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Abstract

In recent years, industries have been looking for ways to make production more flexible without
losing efficiency. One promising approach is human-robot collaboration (HRC), where robots
and people share the same workspace. Robots are well-suited for precise, repetitive actions,
whereas humans are better at adapting to small variations and making quick decisions. Assem-
bly is a natural test case: many operations still need human judgment, but robots can reduce
strain by handling lifting and positioning. However, to work well together, the system must
provide an easy way to assign tasks, sense the position of parts and move safely when con-
tact occurs. This thesis project addresses human—robot collaboration for industrial assembly.
The tasks involved in this HRC project include feasible grasping, accurate part tracking and
compliant in-contact behavior. A practical framework is presented that links operator-driven
task selection with grasp optimization, motion-capture—based tracking of both aluminium pro-
files, trajectory segments, respecting position/velocity/acceleration limits and a joint impedance
controller. Hardware experiments on a L-shape assembly, with the robot holding a horizon-
tal aluminium profile, show consistent behavior. The experimental results achieved contact-rich
profile assembly with smooth execution, stable accuracy and consistent effort across the starting
poses tested.
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Chapter 1

Introduction

Human-robot collaboration (HRC) is an increasingly adopted practice across modern industry,
where operators and robots share workspace, tasks and responsibilities. The aim is to improve
safety, ergonomics, productivity and quality of production by closing the gap between fully
manual manufacturing and fully automated production. In HRC, humans and robots share the
workspace with complementary roles: robots handle non-ergonomic, repetitive or hazardous
operations with speed, consistency and accuracy, while humans provide local perception, on-
the-fly adjustment and decision-making when conditions change or are hard to model. HRC
is well suited for assembly tasks. Industrial manipulators, constrained by programming and
kinematics, excel at precise, repeatable motion over limited ranges, but are less effective in
variable, contact-rich settings. Human operators complement these limits with higher dexterity
and the ability to adapt to changing geometry. In practice, the robot provides repeatable motion
and load support, while the operator handles contact level adjustments and context specific
decisions. This division of roles keeps the system both efficient and adaptable.

Despite progress, many studies still treat interaction, perception, planning and control as
separate problems, making it difficult to build frameworks that remain safe and responsive to
the operator. This project has targeted the main integration challenge to connect the different
problems: grasp and part positioning planning should be derived from the GUI (graphic user
interface) configuration and from the tracked poses of the profiles and the robot, with continu-
ous trajectory updates remaining within bounds and coordinated with compliant control during
execution.

This thesis addresses a practical instance of human—robot collaboration: an operator and a
7-DoF (degree of freedom) robot assemble aluminium profiles into “L” and “T” geometries.
Holding and positioning parts is repetitive, accuracy-sensitive and tiring, whereas humans are
effective at on-the-fly adjustment. A collaborative setup splits the work: the robot provides re-
peatable motion and steady effort, while the operator governs fine positioning at contact. The
objective is to develop a framework that completes these assemblies reliably and preserves pre-
dictable behaviour at contact. The approach is to keep sensing and decision-making aligned
with what the operator can observe and influence, and to couple specifications, perception and
control so that responses remain smooth and predictable.

To achieve this, the proposed framework connects five elements. The first element of the
framework is an operator-driven GUI, which defines the task and breaks it down into executable
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Introduction

sub-tasks with explicit state transitions. Next, grasp optimization places the gripper along the
robot-held profile within safe margins and passes that choice to motion planning, so that the
chosen grasp is both reachable and useful for later phases. Human motion is then inferred from
the pose of the profile grasped by the operator, providing the information needed for alignment
and coordinated execution. Time-parameterized trajectories are then generated with explicit
feasibility checks on reachability, collisions and joint limits, ensuring that each segment can
be executed safely from the current state. Execution is handled by joint impedance control
with torque rate limits, so contact is taken up smoothly and actuation remains within bounds.
Poses for both profiles are expressed in the robot base frame, which keeps sensing, planning and
control consistent.

The operator specifies the target geometry (L or T), assigns the robot’s role (horizontal or
vertical profile), and may set options such as hand dominance and table side. Given these inputs,
the framework produces the full robot sequence: it computes a suitable grasp, plans feasible
motions, tracks the human-held profile' and aligns the robot-held profile? to it for assembly.

The evaluation focuses on hardware performance and on how robot posture? and initial pro-
file poses affect tracking and effort. Seven experiments execute L-shape assemblies with the
robot assigned to the horizontal profile. The experiments span different initial profile poses
and starting arm postures, allowing both profiles orientation and postural effects to be assessed.
Results indicate that the system completes all assemblies reliably and within safety margins.
Motions follow the intended paths closely before contact. During lifting and alignment, small
but consistent deviations appear, influenced by the orientation of the operator’s profile and the
robot’s starting posture. Once contact is reached, interaction forces stabilize and overall effort
remains moderate. Complementary simulations confirm the same behavior and show that the
main limitations observed on hardware are attributable to posture rather than to the framework
itself.

All activities (design, implementation and experiments) were carried out at LASA, EPFL.

Chapters overview
The chapters are organized as follows:
* Chapter 1 introduces the thesis motivation and objective and outlines the contributions.

* Chapter 2 surveys related work on human-robot collaboration for assembly, with em-
phasis on task allocation, perception—planning—control integration and existing software
frameworks.

* Chapter 3 presents the framework: GUI-driven task setup, grasp optimization, profile
tracking, motion planning with feasibility checks and impedance control.

'“Human-held profile”: the aluminium profile grasped by the human operator.
2“Robot-held profile”: the aluminium profile grasped by the robot.

3“Robot posture”: is the specific configuration of its joints, meaning the particular set of joint angles or dis-
placements that determines its shape and position in space. It differs from the pose, which describes the position
and orientation of the end-effector in space.

10



Introduction

* Chapter 4 summarizes the hardware and software used in this work, including the robotic
platform, motion capture and supporting libraries.

* Chapter 5 details the experimental setup, state-machine breakdown and the conditions
for the executed trials.

* Chapter 6 reports the hardware results per experiment and closes with an overall analysis
across experiments.

* Chapter 7 concludes the thesis, discussing limitations and directions for future work.
* Appendix A lists the custom ROS package structure and selected implementation details.

* Appendix B: presents brief robotics notions.

11
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Chapter 2

Human-Robot Collaboration

2.1 HRC and cobots

Modern manufacturing increasingly relies on human—robot collaboration, where human oper-
ators and robots collaborate in the same workspace and perform tasks together. Unlike con-
ventional industrial robotics, where machines are caged and optimized for maximum speed and
throughput, HRC embeds the operator within the collaborative work process and uses the robot
for precise, repeatable actions when neither fully manual nor fully automated execution works
well [1] (Figure 2.1). Current implementations range from assembly assistance in manufactur-
ing to medical support and rehabilitation, and converge on a common design challenge: main-
taining productivity while meeting strict safety requirements and keeping interaction operator
friendly in a shared workspace.

Collaboration is commonly implemented in two ways. In physical collaboration, intentional
contact and force exchange are allowed and regulated via compliant actuation, torque sensing
and motion policies that react to human intent [3]. In contactless collaboration, coordination is
achieved without touch using environment perception and attention cues (vision based human
tracking, gesture recognition or speech interfaces) to coordinate task sequencing [3, 4].

HRC systems are often distinguished into workspace sharing, where human and robot carry
out different handling or assembly tasks within the same area and coordination is limited to
collision avoidance with predictable trajectories, and workplace-and-time sharing, where hu-
man and robot may execute handling or assembly together at the same time, demanding tighter
coordination and rapid replanning to accommodate human motion [5].

The research literature shows that this collaborative operating mode places new demands on
sensing, planning, control and safety and has led to collaborative robots (“‘cobots”) designed for
close human-robot interaction [6]. Traditional industrial manipulators are optimized for high
payload, long reach and fast, repeatable motion in fenced cells, while cobots are lighter, easier to
redeploy and prioritize safety functions to collaborate with humans and intuitive programming
so cells can be reconfigured quickly (Figure 2.2). This distinction impacts robot speed/force lim-
its, sensor selection and integration, validation and certification workflow. In practice, cobots
prioritize human presence and safety-rated interaction, provide intuitive programming for fre-
quent task changes and trade top speed for accuracy and compliance when sharing space with

13
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Level of Automation

+ Flexibility ,

+ Precision motorics o

+ Speed
+ Quality
+ Decision opportunity + Low production costs

- Human capability

- Errors ,

- High initial costs
- Limited adaptability

Manual Manufacture Human—Robot Collaboration Full Automation

Figure 2.1: Standing of Human—Robot Collaboration [2].

operators. Modern cobots incorporate perception (vision, force/torque sensing, proximity and
presence detection) to interpret task context and adapt motion for smoother, safer interaction.
The same sensors also provide the safety inputs used to monitor the workspace and to operate
the collaborative modes defined in the standards. The differences between cobot and robot are
summarized in Figure 2.3.

Figure 2.2: Cobot (left) vs. Industrial robot (right).
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2.1 — HRC and cobots

Conventional robot

Cobot

Purpose
Programming
Safety

Perform tasks automatically
Typically pre-programmed or scripted
Require safety measures and barriers to protect humans

Collaborate with humans
Easily programmed by humans

Designed to work alongside humans
without endangering them

Flexibility Designed to perform a specific group of tasks Can perform a wide range of tasks

Cost Typically expensive Less expensive than conventional robots
Complexity More complex to program and operate Simple to program and operate

Payload High payload capacity Lower payload capacity

Accuracy Lower precision High precision

Size Bulky and Space consuming Smaller and dense

Application Manufacturing and assembly lines Small-scale manufacturing, research and

development

Figure 2.3: Differences between robot and cobot [7].

HRC is well suited when tasks combine repetitive segments with local decisions and ad-
justments that are hard to predefine. In manufacturing, robots deliver endurance and precision
for holding, positioning and moving parts along controlled trajectories, while the operator man-
ages variable geometry, tolerances or on-the-fly corrections at contact. Because people and
robots share the same space, safety is a key factor to address. The basic safety requirements for
the robot and for the integrated robot system are set out in ISO 10218-1 [8] and ISO 10218-2
[9]. These standards also define the four protective principles that enable collaborative opera-
tion: safety-rated monitored stop (SRMS), hand guiding (HG), speed and separation monitoring
(SSM) and power and force limiting (PFL). ISO/TS 15066 [10] provides additional guidance
for each of the four collaborative modes. The Technical Specification sets out requirements,
limits and examples for collaborative robots and applications and clarifies the roles of robot
manufacturers and system integrators.

To achieve safe, predictable and productive collaboration, HRC systems rely on: (i) percep-
tion and human intention estimation for situational awareness and role allocation, (ii) interaction
and communication mechanisms that keep actions legible to the operator and (iii) task allocation
and workflow design that split responsibilities transparently under practical constraints.

2.1.1 Perception and Human Intention

Perception supplies the safety and state of the workspace needed for shared workspaces. For
safety, it delivers the inputs for speed and proximity monitoring and interaction state (who
is in the workspace, where they are and how fast they are moving). For environment state: it
localizes objects, estimates poses, detects hands during handover and regulates contact forces so
motion remains predictable to the operator. At the workstation level, perception typically blends
vision (cameras or scanners) with safety certified sensing and joint torque feedback embedded
in compliant control. Together, these inputs determine when the robot may switch operating
mode and keep motion within safe limits. In settings such as welding or sealing, safety devices
supervise the robot’s trajectory, while torque sensing cobots support hand guided teaching and
automatically slow down in shared zones. In practice, this combination improves ergonomics
and maintains throughput without requiring physical barriers.
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Intention complements perception by revealing the human operator’s goal or next move and
enabling the robot to choose suitable roles and assistance levels. Intent estimates, obtained
by inference or explicit cues, feed situation awareness to anticipate upcoming states and make
timely decisions [11, 12]. Human intent detection, together with workspace perception and
feedback, lets the system allocate tasks between the operator and the robot [13]. Role allo-
cation during physical collaboration is adaptive: intent cues indicate when the robot should
defer, support or take the lead [14]. This role adaptation links intention estimation to real time
allocation, motivating the task allocation methods discussed next.

