POLITECNICO DI TORINO

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS

Master’s Degree in Mechatronic Engineering

Automatic Map Update

for Autonomous Navigation

in GNSS-Denied Environments

Supervisors: Candidate:
Prof: Marcello Chiaberge Leonardo Crotti
Ing: Antonio Marangi

ACADEMIC YEAR 2024 /2025

Abstract

This thesis addresses the problem of automatic map updating in dynamic environ-
ments, with a particular focus on indoor airport environments, where even small
variations in the structural layout can compromise the autonomous navigation ca-
pabilities of mobile robots. After an initial analysis of the ROS 2 framework,
the slam_toolbox package, and the main Simultaneous Localization and Mapping
(SLAM) algorithms, a methodology is proposed for identifying and classifying differ-
ences among maps acquired at different time instants. The experimental validation
was carried out in simulated environments using Gazebo and RViz, by generating
custom maps and developing Python algorithms based on the OpenCV and NumPy
libraries for identifying discrepancies. Furthermore, a system integrated into the
ROS 2 navigation stack in a decentralized environment was implemented, responsi-
ble for map management, pose estimation, and data storage through specific nodes.
The results confirm the feasibility of automatic map updating, paving the way for
the development of more robust and adaptable autonomous robotic systems suitable
for real-world scenarios.

Contents

Introduction

Alba Robot

1 Background and Motivation

1.1 General context and thesis’ goal
1.2 SLAM-based Automatic Map Update: State of the Art
2 ROS 2
2.1 Basic ROSconcepts.
2.1.1 Nodes e
2.1.2 Messageso e e e e e e
2.1.3 Topics e e e e e e
2,14 Services i i e e
2.1.5 Actions e
21.6 ROSpackageso
2.1.7 Managed Nodes
2.1.8 Recording and replaying topics: rosbag
2.2 Simulation and visualization tools: Gazebo and RViz
2.3 Navigation Stack in ROS2: Nav2
2.4 Quality of Servicein ROS2
25 ROS1vsROS2 e
3 SLAM
3.1 Mathematical basis
3.1.1 Typesof SLAM
3.1.2 Paradigms of SLAM algorithms
3.2 ROS 2 framework and slam_ toolbox
3.2.1 Operationmodes
3.2.2 Package configuration in ROS2

4 Methodology and development
4.1 Maps construction L
4.2 Difference Detection Python Code
4.2.1 Binary Difference Computation

CONTENTS 6
4.2.2 Image Registration and Alignment 55

4.2.3 Noise Filtering, 56

4.2.4 Clustering of Detected Differences 57

4.3 Local Differences 59
4.3.1 Pose-based Alignment of Maps 60

4.4 Map Server Pipeline, 61
4.4.1 ShutdownSaver Node 62

4.4.2 TImage processing 0o d e e 62

5 Experiments and Results 65
5.1 Region of Interest (ROI) Selection Strategies 66
52 Case Studies 66
5.2.1 Scenario 1: Permanent Obstacles 66

5.2.2 Scenario 2: Additional Obstacles 70

6 Discussion and Conclusions 73
6.1 Limitations and Future work 73
6.2 Final Considerations e 74
Appendix 77
Least Squares e e e e e 77
ORB . . . e e 77
DBSCAN . . . e 79

Introduction

The proposed work lies in the field of autonomous mobile robotics and addresses the
problem of automatic map update in dynamic environments, with particular focus
on scenarios without GNSS support. In such contexts, the accuracy of localization
and the consistency of the spatial representation rely entirely on Simultaneous Lo-
calization and Mapping (SLAM) techniques, which allow the robot to construct and
update the space it navigates.

The necessity of continuously maintaining the maps updated and reliable stems

from the fact that real scenarios are subject to constant change: moving objects,
temporary obstacles or structural modifications can make the stored representation
obsolete, thereby compromising the ability of the robot to navigate and plan safe
trajectories.
To satisfy this requirement, in the last years research has focused on lifelong map-
ping, intended to allow the continuous adaptation of the maps to the environment’s
changes. However, these approaches often result complex from a computational
point of view and are hard to implement on real platforms.

The presented work proposes therefore the development and validation of a sys-
tem able to automate the update phase of the map, simulating the behavior of an
autonomous robot operating in GNSS-denied environments. The objective is to re-
alize a pipeline that, starting from data provided by slam_ toolbox and Nav2, is able
to automatically detect the differences of maps constructed in different times.

The system has been developed using ROS2, Gazebo, and RViz as main tools for
nodes management, simulation and debugging.

Its pipeline integrates modules of automatic saving of the maps, file monitoring,
geometric alignment and difference detection through image processing. This struc-
ture allows a completely automated management of the update process, paving the
way to future implementation on real robots.

The thesis articulates in six chapters.

Chapter 1 introduces the general context of the work, along with the motivations
and the objectives of the project.

Chapter 2 provides an overview on the ROS2 framework and the simulation tools
Gazebo and RViz.

Chapter 3 describes the main types of SLAM techniques and the SLAM imple-
mentation in ROS2.

Chapter 4 presents the algorithm implemented to detect the differences between

CONTENTS 8

the maps.
Chapter 5 illustrates the results achieved in simulation and online testing of the
algorithm.
Chapter 6 summarizes the conclusions and proposes possible paths for future ideas.
An appendix has also been included to give a deeper insight in the used algorithms.

Alba Robot

Alba Robot s.r.l is a small and medium-sized enterprise (SME) based in Turin
founded by the CEO Andrea Bertaia Segato in 2019 as innovative-startup and incu-
bated by the Politecnico di Torino start-up incubator I3P. The concept originated
from a concrete case of reduced mobility and subsequently developed into a broader
vision: enabling greater autonomy and inclusion through advanced technological
solutions.

The company proposes a micromobility B2B service that embeds autonomous elec-
tric vehicles, Italian design and advanced technologies in the fields of Al, IoT, au-
tomotive and robotics. This vision has brought Alba Robot to cooperate and test
with relevant partners all over the world, such as International Airlines Group, as
well as presenting its vehicles in fairs and global events such as Gitex Dubai, SMAU
Milano, Airport PRM Leadership Conference in Paris, and Dubai Airshow.

Figure 1: Alba Robot’s logo and the SEDIA micromobility platform.

The core project is SEDIA (SEat Designed for Intelligent Autonomy), an au-
tonomous mobility platform realized for public facilities such airports, museums and
hospitals, where fleets of autonomous mobile robots, able to carry also objects, im-
prove the accessibility and moving experience of the user.

This solution is based on a dual architecture:

e the hardware layer, composed by sensors, perception systems, focused on
data collection and movement control;

CONTENTS 9

e the software layer, which manages localization algorithms, path planning and
detection and obstacle avoidance.

This integration allows the system to adapt in real time to environment modifications
and guarantee a fluid and safe navigation. The internal activity of research and
development aims to progressively strengthen the platform’s performance, with the
objective of transforming SEDIA in a technological reference point for autonomous
mobility.

Chapter 1

Background and Motivation

1.1 General context and thesis’ goal

Airports are well known for being highly dynamic environments. This trait is not
only due to the constant passengers flow, but also to the facility itself, which is
often subject to structural changes. From a passenger’s perspective, such changes
are often unnoticed, as they typically occur on a much longer timescale than the
average stay at the airport. However, it becomes particularly interesting to observe
what happens when the time window is extended of just a few days. For instance,

considers two maps of the same facility constructed in different days of
the same week.

Figure 1.1: Facility map evolution.

As can be seen in the middle of the second image, a section of the upper wall of
the facility was modified over the course of several days.
Reliable navigation requires robots to know their precise location within the en-
vironment and maintain an accurate representation of its structure. This is typi-

1.1. GENERAL CONTEXT AND THESIS’ GOAL 12

cally achieved through SLAM (Simultaneous Localization and Mapping) techniques,
where a map of the environment is incrementally built while the robot simultane-
ously estimates its pose.

Yet, robust autonomous navigation relies on an up-to-date global map. If the envi-
ronment changes, as illustrated in , the existing map can become outdated,
potentially leading to navigation errors.

Remapping from scratch and uploading the new map to every robot is a time-
consuming process, especially in large areas where multiple robots operate simulta-
neously.

This thesis addresses this challenge by proposing the following steps:

e as the robot roams it constructs local maps of the environment via SLAM;
e the local maps are sent to a central map server;

e the server processes the images by comparing the newly obtained maps with
the global map currently used for navigation by the platforms;

e if new obstacles are detected, they are reported;

e under certain conditions the maps can be automatically updated on the basis
of the collected data.

Thus, the responsibility for applying updates to the map lies with the server rather
than with individual robots. This approach simplifies synchronization across robots,
facilitating the exchange of the most up-to-date map.

SLAM map Map Server SLAM map
Difference Spotting
Map Update

Updated map

\ 4
SEDIA SEDIA |

ROS2

SEDIA
slam_toolbox Nav2

Figure 1.2: Proposed architecture scheme.

1.2. SLAM-BASED AUTOMATIC MAP UPDATE: STATE OF THE ART 13

1.2 SLAM-based Automatic Map Update: State of
the Art

In recent years, the scientific community has increasingly focused on the problem of
automatic map updating in GNSS-denied scenarios, where SLAM techniques repre-
sent the primary tool for ensuring localization and autonomous navigation.

One of the main challenges lies in the dynamic nature of real environments: tem-
porary obstacles, movable furniture, or the simple presence of people continuously
alter the perceived structure of the scene, potentially affecting map’s reliability. To
address this issue, several approaches treat the map as a dynamic entity capable of
evolving over time through probabilistic models that distinguish between transient
and static information. This allows the system to preserve global consistency while
preventing obsolete data from compromising localization accuracy.

At the same time, scalability has came up as an additional critical aspect. In

In large-scale environments, adopting monolithic maps results difficult to manage,
both in terms of memory usage and elaboration time. To address this problem, the
most recent solutions have introduced multi-layer or hierarchical representations, in
which high resolution local maps are integrated within simplified global models.
In this way it is possible to mitigate the computational requirements needed and, at
the same time, the system is able to dynamically adapt the level of detail depend-
ing on the specific task, guaranteeing an optimal trade-off between precision and
efficiency.

Lidar point
cloud

— TR [

t Rasterization J t VO estimation J

! }

Feature tracking Pose

and pose Fose
estimation Optimization

Local
Pose

Tracking Keyframe
Registration

Map

Managment LOOP
Closure BOW vector
Local BA Detection

l Local map J—»[BOW Database J—»[Database Queer
Rasterization

Pose graph
Local map graph optimization

Figure 1.3: Architecture of the local-map management framework (Ali et al.).

In the work proposed by Ali et al., the authors present an architecture in which
the global map is not maintained as a single entity, but rather as a collection of

1.2. SLAM-BASED AUTOMATIC MAP UPDATE: STATE OF THE ART 14

rasterized local maps, each represented as an image derived from LiDAR readings.
The system includes a dedicated map management component that keeps track of
previously generated local maps, assigns temporal tags, and employs culling mecha-
nisms to limit memory consumption. For loop closure and relocalization, a Bag-of-
Words (BoW)-based approach operates directly on the rasterized images, achieving
high performance on both indoor datasets and the KITTI benchmark, with accu-
racy and recall exceeding 90%. One of the main strengths of this solution lies in its
trade-off between accuracy and computational cost, which remains sustainable even
in long-term operation.

A pioneering contribution to long-term mapping in dynamic environments was
introduced by Pomerleau et al. This work relies on 3D laser scans and proposes
a probabilistic methodology to determine whether each mapped point should be
considered static or dynamic, based on multiple observations distributed over time.
The system preserves a most-likely model of the static geometry, ignoring dynamic
or transient objects without explicitly modeling them. A key feature is the storage
of movement patterns of observed mobile objects.

Experiments conducted on data collected in urban spaces over several months demon-
strated that a consistent and reliable map can be maintained for localization, even
in highly dynamic environments.

nRALLLLLCEL L LR LR LRI LD » odometry

$ point cloud

polnt cloud

point cloud Registration Global Map Velocny
Maintenance Estlmatlon\)

Figure 1.4: Overview of the long-term 3D map maintenance system (Pomerleau et
al.).

A further line of research, as the one conducted by Cai et al., address the problem
of map fusion for maps obtained in different session or by multiple agents. The pro-
posed system, named LAMM, introduces a procedure to automatically combining
heterogeneous LiDAR submaps, facing two major challenges: firstly, the adoption
of a bidirectional temporal filter, which allows to remove dynamic objects and noise;
secondly, the employment of outlier rejection algorithm able to prevent errors during
loop closures, particularly in presence of repetitive environments or similar spaces.
This methodology allows to integrate maps acquired in different times and condi-
tions with precision, maintaining stability, scalability and robustness even with large
datasets.

1.2. SLAM-BASED AUTOMATIC MAP UPDATE: STATE OF THE ART 15

1

Sub-Pose Sub-Pose
Graph Graph

Sequence N (ﬁap_l\grg ——————— N
Se.(.]l..lence 1 I False Positive Loop Filter
| o
_____L ______ I Add Loop Constraints
LiDAR Scan Moving Objects Removal | | |
Forward Timing Reverse Timing | I Group Sequences
Dynamic Points = Dynamlc Points | I

Scan
Without Dynamic Points

- Graph Graph
Place Recognition Optimization Optimization
BTC Descriptor Loop Closure LOOp Closure
Generation Detection

y

Figure 1.5: LAMM framework for multi-session LiDAR map merging (Cai et al.).

