sentiment
labeling in introspective narratives like dreams. They also emphasize the challenge
of building generalizable models across annotators and the value of interpreting
classifier performance in the context of human disagreement.

Table 3.1: Class distribution across annotators in both 3-class and 7-class settings.

Class Label Expert Annotator Independent Judges Dreamers
3-Class Setting

0 (Negative) 39 39 48

1 (Neutral) 86 96 36

2 (Positive) 53 43 94

Total 178 178 178
7-Class Setting

Class Label Expert Annotator Dreamers

0 7 2

1 13 13

2 12 22

3 42 25

4 47 33

5 37 36

6 20 47

Total 178 178

Rather than treating these annotations as interchangeable ground truths, this
study treats each rater’s perspective as a distinct lens on emotional interpretation.
In later chapters, we quantitatively assess the relationships between these annotators
through a series of cross-source analyses, including:

« Cross-annotator classification accuracy matrices,
« Spearman’s rank correlation (p) for ordinal agreement,
« Cohen’s kappa (k) for categorical label alignment.

This approach allows us not only to evaluate model performance on each
individual label source, but also to understand the extent to which emotional
assessments are consistent, or divergent, across human perspectives. The final

8
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3-Class Sentiment Distribution 7-Class Sentiment Distribution

100

W Expert Annotator W Expert Annotator
Independent Judges s Dreamers
BN Dreamel rs

40

Negative Neutral Positive 0 1 2 3 4 5 6

Figure 3.1: Bar charts showing sentiment class distributions for each annotator.
Left: 3-class format across Dreamers (blue), Expert Annotator (orange), and
Independent Judges (green). Right: 7-class format comparing Dreamers and
Expert Annotator (both aligned on a 0-6 scale).

curated dataset thus serves as both a benchmark for machine learning and a case
study in the subjectivity of emotional interpretation in natural language.

3.2 Text Preprocessing

Effective sentiment classification in natural language processing critically depends
on the quality and consistency of the input data. Given the abstract and emotionally
nuanced nature of dream narratives, a comprehensive text preprocessing pipeline
was implemented to reduce noise, normalize linguistic variation, and prepare the
data for robust feature extraction.

The pipeline consists of the following stages:

1. Text Standardization: All input text was converted to lowercase to eliminate
case-based redundancy and ensure uniform tokenization. This normalization
step ensures consistent treatment of terms such as “Love” and “love”.

2. Symbol and Digit Filtering: Using regular expressions, all non-alphabetic
characters—including punctuation, numbers, and special symbols—were re-
moved. This focuses the model on semantically meaningful tokens and prevents
sparsity introduced by non-linguistic artifacts.

3. Whitespace Normalization: Irregular spacing and line breaks were elimi-
nated by collapsing all whitespace into single space delimiters and trimming
leading and trailing characters. This ensures consistent input formatting for
token-based models.
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4. Stopword Removal: High-frequency, low-information words (e.g., “the,”
“and,” “in”) were removed using NLTK’s English stopword list. This step
reduces lexical redundancy and enhances the relative weight of emotionally
informative terms.

5. Lemmatization: Remaining words were reduced to their base forms using
WordNet’s lemmatizer. For example, “dreaming,” “dreamed,” and “dreams”
were all mapped to “dream.” This reduces vocabulary size and increases
generalizability across morphologically related terms.

6. Empty Document Filtering: Any document that resulted in an empty
string after preprocessing was removed from the dataset to prevent the intro-
duction of non-informative or invalid feature vectors.

7. Label Integrity Enforcement: All rows with missing sentiment annotations
were excluded to maintain consistency in downstream supervised learning
tasks. This step ensures that every training instance has a valid label.

The result of this pipeline is a refined and semantically meaningful corpus
of cleaned_text, which serves as the input for both TF-IDF vectorization and
Empath-based semantic feature extraction. These preprocessing operations are
critical to improving model interpretability, stability, and performance across noisy,
subjective textual data such as dream reports.

10



Chapter 4

Feature Engineering

To accurately model the complex emotional and linguistic structure of dream
narratives, we developed a hybrid feature extraction framework that integrates
both statistical text representations and semantically enriched features. Specifically,
our approach combines Term Frequency—Inverse Document Frequency (TF-IDF)
vectorization with psychologically motivated semantic embeddings derived from the
Empath lexicon. This dual-channel representation captures both surface-level lexical
patterns, such as local n-gram frequencies, and abstract thematic dimensions rooted
in emotional and cognitive categories. By jointly leveraging these complementary
sources of information, the model is better equipped to recognize subtle sentiment
cues and latent psychological signals expressed through natural language.

4.0.1 Empath Lexicon Features

Empath is a data-driven, lexicon-based NLP tool that maps textual content onto 194
empirically validated semantic categories, including emotionally and thematically
rich dimensions such as sadness, violence, love, and trust. Built on a neural
embedding model trained on 1.8 billion words of modern fiction, Empath identifies
semantically related terms based on their contextual similarity in the learned vector
space. It uses small sets of seed words to expand each category and validates them
through crowdsourcing, ensuring human interpretability and thematic coherence.
For each preprocessed dream description, Empath computes a normalized score
for every category, capturing the relative frequency of category-related terms in
the text. In our implementation, we set normalize=True, which scales the output
such that each category score reflects the proportion of total matched words in
the input text. Formally, for a given input sample ¢, the Empath analysis yields a
semantic feature vector:

194
etERg,
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where each component represents the cosine-weighted association strength be-
tween the input and a predefined category. This approach abstracts away from
surface-level lexical patterns and enables a psychologically meaningful, high-level
encoding of emotional and thematic structure. Compared to traditional lexicons
like LIWC, Empath offers broader coverage, the ability to generate new categories
on demand, and strong empirical alignment with validated psychological constructs
(e.g., achieving an average Pearson correlation of r = 0.906 with LIWC on shared
categories)[8] . These properties make Empath particularly suited for captur-
ing latent sentiment cues embedded in dream narratives, offering interpretability,
flexibility, and robustness in psychological text analysis.

4.0.2 TF-IDF Features

To complement semantic abstraction with lexical specificity, we employed Term
Frequency-Inverse Document Frequency (TF-IDF), one of the most widely rec-
ognized statistical weighting schemes in text mining[9]. TF-IDF quantifies the
importance of a term t in a specific document d relative to its frequency across
the entire corpus D. This dual weighting captures both local relevance and global
rarity, making it particularly effective in emphasizing discriminative words and
suppressing overly common terms.
Formally, the TF-IDF weight is calculated as:

D
TF-IDF(t,d, D) = tf(t, d) - log (I{d c 1|7 .’t c d.}|>

where:

o tf(¢,d): frequency of term ¢ in document d,

 |D|: total number of documents in the corpus,

e {d; € D :t € d;}|: number of documents in which term ¢ appears.

In this study, we utilized scikit-learn’s implementation of TfidfVectorizer with
the following parameters: unigrams and bigrams (n € {1,2}), English stopword
removal, and a maximum of 1,000 features selected by highest term frequency across
the corpus. This dimensionality constraint controls sparsity and computational
load while retaining the most informative lexical patterns.

Each document is thus transformed into a high-dimensional, sparse feature
vector t; € R0 where each dimension corresponds to a weighted n-gram. These
vectors reflect not only word occurrence but also contextual uniqueness across the
corpus, enabling the model to capture affective cues grounded in specific word
usage.