2.1.2 Interaction and Communication

Physical Human—Robot Interaction (pHRI) concerns contact, force exchange and compliant
control during shared manipulation. Human robot collaboration also depends on cognitive in-
teraction: cues that let the human and the robot anticipate each other’s intentions and coordinate
smoothly without continuous verbal guidance. Nonverbal signals such as gaze, body orienta-
tion and gesture coordinate turn taking and readiness in handovers and collaborative assembly.
Embedding these cues in robot behaviour improves predictability and user comfort and reduces
coordination effort.

2.1.3 Task Allocation and Workflow Design

Task allocation defines who does what in a collaborative cell: which actions are assigned to
the robot and which remain with the operator. The objective is a division that is safe, traceable
and efficient for the given context and constraints. A practical workflow starts by decomposing
the job into concrete subtasks (pick, align, hold, fasten, inspect) and by selecting criteria, that
can be checked on the workstation, such as required accuracy and force, dexterity and grasp
complexity, visibility or occlusion, reach and tooling and the speeds permitted under the chosen
collaborative mode [4, 15].

Each subtask is then matched to the agent that can satisfy those needs with predictable behav-
ior: robots take repeatable, posture intensive or force stable work, while the operator performs
tasks that depend on judgment, variable geometry or quick on-the-spot correction [1, 4]. The
tasks divisions are verified against task constraints, collision and separation limits, ergonomic
load and cycle time. If these checks fail, the mapping is adjusted or recomputed. A possible
solution is lightweight multi-criteria scoring, sometimes paired with (re)scheduling, that pro-
vides clear decision criteria, reducing unplanned changes and preserving workflow continuity
[16, 17].

Where the task set is larger or there is need of parallel task execution by human and robot,
optimization-based assignment can be used. The inputs remain the same, while the optimization
targets time, cost or a multi-criteria utility function [18-20]. Estimating the automation poten-
tial of tasks can guide pre-screening for assignment [21]. Workplace design and preliminary
analysis (layout, robot placement, collision checks, achievable times under the chosen safety
mode) should be integrated into the planning loop too [15, 22]. Crucially, allocations are re-
visited when the product mix or tooling changes so that the reasoning behind each assignment
remains valid and transparent.[4].

16



2.2 — Frameworks for HRC in assembly

2.1.4 Current Limitations and Open Challenges

Recent researches highlight recurring challenges spanning safety assurance, perception robust-
ness, human factors, task allocation at scale and workforce skills [23].

Safety assurance and runtime supervision

Collaborative cells must ensure protection without increasing task time: distance/speed super-
vision and stopping behaviour, together with coverage, occlusions and sensor uncertainty, drive
the safety—productivity trade-off [23, 24].

Perception limits in real environments

Accurate perception under occlusions and lighting changes, real-time operation and integration
with planning and control remain key bottlenecks in collaborative factories [23, 25].

Psychological safety and trust

Beyond physical protection, operators need to perceive safety, calibrate trust appropriately and
avoid excessive workload. Clear robot behaviour leads better coordination [1, 23].

Task allocation and reconfiguration

Allocation still struggles with parallelism, human work patterns and changing conditions. De-
sign/validation of the workplace (layout, sensing, feasibility of motion) must stay in the loop
during redeployments [22, 23].

2.2 Frameworks for HRC in assembly

Modern collaborative assembly frameworks tie together perception and intent, ergonomic as-
sessment with adaptation and decision/execution, while explicitly embedding operator knowl-
edge, preferences and comfort in the loop.

Below are practical frameworks used in collaborative assembly, grouped by what they focus
on: people, ergonomics, perception, safety and planning.

Human-centric learning and optimization

Roveda et al. [26] propose a human-centric framework that captures operator knowledge via
preference-based optimization: the operator gives simple, pairwise judgements (“this run is bet-
ter than that one”) and marks outcomes as acceptable or not. The system uses these judgements
to learn what “good” looks like and to propose the next settings to try. Once this preference
and acceptability model is learned, it computes a single, consistent reference for execution (for
example, an end-effector speed profile) that also respects process and hardware limits.

17
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Preference learning with ergonomics

Falerni et al. [27] combine preference learning with a standard ergonomic index (RULA) to
choose the robot end-effector pose in a handover task. The operator compares candidate poses
and the method searches for a pose that fits those preferences while keeping the ergonomic score
low. In tests, it converges to poses that reduce musculoskeletal load without ignoring what the
operator finds comfortable. The authors also note that comfort and ergonomics do not always
align. They add a penalty so that the search avoids risky postures but still leaves room for
personal adjustment.

Perception and decision integration

Iodice et al. [28] present a framework that ties together vision (object detection and tracking),
3D human pose and action recognition and continuous ergonomic scoring, then use a Behaviour
Tree to decide when the robot should step in or stand back. The idea is straightforward: watch
the scene with non-invasive cameras, understand what the operator is doing and how demanding
the posture is and trigger the right intervention at the right time. In their tests, the system
recognized operator intent reliably, flagged ergonomic risk quickly and issued decisions with
very low delay, showing that it can run in real time on a collaborative cell.

Natural language and multi-modal communication

A practical multi-modal pipeline combines object recognition, speech understanding, user-of-
interest detection, gesture and gaze so the robot can infer what is being asked, who is addressing
it and which object is intended. Paul et al. [29] show that speech can supply the task while
gaze/gesture and user-of-interest resolve references and addressability, reducing ambiguity and
making commands more reliable. Lim et al. [30] use a large language model as a voice interface
for a collaborative assembly cell. Spoken instructions are turned into tasks and subtasks the
robot can execute. When something goes wrong, the system explains the issue, asks the operator
for help and resumes from the right step once corrected. In their case study, the setup handled
varied phrasings and supported quick error recovery with modest integration effort.

Safety and scene supervision

Assembly frameworks rely on safety building blocks that have matured across the HRC liter-
ature: depth-space distance monitoring for separation [31], adaptive damping compliant with
collaborative safety guidance [32], multi-sensor person tracking for dynamic zones [33] and
distributed proximity sensors for local reaction ([33] In practice, these modules provide safety
envelopes and manage transitions between autonomous and cooperative modes without exces-
sively degrading throughput, especially in workplace-and-time sharing [5, 7].
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Chapter 3

Proposed Framework

The proposed framework is designed to achieve safe and effective collaboration between robot
and human operator through a GUI-based task allocation, grasp optimization, robot state and
profiles tracking, motion planning and impedance control. The human operator selects the task
and role assignment via GUI. This information is then fed to the robot to optimize the grasp
and to study how to approach the assembly. The system then tracks the human-held profile,
planning feasible trajectories and aligns the robot-held profile to the human-held one. The
human operator then assembles the two of them together.

[ Robot-held profile

tracking
! {
[ Grasp Optimization J Robot state

Task Selection State . .
- Motion Planning ]—{Impedance Controller]—{ Robot ]

tracking

state status [

Human-held profile ]

Figure 3.1: Framework for human-robot collaborative assembly of aluminium profiles.

The framework (Figure 3.1) operates as a pipeline that keeps the operator in the loop. The
GUI captures task intent and role assignment, and task selection and allocation turn these
choices into phase objectives while driving a finite state machine. A grasp optimizer then selects
a feasible contact point on the robot-held profile. Perception streams (human held and robot held
profile tracking and the current robot state) continuously supply the short step motion planner,
which produces feasible trajectory segments. An impedance controller executes these segments
with compliant behavior and execution status is returned to the GUI so the operator can follow
progress and intervene when needed.
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Proposed Framework

The following sections describe each element of the framework.

3.1 Task selection and allocation (GUI)

Robot HRI UI - o X

-Tasks -Robot State

| uswaee e

-Human Alerts

-Task assignment No alerts

HUMAN:VERTICAL
ROBOT:HORIZONTAL
HUMAN:HORIZONTAL

ROBOT:VERTICAL

-Hand Dominance

LEFT RIGHT

-Table Side

-Session
START EXIT

-Gripper

Figure 3.2: Graphical user interface for HRC, implemented in Python using tkinter [34].
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3.2 — Grasp Optimization

Through the GUI (Figure 3.2), the human operator selects the task type in "Tasks" (L or T-shape)
(Figure 3.3). If T-shape is selected, the operator can also choose in which point to assemble
the robot-held profile, from the middle to the tip of the human-held profile. The human then
assigns the robot either to the vertical or horizontal profile (from "Task Assignment"). If the
robot is assigned to the vertical profile, the operator also specifies hand dominance and the table
side. After these selections, the task can be started. A gripper control panel is available in the
lower-left area for use during execution or when the robot is idle and the grasp width is set
automatically from the profile width.

Information for the operator is shown on the right side. "Robot state" panel shows the current
state of the robot, while "Human Alerts" gives important notices for safe execution and reports
any errors as they occur. These inputs configure the robot’s approach direction, grasp position
along the robot-held profile and motion and alignment objectives.

3.2 Grasp Optimization

The grasp coordinate x is defined along the profile’s longitudinal axis with the object frame at the
center. End margins are introduced to account for sensor placement (c;) at the negative end and
assembly space (c,) at the positive end, thus reducing the graspable region. Let x € [Xmin, ¥max]
denote the grasp coordinate, where

L

Xmin = ) + s, (3.1a)
L

xmax:+§_ca- (3.1b)

where L is the profile length.
The preferred grasp x; depends on the GUI:

(3.2)

Xmin + 0, horizontal robot-held profile,
X] =
d Xmax — O, vertical robot-held profile.

with 6 =0.02m.
To optimize the grasp position, the quadratic deviation subject to the above constraints is
minimized:
min  (x—x4)*
> (3.3)
S.t. Xmin < X < Xmax-

3.3 Profile Tracking

The motion-capture system, expressed in the robot base frame, provides for each profile i €
{H,R} (human-held, robot-held) a pose:

Ti = (pia qi)7
where:
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* Position: p; = [x;, y;, zi]T € R3 (meters, expressed in the chosen reference frame),
» Orientation: q; = [w;, x;, y;, z;] € S? is a unit quaternion (scalar-first) (B).

A common frame definition for the profiles (Figure 3.3), plus the robot’s end-effector pose,
gives the geometry needed for grasp, approach and alignment.

sensor z

markers Robot-held profile

——p x

L3

z
sensor

markers

Human-held profile
——> x

L-shape geometry T-shape geometry

L ) | 5 |

Figure 3.3: Assembly geometries and profile frames: L and T-shape assembly targets (left and
middle). Profile coordinate frames and motion-capture marker placement (right). The x-axis
runs along the profile toward the free end; z is the outward normal.

3.4 Motion Planning and Feasibility

The robot’s actions are organized as a finite-state machine (FSM), a structure that breaks the task
into a series of manageable steps. Each state defines a short motion toward an intermediate goal,
such as approaching, grasping or aligning the profile. When the goal of one step is achieved,
the system transitions smoothly to the next, ensuring that execution remains clear, traceable and
easy to recover from in case of interruption.

The followed robot sequence is:

1. Approach: Move the end-effector above the assigned profile, pre-aligned for the picking
action.

2. Pre-grasp: Move to the precise pose required for grasping.
3. Grasp: Close the gripper to grasp the robot’s profile.
4. Lift: Lift the profile.