Further advances push towards semantic and persistent-object mapping, as exem-
plified by the work of Adkins et al. In their approach, geometric and visual features
are combined with object-level semantic information obtained through deep learn-
ing, leading to compact and robust maps that remain stable despite changes in
illumination or the presence of temporary objects. The system continuously up-
dates its internal representation after each deployment, preserving both local and
global consistency.

These studies demonstrate that reliable map updating requires not only geometric
information, but also metadata describing the appearance, temporal persistence,
and semantic nature of the observed elements.

Deployment Session Data LTM' \ 2 | Map Sparsification |
Long-Term Map)

Dense Prior
Estimation
A

Object Merging &
Trajectory Refinement

Map Extraction
Bounding Boxes (Offline)

l E LTM ! t
4 N\
s "

Visual Features

LTM}
Visual Feature .2;-\. Q‘ Q\ e
Outlier Rejection T e
& ‘) t X * | Euund.:.snm
Object Front End) \ Vi o
O .L;; (H T
ObVi-SLAM Optlmlzatlon) Estimates
SLAM (Online)
N J/

Figure 1.6: Semantic and persistent-object mapping pipeline (Adkins et al.).

Overall, the state of the art has evolved from simple collections of submaps to

1.2. SLAM-BASED AUTOMATIC MAP UPDATE: STATE OF THE ART 16

complex pipelines that combine three complementary strategies:

e long-term maintenance and dynamic filtering to distinguish static from tran-
sient map elements;

e multi-session fusion techniques for the integration of data collected at different
times or by different agents

e incorporation of semantic and temporal information to guide selective updates.

Research on 3D map maintenance has shown that repeated observations are suf-
ficient to estimate the stability of a given portion of the environment, enabling the
automatic removal of moving or transitory elements and preserving a reliable ge-
ometric basis for long-term localization. At the same time, modern multi-session
merging methods allow for the combination of heterogeneous submaps, the compu-
tation of complex inter-session transformations, and the application of global opti-
mization procedures that reduce drift and misalignment—an essential capability in
GNSS-denied environments.

Recent studies emphasize the integration of temporal and semantic metadata
within maps, enabling systems to recognize object categories, estimate their per-
sistence, and eventually plan revisits for targeted updates, thereby reducing the
computational cost of continuous mapping.

Finally, complementary research directions explore the integration of alternative
sensing modalities, such as radio-SLAM based on Signals of Opportunity (SoOp),
and end-to-end pipelines that coordinate autonomous exploration, change detection,
and data fusion. The collective outcome of these efforts is a vision of automatic map
updating not as a static mathematical operation, but as a modular and adaptive
process in which heterogeneous sensors, temporal belief models, multi-session inte-
gration, and semantic reasoning cooperate to maintain a coherent and up-to-date
representation of the environment over time.

Chapter 2

ROS 2

ROS 2 has been the building block of this thesis project. It is, as reported in
the official documentation, a set of software libraries and tools for building robot
applications and being open source it has become the landmark for many developers
since its launch back in 2007. In this chapter, the logic behind ROS 2 will be
discussed along with an analysis over the differences between ROS 1 and ROS 2.

2.1 Basic ROS concepts

ROS 2 is a middleware based on a strongly-typed, anonymous publish/subscribe
mechanism that allows for message passing between different processes. At the cen-
ter of the ROS 2 system lies the ROS graph, a network of interconnected nodes,
which can exchange data through dedicated pathways called topics, services and
actions. A key feature of ROS2 is its language-agnostic design, which enables devel-
opers to code both in Python and C++ through the dedicated client libraries rclpy
and rclepp.

Figure 2.1: ROS2 logo and Humble Hawksbill poster: distribution employed in this
thesis.

2.1. BASIC ROS CONCEPTS 18

2.1.1 Nodes

ROS 2 nodes represent the fundamental computational units of the system. Each
node corresponds to a process with a specific role, such as data acquisition from sen-
sors, information processing, or actuator control. As previously mentioned, nodes
communicate through messages exchanged over dedicated channels, defined as top-
ics, services, and actions. This communication model allows the system to be dis-
tributed, scalable, and modular, thereby facilitating the development and mainte-
nance of complex robotic applications that are easily extendable. Moreover, testing
and debugging are simplified, since ROS 2 provides a set of dedicated tools to mon-
itor and inspect different parts of the ecosystem.

2.1.2 Messages

Messages are the means through which nodes exchange data with each other without
expecting a response. They are defined in .msg files, located in the msg/ directory
of a ROS package.

Each file consists of two sections: fields and constants. Each field is composed of a
type and a name, separated by a space; for example:

string my_string
int32 my_integer

Field types can be both built-in and Messages description defined on their own,
such as geometry_msgs/Twist.msg. This typed structure ensures consistency in the
exchanged data and enables interoperability between nodes implemented in different
programming languages.

2.1.3 Topics

A ROS 2 topic is a pathway through which nodes can continuously exchange data
in an asynchronous manner. The data flow is based on a publisher-subscriber
structure where the publisher nodes broadcast data over a named bus, the topic,
which can have multiple subscribers. Different nodes can exchange data through
the same topic by using namespaces, which help organize and distinguish topics in
complex systems. Topics carry ROS messages containing the transmitted informa-
tion, encoded in a specific message type that the subscriber node must be able to
interpret and process.

2.1. BASIC ROS CONCEPTS 19

message

NODE NODE

TOPIC

Publisher Subscriber

Figure 2.2: ROS nodes, messages and topics.

2.1.4 Services

ROS 2 services provide another way for data exchange between nodes, differing
from topics by adopting a client-server structure which yields to a request-respond
inner structure. Here multiple clients can send requests to a single server per service.
Once the requested action is completed, the server sends a completion message to
the client and the service call terminates.

Services are particularly useful when handling raw topic messages directly in a node
is cumbersome or inefficient. For example, in this thesis the service SaveMap of the
slam__toolboxr package has been used to store the .yaml and .pgmn files corresponding
to the maps generated via SLAM. This service internally retrieves the necessary
information from the message of type /nav_msgs/OccupancyGrid published by the
slam__ toolbor node on the topic /map, a task that otherwise would be complex to
manage manually.

It is important to point out that service calls in ROS 2 are synchronous: the client
node remains blocked until the server responds. It is then required that the server
provides the service in an adequate time frame to avoid delays or even deadlocks in
the system’s operation.

request

SERVICE
message

Request

Response

response
message

Figure 2.3: ROS service.

2.1.5 Actions

The third and final mechanism through which nodes can exchange data is via actions.
These are somewhat similar to services, but additionally they can provide a feedback
message about the task that is being executed, allowing the client to receive periodic
updates on the progress of the request.

Unlike services, actions do not block the operation of the client node, yielding to an

2.1. BASIC ROS CONCEPTS 20

asynchronous client /server model. This makes them particularly suitable for long-
running tasks, such as robot navigation, where continuous progress monitoring is
crucial.

Furthermore, actions can be preempted or aborted during execution, diversely from
services, offering greater flexibility, which must complete once called. This feature
is key in highly dynamical circumstances, where task priorities may vary during run

time.

Action Client

Goal Service Client <
Feedback Subscriber

Result Service Client —

Goal Service

ACTION

— Goal Service Server

Figure 2.4: ROS action.

> Result Service Server

Action Server

Feedback Publisher

In the following table a comparison between topics, services and actions is re-

ported.
Characteristic | Topics Services Actions
Communication Publisher- Request-Response | Goal-Feedback-
paradigm Subscriber Result
Communication continuous, asyn- | synchronous, asyn- | asynchronous,
chronous chronous, one-shot | long-lasting

When to use it

Data streams (e.g.,
sensors)

Instantaneous op-
erations (e.g., pa-
rameter request)

Long or complex
operations (e.g.,
robot navigation)

Message .msg (standard or | .srv (request + | .action (goal +
structure user defined) response) feedback + result)
Data storage Only last message | Response only | State maintained
if no subscriber to the requesting | until the action is

client completed

Example

Publishing odome-
try

Pose request of a
robotic arm

Moving the plat-
form with feedback

Table 2.1: Comparison between Topics, Services and Actions in ROS 2

2.1.6 ROS packages

In ROS 2, a package the fundamental unit for software arrangement. Each package
contains the source file of messages, services, actions, configurations and metadata
necessary to develop nodes and components of the robotic system. Packages are
the way through which the modularity, reusability and distribution of the ROS 2

2.1. BASIC ROS CONCEPTS 21

software is managed.
Each package usually contains:

e Nodes directories (src/), where nodes are implemented either in Python or
Ct+;

e Messages, services and actions definitions (msg/,srv/, action/);
e Configuration and parameters files (config/);

e Metadata such as package.xml and CMakeLists.txt, which allow ROS 2 to
build, install and embed the package on the workspace.

Packages can be published and shared through repositories, allowing developers to
easily interact with ready built functionalities.

2.1.7 Managed Nodes

A crucial introduction of ROS 2 with respect to ROS are managed nodes, or lifecycle
nodes. The four primary states are the ones depicted in and these are:

e Unconfigured: initial state of the node after its creation. Resources are not
allocated yet and the parameters have not been configured. It also the state
where the node is returned if errors occur;

e Inactive: the node is configured, but not actively performing computations.
Interfaces (publisher, subscriber, timer, action, etc.) are instantiated, but do
not produce or consume data;

e Active: operational state of the node, in which it carries out its primary
functions: publishing, subscribing, processing data, and acting as an active
component of the system;

e Finalized: terminal state in which resources are released and the node can no
longer be reactivated.

[Node Created “

Unconfigured ——— > Inactive > Active > Finalized

‘ Node Destroyed

Figure 2.5: ROS managed nodes, simplified scheme.

2.2. SIMULATION AND VISUALIZATION TOOLS: GAZEBO AND RVIZ 22

Besides the primary states, there are also six transition states and seven possible
transitions between states, which are respectively Configuring, CleaningUp, Shut-
tingDown, Activating, Deactivating, ErrorProcessing and create, configure, cleanup,
activate, deactivate, shutdown and destroy.

A more detailed scheme is reported to better show in the following figure.

shurclown() ‘

onError:
[FAILURE]

shutdown(}

onDeactivate
[SUCCESS]

Finalzed [_oeactivatng) [Activaing)

‘au T onDeactivate() J l do / crActivate() ‘
R
Error Raised \ Error Raised

destroy()

g do / calbacks

|
timers shutdown()
etc,

deactivate()

onShutdown:
[SUCCESS]

Figure 2.6: ROS managed nodes, complete scheme.

2.1.8 Recording and replaying topics: rosbag

Rosbags are the standard way for recording and replaying ROS messages enabling
offline testing, simulation, debugging and data sharing with developers who do not
have direct access to the hardware.

Once a rosbag is recorded, its content is saved in a directory containing a file called
metadata.yaml with useful information on the saved topics and one or more .db3

2.2 Simulation and visualization tools: Gazebo and
RViz

The two key tools for simulation and visualization within the ROS2 framework are
Gazebo and RViz. These are completely optimized to be a part of the ROS2 ecosys-
tem as they can operate as standalone nodes.

Gazebo is a 3D dynamic simulation environment for robotics, suitable both for in-

2.2. SIMULATION AND VISUALIZATION TOOLS: GAZEBO AND RVIZ 23

door and outdoor scenarios. It provides accurate physics, a wide library of sensors
and customizable plugins that enable testing of to test algorithms in realistic condi-
tions. At the time of writing, Gazebo Ionic is the latest actively maintained version,
whereas this thesis relied on Gazebo Classic (EOL: January 2025), as it was the
version that better fit the company’s workflow.

On the other hand, Rviz is a visualization tool that enables the developer to monitor
and debug the main topics, such as sensors output, cost maps used for navigation,
reference frames and the transformations between them. It supports multiple visual-
ization modalities (e.g., occupancy grids, point clouds, and robot states) and allows
interactive features, such as defining navigation goals directly from the graphical
interface. As a result, RViz plays a crucial role in both development and debugging
phases.

These two components are at the basis of the ROS 2 development cycle as they help
reducing the risks and costs associated with testing on physical hardware.

> OIS - L IERSA

Figure 2.8: RViz2 front-end.

2.3. NAVIGATION STACK IN ROS2: NAV2 24

2.3 Navigation Stack in ROS2: Nav2

Navigation2, in short Nav2, has been developed as the successor of the ROS Nav-
igation Stack, the open-source project proposed in 2010, which featured a flexible
and robust navigation solution that has been optimized to work with different types
of robots. Nav2’s architecture is based on Behaviour Tree, which coordinate the
main phases of the navigation: global path planning, local control and recovery ac-
tions in case of failures. This choice replaces the traditional finite state machines,
offering greater flexibility, reusability and configurability during run time.

Each key functionality is implemented as a standalone asynchronous server expos-
ing standard interface and supporting plugin loading. This allows the user to select
among different planners, controllers or recovery strategies depending on the specific
necessity.

