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Abstract

Powerline inspection is a critical maintenance task performed by helicopters or,
more recently, by manually piloted drones, both without automation or any real-
time awareness of data completeness. Autonomous UAVs with advanced sensors
have the potential to overcome these issues, but real-time mapping and autonomous
navigation in complex outdoor environments remain challenging. Fraunhofer Italia
aims to address these challenges by developing a UAV and ground station system
to support maintenance teams in real-time infrastructure inspection, with a focus
on powerlines.

This thesis, in collaboration with Fraunhofer Italia, proposes a perception frame-
work for geo-referenced 3D point cloud mapping using stereo vision and high-
precision GNSS. The resulting maps can serve as a basis for path planning and
autonomous navigation. The system is developed and tested using a Pixhawk flight
controller, Jetson Orin NX companion computer and ZED 2 stereo camera. While
the Pixhawk provides GNSS and IMU data for pose information, the ZED 2 camera
capabilities were exploited to handle the complex geometry of transmission tow-
ers, highlighting both its strengths and limitations. Built on the Robot Operating
System (ROS), the framework is modular and interconnected, enabling real-time
mapping performance. Due to limited onboard computational resources, further
processing tasks such as path planning must be offloaded to a ground station. Since
testing on a real drone was not feasible due to legal restrictions, a mock-up was
built, demonstrating the potential of real-time UAV-based mapping of transmission
towers.
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Introduction

Unmanned Aerial Vehicles have become popular in recent years across several differ-
ent fields. Firstly developed for military usage, nowadays they find applications in
surveying, photography, agriculture, disaster management, security, entertainment
and even in competitive drone racing [1]. Usually, UAVs are remotely-controlled
by human pilots, but recent advances in research and technology are bringing au-
tonomous flight one step closer to reality. Autonomy in UAVs can be interpreted in
different ways, spacing from flight-assistance tasks to fully autonomous missions that
require a full environmental awareness and decision making capabilities. To enable
such autonomy, UAVs can be equipped with a variety of sensors that support hu-
man pilot maneuvering, provide flight decision information, and acquire application-
specific data for either real-time use or offline processing. A distinction that should
be made is between the two main types of UAV: fixed-wing and rotatory-wing. The
first type, comparable to airplanes, are more popular in the military field due to high
speed and heavy payload capacity. Rotatory-wings, or multi-copters, on the other
hand, resemble helicopters and are the more interesting for many civil applications
due to their ability of stationary flight, so called hovering.

0.1 Problem Statement

Nowadays, powerline inspection is typically performed by manually-piloted UAVs,
sometimes with limited level of autonomy to assist the pilot in maneuvering the
drone in such difficult environment, but piloted solutions require significant train-
ing effort for human operators, which is costly and time-consuming. In some cases
inspections are still carried out by helicopters or by manual ground-based surveys.
This thesis focuses on multi-copters and their role in autonomous infrastructure in-
spection, with the intention of replacing traditional helicopters and manually-piloted
UAV operations. Drones have the potential to increase safety, speed, repeatability
and decrease the cost of powerline inspections. At the same time, autonomous solu-
tions provide more accurate data, also needed to let the drone have a full awareness
of the environment. Despite recent advances in sensing technologies and onboard
computing [2], inspection of infrastructure using UAVs still lacks fully autonomous
solutions due to the challenging nature of infrastructures themselves, the difficulty
of embedding the high computational load of autonomous mission in a flying plat-
form, and the need for high precision to ensure safety. Moreover, autonomous robots
themselves are a complex system that requires a multi-level architecture to divide
the problem into sub-tasks:

e Perception: Acquiring and processing sensor measurements to extract useful
information about the environment.



e Localization: Estimating the location of the drone within the environment.

e Planning: Planning the path according to mission objectives, environmental
and legal constraints.

e Control: Control the actuators (propellers) to follow the defined trajectory.

Some of these tasks can be computationally expensive, UAVs typically rely on a
ground-station to perform some of them. Tasks such as perception and control are
usually done onboard since are interfaced directly with the environment, and control
algorithms require direct feedback from sensors. Localization and planning, on the
other hand, are tasks that may require high data storage and powerful computation,
so are suitable to be performed off board on a ground computer.

Powerlines represent a particularly challenging case of study: UAVs are well
suited to cover wide spatial area, but their thin and elongated structures are diffi-
cult to detect . An additional challenge is represented by the different structure
of transmission towers, that can change in relation to the voltage (high and medium
tension), role (e.g. line endpoint) and environmental constraints. Moreover, achiev-
ing full autonomous inspection of infrastructure typically requires Artificial Intel-
ligence for tasks such as object detection. However, this thesis focuses specifically
on the mapping challenges of powerlines and leaves Al implementation as a future
work.

Figure 1: Different structure of transmission towers

Since powerlines are outdoor infrastructures spanning large areas, UAVs must
sustain long flights and handling high data throughput. To maximize endurance,
both payload and computational resources must be carefully limited to reduce weight
and power consumption. For this reason, in this work the main sensor for perceiv-
ing the environment is a depth camera, which provides both colored and depth
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images. However, it will be shown that small and complicated structures like trans-
mission towers and wires are difficult to detect for stereo vision systems, making it
hard to obtain precise 3D maps (as LiDAR-based survey), implying that a differ-
ent methodology must be adopted. In contrast, powerlines do not obstruct satellite
visibility, making it possible to rely on Global Navigation Satellite Systems (GNSS)
for position estimation. Moreover, high voltage represents a risk for the avionics
components of the drone, requiring the UAV to maintain a safety distance to avoid
potential hazards [4]. The dynamic nature of the environment must be also ac-
counted, as well as errors in the map. An obstacle avoidance system able to detect
any obstacles and react quickly to ensure safety should be considered. Together,
these factors illustrate the need for a balanced, integrated approach that considers
sensor selection, onboard processing, communication reliability, and mission safety
to achieve fully autonomous UAV infrastructure inspection.

0.2 Contributions and Objectives

Autonomous UAV powerlines inspection is a complex and multidisciplinary problem
that cannot be fully addressed in a single thesis. The work presented here is the
result of six months of work, in collaboration with Fraunhofer Italia, to explore the
feasibility of performing such inspection using a stereo camera and a high-precision
GNSS. In particular, the development of a perception and localization framework
to build 3D maps of the environment, for path planning usage, is the goal of this
thesis. Since the company is based in a no-fly zone due to the vicinity of an airport,
real UAV experiments could not be performed. It was therefore decided to build
a ground platform, ensuring a rigid mounting of components. This drone mock-
up would have been more suitable for rapid testing, at least in this phase of the
project, where only the perception and localization have been analyzed. Of course
this came at the cost of the impossibility to sense the wires, restricting to focus on
the transmission towers.
The contributions of this work can be summarized as:

1. System Design: A survey of the state of the art in UAV-based infrastructure
inspection, with a specific focus on perception and localization approaches.
This provided the foundation for identifying suitable software solutions given
the available hardware.

2. Hardware and Software Integration: A rigid structure to emulate a drone
platform was built. This drone mock-up integrates a ZED 2 stereo camera,
a high-precision GNSS receiver, a companion computer and a PX4 flight con-
troller. The software framework was based on ROS 2, well-suited to interface
with all the components.

3. RTK GNSS Correction Pipeline: Development of a custom pipeline to
transmit GNSS corrections from a base station to the onboard GNSS module,
enabling centimeter-level positioning.

4. Perception and Localization Framework: A modular ROS 2 pipeline was
designed to:

e Manage the acquisition and synchronization of data streams.
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e Implement a geo-referencing algorithm to project camera pixels into the
global world frame.

The subsequent adaptation of this pipeline for mapping, including filtering and
CUDA-based programming, was carried out by a colleague at Fraunhofer Italia.
19/

5. Evaluation and Testing: Validation of the integrated framework through
simulation (SITL with Gazebo) and field experimentsE]. Evaluation focused
on software integration, GNSS precision, geo-referencing accuracy and perfor-
mance analysis.

In summary, the main contribution of this thesis is the design, integration, and
validation of a perception and localization framework for UAV powerline inspection,
demonstrating the feasibility of combining stereo vision and RTK GNSS to achieve
reliable mapping under real-world constraints.

0.3 Thesis Outline

The structure of this thesis is designed to introduce the background, system design,
implementation and evaluation of the proposed framework. Following this introduc-
tory chapter, the thesis is organized as follows:

1. Chapter 1 - State of the Art: Provides an overview of related work in
UAV-based infrastructure inspection, stereo vision systems for mapping and
the modern approach to robotics.

2. Chapter 2 - System Design: Describes the hardware and software compo-
nents and the architecture adopted. The integration of every component is also
explained.

3. Chapter 3 - Development: Explains the implementation of the perception
and localization framework, including the RTK GNSS correction pipeline, geo-
referencing process and mapping.

4. Chapter 4 - Results and Discussion: Presents the outcomes of field exper-
iments, analyzing the accuracy, performance and limitations of the developed
pipeline. Results are discussed in relation to the objectives of the work.

Finally, Conclusion summarizes the main challenges encountered, the lessons
learned and proposes directions for future work.

I Mapping tests were performed on the lower parts of transmission towers using the UAV mock-up, due to the
impossibility of real flight tests.



Chapter 1

State of the Art

1.1 UAYV Powerline Inspection Approaches

Over the recent years, UAVs have become more common for infrastructures inspec-
tion. They provide highly detailed inspection without exposing human operators
to any hazardous situations. At the same time, they reduce cost and time of in-
spections, also allowing to increase the repeatability. Although manually piloted
drones are widely used, research is gradually moving towards fully autonomous sys-
tems, where UAVs can operate with minimal human intervention. Despite recent
progress, autonomous inspection of powerlines remains challenging due the highly
constrained operational environment. UAVs must navigate around tall towers, avoid
thin wires and maintain safe distances from high-voltage equipment. Moreover, pow-
erlines extend in a large area, which imposes additional limits on flight duration,
and consequently on payload and computational resources. Research on various ap-
proaches has produced innovative solutions, both regarding the drone configurations
and the processing algorithms. An example is the AERIAL-CORE project, a col-
laborative initiative coordinated by the University of Seville. It aimed to advance
state of the art technologies for the inspection and maintenance of aerial infrastruc-
ture using unmanned aerial cognitive vehicled!] A large numbers of paper have been
published since 2020, covering topics such as perception, manipulation, multi-UAV
collaboration and Al integration. The work in [6] presents several application of the
technologies developed during the project, demonstrating how different challenges
have been addressed using different type of UAV configuration and sensors.

Autonomous UAV Architectures

Autonomous UAVs are designed with a multi-level architecture, where each layer is
responsible for a specific function while interacting with the others [7]. As shown
in Figure [I.1], the first action of an autonomous robot is perception: read sensors
measurements and elaborate them to achieve knowledge of the interaction between
itself and the environment. These information are processed by a localization module
that elaborate a map of the environment and the pose of the robot within this
map. Then, according to mission goals, the optimal path for the robot is planned.
Finally the control module computes the actuators commands to make the robot
following the computed path. This is typically done with a feedback loop, where

ILink to the online page of the AERIAL-CORE project
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sensors measurements are considered as well in the computation of the actuator
commands, compensating for any disturbances within the environment, the robot

or the interaction of them.

Mission Objectives

'

Map
LOCALIZATION PLANNING
Pose
L
Environment data Trajectory
Y
Sensors
PERCEPTION > CONTROL
ISensors lActuators

Figure 1.1: Typical architecture for autonomous robots

Perception Techniques for Powerline Inspection

To implement UAVs perception module, typical sensors that could be found for
powerline inspection purposes are reported in Table[I.1} Sensors can be specific for
the inspection task or for autonomous flight. Ideally, a sensor should provide useful
data for both, minimizing the overall payload.
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Sensor Output Purpose Pros Cons
Camera 2D color images  Visual inspection Lightweight, pas- Strongly affected
(RGB) of powerlines; ob- sive low cost by lighting condi-
ject detection and tions
scene recognition
Stereo Depth map 3D reconstruction Lightweight, pas- Difficult to de-
Camera of  environment; sive tect thin object;
obstacle detection performance
decreases  expo-
nentially with the
distance
Thermal Infrared images  Detect hot spots Works in low- Expensive; low
Camera in conductors or light; wuseful for spatial resolution
insulators identifying defects
not visible in
RGB
LiDAR 3D point cloud Precise mapping High accuracy, ro- Heavy, expensive,
of towers and bust to lighting power-consuming
wires; obstacle
detection
Rangefinder Distance to ob- Simple obstacle Lightweight, low Limited range and
(Ultra- ject avoidance,  alti- cost field of view
sonic, tude estimation
Radar or
Laser)
IMU (In- Gyroscope, Attitude esti- Small, Drift accumulates
ertial Mea- barometer, mation,  control lightweight, over time
surement magnetometer stabilization high-frequency
Unit) data
GNSS Global position Global local- Provides global Requires open
estimate ization, map coordinates; with sky view; needs
georeferencing RTK reaches correction link for

cm-level precision

RTK

Table 1.1: Overview of common sensors used in autonomous UAV powerline inspection.

Cameras are the most common sensors for inspection because of their low weight
and flexibility. Stereo cameras can estimate depth, enabling 3D reconstruction of
the environment. However, in powerline inspection, this approach faces challenges.
The structure of transmission towers is geometrically complex and made of thin
steel lattices, while wires are thin and barely visible in the image, depending on the
background and lighting conditions.

LiDAR sensors provide more reliable 3D measurements and can capture thin
structures accurately, but they are often heavy, expensive, and power-consuming,

which limits flight duration.

Thermal cameras are useful to detect critical components, such as overheated
power equipment, but their contribution to flight-related information is limited.
Current research is adopting a hybrid approach, to take advantage of the strengths
of some sensors and using others to compensate the weaknesses. For example, the
work in [8] presented an interesting solution to detect overheated components using
a thermal camera, and localize them using a stereo camera.
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Another study analyze the use of RGB camera and mmWave (millimeter Wave)
radar to detect cables and accurately estimate their pose. Integrating these infor-
mation in the ROS 2 framework allow to use these pose for path planning, achieving
a safe navigation [9].

Multiple approaches are based on camera and LiDAR, which generally work well,
but the weight of the drone, power consumption and consequentially the flight time
is not satisfactory. Similar to this thesis, the work in [10] uses a stereo camera to
provide RGB-D images to feed a Neural Network that performs color segmentation
to detect pipes of an industrial plant, and fuses depth information to compute their
pose. While this approach works well for detecting pipes, thinner structures like
powerlines remain challenging for stereo vision system.