5. Reorientation (Optional): Orient the profile vertical, when the vertical profile is assigned
to the robot.

6. Alignment: Align the robot-held profile with the one held by the human operator.

7. Assembly: The robot keeps tracking the human-held profile, while the human operator
assembles the two profiles together.
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During Alignment, the target is continuously updated using the latest pose of the human-held
profile, generating a new trajectory segment from the current robot pose to the new goal.

Before each motion, the system verifies that the next goal can be reached in the current scene.
To check if the next goal is feasible, the target must be reachable, a safe path must be available
and all joint limits must remain within bounds. If any of these conditions is not met, the robot
enters a safe hold state and the operator is notified on the GUI. Feasibility is rechecked once
new profiles’ poses are received and, if the new goal becomes feasible, the workflow continues
from where it stopped.

3.5 Impedance Control

A joint impedance controller [35], modeled after the Franka Panda joint-impedance example
framework, is implemented. The controller receives the desired robot pose (g4,4G4) for each
segment and computes the commanded torque as follows:

T=c(q,q) +Ky(qs — q) +Dy(4s — q), (3.4)

where ¢(q,q) represents the model-based feedforward term (i.e., Coriolis and centrifugal ef-
fects, provided by the Franka model interface), and Ky, D, € R7*7 are the diagonal stiffness
and damping matrices, respectively. Gravity compensation for both the robot arm and gripper
is handled by the Franka Panda’s controller internally.

To promote smooth torque transitions, the applied torques are rate-limited:

Tfat _ Tlprev + Clip (Ti _ Tlprev; —A‘El-maX;ATlmax) , (35)

with AT specified individually for each joint.
The joint torques are then commanded via the effort interface.
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Chapter 4

Hardware and Software Tools

4.1 Robotic Platform

4.1.1 Franka Emika Panda

The Franka Emika Panda robot (Figure 4.1), developed by Franka Robotics GmbH [36]
(formerly Franka Emika GmbH), serves as the primary robotic platform for this project. This
7 DoF collaborative robotic arm integrates force/torque sensors on all joints, enabling precise
force/torque control and making the Panda robot suitable for multiple tasks such as manipula-
tion, grasping and assembly. With a weight of approximately 18 kg, the Panda robot can handle
a maximum payload of 3 kg.

The Franka robot combines the precision of a classical stiff industrial manipulator, with a pose
repeatability of +0.1 mm, enabling accurate and robust task execution. Its 1 kHz force control
loop allows the application of very small forces, down to 0.05 N, supporting delicate operations
such as insertion, screwing and contour tracking. In addition, gravity and friction compensating
guiding modes facilitate smooth physical interaction between human and robot.

Joint space limits

Each joint of Franka Panda robot is subject to limits on position, velocity, acceleration, jerk and
torque. Commands that violate any of these limits are rejected by the controller, resulting in a
controlled stop of the robot to avoid damage.

The joint space limits are reported in Table 4.1.

* gmax: Upper joint position limit (rad).
* gmin: Lower joint position limit (rad).
* |¢|max: Maximum joint speed (rad/s).
* |G|max: Maximum joint acceleration (rad/s?).
* | §'|max: Maximum joint jerk (rad/s®).
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Figure 4.1: Franka Emika Panda robotic arm with seven revolute joints (A1-A7) and end-
effector coordinate frame. Image reproduced from the Franka Emika robot’s instruction handbook
[37].

* Tjmax: Maximum joint torque (N-m).

Name Jointl Joint2 Joint3 Joint4 Joint5 Joint6é Joint7 Unit

qmax 2.8973 1.7628 2.8973 -0.0698 2.8973 3.7525 2.8973 rad
qmin -2.8973 -1.7628 -2.8973 -3.0718 -2.8973 -0.0175 -2.8973 rad
|g|lmax  2.1750  2.1750 2.1750 2.1750 2.6100 2.6100 2.6100 rad/s

|| max 15 7.5 10 12.5 15 20 20 rad/s?
|G lmax 7500 3750 5000 6250 7500 10000 10000 rad/s?
T} max 87 87 87 87 12 12 12 N-m

Table 4.1: Joints’ position, velocity, acceleration, jerk and torque limits of Franka Panda robot
[38].

Reachable workspace

The reachable workspace of the Franka Emika robot is defined by the combination of its joint
limits (Figure 4.2). Horizontally, the arm can reach a maximum radius of 855 mm. Vertically,
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the reachable range goes from -360 mm below up to 1190 mm above the mounting plane.

1190 “

'y

&
8
-

- 855 855

Figure 4.2: Franka Panda reachable space for the end-effector flange: side-view (left) and top-
view (right) (dimensions in mm) [37].

Franka Control Interface

, franka_ros p 2 it ROS
Workstation -
PC -
libfranka
\ measurement
data
measurement
data
) Non realtime Realtime (1 kHz)
\ commands
control
commands values
\ \/ \

Control

Franka Control Interface (FCI)

Figure 4.3: Data flow between the external workstation and the Panda robot through the Franka
Control Interface (FCI) [38].

The Franka Control Interface (FCI) [38] is a fast, low-level bidirectional connection be-
tween the Panda arm and an external workstation (connected via Ethernet), providing the current
status of the robot and enabling its direct control (Figure 4.3). Through the official libfranka
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C++ library (open-source library developed by Franka Robotics), the FCI allows real-time com-
munication at 1 kHz, supporting different control modes such as gravity and friction compen-
sated joint torques, joint position or velocity and Cartesian pose or velocity. At the same time,
the user is provided with joint state measurements, estimations of externally applied torques and
forces and collision or contact information. The interface also includes a robot model library
with access to forward kinematics, Jacobians and dynamics quantities.

To interface the Franka robot with the ROS ecosystem, the franka_ros package is employed,
as described in Section 4.2.1.

Franka Emika Robot Hand

The Panda robot [37] is supplied with an electrical two-finger parallel gripper (Figure 4.4) pro-
duced by Franka Robotics. This hand communicates directly through the connection to the arm
and receives its power supply from the arm.

Its main technical specifications are summarized in Table 4.2.

g Specification Value

\ Weight 0.73 kg
Continuous grasping force 70N
Maximum grasping force 140 N
) Opening 80 mm
" 2 Finger speed 50 mm/s
/ . ' Table 4.2: Franka Emika Robot Hand

technical specifications [37].

Figure 4.4: Franka Emika Robot Hand.

The hand accepts commands for opening width (mm), speed (mm/s) and grasp force (N).
Internal encoders track the commanded width and report status such as motion state and basic
fault codes. In ROS, franka_gripper provides Grasp, Move and Stop actions with success and
final width feedback. Parallel-jaw motion supports both precision pinches at small openings
and stronger grasps near the 80 mm limit (Table 4.2). Flat fingertips are well suited for handling
prismatic parts, whereas soft pads add friction, protect surfaces and offer slight compliance.
Since the fingers move symmetrically, the grasp line stays aligned with the tool’s z axis, which
simplifies reasoning about the gripper pose during planning and execution. Continuous and
peak forces are bounded by firmware and stall detection prevents damage. In collaborative use,
pinch risks at the jaws are addressed in the risk assessment and motion should respect the active
collaborative mode even though the gripper itself is not a safety-rated protective device. When
fingertip geometry changes, the tool center point (TCP) should be re-identified to keep grasp
planning consistent [37].
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4.1.2 Robotiq 2F-85

The Robotiq 2F-85 (Figure 4.5) is an adaptive two-finger parallel gripper designed for collab-
orative and industrial applications by Robotiq Inc. [39]. The main technical specifications are
reported in Table 4.3.

Specification Value
Weight 1 kg
Grasping force 20-235N
Maximum opening 85 mm
Finger speed 20-150 mm/s

Table 4.3: Robotiq 2F-85 technical speci-
fications [40].

Figure 4.5: Robotiq 2F-85 gripper.

It has a single actuator to open and close the fingers, which can adapt to the geometry of
the object manipulated, which increases tolerance to pose error and supports stable grasps on
a wider range of shapes than rigid jaws. The device requires an external power supply and a
dedicated control interface. Typical commands specify position (opening in mm), speed (mm/s)
and force (N), while feedback reports actual position, motor current and status bits for activation
and faults. This enables “grasp until contact” behavior by monitoring current thresholds and
final position windows. With the standard fingertips it covers an opening up to 85 mm and a
force range of 20-235 N (Table 4.3), making it suitable for both delicate and more secure grasps
in collaborative cells [40].

4.2 ROS

Robot Operating System (ROS) [41] is an open-source framework for developing robotic
applications. Although it is called an “operating system”, it is in fact a middleware running on
top of Ubuntu Linux. It provides a high-level control layer that communicates with the lower-
level interfaces of the robot.

ROS follows a distributed architecture in which independent processes, called nodes, per-
form specific tasks such as sensor acquisition, perception, planning or control. Nodes exchange
information through a publish/subscribe mechanism based on topics and messages, or via di-
rect client—server interactions using services and actions. The main advantage is the ability for
developers to build and reuse code between robotics applications, reducing development time.

29



Hardware and Software Tools

Applications in ROS are organized into packages, which provide drivers, libraries and al-
gorithms for specific functionalities. ROS Noetic, the latest release of ROS1, includes a rich
ecosystem of packages and tools widely adopted in both academia and industry.

In addition, ROS offers utilities for recording and replaying data streams, such as rosbag,
which enable reproducible experiments and offline analysis.

4.2.1 franka_ros

The franka_ros [38] metapackage integrates libfranka into the ROS ecosystem and provides
the necessary components to operate the Panda within a ROS-based framework. The franka_-
ros metapackage includes:

* franka_description: provides the description (in urdf) of the robot and its end-effectors,
including kinematics, joint limits, visual meshes and collision models.

* franka_hw: the ros_control hardware interface wrapping 1ibfranka for real-time con-
trol;

* franka_control: provides the franka_control_node and franka_combined_control_node,
which are hardware interface nodes built on franka_hw. These nodes expose the complete
libfranka API to ROS through a set of ROS services.

* franka_example_controllers: a collection of example controllers that demonstrate how to
command the robot from ROS.

* franka_gripper: action-based interface for the Franka Hand (grasp, move, stop).

4.2.2 Visualization and Simulation
RViz

RViz (ROS Visualization) [42] is a 3D visualization tool included in ROS. It can display robot
models, coordinate frames and sensor data in real time by subscribing to ROS topics. RViz is
commonly used to monitor and debug robotic systems during development.

Gazebo

Gazebo [43] is an open-source robotics simulator that provides a 3D environment for testing
and developing robotic systems. It supports complex scenarios, with physics-based interactions,
sensors simulation and realistic robot behavior, allowing algorithms and controllers to be tested
before deploying them on real hardware. A key feature of Gazebo is its seamless integration
with ROS, which allows simulated sensors, environments and robots to interact directly with
ROS nodes, making it an essential tool for robotics research and development.
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4.3 OptiTrack Motion Capture System

OptiTrack [44] is an optical motion capture system developed by NaturalPoint Inc. for high-
precision tracking of objects and subjects in three dimensions. It relies on infrared cameras
and reflective spherical markers to reconstruct the six DoF pose of rigid bodies in real time. The
system is managed through the Motive [45] software, which handles camera calibration, marker
tracking and data streaming to external applications. Thanks to its accuracy and robustness,
OptiTrack is widely used in fields such as animation, virtual reality and robotics.

4.4 Dynamics, Motion Planning and Optimization Libraries

This section summarizes the main libraries used for kinematics and dynamics computation,
time-optimal trajectory generation and quadratic programming.

4.4.1 Pinocchio

Pinocchio [46] is an open-source C++ library for efficient rigid-body kinematics and dynamics
with analytical derivatives. Built on Featherstone’s algorithms [47], it provides fast routines
for forward (direct) and inverse kinematics(B), inverse dynamics, Jacobians, articulated-body
inertias and centroidal quantities. The implementation is designed for real-time use and exposes
a clear model/data API that integrates readily with ROS and common robotics toolchains.