Behavior Tree XML Behavior Tree Plugins

[j BT Navigator Server @

Recovery Controller Planner
Server Server Server
Recovery Plugins Control Plugins Planning Plugins

2 @ @

Local Costmap Local Costmap Global Costmap

B

Figure 2.9: Nav2 architecture design.

From a perceptive point of view, Nav2 uses layered costmaps , which combine
information from multiple sensors and can include Spatio-Temporal Voxel Layer
(STVL) to represent dynamic and three-dimensional obstacles in a scalable way.
For path planning and control, the framework offers algorithms such as A * for global
planning and the Timed Elastic Band (TEB) controller for generating optimized lo-
cal trajectories in environments with moving obstacles.

Localization is supported by consolidated tools like AMCL and slam__ toolbox, inte-
grated with sensor fusion frameworks (e.g., Robot Localization) to combine odometry,
IMU and vision.

Nav?2 fully exploits ROS 2 features, such as managed nodes for deterministic lifecycle
management of the processes and the DDS-based real-time communication, mak-
ing it suitable for industrial and safety-critical applications. Thanks to its modular
architecture, this system supports different types of robots (differential, holonomic,
Ackermann, and even legged) and can be configured for a wide range of scenarios.

2.4. QUALITY OF SERVICE IN ROS 2 25

The experiments carried out in demonstrate Nav2’s ability to operate in complex
and densely populated environments over long periods of time without human inter-
vention, ensuring robust navigation, automatic recovery and absence of collisions.

2.4 Quality of Service in ROS 2

A fundamental aspect of ROS 2 is the management of Quality of Service (QoS) in
the communication between nodes. While in ROS 1 message exchange relied on the
TCPROS/UDPROS protocols with limited configurability, ROS 2 ins built on top
of the Data Distribution Service (DDS) middleware, a standard developed by the
Object Management Group (OMG) for real-time distributed systems.

The DDS introduces the Data-Centric Publish-Subscribe (DCPS) model, where pro-
cesses share data in a global data space and each communication is governed by a
series of QoS policies. ROS 2 abstracs much of the complexity associated with DDS,
but still allows the user to configure crucial parameters, which allows to balance re-
liability, performance and resources consumption.

The main QoS policies include:

e Reliability: choose between best-effort (minimum latency, but possible mes-
sage loss) and reliable (guaranteed delivery, at the cost of retransmissions and
increased latency);

e History & Depth: defines whether to store only the last published message
or a configurable window of past messages, useful for late-joining subscribers.

e Durability: specifies whether messages are preserved for future subscribers
(transient_local) or discarded immediately (volatile).

e Deadline: sets the maximum time within which data must be updated, sup-
porting real-time constraints.

These options provide a level of flexibility unavailable in ROS 1 and are par-
ticularly important in scenarios with strict requirements, e.g., mobile robots, au-
tonomous vehicles, embedded systems. Obviously, more stringent QoS configura-
tions introduce overhead: experimental results show higher latencies with large mes-
sages, but also improved robustness and predictability.

The fact that ROS 2 inherits such properties directly from the DDS represents one
of the main innovations compared to ROS 1. DDS has been developed for mission-
critical domains such as aerospace, defense, and transportation. Its integration into
ROS 2 combines the modularity of the ROS framework with communication tools
typical of distributed real-time systems.

The studies by Maruyama et al. provide an experimental evaluation of ROS 2
performance in terms of end-to-end latencies, throughput, resources consumption,
and overhead introduced by the reliability mechanism. For instance, using reliable

2.4. QUALITY OF SERVICE IN ROS 2 26

(oS increases the robustness in case of loss of packages, but also introduces over-
head and increases message delivery time. In contrast, best effort mode prioritizes
performances sacrificing reliability. Similarly, durability with transient local allows
late-joining nodes to receive past messages, at the expense of higher memory usage.
In general, the ability to dynamically configure these options makes ROS 2 well
suited for heterogeneous scenarios, that range from soft real-time applications such
as service robotics, to safety-critical circumstances, where reliability and determin-
ism have priority with respect to latency.

Application Application

Application
Layer

| Client Library | | Client Library l

| Abstract DDS Layer |

Layer

Nodelet
API

| TCPROS/UDPROS ‘

Intra-process
API

Linux | | Linux/Windows/Mac/RTOS |

Figure 2.10: ROS1 and ROS2 architectures.

illustrates an example of phow the ROS 2 ecosystem could operate
in an assisted driving application. The camera node camera senses the environment
and published its data on the #mages topic, which is subscribed to by two other
nodes: pedestrian detection and car detection.

topic
images
car
detection
publisher subscriber
node node

pedestrian
detection

subscriber
node

Figure 2.11: ROS nodes, messages and topics.

In such context, QoS policies play a major role in ensuring that data is exchanged
according to the application requirements. For example, the topic images could
use a best effort policy, prioritizing speed over reliability, since the loss of some

2.5. ROS1 VS ROS 2

27

frames would not compromise the overall system’s functionality. Conversely, the

pedestrian detection and car detection nodes may benefit from a reliable policy,

which guarantees the delivery of each message, reducing the risk of missing critical

detections. Likewise, adopting the transient local policy would allow new subscribers

to receive the most recent messages without waiting for the next camera acquisition

cycle.

2.5 ROS 1 vs ROS 2

summarizes the main differences between ROS 1 and ROS 2 in a concise

format.

Feature ROS 1 ROS 2

Architecture Centralized, requires a ROS | Decentralized, based on
Master for name resolution | DDS (Data Distribution
and coordination Service) middleware, no

central master node

Communication Custom protocols | DDS with configurable

(TCPROS, UDPROS), | Quality of Service (QoS)

limited flexibility

policies (reliability, durabil-
ity, deadlines, etc.)

Real-time support

Very limited, not suitable
for hard real-time systems

Designed with real-time ca-
pability
suited for industrial /embed-

in mind, better

ded applications

Platform support

Mainly Linux, partial sup-
port for Windows and ma-

cOS

Multi-platform: Linux,
Windows, macOS,

real-time OS (RTOS)

and

Security

No built-in support, re-
quires external solutions

Built-in
sions

security exten-
(authentication,
encryption, access control)

through DDS-Security

Node management

Basic node lifecycle man-
agement

Lifecycle/managed nodes
with explicit states (inac-

tive, active, shutdown)

Community status

Mature, widely used in re-
search and prototyping

Actively developed, stan-
dard for new projects, grow-

ing industrial adoption

Table 2.2: Comparison between ROS 1 and ROS 2.

Chapter 3

SLAM

SLAM, which stands for Simultaneous Localization And Mapping, is the technology
that enables a robot to build a map an unknown environment while simultaneously
position itself in the map just created. To accomplish this task, sensors such as
IMUs, cameras and LiDAR are commonly employed. Depending on the sensors
used, SLAM can be classified as either LiDAR-based or visual SLAM.

In this problem hides a chicken-and-egg dilemma, since a map is required for lo-
calization and localization is necessary for mapping. For this reason, the SLAM
problem remains one of the most critical problems to solve in order to implement
fully autonomous mobile robots.

In this chapter, the mathematical tools behind in the SLAM problem will be intro-
duced, together with an overview of its paradigms.

3.1 Mathematical basis

For mobile robots operating on a flat ground, the location at time ¢ can be repre-
sented by a three-dimensional vector x;, where the first two components represent
the coordinates in a 2D plane and the third denotes the heading angle. The sequence
of positions over time, that is to say the path, is then given by

Xr ={wo,z1,22,... 27} (3.1)

where T is the final time instant and the initial position zg is assumed to be known.
Let’s then consider the odometry data obtained from the wheel encoders or the
motors control inputs:

Ur = {ug,u1,u2,...,up} (3.2)

If the measurements u; were all noiseless, the true path of the robot would be easy
to recover, but these measurements are subject to significant noise and drift, which
introduce uncertainty and cumulative error over time.

Let finally m be a known position on the map, which may correspond to a landmark,
an object or a specific surface in the environment that the robot can sense and thus

3.1. MATHEMATICAL BASIS 30

we can introduce the set of measurements taken at specific time instants ¢t € T

Zp ={21,22,23, ..., 27} (3.3)

Figure 3.1: Graphical representation of the SLAM problem. The arcs are causal
relationships and the shaded nodes are what is directly observable by the robot.

The graphical representation of helps better understand the depen-
dencies between the variables in the SLAM problem. The problem is then casted
into recovering the sequence of robot poses X7 and a model of the world m, using
odometry and sensor measurements.

3.1.1 Types of SLAM

The presence of uncertainty coming from the measurements makes a probabilistic
approach necessary. In this context, two main formulations of the SLAM problem
can be distinguished: the full SLAM and the online SLAM. The first consists in
estimating the posterior over the entire robot trajectory together with the map.

p(XT, m | ZT7 UT) (34)

The algorithms for this type of SLAM process data in batches, that is to say they
process all data simultaneously.
The second is defined as follows:

p(xe,m | Z,Ur) (3.5)

Online SLAM aims to estimate only the current robot pose instead of the entire
path. Here the adopted algorithms are generally incremental and process one ele-
ment at a time; such methods are referred to as filters.

Both formulations require two mathematical models to be solved: one that relates
the odometry measurements u; to the robot poses x;—1 and z;, and one that relates
the measurements z; to the environment m and the robot pose ;. These models
are represented by the arcs in

3.1. MATHEMATICAL BASIS 31

It is common to model them as probability distributions: p(x; | x¢—1,u¢) denotes the
probability distribution of the location x; given a previous pose z;—1 and odometry
measurements uz. Similarly, p(z; | x4, m) is the probability fo observing z; at pose
x¢ in a known environment m. Clearly, neither the robot pose nor the environment
are directly observable; however, as will be shown later, Bayes’ rule plays a key role
in transforming these models in probability distributions over those latent variables,
conditioned on the measured data.

In addition to the described distinction, the literature often refers to further classi-
fications of the SLAM problem, such as:

e Volumetric versus feature-based: the first one represents the environment
as a continuous volume (for instance, 3D occupancy grids), whereas the second
is based on feature extraction (points, lines, landmarks) to reduce the map’s
complexity;

e Topological versus metric: in topological SLAM the environment is de-
scribed ad a network of nodes and connections, while in the metric case the
positions are represented as precise geometric coordinates;

e Known versus unknown correspondence: in the first case it is assumed to
know the correspondence between observations and landmarks of them map;
in the second the correspondence needs to be estimated making the problem
harder.

e Static versus dynamic: in the static case the environment is considered time-
invariant, whereas in the dynamic case the system needs to be able to deal with
moving objects and obstacles;

e Small versus large uncertainty: it depends on the measurements noise level,
if it is high, algorithms need to be more robust and complex;

e Active versus passive: in active SLAM the robot actively plans its motion
in order to maximize the map’s accuracy and uncertainty reduction, while in
the passive problem it just elaborates the observation collected over a fixed
trajectory;

e Single-robot versus multi-robot: in the first case the map construction
is managed by only one agent, while in the second more robots cooperate to
sharing data and partial maps increasing efficiency, but also complicating the
process due to the need of data fusion.

3.1.2 Paradigms of SLAM algorithms

In the previous sections, many SLAM problems variants were listed, this yields
to plenty of algorithms proposed for their solution. In this section the main three
paradigms, i.e., EKF, graph-based optimization and particle methods, for the solution
of the SLAM problem will be presented.

3.1. MATHEMATICAL BASIS 32

Extended Kalman Filters

This approach, developed in the late 1980’s, was the first successful attempt of
finding the solution to the SLAM problem using the tools of Gaussian recursive
estimation.

The Kalman Filer itself is a recursive Bayes filter designed for linear systems under
Gaussian noise assumption. However, the linearity assumption is not realistic for
mobile robots operating in the real world. The Extended Kalman Filter (EKF)
overcomes this limitation by linearizing the nonlinear motion and observation models
through a first-order Taylor expansion. The EKF provides a solution to the online
SLAM problem and its algorithm is reported below.

Algorithm 1 Extended Kalman filter(p;—1, X¢—1, uy, 2¢):
it = g(ug, pe—1)

Y = GG+ Ry

Ky = S H, (HSHY + Q)

pe = fir + Ky (ze — h(fir))

Y= — KeHy)%y

return g, >

Each iteration of the filter starts from the previous belief, represented by the

mean estimate p;—1 and the covariance matrix ¥;_1, the new control input wus, and
the new observation z;.
Lines 1-2 perform the prediction step of the algorithm as they take into account the
robot’s motion, predicting the belief given the control commands and not taking in
consideration the observation. Lines 3-5 correspond to the correction step, where
the Kalman gain K; balances the uncertainty between prediction and measurement,
considering also the observation.

State representation. The state vector s contains the robot pose and the posi-
tion of the N landmarks:

pe = (29,0, m1 4, M1y, ..., My g, mn,y)T (3.6)

which, more compactly, becomes:

n= ($, Y, 9) + 2Nlandmarks (37)

For example, in a 2D world with 100 landmarks, the state vector will have a dimen-
sion of 203.
Each landmark is assumed to correspond to a specific and fixed index.