Localization and Mapping

For powerline inspection, mapping is not only about reconstructing the local environ-
ment: maps must be georeferenced to be useful for maintenance and repeatability.
High-precision GNSS, often with Real-Time Kinematic (RTK) correction, provides
centimeter-level positioning. In areas where GNSS signals are weak or obstructed,
visual-inertial odometry or SLAM techniques can provide supplemental positioning.
Although these methods are mainly developed indoors, some outdoor solutions ex-
ist. As reported in [11], most outdoor localization and mapping algorithms studied
in the recent years relied on vision-based sensors alone, as well as combined with
LiDAR or ranging sensors. The common approach is to feed SLAM algorithm (Si-
multaneous Localization and Mapping), then fuse data with GNSS to obtain an
highly-detailed map with georeferenced landmark.

Almost all SLAM methods rely on visual features to estimate their pose, with
the advantage of having a smooth odometry source. However, in contrast, are more
likely to drift over time and are affected by various sources of error. For this reason,
only certain points are georeferenced, maintaining the map precise. However, [12]
revealed that visual inertial odometry (VIO)-based SLAM algorithms struggle under
bad lighting conditions and with propeller-induced vibrations.

Using GNSS as the primary pose source for mapping would allow all points to be
georeferenced in a single step. However, GNSS signal are noisy and generally do not
provide a smooth trajectory. RTK systems on the other hand, significantly enhance
the precision of GNSS positioning, and simple filters are enough to obtain smooth
trajectory [13]. This approach will be evaluated in this thesis.

Obstacle Avoidance

Mapping, due to its heavy computational load, is usually performed at a low fre-
quency. For this reason, typically, a faster obstacle avoidance module is implemented
in autonomous robots. It is responsible for detection and avoidance of obstacles that
would collide with the UAV, including dynamic objects and covering for error in main
the map. The architecture of this system is similar to standard mapping, but with
high frequency sensor and fast algorithms with small memory storage, limiting the
map to the area next to the UAV. In the context of infrastructure inspection, the
drone is moving slowly, allowing a redundant detection of the same objects. Any-
way, dynamic objects and noise-related errors induce to include this module also in
inspection platforms for safety reasons.



Usually, this system is independent from the main mapping pipeline. It can be
achieved with many types of sensors, but a trade off between robustness and costP]
must be achieved. Fusing multiple sensors, including the main mapping ones, is also
an option. In particular, [14] shows that multi-sensors fusion is the most promising
solution, as it improves detection efficiency and perception completeness. On the
other hand it adds complexity in calibration, synchronization and data alignment,
However, for UAV missions, it seems to be impossible to rely on a single sensor,
since its weaknesses must be compensated by other sensors to handle edge cases
and ensure safety. Another study highlights that the extra complexity of fusion
approaches require additional computational load, emphasizing the need for efficient
algorithms and methods to enable real world applications [15].

In this thesis, obstacle avoidance is acknowledged but not implemented, since the
focus is on perception and localization.

Data Management

Autonomous missions involving mapping deal with huge amounts of data. Sensors
themselves provide high-throughput data that the perception module must handle in
real-time, typically onboard the UAV. Mapping algorithms usually generate point
cloud data, which grows with the map dimension. Managing this data onboard
would require a lot of computational resources, which is not always feasible. For
this reason, a common approach is to perform perception and control onboard, since
these modules directly interact with the environment and control module requires
real-time perception data for feedback control algorithms. Localization, mapping
and planning, on the other hand, can be offloaded to a powerful ground-station
machine. This approach has the advantage of enabling human supervision and
saving important onboard resources, which translates into longer flight time.
Real-time operation is critical for UAV missions, and the communication link
between drone and ground station becomes a key element in the pipeline. This link
must be stable and capable of transmitting large amounts of data quickly. Typical
options include Wi-Fi, LTE or 5G as can provide high bandwidth and relatively
stable connections. However, standard Wi-Fi is limited in range and LTE depends
on the availability and quality of cellular infrastructure. Another study explored
the use of a dedicated Wi-Fi-like data link module to enable real-time transmission
of high-resolution images during SaR (Search and Rescue) missions, demonstrating
solid performances at distances up to few kilometers [16]. While LTE can offer
slightly better performance, it has the significant drawback of relying on external
infrastructure, in terms of coverage, network load and quality of service.

Environmental Challenges

UAV flights face several environmental challenges, to which infrastructure inspec-
tions add further complexity. Aerial vehicles operate in a 3D environment that re-
quires advanced perception methods to extract all relevant features, and the amount
of mapping data generated increases quickly. Moreover, the eventuality of dynamic
obstacles should be considered, making path planning and obstacle avoidance mod-
ules more difficult [17]. UAVs are typically small and lightweight, making them

2Cost intended as the overall impact on the system



sensitive to weather conditions and requiring robust control algorithms to ensure
safe and reliable flight.

In addition to flight stability, weather and terrain also affect the inspection task
itself. For example, vegetation can obstruct the view of part of the infrastructure,
either by covering certain components or by limiting the ideal trajectory of the drone.
Additionally, the infrastructure itself can present challenges, such as electromagnetic
interference from high-voltage components, or thin cables that are difficult to detect
and avoid during flight. All these factors contribute to the complexity of the system,
requiring careful attention during the design of the platform to ensure effectiveness
and safety.

Safety Regulations

Safety is a key aspect of UAV operations: drones are subject to numerous restrictions
and constantly changing laws. Although there are some common directories, such
as those given by the European Union, each Country has its own regulations that
define areas and methods in which drones can fly. For example, no-fly zones and
altitude limits in the vicinity of airports affected this thesis, since Fraunhofer Italia is
based right next to Bolzano airport. For this reason, in this work a ground platform
that emulates the drone is adopted for testing.

Regulations also dictate safety aspects of the technology employed, both hardware
and software, adding necessary workload to engineers. Due to the hazardous nature
of flight, strict certification processes and redundancy requirements are essential to
mitigate risks and ensure functional safety [1§].

1.2 Stereo Vision for Mapping

As mentioned, stereo vision systems are particularly attractive for autonomous
tasks, since they can provide both RGB and depth information with a relatively
lightweight, passive sensors. However, their performance is tightly linked to im-
age resolution, scene texture, and distance from the target, which poses significant
challenges for powerline inspection. In the following, the principles and limitations
of stereo vision are reviewed, together with the main algorithms and a comparison
between popular commercial stereo cameras.

Principle of Stereo Vision

A stereo vision system relies on two cameras mounted at a fixed baseline B, usually
parallel. By analyzing the disparity d between corresponding points in the left and
right image, the depth Z of each point can be estimated according to:

f-B
= (1.1)

where f is the focal length of the cameras. Depth accuracy is therefore inversely
proportional to the accuracy of disparity estimation. This principle highlights two
important limitations. First, disparity becomes very small when the UAV is far
from the object, leading to high uncertainty in depth. Second, the discrete nature of
digital images imposes a minimum measurable disparity limited by sensor resolution,
which effectively limits the maximum reliable range of the system [19]. In particular,

A
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stereo vision accuracy is determined by the relationship between depth, disparity,
and image resolution. The depth resolution D, varies quadratically with distance
Z, according to

D, =7«

where « is a camera-dependent constant. This implies that accuracy decreases
rapidly as the distance increases.

For powerline inspection, additional difficulties arise from their thin structures
and wires. Most of the algorithms define a matching window in pixels units, used to
compare left and right images. Objects like wires may be thinner than this window
and thus discarded as noise. In other cases, lack of texture or low contrast with the
background can lead to ambiguous matches. These limitations are intrinsic of stereo
vision principle and can only be compensated by hardware or software performance.

Stereo Matching Algorithms

The key to stereo vision is the stereo matching algorithm, which finds correspond-
ing pixels between the two images, allowing to compute the disparity. Common
approaches can be broadly divided into two groups:

e Computer Vision: traditional approaches based on computer vision tech-
niques. For example:

— Local Methods: Use a fixed window to compare pixel intensities between
images. They are simple and fast, but struggle with thin objects and
textureless regions.

— Global Methods: Formulate stereo matching as an optimization problem:
they find a disparity map by minimizing a global energy function. They
can achieve high accuracy, but are computationally expensive.

— Semi-Global Methods: Approximate global optimization by aggregating
matching costs along multiple one-dimensional paths across the image [20],
providing a good trade-off between accuracy and efficiency.

— Feature-Based Methods: Instead of comparing pixel intensities, these
methods extract geometric features such as corners, edges, or planes to
establish correspondences [21]. They are more robust in textureless regions,
but generally more complex and often produce sparse disparity maps.

e Deep Learning: Modern approaches use neural networks trained on large
datasets to compute the matching cost and directly regress disparity. They
achieve state-of-the-art performance, but require substantial GPU resources.
In this thesis, it is shown that it was the only approach able to reliably detect
transmission towers with acceptable accuracy, using the ZED 2 camera.

The choice of the algorithm should be determined by the scene of interest and
the available computational resources [22)].
Overview of Stereo Cameras on the market

In addition to the choice of matching algorithm, the hardware of the stereo camera
has a significant effect on performance. Several commercial stereo cameras are avail-
able today, offering different trade-offs between resolution, range, size, and onboard
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processing capabilities. Popular examples include Intel RealSense D400 Series, Lux-
onins OAK-D and ZED 2 by Stereolabs. A comparison of these cameras is provided

in Table .2l
Specification ZED 2 RealSense D430 OAK-D Color
Baseline 120 mm 50 mm 75 mm
Depth Range 0.3-20m 0.2-10 m 0.8-12m
Resolution 19201080 at 30 fps 1280x720 at up to 30 1280x800 at 120 fps
(depth) fps
Additional ~ Sen- IMU IMU IMU
sors
Field of View 110°H x 70°V x 120° 86°H x 57°V x 94°D 69°H x 55°V x 81° D
(FOV) D
Frame Rate Up to 100 fps (depends Up to 90 fps (depends Up to 120 fps
(Depth) on resolution) on resolution)

USB interface / Aver-
age 1.9 W
175%30%x43 mm / 230g

USB interface / Up to
3.5 W
71x 14 x 11 mm / 70g

USB interface / Up to
3W
97x30x23 mm / 115 g

Interface / Power

Size / Weight

Table 1.2: Comparison of technical specifications between ZED 2, Intel RealSense D430, and OAK-
D.

The ZED 2 camera was used in this thesis. According to the datasheet [23], it
should satisfy requirements such as:

e Wide field of view and long depth range, to capture large scenes or outdoors.
e Great accuracy at longer distances thanks to the wide baseline.

e Integrated IMU can help with pose estimation and fusion with SLAM or odom-
etry pipelines.

e High resolution RGB-D data.

e Strong SDK support, including tools for depth, point-cloud generation and
ROS 2 integration as well.

However, a trade-off needs to be considered. Using high resolution data adds
computational load, which means that more CPU, GPU and bandwidth is needed.

A performance evaluation of the ZED stereo camera under variable illumination
and range conditions is presented in [24]. The authors report that within short to
medium ranges (e.g. 1-10 m), depth estimation is relatively reliable, but error grows
nonlinearly beyond that, especially when disparity becomes small or image contrast
decreases. Their observations confirm the theoretical limitations of disparity-based
depth estimation. However, those tests have been done on a large checkerboard on
an indoor wall, which makes it hard to define what to expect when it comes to detect
thin outdoor objects. Nevertheless, an important lessons learned from this study, is
that the depth range for accurate measurements is well below the 20 m declared in
the datasheet.

1.3 ROS 2 Framework for Real-Time Autonomous Robots

The ROS 2 (Robot Operating System 2) framework is a middleware that has im-
proved robot development, especially for autonomous systems that require real-time
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capabilities, distributed architectures and reliability. This section attempts to pro-
vide an overview of how this middleware has changed the world of robotics in the
last decade.

Early Middleware and Frameworks (1990s—2006)

Initially, robotics software was developed ad hoc by each research group specifically
for their robots, without any framework or middleware. It was typically written in C
or assembly, and lacked a structured architecture. During late 1970s the concept of
software architecture began to grown, but still built for specific robotic platforms. As
robots became more complex, the need arose for standard communication protocols
to interface hardware and software components, as well as reusable frameworks [25].
By the 1990s, the idea of open-source middleware/framework became popular, some
of the most famous in robotics are:

e Player/Stage Project: Released in 2000, it is a community free software
project, based on a client-server architecture. Player provides a network server

for robot and sensor control, while Stage is a 2D/3D environment simulator
[26].

e YARP: Yet Another Robot Platform was published in 2006 with the goal of
facilitating code reuse and modularity. It is a software package that provide
support for inter-process communication, image processing and hardware inte-
gration [27].

e RT-Middleware: Developed in Japan around 2005, the Robot Technology
Middleware is a standard that aimed to promote open robotic architectures. It
defines robotics elements, such as sensors, as RT-Components and proposes a
framework for a system development based on these components [2§].

ROS 1 Era

The Robot Operating System was first introduced in 2007. Building on robotics
research at Stanford University, Willow Garagd’| developed software to run on one
of its robots, naming it ROS. It was designed to be an open-source middleware,
not an operating system (OS) in the traditional sense. It provided a structured
communication architecture that could run on various host operating systems [29].
A large number of institutions contributed to ROS, forming a worldwide ecosystem
from the beginning. In the following years, it was further developed and gained
popularity, also thanks to the launch of the Q/A forum named ROS Answers in
2011. Some key elements that distinguished it from previous solutions are:

e Publish/subscribe model, node modularity, several message types.
e Large active community, robotic kits for academic/research use.
e Tools for simulation, visualization, logging (e.g., rviz, rosbag).

e Language support: C+403 and Python 2 were standard. C++ allowed lower
latency implementations, while Python offered easier prototyping but tended
to be slower (due to interpreter overhead, garbage collection, etc.).

3Willow Garage was a robotics lab and incubator in California, USA
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However, it had some important limitations, especially relevant for UAV and
real-time applications:

e Central master node architecture: A central ROS Master that handled
communication, which could become a bottleneck in multi-robot or distributed
systems.

e Lack of real-time execution requirements: The communication system
used a networks-based transport (UDP/TCP) that does not provide guarantee
about message delivery timing.

e Lack of security mechanisms: It was designed for academic usage, where
security was not a major concern.

To overcome these limitations and respond to the needs of both the industry
and the research community which was developing more complex systems, Open
Robotics released ROS 2 in 2017. It was a completely new project, designed from
scratch to avoid breaking ROS 1 due to the substantial changes.