4.4.2 Ruckig

Ruckig [48] is a real-time trajectory generator that computes joint motions subject to position,
velocity, acceleration and jerk limits. Given an initial and a target state (position, velocity,
acceleration), it returns a time-optimal, time-parameterized profile that can be evaluated at the
control rate. This makes it suitable both for offline segments (approach, pre-grasp, lift) and
for short on-line updates during alignment, where goals are refreshed as the human-held profile
moves. Using Ruckig keeps trajectories dynamically feasible while avoiding ad-hoc smoothing
or manual timing.

4.4.3 qpOASES

qpOASES [49] is an open-source C++ solver for convex quadratic programs based on an online
active-set method. The formulation is well suited to control applications, such as MPC (Model
predictive control) or bounded optimizations, where similar problems are solved repeatedly with
warm starts. The solver handles challenging instances (e.g., near singular or ill-conditioned
QPs) with robust performance and provides bindings to external tools like MATLAB/Simulink
for validation.
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Chapter 5

Experiments

This chapter describes the experimental context: the hardware and software setup for the as-
sembly task, a state-machine breakdown of the task, with pseudocode' for the main steps, and
the experiments conducted, including task conditions, initial poses and recorded data.

The task consists of a cooperative assembly in which a human operator and a robot assemble
aluminium profiles to form L or T-shaped geometries (Figure 3.3). The desired geometry and
role assignment are selected via the GUI by the operator and the sequence is initiated by the
robot at the start of each session.

5.1 Experimental Setup

5.1.1 Workspace overview

The workspace (Figure 5.1) consists of a robot arm with gripper, aluminium profiles, OptiTrack
cameras, screws and corner brackets, used to complete the assembly of the two profiles. The
profiles are Profile 5 20x 20 extrusions (20mm x 20 mm, Line 5 with four open grooves), cut
to 330 mm (robot-held) and 350 mm (human-held). This scene (robot and aluminum profiles) is
also visualized on RViz (Figure 5.2).

5.1.2 Robot and Gripper Integration in ROS

The system was integrated in ROS Noetic. A custom ROS package hri_assembly_task was
developed, which contains the launch files, configuration parameters, custom messages, con-
troller plugin and nodes developed for this work. The detailed tree structure of the package and
selected codes are reported in Appendix A.

The framework was evaluated on a 7-DoF Franka Emika Panda equipped with a Robotiq 2F-85
parallel gripper. The Robotiq was preferred to the Franka hand for its larger opening (85 mm
vs. 80 mm), broader usable force range (20-235 N) and robust, interchangeable fingertip pads

IConcise, readable description of algorithm steps without language-specific syntax.
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Robotiq gripper

Screws and corner
brackets

Figure 5.1: HRC workspace: Franka Emika Panda arm with a Robotiq gripper, OptiTrack
motion-capture cameras, aluminium profiles instrumented with sensor markers and assembly
hardware.

that improve friction and protect aluminium surfaces. It also integrates reliably with the ROS
bridge for position and force commands, yielding consistent grasp behaviour during alignment.
Standardizing on the Robotiq improved repeatability, reduced slip risk and minimized surface
damage.

Following Siciliano’s convention in Robotics: Modelling, Planning and Control [35], the
end-effector frame {O,;n,,s,,a,} is defined at the fingertip of the Robotiq gripper:

N, || +Xpanda_1inks, Se || +Ypanda_1inks: a, || +Zpanda_1inks;

so that (n,,s,,a,) is right-handed, with a, the approach axis and s, the finger-sliding axis. The
gripper is mounted with a 45° rotation about the flange z-axis, and the fingertip origin O, is
obtained by translating 0.20m along +Zpanda_1inks-

The Robotiq 2F-85 is interfaced through a thin Python driver and a C++ ROS bridge that
embeds the Python runtime via pybind11. On the ROS side, the gripper_node loads the
Python driver at launch and activates the gripper if needed. The desired width (in mm) is sent
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Figure 5.2: RViz snapshot of the assembly scene with the Panda robot, robot-held and human-
held profiles, at beginning of Experiment 1.

by publishing on /gripper_node/command from the controller. When a new command arrives,
the node calls the driver’s go_to(width, 100.0, 100.0) function, with speed and force fixed
to 100 mm/s and 100 N. The command is acknowledged on /gripper_node/handshake and
completion feedback is later published on /gripper_node/feedback as one of home_reached,
close_reached, grasp_reached or gripper_failure, based on whether the current opening
matches the goal within 1 mm.

5.1.3 Motion Capture System and Frame Calibration

An OptiTrack motion-capture system was used to track the pose of the aluminium profiles. The
OptiTrack system consisted of 18 OptiTrack s250e cameras, synchronized and operating real-
time detections at 250 fps. A rigid body marker base was attached with Velcro at one end of
each profile (Figure 3.3, 5.1). To capture the pose, the robot-held profile and the human-held
profile have respectively 4 and 5 reflective spherical markers.

The profile frames were defined in the following way: the 3D workspace covered by the
OptiTrack cameras was first calibrated to define the OptiTrack world frame. Since the robot
base frame (panda_1ink®) in the OptiTrack world frame was unknown, reflective markers were
rigidly attached to the robot base to create a temporary “OptiTrack base” (panda_base_Opti-
Track). The transform between panda_base_OptiTrack and panda_1ink® was then computed
by positioning the Franka hand fingertip over a reference marker and comparing the marker pose
(with respect to panda_base_OptiTrack) with the gripper pose (panda_hand_tcp). Applying
this transform, each OptiTrack body frame was expressed with respect to the panda_link®
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frame. With RViz it was possible to verify if the transform was correct. After this calibration,
both profiles were defined as rigid bodies in Motive, with their local frames adjusted so that the
origin lay near the geometric center (Figure 3.3).

To clarify notation and axis conventions, the coordinate frames used throughout the chapter are
depicted in Figure 5.3:

* world: [Xworld Yworld Zworld] at panda_link@
* end-effector: [Xe, Yee Zee)

* robot-held: [x,y,z,]

* human-held: [x;y; 2]

All frames are right-handed.

Figure 5.3: Coordinate frames used in the workspace: world (at panda_link0), flange (panda_-
link8), end-effector and the local frames of the robot-held and human-held profiles.

5.1.4 Motion Planning

Motion planning paths are converted into joint space trajectories using Ruckig. Outside the
alignment state, trajectories are computed offline and executed from start to end. During align-
ment, the goal pose (coming from motion capture human-held profile pose) is updated at 1 Hz.
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At each update, a new trajectory segment is generated from the current robot state to the updated
goal and the active trajectory is replaced accordingly. This process keeps the motion continuous,
while respecting Franka’s timing constraints.

5.2 State-Machine breakdown

The following sections describe each step of the sequence and provide pseudocode for the most
relevant parts. The complete source code is reported in Appendix A.

Approach

In the APPROACH state, the robot moves its end-effector from its initial configuration to a pose
above the robot-held profile (Figure 5.4).

The target pose is derived from the OptiTrack estimate of the profile: the grasp coordinate
Xg is chosen along the profile axis X, and the position is offset by 0.20m along z, (Algorithm 1).

The admissible grasp interval [xpin,Xmax] 1S set by adding safety margins at both ends; de-
pending on the assignment, a preferred x, is placed near xy;, for a horizontal robot-held profile
Or near xmax for a vertical one, with a small § to avoid sensor markers. The final x, is then
obtained by solving a bounded QP with qpOASES so it remains inside the graspable region (Al-
gorithm 2).

The end-effector orientation for picking is pre-defined during this state. The approach axis
of the end-effector z,., is aligned with the negative direction of the world axis z,,,,14, While the
normal axis X, is aligned with the robot-held profile axis |x,|. To avoid unnecessary rotations
close to 180°, the alignment is chosen so that the signed angle 6 between x5 and x,, measured

about the reference axis r (in this case z,,,,;4), does not exceed 90° (Eq. 5.1).

x, if6<3%,
Xee = ) Zee = —Zyorld, Yee = Zee X Xee, (51)
—Xr, if 6 2 %7

6 = Z/(x32", x,).

Algorithm 3 shows how the state is initialized: the initial joint state qgy is stored, the grasp
coordinate is obtained with POSITIONGRASPQP (Algorithm 2) and the corresponding target
configuration is computed with INITPICKOBJECT (Algorithm 1). If a valid inverse kinematics
solution is not found (qarget 1S €mpty) or if a trajectory cannot be generated, the state transitions
directly to ERROR. Otherwise, Ruckig is used to generate an offline joint-space trajectory from
Qstart (O Qrarger- While the trajectory is active, UPDATEOFFLINETRAJECTORY advances it at the
control rate (1 kHz). When the trajectory finishes, the next state becomes PRE-GRASP.
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Figure 5.4: Target end-effector pose in APPROACH in the case: X, = +X;.

Algorithm 1 INITPICKOBJECT pseudocode

It Zee < —Zworld
if (£(x$2"x,) < 7/2) then
Xee < Xr
else
Xee < —Xp
end if
yee — Zee X Xee
Rapproach < [Xee Yee Zee]
offset < (0.0,0.0,0.2)
Papproach < Pr + R, [Xg,0,0] T 4 offset
: Solve IK for (Rapproach; Papproach) O g€t Qrarget
: return [glarget

R AN ANl

[

Algorithm 2 POSITIONGRASPQP pseudocode

0+ 0.02

Xmin ¢ —Xot/2+0.07

Xmax < Xtot/2 —0.08

if task_assignment = HumV_RobH? then
Xg ¢ Xmin + O

else if task_assignment = HumH_RobV? then
Xg < Xmax — O

end if

Solve bounded QP around x,

return x,

R AN A S ey

_
@

2HumV_RobH = human-held vertical profile, robot-held horizontal profile.
3HumH_RobV = human-held horizontal profile, robot-held vertical profile.
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Algorithm 3 APPROACH STATE pseudocode

1: if approach_initialized is false then

2: Qstart < Ycurrent
3: X_g < POSITIONGRASPQP
4: Qarget < INITPICKOBJECT
5: if qarger is empty then
6: next_state < ERROR;
7. return
8: end if
9: if trajectory_initialized is false then
10: next_state < ERROR;
11: return
12: end if
13: approach_initialized <+ true
14: else
15: if advance offline trajectory then
16: next_state < PRE-GRASP
17: end if
18: end if
Pre-Grasp

In the PRE-GRASP state, the end-effector moves vertically downward to position the gripper
around the robot-held profile (Algorithm 4) (Figure 5.7). The target is defined by lowering
the end-effector by 0.20 m in the world frame while maintaining the current orientation. The
corresponding target configuration (arge; i Obtained through inverse kinematics and an offline
trajectory is planned with Ruckig. If trajectory initialization fails, the state transitions to ERROR.
Otherwise, the trajectory is executed to completion and the system then transitions to GRASP.

AZworld
Z,

‘Zee X

Figure 5.5: Target end-effector pose in PRE-GRASP in the case: X,, = +X,.
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Algorithm 4 PRE-GRASP STATE pseudocode

1: if pre_grasp_initialized is false then

2: Qstart < Ycurrent
3 Ptarget <~ Pcurrent — (0;07020)
4: Solve IK for (Reurrent; Prarget) 0 g€t Qarget
5: if trajectory_initialized is false then
6: next_state < ERROR;
7: return
8: end if
9: pre_grasp_initialized < true
10: else
11: if update offline trajectory then
12: next_state < GRASP
13: end if
14: end if
Grasp

In the GRASP state, the gripper closes the fingers, grasping the profile. The controller publishes
on topic /gripper_node/command the desired command and the gripper_node executes:

width = 20 mm,
speed = 100 mm/s, 5.2)

force = 100 N

Grasp completion is then signaled via /gripper_node/feedback and the state transitions to
LIFT. Implementation details of the gripper driver and ROS bridge are provided in Sec. 5.1.2.