3.1. MATHEMATICAL BASIS 33

The belief is represented as the pair (p, %), with

TR ECERSUR Emel e EﬂURmN
mi by b)) DY

p=1 .|, Y= m:lm m:1m1 . m:lmN) (3.8)
my ZJmNacR Emle T EmNmN

More compactly

z Yz 2gm
= , Y= . 3.9
a lm:| lzmx me] ()

Here, Y2, represents the uncertainty on the robot pose, ¥,,.,m, represents the
uncertainty of landmark m;, while the off-diagonal blocks model the correlations
between robot and landmarks and among the landmarks themselves. These correla-
tions are fundamental in SLAM: when the robot observes a landmark, not only the
uncertainty of that landmark decreases, but also the uncertainty of the robot and
of other landmarks correlated with it.

To better understand how the algorithm works, the offers a visualization
of what is updated at each step.

1
®
- @
b
ES S
[}
e P
=]
=
e?
G:?f%“l .

(c) (d)

Figure 3.2: The pictures represent the path of the robot (dashed), the landmarks
(blue dots) an the uncertainties on the robot’s position (gray) and on the landmarks’
position (red).

A concrete example on how the EKF-SLAM problem can be implemented as-
sumes:

3.1. MATHEMATICAL BASIS 34

e a robot moving on a 2D plane;

e velocity-based motion model;

e landmarks treated as point features;

e range-bearing sensor (measuring distance and angle to landmarks);

e known data association (each observation corresponds to a known landmark);

e known and fixed number of landmarks.

Firstly, the system needs to be initialized. The assumption made is that the starting
point is set where the platform begins its mission.

000 O 0

000 O 0

- 000 0 0
[1,0:(000...0) s 20: 00 0 oo 0 (3.10)

000 0 - o0

It can be noticed that the uncertainty on the starting position is equal to 0, whereas
the landmark have an infinite uncertainty due to the fact that the exploration of the
environment has not started yet.

At this point, it is necessary to define the functions appearing in the EKF algorithm.
As already mentioned, the prediction step builds on top of the motion model. If
a differential drive robot is considered, the update depends on the rotation and
translation velocity

z T —ksin 6 + sin(0 + wiAt)
v =1yl + wrcost — cos(6 + wiAt) (3.11)
7 0 wiAt

G y.0 (s (2,9,0)7)
The apostrophe indicates the updated state vector.
In this way the update is on three dimensions, but the state vector is 2N+3 dimen-
sions, so a function that maps the update to the needed dimensions is required. This
adjustment is performed by matrix Fg defined in such way that the overall function
g only affects the motion and not the landmarks.

. T
S| N o O...O %COSQ_%Cos(Q—f—tht) (3.12)
N tht
R 2Ncols
P

g(ut’xt)

3.1. MATHEMATICAL BASIS 35

Next, the covariance matrix needs to be updated through the previous covariance
matrix, the uncertainty on the motion, represented by R; and the function G, which
is the Jacobian of the update function g.

We can then update the covariance matrix

Yt = G2 1G4+ Ry

(GE 0N (Ser Zam \ ((GH)T O
_<o 1) <zm 2mm>< o 1)t
_ (Gme(Gf)T ngxm) TR

(Sam) " (GP)T Zm

The two off-diagonal elements impact of the uncertainty of the robot’s pose on the
uncertainty of the landmarks.

Now that the prediction step is completed it is time for the correction step to be
performed.

To compute the Kalman gain

Ky =S H (HSH] + Q) (3.13)

the only unknown quantity is H, since () is a user defined function representing the
uncertainty on the observation, so it is based on the sensor’s properties. H is the
Jacobian of the observation function h, which computes the predict observation. We
thus need to find h.
The range-bearing observation is modeled as the following vector

= (o) (3.14)

In the case of a landmark that has not been observed yet, the initialization can be

= — Z Z —
Hjy Hit.y risin(¢; + fito)

The location of the landmark is then inferred using the estimate location of the

performed as follows

robot plus the relative measurement. Once both estimate of the landmark position
and the robot’s pose are known, it is possible to compute the Euclidean distance

5= (5”’”> = (“j’“’ - “t’“) , (3.16)
Oy Hijy — Kty
whose quadratic form is referred to as
q=20'6 (3.17)

The expected orientation is then computed as

g Va e
= (atan2(5y, dz) — Ht,@) = i), (3.18)

3.1. MATHEMATICAL BASIS 36

and its Jacobian as

Oh(fir)
Ofu

As a matter of fact, this matrix is obtained by derivation over only for the five

H} = (3.19)

non-zero variables (x,y, 0, m;, m;,), so its dimension is reduced.
The reduced Jacobian results

low H}:l(_\/% @y 0 0% \@y) (3.20)

5 6y —0y —q _5y Oy

As discussed earlier, the dimensions can be adjusted through a matrix F} ;

10000020 0---0

0c100---000O0---0

; ; o010---0000---0
HZZIOWH%F&J, Fx,j: 0000010 0---0 (3.21)

00090---001290---0

252 2N —-2j

At this stage, all the elements have been defined and the algorithm can be imple-
mented.

Figure 3.3 shows how the covariance matrix gets populated and how the uncer-
tainty around landmarks reduces as the platform explores the environment.

Figure 3.3: Covariance matrix evolution.

In Figure 4.7 one can see how as new landmarks are detected, they are initialized
with maximum uncertainty, which decreases monotonically over. Note that the

3.1. MATHEMATICAL BASIS 37

uncertainty does never converge to zero: asymptotically, the covariance associated
with a landmark’s position estimate will approach to the initial covariance of the
vehicle’s location estimate

25 ar

o
T

Standard Deviation in X (m}

|

-y
B
Standard De\ii.aliuni Y
[grde \
-
f

05 !
05t s 5 i
—— = %“%
e N
e————— — [—
0 o 1 L L] 0 il T T T T T Il
40 50 80 70 80 90 100 110 40 50 80 70 80 90 100 110

Time (sec) Time (sec)

Figure 3.4: Uncertainty of the landmarks position over time.

Graph-Based Optimization Techniques

This solution builds on top of the notion of treating subsequent robot poses as nodes
of a graph, whose arcs represent spatial constraints based on the odometry data or
sensor observation between the poses. Clearly, these should be considered soft con-
straints being the odometry measurements affected by noise.
If, after a period of roaming, the robot encounters a previously visited location. In
the SLAM problem this is referred to as loop closure. In this case new arcs, or
constraints, will be created between not subsequent poses.
A graph-based SLAM approach aims to find the node configuration that minimizes
the error introduced by the constraints. The SLAM problem reduces to a minimiza-
tion problem that can be solved through Least Squares optimization.
The following pictures, depict the evolution of both the map and the pose-graph.
At first, the robot explores the environment generating a map using the scans com-
ing from the sensors and the odometry measurements. This method carries many
criticalities in terms of errors, as can be clearly seen in the upper left side of
where the two environments look pretty similar. They are indeed the same
room, yet they appear as separated.

3.1. MATHEMATICAL BASIS 38

Figure 3.5: Map obtained by odometry.

If the pose-graph is superimposed on the map, as shown in Figure 3.6, straight
connections between corresponding poses become apparent.

Figure 3.6: Visualization of the pose graph over the map.

By minimizing the errors on the graph, the poses can be rearranged, as illustrated
in Figure 3.7, in order to obtain a more accurate map, see Figure 3.8

3.1. MATHEMATICAL BASIS 39

gTwzr_1;(|r T —

!

Figure 3.8: Map reconstruction via pose-graph optimization.

Taking the observation and turning them into constraints is what is referred as

front-end, whereas the graph optimization is called here the back-end. These two

3.1. MATHEMATICAL BASIS 40

parts are in constant communication between each other.
The SLAM problem approached with a graph-based method can be then visualized
as follows.

node positions

Graph W (Graph
(;aw Construction » Optimization
@l FontEnd) graph (Back-End)

(nodes & edges)

Figure 3.9: Graph-based SLAM scheme.

As previously mentioned, there are two cases in which an edge is created:

e between consecutive poses, connected by constraints derived from odometry
measurements: z; and x;1;

e between non-consecutive poses that observe the same portion of the environ-
ment: z; and x;.

In the second case, z; and x; can be connected with an arc that represents the relative
transformation of x; as observed from z;. This transformation is expressed using
homogeneous coordinates (see Appendix), which allow rigid body transformations
to be represented by a single matrix.

Each observation is affected by some level of noise, which is collected in the so-called
Edge Information Matriz €;;. Its entries encode the confidence in the observation:
the larger the value the more more weight the corresponding observation has in the
optimization process. Typically, sensor measurements are considered more reliable
than odometry data, and this is reflected in the respective information matrices.
In addition, the geometry of the environment may cause the information to be
anisotropic. For example, in long corridors the uncertainty is higher along the main
axis of the corridor and smaller in the orthogonal direction.

The goal is then to minimize the following sum:

¥ =argmin Y e Qe (3.22
. ; Y))

which appears to be suitable for a LS minimization.
The state vector contains all the successive poses, each one representing a node in
the graph.

o' =(z] zy ... z) (3.23)

The error function for a single constraint is given by

eij(wi,) = t2v(Z51 (X1 X)), (3.24)

3.1. MATHEMATICAL BASIS 41

whereas for the whole state vector one has

eij(x) = t2v(Z;1 (X1 X)), (3.25)
where X Z-_lX ;j represents the estimated relative transformation of pose x; with re-
spect to x;, Z;; denotes the observed transformation between 7 and j, and t2v()
(transformation to vector) converts the transformation matrix into a vector of mini-
mal error (Az, Ay, Af), which can be used in the optimization process (e.g., Gauss-
Newton).

Notice that if the observation perfectly matches the graph configuration, i.e., Z;; =
(Xi_lXj), the resulting error becomes zero. In this case the argument of t2v(-) is
the identity matrix, which yields a zero error vector.

The next step involves linearizing the error function around an initial guess x through
a Taylor expansion.

eij(z + Ar) = ej5(z) + Ji; Az (3.26)
with J;; the Jacobian matrix of the error function

Oe;i(x
Jij = # (3.27)

The shape of the Jacobian matrix plays a crucial role in the efficiency of solving the
state estimate problem. In particular, each error term e;j(z) depends only on the
states x; and z; and not on the entire state vector.

eij(x) = eij(:ci,a:j) (3.28)

As a direct consequence, most entries of the Jacobian are zero. Non-zero elements
appear only in the rows corresponding to x; and z;, leading to a sparse block struc-
ture.

The obtained Jacobian has then the following structure:

deij(x;) 0.0 0 deij(xy)

K 81& &pj ()
—— ——
Aij Bij

The two blocks A;; and B;;, each composed by three elements, are the only non-
zero entries. This property induces sparsity in the Jacobian, which enables the an
efficient resolution of real world SLAM problems. Indeed, the Jacobian appears in
the computation of the vector b and the matrix H, which are required for solving

bT = Z b;l; = ZQ;;QijJij (3.30)
i 1

.
H = Z Hyj = Z T Q4535 (3.31)
) 1]

the linear system:

3.1. MATHEMATICAL BASIS 42

The sparsity of the Jacobian leads to sparsity also of H, as shown in Figure 3.10.

b=>"by

ij
I+I+“+I I

ij
.+. +.--+. ‘::> .

Figure 3.10: Hlustration of sparsity: the non-zero elements are colored in red, while
the zeros in blue.

While all elements in b are eventually be filled, since every node is involved in
at least one constraint, the structure of H reflects the graph connectivity. Each
edge contributes with four non-zero blocks: two diagonal terms, which reinforce the
information on the involved poses, and two symmetric off-diagonal terms, which
encode the relative constraint between the connected nodes (e.g., from odometry or
loop closures). As a result, H can be then be seen as the adjacency matrix of the
pose-graph. Typically, the larger the environment the sparser the matrix.

To summarize, an edge ij contributes only to the it j*" block of bij and to the
blocks i, jj, ij, and ji of H;;. This structure promotes sparsity in the system,
since each edge affects only a small portion of the full matrix. As a result, the
linear system can be efficiently constructed by summing up the contributions of
all edges, and solved using sparse optimization methods such as Sparse Cholesky
decomposition or conjugate gradients.

The overall optimization loop looks like this:

Algorithm 2 optimize(x)

1: while !converged do
2 (H,b) < buildLinearSystem(x)
3 Az <+ solveSparse(HAz = —b)
4: T+ Ax
5: end while

6: return x

A key consideration to address is the initialization of the first node.
Let’s consider a trivial example with two nodes, 1 and zs, in a one-dimensional

3.1. MATHEMATICAL BASIS 43

world, and an observation z19 between the two claiming that they are one meter
away apart. The state vector is initialized with both nodes in the origin:

To = (13170, 1’2,0)1— = (0 O) (3.32)
The measurement and its associated information matrix are:
z19 =1 (3.33)

Q=2 (3.34)

The error is then given by the difference between the observation and the predicted
relative distance:

612:Zlg—($2—$1):1:1—(0—0)21 (3.35)
The Jacobian is computed as the derivative of the error function over z; and o
Jiz= (1 -1) (3.36)

From this, b and H can be computed:

b]—Q = 61—2912(]12 = (2 —2) (3.37)
2 =2
Hyy = JyaJ1p = (_2)) (3.38)

At this point, the update Az is obtained by solving the linear system:
Az = —Hy'bio (3.39)

However, H is singular. This problem arises because the constraint is relative be-
tween both nodes, meaning that no absolute position of the pair is defined. To solve
this issue, a reference node is fixed by adding a prior constraint on its position. For
example, anchoring xq at the origin yields:

2 =2 10
i (22009 "
this way, Az; = 0 and the system can be solved:

Az = —H ‘b (3.41)

Ac=(0 1)" (3.42)

3.1. MATHEMATICAL BASIS 44

Particle Methods

With highly efficient microprocessors, in recent years the third SLAM paradigm,
that is particle filters, have become more popular. Here the posterior is seen as a
set of particles, each one representing a concrete guess of the true value of the state.
Under mild conditions, this method converges to the true posterior as the number
of guesses, or particles, tends to infinity. Having a substantial number of particles
is not an issue in the SLAM problem, but this is generally increases exponentially
the complexity of the problem.