The Advent of ROS2

During the design of ROS 2, other third-party middleware were explored by ROS
2 developers to overcome ROS 1 limitation. Data Distribution Service (DDS) was
the most promising solution, and was chosen as the ROS 2 middleware. It is a
standard for real-time and secure data distribution, which was exactly what ROS 2
was aiming at. Relevant ROS 2 feature [30], especially for UAV /autonomous flight,
are:

e Decentralized communication via DDS: Real-time capabilities, better
suited for multi-robot and large-scale distributed systems.

e QoS policies on topics: Quality of Service allows tuning the trade-off be-
tween reliability and best-effort for each topic [31].

e Better language support: Uses modern C++ and Python libraries built on
a common C library.

e Security: DDS security, encryption and authentication options.

e Cross-platform support: Runs natively on Linux, Windows, embedded sys-
tems, real-time OS, etc.

Even with these improvements, ROS 2 has its own challenges::

e Real-Time: ROS2 provides the framework and tools to reach real-time per-
formance, but achieving it depends on the system configuration [32], as well as
hardware and software components. Optimal system design is required.

e Language Choice: Using higher-level languages such as Python, which are
interpreted rather than compiled, introduces overhead which can increase la-
tency. On the other hand, C++ allows for lower level programming, and the
compiler translates it to machine code, which is executed faster. Chosing the
correct language for each node is crucial.
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e Resource Constraints: Embedded hardware limits the available computa-
tional resource. ROS2 introduces extra overhead, which increases computa-
tional load compared to lightweight protocols. This can reduce the resources
available for the application software, requiring a careful trade-off between
ROS2 functionalities and system efficiency.

Overall, ROS 2 can be considered a solid choice for research, academia, and in-
dustrial applications, thanks to its rich set of tools, flexibility, and strong community
support. In the context of this thesis, ROS 2 facilitated the integration of multi-
ple sensors and enabled the implementation of perception and mapping algorithms
across different programming languages and by different team members. Further-
more, it provided powerful tools for simulation, data visualization, and performance
evaluation, contributing to a modular and efficient development process.

A more detailed analysis of ROS 2 environment is provided in Section [2.2.1]
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Chapter 2

System Design

2.1 Hardware Components

The hardware platform used for this work was selected to balance flexibility, compu-
tational requirements and onboard resource limitations. As mentioned, flying a real
drone was unfeasible due to legal restrictions in the area of interest, but a rigid frame
on which to mount the components was necessary for hardware-in-the-loop and field
testing. For this reason, a non-flying drone mock-up was built to accommodate the
hardware needed for the framework. It consists of a flight controller, a companion
computer, a stereo vision camera and a RTK-capable GNSS system, along with the
battery and the necessary connectors.

(a) Pizhawk 6¢ (b) Jetson Orin NX (¢) ZED 2

Figure 2.1: Images by the respective official website already cited: (a) Flight Controller. (b)
Companion Computer. (¢) Stereo Camera

2.1.1 Flight Controller

The flight controller is central for every flying platforms. It is responsible for low-
level vehicle control, including sensor fusion for attitude estimation, motor control,
communication with onboard and off-board sensors and platforms. For this work,
a Pixhawk 6C was chosen, running the PX4 Autopilot firmware (v1.15). PX4 is an
open-source platform widely used in both research and industry, ensuring reliability
and community support. Pixhawk offers a high-performance processor, a wide set of
communication interfaces and multiple IMU redundancies, making it a solid choice
for a research platform. Although a real drone was not flown in this work, it ensures
realistic hardware-in-the-loop integration and data exchange with the rest of the
system. In particular, it provided IMU and GNSS data to the companion computer,
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which were essential for the perception and mapping framework. Moreover, PX4
includes an Extended Kalman Filter (EKF) for all sensors, providing consistent
data up to 100 Hz.

2.1.2 Companion Computer

A companion computer that provides onboard computational performance is manda-
tory for real-time perception tasks such as stereo depth estimation and 3D mapping.
On the other hand, more resources imply more weight and power consumption, lim-
iting the drone’s flight time. A trade-off is found in the NVIDIA Jetson Orin NX
module. The Orin NX provides a 6-core ARM CPU and an Ampere GPU with
1024 CUDA cores, optimized for parallel computation. This allowed the execution
of the depth estimation and the point cloud mapping algorithms onboard. A more
detailed analysis of performance is provided in Section section

Feature Value

Memory 8 GB 128-bit
Ampere GPU 1024 CUDA cores
Max Operating Frequency 765 MHz
Size 69.6 x 45 mm
Peripheral Interfaces 3x USB 3.2, 3x USB 2.0
3x1 + 1x4 PCle
3x UART
2x SPI
4x 12C
1x CAN
DMIC
DSPK
2x 12S
15x GPIOs

Table 2.1: Jetson Orin NX 8GB Specifications [33]

Despite its considerable computational capability, the Jetson Orin NX remains
limited for achieving full UAV autonomy, especially when additional modules such
as path planning or advanced navigation are considered. A practical solution is to
offload computationally demanding tasks to a more powerful ground-station com-
puter, with the Jetson transmitting processed mapping updates over a wireless link.
This architecture balances real-time onboard perception with off-board computa-
tion, and represents a realistic design path for UAV-based inspection systems.

2.1.3 Stereo Camera

As mentioned in the previous Chapter, stereo vision is a passive depth-sensing tech-
nique that estimates the distance of objects by comparing two slightly offset images,
mimicking human binocular vision. By computing the disparity between corre-
sponding points in the left and right images, it is possible to reconstruct a dense
three-dimensional representation of the scene. Unlike active sensors such as LiDAR,
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stereo cameras do not emit their own signal, which makes them lightweight and
low power consuming, well suited for onboard applications where power efficiency
is an important constraint. The Stereolabs ZED 2 camera was used in this project.
However, accuracy in outdoor scenario with thin object was unknown.

The ZED 2 relies on machine-learning models to improve depth estimation, but
offloads the computation to the host GPU, which makes the choice of a capable
companion computer critical. In addition to stereo depth and RGB imagery, the
ZED 2 includes an integrated IMU, barometer and magnetometer that can be fused
with visual data to provide orientation estimates at a rate up to 400 Hz. This
estimate was compared against the Pixhawk’s IMU measurements during testing.
Another significant advantage of the ZED 2 is its factory calibration and built-in
self-calibration capability, which allows rapid deployment with minimal setup effort.

On the software side, the ZED SDK provides APIs for integration into Python,
ROS2, and other open-source environments. The SDK offers multiple settings for
depth estimation, sensor fusion, and camera configuration, making the platform
flexible but also requiring careful tuning to balance accuracy and computational
performance. Moreover, more tools like object detection and mapping are available

in the SDK (Figure [2.2).

( “
ZED2 ZED SDK
{ N[ N[ 3
Stereocamera B i -
: Static Dynamic o 0
nvironment Objetcts
M Sensor Depth \ Mapping ) Application Layer
19 Fusion | Persception |( \
Barometer _ Visual-Inertial
Localization 0-1----¢
Magnetometer Stereo Slam
\ J \ J \L 0O J
\ 1 )

1

2%

External Sensors

Figure 2.2: Functional SDK Diagram. Source: Stereolabs

2.1.4 RTK GPS

Global Navigation Satellite Systems (GNSS) are commonly used for UAV localiza-
tion, but standard sensors typically provide accuracy on the order of several meters,
which is insufficient for precise mapping of small-scale structures such as powerlines.
To overcome this limitation, Real-Time Kinematic (RTK) positioning is employed.
RTK improves accuracy by using the carrier wave phase measurements from the
satellite signals combined with correction data provided by a nearby reference sta-
tion. RTK GPS operates using a two-receiver system: a base station and a rover.
The base station is placed at a known, fixed location and continuously receives sig-
nals from multiple GNSS satellites. By comparing its known coordinates with the
incoming signal-derived coordinates, the base station computes correction data that
account for errors caused by atmospheric delays, satellite clock inaccuracies, and
other factors. This correction data is then transmitted to the rover, which is the
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mobile receiver whose precise position is required. The rover applies the base station
corrections in real time, effectively eliminating most of the common errors between
the two receivers [34]. Since the base and rover are typically separated by only a
few kilometers, the shared errors are highly correlated, allowing the rover to achieve
centimeter-level positional precision relative to the fixed base station, provided that
a stable correction link is maintained. In contrast, the absolute positioning accuracy
depends on the quality of the base station’s coordinates, which affect the computed
error correction, and is typically on the order of a few meters. For mapping applica-
tions, relative precision is more important than absolute accuracy, as it ensures that
the reconstructed point clouds and spatial measurements are consistent and reliable.
A deeper explanation can be found in Section [3.1], that shows how the RTK pipeline
for this thesis was done.

In this project, the onboard rover module is a Holybro FOP Helical GNSS re-
ceiver, which is based on the u-blox ZED-F9P chipset and capable of receiving
multi-constellation signals (GPS, GLONASS, Galileo, BeiDou). The reference sta-
tion is an Emlid Reach RS2, which transmits correction messages to the rover. The
rover integrates these corrections with its own satellite observations to compute
a precise, real-time position estimate. This configuration ensured that the UAV
mock-up had access to globally referenced position data with sufficient precision for
geo-referenced mapping.

While RTK requires additional infrastructure (a base station and a reliable teleme-
try link), it provides a deterministic positioning reference that can outperform typ-
ical passive odometry approaches such as visual-inertial odometry, particularly in
outdoor inspection scenarios where absolute global coordinates are required.

EACH (RS2,

(a) Holybro F9P Helical (b) Emlid Reach RS2

Figure 2.3: (a) Onboard GPS. (b) Fixed Base GPS

2.2 Software Stack

The perception framework developed in this thesis is built upon ROS 2, that provides
a distributed architecture where individual nodes can exchange data via publish-
subscribe topics, services, or actions, supporting both real-time and non-real-time
workflows. Its modularity and strong community support make it an ideal choice
for research platform that integrate multiple sensors, processing units, software, and
requires a shared working environment.

The ZED 2 camera was easily integrated into the ROS 2 framework using the
official ZED ROS 2 wrapper [35], which bridges ZED data to ROS topics. In contrast,
PX4 Autopilot software required a bit of manual integration. In order to easily test
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PX4-ROS integration, a simulation environment was set up using the open-source
simulator Gazebo [36]. Finally, the mapping algorithms are built as ROS 2 nodes,
using RGB-D, IMU and GNSS topics.

The Operating System chosen is Ubuntu 22.04 LTS, as it offers a stable inte-
gration of many software and hardware components. On the Jetson platform, it is
installed via JetPack 6.1, NVIDIA’s SDK that provides the Linux for Tegra (L4T)
operating system, along with optimized libraries and tools for GPU-accelerated ap-
plications.

2.2.1 ROS 2 Humble

ROS 2 [37] represents the evolution of the original ROS framework (Section [L.3),
introducing support for real-time communication and enhanced cross-platform com-
patibility. Moreover, it provides a wide set of tools for developing robotic applica-
tions. In this work, the Humble Hawksbill distribution of ROS 2, released in 2022,
was used. Humble is compatible with Ubuntu 22.04 and is well supported in the
current robotics ecosystem. It offers stable drivers and wrappers for a wide range of
sensors, including the ZED 2 camera, and it is commonly used in state-of-the-art re-
search involving autonomous aerial vehicles and real-time perception tasks. On top
of the native ROS 2 libraries and tools, many other community-developed packages
are available.

Architecture and Communication

ROS 2 retains the core concepts of ROS 1 such as nodes, messages, topics, services,
and actions, but introduces a decentralized architecture for improved performance
and real-time operation.

Nodes Fundamental unit that perform computation. They
encapsulate specific functionalities and communicate
with each other via the ROS middleware.

Messages Data structures used for communication between
nodes. They define the format of exchanged infor-
mation.

Topics Named communication channels used for unidirec-

tional, many-to-many message transfer. A publisher
writes messages to a topic, while subscribers receive
them asynchronously.

Services Synchronous communication based on a request/re-
sponse pattern, suitable for tasks requiring immedi-
ate feedback.

Actions Asynchronous extension of services designed for long-
running tasks. They provide continuous feedback
and allow preemption.

Table 2.2: Main ROS 2 communication interfaces

Its communication layer is based on the Data Distribution Service (DDS) stan-
dard, which allows peer-to-peer message exchange without a central master node
that handles everything (discovery and communication), as in ROS 1. This de-
sign improves scalability, robustness, and multi-robot support. For this project,
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eProsima’s Fast DDS was employed, enabling low-latency and high-throughput mes-
sage delivery. In addition to Simple Discovery Protocol (peer-to-peer), Fast DDS
also offers a Discovery Server mode, where all nodes register with a central server
that handles discovery information (i.e., which nodes are publishing/subscribing to
which topics), reducing the network overhead while still having peer-to-peer data
communication.

Simple Discovery

Figure 2.4: Comparison of Peer-to-Peer Discovery and Discovery Server in Fast DDS comparison.
Source: eProsima Docs

0

DDS also provides fine-grained Quality of Service (QoS) controls, critical for
transmitting high-frequency sensor data, such as stereo images, IMU measurements
and RTK GPS readings. QoS settings can be defined per topic, allowing commu-
nication policies to be tuned depending on the type of data stream. For example,
non-critical and high-bandwidth topics could be transmitted in best-effort mode
(similar to UDP) to maximize throughput, while more critical messages could be sent
in reliable mode (similar to TCP) to guarantee delivery. For this work, all topics
were configured with a reliable policy to prioritize robustness and data consistency.

Development and Workspaces

ROS 2 organizes code into packages, which contain source files, message definitions,
and metadata. Packages are built using the Colcon build system, which allows par-
allel compilation, dependency management, and workspace overlays. A workspace
consists of the source (src), build (build), install (install), and log (log) direc-
tories, enabling modular development and easy integration of multiple packages.
Colcon build system takes source files in src folder, compiles them in build and
then saves the final output in install. This modularity is particularly useful for
robotics applications such as a UAV perception framework, where sensor drivers,
mapping nodes, and navigation modules can coexist without interfering with each
other.

Advantages of the ROS 2 Ecosystem

ROS 2 provides a comprehensive ecosystem that simplifies the integration of hetero-
geneous components. To sum up, key advantages that facilitated this work include:

e Modularity: Nodes can be developed and tested independently, then easily
combined into a full system.
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e Integration: ROS 2 facilitates integration of a wide range of sensors, hardware
drivers, and third-party libraries (e.g., ZED SDK, PX4).

e Tooling support: Utilities, parameter management, logging, visualization
(rviz2, rqt, Foxglove), and offline data analysis enhance development, de-
bugging, and testing.