12
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As emphasized in related studies such as Hakim et al. (2014), TF-IDF has
proven to be an effective approach for document classification across multiple
languages and domains, offering high accuracy even in sparse textual settings.
Moreover, it requires no domain-specific knowledge and is robust to noise, making
it suitable for applications such as dream narrative classification where linguistic
variability is high.

Finally, to ensure scale compatibility across features, the resulting TF-IDF
vectors were normalized using StandardScaler, aligning them with the Empath-
derived semantic features for unified downstream learning.

4.0.3 Feature Concatenation and Normalization

To construct a comprehensive and discriminative feature representation for each
dream description, we adopted a hybrid approach that merges lexical and semantic
signals into a unified vector. Specifically, we concatenated the TF-IDF-based lexical
features with the Empath-derived semantic features. This combination leverages
both the surface-level statistical structure of the text and its deeper psychological
themes, enabling more nuanced modeling of affective patterns.

Formally, for a given input sample ¢, the lexical representation t, € R and
the semantic representation e, € R'% are concatenated to yield a single composite
feature vector:

Xy = [tt, et] € R1194.

This feature fusion strategy, commonly employed in neural architectures like
multi-layer perceptrons (MLPs), enhances the network’s capacity to learn joint
dependencies across heterogeneous modalities. By encoding both statistical word
distributions and interpretable affective categories, the model is positioned to
capture a broader spectrum of patterns relevant to dream sentiment classification.

Before passing the concatenated feature vectors to the classifier, we applied
standardization using the StandardScaler implementation, which performs z-score
normalization:

where p and o are the mean and standard deviation of each feature, estimated
exclusively from the training data.

Recent work by Amorim et al.[10] highlights that the choice of scaling technique
significantly impacts classification performance, particularly in neural networks.
Among the various normalization strategies evaluated, z-score normalization consis-
tently produced stronger and more stable results across a wide range of datasets and
models. The study also emphasizes that improper scaling can degrade performance
more severely than no scaling at all, especially when dealing with imbalanced or
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high-dimensional data. These findings support our design choice of using standard
scaling in all classification pipelines.

This transformation ensures that each feature has zero mean and unit variance,
preventing any one feature, especially those with larger numeric scales, from
disproportionately influencing the learning process. This is particularly important
in gradient-based optimization algorithms such as those used in MLPs, where
imbalanced feature magnitudes can lead to unstable gradients, slow convergence,
or biased weight updates.

To preserve the integrity of the evaluation process, the standardization parame-
ters were computed strictly from the training set. These parameters (mean and
standard deviation) were then applied to transform the test set. This procedure
ensures that no information from the test data influences the scaling step, avoiding
data leakage and ensuring that evaluation metrics reflect real-world generalization
performance.
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Chapter 5

Class Resampling

The sentiment label distribution in our dataset exhibited a pronounced imbalance,
with certain classes containing as few as two instances while others exceeded
forty. Such disproportionate representation creates a strong bias toward majority
classes, leading to suboptimal decision boundaries and severely reduced predictive
performance for minority categories. As highlighted in recent studies on imbalanced
learning [11], this imbalance not only degrades classification accuracy but can also
hinder the model’s ability to generalize, as the learned hypothesis space becomes
dominated by patterns from the most frequent classes.

To address the significant class imbalance in our dataset, we implemented a
targeted resampling strategy based solely on SMOTE (Synthetic Minority Over-
sampling Technique). This approach focuses on selectively generating synthetic
samples for underrepresented classes based on their original distribution. This
method increases class parity without discarding potentially valuable samples or
introducing excessive noise. By restoring balance through synthetic interpolation
between minority instances, the model is given a more representative training signal
across all sentiment categories. This design helps mitigate bias toward dominant
classes while preserving the integrity and diversity of the original dataset, ultimately
improving the fairness and robustness of downstream predictions.

5.0.1 Initial Class Analysis

We began by performing a quantitative assessment of the initial class distribution
to identify the degree of imbalance and, in particular, to determine the size of the
smallest class. This value was critical for configuring the k_neighbors parameter
in SMOTE, as generating synthetic samples requires a sufficient number of existing
instances to form a meaningful neighborhood structure in feature space. Setting
this parameter too high relative to the minority class size can lead to the creation
of unrealistic synthetic points, while setting it too low may fail to capture the
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underlying class variability.

The initial analysis of the dataset revealed a highly uneven distribution of
sentiment classes (Figure 5.1). Class frequencies ranged from a minimum of only
2 instances in the rarest category to a maximum of 47 instances in the most
frequent one. Such disparity indicates a substantial risk of model bias toward
dominant classes, as the hypothesis space would be disproportionately shaped by
the patterns present in higher-frequency categories. This imbalance also implies a
reduced ability to learn robust decision boundaries for underrepresented classes,
thereby limiting generalization performance across the entire label space.

Dreamers - 3-Class Sentiment Dreamers - 7-Class Sentiment

Count
Count

Negative Neutral Positive [ 1 2 3

Figure 5.1: Orginal class distribution

To ensure more realistic and meaningful synthetic samples during oversam-
pling, we applied a pre-processing step to merge the two lowest sentiment classes.
Specifically, since Class 1 contained only two instances, insufficient for reliable
interpolation, we combined it with Class 2, effectively treating them as a single
class during resampling. This adjustment preserved the semantic proximity of the
labels while allowing SMOTE to operate on a denser and more structurally coherent
neighborhood. By avoiding interpolation between extremely sparse or isolated
points, this step reduced the risk of generating artificial samples that do not reflect
real patterns in the data, thus improving the overall quality and credibility of the
augmented dataset.

5.0.2 Primary Resampling with SMOTE

To address class imbalance without discarding potentially informative data, we
employed the Synthetic Minority Over-sampling Technique (SMOTE) as the sole
resampling strategy. Originally proposed by Chawla et al.[12], SMOTE generates
synthetic examples by interpolating between a minority class sample and one of its
k nearest neighbors within the same class. This process increases the density and
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continuity of the minority class region in the feature space, promoting broader and
more generalizable decision boundaries.

Unlike naive oversampling via duplication, SMOTE operates directly in feature
space. For a given minority sample x;, a synthetic instance x,., is constructed as:

Tnew = T4 + J - (:Unn - .Ti),

where x,, is a randomly selected neighbor from the k£ nearest neighbors of z;,
and ¢ € [0,1] is a randomly drawn scalar. This formulation ensures that the new
sample lies along the line segment connecting x; and z,,, preserving locality while
introducing novel, non-duplicated data points.

This method is particularly effective in avoiding the overfitting and fragmented
decision regions that arise when replicating rare instances. By increasing the spread
of minority samples throughout the feature space, SMOTE enables the classifier
to learn more inclusive and smoother decision surfaces. Furthermore, because our
feature set consists of high-dimensional lexical and semantic embeddings (TF-IDF
and Empath), SMOTE’s ability to interpolate within that space allows us to
generate realistic synthetic narratives that conform to the existing distribution of
emotional language patterns.

In our implementation, we applied SMOTE after all preprocessing and feature
extraction steps, targeting classes with below-average frequency. The number of
synthetic samples was adjusted dynamically per class to ensure controlled and
interpretable balancing. For extremely sparse classes (e.g., with only one or two
samples), we merged them with adjacent categories prior to resampling to avoid
creating unrealistic interpolations and maintain label coherence.