To address this issue a trick was introduced in the literature is Fast SLAM. To better
understand the algorithm, let’s consider the simplified point-landmark example. At
any time instant, the algorithm maintains K particles of the form:

k k k k k
D AT SRR WD ¥ SO o/ 8 (3.43)

where |k| identifies the sample. Each particle then contains:

e a sample path Xt[k];

(K]

tm one for

and variances E[k]

e a set of N 2-dimesional Gaussians with means p i

each landmark in the environment.

where n indexes the landmark. In total one has K particles that have K path
samples and KN Gaussians, each one modeling every landmark for each particle.
FastSLAM initialization involves setting each particle to the robot’s known starting
position and clearing the map. Each particle is then updated as described below:

e As new odometry readings are received, for each particle new location variables
are generated stochastically. Those location particles are generated from a
distribution determined by the motion model:

)~ play | 2y w) (3.44)

where 5‘77@1 is the previous location. This probabilistic sampling step can be
easily performed for any robot with computable kinematics

e A soon as new measurement z; is received, two things happen: firstly, the
probability of the new measurement z; is computed by FastSLAM. Let n be
the index of the sensed landmark, then the desired probability is:

k k k k
wp = N (s | 2},), 51 (3.45)

t,n “tn
where the factor wt[k] is defined as the importance weight, as it expresses how
coherent is a particle with the new sensor measurement. Even in this case a
normal distribution N is adopted, but this time it is evaluated on the observa-
tion z;. Subsequently, the weights associated to all the particles are normalized

3.1. MATHEMATICAL BASIS 45

such that they sum up to one.

At this point, FastSLAM proceeds with a phase called resampling: some par-
ticles are extracted by the current set, with the possibility of picking the same
particle multiple times, with a probability depending on the normalized impor-
tance weight. In other words, the particles which better justify the observation
have a better chance of being preserved in the new set.

Finally, for each remaining particle, the mean 4, and covariance ¥, are up-
dated depending on the measurement z;. This update follows the standard
rules of the EKF.

FastSLAM, although it copes with a complex problem such SLAM, is incredibly
easy to implement. The main operations, such as sampling from the motion model,
evaluation the importance weights, especially with Gaussian noise, and the update
of the particle filter, are all pretty straightforward.

The true strength of FastSLAM is that it can approximate well the full SLAM pos-
terior, thanks to three fundamental techniques: Rao-Blackwellization, condi-tional
independence, and resampling. Rao-Blackwellization is a technique used in statistics
that allows to improve the sampling efficiency: instead of generating particles from
a joint distribution between trajectory and map, only the the robot’s trajectory is
sampled and to each particle an analytic representation of the conditioned map is
attached, often in Gaussian form. This approach reduces the filter’s variance and
improves the estimates’ quality.

Another important intuition in this context is that once the new robot’s trajectory
is known, the estimates of the landmarks become conditionally independent. This
means that it is not necessary to represent the map as a unique big Gaussian dis-
tribution with correlations between all landmarks: it is instead possible to divide it
in many smaller gaussian distributions, one for each landmark, sensibly facilitating
the computation. This property is shown in

)
)

%0 8 ¢

Figure 3.11: Knowing the trajectory allows decoupling landmark between each other.

Another advantage of FastSLAM is the possibility of making an hypothesis on the
single particle, instead of making it on the whole filter. This allows the algorithm
particularly robust in complex and uncertain evironments. Moreover, FastSLAM

3.1. MATHEMATICAL BASIS 46

is extremely efficient computationally, since it can be build through advanced tree
methods to represent the maps. This way the updates can be computed logarithmi-
cally with respect to the map dimension and linearly with respect to the number of
particles. This makes it suitable also for large scale scenarios.

There is an important version of FastSLAM that is based on occupancy grids, where
Gaussians are replaced by grids that represent the probability of occupancy of the
space. Here, each particle keeps its map and it is evaluated based on the consis-
tency between the measurements and the map itself. When a loop closure occurs,
the resampling picks the particles with the most consistent maps, allowing to obtain
better representation of the environment.

Finally, FastSLAM inspired other variants such as DP-SLAM and methods based on
ancestry trees, which further improve the efficiency in managing grid-based maps.
Thanks to its flexibility and easy imlementation, FastSLAM has become one of the
most valued algorithms adopted in mobile robotics.

Paradigm comparison

The three main paradigms enclose most of the research in the SLAM field. The
EKF-based approach is limited in scalability due to its high computational cost.
Some extensions help mitigating this limitation by building local submaps, which
essentially resemble graph-based methods.

Graph-based approaches tackle the full SLAM problem and, inherently, are not

online algorithms. They model the environment as a sparse graph of soft constraints,
corresponding to a motion or measurement event. Thanks to efficient nonlinear opti-
mization algorithms for sparse graphs, graph-based SLAM has become the preferred
choice for large-scale offline mapping.
Moreover, data association integrates naturally into this framework, and several
search techniques exist to identify the most suitable correspondences. Online vari-
ants also exist, which progressively reduce the amount of robot poses maintained in
the graph.

Particle filter methods, such as FastSLAM, avoid some of the criticalities arising
from inter-feature correlations that affect the EKF. By sampling robot poses, indi-
vidual landmarks become independent and uncorrelated.

FastSLAM thus represents the posterior distribution through a set of sampled poses
and independent Gaussian estimates for each landmark. This approach is compu-
tationally more efficient, requiring linear-logarithmic time instead of the quadratic
time of the EKF, and easily handles uncertain data association.

However, the number of particles required can become very large, especially in com-
plex environments with multiple loops. Extensions using occupancy grids instead of
Gaussian landmarks have demonstrated state of the art performance in large-scale

mapping.

3.2. ROS 2 FRAMEWORK AND SLAM TOOLBOX 47

3.2 ROS 2 framework and slam_ toolbox

In the ROS 2 ecosystem, the SLAM problem is handled by the slam_ toolbox package
ideated by American robotics engineer Steve Macenski. This tool offers a wide range
of functionalities for 2D mapping, providing a wide range of functionalities both for
real-time and offline situations. It is built upon a graph-based SLAM approach,
and inherits its algorithm from the open_ karto package, integrating advanced opti-
mization techniques through Google’s Ceres solver. The latter is used as dynamic
plugin and supports both Sparse Bundle Adjustment and data structures such as
KD-Tree for efficient scan matching and loop-closure. Furthermore, the package is
implemented as lifecycle node, allowing modular and controlled management of its
life cycle within the ROS 2 architecture. Thanks to its reliability and flexibility,
slam_toolbx is now the default SLAM package in the Nav2 framework, becoming
de facto the standard for localization and mapping in 2D environments.

3.2.1 Operation modes

The salm_toolbor package offers three main operation modes, each designed to
address different requirements in terms of localization and mapping.

e Synchronous SLAM: this mode offers a buffered processing of the measure-
ments, with processing of the data. It is particularly suitable for creating offline
maps, where the priority is the quality and accuracy of the map rather than the
update speed. This approach allows for greater accuracy in the construction
of the pose-graph, making ideal for static environments and planned mapping
sessions.

e Asynchronous SLAM: here the processing occurs in real-time, updating the
map only when the update criteria are met and the previous measurements have
been completed. This approach guarantees that the system never falls behind
the data flow, even in the presence of complex loop closures. It is suitable in
dynamic scenarios where real time localization is crucial, with a trade-off in
map completeness.

Both these modes support multi-session SLAM, i.e., the ability to resume a previous
session to keep refining and expanding the map. Through pose-graph serialization
and raw data, it is possible to manually manipulate nodes, rotate maps and facilitate
complex loop closures, even in large-scale environments.

e Pure localization: This mode does not update the existing map, it focuses
solely on estimating the robot’s pose in an already available map. However,
slam_toolbox introduces an innovative mechanism called elastic pose-graph de-
formation, which uses a dynamic buffer of recent measurements to temporarily
adapt to variations in the environment. New scans are integrated into the pose-
graph with new constraints, improving localization in the presence of moved

3.2. ROS 2 FRAMEWORK AND SLAM TOOLBOX 48

objects or new characteristics. As time goes by, the measurements will eventu-
ally "expire" and get removed, resetting the graph to its original state for that
region. This approach ensures robust localization in dynamic environments.

An interesting side effect is that in absence of an existing map, the localization mode
can be used as odometry based on LiDAR, exploiting the local buffer to estimate
the robot’s future motion in potentially infinite spaces.

3.2.2 Package configuration in ROS2

The slam_toolbox architecture perfectly integrates in the ROS2 ecosystem, exploit-
ing several fundamental inputs for localization and map construction. The main
parameters are:

e 2D laser scans (LiDAR): used for matching between scans and pose trans-
formations estimate;

e Odometry: provides an estimate of the robot’s motion between measurements;

e TF IMU and, optionally, a map server: used to improve localization and
consistency between reference frames.

The typical workflow consists in a comparison of the new laser scan with the previous
to determine the variation of the position. To this extent, a scan matching algorithm,
boosted by a KD-Tree structure, that allows an efficient correspondence between
measurements, is adopted. Each new measurement is represented as a node in a
graph, where the arcs represent the transformations between poses, building, as
previously discussed, the so called pose-graph.

When a loop closure occurs new constraints are added to reduce the cumulative
error and subsequently the graph is globally optimized through a Ceres solver, which
improves the overall consistency of the map.

From the optimized structure an occupancy grid is generated, whose map can be
saved through an appropriate service call.

During execution, the SLAM node is subscribed to the following topics:

e /scan: LiDAR scans;
e /odom: odometry estimate (if available);
e /tf: transformations between frames such as base_link, odom and map.

The constructed map is then published on the topic /map. In the
rqt_graph of slam toolbox is reported.

3.2. ROS 2 FRAMEWORK AND SLAM TOOLBOX 49

/clock /map

/Leonardo/slam_toolbox

/Leonardo/tf

/Leonardo/lidar_scan_merged

[rosout

Figure 3.12: In this rqt_graph it is reported the slam node and the key topics. Note
the presence of namespacing. The reason behind the necessity of a namespace will
be discussed in the next chapter.

Moreover, there are some important parameters that need to be configured, which
are the following:

e use_sim_time: to use the simulated time of Gazebo;

e odom_frame: odometry reference frame;

e map_frame: frame with respect of which the map gets constructed;

e base_frame: robot’s frame, it is either base_link or base_footprint;

e mode: operating mode, mapping or localization.

In this thesis, slam toolbox has been used in its asynchronous mode.

Chapter 4

Methodology and development

In this chapter, the methodology proposed as a solution to the automatic map up-
dating problem in dynamic environments is presented. The goal is to describe the
entire workflow—from test map generation to the system’s integration within ROS
2, highlighting both the design choices and the corresponding software implementa-
tions.

This pipeline can be divided into three main components:

e Map generation of test scenarios in simulated environment.
e Difference detection between maps through computer vision algorithms.

e ROS 2 integration of the system through the realization of dedicated nodes.

4.1 Maps construction

As first step, a set of bi-dimensional maps was created via slam_ toolbox to test and
validate the algorithm of difference detection. For this extent, the 3D Gazebo model
of the I3P first floor was used.

Each map was created by manually guiding the robot through the aisles of the I3P
building using the Teleop_twist node and activating slam_ toolbox. The first map
was considered as the clean one (), while the others have been progressively
corrupted with a variety of elements added in the Gazebo model. In particular, the
following kinds of variations have been considered:

e new walls: to simulate permanent modifications to the structure of the build-
ing, such as the closing of passages;

e new static obstacles: additional architectural elements, located in strategic
positions, with the scope of verifying whether the system can detect stable and
not transitory modifications;

4.1. MAPS CONSTRUCTION 52

T Em——y 5V o oy ¥ o b _—
[1

I

o)

-]

Figure 4.2: Permanent new wall and new column added to the world.

As it can be seen in Figure 4.5 a completely new wall in the top left side and two
new columns in the right corridor were added.

R e e T] o e} —

Figure 4.3: Map with structural differences referred to Figure 4.2.