This architecture and ecosystem enable the UAV perception framework to inte-
grate sensors, controllers, and mapping algorithms in a robust and modular manner,
while ensuring real-time data exchange across the system. A more detailed anal-
ysis of communication latency and real-time performance is provided in Section
section 4.5

2.2.2 PX4 Autopilot

PX4 is an open-source autopilot software stack widely used for UAVs, capable of
providing full flight control, sensor integration, and communication with companion
computers and ground stations. It runs on a variety of flight controllers, includ-
ing the Pixhawk series, and supports multiple vehicle types such as multirotors,
fixed-wing aircraft, and VT OLs. PX4 offers modular firmware architecture, exten-
sive configuration options, and simulation tools that facilitate both research and
development in UAV applications [3§].

MAVLink Communication

MAVLink (Micro Air Vehicle Link) is a lightweight messaging protocol widely used
in UAV ecosystems for telemetry, command/control, and parameter transfer usually
between ground station and unmanned vehicles, and between onboard components.
It was first released in 2009 by Lorenz Meier and has become popular in the robotic
field [39]. The key features of the MAVLink protocol include [40]:

e Efficiency: Packets have 14 bytes of overhead and a maximum of 255 bytes
of payload as shown in Table [2.3} it is designed to meet minimal bandwidth
requirements.

e Reliability: Provides methods to detect packet drops, corruption, and support
packet authentication.

e Bidirectionality: Supports a two-way communication, allowing the use of
commands that requires responses or acknowledgments.

e Compatibility: Works independently of the network link, hardware compo-
nents specifications and programming languages.
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Field Description

STX (1 byte) Start-of-frame marker

LEN (1 byte) Payload length

SEQ (1 byte) Packet sequence number
SYS_ID (1 byte) System ID of the sender
COMP_ID (1 byte) Component ID of the sender
MSG_ID (3 bytes) Message type identifier
PAYLOAD (0-255 bytes) Actual message data

CRC (2 bytes) Checksum for error detection

Table 2.3: MAVLink packet structure

SITL with Gazebo

To validate system integration and data workflows without actual flight, a Software-
In-The-Loop (SITL) simulation was employed. SITL allows the PX4 firmware to
run natively on a computer while simulating the behavior of the flight controller
and UAV sensors. Harmonic is the version of Gazebo chosen since it offers the best
compatibility with Ubuntu 22.04, ROS 2 Humble and PX4 v1.15. For this work, a
custom Gazebo world was created, featuring a drone equipped with a depth camera
in a powerline inspection scenario (Figure . The PX4 firmware offers default
models and tools for SITL simulation, in particular the multicopter model X500
with front-facing depth camera was adopted. The powerline model on the other
hand, was taken from the work in [41] and integrated in a default gazebo world.
To interact with the vehicle, the software QGroundControl (QGC) was employed,
a MAVLink protocol ground station with proven PX4 integration and community
support available. QGC, PX4 and Gazebo run on a Ubuntu 22.04 PC during the
simulation. Even if the purpose was just to verify the data stream, flying the vehicle
was also possible using a joystick or with a keyboard input, implemented based on
the work in [42].
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Gazebo Sim
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. J/depth_camera

Figure 2.5: SITL simulation in a custom Gazebo world

The SITL helped understanding the data format and communication flow, allow-
ing to make the proper firmware adjustment in a simulated environment. In particu-
lar, the XRCE topics gps_inject_data, necessary to provide RTK GNSS correction
through ROS 2, was added to the list of subscription inside the dds_topics.yaml
file in the firmware. Further explanation of the XRCE bridge between PX4 and
ROS 2 can be found in

QGC was then used also to install the modified PX4 firmware on the Pixhawk and
to modify the necessary parameters to accommodate the specific hardware setup,
including the integration of the Holybro F9P GPS module and companion com-
puter. Serial port parameter were tuned to allow communication between hardware
components.

Extended Kalman Filter (EKF) — State Estimation

PX4 firmware includes an Extended Kalman Filter to estimate the UAV’s state by

fusing multiple sensors, as well as to filter noisy measures. Some important features
provided by the EKF are:

e State estimation: orientation (quaternion from world frame to body frame),
velocity, position, IMU biases, magnetic field, wind velocity, terrain altitude,
etc.

e Synchronization: Measurements from different sensors may have differing
delays: EKF employs a fusion time horizon buffer system to align data properly
over time before fusing.

e Parameters: Many EKF tuning parameters are available: e.g. IMU position
offset relative to body frame, delay settings, covariance and process noise set-
tings, etc. Note that proper tuning is critical for good performance, but was
done only partially in this work.
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2.3 Methodology

The objective of this work is to develop and evaluate a perception framework capable
of providing geo-referenced 3D maps for UAV navigation in real time. Due to flight
restrictions in the working area and to maintain flexibility during development, a
drone mock-up was constructed. This rigid platform enabled realistic hardware
integration and sensor testing without the risks and legislative challenges associated
with outdoor flights. Simulation tools were also exploited, but their use was limited
to validating the integration of the flight controller with the ROS 2 framework, as
explained in the previous Section. Since the major challenges of this work were
hardware-related and required real sensor data, simulations alone would not have
been sufficient.

2.3.1 Drone Mock-Up

The drone mock-up structure was designed using the 3D CAD software Autodesk
Fusion 360. The main platform was fabricated from 16 mm MDF (Medium Density
Fiber) to ensure rigidity and low cost, while custom supports for the ZED camera,
Pixhawk flight controller and GPS antenna were designed and 3D-printed. This
setup provided stable mounting points and allowed for modular hardware reconfig-
uration during testing.
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(b)
Figure 2.6: (a) Fusion 360 Model (b) Drone Mock-Up

Regarding hardware connections, the ZED 2 stereo camera connects directly to
the Jetson Orin NX via its built-in USB 3.0 interface, ensuring high bandwidth
for data streams. The Pixhawk flight controller and the Holybro F9P GPS are
connected together via a standard telemetry serial cable through the GPS-1 port of
the Pixhawk. Then, a custom-made serial cable was used to connect the Pixhawk
TELEM-2 serial port to the Jetson GPIO pins (6: GND, 8 TX, 10: RX). The
baud rate of this connection was configured to 921600 bps, which provides sufficient
throughput for high-frequency telemetry while maintaining stable communication.

The RTK GPS setup was completed by establishing a link with the Emlid Reach
RS2 base station. The RS2 transmits correction messages via USB to a ground
computer at 115200 bps, which then forwards the corrections to the Jetson over a
UDP socket. This ground computer also served as a control station for remote Jetson
access via SSH (Secure Shell). During early development, the Jetson was equipped
with a Wi-Fi module and antennas to enable wireless communication. However, for
field tests where Wi-Fi infrastructure was weak or unavailable, a direct Ethernet
connection was preferred, as it provided greater stability.
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Figure 2.7: Hardware Communication Scheme.

2.3.2 Software Integration

With the hardware components interconnected, the next step was to integrate all
data sources into the ROS 2 framework. As mentioned, Stereolabs provides a wrap-
per to bridge ZED data into ROS 2 environment, ensuring time synchronization
with the host (Jetson) and ROS 2-formatted messages, services and actions.

PX4 on the other hand, required manual integration due to some inconsistency
issue with the PX4-ROS 2 bridge. For this reason, initial development was performed
in a SITL environment, allowing rapid tests after code implementation. However,
this extra step required more integration since simulation topics from Gazebo needed
to be bridged into the ROS 2 framework as well. For this purpose, ros_gz bridge
[43] was installed. Then a further step to convert depth camera data to match ZED
2 format was necessary. To address this task, together with the PX4 topics issue, a
custom bridge node was implemented. This node retrieved raw messages from PX4
and Gazebo topics and republished them in ROS 2-compliant format, while also
ensuring consistency with hardware setups.

Two types of bridges were implemented:

e SITL bridge: adapted PX4 and Gazebo simulation topics to match ROS 2
message formats and naming conventions, as well as real RGB-D data format.

e HITL bridge: extended the same logic to hardware-in-the-loop experiments,
additionally renaming ZED 2 wrapper topics for consistency.

This allowed to implement the perception framework regardless the use of SITL
or HITL input data, and to have topics consistent with the ROS 2 environment:
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e /drone/camera of type sensor msgs/Image

e /drone/rgb_camera_info of type sensor msgs/Cameralnfo

e /drone/depth _camera of type sensor msgs/Image

e /drone/depth_camera_info of type sensor msgs/CameraInfo
e /drone/imu of type sensor msgs/Imu

e /drone/global position of type sensor msgs/NavSatFix

PX4 ROS 2 XRCE Agent

In order to integrate PX4 with ROS 2, the ROS 2 XRCE (eXtremely Resource
Constrained Environment) agent was chosen. The XRCE agent acts as a bridge
between the flight controller firmware and the ROS 2 environment using the eX-
tremely Resource Constrained Environment DDS (Micro XRCE-DDS) protocol, en-
abling lightweight and efficient transmission of MAVLink messages from PX4 to
ROS 2 nodes. This approach allows high-frequency telemetry, sensor data, and
vehicle state information to be available within the ROS 2 framework while mini-
mizing computational overhead on the flight controller. However, XRCE agent has
two limitations about its topic being not fully compliant with ROS 2 conventions.
In particular:

e It provide custom message types (e.g. VehicleAttitude, SensorCombined,
etc.), which are not directly compatible with state-of-the-art ROS 2 tools.

e Messages lack a standard ROS 2 header (timestamp and frame ID).

To address this, the bridge nodes appended the missing headers and republished
the data as standard ROS 2 messages.
IMU Message

The ROS 2 IMU message (sensor msgs/Imu) was constructed by combining infor-
mation from multiple PX4 topics:

e VehicleAttitude: provided orientation as a quaternion (g, ¢s,qy,q.) repre-
senting the rotation from the vehicle body frame FRD (Forward-Right-Down)
to the NED (North-East-Down) world frame.

e SensorCombined: provided raw gyroscope measurements in rad/s and accelerom-
eter measurements in m/s?, expressed in the FRD body frame.

ROS, on the other hand, adopts a different convention:
e The world frame is ENU (East-North-Up).
e The body frame is FLU (Forward-Left-Up).

Therefore, a frame transformation is required before publishing IMU data in ROS
2. Specifically:

1. The body frame conversion FRD — FLU corresponds to a positive rotation
about X axis of 7 according to the Right-Hand Rule (RHR).
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2. The world frame conversion NED — ENU corresponds to a positive rotation
about Z axis of /2.

The PX4 quaternion gpx4 encodes the rotation from the FRD body frame to the
NED world frame. To express this orientation in the ROS convention (FLU body
frame to ENU world frame), two steps are required:

1. Body-frame conversion (FRD — FLU): Converting the body frame axes
from FRD to FLU is a change of basis. In quaternion form, such a change is

expressed by conjugation:
/

q = 1y ® gpxa & T;1,

where r, is the quaternion corresponding to a 180° rotation about the x-axis.
Since r, = [0, 1, 0, 0] is its own inverse (up to sign), this simplifies to

¢ = r: ® gpxa @ Ty

2. World-frame conversion (NED — ENU): Aligning the NED world frame
with ENU requires a fixed 90° rotation about the z-axis, represented by the

quaternion
— |2 V2
ry, = |:77 07 07 T:|
This is applied by left multiplication:
Gros = T, ® q/'

Thus, the final quaternion expressed in the ROS convention is

qros = T, @ (Tm & gpxs & T:r) .

Once this transformation is applied to gpx4 to express orientation, the same was
done to angular velocity and linear acceleration, but in matrix form:

Vros = R Vpxa, aros = Rapx4
where:
0 -1 011 0 O 01 0
R=R.(3)R,(nr)=1|1 0 0/ |0 =1 0|=1{10 0
0 0 1[0 0 -1 0 0 -1

Finally the IMU information were published as a standard ROS2 sensor _msgs/Imu
message:

std_msgs/Header header
geometry_msgs/Quaternion orientation
geometry_msgs/Vector3 angular_velocity
geometry_msgs/Vector3 linear_acceleration

Field header. stamp is filled with the timestamp of the original PX4 message and
frame_id is set according to the ZED 2 camera’s frame tree, ensuring consistency
across the system.
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GNSS Message

PX4’s global position output was similarly adapted. The raw[] GNSS data
VehicleGlobalPosition was mapped into a standard sensor msgs/NavSatFix mes-
sage. This step required only to fill latitude, longitude, altitude and header fields
with PX4 message data, without additional computation.

RGB-D Messages

Depth camera messages were already published in ROS 2 format, both from ZED
2 wrapper topics and from Gazebo simulation topics. Hence, the HITL bridge
node simply change the topics name, while the SITL bridge node also convert the
camera format to match the ZED. Although this step was not necessary even because
some ZED 2 settings like resolution was tuned afterwards, it ensures that the data
encoding was the same.

Real-time Considerations

Clearly, the bridge node introduced an additional processing step, that could poten-
tially increase the message delay. However, during testing, latency was measured to
be negligible compared to the intrinsic delays of sensor acquisition and data trans-
fer. It will be shown that with this framework an overall delay of approximately 500
ms can be expected. The SITL bridge node introduce a latency of less than 5 ms
(Figure . The HITL bridge node is slightly slower, but a more detailed analysis
of real-time performance is presented in Section [4.5]

Bridge Node Latency Statistics
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Figure 2.8: SITL Bridge Node Topics Latency

1Raw in this context means the PX4 topic, which is not actually raw but filter with EKF as explained previously.
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Modular ROS 2 Workspaces

To maintain modularity and avoid package conflicts, the perception algorithms were
implemented across multiple overlay workspaces. This structure leveraged the mod-
ular design of ROS 2 and reduced the risk of accidental modifications to upstream
packages. It also allowed independent development and testing of different percep-
tion modules before integration into the overall framework.

Evaluation Tools

For evaluation and debugging, several visualization and logging tools were employed.
ROS native tools such as rosbag, rqt, plotjuggler, rviz2, and Foxglove Studio
were used at different stages of development. However, due to the heavy computa-
tional load of tools like rviz2, the primary approach was to log data as CSV files
directly from ROS nodes. These datasets were then analyzed offline using custom
Python scripts, which allowed detailed inspection without overloading the Jetson at
runtime.

2.4 Mapping Framework

The proposed framework for mapping using RTK-GNSS and stereo camera is illus-
trated in Figure 2.9,
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Figure 2.9: Stereo vision and RTK GNSS-based mapping framework
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Depth data are sensed by the stereo camera and integrated into ROS 2 through
the zed-ros2-wrapper. RGB images are also retrieved, although they are not
strictly required for mapping in this work, their availability could support future
extensions such as object detection modules. Using Pixhawk flight controller and
GNSS system provided filtered pose data (position and orientation) straight-forward
through PX4 and the XRCE Agent. This is a considerable advantage, as it reduces
the localization problem to estimating the position of the environment.