This controlled application of SMOTE proved essential for producing a balanced
yet semantically valid training dataset, which in turn improved the model’s fairness
and generalization capacity across both coarse- and fine-grained sentiment tasks.

5.0.3 Final Dataset Assembly

The final balanced dataset was constructed using SMOTE. After feature extraction
and label preprocessing (including the merging of classes with insufficient support),
synthetic samples were generated selectively to bring each class to an equal repre-
sentation level. The final dataset was assembled by vertically stacking the original
(retained) samples with the newly synthesized instances for each class.

Figure 5.2 and Figure 5.3 illustrate the class distributions before and after
SMOTE-based augmentation for the 6-class and 3-class settings, respectively. In
both cases, the post-resampling distribution achieves exact parity across all classes,
with each class comprising an equal percentage of the total dataset.

In the 6-class case, the original distribution exhibited substantial skew, with the
lowest-represented class making up only 8.4% of the data and the highest reaching
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W Original 16.7% 16.7% 16.7% 16.7% 16.7% 26.4% 16.7%
nal

Sample Count

Class

Figure 5.2: Class distribution before and after SMOTE-based resampling (6-class
setting).

. Original 33.3% 33.3% 52.8% 33.3%
Final

Sample Count

1
Class

Figure 5.3: Class distribution before and after SMOTE-based resampling (3-class
setting).

26.4%. After SMOTE, all six classes were balanced to 16.7%, ensuring that the
model would not be disproportionately biased toward overrepresented emotional
categories.

In the 3-class setting, a similar pattern emerged. The positive class originally
dominated over 50% of the dataset, while the neutral and negative classes lagged
significantly behind. Following augmentation, all three sentiment categories were
brought to an equal share of 33.3%, making the dataset better suited for learning
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fair and generalizable decision boundaries.

This balancing process was executed without excessive inflation of the dataset
size or oversaturation of synthetic samples from a single class. Moreover, we
applied SMOTE only after text preprocessing, class merging, and feature extraction
to ensure that synthetic samples were generated within a meaningful lexical-
semantic feature space, preserving the integrity of both TF-IDF and Empath
representations. The resulting dataset provides a strong, uniform foundation for
downstream classification, enabling the model to learn from an evenly distributed
representation of the sentiment spectrum.
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Chapter 6

Model Architecture

6.0.1 Model Architecture

The predictive backbone of this work is a Multilayer Perceptron (MLP), a
feed-forward artificial neural network composed of an input layer, one or more
hidden layers, and an output layer. Each neuron computes a weighted sum of its
inputs, adds a bias term, and applies a non-linear activation function. This layered
non-linearity enables the network to model complex, non-linear mappings between
the input feature space and the target sentiment classes.

The input layer receives the hybrid feature vector produced by our preprocessing
pipeline, which concatenates lexical patterns extracted via Term Frequency—Inverse
Document Frequency (TF-IDF) with semantic category scores obtained from the
Empath lexicon. Before entering the network, these concatenated features are
standardized using StandardScaler to enforce zero mean and unit variance across
dimensions. As noted in[13], such normalization stabilizes gradient magnitudes
during training, accelerates convergence, and reduces the risk of certain units
dominating the learning process due to scale disparities.

The hidden layers in our MLP employ the tanh activation function, selected for
its smooth, bounded output and ability to model complex non-linear relationships
in the balanced, standardized feature space. Unlike ReLU, which can suffer from
dead neuron issues, tanh maps inputs to the [—1, 1] range, providing symmetric
gradients that can improve convergence when features are zero-centered. The
output layer uses the softmax activation, transforming the network’s final raw
scores into a normalized probability distribution over sentiment classes. Model
training is performed using the categorical cross-entropy loss function, which is
particularly effective for multi-class classification tasks, as it directly optimizes the
log-likelihood of the correct class.

From a theoretical perspective, MLPs exhibit the wuniversal approximation
property, allowing them to approximate any continuous target function f, to an
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arbitrary degree of accuracy given sufficient neurons and layers. However, as
discussed in[14], increasing the number of hidden layers or units expands the
hypothesis space, and if the model complexity significantly exceeds that of fy, the
risk of overfitting increases sharply. Overparameterized models may memorize
training-specific noise rather than learning generalizable patterns.

To mitigate this risk, our architecture was deliberately configured to provide
sufficient but not excessive capacity, large enough to capture the complexity of
the hybrid lexical-semantic feature space, yet constrained to avoid unnecessary
parameter growth. This balanced design, combined with input normalization,
explicit regularization, data balancing strategies, and systematic hyperparameter
tuning, ensured that the final model achieved strong predictive accuracy while
maintaining robust generalization performance.

6.0.2 Hyperparameter Tuning

The performance of the Multi-Layer Perceptron (MLP) model was optimized using
an exhaustive GridSearchCV procedure in scikit-learn. This search systemati-
cally evaluated combinations of architectural and learning parameters to identify the
configuration that maximized classification performance on the balanced sentiment
dataset.

The parameter grid was defined as follows:

Hidden layer sizes: (100,), (200, ), (200,100), (300,200,100)

Activation functions: ReLU, tanh

Solvers: adam, sgd

Regularization strength («): 107°, 1074, 1073, 1072

Learning rate schedules: constant, adaptive

Maximum iterations: 500 (fixed for all runs)

The search employed stratified 5-fold cross-validation to preserve class
distribution within each fold. The primary selection criterion was the macro-
averaged Fj-score, ensuring balanced performance across all sentiment classes
regardless of frequency. Accuracy was recorded as a secondary metric.

The grid search identified the following optimal configuration:

 Hidden layers: (200, 100)

o Activation function: tanh
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Solver: adam

Regularization parameter («): 0.01

Learning rate schedule: constant

Maximum iterations: 500

This configuration achieved a macro Fj-score of 0.7910 during cross-validation
for the 3-class and macro Fj-score of 0.7273 for the 6-class setting. The two
hidden layers with progressively decreasing neuron counts allowed the network to
capture complex non-linear feature interactions while reducing dimensionality in
deeper layers. The tanh activation provided smooth, bounded outputs suitable
for the balanced feature scaling applied during preprocessing. The adam optimizer
with a constant learning rate ensured stable convergence, while the relatively high
a value (0.01) acted as an effective L2 regularizer, mitigating overfitting in the
high-dimensional TF-IDF + Empath feature space.
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Chapter 7
Evaluation Strategy

Robust evaluation is critical to ensure that a model’s performance generalizes
beyond the training data and is not an artifact of sampling bias. In this study,
we adopted a dual validation framework consisting of 5-Fold Cross-Validation and
Leave-One-Out Cross-Validation (LOOCYV). This combination balances efficiency
with rigor, providing complementary insights into the generalization capacity of
our Multi-Layer Perceptron (MLP) model.

7.1 5-Fold Cross-Validation

In 5-Fold Cross-Validation, the dataset is partitioned into five mutually exclusive
subsets of approximately equal size. For each iteration, four folds are used for
training while the remaining fold is reserved for testing. The process repeats five
times, such that each fold serves once as the test set. The final performance metrics
are averaged across folds, providing a stable estimate of generalization.