4.1. MAPS CONSTRUCTION 53

e temporary obstacles: persons, chairs and other mobile objects, introduced
to tune the algorithm to filter variations not to be added.

s

G,

— e[

Figure 4.5: Map with temporary differences referred to Figure 4.4,

The maps where acquired with the aid of RViz, which allowed to verify the correct
map generation procedure and visualize in real time the difference between each map
version. The possibility of visualizing sensor data and occupancy grids in RViz has
been crucial to monitor the behavior of the system and detect potential failures in
the map construction phase.

To save the generated maps, the slam toolbox package provides the service
SaveMap, which can be called directly from the command line (CLI).

When invoked, this service provides two output files:

e a .pgm file, which contains the map in image format;

e a .yaml file, which stores the associated metadata necessary for correctly in-
terpreting the image by RViz or Nav2.

4.1. MAPS CONSTRUCTION 54

An example of the metadata file is reported below:

image: mappa_I3P_pulita.pgm
mode: trinary

resolution: 0.05

origin: [-12.9, -65.8, 0]
negate: 0

occupied_thresh: 0.65
free_thresh: 0.25

The resolution parameter specifies the size of each pixel in meters: in this case,
0.05 m/pixel. This means that every pixel in the occupancy grid corresponds to
a real-world square of side 5 cm, thus defining the metric granularity of the map.
A lower resolution value results in a more detailed but also more memory-intensive
map.

The mode field indicates the representation strategy adopted for the occupancy grid.
With the value trinary, each cell can assume one of three possible states: occupied,
corresponding to obstacles, free, that is the navigable space, and unknown, repre-
senting unexplored or uncertain areas.

The classification is determined by two normalized grayscale thresholds:

e free_thresh = (0.25 — pixels with a value below 0.25 are considered free space;

e occupied_thresh = (.60 — pixels with a value above 0.65 are considered
occupied;

e values between 0.25 and 0.65 are classified as unknown.

The field negate specifies the adopted color convention. When set to 0 (false), the
standard ROS convention applies: white for free space, black for occupied, and gray
for unknown.

Together, the spatial distribution of these pixels generates the so-called Occupancy
Grid, a 2D discrete representation of the environment widely used in mobile robotics.
This format provides a convenient abstraction that allows planners and navigation
systems to distinguish between traversable and non-traversable regions in a straight-
forward way.

Finally, the origin field defines the pose of the map within the global map refer-
ence frame. The three values represent, respectively, the X and Y coordinates of
the bottom-left corner of the image in meters, and the orientation (yaw angle) of
the map with respect to the world frame. This ensures that the occupancy grid is
correctly placed in RViz and aligns consistently with the coordinate system used by
the navigation stack.

This metadata, combined with the .pgm file, allows ROS 2 to interpret the image
not as a simple picture but as a structured world model, suitable for path planning,
localization, and autonomous navigation.

4.2. DIFFERENCE DETECTION PYTHON CODE 55

4.2 Difference Detection Python Code

Once the corrupted maps were obtained, they were compared against the reference
(clean) map in order to highlight all structural differences. This task was imple-
mented in Python by exploiting the libraries OpenCV and NumPy. OpenCV (Open
Source Computer Vision Library) is an open-source library that offers efficient tools
for image and video processing, broadly adopted in robotics and artificial vision
applications. The images are loaded as NumPy arrays, which makes them easier to
manipulate as matrices of pixel values.

From the perspective of computer vision, an image can be regarded as a two-

dimensional array of pixels, each pixel characterized by one or more channels en-
coding the color standard.
In common RGB images, instead, each pixel is defined by three color channels (Red,
Green, Blue) plus an optional « channel encoding transparency. However, it is im-
portant to note that OpenCV internally uses the BGR convention instead of RGB.
The images representing the maps are in . pgm (Portable Gray Map) format, in which
each element of the array is represented by an unsigned integer (unit8) ranging from
0 to 255, indicating the gray level of the pixel.

4.2.1 Binary Difference Computation

Conceptually, difference detection consists in converting the two compared images
into binary (black and white) representations and then perform a pizel-wise subtrac-
tion. If the subtraction returns 0, the corresponding pixels match, and no difference
is detected. Conversely, if the subtraction results in 255 (white), a discrepancy is
identified.

In the case of occupancy grids, the binarization process requires particular atten-
tion: both obstacles and unknown regions are typically represented as dark values,
black and gray respectively. Therefore, an appropriate thresholding strategy is ap-
plied to correctly differentiate navigable (white) against non-navigable (black/gray)
areas.

4.2.2 Image Registration and Alignment

For this procedure to work correctly, the two maps must represent the same physical
area with precise pixel-level alignment. This requirement is non-trivial, since occu-
pancy grid maps produced by the SaveMap service are subject to noise—originating
both from LiDAR measurements (e.g., beams passing through narrow spaces such
as doorways and windows) and from discretization artifacts.

To address the issue of misalignment, the literature offers several image registra-
tion techniques based on feature extraction and matching. Among the most relevant
there are SIF'T, SURF, and ORB, which work by detecting distinctive keypoints and
matching them across images. The main differences lie in the methods to detect and
describe these features.

4.2. DIFFERENCE DETECTION PYTHON CODE 56

In this work, the chosen method was ORB (Oriented FAST and Rotated BRIEF).
ORB is fully open-source, computationally efficient, and provides robust perfor-
mance even when maps are rotated or partially distorted. Once features are ex-
tracted and matched, a filtering stage based on RANSAC (Random Sample Con-
sensus) is applied to remove outliers, and a homography matrix is computed.
This rigid transformation aligns the corrupted map with the reference one, ensuring
pixel-level consistency.

h—_— e e

(a) Clean map. (b) Corrupted map. (c) No registration. (d) Registered.

Figure 4.6: Evolution of the difference image through the filtering pipeline.

4.2.3 Noise Filtering

After alignment, the raw difference image is subject to noise. LiDAR measurements
can introduce spurious points in unexplored areas, while slight contour mismatches
of real obstacles may also be falsely flagged as differences.

- — 4 T

Figure 4.7: Example of noise sources.

4.2. DIFFERENCE DETECTION PYTHON CODE 57

Since these should not be considered candidate structural changes, a filtering
stage was introduced.
The first step applies a Gaussian blur with a kernel of 5 x 5 pixels, which smooths
the image by averaging each pixel with its neighbors. The blurred image is then
thresholded to obtain a binary representation, a process that already removes most
of the noise associated with the LiDAR rays. Dilation was also implemented to
eliminate further small speckles of noise and reinforce relevant structures.

(a) Raw difference (b) Gaussian blur (c¢) Thresholding (d) Filtered result

Figure 4.8: Evolution of the difference image through the filtering pipeline.

4.2.4 Clustering of Detected Differences

After filtering, the candidate differences are analyzed using the DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) algorithm, implemented in
the Scikit-Learn Python library. DBSCAN is particularly well suited for this task
because it groups together spatially dense regions while discarding isolated noisy
pixels.

The output of DBSCAN provides clusters of pixels corresponding to candidate
changes in the map. For each cluster, a centroid is computed, which defines the
center of a bounding box, whose dimensions are derived from the cluster’s spatial
extent, providing both:

e a visual feedback on the detected difference,

4.2. DIFFERENCE DETECTION PYTHON CODE 58

e and the metric coordinates of the discrepancy, usable by higher-level systems.

Filtered Differences Clusters (DBSCAN)

1000 1000

1200 1200
1400

1400

1600 1600

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Figure 4.9: Effects of clustering with DBSCAN.

The final result of this process is illustrated in Figure , where bounding boxes
highlight the structural differences between the clean and corrupted maps.

B

o]

L3 °

Wl_? |

p—— 0

Q

|
|
|
B

]
]
]
|
|
|
| .
]

]

Figure 4.10: All the differences between clean and corrupted map are detected.

4.3. LOCAL DIFFERENCES 59

4.3 Local Differences

Once the results obtained on full-map comparisons were satisfactory, the focus
shifted towards the identification of local differences. In this case, the comparison is
not performed between two complete maps, but between the global map used by the
navigation stack and a smaller, locally generated map obtained from slam_ toolbozx.
This adds an additional layer of complexity: image registration techniques alone are
not sufficient to guarantee a correct alignment. In large-scale environments such as
airports, multiple areas may share similar geometric features, and a feature-based
approach could mistakenly align different portions of the environment.

To overcome this limitation, the system is integrated with ROS 2, exploiting the
robot poses to place the partial map over the corresponding part of the global map,
so that the difference finder algorithm is applied to the correct area.

For the system’s integration with ROS, four topics from the simulation were
fundamental:

e /map: the local map generated by slam_ toolbox as the robot roams the envi-
ronment;

e /Leonardo/pose: the robot’s pose expressed in the slam_ toolbor map frame;

e /Leonardo/map: the global map used by the Navigation2 stack for path plan-
ning and localization;

e /Leonardo/amcl_pose: the robot’s pose in the Nav2 map frame, estimated
through the AMCL (Adaptive Monte Carlo Localization) algorithm.

Figure 4.11: Nav2 map (left) and slam_ toolbox map (right) as visualized in RViz.

4.3. LOCAL DIFFERENCES 60

It is important to note that all the topics above are defined with respect to the
default RViz reference frame, denoted as /map. However, this symbolic reference
should not be confused with the /map topic published by slam_ toolboz.

As illustrated in , the global Nav2 map and the local slam_ toolbox
map do not initially overlap in space, nor do their pose estimates share the same
orientation.

4.3.1 Pose-based Alignment of Maps

To correctly overlap the two maps, the relative rotation and translation with respect
to the /map reference frame need to be computed.

Angular alignment. The angular offset 6 is computed as the difference between
the robot orientations in the two maps, which are expressed in the /map frame.
Since orientations in ROS 2 are represented as quaternions, they are first converted
into Euler angles (yaw, pitch, roll). The heading offset is then given by:

0 = yaw ngp2 — YaW g - (4'1)

Translational alignment. Let w be the displacement vector between the robot
poses expressed in the two frames:

W — TNav2 — Tslam . (4.2)
YNav2 — Yslam

ROS and OpenCV adopt different coordinate conventions:
e in ROS, the map origin is placed at the bottom-left corner;
e in OpenCV, the origin is at the top-left corner.

Hence, a vertical offset proportional to the map height (in pixels) must be added
when converting coordinates. Denoting by h the map height (in pixels) and by r
the map resolution, the conversion from ROS to OpenCV coordinates is expressed
as:

1
(xov, yov) = ;($Ros, h 4+ yros)- (4.3)

Once both origins Oc¢vyy,,, and Oc¢vy,,,,. are expressed in the OpenCV frame,

lam
the point P, obtained by translating Ocv,,,.,
slam__toolbozx origin if the SLAM and Nav2 poses are aligned. Finally the translation

vector £ is then defined as:

of w, represents the position of the

&€ =0cvy,., — P (4.4)

In other words, w describes the relative displacement of the robot between the two
maps, while & represents the transformation required to align their spatial origins.

4.4. MAP SERVER PIPELINE 61

OcvsLam

L >,

Figure 4.12: Vector representation for the alignment of local and global maps.

4.4 Map Server Pipeline

Through this procedure, the local map generated by slam_ toolbox can be correctly
overlaid on the global Nav2 map using the robot’s pose information. This integration
bridges the gap between computer vision-based image registration and ROS2 pose
estimation, enabling the difference finder algorithm to work reliably even in large,
repetitive environments such as airports, where pure feature-based matching could
otherwise fail.

In this section, the centralized architecture for map management and processing
(Map Server) is presented. The basic idea is to move part of the processing outside
of ROS, simulating a cloud-based system locally on a computer. This approach
allows greater control over the data flow, ensuring more organized storage of maps
and associated parameters.

The process follows a well-defined sequence of operations. First, the entire nav-
1gation stack is launched via the sedia_ bringup launch file, which loads the world
in Gazebo and the RViz graphical interface. Once the environment has been ini-
tialized, a goal pose is set in RViz, thus activating autonomous navigation of the
robot. During motion, another launch file is executed to enable the slam_ toolbox
configuration in asynchronous mode and to start the mapping phase. At the same
time, the map_saver node, responsible for handling map data, is activated. After

4.4. MAP SERVER PIPELINE 62

a predefined time interval, another trigger launches the ShutdownSaver node, in
charge of saving the maps and poses related to both Nav2 and slam_ toolbozx.

4.4.1 ShutdownSaver Node

The ShutdownSaver node represents the core element for orderly closure and data
saving at the end of mapping. Its logic is based on subscribing to two key topics:
/Leonardo/amcl_pose and /Leonardo/pose. Both provide PoseWithCovarianceStamped
messages, whose contents are stored via subscription callbacks.

A control loop constantly checks the availability of the two poses; only when both
are acquired is the shutdown_sequence function activated. This function is divided
into three main blocks:

1. the first performs a call to the Nav2 SaveMap service, used to save both the
SLAM-generated map and the Nav2 map, with the possibility of specifying
destination directories. The output files include both the image in .pgm format
and the description in .yaml, organized in separate folders;

2. the second introduces a 5-second pause to ensure correct file writing, subse-
quently checking their size and readability with OpenCV. This step is necessary
since map creation by slam_ toolbox can take variable times;

3. the third block saves the poses in a text file, converting the coordinates from
quaternions to heading angles to make the data more immediately interpretable.

Once these operations are completed, the node is terminated, ensuring the con-
sistency of the saved data.