The perception module retrieve data from ZED and PX4 and re-elaborate them in
a bridge node to align and make them compliant to ROS 2 standard. This additional
step also increased the modularity of the development, allowing to implement and
test different software components independently.

The localization module then computes the position of points in the environ-
ment. Using the intrinsic parameters of the camera, each depth pixel is projected
into 3D coordinates in the camera frame. Orientation from the IMU is used to trans-
form these coordinates into the drone body frame, and finally the GNSS position
allows them to be georeferenced in a global frame. The result is a point cloud map
referenced in world coordinates. However, directly georeferencing every pixel is un-
feasible, both for computational and practical reasons. The raw point cloud would
be heavy and noisy: filtering techniques must be applied. In particular, the maps
presented in this thesis are the result of the work by a colleague [5], which applies
down-sampling and CUDA-accelerated processing to achieve real-time feasibility.

The contribution of this thesis is the design and implementation of the acquisition
and georeferencing pipeline, demonstrating the feasibility of constructing a global
map suitable for UAV mission planning.
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Chapter 3

Development

3.1 RTK GNSS Pipeline

As mentioned, GNSS signals are affected by different sources of error (e.g. atmo-
spheric effects) that need to be mitigated in order to obtain a precise and reliable
signal that can be used for more advanced applications such as UAV mapping. A
practical solution is to apply differential correction by indirectly measuring the error
with another GNSS receiver at a known location and subtracting it from the GNSS
signal of interest. To accomplish this, a base GNSS station at a known position
retrieves its estimated position from the GNSS signal and compares it against the
ground-truth position to estimate the error.

Pgase anss = PBASE TRUE + €17

Prase anss — Pease TRuE = PBASE TRUE + €7 — PASE TRUE = €17

Since the base and the onboard GNSS receiver are placed within few a kilometers,
atmospheric noise and satellites in view are similar, so err will be similar as well.
The base station then sends the estimated error to the UAV, which can subtract it
from its GNSS readings to obtain a corrected position estimate.

Pyav gnss — err = Pyav TruE + err — err = Pyav TRUE

Although the resulting precision is within centimeters, global accuracy can still be
on the order meters, depending on the accuracy of the known position of the base
GNSS receiver. The computed err in fact, includes a static term due to inaccuracy
of the ground-truth position, which leads to a global offset error. For the purpose of
this work, precision is key to obtaining good mapping results, while global accuracy
does not affect the quality of the map, but only the absolute global location of all
points.

The base GNSS position is not always at a known and reliable location, so it must
be estimated as well. In this work, the average single positioning method was used.
This is a simple but effective method that averages many single-point readings of
the base GNSS signal over a period of time. During tests, the averaging time was
set to 15 minutes, and the typical accuracy error was approximately within 1 meter
(Figure [3.1). It was observed that the main factor in reducing the error was not
increasing the averaging time, but placing the base station in an open area with
clear sky visibility, which was not always possible. Nevertheless, for the purposes of
this work, this level of accuracy was considered sufficiently small.
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Figure 3.1: Control panel for the Reach base station

RTCM Message Structure

RTCM is a communication protocol used to transmit differential GNSS correc-
tion messages since the 1980s, but it became widely used in the 2000s with the
RTCM-Version 3 format that introduced support for multiple satellite constella-
tions, variable-length messages and increased number of possible message types.
RTCM messages consist of a header, payload, and checksum, and are usually trans-
mitted as a continuous stream over serial or network connections [44]. A typical
RTCM message has the following structure:

e Preamble (8 bits): Start-of-message marker, usually 0xD3.
e Message Length (10 bits): Indicates the number of bytes in the payload.

e Payload (variable length): Encodes the GNSS correction data, satellite-
specific information, or other system parameters. Multiple message types are
supported, such as:

— Type 1005/1006: Reference station coordinates
— Type 1077/1087: GPS/GLONASS RTK corrections

e Checksum (24 bits): CRC (Cyclic Redundancy Check) for detecting trans-
mission errors.

RTCM messages are compact and efficient, minimizing bandwidth overhead. Al-
though is not the only possibility to transmit GNSS data, these characteristics make
them well-suited for differential correction data.

3.1.1 Implementation

To implement the RTK GNSS pipeline, a communication link between the base
and onboard GNSS must be established. As mentioned, the Emlid Reach RS2 is
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connected via USB to the ground computer, where a Python script reads raw data
from the serial port and forwards it via a UDP (User Datagram Protocol) socket to
the IP address of the Jetson (typically via Ethernet during tests). UDP, in contrast
to TCP (Transmission Control Protocol), offers a faster data stream at the cost of
potential packet loss. In this setup UDP was chosen to reduce the latency typical
of TCP.

On the Jetson, the ROS 2 node rtcm_forwarder opens the UDP socket on the
specified port and reads a continuous stream of RTCM (Radio Technical Commis-
sion for Maritime Services) correction data. The pyrtcm Python library [45] was
used to parse this stream, extracting individual RTCM messages. These messages
populate the PX4-ROS 2 message GpsInjectData, which is then published on the
gps_inject_data topic and bridged to PX4 through the XRCE agent.

Base Emlid GNSS

usB RTCM Stream
¥

Ground PC
Py Script

Ethernet RTCM Stream
L\ 4

Jetson
ROS 2 Node
3
RTCM XRCE Agent Position
Messages Data
Y
Pixhawk
PX4
3
RTCM Serial GNSS
Messages Data
v

Onboard FOP GNSS

Figure 3.2: RTK GNSS Pipeline: communication interface and data streaming

Thanks to the update of the PX4 firmware, the flight controller now listens to
this topic and forwards the correction messages to the FOP GNSS module. The
onboard GNSS, configured in QGC to apply the corrections, returns high-precision
GNSS data to the flight controller. The PX4 EKF filters these data and publishes
precise position estimates, which are bridged into ROS 2 via the XRCE agent.

RTCM Forwarder ROS 2 Node

The RTCM forwarder node rtcm_forwarder is responsible for receiving RTCM cor-
rection messages from the base station via UDP and injecting them into PX4 through
ROS 2 messages. The main steps of the node are:

1. Initialization: The node creates a ROS 2 publisher for GpsInjectData mes-

37



sages and a non-blocking UDP socket bound to a specific port.

2. Receive UDP data: Incoming data are appended to a circular buffer for
processing.

while True:
data, _ = sock.recvfrom(4096)
buffer.extend(data)

3. Parse RTCM Messages: The buffer is wrapped in a BytesIO stream and
fed to pyrtcm.RTCMReader to extract complete RTCM messages.

stream = io.BytesIO(buffer)

reader = RTCMReader (stream)

for raw_data, parsed in reader:
send_chunk(raw_data)

4. Publish to PX4: Each RTCM message is packed into a GpsInjectData mes-
sage and published to the ROS 2 topic. Messages larger than the maximum
allowed length are dropped, while shorter messages are padded with zeros to
fill the fixed-size array.

if len(raw) > MAX_LEN:
return # drop message too large
msg = GpsInjectData()
msg.data = list(raw) + [0] * (MAX_LEN - len(raw)) # pad if necessary
pub.publish(msg)

5. Buffer Maintenance and Logging: Consumed bytes are removed from the
buffer, and statistics on packets received and messages sent are logged peri-
odically. In Listing the logs (every 60 seconds) show that packets are
received at about 1 Hz, with each packet containing about 50 messages (i.e.,
300 messages in 60 packets).

Listing 3.1: Sample terminal logs during the execution of the node

[INFO][rtcm_forwarder_node]: Packets recv: 180, Messages sent: 918
[INFO][rtcm_forwarder_node]: Packets recv: 240, Messages sent: 1224
[INFO] [rtcm_forwarder_node]: Packets recv: 300, Messages sent: 1530

3.1.2 Limitations of the Proposed Pipeline

Although the proposed pipeline provided effective correction and allowed obtaining
precise measurements, some limitations must be highlighted. It was known that
the communication link was critical, but maintaining its stability and checking its
integrity proved more challenging than expected.

Even though all communications were wired, the USB cable between the base
Reach GNSS and the ground computer was slightly loose. If the computer was
moved roughly, the communication was easily lost. It was noted that if the correction
link was broken, as in such cases, the onboard GNSS simply fell back to standard
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positioning without any re-alignment or fix. The difference in coordinates could be
on the order of meters, resulting in a sudden jump in position. However, the PX4
EKF smoothed this jump, which then appeared as a gradual offset, as shown in
Figure 3.3

These breaks in the pipeline were initially noticed only in the final map results,
where the offset became evident. To mitigate this, some checks were added in the
code to monitor the stability of the link between the base GNSS and the ground
computer. On the Jetson side, however, the pyrtcm library does not provide built-
in features for error detection, highlighting the need for a future implementation
based on a different library or additional methods. Additionally, some PX4 topics
also provide the status of the GNSS, allowing detection of whether corrections are
applied and handling of such cases is needed. However, in this thesis none of these
features were implemented, since the main issue was related to the USB cable of the
base Reach receiver. Once it became clear when this link was interrupted, tests were
simply stopped and repeated. For future implementations, however, it is strongly
recommended to add error detection and handling mechanisms, especially if the
correction link is not wired.
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Figure 3.3: Effect of correction loss on the estimated position.

3.2 Georeferencing Pipeline

In this section, the implementation of the georeferencing pipeline to perform map-
ping in world coordinates is explained. The pipeline can be considered a determin-
istic sensor fusion algorithm: it transforms pixel coordinates from the depth camera
into world coordinates, combining information from the camera, IMU, and GNSS.
As with any sensor fusion approach, synchronization of data streams is critical,
since misaligned timestamps can propagate errors into the 3D reconstruction. In
this work, the Jetson was used as the reference system time, ensuring that the ZED
camera and the flight controller shared a common temporal base.

In order to implement the full transformation pipeline, the following data are
needed:
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e Camera Intrinsics: Focal lengths and principal points, obtained from the
Cameralnfo topic, are necessary for projecting pixel coordinates into 3D camera
coordinates.

e Depth: Depth maps from the stereo camera are published as Image messages.
e IMU: Attitude data (quaternions) are provided on the Imu topic.

e Position: The drone’s position in global coordinates is provided on a topic of
type NavSatFix.

3.2.1 Camera Model

A depth camera can be modeled using the pinhole camera model, which relates
3D points in the camera frame to 2D points on the image plane. Mathematically, a
point (X, Y, Z) in the camera frame projects to pixel coordinates (z,y) as:

N f. 0 el [X/2
H: 0 f ol |Y/Z
Y 0 0 1 1

The matrix, usually referred to as K, contains the intrinsic parameters:

e Focal lengths: f,, f, are the effective distances between the camera lens and
the projection plane, also called the image plane. They are expressed as two
parameters since cameras often have non-square pixels, so the effective focal
length along the horizontal and vertical axes can differ.

e Principal points: ¢, ¢, are the coordinates of the intersection point between
the optical axis and the image plane. They represent the origin of the pixel
coordinate frame. Figure provides a visual representation.
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Figure 3.4: Pinhole camera model. Figure by [46].
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In this work, the intrinsic parameters are published by the camera on the topic
CameralInfo in ROS 2 and captured once during initialization. They depend on the
camera settings and resolution.

3.2.2 Message Synchronization

Synchronizing sensor measurements is critical in a georeferencing pipeline. In ROS 2,
sensors publish data asynchronously at different rates, and small timing mismatches
can produce incorrect 3D points. To address this, the message filters package
is used. By subscribing to multiple topics and defining a synchronization policy, a
single callback function is called only when messages from all sensors are aligned
in time (within a small tolerance). This ensures that the depth, IMU, and GNSS
measurements correspond to the same instant.
message_filters initialization in a ROS 2 node looks like:

sub_depth = Subscriber(self, Image, ’/drone/depth_camera’)
sub_imu = Subscriber(self, Imu, > /drone/imu’)
sub_gps = Subscriber(self, NavSatFix, ’/drone/global_position’)

self.sync = ApproximateTimeSynchronizer (

[sub_depth, sub_imu, sub_gps], queue_size=20, slop=0.06
)
self.sync.registerCallback(self._sync_cb)

The slop parameter defines the maximum allowed time difference between messages
(set to 0.06 seconds), and the queue_size handles different topic rates and possible
transmission delays.

Actual Timestamp

It is important to clarify what the ROS 2 timestamps represent. The timestamp
associated with each topic, in fact, does not necessarily match the exact moment
of sensor acquisition. For the ZED 2 camera, this represents the time at which
data enter the USB buffer, and it is closest to the acquisition time, according to
Stereolabs developers. For the PX4 flight controller, the timestamp in ROS 2 topics
is derived from the system time of the autopilot when the message is generated.
This usually introduces a small delay relative to the actual sensor measurement, as
IMU and GNSS readings are collected at high frequency and then packaged by PX4
for transmission.

3.2.3 Pixel-to-World Transformation

The core of the georeferencing pipeline is the transformation of coordinates that
starts from pixels and ends up in global coordinates. It is a step-by-step process
that could be merged into a single transformation matrix. This involves three steps:

1. back-projecting a pixel into 3D camera coordinates using the inverse pinhole
camera model;

2. transforming the point from the camera frame into the UAV body frame;
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3. transforming the point into the world frame using the UAV pose (position and
orientation).

UTM Coordinate System

To obtain readable results, the Universal Transverse Mercator (UTM) coordinate
system is used [47]. Latitude and longitude are expressed in degrees and are not
suited to be represented as 3D points. UTM projects the coordinates onto a grid-
based coordinate system: the Earth is divided into 60 vertical zones, each spanning
6° of longitude, and 20 horizontal bands, each spanning 8° of latitude, for a total of
1200 cells. Within these cells, the Earth can be approximated as flat, with a small
margin of error. The distortion, in fact, grows as the longitude moves away from
the central meridian, due to the Transverse Mercator projection model. However,
for mapping purposes it is safe to treat each cell as flat, allowing us to obtain an
(Xwortds Yworta) coordinate system in meters.

Pixel-to-Camera Transformation

The depth map on the Image topic contains the depth value Z (meters) associated
with each pixel (z,y). Inverting the pinhole camera model, it is possible to back-
project a pixel on the image plane to the corresponding point in the camera reference
frame:

X, =(z— cm)%
Y, = <y—cy>f5y

Le=1

where (X,, Y., Z.) are the coordinates in the camera reference frame, in meters. In
matrix form, this is equivalent to a homogeneous transformation:

Pc = TK—IPpixel

1/fe 0 —c/f: O
T 0 1/f, —c,/f, O
K 0 0 1 0
0 0 0 1

with P, and P, being the homogeneous coordinates in the camera and body
frames, respectively.