Lift

In the LIFT state, the robot lifts the profile to a safe height before proceeding to alignment or
reorientation (Algorithm 5) (Figure 5.6). The target pose is obtained by translating the current
end-effector position upward by 0.15 m in the world space. The inverse kinematics is solved to
obtain the target pose and Ruckig generates the corresponding trajectory. If the robot is assigned
the horizontal profile, the next state is ALIGNMENT, while if it is assigned the vertical profile,
the next state is REORIENTATION.

Reorientation

The REORIENTATION state is entered only when the robot is assigned the vertical profile (Figure
5.7). Its purpose is to introduce an intermediate, task-aware orientation (Algorithm 6) so that,
during assembly, the robot does not need to perform large rotations. In practice, this predisposes
the robot-held profile to minimize later motion and reduce the chance of kinematic dead-ends.
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Xee ¢ l—»xr

vz
Zyorld ee

offset

Figure 5.6: Target end-effector pose in LIFT in the case: X,, = +X,.

Algorithm 5 LIFT STATE pseudocode
1. if lift_initialized is false then

2 Qstart < Ycurrent

3: Ptarget < Pcurrent + (07070‘ 15)

4: Solve IK for (Rcurrent; ptarget) to get (rarget
5: if trajectory_initialized is false then

6: next_state < ERROR;

7. return

8: end if

9: lift_initialized < true
10: else
11: if update offline trajectory then
12: if rask_assignment = HumV_RobH then
13: next_state < ALIGNMENT
14: else if task_assignment = HumH_RobV then
15: next_state < REORIENTATION
16: end if

17: end if
18: end if

Hand dominance is asked to determine on which side the contact edge is placed for screwing,
to make the task more comfortable for the human operator. For example, on the front table side:
if the operator is right-handed, the robot-held profile is brought to the left edge of the human-
held profile. The operator is instructed, via GUI, to present their profile with the sensor edge on
the right side. The same reasoning applies symmetrically for left-handed users and for the other
table sides.

The table side is also used to pre-assign the end-effector approach axis before the ALIGN-
MENT state, so that the robot arrives already oriented with respect to the workspace (e.g., choos-
INg Zee = Xworld O TYworld depending on side and hand). This pre-alignment reduces the rotation
demanded during ALIGNMENT, making the subsequent pose updates smoother and less aggres-
sive.

41



Experiments

Once the robot-held profile becomes vertical, the next state is ALIGNMENT.

.

] Zworld Xee

Figure 5.7: Target end-effector pose in REORIENTATION.

Algorithm 6 INITVERTICALOBJECT pseudocode

1: if L(XZ‘;‘”, x,) < /2 then
2 Xee < —Zworld

3: else

4 Xee < Zworld

5: end if

6: if hand = right then

7 if table_side = front then

8 Zee < Yworld

9 else if table_side — side then

10: Zoe < —Yworld

11 else if (table_side = angle) then
12: Zee < Xworld

13: end if

14: else if hand = 1ef't then

15: Zee < Xworld

16: end if

17: Yee — Zoe X Xpe

18: Rvertical — [Xee Yee zee]

19: Pvertical < Pr

20: Solve IK for (Rverticala pvertical) to get (rarget
21: return arget
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5.2 — State-Machine breakdown

Alignment

In the ALIGNMENT state, the robot approaches the human-held profile and continuously adjusts
its pose until contact (Algorithm 7) (Figure 5.8). The target is retargeted at 1 Hz from the latest
OptiTrack estimate of the human-held profile: at each update, the current robot state (q,q,q)
is taken as a new start, inverse kinematics is solved for the new alignment pose and a fresh
Ruckig segment is generated that replaces the current one. This preserves continuous motion
while restricting replanning to short segments. If IK or trajectory initialization fails, the state
transitions to ERROR, otherwise the trajectory executes to completion and the system moves to
DONE.

Algorithm 8 constructs the alignment pose according to the task assignment: if the vertical
profile is held by the human, the end-effector axes are set X, <— —z; and z, <X, (with y,, =
Zee X Xep). If the vertical profile is held by the robot, two approach variants are considered
(from_x_r, from_y_r) as introduced in the REORIENTATION section. The choice of z., depends
on table side and hand dominance.

The target alignment position of the robot-held profile is computed based on the human-held
profile position, to which offsets based on the geometries of the profile are added:

Palign = Pr + Offzh + Ofth

off,, =5 —x,+ % (5.3)
offy, =3 —%

(Ralign: Palign) are then passed to IK. (Algorithm 7,8).

Hwortd Tz, Zworta ‘ {[f IZ"
I  pp— ] e _—

of fon ¢ of fr,

Figure 5.8: Target end-effector pose in ALIGNMENT. On the left is the human-held vertical
profile case and on the right the human-held horizontal profile case.

Assembly

Once the two profiles are in contact, the ASSEMBLY state begins. In this state, the human
operator can assemble them together, screwing the two parts. If there is a slight discrepancy
between the two profiles, the operator can help the robot by adjusting the robot-held profile and
make the assembly easier.
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Algorithm 7 INITALIGNOBJECT pseudocode

1: approaches < {from_x_r, from_y_r}
2: for all a € approaches do
3 if task = HumV_RobH then
4 Xpe < —Zj,
5: Zoe < X,
6 else if rask = HumH_RobV then
7 if Z(x3" z;) < /2 then
8: Xee < Zj,
9: else
10: Xee < —Zj,
11: end if
12: if « = from_y_r then
13: if hand = lef't then
14: Zoe < —Yi
15: else
16: Zoe < Y1
17: end if
18: else
19: Zoe < — X,
20: end if
21: end if
22: Yee < Zee X Xee
23: Ralign < [Xee Yee Zee]
24: off,, < offset to align along z;,
25: offy, < offset to align along x;

26: Palign < Pn + Offzh + Ofth

27: Solve IK for (Ruiign, Patign) tO g€t Qrarget
28: end for

29: return (arget

Error

The ERROR state is entered whenever a trajectory cannot be initialized, a valid inverse kine-
matics solution cannot be found or a critical failure occurs in another state. In this state, the
robot stops and waits for user intervention as most of the problems come from the position of
the profiles, because the robot trajectories to reach them are not feasible.

5.3 Experiments

Seven experiments (Table 5.1) were conducted under a single task family by one right-handed
human operator: L-shape assembly with the robot assigned to the horizontal profile (the operator
holds the vertical one).
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5.3 — Experiments

Algorithm 8 ALIGNMENT STATE pseudocode

1: if alignment_initialized is false V retarget is true then

2 Qstart < Ycurrent
3 qstart — qcurrent
4: iistart — iicurrent
5: Qarget < INITALIGNOBIJECT
6: if Qarge; is empty then
7: next_state < ERROR;
8: return
9: end if
10: if trajectory_initialized is false then
11: next_state < ERROR;
12: return
13: end if
14: alignment_initialized < true

—_
W

. else if alignment_initialized is true A retarget is false then

16: if update offline trajectory then
17: next_state < DONE

18: end if

19: end if

Two starting poses were defined for each profile at the beginning of the tracking. The second
pose H2 for the human-held profile was intentionally tilted from the vertical position to assess
the alignment stage under a mild orientation discrepancy. Four experiments covered all pairings
of these choices so that each robot-held profile pose was tested once with each human-held
profile pose.

The remaining three experiments fixed the profile pair at one of those arrangements (R1-H1) and
varied the robot’s initial configuration. In Table 5.1, the start configurations are summarized.

Robot-held Human-held
Exp Robot pose profile pose profile pose

1 A R1 H1
2 A R1 H2
3 A R2 H1
4 A R2 H2
5 B R1 H1
6 C R1 H1
7 D R1 H1

Table 5.1: Start configurations used in the experiments: robot start configuration (A-D) and
initial profile poses. Labels R1-R2 and H1-H2 denote the initial poses of the robot-held and
human-held profiles, respectively.
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All trials were executed by a single, right-handed operator.

In the case of the robot assigned to the vertical profile, when the robot-held profile was
maintained strictly vertical, the arm was brought close to wrist singularities, stopping the robot.
This case was therefore excluded from experiments with real robot.
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Chapter 6

Results

This chapter reports the experimental results. Seven L-shape assembly experiments were exe-
cuted with the robot assigned to the horizontal profile. The hardware evaluation examines each
experiment with photographs of the main phases and five plots per experiment are reported:
end-effector tracking, joint positions, joint velocities, commanded vs. measured joint torques
and external wrench at the end-effector. The chapter closes with an overall analysis across
experiments.

6.1 Hardware evaluation

The experiments analyzed in this section are the assembly experiments introduced in Sec-
tion 5.3. For each experiment, telemetry was logged using rosbag at the robot control rate.
The following signals were recorded:

* joint positions and velocities (q, q) from the Franka state interface;

* desired joint positions and velocities (qy,¢y) from the Ruckig trajectories;
* measured joint torques (7) from the Franka state interface;

» commanded joint torques (Tcmq) from the impedance controller;

* measured end-effector poses from the Franka state interface;

* desired end-effector poses from the Ruckig trajectories;

¢ estimated external wrench at the end-effector from the Franka state interface.

Experiment 1 - R1-H1, pose A

Experiment 1 corresponds to configuration R1-H1 with the robot in pose A (see Table 5.1). The
robot is assigned to the horizontal profile, while the operator holds the vertical one. Figure 6.1
illustrates the important stages of Experiment 1 from two viewpoints.
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(e)

Figure 6.1: Experiment 1 illustrated with photographs of the main stages: (a) APPROACH,
(b) GRASP, (c) LIFT, (d) ALIGNMENT and (e) ASSEMBLY. For each stage, images from two
viewpoints are shown.

Figure 6.2 (a) compares the desired vs. measured end-effector trajectory along the three
Cartesian axes. The robot tracks the reference closely during the pre-contact phase (until t ~
9 s), whereas during LIFT and ALIGNMENT there are deviations below a few millimeters. The
largest error occurs in x during the ALIGNMENT state and z during LIFT and ALIGNMENT,
consistent with hand tremor of the human-held profile.

Figures 6.2 (b) and 6.2 (c) show, respectively, the joint space position and velocity trajecto-
ries.

The desired joint positions are not smooth polynomials but linear ramps: this comes from the
Ruckig trajectory generator, which computes time-optimal trajectories under joint position, ve-
locity, acceleration and jerk limits. As a result, the reference trajectories consist of concatenated
linear segments. Joint positions track the references closely, with errors well below one degree
on all joints. Within each state, joint velocities are nearly constant, showing only small oscil-
lations typical of the Franka controller in practice. During ALIGNMENT, the velocities decay
smoothly to zero, indicating that the robot has reached the final pose relative to the human-held
profile.

Figure 6.2 (d) compares commanded and measured joint torques. Commanded torques do
not consider the gravity compensation of the Franka arm and of the Robotiq gripper, as it is
done automatically by Franka interface. The second joint carries most of the load, consistent
with its role in supporting gravity during LIFT. Torque demands remain below 50 Nm, well
inside actuator limits.