Mathematically, if D represents the dataset and D; the i fold, then for each
fold i € {1,2,3,4,5}:

Train Set = D\ D;, Test Set = D;

This strategy reduces variance in performance estimation compared to a single
train—test split, while maintaining computational feasibility. In our experiments,
the MLP model achieved consistently high accuracy across folds as illustrated in
Figure 7.1, demonstrating its ability to handle the balanced dataset produced during
preprocessing. Additionally, the mean accuracy achieved was 0.7273 (£0.0511)
for the 6-class Dreamers dataset and 0.7910 (£0.0429) for the 3-class Dreamers
dataset, highlighting the model’s robust performance across different classification
complexities.
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6-Class Dreamers - 5-Fold CV Results 3-Class Dreamers - 5-Fold CV Results
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Figure 7.1: Accuracy across 5-Fold Cross-Validation.

7.2 Leave-One-Out Cross-Validation (LOOCYV)

To further stress-test the model, we employed LOOCV, an extreme form of k-fold
cross-validation where £ = N (the number of instances in the dataset). In each
iteration, the model is trained on N — 1 samples and tested on the single remaining
sample. This process is repeated N times, ensuring that every instance in the
dataset is used once as a test point:

Train Set = D\ {z;}, Test Set = {x;}

LOOCYV provides the most exhaustive utilization of data, yielding nearly unbi-
ased performance estimates, particularly valuable in small-sample domains such as
dream sentiment analysis. However, as highlighted in cross-validation literature
[15], LOOCYV suffers from high computational cost and higher variance compared
to k-fold methods. These trade-offs were evident in our implementation: although
computationally intensive, LOOCYV offered granular insights into the stability
of predictions across individual data points. The confusion matrices shown in
Figure 7.2 further illustrate the model’s performance, with the 6-class Dreamers
dataset achieving an accuracy of 0.7979 and the 3-class Dreamers dataset achieving
an accuracy of 0.8333, reflecting robust classification across varying complexities.

7.3 Rationale for Dual Strategy

The adoption of both 5-Fold Cross-Validation and LOOCYV reflects a methodological
balance between practicality and rigor. The 5-Fold approach provided a reliable,
computationally efficient estimate of model performance across multiple partitions.
LOOCYV, though slower, served as a robustness check, ensuring that results were not
contingent upon arbitrary fold assignments. Together, they form a comprehensive
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Figure 7.2: Heatmap across Leave-One-Out Cross-Validation iterations.

evaluation pipeline, aligning with best practices recommended in contemporary
machine learning research [15].

Through this dual evaluation framework, we obtained both a stable estimate of
model generalization (via 5-Fold CV) and a highly granular assessment of robustness
(via LOOCYV). These complementary strategies confirm that the proposed MLP
model, trained on balanced representations of dream narratives, achieves consistent
and reliable performance across a diverse set of validation conditions.
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Chapter 8

Results

8.1 Classification Results by Label Granularity

8.1.1 3-Class Classification Performance

To evaluate the model’s performance in detecting broad emotional tones, we mapped
the original 7-point sentiment labels into three macro categories: negative, neutral,
and positive. This 3-class setting reduces label granularity and emphasizes coarse-
level emotional polarity, which is particularly suitable for downstream affective
applications where interpretability and robustness are preferred over fine-grained
distinctions.

The model was trained on the Dreamers dataset using the best-performing
configuration obtained via grid search: two hidden layers with 200 and 100 neurons,
tanh activation, adam solver, @ = 0.01, and a constant learning rate over 500
epochs. Evaluation was performed on a stratified 20% test split.

Table 8.1 presents the detailed classification results for each class, including
precision, recall, and Fj-score, while figure 8.1 shows the corresponding confusion
matrix. The model achieved a macro-averaged F)-score of 0.86 and an overall
accuracy of 0.86, indicating strong and balanced performance across all categories.

Performance was consistently strong across all three classes, with particularly
high scores in the negative and positive classes. Slightly lower metrics for the neutral
class are consistent with its semantic ambiguity and higher overlap with adjacent
classes. Nonetheless, the model exhibited no significant signs of bias toward any
single class, confirming that the class-balancing techniques (SMOTEENN and
controlled duplication) were effective.

These results validate the effectiveness of the hybrid TF-IDF and Empath feature
set in capturing the emotional and semantic structure of dream narratives, and
demonstrate that even a moderately deep MLP can yield high-quality, generalizable
predictions in the coarse-grained sentiment setting.
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Table 8.1: Classification report for 3-class sentiment prediction (Dreamers).

Class Precision Recall F1-Score
Negative 0.88 0.89 0.89
Neutral 0.82 0.83 0.82
Positive 0.87 0.87 0.87
Macro Avg. 0.86 0.86 0.86
Accuracy 0.86
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Figure 8.1: Confusion Matrix when trained and tested on Dreamers (3-class)

8.1.2 6-Class Classification Performance

To evaluate the model’s ability to detect more nuanced emotional tones, we con-
ducted a second experiment using a 6-class version of the Dreamers’ dataset. This
setting retains finer granularity across the sentiment scale while excluding only
the rarest class (original class 7), which was underrepresented and removed during
preprocessing due to insufficient support.

This classification task is more challenging than the 3-class version due to
the increased number of classes and finer inter-class distinctions. The model
configuration remained identical to that used in the 3-class experiment: two hidden
layers with 200 and 100 neurons, tanh activation, adam solver, a = 0.01, and 500
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training iterations. The same stratified 80/20 train-test split was used to maintain
consistency in evaluation.

Table 8.2 reports the precision, recall, and Fj-score for each of the six sentiment
classes, along with the macro-averaged scores and overall accuracy and figure 8.2
shows the corresponding confusion matrix.

Table 8.2: Classification report for 6-class sentiment prediction (Dreamers).

Class Precision Recall F1-Score
Class 1 (Very Negative) 0.89 0.83 0.86
Class 2 (Negative) 0.77 0.89 0.83
Class 3 (Slightly Negative) 0.79 0.83 0.81
Class 4 (Slightly Positive) 0.83 0.79 0.81
Class 5 (Positive) 0.80 0.75 0.77
Class 6 (Very Positive) 0.88 0.83 0.85
Macro Avg. 0.83 0.82 0.82
Accuracy 0.81

The model achieved a macro-averaged Fj-score of 0.82 and an accuracy
of 0.81, showing only a modest decrease in performance compared to the 3-class
task. This drop is expected given the increased complexity of the label space and
the relatively lower sample sizes per class.

Notably, the model performed best on the extreme sentiment classes (Class 1 and
Class 6), which are more distinct in language and emotional polarity. Performance
was slightly lower for intermediate classes (Class 3, 4, and 5), where semantic and
emotional overlap is higher. This observation aligns with prior literature on class
confusion in fine-grained sentiment classification tasks.

These results suggest that while the MLP generalizes well across a more detailed
label space, further performance improvements may require additional feature
engineering, ensemble methods, or label smoothing strategies to reduce boundary
confusion between adjacent classes.

8.1.3 Cross-Source Evaluation: Annotator Generalization
(3-Class)

To assess the model’s ability to generalize across labeling sources, we conducted a
series of cross-source experiments in the 3-class setting. In this setup, models were
trained on labels provided by one source (e.g., Expert Annotator, Independent
Judges, Dreamers) and tested on another, allowing us to evaluate annotation
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Figure 8.2: Confusion Matrix when trained and tested on Dreamers (6-class)

consistency and the transferability of sentiment representations across human
annotators.

Figure 8.3 summarizes the results of this cross-source evaluation, where each
cell reports the classification accuracy achieved when the model was trained on
the row source and tested on the column source. Detailed performance metrics,
including precision, recall, and F1-score matrices, are reported in figures 8.4, 8.5
and 8.6 respectively.