Camera-to-Body Transformation

The camera reference frame is RDF (Right-Down-Forward) and, for the ZED 2, is
placed on the left lens. The drone body frame is defined as FLU (Forward-Left-
Up) to be consistent with the ROS 2 convention, and thus aligned with all topics.
The origin of the body frame is placed at the FOP GNSS module, since the global
position is relative to it. This introduces only a small offset, as the camera and
GNSS are a few centimeters apart. This offset would be irrelevant for mapping,
because a constant shift in the global position of all points does not affect the
relative structure. Nevertheless, it is considered here for the sake of completeness.
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The rotation between RDF and FLU is a rotation of m about the X axis, as
explained in Section 2.3 The translational offset of the camera relative to the F9P
is estimated to be 3 c¢cm forward, 1 cm to the right, and 1 cm downward. This
corresponds to the homogeneous transformation matrix T,,, which combines the
rotation R, and translation t.:

Pb — ch Pc

1 0 0 0.03

0 -1 0 —0.01
Top = 0 0 —1 0.01

0 0 0 1

where P, are homogeneous coordinates in the body frame.

Body-to-World Transformation

Given a point in the body frame, it needs to be rotated and translated according
to the pose of the drone in global coordinates. To account for rotation, IMU data
are used. Aligning with the ROS 2 convention allows the rotation matrix from FLU
to ENU (world frame) to be safely computed. As for translation, the vector of
UTM coordinates (Easting, Northing), combined with altitude, is used. The code
snippet that define the transformation matrix T, using the quaternion from Imu
and coordinates from NavSatFix is shown below:

# Orientation (quaternion -+ rotation matrix)
q = imu.orientation
R_bw = R.from_quat([q.x, q.y, q.2, q.w]).as_matrix()

# Position in UTM
e, n, _, _ = utm.from_latlon(gps.latitude, gps.longitude)
t = np.array([le, n, gps.altitude])

# Homogeneous transform
T_bw = np.eye(4)
T_bwl:3,:3] = R_bw

T bw[:3, 3] =t

The last step of this pipeline to obtain the 3D point P, corresponding to a single
pixel in world coordinates is:

Pw = wa Pb,

Once the intrinsic parameters of the camera are initialized, the first two transfor-
mation are fixed and can be combined into a single homogeneous matrix from pixel
to body:

1/f, 0  —c/fs 0.03

S -1/f, «¢,/f, —0.01
pb 0 0 -1 0.01
0 0 0 1
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allowing the body-frame coordinates to be computed in a single step:

Xb X
Yo | Y
7 =T 7Z
1 1

The final body-to-world transformation is better left separate, since this matrix
is dynamic and changes whenever new data arrive through message filters. The
complete transformation chain can be expressed compactly as:

Pw = wa pr Ppiwel

This compact formulation highlights the deterministic structure of the georeferenc-
ing pipeline: once the static transformations (Tx-1, T,) are calibrated, only T},
varies over time, driven by the UAV’s global pose.

3.2.4 Point Cloud Mapping

While the georeferencing pipeline allows to project each pixel into a 3D georeferenced
point, it is infeasible to store and publish a full dense point cloud. A 1920x1080 HD
image already contains over 2 million pixels, and after projection each frame would
result in millions of points. For real-time mapping purposes, this translates in:

e Large memory consumption;

e High CPU/GPU load;

e Large network bandwidth;

e High point density with significant redundancy and noise.

To overcome this, a filtering stage is introduced after the georeferencing pipeline,
but before publishing and accumulating the point cloud. This allows defining spatial
filtering criteria directly in world coordinates. Moreover, in order to achieve real-
time performance, the use of GPU power is mandatory. The mapping algorithm
must be written with a mid/low level programming language with GPU acceleration.
As mentioned, the algorithm used in this work is written by a colleague at Fraunhofer
Italia [5].
In this way real-time capabilities were achieved, as well as good quality maps.

Filtering Techniques
Two filtering techniques are applied sequentially in two subsequent steps:

1. Spatial Hash Voxel Grid Filter

e Reduces point density by discretizing space into voxels (3 dimensional
boxes) of fixed size, and assigning each point a hash key to uniquely iden-
tify the voxel they are in. Only the first point that claims the voxel is kept;
other point within the voxel are discarded.
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e This is a trade-off between accuracy and performance: it is very efficient
due to the hash check, but the resulting point distribution is not perfectly
uniform, as the first point in each voxel is kept, regardless of how central
it is.

2. Radial Outlier Removal

e Removes isolated points with too few neighbors within a given radius.

e Enhanced performance by discretizing the space in voxels. Each point in a
voxel is compared only against points in the neighboring voxels, reducing
the amount of comparison.

Algorithm 1 Point Cloud Generation and Filtering Pipeline

Require: Depth, IMU, GNSS, camera intrinsics K, camera extrinsics T,

L Peam + Tg-1- Ppixel > Backproject pixels
2: Poody < Teb - Peam > Camera-to-body
3: Pwo’rld <~ wa . Pbody > BOdy-tO-WOﬂd
4: P« {Puyoria} > Set of georeferenced points
5: P’ < Voxel Grid Downsampling(P,A) > A defines the voxels’ dimension
6: P” + RemoveOutliers(P’ r k) > 7, k define the radius of search and minimum number of

neighbors, respectively
7: Publish P” to ROS 2 topic and append to global map

Parameters of both filter were tuned using real data recorded with the drone
mock-up.

Real-Time Considerations

To achieve real-time processing onboard the UAV, the computational power of the
Jetson is leveraged. The algorithm was implemented in C++ with CUDA accelera-
tion:

e C++: Enables low-level memory management, efficient copying of large point
arrays, as well as integration with ROS 2.

e CUDA: Offloads voxel filtering, outlier removal, and projection computations
to the GPU.

An evaluation of the performance is given in Section

3.3 Testing Setup

Various tests were conducted to evaluate the framework at different stages of devel-
opment. Initially, SITL and HITL tests were used to verify the integration of PX4
with ROS 2, ensuring that the correct data streams entered the framework.

Tests for single sensors were also performed to evaluate the quality of the indi-
vidual input data for the mapping pipeline. These tests involved simpler setups and
will be discussed in detail in Section .1l

The georeferencing pipeline was first evaluated using an ArUco marker to assess
the precision of repeated measurements of a single point. Then, the full mapping al-
gorithm was tested, starting the tuning process of the ZED camera parameters. Both
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the ArUco experiments and initial mapping tests were conducted while recording
rosbag data to allow offline modifications to the algorithm and detailed inspection
of raw measurements. Finally, the complete framework was tested onboard, logging
all relevant data to evaluate both the quality of the generated maps and real-time
performance.

Figure 3.5: Setup during a field test on transmission tower

General Mapping Test Procedure

The mapping algorithm was tested first in a controlled environment, in a yard near
the company facilities in Bolzano, to verify correct functionality. Later, tests were
conducted in the vicinity of transmission towers to collect data relevant to the pur-
pose of this work.

The ground computer was connected via USB to the base GNSS station and
via Ethernet to the Jetson companion computer onboard the drone mock-up. The
procedure can be summarized in four steps:

1. Base GNSS: Connect the Reach RS2 to the ground computer to automatically
start the averaging procedure. Once completed, the Reach begins sending RTK
correction through the USB port.

2. Companion Computer: Power on the Jetson and access it from the ground
computer over SSH via Ethernet.

3. Pipeline: On the ground computer, launch the script to forward correction to
the Ethernet link. On the Jetson terminal, launch a script that starts a tmux
session with the necessary processes: rtcm forwarder, ZED wrapper, XRCE,
and the bridge node.

4. Mapping: Open a separate SSH session to either launch the mapping node
directly or record raw sensor data using rosbag for offline analysis.
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Chapter 4

Results and Discussion

A lot of effort during the development of this work has gone into testing. Working
with a real drone platform required ensuring that every hardware component was
correctly calibrated and provided high-quality data. Testing algorithms and com-
ponents in the field was time-consuming, and evaluation was limited on-site due to
the limited battery life of the drone mock-up. For this reason, rosbag was used to
record raw data and test algorithms offline. Tools such as PlotJuggler, RViz and
Foxglove were useful to inspect rosbag data offline, assessing the quality of the tests.

Another challenge encountered was related to the evaluation of the tests. Usually,
test results are compared against a ground truthE], and several metrics are computed.
In this work, another methodology was adopted since determining a ground truth
would have required additional resources and work, often unnecessary given the
purpose of the test. For instance, since both Pixhawk and ZED 2 include IMUs,
the two were compared, providing additional confirmation of their consistency. ZED
fusion tools were also tested, as they fuse GNSS data with visual-inertial odometry
to theoretically improve the pose estimate, evaluating the quality of raw data.

Regarding depth measurements, only a few tests were conducted using an ArUco
marker to measure the actual distance from objects. ArUco marker are easy to
detect on RGB data, and therefore inspect the depth value of corresponding pixels.
However, this cannot be considered an mm-level precise ground truth, since mea-
surements were taken manually with a measuring tape rather than with more precise
instruments such as laser measurement tools. Moreover, the main goal is measuring
thin structures in a powerline scenario, which the ArUco marker can only provide
limited insight into.

For georeferencing and mapping, no ground truth was available, so only visual
tools and some data statistics were computed. During this phase, relevant data
were logged from the ROS 2 nodes as CSV files and later inspected using Python
scripts. During mapping, tuning ZED parameters required multiple tests, one for
each modification.

Finally, the real-time performance of the system was analyzed to assess whether
the implemented framework could sustain onboard processing and mapping under
real-time constraints.

LGround truth refers to reference measurements assumed to be correct, against which experimental results are
compared.
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4.1 Sensor Testing
Individual sensor testing was done for the following reasons:

e Evaluate the quality of sensors data in the ROS 2 framework.

e Ensure correct data flow enter the framework.

e Estimate the expected error of the georeferencing pipeline to establish whether
this approach to mapping was consistent enough.

4.1.1 IMU

Within the drone mock-up, two IMUs are available: Pixhawk and ZED. According
to the component datasheets, the IMU integrated in the flight controller is expected
to provide better performance. However, a simple comparative test was performed
between the two to evaluate both their consistency and data quality. The PX4 IMU
data are obtained from the bridge node output, while the ZED wrapper already
provides ROS Imu messages. These messages were renamed in the bridge node, en-
suring that both IMU data streams undergo the same processing. In the mapping
framework, only the attitude information from IMU data is used. Although quater-
nions are employed in the georeferencing pipeline, here the rotation is analyzed in
terms of roll, pitch, and yaw for easier interpretation. Moreover, raw sensor data
from the accelerometer and gyroscope are also analyzed.

Static Test

A static test was performed by keeping the drone mock-up still on an approximately
flat surface for about 60 seconds. Raw data results for the linear acceleration and
angular velocity vectors are shown in Figure The norm of each vector was
computed, and the magnitude results demonstrate that the two IMUs behave very
similarly:

e Linear Acceleration:
PX4: Mean=9.7884 Std.=0.0153 m/s2
ZED: Mean=9.7742 Std.=0.0101 m/s2

e Angular Velocity:
PX4: Mean=0.0049 Std.=0.0007 rad/s
ZED: Mean=0.0186 Std.=0.0022 rad/s
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Figure 4.1: Static test raw data: (a) Accelerometer (b) Gyroscope

Figure shows the attitude in terms of roll, pitch, and yaw for both the PX4
and ZED IMUs. An interesting observation can be made about the ZED yaw: it
appears not to be aligned with the world frame. Although the ZED is equipped with
a magnetometer and the ZED Fusion tool was enabled to fuse GNSS and visual data,
its orientation seems aligned with the initial camera position. Over time, it seems
to adjusts according to the fusion algorithm, but it remains offset from the world
axes. The ZED fusion algorithm is proprietary, so the underlying cause remains
unclear. However, examining roll and pitch data, the PX4 IMU exhibits slightly
lower standard deviations, suggesting marginally better stability.
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An offset between the ZED and PX4 roll values was noted. Further tests, not
reported here, revealed a consistent trend: the PX4 roll zero was typically negative,
while the ZED’s was positive. However, the value varied between tests, preventing
identification of a fixed offset. A possible cause could be a slight misalignment in
the mounting orientation on the mock-up. However, the standard deviation was
too small to justify the variability. Since the PX4 IMU was used in the mapping
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Figure 4.2: Static attitude: roll (blue), pitch (orange), yaw (green)
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framework, and a constant offset would not affect mapping precision, this issue was
not considered critical.

Dynamic Test

A dynamic test was performed to evaluate IMU performance during motion, ensuring
reliability of both units under dynamic conditions. Due to the yaw misalignment
observed in the static test, only roll and pitch maneuvers were intentionally executed,
while yaw was still recorded to confirm previous findings. Although no ground
truth is available, Figure shows that the IMUs remain consistent with each
other, both capturing each oscillation in a similar way. To mitigate the influence
of the previously observed static offset, data were normalized for a fair dynamic
comparison. In particular, the absolute distance between the two IMUs’ attitude
estimates was computed:

e Roll:
Mean=0.03162, Max=0.04163 rad

e Pitch:
Mean=0.00517, Max=0.04130 rad
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Figure 4.3: Dynamic maneuver: roll 4+ pitch

During this maneuver, a sequence of positive and negative roll followed by positive
and negative pitch was performed, attempting to maintain constant yaw. As ob-
served in the static test, the ZED Fusion’s contribution to yaw estimation is evident.
Nonetheless, both IMUs show nearly identical roll and pitch dynamics, confirming
good agreement and reliability.

o1



4.1.2 RTK GNSS

To evaluate the performance of the RTK pipeline, both static and dynamic tests
were performed to assess accuracy and consistency. As in the IMU tests, the ZED
Fusion algorithm was fed with GNSS data from PX4 (already filtered by its internal
EKF) to provide an additional position estimate, which could potentially be better.

Static Test

During the static test, the base GNSS station position was averaged for 15 minutes
to obtain a stable reference. Afterwards, the RTK pipeline was started and allowed
to stabilize for about a minute to let the corrections and EKF converge. At this
point, the drone mock-up was kept stationary for 30 seconds, and GNSS data were
recorded at 1 Hz. Figure [£.4] shows the recorded data projected onto the UTM
plane, indicating a bi-dimensional RMSE (Root Mean Square Error) with respect
to the 2D average of approximately 1 cm. This level of precision is consistent with
the expected performance of the RTK setup. Figure reports data statistics for
the UTM easting, northing, and altitude coordinates. Altitude shows the largest
variation, with a standard deviation of 2 cm, compared to less than 1 cm for both
the horizontal components.
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Figure 4.4: UTM Coordinate Plane (Easting, Northing) during static test.
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Figure 4.5: Static test statistics for the 3D coordinate vector (Easting, Northing, Altitude).