Figure 6.2 (e) shows the measured external wrench at the end-effector (forces Fy, Fy, F; and
torques Ty, Ty, T;). With the Robotiq gripper configured in Franka Desk, tool gravity is compen-
sated. The lateral force F; remains small (=<1-2 N) even during ALIGNMENT, consistent with
light side contact, whereas F;, rises by ~5—6 N during LIFT due to the weight of the profile.
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Figure 6.2: Experiment 1 results. (a) Desired vs. real end-effector positions. (b) Joint positions
q vs. g4. (c) Joint velocities ¢ vs. ¢4. (d) Commanded vs. measured joint torques. (e) Estimated
external wrench at the end-effector. Vertical dashed lines mark phase boundaries: APPROACH
(0-6 s), PRE-GRASP (6-9 s), GRASP (9-10 s), LIFT (10-13 s), ALIGNMENT (> 13 s).
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Figure 6.3: Experiment 2 illustrated with photographs of the main stages: (a) APPROACH,
(b) GRASP, (c) LIFT, (d) ALIGNMENT and (e) ASSEMBLY. For each stage, images from two
viewpoints are shown.

Experiment 2 - R1-H2, pose A

Experiment 2 corresponds to the configuration R1-H2 with the robot in pose A (Table 5.1).
The robot is assigned to the horizontal profile, while the operator holds the vertical one, this
time tilting it slightly to test the robot’s behavior when the human-held profile is not perfectly
vertical.

The two viewpoints of the different states are shown in Figure 6.3.

Figure 6.4(a) compares the desired and measured end-effector motion along the three Carte-
sian axes. Tracking is tight in the pre-contact phase (up to t ~ 95s), while the largest deviations
appear on z during LIFT and ALIGNMENT.

Joint positions (Figure 6.4(b)) follow their references with high precision. Joint velocities
(Figure 6.4(c)) show more pronounced oscillations in ALIGNMENT, particularly on joint 5,
likely reflecting hand tremor as the operator maintains the tilted profile. Velocities decay
smoothly to zero after ¢ /= 27 s, consistent with the robot reaching the final relative pose.

Joint torques (Figure 6.4(d)) exhibit the same pattern, with larger oscillations on joint 5
attributable to the same source. The external wrench (Figure 6.4(e)) shows a rise in F, during
Alignment that decreases as contact stabilizes.
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Figure 6.4: Experiment 2 results. (a) Desired vs. real end-effector positions. (b) Joint positions
q vs. qq. (c) Joint velocities g vs. ¢,4. (d) Commanded vs. measured joint torques. (e) Estimated
external wrench at the end-effector. Vertical dashed lines mark phase boundaries: APPROACH
(0-6 s), PRE-GRASP (6-9 s), GRASP (9-10 s), LIFT (10-13 s), ALIGNMENT (> 13 s).
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Figure 6.5: Experiment 3 illustrated with photographs of the main stages: (a) APPROACH,
(b) GRASP, (c) LIFT, (d) ALIGNMENT and (e) ASSEMBLY. For each stage, images from two
viewpoints are shown.

Experiment 3 - R2-H1, pose A

Experiment 3 corresponds to the configuration R2-H1 with the robot in pose A (Table 5.1). The
robot is assigned to the horizontal profile, with a different starting position, while the operator
holds the vertical one.

Figure 6.5 shows the different task phases captured from two viewpoints.

The end-effector (Figure 6.6(a)) trajectory has small deviations in the x and z axis post grasp-
ing. Regarding the joint position (Figure6.6(b)), a small error can be found during the ALIGN-
MENT state on joint 6, while the rest of the joints follow the desired trajectories with high
precision. Joint velocities (Figure 6.6(c)) exhibit larger oscillations during the ALIGNMENT
phase, again in joint 6. All joint velocities converge smoothly to zero after t ~ 30 s, when the
robot reaches the final pose relative to the human-held profile.

For Experiment 3 (Figure 6.6(d)), joint 2 again carries most of the load, reaching about 50
Nm during LIFT and ALIGNMENT, consistent with supporting the horizontal profile against
gravity, while wrist joints (J5J7) show mild oscillations during ALIGNMENT. Overall, torque
demands remain moderate and safely within actuator limits.

The external wrench (Figure 6.6(e)) shows an increase in F; during ALIGNMENT and seems
to reach -15N. Similarly, F; remains constant to 2-3 N after LIFT.

52



6.1 — Hardware evaluation

s oo — — Frankaq
2 « Desired qd
S 0af
—oa}
i ——
8
Lo — Frankaq
= Desired q_d
e + -
o] T~
— xd Doal
06 — Xc ;n.z- — FDrunkndq 5
- asired q ¢
Eos |
*
04 —
— 18 ‘-\_______1
H
o i — Frankaq
25 Desired q.d
— vd
a3 S o7
_ — Frankaq
0 B Desired q_d
= 9 _gaf
a1 o P A——————
bl o gy) — Frankaq . -
K] ~+ Desied q_d £
— S 201
03 —zc T E—
Eoz 3]
e T
01 £y — Frankag
= - Desired q_d
00 = ol
[] ] 1 5 B = E] £ [ B T i3 E3 E] E3
Time (5] Time (5]
Z ool e | ol A i
k] — Franka dq 2 _,| — Messuredta Rl =
= Desired dq = === Command tau
a4 4
¥ — Franka dq = °
e £ — Measured tau
g . by | Desired da_d £-n - Command tau
o b, 8 . - B

— Franka dq

———

173

bt | L !

ommand tai

Ew — Measured tau
ot - Desired do.d £ s -~ Command tau
B i e NN B
¥zl —— Franka dq ™ e —
3 Desired dq_d = Measured tau
oo bl :
b

o - ererireeurmerler
- 1 z
T ool — Frankadg oo £, M T o — Messuredtau
H Desired dg_{ I W Z 0 w=—rt G === Command tau
w00 Y vt a_, W‘%-“W“ﬁ Ty "NM), [ V)
5 uf — = ==l s
B ool hreeeand — Franks dq 2, f P AR A Tt anet . Measured tau
by Desired da_d = | et NP R 4 == Command tau
-a1 of_t
o4 1
T — Franka dq 7 B oot — Measured tau
o2 Desired do_d 1 sy <= Command tau
il I = R e i PR A
3 3 15 E] E3 E] 3 o 5 E 15 ] 7 30 E3
Time (5] Time (5]

(©

’ mdﬁj - g e e
.

Force [N]
L .

L
!
{

A
{

. Pt
—_Tx
o v
al— T Bl ke 20, OO R
g 3 i E3 E] 3

Figure 6.6: Experiment 3 results. (a) Desired vs. real end-effector positions. (b) Joint positions
g vs. qq. (c) Joint velocities ¢ vs. ¢4. (d) Commanded vs. measured joint torques. (e) Estimated
external wrench at the end-effector. Vertical dashed lines mark phase boundaries: APPROACH

(d)

(0-6s), PRE-GRASP (6-9 s), GRASP (9-10 s), LIFT (10-13 s), ALIGNMENT (> 13 s).
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Figure 6.7: Experiment 4 illustrated with photographs of the main stages: (a) APPROACH,
(b) GRASP, (c) LIFT, (d) ALIGNMENT and (e) ASSEMBLY. For each stage, images from two
viewpoints are shown.

Experiment 4 - R2-H2, pose A

Experiment 4 corresponds to the configuration R2-H2 with the robot still in pose A (Table 5.1).
The robot is assigned to the horizontal profile, with the same starting position as Experiment 3,
while the operator holds the vertical one, tilted like Experiment 2.

Figure 6.7 illustrates the task phases from the same two perspectives.

Small deviations can be seen on the end-effector (Figure 6.8(a)) trajectory in the x and z axis
post grasping, and also in the y axis at the end of the ALIGNMENT state.

Regarding the joint positions (Figure6.8(b)), a small error is visible in joint 6, while the
remaining joints track the desired trajectories with high accuracy. Higher oscillations in joint
velocities (Figure 6.8(c)) can be seen in joints 3, 5 and 6 during the ALIGNMENT phase. All
joint velocities converge smoothly to zero after ¢ = 30 s, when the robot reaches the final pose.

Due to hand tremor, the commanded torque (Figure 6.8(d)), shows pronounced oscillations
especially in the wrist joints.

The external wrench (Figure 6.8(e)) again shows an increase in F; during ALIGNMENT, it
reaches -15N and after a while it seems to converge to 0. The same can be noticed with F;, that
after lifting remains around to 2-3 N.
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Figure 6.8: Experiment 4 results. (a) Desired vs. real end-effector positions. (b) Joint positions
g vs. qq. (c) Joint velocities ¢ vs. ¢4. (d) Commanded vs. measured joint torques. (e) Estimated
external wrench at the end-effector. Vertical dashed lines mark phase boundaries: APPROACH
(0-6 s), PRE-GRASP (6-9 s), GRASP (9-10 s), LIFT (10-13 s), ALIGNMENT (> 13 s).
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(b)

Figure 6.9: Experiment 5 illustrated with photographs of the main stages: (a) APPROACH,
(b) GRASP, (c) LIFT, (d) ALIGNMENT and (e) ASSEMBLY. For each stage, images from two
viewpoints are shown.

Experiment 5 - R1-H1, pose B

Experiment 5 starts from the configuration R1-H1 of experiment 1 with the robot in pose B
(Table 5.1). The robot is assigned to the horizontal profile, while the operator holds the vertical
one.

Figure 6.9 illustrates the task phases from the same two perspectives.

Small deviations can be seen on the end-effector (Figure 6.10(a)) trajectory in the x and z
axis during APPROACH, LIFT and ALIGNMENT states. Joint 6 and 7 show small errors in the
joint positions (Figure6.10(b)), while the remaining joints still track the desired position with
high precision. Higher oscillations in joint velocities (Figure 6.10(c)) can be seen in most of the
joints, but they are still acceptable. The joint velocities converge to zero after ¢t ~ 30s.

Joint 5 commanded torque shows marked oscillations (Figure 6.10(d)).

The external wrench (Figure 6.10(e)) F; reaches -2 N during ALIGNMENT and F;, after lifting
(when it reaches 4 N) decreases below 0 N.
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Figure 6.10: Experiment 5 results. (a) Desired vs. real end-effector positions. (b) Joint positions
g vs. qq. (c) Joint velocities ¢ vs. ¢4. (d) Commanded vs. measured joint torques. (e) Estimated
external wrench at the end-effector. Vertical dashed lines mark phase boundaries: APPROACH
(0-6 s), PRE-GRASP (6-9 s), GRASP (9-10 s), LIFT (10-13 s), ALIGNMENT (> 13 s).
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Results

Figure 6.11: Experiment 6 illustrated with photographs of the main stages: (a) APPROACH,
(b) GRASP, (c) LIFT, (d) ALIGNMENT and (e) ASSEMBLY. For each stage, images from two
viewpoints are shown.

Experiment 6 - R1-H1, pose C

Experiment 6 begins from the same configuration R1-H1 of experiment 1 and 5, but with the
robot in pose C (Table 5.1).

Figure 6.11 shows the task phases observed from the two viewpoints.

Small deviations can be seen on the end-effector (Figure 6.12(a)) trajectory in the x and z axis
during LTFT and ALIGNMENT states. The joint positions (Figure6.12(b)) track the desired posi-
tion with high accuracy. Lower oscillations can be seen in joint velocities (Figure 6.12(c)) with
respect to Experiment 5, track the desired velocities well. Torque oscillations (Figure 6.12(d))
also decrease, with joint 2 carrying the majority of gravity compensation.

The external wrench (Figure 6.12(e)) F; reaches -7 N during ALIGNMENT and F;, after lifting
(when it reaches 4 N) decreases toward -2.5 N.
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Figure 6.12: Experiment 6 results. (a) Desired vs. real end-effector positions. (b) Joint positions
g vs. qq. (c) Joint velocities ¢ vs. ¢4. (d) Commanded vs. measured joint torques. (e) Estimated
external wrench at the end-effector. Vertical dashed lines mark phase boundaries: APPROACH
(0-6 s), PRE-GRASP (6-9 s), GRASP (9-10 s), LIFT (10-13 s), ALIGNMENT (> 13 s).
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Figure 6.13: Experiment 7 illustrated with photographs of the main stages: (a) APPROACH,
(b) GRASP, (c) LIFT, (d) ALIGNMENT and (e) ASSEMBLY. For each stage, images from two
viewpoints are shown.