As expected, models trained and tested on the same annotator set (diagonal
values) achieved the highest accuracy, particularly for the Independent Judges
(91.38%) and Dreamers (85.96%) labels. However, when evaluated across sources,
performance dropped substantially, especially for the Dreamers model tested on
Expert Annotator (38.89%) and Judges (36.11%) labels.

These discrepancies reveal a considerable divergence in how different annotator
groups interpret and label emotional tone in dream narratives. Models trained
on one annotator set often fail to generalize to another, reflecting both subjec-
tive annotation practices and potential inconsistency in sentiment granularity
or definition across groups. This supports previous findings that sentiment an-
notation—especially in abstract domains like dreams, is highly subjective and
source-dependent.
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Figure 8.3: 3-Class cross-source accuracy matrix (Train — Test).
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Figure 8.4: 3-Class cross-source precision matrix
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Figure 8.5: 3-Class cross-source recall matrix (3-class)

While these results highlight the limitations of training on a single annotator
perspective, they also underscore the importance of label alignment, multi-annotator
fusion techniques, or domain adaptation approaches when deploying such models
across diverse populations or applications.

8.1.4 Cross-Source Evaluation: Annotator Generalization
(6-Class)

To further evaluate the generalization ability of the model across annotators, we
repeated the cross-source classification experiments in the 6-class setting. In this
setup, the sentiment label space is more granular, making the task of cross-source
learning even more challenging due to greater annotation ambiguity and finer
distinctions between classes.

Figure 8.7 presents the resulting 2x2 heatmap, where each cell indicates the test
accuracy achieved when the model is trained on one annotator source (row) and
tested on another (column). The two annotator groups included in this analysis
are the Dreamers (6-class) and Ezxpert Annotator (6-class), with class mappings
aligned to the common 6-class structure. Detailed performance metrics, including
precision, recall, and F1-score matrices, are reported in figures 8.8, 8.9 and 8.10
respectively.
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Figure 8.8: 6-Class cross-source precision matrix

The results indicate that intra-source accuracy remains high, 80.7% for Dreamers
— Dreamers and 73.68% for Expert Annotator — Expert Annotator. However,
cross-source generalization drops sharply: training on Expert Annotator and testing
on Dreamers results in only 22.22% accuracy, while the reverse (Dreamers —
Ezxpert Annotator) yields 25.00%.

This significant drop illustrates the challenge of transferring fine-grained senti-
ment understanding between annotator groups in abstract, introspective domains
such as dream narratives. The results suggest that label boundaries and class
interpretations vary not only in polarity but also in subtle gradations of inten-
sity. Unlike the 3-class case, where coarse emotional tone aligns more consistently
across annotators, the 6-class structure appears more susceptible to inter-annotator
divergence.

These findings highlight the need for further investigation into inter-annotator
agreement, possible class relabeling strategies, and the development of models that
can accommodate soft or probabilistic label alignments across sources.
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Figure 8.10: 6-Class cross-source F1-score matrix
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8.1.5 Correlation Analysis as Baseline for Cross-Source
Accuracy

To better interpret the cross-source accuracy results presented in the previous
section, we introduced a correlation-based baseline analysis. While accuracy
reflects model performance when transferring across annotator domains, it does not
directly inform us about how similar the annotators themselves are in their labeling
behavior. Without such context, it’s difficult to determine whether a drop in
cross-source accuracy is due to poor model generalization or inherent disagreement
between annotators.

To address this, we computed pairwise correlation metrics between annotator
label sets prior to model training. These correlations serve as a theoretical ceiling
or lower-bound expectation for cross-source model performance. If two annotators
are highly correlated in how they label the same data, we would reasonably expect
a model trained on one to perform well when tested on the other. Conversely, if
two annotators demonstrate low or no correlation, even a well-performing model
may struggle to generalize across that boundary.

This approach frames model performance not only in terms of algorithmic
success but also in relation to human disagreement and subjective interpreta-
tion—particularly important in sentiment tasks involving introspective content
such as dream reports.

To operationalize this idea, we employed two widely used inter-rater agreement
metrics:

« Spearman’s Rank Correlation Coefficient - to quantify the monotonic
relationship between ordinal sentiment scores across annotators.

o Cohen’s Kappa Coefficient — to estimate the categorical agreement beyond
chance, reflecting how often two annotators assign the same label to the same
item.

These correlations were computed for both the 3-class and 6-class settings, and
the results are visualized using cross-annotator heatmaps. Comparing these corre-
lation matrices with the corresponding cross-source accuracy matrices allows us to
distinguish model generalization failures from fundamental labeling inconsistencies
between sources.

In the following sections, we present and analyze these correlations in detail,
interpreting how human annotation alignment corresponds, or fails to correspond,
to model transferability across annotation domains.
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8.1.6 Spearman’s Rank Correlation as an Agreement Base-
line

To contextualize cross-source accuracy, we first quantify how similarly annotators
order the same items. We use Spearman’s rank correlation (r)[16], a nonparametric
measure of monotonic association between two ordinal variables. It provides an
agreement baseline: if two annotators rank items similarly (high r), a model
trained on one is expected to transfer better to the other; when r is low, poor
cross-source accuracy is expected even for a strong classifier.

Definition and computation. Let {(x;,y;)}, be paired labels for the same n
items from two annotators. Rank each series (average ranks for ties), obtaining
R; = rank(z;) and S; = rank(y;).
_ >y (Ri — R)(Si — 5)

VI (B = R/, (8 — §)2

Ts

Equivalently, when there are no ties, d; = R; — S; and

637, df

— 1_7

s = n(n?—1)

We use the rank-covariance form (first equation) with average ranks to handle ties
robustly. For large n, significance can be approximated via the usual Fisher /Student
transforms on r, but here we focus on effect sizes as agreement baselines.

8.1.7 Results (3-class).

Figure 8.11 shows the 3-class Spearman matrix. We observe strong rank agreement
between Ezpert annotator and Independent Judges (rs = 0.885), and much weaker
agreement between Dreamers and either Expert Annotator (rs = 0.260) or Judges
(rs = 0.237). These values align with the cross-accuracy matrix: moderate transfer
between Fxpert Annotator— Independent Judges and Independet Judges— Expert
Annotator (= 0.53—0.56), but markedly lower transfer when Dreamers is involved
(=~ 0.30—0.39). Thus, drops in cross-source accuracy reflect genuine inter-annotator
disagreement rather than model failure.

8.1.8 Results (6-class).

With finer labels (6-class), agreement diminishes further: Dreamers vs. Expert
Annotator yields ry = 0.164 (Figure 8.12). This very low monotonic association
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Figure 8.11: Spearman rank correlation (3-class).

matches the sharp collapse in cross-source accuracy (& 0.22-0.25), indicating that
annotators apply substantially different ordinal criteria at higher granularity.

Overall, r¢ tracks the transferability trend: higher rank agreement = higher
cross-source accuracy; low agreement = limited transfer. Practically, these results
suggest (i) harmonizing label definitions or using multi-annotator fusion when
training cross-domain models, and (ii) treating rs as a principled upper-bound
indicator for expected cross-accuracy between annotator sources.