Dynamic Test

To evaluate GNSS data consistency, a dynamic test was performed by simultaneously
recording PX4 and ZED Fusion positions at 1 Hz. In the first test, a rectangular
trajectory of measured size 3 x 4m was repeated three times. During this test,
the drone mock-up maintained a forward-facing orientation along the trajectory,
performing rapid 90° rotations at each corner. The ZED Fusion algorithm attempted
to improve position estimates by incorporating visual data, but in this case the
results were actually worse (Figure .

A second test, following a circular trajectory (Figure , was performed to
validate the observations. In this case, the ZED Fusion and PX4 positions were
closely aligned, suggesting that the ZED fusion performs better under smooth visual
changes. However, overall, the ZED Fusion data proved less reliable and consistent
than the PX4 GNSS output alone, and therefore it was not used in the final mapping
pipeline.
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Figure 4.6: RTK GNSS rectangular pattern on the UTM plane.
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Figure 4.7: RTK GNSS circular pattern on the UTM plane.
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4.1.3 Depth Camera

Testing the ZED depth estimation is more challenging than other sensors, as several
parameters influence the results in different ways. Moreover, disparity computation
strongly depends on the characteristics of the scene: thin structures or textureless
surfaces are generally harder to detect. For this reason, different scenes and objects
were analyzed to evaluate how scene complexity affects depth accuracy.

e Easy scene: An ArUco marker placed on a wall and measured at different
distances, with various parameter combinations.

e Challenging scene: Depth frames of transmission towers acquired with dif-
ferent parameter configurations.

The ZED SDK allows choosing the stereo matching algorithm to use. In this work,
two neural network—based algorithms were tested: NEURAL_LIGHT and NEURAL PLUS.
The latter provides the highest accuracy and is recommended for inspection pur-
poses, but it is computationally heavier. Therefore, NEURAL_LIGHT was also consid-
ered, as it offers a good trade-off between accuracy and processing speed.

Both algorithms output a confidence value for each pixel that defines its uncer-
tainty. The higher the value the more uncertainty. The parameters depth_confidence
(d) and depth_texture _conf (¢) define thresholds above which pixels are discarded.
Reducing these thresholds reduces noise, but excessive filtering can leave too few
valid points, affecting completeness.

ArUco Distance

To evaluate depth estimation performance, an ArUco marker test was performed
using the NEURAL_LIGHT mode with different confidence threshold combinations.
Measurements were taken at known distances of 1, 4, 7, and 10 m. However, since
the drone mock-up was manually positioned, a small human placement error is
expected. Figure shows the absolute error for each configuration, together with
the RMSE across all distances. Because the ArUco was placed on a planar wall,
setting the threshold to 100 (no filtering) yielded very accurate results; however, this
would not generalize to more complex scenes. The best overall RMSE was obtained
with depth_confidence=>50 and depth_texture_conf=90, a configuration that also
performed well in transmission tower mapping.
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Figure 4.8: ArUco detection at known distances with different parameter combinations.

Depth Frames on Transmission Towers

Depth images of transmission towers were captured using different depth modes, pa-
rameter configurations, and distances. As shown in Figures[1.9{4.10] the NEURAL_LIGHT
mode was insufficient to capture fine structural details, while NEURAL_PLUS (Fig-
ures |4.11H4.13|) provided notably better performance. Although the NEURAL_LIGHT
frames suggest that low depth_confidence values lead to too few valid pixels, this
difference was less pronounced with NEURAL_PLUS. Furthermore, in mapping appli-
cations, the accumulation of multiple frames mitigates this limitation.

Since it was not evident which depth_confidence value yielded the best trade-off,
thresholds of 25, 50, and 75 were selected for evaluation during mapping. Regard-
ing depth_texture _conf, a constant value of 95 was used in all cases and during
mapping. This setting provides minimal outlier removal while preserving pixels with
lower confidence due to textureless regions.

Finally, Figure shows a frame captured at a greater distance (about 8 m),
demonstrating the expected degradation in accuracy increasing depth range.
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Figure 4.9: Depth frame at about 4 m with NEURAL_LIGHT, depth_confidence=50,
depth_texture_conf=95
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Figure 4.10: Depth frame at about 4 m with NEURAL_LIGHT, depth_confidence=75,
depth_texture_conf=95
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Figure 4.11: Depth frame at about 4 m with NEURAL_PLUS, depth_confidence=25,
depth_texture_conf=95
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Figure 4.12: Depth frame at about 4 m with NEURAL_PLUS, depth_confidence=>50,
depth_texture_conf=95
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Figure 4.13: Depth frame at about 4 m with NEURAL_PLUS, depth_confidence=75,
depth_texture_conf=95
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Figure 4.14: Depth frame at about 8 m with NEURAL_PLUS, depth_confidence=75,
depth_texture_conf=95

4.2 Error Propagation

An estimate of the expected error of the georeferencing pipeline can be computed
using standard error propagation theory. Due to the non-linearity of the pipeline,
a linearization of the model is applied. Static sensor measurements are used as
reference errors for IMU and GNSS, while the best-case depth standard deviation
is used. Pixel coordinate errors (image quantization, etc.) are neglected. These
approximations provide a best-case estimate. Moreover, in practice, IMU and
GNSS are dynamic and depth may be less accurate (e.g., in challenging structures
such as powerlines).

The non-linear georeferencing model can be expressed as
y=f(x) <= Py = Tpw Ty Ppix, (4.1)
where:
e P, = [z,y,Z,1]" is the pixel coordinate with associated depth Z;
e T, is the calibrated (static) pixel-to-body homogeneous transform;
Ry

o Ty =
01x3 1
Ry, (from IMU) and translation ¢ (from GNSS).

is the body-to-world homogeneous transform, with rotation
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The standard deviations measured during static sensor tests are:
Depth: o,
IMU (Roll, Pitch, Yaw): og, op, oy,
GNSS (E,N,U): og, on, op.
The input vector of the model and its covariance is:
-7
0,
0
t

hS]

¥, = diag (0%, 0%, 0p,0v,05, 0%, 0% (4.2)

<

8

<

t
[ £, ]
Assumptions

e Small errors: perturbations are small, justifying a first-order Taylor expan-
sion.

e Independence: depth, IMU, and GNSS errors are uncorrelated.

First-order Error Propagation

For small uncertainties, the first-order Taylor expansion at the mean T approximates
the model as:

y~ f(z)+J(@)(z —2) (4.3)
where J(Z) is the Jacobian evaluated at Z. For small perturbations, the covariance

of y can be approximated byﬂ
%, ~ JS,JT (44)

For the georeferencing model, the Jacobian is the 3 x 7 matrix J = [J; Jy Ji],
hence:
Np, & Jzo5J} + JoXed] + 2, (4.5)

Small Perturbations
Writing the non-homogeneous form of the model:
Py = RppPpix + Lo, Pw = Rywpy +1 (4.6)

And linearizing p,, about inputs perturbations:

~ apw apw apw

where
e 0/ is the depth error;
e 66 = [oroll, dpitch, dyaw] " is the IMU orientation error;

e 0t = [0E,5N,6U]" is the GNSS position error.
2For a linear map y = Az — &y = ASy — By = (Ad2)(Adz)T = A(0.01)AT
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IMU Contribution For small angles, a rotation can be approximated using the
first-order Rodrigues formula [4§]:

R(00) ~ I + [0, (4.8)
with [v]x the skew-symmetric matrix. The IMU perturbation thus propagates asﬂ
MY A Rulpalc 00, PRI = (Vi Z2)odt (K24 2203+ (XE+YR)oE (49)

From Equation [.9] it is evident that each angle affects the components perpendic-
ular to its rotation axis.

, the Jacobian relative to the

Depth Contribution Defining a@ = £ ch,ﬁ

8pw

depth contribution = Ryw Ryl B 1]7. Since rotatlon matrices preserve norms:

0 X Bl BTS7, [ (04 6 ) (110

GNSS Contribution Applying a perturbation on the translation vector ¢ has a direct
linear effect on the global error:

SpONSS — st [10pSNS|12 & 0% + 0% + o (4.11)

Total Standard Deviation

Assuming independence of errors:
1812 = [|6p2P™ |2 + [|6pl, I MUT|| + ||apS NS5 |2

allows to express the total standard deviation as:

Oun @\ (02 + B2+ 1)0% + (P + Z)0% + (X7 + Z2)0% + (X} + Y2)03 + 0% + 0% + 0}
(4.12)

Central Axis Approximation

A further simplification can be applied considering a point near the optical axis,
where ||py|| & Z. This implies a =~ 3 ~ 0 and [X,, Y., Z.]7 ~ (0,0, Z]T. The total
standard deviation then depends only on Z:

VAR \/U%—FZQ(O'IQ{—FO'?D—FO'%/)—|—O’%~+U]2V—|—O'%[ (4.13)

Stereo Depth Error

While IMU and GNSS errors can be considered constant, the stereo depth uncer-
tainty grows quadratically with distance. From the stereo camera model (Equation
11):
0z _Jb b Z? p fb
2= 94 ~ 2% ~Z
Here o4 can be assumed approximately constant, although in reality it depends on
the stereo matching algorithm and texture conditions. Thus:

Jz(ZQ>
Z

3The rotation matrix preserve the norm, so the contribution on the squared error is given by ||[ps]x 50||?

(4.14)

o7(2) =~ kZ? k= (4.15)
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Expected Error of the Pipeline

Using the stereo depth model (Equation and experimental data, a value of
07(Zp) = 0.05 m at Zy = 5 m was estimated from ZED camera tests. Combined
with IMU and GNSS errors (Table , the expected standard deviation of the
georeferencing pipeline can be computed.

Table 4.1: Sensor standard deviations used for georeferencing error estimation.

Sensor Quantity Std.

Depth (ZED stereo) oz 0.05mat Zyp =5m
IMU OR 0.00019 rad
IMU op 0.00016 rad
IMU oy 0.00055 rad
GNSS oE 0.006 m
GNSS ON 0.008 m
GNSS oy 0.020 m

Simplified Error vs Depth

Figure shows oy0t(Z) for the central-axis approximation, comparing constant
and distance-dependent depth error. The effect of the constant o, appears almost
flat with respect to oz(Z), making the stereo camera depth error the limiting factor.

Simplified Georeferencing Error vs. Depth
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Figure 4.15: Expected standard deviation of the pipeline as a function of distance. Depth uncer-
tainty dominates at larger ranges.

Error Distribution in the Image

The total standard deviation also depends on pixel location. An HD image (1080x1920)
was discretized into macro-pixels of 40 x 40 pixels, and representative depths of
Z =5,10,15 m were analyzed. Figure [4.16|shows o, distribution across the image
plane: errors increase toward the image edges due to off-axis IMU contributions,
while depth remains the dominant source of uncertainty.
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Figure 4.16: Expected oo distribution in the image plane at different depths.
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Remarks

e Orientation errors grow linearly with distance ||py|| from the UAV.
e Depth error is affected by:

— the pixel location in the image plane;

— the object distance from the camera (due to stereo principle).

e GNSS errors contribute linearly and remain approximately constant over dis-
tance.

e The dominant uncertainty source is the depth estimate, especially at long
ranges.

e The expected mapping error in practice will likely exceed this analytical best-
case estimate.

4.3 ArUco Georeferencing Test

In order to evaluate the effectiveness of the georeferencing pipeline, a test detecting
an ArUco marker was performed due to its reliable visual detection. In Figure [4.17]
a test keeping the drone mock-up on a line with constant orientation facing the
marker was conducted. The depth computation mode was set to NEURAL_LIGHT,
with depth_confidence=50 and depth_texture_conf=95.

The absence of a ground-truth position for the marker constrains the analysis
to rely only on data statistics, such as the standard deviation from the average
detected position, and on visual inspection of results. Moreover, the distance from
the camera to the marker can be estimated from RGB images, knowing the true
dimension of the marker according to:

fx Wreal
g =i rea 4.16
W (4.16)

where f, is the focal length along the horizontal axis, W, is the real side length
of the (square) ArUco marker, and W), is the corresponding side length in pixels.

Since the ArUco marker is not challenging to detect, the stereo depth is expected
to be similarly accurate. However, Figure [4.18 shows a second test where a continu-
ous measurement of the ArUco marker was performed while following a semi-square
trajectory. Interestingly, the average absolute difference between the two distance
estimations is about 50 cm, which is higher than expected. Although the specific
cause of this offset is not fully identified, repeated experiments confirmed its con-
sistency, indicating a systematic rather than random error. The resulting standard
deviation of the georeferenced marker position of this test is about 15 ¢m, which is
significantly higher than in the straight-line test (around 2 ¢cm). Nevertheless, this
value is consistent with the expected error estimated in Section [£.2] confirming that
the proposed georeferencing pipeline achieves accuracy consistent with analytical
expectations, but remains sensitive to depth estimation quality.
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Aruco Localization Map (UTM 32T)
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Figure 4.17: Georeferencing of ArUco marker following a straight-line trajectory.
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(a) The georeferenced position of the ArUco shows a standard deviation of 15 cm.
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Figure 4.18: Continuous detections of the ArUco marker. (a) UTM plane view. (b) Difference
between stereo depth estimate and RGB estimate according to Equation
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4.4 Transmission Towers Point Cloud

The final test of this work, to validate the effectiveness of the framework in the
context of powerline inspection, was mapping transmission towers. Since several
parameters needed to be tuned for this purpose, a series of field experiments were
done.

Finding a clear scene suitable for testing was challenging. Most transmission
towers in the region are typically hidden by vegetation, vineyards, or, if close to the
city, by buildings. After an accurate research for a clear transmission tower, the
test scene is reported in Figure Moreover, in the background there is another
tower of a different type, which is interesting to evaluate the performance of this
framework. The tests were performed at a distance of about 5 meters from the
tower.

Figure 4.19: Transmission tower used to validate the mapping framework. Following results are
referenced to this tower.

The parameters were tuned starting from the depth mode, depth confidence
threshold, and finally adjusting the filter parameters of the mapping algorithm.
Even though it was not strictly necessary, the maps were colored according to RGB
images, averaging the color of pixels in the same grid after the voxel filter. The
additional computational load is almost negligible compared to the whole system.
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4.4.1 Tuning Depth Mode

Even though the ZED depth test shows that the depth mode NEURAL _LIGHT is prob-
ably underperforming on transmission towers, a mapping test was done to validate
this result. Figure [4.20] shows that this matching algorithm is not sufficient to cap-
ture thin details of the tower, independently of the rest of the parameters.