4.4.2 Image processing

In parallel with the launch of the ShutdownSaver node, a chain of scripts for map pro-
cessing and comparison is activated: watchdog_folder.py, watchdog_transform.py,
and watchdog_rotation.py. The interaction among these modules realizes a con-
tinuous flow of monitoring, transformation, and analysis of the acquired maps.

watchdog folder.py

The first script monitors the slam_shutdown_data folder, which contains the files
created by the saving node. The SlamShutdownHandler class, derived from FileSystemEventHandles
is defined to automatically react to the creation of new files. An observer from the
watchdog library is initialized, staying active indefinitely until manual interruption.
At startup, the handler registers already existing files in a set called already_seen
to distinguish them from newly created ones. In addition, a working directory called
watchdog_data is created (or cleaned up if already existing), ensuring a clean envi-
ronment at every execution.

4.4. MAP SERVER PIPELINE 63

Each time a new file is detected, the on_created() method is invoked. If the
file is new, the system waits until its size is acceptable, thus avoiding the copying
of empty or incomplete files, and then processes it with the process_new_file()
function. This function copies the file into the working directory with its metadata
and increments a counter. Once the counter reaches the desired number of flies,
the watchdog_transform.py script is launched as a subprocess, while the original
files are moved to an archive directory called slam_shutdown_data_old, yielding
the possibility of further offline examination.

watchdog transform.py

The next script processes the barely saved maps, retrieving the parameters required
for geometric alignment. After verifying that all files are available, it extracts:

e the .pgm images, used to convert dimensions from pixels to meters through the
resolution parameter;

e the .txt files containing the robot poses in the two maps.

The retrieved information includes the origin of the SLAM map and the Nav2
map in the RViz reference frame, together with the robot poses relative to both.
These data are translated into the OpenCV reference system and used to compute
alignment points. The heading angles are then used to determine the angular offset
between the two poses, as previously shown for correct overlapping.

watchdog rotation.py

The core of the differential analysis is the watchdog_rotation.py script, which
manages the comparison between maps. After loading the images and alignment
parameters, the SLAM map is superimposed on the Nav2 map, expanding the canvas
to avoid cropping. A Region of Interest (ROI) is then defined, either as a bounding
box around the pose or along the robot’s trajectory, thus focusing only on relevant
areas and excluding non-significant peripheral zones.

To refine alignment, ORB is applied, provided that the images contain a sufficient

number of features.
Once registration is completed, the pipeline proceeds with difference detection be-
tween the two maps just as it was for the global case. The identified areas are
enclosed in bounding boxes, with their coordinates computed in the Nav2 map ref-
erence frame. All results are finally stored in a .yaml file enriched with a timestamp,
along with annotated images and highlighted regions of interest.

This sequence enables not only the detection of discrepancies between the up-
dated SLAM map and the one used for navigation, but also the systematic storage of
detected differences, thus laying the foundations for a subsequent incremental map
update phase.

4.4. MAP SERVER PIPELINE 64

reports the pipeline proposed to simulate a cloud system.

[Bringup: navigation stack, Gazebo & RViZ]

[Set Goal Pose in RViz]

[Activate slam_ toolbox (asynchronous mode) -+ map_saver]

[Launeh ShutdownSaver node: saving maps and poses]

[Watchdog_folder.py: folder monitoring and trigger for transformations]

[Watchdog_transform.py: poses extraction and alignment parameters]

[Watchdog_rotation.py: map alignment and difference detection]

[Output: annotated maps, bounding boxes, YAML with differences]

Figure 4.13: Centralized pipeline for map management and difference detection.

Chapter 5

Experiments and Results

The purpose of this chapter is to evaluate the performance of the proposed sys-
tem for automatic map updating in dynamic environments. After presenting the
methodology and implementation details in the previous chapters, this section fo-
cuses on the experimental validation, which was carried out in simulation through
ROS 2, slam_ toolboz, Gazebo, and RViz.

The experiments were designed with two main objectives:

e to verify the capability of the system to correctly identify structural differences
between maps, both at global and local scales;

e to assess the robustness of the approach along the entire robot trajectory.

Different simulation scenarios were created to reproduce realistic conditions that
may occur in large indoor spaces. Permanent modifications (e.g., walls, columns,
fixed obstacles) were introduced to test the sensitivity of the difference detection
algorithm.

The main tools exploited were:

e ROS 2 Humble for communication and data management;
e slam_toolbox for real-time mapping;

e Nav2 for navigation and costmap handling;

e Gazebo + RViz for simulation and visualization.

To improve repeatability and reduce computational load, recorded rosbags were
used to reproduce navigation sessions under controlled conditions. Three represen-
tative cases were then analyzed to validate the overall pipeline, together with an
evaluation of different ROI selection strategies.

5.1. REGION OF INTEREST (ROI) SELECTION STRATEGIES 66

5.1 Region of Interest (ROI) Selection Strategies

An important feature of the proposed pipeline is the definition of the Region of
Interest (ROI) for map comparison, in order to reduce outliers detection. Different
strategies were analyzed, each with specific advantages and limitations:

e Fixed bounding box around the robot: Simple approach that considers
a square or rectangular area around the robot’s pose. Despite its simplicity, it
often considers unexplored or irrelevant regions, leading to spurious detections.

e Trajectory-based ROI: The ROI follows the robot’s path, focusing only on
regions actually traversed. This method reduces false positives behind the robot
but may still include unobserved zones ahead of it.

e Yaw-based ROI: The ROI is oriented according to the robot’s heading, con-
sidering primarily the area in front of the platform. This solution proved par-
ticularly effective in our experiments, since it excludes zones that are likely to
remain unobserved.

e Adaptive ROI: A more advanced strategy in which the ROT’s size and shape
vary dynamically depending on feature density or local map alignment confi-
dence. Even though potentially more accurate, it rises computational cost.

In the context of this work, the yaw-based ROI was adopted as a good compromise
between robustness and efficiency, significantly reducing false positives in partially
explored environments.

5.2 Case Studies
Two scenarios were designed to evaluate the proposed system.

5.2.1 Scenario 1: Permanent Obstacles

In the first scenario, a column and a wall were added in the Gazebo world.

X+ OPN -~ - (MOB[%%Z(B IR0

Figure 5.1: Permanent obstacles added in the Gazebo world.

5.2. CASE STUDIES 67

As shown in Figure 5.2, these obstacles initially appear only as LiDAR readings
in the costmap before being integrated into the map representation.

Figure 5.2: Costmap visualization in RViz.

Figure 5.3 shows the maps saved through the service call within the Shutdown-
Saver node.

— ¢ |

sy

o EE——— e —~—" ———

1
(a) Nav2 map. (b) SLAM map.

Figure 5.3: Maps from Nav2 and SLAM. The red dot represents the robot’s position.

Figures 5.4 and 5.5 show the comparison results when the ROI is defined as a
square centered on the robot’s pose. This approach can be problematic, as it may

5.2. CASE STUDIES 68

include unexplored regions in front of the robot. When these areas are compared
with the navigation map, false differences are likely to appear, as visible on the right
side of Figure

Solo ostacoli (DBSCAN)

Differenze originali

100

200

600

Figure 5.4: Before and after clusterization (case 1).

Figure 5.5: Detected differences and centroids (case 1).

Figure highlights which differences should be considered valid and which are
outliers. In this case, the robot’s heading points to the left of the page, and it
becomes evident that restricting the ROI in the opposite direction filters out false
detections while retaining meaningful structural changes.

5.2. CASE STUDIES 69

Figure 5.6: Outlier filtering: red boxes indicate false detections, blue boxes highlight
true differences.

The result after applying the yaw-based ROI reduction is shown in Figure

<

:

Figure 5.7: Reduced ROI excluding unexplored regions.

c |

AR

5.2. CASE STUDIES 70

5.2.2 Scenario 2: Additional Obstacles

In the second scenario, a different set of obstacles was introduced into the simulated
environment, as shown in Figure 5.5.

Figure 5.8: Added obstacles (in dark gray).

The corresponding Nav2 and SLAM maps are presented in Figure 5.9.

A = ® Q

. -

| 7_

|

[

) N

] i
| |
1 1

(a) Nav2 map. (b) SLAM map.

Figure 5.9: Comparison between Nav2 and SLAM maps (case 2). The red dot
represents the robot’s position.

5.2. CASE STUDIES

The clustering and difference detection phases are illustrated in Figures
and , while the effect of the ROI reduction is visible in Figure

Solo ostacoli (DBSCAN)

1000

,,,,,,,,,

ke

gf
If
1]

Figure 5.11: Detected differences and centroids (case 2).

5.2. CASE STUDIES 72

[]
| Jo
0.0 ——

e

[| J
1 b
Figure 5.12: Reduced ROI excluding unexplored areas (case 2).

The experiments confirm that the proposed approach effectively detects struc-
tural differences in dynamic environments.
Nevertheless, there are still some limitation that need to be taken care of. Fu-
ture work should focus on integrating semantic filtering for temporary obstacle re-
moval and adaptive SLAM strategies for online map correction, further improving
robustness in real-world applications. The next chapter will discuss the system’s
limitations, along with possible extensions toward a fully autonomous map update

framework.

Chapter 6

Discussion and Conclusions

The work presented in this thesis demonstrates the feasibility of an automatic map
update pipeline designed for autonomous navigation in GNSS-denied environments.
The developed system integrates the ROS 2 ecosystem in order to save, monitor,
align and difference detection between maps, allowing an automated map manage-
ment.

The obtained results are promising: the proposed architecture is able to detect
structural variations with high precision, establishing a foundation for deployment in
real-world scenarios. A completely image-based approach could represent a practical
and computationally effective alternative to the more complex probabilistic and
semantic models presented in the literature. Even though it does not consider time
persistence nor the dynamic behavior of the objects, the method results easier to
implement and to integrate in the ROS 2 navigation stack and it is potentially
scalable to a multi-robot scenario.

6.1 Limitations and Future work
Despite promising results, during the experimentation phase some limitations arose:
e ROI selection is critical: naive choices can significantly bias detection results.

e The system is sensitive to yaw rate variations, which may cause misalignment
during map comparison.

e Image registration becomes less effective in short mapping sessions, where lim-
ited features hinder reliable alignment.

e The current implementation does not explicitly discriminate between tempo-
rary and permanent changes.

e Experiments were conducted in relatively small indoor environments (e.g., I3P
corridors). While representative of typical structured spaces such as hospitals
or airports, larger areas, such as museums or airport halls, should be tested to

6.2. FINAL CONSIDERATIONS 74

evaluate scalability. Nevertheless, this limitation can be mitigated by adopting
intelligent ROI selection strategies.

Numerous other directions of research and development exist which are worth to

be explored to make the solution even more robust, scalable and applicable to real
scenarios. Firstly, the presented approach focuses on a bi-dimensional representa-
tion of the environment. A natural evolution would be extending the method to 3D
map management, obtained with LIDAR or depth cameras.
Three-dimensional maps would allow to capture vertical and complex details, such
as shelving, ramps, and suspended objects, sensibly improving the autonomous nav-
igation capability in multi-level environments, like parking lots, warehouses or big
airport hubs. Such improvement carries new challenges, such as the computational
cost and the necessity of more sophisticated registration algorithms, such as Iterative
Closest Point (ICP) or Normal Distributions Transform (NDT).

Secondly, at the time of writing, the system detects only geometrical differences.
However, distinguishing the nature of the differences represents a crucial aspect: for
instance, a permanent new wall deserves different attention compared to a plaster-
board wall for site operations.

A possible improvement is thus to introduce a semantic level, via computer vision
or machine learning, able to classify relevant changes and decide whether to include
them or not in the map.

In this context, the integration of neural networks for object detection or the use of
semantic segmentation algorithms would enable the distinction between static and
dynamic obstacles, significantly reducing the risk of non-meaningful updates.

It is also worth noting that validating the system in simulation made it possible
to evaluate the proposed architecture under controlled conditions. Even if Gazebo
and RViz allowed to reproduce realistic instances, the proposed framework’s robust-
ness needs to be tested in real scenarios, facing further issues such real sensor noise,
light conditions, unpredictable presence of persons and moving obstacles.

This phase is essential to verify the system’s performance in real operating environ-
ments like airports, hospitals, and museums.

Another improving aspect concerns the optimization of computational cost: the
real time elaboration of big maps requires strategies to manage memory and pruning
of outdated or irrelevant information.

Finally, an interesting extension could be the development of predictive models
able to predict the probability of modification in particular areas, exploiting previous
maps history. This would enable the system to evolve from a reactive paradigm to
a proactive one.

6.2 Final Considerations

This thesis proposes a concrete proof-of-concept for an automatic map update sys-
tem compatible with ROS 2.

6.2. FINAL CONSIDERATIONS 75

The approach demonstrated that even relatively simple image processing techniques,
if properly integrated in a robotics architecture, can contribute to life-long mapping
in dynamic GNSS-denied environments.

The proposed work paves the way for further implementation, contributing to the
evolution of autonomous robots able to constantly adapt the navigated environment.

Appendix

Least Squares

The Least Squares method is a fundamental mathematical technique used to esti-
mate a model’s parameters minimizing the error between the observation and the
prevision. It is particularly useful for an overdetermined system, in which the num-
ber of equations exceeds the number of unknowns.