Experiment 7 - R1-H1, pose D

Experiment 7 begins from the same configuration R1-H1 of experiment 1, 5 and 6, but with the
robot in pose D (Table 5.1).

Figure 6.13 shows the task phases observed from the two viewpoints.

End-effector trajectory (Figure 6.14(a)) along the x axis shows small oscillations in the PRE-
GRASP phase and higher error during LIFT and ALIGNMENT. Small deviations can also be seen
during LIFT and ALIGNMENT of the z axis. Joint 2 and Joint 7 show large oscillations from
the desired joint position(Figure6.14(b)). Oscillations are still present in the measured joint
velocities (Figure 6.14(c)), but they are negligible. Also oscillations (Figure 6.14(d)) in the
commanded torques decreased, with joint 2 having the majority of gravity compensation.

The external wrench (Figure 6.14(e)) show high oscillations in the APPROACH phase, prob-
ably because of the initial configuration of the robot. F; is around -4 N during ALIGNMENT and
F; after lifting (when it reaches 4 N) decreases going toward -1 N.
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Figure 6.14: Experiment 7 results. (a) Desired vs. real end-effector positions. (b) Joint positions
g vs. qq. (c) Joint velocities ¢ vs. ¢4. (d) Commanded vs. measured joint torques. (e) Estimated
external wrench at the end-effector. Vertical dashed lines mark phase boundaries: APPROACH
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(0-6s), PRE-GRASP (6-9 s), GRASP (9-10 s), LIFT (10-13 s), ALIGNMENT (> 13 s).
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6.2 Simulation evaluation

The same planner—controller stack (grasp optimization, constrained trajectory segments and
joint-impedance control with torque-rate limits) was verified in simulation on Gazebo (Franka
+ Franka gripper model, rigid environment, perfect state estimation). The simulations covered
both the postures tested on hardware and additional configurations that were not executed on the
physical robot, including cases where the robot held the vertical profile. Under the same limits,
both L- and T-shape assemblies completed successfully with the robot in that role. This outcome
points to a posture related constraint in the hardware runs (proximity to a wrist singularity)
rather than a limitation of the method itself. The simulation was used as an internal check and
debugging aid and is not assessed further in this thesis.

6.3 Summary

Across the seven assemblies, execution remained consistent and within constraints. Before
GRASP, the end-effector closely followed the commanded path in every run. The only excep-
tion was Experiment 7, where a small oscillation appeared on the x trace during PRE-GRASP
without causing instability. After grasp detection and during LIFT, all trials showed a similar
pattern: small, repeatable deviations on z as the arm took the load and moved toward the human-
held profile, accompanied by only minor drift on x and tight tracking on y. During ALIGNMENT
the behavior depends on the human-held profile and the starting arm posture. When the oper-
ator holds the vertical profile with a deliberate tilt (H2-R1), wrist motion increases and a more
pronounced F appears once side contact forms, yet the contact stabilizes cleanly. In the upright
cases (H1), posture matters most: with starting pose C the wrist stays away from near-singular
configurations and the velocity/torque traces are smoother. Starting from poses B or D there is
more wrist motion, but the outcome does not change. In all experiments the joint velocities drop
to zero by the end of ALIGNMENT and the final relative pose is reached cleanly.

The measured forces and torques follow the same picture. At the start of ALIGNMENT
F; is near zero, rising only after lifting the object and then drops as the contact redistributes.
The normal force F, shows a small peak during LIFT in all experiments (~ 4-6N) and then
drops back once the LIFT height is reached. On the actuation side, J2 carries most of the
gravity during GRASP and LIFT, while the other joints add smaller adjustments. Wrist activity
depends on the condition: J5/J6 are more active in tilted trials and in starts that place the wrist
nearer less favorable angles. Overall, torque levels remain moderate and within limits across all
experiments.

Results in Table 6.1 line up with these qualitative observations. The duration of each experi-
ment is measured from the first non-zero motion to the time at which all joint angular velocities
drop below 0.005rad/s, after applying a 7-sample moving average to joint velocities. This time
corresponds to the robot-held profile reaching the human-held profile, which is kept still in the
same position; minor residual motion at the end is attributed to natural hand tremor and is not
task-relevant. Across the seven experiments, end-effector accuracy is stable: RMSE ranges
from 6.57mm (Exp. 2) to 10.31 mm (Exp. 3), with a mean of 8.4mm. The mean joint-position
RMSE is ~ 0.0066rad (= 0.38°), with consistently higher values at J6-J7 in more demanding
postures. Commanded torques are moderate overall: Trys ranges from 10.5 to 12.3Nm (overall
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Table 6.1: Experiment metrics over the full trajectory.

Duration End-effector Joint position TRMS
Exp [s] RMSE [m] RMSE [rad] mean [Nm]
1 30.440 0.0083 0.0062 10.50
2 36.719 0.0066 0.0056 10.68
3 34.640 0.0103 0.0071 11.64
4 31.126 0.0101 0.0074 12.32
5 30.168 0.0094 0.0062 10.59
6 31.874 0.0076 0.0077 10.62
7 32.428 0.0068 0.0060 11.12
Mean
1 SD 32.485 £+ 2.393 0.0084 + 0.0015 0.0066 + 0.0008 11.07 + 0.68

mean ~ 11.1Nm). J2 carries most of the load (35—46 Nm) because it supports gravity during
GRASP and LIFT; J3 is higher in Exp. 7 due to the initial posture. Exp. 2 and Exp. 7 show
the best balance between accuracy and effort, whereas Exp. 4 requires the most torque and ex-
hibits slightly larger errors. Differences in the joint-space traces during LIFT and ALIGNMENT
for runs with the same task (e.g., R1-H1) are explained by redundancy' resolution: the 7-DoF
arm legitimately adopts different joint configurations for the same Cartesian pose to stay within
limits and away from near-singular postures.

' A 7-DOF manipulator is redundant because it has more joints than the six degrees of freedom needed to define
the end-effector pose, allowing multiple joint configurations for the same task.
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Chapter 7

Concluding Remarks

This thesis develops and evaluates a practical framework for human-robot assembly that inte-
grates a GUI for task selection and role assignment with grasp optimization, motion-capture
tracking of both profiles, constrained trajectory segments and a joint impedance controller with
torque-rate limitation. The execution sequence consists of APPROACH, PRE-GRASP, GRASP,
LIFT, optional REORIENTATION, ALIGNMENT and ASSEMBLY under periodic target updates,
providing a smooth and constraint-compliant behavior.

On hardware, the L-shape assemblies with the robot holding the horizontal profile showed
consistent execution across varied initial profile poses and arm postures. Tracking before con-
tact was accurate, GRASP and LIFT completed reliably and ALIGNMENT proceeded smoothly
without noticeable oscillations. Commanded torques remained within expected bounds. As
anticipated, the shoulder joint (Joint 2) bore most of the load to counter gravity, while the con-
tribution of the remaining joints depended on posture. Within the tested range, the starting pos-
ture did not consistently change tracking error or mean torque. Instead, it mainly redistributed
effort among joints without degrading accuracy or total effort. During and after LIFT, small,
repeatable deviations appeared primarily along z as the arm took the load and moved toward the
human-held profile, while lateral drift on x stayed minor and tracking on y remained tight. In
ALIGNMENT, the onset of side contact increased wrist activity and produced a temporary rise
in F;, which diminished as contact stabilized.

The execution traces are compatible with redundancy resolution in a 7-DoF arm: trials aimed
at the same Cartesian goal sometimes followed different joint-space paths as joint limits and
proximity to singularities allowed multiple feasible postures. In H2 cases, choosing initial con-
figurations farther from near singular wrist poses yielded visibly calmer velocity and torque
profiles while achieving the same final pose. Across experiments, velocities decayed to zero by
the end of ALIGNMENT and the target pose was reached cleanly, indicating predictable behavior
at contact.

A practical consideration concerns assigning the vertical profile to the robot. On hardware,
a strictly vertical approach can drive the wrist close to a singularity and halt motion, whereas
the same controller and limits succeed in simulation. This points to a posture-related constraint
rather than a limitation of the method. A sensible direction for future work is to adopt a slightly
tilted approach and posture-aware trajectory generation that penalizes low manipulability and
steers away from wrist singularities.
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Concluding Remarks

Overall, the contribution is a compact, hardware-tested stack that behaves predictably with
modest assumptions and minimal tuning. The pipeline runs from operator input on a GUI to
grasp selection, pose tracking, bounded trajectory updates and compliant execution on a Franka
Emika Panda with a Robotiq 2F-85. The method achieves contact-rich profile assembly with
smooth execution, stable accuracy and consistent effort across the starting poses tested.

The framework has clear limits. During the contact phase, trajectories are refreshed at 1
Hz, which is adequate for steady interaction but reduces responsiveness: rapid changes by the
operator are only incorporated at the next update, up to one second later, so visible lag and
larger corrective moves can occur. Forces are only monitored, not exploited for guarded moves
or active search. Feasible postures are sometimes restricted by proximity to wrist singularities,
particularly in the robot-holds-vertical assignment. The operator is not perceived explicitly and
safety is enforced through conservative bounds rather than a dedicated layer. Posture quality
and force transmission are not analyzed along the sequence, and compliance is kept moderate
to preserve tracking.

These limits suggest future work that builds on the current stack. Planning can prefer pos-
tures that keep the wrist away from near singular configurations and the loop can accept more
frequent trajectory updates so small human operator changes are taken up promptly while up-
dates remain bounded. Contact phases can be made more forgiving by increasing compliance
where needed and by tightening the link between the tracked poses and the updates, so that
small mismatches at the profiles do not lead to sharp corrections. A simple perception channel
for the operator would allow the robot to keep distance and speed margins around the human
and would provide a clearer basis for safety than conservative limits alone. Studying how pos-
ture affects manipulation and how forces are routed along the sequence would inform both goal
choice and posture choice, adjusting the grasp coordinate online when margins shrink would
help keep the task reachable as the hold position changes. Basic voice commands (pause, re-
sume and small adjustments) could keep the operator hands on the workpiece and make the
interaction smoother.

In summary, a compact, integrated stack is sufficient for this class of collaborative assembly.
By coupling planning and control to signals that the operator can observe and influence, refresh-
ing goals in short segments and executing with joint impedance control and torque rate limiting,
the system runs smoothly, maintains stable accuracy and keeps effort moderate. The imple-
mentation serves as a practical baseline on real hardware and leaves clear room for incremental
extensions.
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Appendix A
ROS package

A.1 ROS custom package: hri_assembly_task

This appendix summarizes the structure and key files of the custom ROS package hri_assem-
bly_task. The complete package is available at: https://github.com/carladevittorio/
hri_assembly_task.git. In this appendix, only the most relevant files are shown.

Package Layout

The ROS package hri_assembly_task follows the standard ROS structure, extended with cus-
tom source code, configuration files and robot models. Below is a description of the purpose of
each directory and the role of the files inside it.

Root Directory (hri_assembly_task) Contains the two core files that every ROS package
needs:

* package.xml: Defines the package metadata (name, version, dependencies, maintainers).

* CMakelists.txt: Build system instructions (CMake macros to compile nodes, generate
messages and link libraries).

* hri_assembly_task_plugin.xml:Registers the shared library 1ibhri_assembly_task
and exposes hri_assembly_task/Controller (hri_assembly_task::Controller) as
a controller_interface::ControllerBase plugin for position/impedance control.

launch This folder stores launch files, which automate the startup of multiple ROS nodes and
parameters.