SEh & i

(a) depth_confidence=75 (b) depth_confidence=50

Figure 4.20: Maps with depth mode NEURAL_LIGHT and depth_texture_conf=95

4.4.2 Tuning ZED Parameters

After establishing which depth mode to use, the confidence threshold parame-
ters needed to be tuned. From the depth test on a single frame, it is clear that
depth_texture_conf can be safely set to 95, while for depth_confidence the best
trade-off should be assessed. A low confidence would discard more data, but accu-
mulating more frames could potentially compensate for that.

Figure demonstrates that this guess was correct. Frame accumulation com-
pensates fully for the few points kept, allowing a more accurate map.
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(c) depth_confidence=75

Figure 4.21: Maps with depth mode NEURAL_PLUS and depth_texture_conf=95
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Results allow concluding that challenges of transmission towers can be captured
with the ZED 2 camera using the right settings (Table , and a map in global
coordinates can be computed using the RTK GNSS system.

Given the degradation of depth estimation with distance and considering that
tests were conducted at approximately 5 m from the base of the tower, a maximum
distance for reliable mapping can be considered around 8 m.

Parameter Value
Resolution 1080p
Frame Rate 15
Minimum Depth 0.5 m
Maximum Depth 15 m
Depth Mode NEURAL PLUS
Depth Confidence Threshold 25-50
Texture Confidence Threshold 90

Table 4.2: ZED 2 Parameters after tuning.

4.4.3 Tuning Filters Parameters

A further tuning step was performed by choosing the parameters of the filter in the
mapping algorithm. This step was done by recording a ROS bag and running the
algorithm offline.

As shown in Figure [4.22] a more aggressive filter can reduce the number of points
while keeping an acceptable level of detail. Even though the computational load
of the mapping framework is not reduced, this can significantly reduce the com-
putational load of successive steps, like path planning. Moreover, since successive
tasks are likely done on a ground station, reducing the point cloud size reduces the
bandwidth needed for streaming the data.
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(a) Aggressive filtering (b) Minor filtering

Figure 4.22: Tuning mapping filter with depth mode NEURAL _LIGHT, depth_confidence=25 and
depth_texture_conf=95

4.5 Real-Time Performance

The proposed mapping framework provides high-quality maps of transmission towers
in global coordinates. However, a key requirement for UAV inspection is real-time
performance. Onboard resource usage is monitored on the Jetson using tegrastats
(CPU, GPU, and RAM), and framework latency is measured using ROS 2 topic
timestamps. Two types of latency are considered:

e Input Latency: The difference between the original timestampﬂ of ZED and
Pixhawk topics and the time at which these topics are retrieved in the bridge
node.

This latency is the most relevant, as it depends on both the Jetson and ROS 2
performance, including depth computation time and ROS 2 message handling.

e Bridge Node Latency: The difference between the time topics enter the
bridge node and the time they exit.
This is expected to be much lower than the input latency and is measured to

4 As mentioned earlier, this does not necessarily correspond to the sensor acquisition time
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evaluate whether the bridge node introduces a significant delay and must be
optimized (e.g., rewritten in C++ or removed entirely).

This section evaluates real-time performance at different stages of the framework:
first ZED computation only, then the data acquisition pipeline and finally the full
mapping pipeline.

4.5.1 ZED 2 Computation

ZED 2 offloads all computation to the host GPU, which can be a disadvantage for an
onboard system with other concurrent workloads. Figure[4.23|shows Jetson resource
usage during execution of the ZED wrapper only, with depth mode NEURAL _PLUS.
As expected’] the GPU load reaches an average of 95%.

The NEURAL_PLUS mode also affects the camera frame rate and input latency in
ROS 2. The frame rate measured with ros2 topic hz was lower than expected:

mean = 2.758 Hz std = 0.315 Hz

Comparing input latency between the two depth modes shows a significant in-
crease with NEURAL_PLUS:

| NEURAL_LIGHT | NEURAL_PLUS
Latency avg (ms) | 179.84 | 300.92

Table 4.3: Average latency of the depth topic from the ZED ROS 2 wrapper, comparing depth
modes.

5Stereolabs documentation states an average GPU load on the Jetson Orin NX 8 GB of 94%, a CPU usage of
10% and a frame rate of 8 fps.
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Figure 4.23: Jetson resource usage during execution of the ZED ROS 2 wrapper with depth mode
NEURAL_PLUS.

4.5.2 Data Acquisition Pipeline

Adding PX4 topics and the bridge node, the average frame rate decreases to:

mean = 1.860 Hz std = 0.375 Hz

The Jetson resource utilization during data acquisition is shown in Figure [4.24]
When the mapping algorithm is executed concurrently with the ZED 2 camera,
the GPU load remains consistently high (around 95%), while the CPU utilization
increases compared to running the camera alone. This behavior indicates that the
GPU is already heavily engaged by the ZED neural depth estimation, but still allows
additional workloads to be scheduled concurrently. The utilization metric in fact,
is the proportion of active time and not the absolute computational saturation.
Since different workloads (e.g. NN depth estimate, CUDA-based mapping) may use
distinct GPU subsystems the scheduler can overlap their execution. However, the
additional processing demand and memory transfers increase CPU coordination and
I/0O latency, and is likely contributing to the observed reduction in frame rate.

The increase in CPU load is also highly related to the additional ROS 2 nodes
and data handling overhead.

ROS 2 latency for this pipeline is shown in Figure 4.25. PX4 data maintain low
latency, whereas ZED depth computation introduce a delay of about 300 ms.
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Figure 4.24: Jetson resource usage during the data acquisition pipeline
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Figure 4.25: ROS 2 latency for the data acquisition pipeline

(b) Bridge node latency

4.5.3 Point Cloud Processing

To underline the resource demand of the ZED computations, the Jetson stats during
the execution of the point cloud algorithm using rosbag data are recorded. Result in
Figure 4.26|shows that the algorithm used is optimized for real time usage, thanks to
C++ coding with CUDA accelerations. ZED processing was hence the bottleneck.
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Figure 4.26: Jetson resource usage during the execution of the point cloud mapping algorithm
only.

4.5.4 Full Mapping Pipeline

During onboard execution of the mapping pipeline, i.e. data acquisition and map-
ping algorithm, Jetson resource usage and ROS 2 latency were recorded to evaluate
overall performance of the proposed mapping framework.

The Jetson resource usage in Figure[4.27)shows that, although the GPU is heavily
utilized by the depth computation, it can still interleave additional kernels from the
mapping process. CPU usage is higher than in previous stages, as expected. The
average frame rate further decreases:

mean = 1.771 Hz std = 0.532 Hz

Inspecting the mapping algorithm logs, the mapping algorithm processing time per
frame is:
mean = 48.92ms std = 3.66 ms

indicating that the algorithm could process frames at up to about 20 Hz without
introducing any delay.

Figure shows ROS 2 latency for the full pipeline. As expected, bridge node
latency is negligible compared to input latency. Interestingly, the largest input
latency occurs for the camerainfo topic, but this won’t affect since is taken only
at initialization. RGB and depth topics have more than 300 ms delay, which could
seems high. However, given the slow UAV speeds in powerline inspection, this delay
can still be acceptable for real-time operation.
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Figure 4.28: ROS 2 latency for the mapping framework.

4.5.5 Real-Time Achievements

In general, a system can be considered real-time if is able to react to external stimuli
within time intervals dictated by the environments. In this case study, real-time
mapping means that the delay between input (perception) and output (control) is
sufficiently small to ensure safe flight mission success. A practical question is: what
is the maximum latency that allows the UAV to respond to critical situations? The
answer depends on the speed of the drone and the map depth range. From previous
results, a depth of 8 meters can be considered an acceptable range. Typical speed
for this kind of application is lower than 5 m/s (i.e. 18 km/h). Considering a safety
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distance buffer to account for all uncertainties and a safety distance margin, a simple
mathematical inequality can be formulated:

reaction distance + braking distance < useful range
where useful range = maximum depth range - safety buffer

Assuming a typical drone braking deceleration of 3m/s?, the inequality can be

formulated as: )

vt—l—;j—agR—s (4.17)
where:
e v is the drone speed;
e q is the drone maximum deceleration, assumed 3m/s?%;
e { is the system total latency;
e R is the maximum detection range, assumed 8 m;

e s is the safety buffer that can be set large to 2m.

With a mapping latency of about 300 ms, an overall delay of 500 ms can be
assumed. Solving the quadratic inequality:

v? + (2at)v — 2a(R — 5) <0
yields:

Uz = at + \/a2t2 +2a(R—8) — Una(t=0.5s)=4.Tm/s

This can be considered an acceptable maximum velocity for UAV powerline inspec-
tion purposes. More generally, Figure [4.29/shows maximum UAV speed as a function
of total system latency.

Maximum UAV speed as function of system latency
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Figure 4.29: Maximum UAV velocity as a function of system latency to ensure real-time capabili-
ties. Assuming a UAV deceleration of 3m/s?, depth range fo 8 m, and a safety distance buffer of
2m.
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Conclusions

This thesis presented a real-time mapping framework for UAV-based powerline in-
spection using a depth camera (ZED 2) and an RTK GNSS system. The objective
was to develop a pipeline capable of generating accurate georeferenced 3D point
clouds suitable for path planning and navigation. As part of a larger project on au-
tonomous powerline inspection using UAVs, in collaboration with Fraunhofer Italia,
the proposed framework was implemented on a drone mock-up and tested on trans-
mission towers. It was validated through sensor and algorithm testing for accuracy
and real-time performance. The results demonstrate that the proposed platform is
capable of onboard real-time mapping. Considering the high computational demand
of the ZED NN-based depth estimation algorithm, the measured latency of the entire
pipeline is sufficiently low to allow safe flight at typical inspection speeds. Specifi-
cally, with a measured system latency of about 300 ms, the UAV can fly at speeds
up to almost 5m/s without compromising safety, assuming a deceleration of 3m/s?
and a safety buffer of 2m. However, a separate, faster obstacle avoidance system
may still be required for real missions given the unstructured and dynamic nature of
the environment. Regarding map accuracy, although a ground-truth dataset was not
available, visual evaluation of the results, together with statistical analysis, demon-
strated that good-quality mapping can be achieved from a distance of approximately
5m. Since stereo depth accuracy decreases exponentially with distance, an upper
limit for reliable mapping and obstacle detection can be established at about 8 m.

This work assessed the feasibility of achieving a complex task such as autonomous
UAV powerline inspection using standard, commercially available technologies. Al-
though most mapping approaches are based on active sensors, stereo cameras have
proven capable and deserve further consideration. Moreover, using GNSS-derived
pose information is uncommon in similar approaches due to its typical low precision,
but the RTK pipeline demonstrated that it can significantly enhance performance
and, together with the IMU, provide a pose as precise and smooth as standard
odometry estimates. This makes it a strong advantage in the challenging conditions
of outdoor environments. Laying the foundation for future research in this area,
the proposed framework is modular enough to allow easy integration of additional
features or improvements, thanks also to the ROS 2 ecosystem.

5.1 Lessons Learned

During the development of this thesis, several lessons were learned about stereo
cameras, hardware constraints and UAV systems:

e Depth estimation performance: The ZED 2 demonstrated how a stereo
camera can provide both RGB and depth data using a single passive sensor.

81



However, obtaining precise depth estimates is computationally demanding, and
performance degrades exponentially with increasing distance. Thin structures
such as transmission towers are particularly challenging to map, especially when
a safety distance between objects must be maintained, requiring careful tuning
of all relevant parameters.

Sensor fusion: The georeferencing pipeline developed in this work required
fusing data from three sensors: IMU, GNSS, and depth. Particular attention
had to be paid to data alignment and synchronization. In this context, the ROS
2 middleware proved extremely advantageous, providing standardized tools for
reference frame management, time synchronization, data communication, dif-
ferent HW and SW integration.

RTK GNSS: The RTK GNSS system proved reliable and capable of providing
smooth and precise pose information suitable for mapping applications. This
accuracy is also due to the PX4 EKF, which filters the raw GNSS data. How-
ever, the critical component remains the communication link between the base
and the onboard receiver: packet loss or communication interruptions quickly
degrade performance to standard GNSS levels.

Hardware constraints: When hardware components are involved, computa-
tional limitations immediately arise, particularly when real-time performance
is required. Clearly, these constraints dictate design choices, requiring soft-
ware strategies to mitigate them. In particular, the computationally expensive
NN-based depth estimation algorithm made the implementation of a fast and
efficient mapping algorithm essential. Other tasks are therefore likely to be
offloaded to a ground station, balancing onboard processing load and commu-
nication bandwidth.

Autonomous UAV: Understanding the challenges related to autonomous
UAV missions is critical for design decisions, as many factors are closely inter-
dependent. For example, using a stereo camera can reduce the overall system
weight and thus increase flight duration. On the other hand, the computa-
tional power required for depth estimation can significantly impact energy con-
sumption, potentially reducing flight time. Moreover, onboard computational
resources are limited, meaning that additional tasks could be compromised.
Another trade-off involves the real-time constraint: the inevitable latency of
the system imposes a limit on UAV speed. At lower speed, mapping accuracy
improves, but the mission duration increases, emphasizing the need to balance
accuracy, safety and efficiency.

Future Works

The proposed framework can serve as a foundation for developing path planning
and navigation algorithms to validate autonomous powerline inspection. However,
several improvements and extensions could enhance both robustness and autonomy;,
particularly by extending testing to full powerline scenarios and integrating addi-
tional perception capabilities necessary for a fully autonomous system.
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e Depth estimation: Although the ZED 2 parameters were tuned for challeng-
ing structures, powerline wires remain an unknown. Further testing on similar
thin and reflective structures should be carried out to evaluate the detectability
of cables with the stereo camera.

e Optimize real-time performance: The input latency of ZED data is dif-
ficult to reduce, as it mainly depends on the efficiency of the neural depth
computation. However, minor improvements should be explored. For example,
dynamic depth resolution could be implemented, reducing the resolution where
not needed. Moreover, the use of a more powerful companion computer should
be considered, as well as the use of a stereo camera with integrated GPU.

e Robust wireless communication: The framework relies on a stable link
between the UAV and the ground station for the RTK GNSS pipeline and
drone control. While a wired Ethernet connection was used in this work, real-
world UAV operations require a robust wireless solution.

e Enhance autonomy: Several additional modules are essential to achieve full
autonomy, such as:

— Object detection module: automatic detection of objects of interest
is needed for semantic environment understanding, enabling task-specific
path planning and inspection operations.

— Obstacle avoidance module: to ensure safety in complex and dynamic
environments, a faster mapping and control loop to rapidly react to ob-
stacles is mandatory. For this purpose, fast sensors such as range finders
could be integrated.
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