8.1.9 Cohen’s Kappa Agreement (3-Class Setting)

While Spearman’s correlation captures ordinal alignment, it does not evaluate
exact label agreement. To measure inter-annotator consistency at the categorical
level, we employed Cohen’s kappa (k), which quantifies observed agreement while
adjusting for chance.
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Figure 8.12: Spearman rank correlation (6-class).

Definition. Cohen’s kappa is defined as:
Po - Pe
K =—"
1— P,

where:

o P, isthe observed agreement (i.e., proportion of instances where two annotators
assigned the same class),

o P, is the expected agreement by chance, computed from the product of
marginal probabilities.

This correction accounts for situations in which annotators might match labels
by coincidence rather than shared understanding. The statistic ranges from —1 to
+1, where K = 1 implies perfect agreement, x = 0 suggests agreement no better
than random, and negative values indicate systematic disagreement.

According to McHugh (2012)[17], the following guidelines offer a practical
interpretation:

e k < 0.20: None to slight agreement

e 0.21 < k < 0.40: Minimal agreement
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0.41 < kK < 0.60: Weak agreement

0.61 < k < 0.79: Moderate agreement

0.80 < k < 0.90: Strong agreement

k> 0.90: Almost perfect agreement

Figure 8.13 shows the kappa matrix for the 3-class setting. We observe the
following pairwise values:

 Expert Annotator vs. Independent Judges: x = 0.846 — strong agree-
ment

o Expert Annotator vs. Dreamers: x = 0.099 — slight agreement

o Independent Judges vs. Dreamers: x = 0.059 — no meaningful agreement

1.0

0.8

Expert(3-class)

0.6

Target
Judges

-0.4

-0.2

Dreamers(3-Class)

1
Judges Dreamers(3-Class)
Target

!
Expert(3-class)

Figure 8.13: Cohen’s kappa matrix for 3-class annotation alignment.

These results mirror our earlier findings based on Spearman’s r, and cross-
source accuracy. The strong agreement between Expert Annotator and Independent
Judges explains why models trained on one generalize reasonably well to the other.
Conversely, the near-zero kappa values involving Dreamers suggest a mismatch
in how annotators conceptualize emotional categories, either due to subjective
interpretation, inconsistent labeling, or different rating criteria altogether.

Unlike percent agreement, Cohen’s kappa penalizes “false agreement” that may
arise by chance. Therefore, the very low s values between Dreamers and the other
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two sources are not merely indicators of inconsistency but statistically meaningful
evidence of divergent labeling schemes.

Cohen’s kappa provides a robust, categorical-level agreement baseline. When
used alongside Spearman’s ordinal measure, it offers a more complete picture
of annotation quality. Together, these metrics justify our decision to analyze
annotator-specific generalization separately and reinforce the role of subjective
divergence as a limiting factor in cross-source model transferability.
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Chapter 9

Exploring DeBERTa with
Parameter-Efficient
Fine-Tuning

Transformer-based pre-trained language models have become the backbone of mod-
ern natural language processing (NLP), offering remarkable gains in a wide range
of tasks, including sentiment classification. Among them, DeBERTa (Decoding-
enhanced BERT with Disentangled Attention) introduces architectural improve-
ments that lead to both better performance and higher efficiency compared to
BERT and RoBERTa [18].

Unlike conventional transformers that combine token content and positional
embeddings via simple summation, DeBERTa disentangles these two components
and processes them separately. This allows the attention mechanism to model richer
interactions between token content and position. The architecture also includes an
Enhanced Mask Decoder (EMD ), which reintroduces positional information only
during decoding, reducing noise during the encoding phase.

DeBERTa achieves state-of-the-art results on multiple benchmarks such as MNLI,
SQuAD, and SuperGLUE, while being more parameter-efficient and semantically
aware. These properties make it especially suitable for nuanced tasks such as
sentiment analysis of introspective and emotionally rich narrative texts, like the
dream descriptions studied in this thesis.

To fine-tune DeBERTa for our specific domain with limited computational
resources, we adopt LoRA (Low-Rank Adaptation), a parameter-efficient tuning
method. LoRA allows adaptation by injecting trainable rank-decomposed matrices
into the attention layers while keeping the pre-trained weights frozen. This sig-
nificantly reduces the number of trainable parameters and memory consumption,
making fine-tuning feasible without sacrificing model performance.
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The rest of this chapter introduces the architecture of DeBERTa in more detail,
explains the rationale for LoRA-based fine-tuning, and presents the results of
adapting this architecture to our dataset.

9.0.1 DeBERTa Model Architecture

DeBERTa enhances the transformer encoder by introducing two core innovations:
the Disentangled Attention Mechanism and the Enhanced Mask Decoder. Together,
they improve contextual representation, reduce positional interference, and enable
efficient transfer to downstream tasks.

Disentangled Attention Mechanism. In BERT and most transformers, token
content and absolute position embeddings are added together before attention. In
contrast, DeBERTa maintains separate embeddings for content and position and
computes attention using multiple projections:

Attention; ; o (QE)TKJG + (QE)TK&‘—j) + (Qf)TKf
Where:
« Qf, Kj: content query and key

e QI K (i)’ relative position query and key
This disentangled structure enables richer modeling of semantic and structural
relationships, leading to more expressive contextual embeddings.

Enhanced Mask Decoder (EMD). In BERT, absolute position embeddings
are introduced early in the encoder. DeBERTa removes them from the encoder
entirely and instead introduces absolute positions only during decoding through
the Enhanced Mask Decoder. This reduces the burden of position modeling during
context learning and improves generalization to downstream tasks.

Training Optimizations. DeBERTa also incorporates pre-activation LayerNorm,
which stabilizes training, and supports both Masked Language Modeling (MLM)
and Replacement Token Detection (RTD) objectives. The model is released in
multiple sizes (base, large, v3 variants) with varying numbers of layers and hidden
dimensions.
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Table 9.1: DeBERTa model variants (source: He et al., 2021).

Model Parameters Layers Hidden Size Heads
DeBERTa Base 139M 12 768 12
DeBERTa Large 386M 24 1024 16
DeBERTa V3 Base 184M 12 768 12

In this study, we adopt the DeBERTa v3 Base model for its balance of efficiency
and performance, integrating it with LoRA for domain-specific fine-tuning on dream
sentiment classification.

9.0.2 Parameter-Efficient Fine-Tuning with LoRA

As modern transformer-based language models grow increasingly large, full fine-
tuning becomes computationally and memory-wise prohibitive. To address this
limitation, we adopt Low-Rank Adaptation (LoRA) [19], a parameter-efficient
fine-tuning method that significantly reduces the number of trainable parameters
while preserving or even improving task performance.

As illustrated in Figure 9.1, LoRA enables adaptation by training only low-
rank matrices A and B, while keeping the main model weights frozen. This
reparameterization significantly reduces the number of trainable parameters and
enables lightweight fine-tuning. Furthermore, task-switching becomes trivial—only
the small A, B matrices need to be swapped, which is especially beneficial for
scenarios where multiple downstream tasks must share a common foundation
model.

In fact, rather than updating all parameters of the pre-trained model, LoRA
keeps the original weights W € R%*? frozen and injects trainable low-rank matrices
A € R™?% and B € R?*" into the forward pass as an additive reparameterization:

W = W, + AW = W, + BA

where r < d, allowing efficient adaptation using only a small number of parameters.
During training, gradients are computed and applied solely to A and B, keeping
Wi intact.