Given a linear system expressed as

Ax ~ b,

where A € R™*" is the observation matrix, x € R" is the vector of unknown
parameters, b € R" represents the vector of the measurements, the LS solution is
obtained by minimizing the following cost function:

J(x) = ||Ax — b||2.

The minimization yields to the so-called normal equations:

AT Ax = ATb,

whose solution provides the parameters’ estimate:

x = (ATA)"1ATD,

assuming AT A invertible.

ORB

The algorithm Oriented FAST and Rotated BRIEF (ORB) is an effective and robust
technique to detect and describe key points in digital images. It has been introduced
by Rublee et al. in 2011 as open-source and computationally lighter alternative to
more complex methods such as SIFT and SURF, maintaining good properties in
terms of rotation and scale invariance.

ORB is based in two fundamental components:

e FAST (Features from Accelerated Segment Test) for keypoints detection. It is
extremely quick, yet non rotation invariant.

6.2. FINAL CONSIDERATIONS 78

e BRIEF (Binary Robust Independent Elementary Features) for keypoints de-
scription. it is a binary descriptor that compares the intensity of couples of
pixels within a patch.

To obtain rotation invariance, ORB introduces a keypoints orientation mecha-
nism. The orientation € of a keypoint is computed as:

m
f = arctan ot
mio

where m,,, are the central moments of the patch intensity:

Mpqg = Z xpyq[(% y)

T,y

Once the orientation is computed, the BRIEF descriptor is also rotated, obtaining
the so-called steered BRIEF, which is rotation invariant.

Furthermore, ORB selects also the binary tests of BRIEF in an optimized manner,
selecting the ones with more variance by selecting those with higher variance and
lower mutual correlation, thereby improving the discriminability of the descriptor.

For what concerns image registration, ORB is adopted for:

1. detecting the keypoints in two or more images;

2. computing the binary descriptors associated with each keypoint;

3. perform matching between descriptors using the Hamming distance;

4. estimating the geometric transformation (homography) through RANSAC.
5. applying the transformation to align the images.

ORB is particularly suitable for real-time scenarios thanks to its linear compu-
tational complexity with respect to the number of keypoints. Moreover, the binary
nature of the descriptors allows an extremely fast matching.

ORB offers several advantages: it is open-source, it is faster than SIFT and
SURF, and it is robust to rotations. However, it presents also some limitations in
terms of robustness for heavy scale variations and perspective deformations.

6.2. FINAL CONSIDERATIONS 79

Figure 6.1: Example of feature extraction and matching via ORB.

DBSCAN

The real strength of density-based algorithms lie on their ability to identify complex
and non-convex shaped clusters, hardly detectable by methods based on the hypoth-
esis of regular geometrical shape (e.g., k-means). In this approach the clusters are
interpreted as high-density regions, whereas isolated points are considered outliers.

The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) al-
gorithm introduces three fundamental concepts:

e Core points: points that have a minimum number of neighbors within a
specified radius;

e Border points: points that do not satisfy the density criteria, but are reach-
able by a core point;

e Noise points: points that do not belong to a cluster since are not reachable
by any core point.

To operate, DBSCAN requires two input parameters:

e minPts: minimum number of neighbors necessary for a point to be considered
a core point;

e c: search radius that defines the neighborhood between two points.

Namely, given a point p, its neighborhood ¢ defined as:

N:(p) ={q € D | dist(p,q) < e}

where D is the dataset and dist(-,-) is an arbitrary distance function (the Euclidean
distance, for instance).
A point p is a core point if:

|N:(p)| > minPts

6.2. FINAL CONSIDERATIONS 80

The algorithm proceeds to iteratively expanding the clusters starting from the core
points, including the points reachable by density (density-reachability) and connect-
ing the points that belong to the same dense region (density-connectedness). The
points that do not satisfy these conditions are labeled as noise.

With this density-based definition, DBSCAN is able to:

e detect clusters of any shape;
e manage the presence of noise in the data;

e it does not require the number of clusters a priori.

Figure 6.2: Standing people not to be added to the map

Bibliography

[1] Abdulrahman Saleh Al-Batati, Anis Koubaa, Mohamed Abdelkader, ROS 2 in
a Nutshell: A Survey, Preprints.org, 2024.

[2] Chown, Eric, and Byron Boots. "Learning cognitive maps: Finding useful struc-
ture in an uncertain world." Robotics and Cognitive Approaches to Spatial Map-
ping. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. 215-236.

[3] Schubert, Erich, et al. "DBSCAN revisited, revisited: why and how you should
(still) use DBSCAN." ACM Transactions on Database Systems (TODS) 42.3
(2017): 1-21.

[4] Deng, Dingsheng. "DBSCAN clustering algorithm based on density." 2020 7th
international forum on electrical engineering and automation (IFEEA). IEEE,
2020.

[5] Macenski, Steve, and Ivona Jambrecic. "SLAM Toolbox: SLAM for the dynamic
world." Journal of Open Source Software 6.61 (2021): 2783.

[6] Open Robotics. (2022). ROS 2 Humble Hawksbill Documentation. Retrieved
August 21, 2025, from https://docs.ros.org/en/humble/

[7] Stachniss, Cyrill, John J. Leonard, and Sebastian Thrun. "Simultaneous localiza-
tion and mapping." Springer handbook of robotics. Cham: Springer International
Publishing, 2016. 1153-1176.

[8] Macenski, Steve, et al. "The marathon 2: A navigation system." 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020.

[9] Sebastian Thrun, Dieter Fox, Wolfram Burgard, Probabilistic Robotics, The MIT
Press, 2005

[10] Federica Schena, Development of an automated benchmark for the analysis of
Nav2 controllers, Politecnico di Torino, 2024.

[11] Ali, Waqas, et al. "A life-long SLAM approach using adaptable local maps based
on rasterized LIDAR images." IEEE Sensors Journal 21.19 (2021): 21740-21749.

BIBLIOGRAPHY 82

[12] Pomerleau, Frangois, et al. "Long-term 3D map maintenance in dynamic en-

vironments." 2014 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2014.

[13] Wei, Hairuo, et al. "Large-Scale Multi-Session Point-Cloud Map Merging."
IEEE Robotics and Automation Letters (2024).

[14] Adkins, Amanda, Taijing Chen, and Joydeep Biswas. "ObVi-SLAM: long-term
object-visual SLAM." IEEE Robotics and automation letters 9.3 (2024): 2909-
2916.

[15] Maruyama, Yuya, Shinpei Kato, and Takuya Azumi. "Exploring the perfor-
mance of ROS2." Proceedings of the 13th international conference on embedded
software. 2016.

[16] Macenski, Steve, et al. "From the desks of ROS maintainers: A survey of modern
& capable mobile robotics algorithms in the robot operating system 2." Robotics
and Autonomous Systems 168 (2023): 104493.

[17] Dissanayake, MWM Gamini, et al. "A solution to the simultaneous localiza-
tion and map building (SLAM) problem." IEEE Transactions on robotics and
automation 17.3 (2001): 229-241.

List of Figures

1.1
1.2
1.3
1.4

1.5
1.6

2.1

2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1

3.2

3.3
3.4
3.5
3.6
3.7
3.8

Alba Robot’s logo and the SEDIA micromobility platform.

Facility map evolution.
Proposed architecture scheme.
Architecture of the local-map management framework (Ali et al.). . .
Overview of the long-term 3D map maintenance system (Pomerleau

etal.). . ..
LAMM framework for multi-session LiDAR map merging (Cai et al.).
Semantic and persistent-object mapping pipeline (Adkins et al.). . . .

ROS2 logo and Humble Hawksbill poster: distribution employed in

this thesis.
ROS nodes, messages and topics. oL,
ROS service. e
ROS action. e
ROS managed nodes, simplified scheme.
ROS managed nodes, complete scheme.
Gazebo front-end with I3P 3D model.
RViz2 front-end. o
Nav2 architecture design.o oL oL
ROS1 and ROS2 architectures.
ROS nodes, messages and topics.

Graphical representation of the SLAM problem. The arcs are causal
relationships and the shaded nodes are what is directly observable by
therobot. L
The pictures represent the path of the robot (dashed), the landmarks
(blue dots) an the uncertainties on the robot’s position (gray) and on
the landmarks’ position (red). oL
Covariance matrix evolution.
Uncertainty of the landmarks position over time.
Map obtained by odometry.,
Visualization of the pose graph over the map.
Visualization of the pose graph before after pose rearrangement. . . .
Map reconstruction via pose-graph optimization.

8

14
15
15

17

LIST OF FIGURES 84

3.9 Graph-based SLAM scheme. 40
3.10 Tllustration of sparsity: the non-zero elements are colored in red, while

the zerosin blue. o oo 42
3.11 Knowing the trajectory allows decoupling landmark between each other. 45
3.12 In this rqt_graph it is reported the slam node and the key topics.

Note the presence of namespacing. The reason behind the necessity

of a namespace will be discussed in the next chapter. 49
4.1 Clean map. o v v v e e e e e e e e e 52
4.2 Permanent new wall and new column added to the world. 52
4.3 Map with structural differences referred to Figure 4.2. 52
4.4 Standing people added to the world. 0. 53
4.5 Map with temporary differences referred to Figure 4.4. 53
4.6 Evolution of the difference image through the filtering pipeline. 56
4.7 Example of noise sources.o 56
4.8 Evolution of the difference image through the filtering pipeline. 57
4.9 Effects of clustering with DBSCAN. 58
4.10 All the differences between clean and corrupted map are detected. . . 58
4.11 Nav2 map (left) and slam_ toolbox map (right) as visualized in RViz. 59
4.12 Vector representation for the alignment of local and global maps. . . 61
4.13 Centralized pipeline for map management and difference detection. . 64
5.1 Permanent obstacles added in the Gazebo world. 66
5.2 Costmap visualization in RViz. 67
5.3 Maps from Nav2 and SLAM. The red dot represents the robot’s position. 67
5.4 Before and after clusterization (case 1). 68
5.5 Detected differences and centroids (case 1). 68
5.6 Outlier filtering: red boxes indicate false detections, blue boxes high-

light true differences. L oL 69
5.7 Reduced ROI excluding unexplored regions. 69
5.8 Added obstacles (in dark gray). 70
5.9 Comparison between Nav2 and SLAM maps (case 2). The red dot

represents the robot’s position. 0 oL 70
5.10 Before and after clusterization (case 2). 71
5.11 Detected differences and centroids (case 2). 71
5.12 Reduced ROI excluding unexplored areas (case 2). 72
6.1 Example of feature extraction and matching via ORB. 79

6.2 Standing people not to be added tothemap 80

List of Tables

Acronyms

AMCL Adaptive Monte Carlo Localization
BoW Bag of Words

CLI Command Line Interface

DBSCAN Density-Based Spatial Clustering of Applications with Noise
DDS Data Distribution Service

DCPS Data-Centric Publish-Subscribe

EKF Extended Kalman Filter

EOL End Of Life

GNSS Global Navigation Satellite System
IMU Inertial Measuring Unit

LiDAR Light Detection and Ranging

OMG Object Management Group

ORB Orientated FAST and Robust BRIEF
PGM Portable Gray Map

QoS Quality of Service

RANSAC Random Sample Consensus

ROI Region Of Interest

ROS Robot Operating System

SoOp Signals of Opportunity

SEDIA SEat Designed for Intelligent Autonomy

SIFT Scale-Invariant Feature Transform

LIST OF TABLES

88

SLAM Simultaneous Localization and Mapping
SME Small and Medium-sized Enterprise

STVL Spatio-Temporal Voxel Layer

SURF Speeded-Up Robust Feature

TEB Timed Elastic Band

TCPROS Transmission Control Protocol over ROS
UDPROS User Datagram Protocol over ROS

YAML Yet Another Markup Language

	Introduction
	Alba Robot

	Background and Motivation
	General context and thesis' goal
	SLAM-based Automatic Map Update: State of the Art

	ROS 2
	Basic ROS concepts
	Nodes
	Messages
	Topics
	Services
	Actions
	ROS packages
	Managed Nodes
	Recording and replaying topics: rosbag

	Simulation and visualization tools: Gazebo and RViz
	Navigation Stack in ROS2: Nav2
	Quality of Service in ROS 2
	ROS 1 vs ROS 2

	SLAM
	Mathematical basis
	Types of SLAM
	Paradigms of SLAM algorithms

	ROS 2 framework and slam_toolbox
	Operation modes
	Package configuration in ROS2

	Methodology and development
	Maps construction
	Difference Detection Python Code
	Binary Difference Computation
	Image Registration and Alignment
	Noise Filtering
	Clustering of Detected Differences

	Local Differences
	Pose-based Alignment of Maps

	Map Server Pipeline
	ShutdownSaver Node
	Image processing

	Experiments and Results
	Region of Interest (ROI) Selection Strategies
	Case Studies
	Scenario 1: Permanent Obstacles
	Scenario 2: Additional Obstacles

	Discussion and Conclusions
	Limitations and Future work
	Final Considerations

	Appendix
	Least Squares
	ORB
	DBSCAN