LoRA is motivated by the observation that the changes induced by full fine-
tuning lie in a low intrinsic rank subspace. Thus, instead of full updates, low-rank
decompositions suffice to capture task-specific knowledge. This brings multiple
advantages:

» Storage Efficiency: Only a small set of low-rank weights need to be stored
per task.
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Figure 9.1: Low-Rank Adaptation (LoRA) reparameterization approach. Instead
of updating the full pre-trained weight matrix W € R%¢ LoRA introduces two
trainable low-rank matrices A € R™¢ and B € R¥". During fine-tuning, the
pre-trained weights are kept frozen, and only the low-rank update AW = BA
is trained. This design allows efficient storage, fast task switching, and reduced
memory overhead. (Adapted from [19])

o« Compute Efficiency: Memory and computation are saved by avoiding
gradients on the full model.

e No Inference Overhead: At inference time, the low-rank update can be
merged into the base weights, maintaining the same computational cost as
the original model.

o Task Modularity: Enables rapid task-switching by swapping only the LoRA
modules.

LoRA is typically applied to key weights in the attention mechanism of trans-
formers. For a self-attention layer with projection matrices W,, Wy, W,, W, we
apply LoRA to the query and value projections (W,, W,). This choice strikes a
balance between expressiveness and parameter efficiency [19)].

In our implementation, we fine-tuned DeBERTa using LoRA with different
configurations depending on the classification setting.
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9.0.3 Training Configuration

We fine-tuned microsoft/deberta-v3-base, with a maximum sequence length of
256 tokens.

To provide a clear overview of the model setup, the following tables summarize
the most important elements of the DeBERTa training pipeline. Table 9.2 outlines
the LoRA configuration used for parameter-efficient fine-tuning. Table 9.3 details
the training schedule and hyperparameters. Finally, Table 9.4 presents the data
augmentation strategy used to expand and diversify the input space for improved
generalization.

Table 9.2: LoRA Configuration

Parameter Value

LoRA Rank (7) 32
LoRA Scaling () 64
Dropout Rate 0.1

Table 9.3: Training Schedule

Parameter Value

Epochs 15

Batch Size (Train/Eval) 8

Learning Rate 1x107°
Warmup Steps 100

Weight Decay 0.01

Train/Test Split 80/20 (Stratified)
Class Balancing Weighted loss

Table 9.4: Data Augmentation Summary

Aspect Details

General Augmentation 2x

Minority Class Boost — 2x

Techniques Applied 1. Synonym Replacement (dream-related terms)
2. Paraphrase Augmentation
3. Random Insertion
4. Random Deletion (5-15% of tokens)
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9.0.4 DeBERTa Fine-Tuning Performance on Dreamers
(3-Class Setting)

To assess how well the fine-tuned DeBERTa model captures subjective emotional
patterns expressed by the dreamers themselves, we trained a dedicated 3-class
classifier exclusively on the Dreamers’ self-annotated dataset. The objective was to
measure the model’s capacity to internalize introspective emotional cues, where
sentiment labels ranged from 0 (negative) to 2 (positive).

Table 9.5 summarizes the full classification metrics across all sentiment categories,
while Figure 9.2 visualizes the corresponding confusion matrix.

Table 9.5: Full Classification Report — 3-Class Dreamers Model

Class Precision Recall Fl-score Support
0 0.6667 0.2500 0.3636 8
1 0.0000 0.0000 0.0000 )
2 0.5833 1.0000 0.7368 14
Accuracy 0.5926 27
Macro avg 0.4167 0.4167 0.3668 27
Weighted avg 0.5000 0.5926 0.4898 27

-14

-12
0

- 10

Count

True Label

| .-.
-- |
0

Predlcted Label

Figure 9.2: Confusion matrix for the fine-tuned DeBERTa model on Dreamers’
3-class sentiment labels.

The model achieved an overall accuracy of 59.3%, with substantial variation
across classes. Class 2 (positive sentiment) was predicted most reliably, achieving
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an Fl-score of 0.74 and perfect recall (1.00), suggesting the model effectively
captures the lexical and contextual cues associated with positive emotional content.

Conversely, the model struggled with neutral and negative sentiments, partic-
ularly Class 1, which exhibited no successful predictions. This discrepancy may
reflect both the limited sample size and the subjective inconsistency in mid-range
(neutral) labeling by dreamers, where emotional ambiguity is high and linguistic
markers are subtle.

The confusion matrix (Figure 9.2) illustrates a strong directional bias toward
positive classification, confirming that while DeBERTa successfully identifies posi-
tive affect, it tends to overgeneralize ambiguous or weakly negative expressions as
positive. This aligns with findings in prior affective computing literature, where
transformer-based models fine-tuned on introspective text often overfit to dominant
sentiment categories due to the low inter-class separation of subjective emotions.

9.0.5 DeBERTa Fine-Tuning Performance on Dreamers
(6-Class Setting)

To further test the model’s sensitivity to finer-grained emotional distinctions, the
DeBERTa model was fine-tuned on the Dreamers’ self-annotated dataset using the
6-class labeling scheme. This version expands the sentiment resolution, ranging from
2 (strongly negative) to 7 (strongly positive), and was designed to assess whether
transformer-based contextual encoders can capture subtle emotional gradations
within introspective narratives.

The fine-tuning configuration followed the same architecture as the 3-class exper-
iment—combining LoRA-based parameter-efficient adaptation, class weighting, and
mild data augmentation, while keeping the same number of epochs and learning
rate for comparability. The classification metrics and confusion matrix are reported
in Table 9.6 and Figure 9.3 respectively.

Table 9.6: Full Classification Report — 6-Class Dreamers Model

Class Precision Recall Fl-score Support
2 0.0000 0.0000 0.0000 2

3 0.0000 0.0000 0.0000 3

4 0.0000 0.0000 0.0000 4

5 0.0000 0.0000 0.0000 5

6 0.2222 1.0000 0.3636 6

7 0.0000 0.0000 0.0000 7
Accuracy 0.2037 27
Macro avg 0.0370 0.1667 0.0606 27
Weighted avg 0.0494 0.2222 0.0808 27
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Figure 9.3: Confusion matrix for the fine-tuned DeBERTa model on Dreamers’
6-class sentiment labels.

The DeBERTa model achieved an overall accuracy of 20.37%, indicating sub-
stantial difficulty in generalizing across fine-grained emotional categories. As visible
in the confusion matrix (Figure 9.3), the model overwhelmingly predicted the
dominant class (label 6), showing a strong bias toward high-intensity positive senti-
ments. All other classes—including neutral and moderately negative ones—were
completely misclassified.

This behavior can be attributed to two main factors. First, the dataset’s limited
size and uneven class distribution exacerbate overfitting toward frequent labels.
Second, subtle emotional distinctions between neighboring classes (e.g., 4 vs. 5)
are often linguistically weak, making it difficult even for advanced language models
to detect stable boundaries in short introspective text.

Although LoRA fine-tuning provides efficient adaptation with limited parameters,
the results demonstrate that high-granularity sentiment tasks require substantially
larger and more balanced datasets to reach reliable discriminative performance.

9.0.6 Cross-Source Evaluation Results: 3-Class Setting

To assess the model’s ability to generalize across subjective sentiment annotations,
we trained DeBERTa+LoRA classifiers on labels provided by one source and
evaluated performance on the other two. This cross-source evaluation enables
analysis of label alignment and transferability across annotators with differing
psychological perspectives.
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The results are summarized in Figure 9.4, where each cell represents the accuracy
obtained when training on the source in the corresponding row and testing on
the target in the corresponding column. Detailed performance metrics, including
precision, recall, and F1-score matrices, are reported in figures 9.5, 9.6 and 9.7
respectively.

Dreamers(3-Class)

Expert Annotator (3-class)

Train Target
Accuracy Score

Independent Judges

Dreamers(3-Class) Expert (3-class) Judges
Test Target

Figure 9.4: Cross-source accuracy matrix for 3-class sentiment annotations.
Each cell shows the model’s accuracy when trained on one rater’s labels and tested
on another.

Key Findings.

e Moderate Self-Consistency: The model trained and evaluated on dreamer
self-ratings achieved an accuracy of 59.3%, indicating moderate internal
consistency in introspective sentiment judgments.

o Asymmetric Transferability from Dreamers: When trained on dreamers
and evaluated on expert or judge annotations, the model reached 48.3% and
53.9% accuracy, respectively. This shows a mild improvement over earlier
experiments, yet still confirms that emotional representations by dreamers
remain only partially transferable to external evaluators.

« Weak Generalization from External Sources: Models trained on expert
annotations or judges failed to generalize back to the dreamer labels, both
achieving only 20.2% accuracy on the dreamer-labeled test set. This asym-
metric pattern highlights a critical mismatch in how emotions are internally
experienced versus externally inferred.
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Independent Judges

Dreamers(3-Class) Expert Annotator (3-class) Independent Judges

Test Target

Figure 9.5: 3-Class cross-source precision matrix

e Moderate Cross-Agreement Between Experts and Judges: Models
trained on judges generalized reasonably to expert annotations (48.3%) and
vice versa (51.7%), suggesting a closer alignment between these external
raters compared to either’s agreement with the dreamers.

These updated results reinforce the central theme of this study: emotional
perception is highly dependent on the annotator’s perspective. While the expert
and judge annotations display a degree of mutual transferability, their ability to
model or predict the dreamers’ self-rated emotions remains limited. Conversely,
although the dreamer-based model transfers only moderately to external raters, it
retains some internal coherence.

More importantly, these cross-source generalization patterns are consistent
with our Spearman correlation analysis (see Sections 8.1.7 and 8.1.9). In
particular, we observed a strong rank correlation between expert and judge an-
notations (p = 0.885), contrasted with weak correlations between either of them
and the dreamers (p = 0.260 and p = 0.237). This statistical evidence confirms
that self-assessed emotional tone diverges significantly from external evaluation—a
central challenge in subjective affective computing tasks such as dream sentiment
classification.
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Figure 9.6: 3-Class cross-source recall matrix

9.0.7 Cross-Source Evaluation Results: 6-Class Setting

To assess whether finer-grained emotional distinctions could improve cross-rater
generalization, we extended our evaluation to the 6-class sentiment annotation
scheme. This configuration provides a more nuanced representation of emotional
tone but also increases the risk of interpretive variability between annotators.
Figure 9.8 reports the pairwise accuracy scores across dreamer and expert
annotations in this setting. Detailed performance metrics, including precision, recall,
and Fl-score matrices, are reported in figures 9.9, 9.10 and 9.11 respectively.

Key Findings.

o Overall Low Agreement: Across all configurations, accuracy scores remain
low, with self-consistency values of 20.4% for both dreamers and the expert
annotator. This indicates that even within the same rater, label granularity
introduces additional noise and ambiguity, reducing model confidence and
consistency.

e Cross-Rater Generalization: When trained on dreamers and evaluated on
expert labels, the model achieved an accuracy of 20.8%, while the inverse
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Figure 9.7: 3-Class cross-source F1-Score matrix

configuration (expert to dreamer) yielded 18.5%. Both results reflect a near-
random alignment between annotators, suggesting that emotional perception
at this granularity is highly subjective and context-dependent.

o Impact of Fine-Grained Labeling: Compared to the 3-class setting,
performance dropped sharply in all transfer directions, confirming that finer
sentiment resolution increases annotation divergence and makes cross-source
generalization substantially more difficult.

The 6-class results reveal a pronounced fragmentation in emotional interpreta-
tion across annotators. Unlike in the 3-class setup, where partial generalization
was observed between external raters, here both self- and cross-source accuracies
converge near random levels, emphasizing that fine-grained emotion scales amplify
subjective disagreement rather than resolve it.

Consistent with our correlation analysis (see Section 8.1.9), the Spear-
man rank correlation between Dreamer and Expert labels was extremely weak
(p = 0.164), confirming that these two perspectives exhibit minimal monotonic
association. Together, these findings demonstrate that the subjective and context-
dependent nature of dream emotions resists stable modeling at high categorical
resolution, underlining the intrinsic challenge of affective computing in free-form

52



Exploring DeBERTa with Parameter-Efficient Fine-Tuning

psychological narratives.
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Figure 9.8: Cross-source accuracy matrix for 6-class sentiment annotations.
Each cell shows the model’s accuracy when trained on one rater’s labels and tested
on another.
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Figure 9.11: 6-Class cross-source F1-Score matrix

55



Chapter 10
Conclusion

This thesis set out to explore whether machine learning can reliably decode the
emotional content embedded in free-text dream narratives, a domain marked by
abstraction, subjectivity, and linguistic ambiguity. Through a hybrid modeling
pipeline combining TF-IDF and Empath features, paired with a carefully tuned
Multi-Layer Perceptron and robust resampling strategies, we achieved strong classifi-
cation performance across both coarse (3-class) and fine-grained (6-class) sentiment
scales. The results, 86% accuracy in the 3-class setting and 81% in the 6-class,
demonstrate that symbolic and affectively rich dream content is not only learnable
but also predictable to a meaningful degree using structured representations of
lexical and semantic information.

Beyond performance metrics, this work revealed deeper insights into the human
side of emotional annotation. Our cross-source evaluations highlighted a striking
lack of agreement between self-reported emotions and those assigned by external
annotators. Models trained on one source, such as the dreamers, struggled to
generalize to others, with accuracy often dropping below 40%. These findings were
reinforced by low Spearman’s rank correlations and Cohen’s kappa values, which
confirmed that divergent interpretations, rather than model limitations, underlie
the generalization gaps. In contrast, strong alignment between expert and judge
annotations suggests that external perception of emotional tone may be more stable,
but also less reflective of the internal experience.

Interestingly, the transformer-based DeBERTa model with LoRA fine-tuning
achieved similarly high intra-source performance while maintaining the same cross-
source limitations. This convergence of traditional and modern models indicates
that regardless of architectural complexity, the ceiling for model generalization
is defined not only by data representation, but by the inherent ambiguity and
subjectivity of the task.

In essence, this thesis demonstrates that emotional decoding from dreams is
computationally feasible but inherently constrained by the nature of human emotion
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itself. Sentiment is not a static ground truth; it is negotiated between the dreamer
and the observer, shaped by context, psychology, and perspective. Therefore, any
Al system operating in this space must be critically aware of these limitations.

Looking forward, future work should focus on multi-annotator fusion strategies,
probabilistic labeling schemes, and personalization frameworks that account for
subject-specific emotional baselines. Furthermore, expanding the dataset across
cultures, languages, and dream types could enrich the generalizability of findings.
Ultimately, decoding dreams with Al is not just a computational challenge, it is a
philosophical one, requiring us to ask not only what a model predicts, but whose
emotion it reflects.
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