* hri_assembly_task.launch: it brings up the full system and switches between real
hardware and Gazebo via the use_real_robot argument. It starts the OptiTrack inter-
face and publishes a static TF from the panda_base_OptiTrack to panda_link®. For
the real robot, it launches franka_control and generates /robot_description from
the Panda+Robotiq xacro, while for simulation, it launches franka_gazebo and loads the
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ROS package

Gazebo-ready Panda description. It then loads runtime parameters from config/hri_as-
sembly_task.yaml, sets key links (base_link, ee_link) and controller mode (impedance),
spawns the controller via controller_manager, starts the package’s task UI (GUI. py) and
gripper node, and opens RViz with the provided config.

config Configuration files in YAML format that define parameters loaded at runtime.

* hri_assembly_task.yaml: Stores controller gains, planner options, or task-specific pa-
rameters.

msg Custom message definitions used for communication between nodes. ROS automatically
generates header files for these.

* Data.msg: Defines numerical data for plots.

* TaskInfo.msg: Contains information about the assembly task published by the GUI and
the status published by the controller .

src  Source code implementing the package functionality. Each . cpp file corresponds to a ROS
node or helper class:

* controller.cpp: Main control logic.
* ImpedanceController.cpp, PositionController.cpp: Different control strategies.

* KinematicsSolver.cpp: Handles forward/inverse kinematics using Pinocchio library.

RuckigTrajectory.cpp: Implements trajectory generation using Ruckig library.
* gripper_node.cpp: Node to control the Robotiq gripper.
* logger.cpp: Data logging functionality.

* solver_gpOASES. cpp: Optimization solver interface for control tasks.

include Header files corresponding to the source code in src/. This separation follows the
standard C++ practice and makes the code reusable across nodes. Files include class definitions
for controllers, solvers and utilities.

robots URDF models and meshes for the Franka Panda arm and the Robotiq 2F-85 gripper.
These assets define geometry, kinematics, dynamics and visuals used across the package (e.g.,
for /robot_description, RViz and simulation).

worlds Gazebo world files for simulation scenarios used by the launch files.

scripts  Python executables (e.g., GUI and Robotiq helpers) launched as ROS nodes.
68



A.1 - ROS custom package: hri_assembly_task

rviz Preconfigured RViz visualization files for the assembly task (fixed frames, displays and
topics).

hri_assembly_task/
, _package.xml
| _CMakelLists.txt
| _hri_assembly_task_plugin.xml
. launch/
Lg,hri_assembly_task.launch
. _config/
LA,hri_assembly_task.yaml
,__msg/
tData.msg

TaskInfo.msg
. _src/
controller.cpp
ImpedanceController.cpp
PositionController.cpp
KinematicsSolver.cpp
RuckigTrajectory.cpp
gripper_node.cpp
logger.cpp
solver_qgpOASES. cpp
| include/
controller.h
ImpedanceController.h
PositionController.h
KinematicsSolver.h
RuckigTrajectory.h
gripper_node.h

logger.h
solver_qgpOASES.h
. __robots/
tpanda.urdf
robotiq_2f85.urdf
. __worlds/
Lg,world_with_object.world
| scripts/

kGUI.py

Robotiq2F85Driver.py

. _rviz/
Lg,hri_assembly_task
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Controller State Machine Implementation

The following code shows the state machine logic of the Controller class, responsible for
handling the robot’s task execution:

Listing A.1: Approach state in Controller

void Controller::approachState(const ros::Duration& period) {
publishState();
if (lapproach_initialized) {

g_d_i = arm_q;

kinematic_solver_.set_q(q_d_i);

pinocchio::SE3 pose_grasp_pick = kinematic_solver_.
compute_forward_kinematics(kinematic_solver_.get_frame_id
0O);
initPickObject(robot_profile, pose_grasp_pick, x_g, q_d_f,
arm_q, kinematic_solver_, sign_xee_xobj, task_assignment);
X_g = positionGraspQP(robot_profile.x_length, task_assignment
);
if (q_d_f.size() == 0) {
previous_state_ = current_state_;
current_state_ = State::Error;
return;

3

if (!trajectory_.init_offline(q_d_i, q_d_f, dg_d_i, dq_d_f,
ddg_d_i, ddqg_d_f, 6)) {

ROS_ERROR("Trajectory init failed error state");
current_state_ = State::Error;
return;

3

approach_initialized = true;

elapsed_time = ros::Duration(0.0);

} else {

if (updateOfflineTrajectory(period)) {
current_state_ = State::preGraspState;

3

Listing A.2: Pre-grasp state in Controller

void Controller::preGraspState(const ros::Duration& period) {
publishState();
if (!pre_grasp_initialized) {
g_d_i = arm_q;
Eigen::Vector3d position_d_f(0.0,0.0,-0.20);
Eigen::Quaterniond quat_d_f;
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g_d_f = fromCartesianToJointFinalPosition(q_d_i, "relative”,
position_d_f, "fixed"”, quat_d_f);

if (!trajectory_.init_offline(q_d_i, q_d_f, dg_d_i, dq_d_f,
ddg_d_i, ddq_d_f, 3)) {
ROS_ERROR("Trajectory init failed error state");
current_state_ = State::Error;
return;

3

pre_grasp_initialized = true;
elapsed_time = ros::Duration(0.0);
} else {
if (updateOfflineTrajectory(period)) {
lift_initialized = false;
current_state_ = State::Grasp;

Listing A.3: Grasp state in Controller

void Controller::grasp() {
publishState();
gripper_cmd = "grasp";
if (gripper_feedback=="grasp_reached”) {
current_state_ = State::1liftProfile;
}
}

Listing A.4: Lift state in Controller

void Controller::1liftState(const ros::Duration& period) {
publishState();
if (!lift_initialized) {
g_d_i = arm_q;
Eigen::Vector3d position_d_f (.0, 0.0, 0.15);
Eigen::Quaterniond quat_d_f;
g_d_f = fromCartesianToJointFinalPosition(qg_d_i, "relative”,
position_d_f, "fixed”, quat_d_f);

if (!trajectory_.init_offline(q_d_i, q_d_f, dg_d_i, dq_d_f,
ddq_d_i, ddg_d_f, 3)) {

ROS_ERROR("Trajectory init failed error state");
current_state_ = State::Error;
return;

3

lift_initialized = true;
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elapsed_time = ros::Duration(0.0);
} else {
if (updateOfflineTrajectory(period)) {
if (task_assignment == "HumV_RobH") {
current_state_ = State::alignmentState;
} else if (task_assignment == "HumH_RobV") {
current_state_ = State::reorientationState;
3
3
3
3
Listing A.5: Reorientation state in Controller
void Controller::reorientation(const ros::Duration& period) {
publishState();
if (!vertical_initialized) {
g_d_i = arm_q;
kinematic_solver_.set_q(q_d_i);
pinocchio::SE3 pose_grasp_lift = kinematic_solver_.

compute_forward_kinematics(kinematic_solver_.get_frame_id());

initVerticalObject(robot_profile, pose_grasp_lift, q_d_f, arm_q,
kinematic_solver_, sign_xee_xobj, main_hand_human, table_side)

’

if (!trajectory_.init_offline(q_d_i, q_d_f, dg_d_i, dq_d_f,
ddg_d_i, ddq_d_f, 7)) {

ROS_ERROR("Trajectory init failed error state");
current_state_ = State::Error;
return;

3

vertical_initialized = true;

elapsed_time = ros::Duration(0.0);

} else {

if (updateOfflineTrajectory(period)) {

current_state_ = State::alignment;

3

Listing A.6: Alignment state in Controller

void Controller::alignment(const ros::Duration& period) {
publishState();
++retarget_elapsed;
if (lalignment_initialized || retarget_elapsed >=
retarget_time_ticks ) {
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g_d_i = q_d;
dg_d_i = dq_d;
ddgq_d_i = ddq_d;

kinematic_solver_.set_q(arm_q);

pinocchio::SE3 pose_grasp_vertical = kinematic_solver_.
compute_forward_kinematics(kinematic_solver_.get_frame_id());

initAlignObject (robot_profile, human_profile, pose_grasp_vertical
, q_d_f, arm_q, kinematic_solver_, x_g, main_hand_human,
table_side, T_percentage, task_assignment);

if (g_d_f.size() == 0) {

last_human_position = current_human_pos;
previous_state_ = current_state_;
current_state_ = State::Error;

return;

3

if (!trajectory_.init_offline(q_d_i, q_d_f, dg_d_i, dq_d_f,
ddq_d_i, ddg_d_f, 6)) {

ROS_ERROR("Trajectory init failed error state");
current_state_ = State::Error;
return;

3

alignment_initialized = true;

elapsed_time = ros::Duration(0.0);

retarget_elapsed = 0;

} else {

if (updateOfflineTrajectory(period)) {
current_state_ = State::Done;

}

Listing A.7: PositionGraspQP in SubtaskExecutor.cpp

double positionGrasp(double& x_tot, std::string& task_assignment) {

double delta = 0.02;

double x_min = -x_tot/2 + 0.07;

double x_max = x_tot/2 - 0.08;

double x_g;

if (task_assignment == "HumV_RobH") {
X_g = x_min + delta;

} else if (task_assignment == "HumH_RobV") {
X_g = x_max - delta;

3

Eigen::MatrixXd H(1,1);
Eigen::VectorXd g(1);
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Eigen::MatrixXd A(Q,1);
Eigen::VectorXd 1lb(1), ub(1);
Eigen::VectorXd 1bA(@), ubA(Q);

H << 2.0;

g << -2.0*x_g;
1b << x_min;
ub << x_max;

if (!gpOASES_solver_.solve(H, g, A, 1lb, ub, 1bA, ubA)) {
ROS_ERROR("QP setup failed"”);

3
return qpOASES_solver_.get_optimal_solution() (0);

Listing A.8: InitPickObject in SubtaskExecutor.cpp

void initPickObject(Profile& robot_profile, pinocchio::SE3&
pose_grasp, double& z_g, Eigen::VectorXd& q_d_f, Eigen::VectorXd&
arm_q, KinematicsSolver& kinematic_solver_, int sign_xee_xobj, std
::string& task_assignment) {
Eigen::Vector3d p_r = robot_profile.position;
Eigen::Matrix3d R_r robot_profile.orientation.toRotationMatrix();

Eigen::Matrix3d R_ee_start = pose_grasp.rotation();

Eigen::Vector3d z_world = Eigen::Vector3d::UnitzZ();
Eigen::Vector3d z_ee = -(z_world).normalized();
Eigen::Vector3d x_r = R_obj.col(@).normalized();

sign_xee_xobj = checkAngleRad(R_grasp.col(®), x_obj, z_world);

Eigen::Vector3d x_ee;

if (sign_xee_xobj > 0) {

X_ee = X_r;
} else {
X_ee = -Xx_r;
3
Eigen::Vector3d y_ee = z_ee.cross(x_ee);

x_ee.normalized();

Eigen::Matrix3d R_approach;
R_approach.col (@) = x_ee;
R_approach.col (1) y_ee;
R_approach.col (2) z_ee;
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Eigen::Vector3d local(z_g,0,0);

Eigen::Vector3d p_approach = p_r + R_rxlocal;
Eigen::Vector3d z_offset_over_pick(0.0, 0.0, 0.2);
Eigen::Vector3d offset_zee_w = (gripper_z_offset(2)) *x z_ee;

pinocchio::SE3 pose_d_f(R_approach, p_approach-offset_zee_w+
z_offset_over_pick);

kinematic_solver_.set_q(arm_q);

g_d_f = kinematic_solver_.compute_inverse_kinematics(
kinematic_solver_.get_frame_id(),
pinocchio::ReferenceFrame::LOCAL,
"pseudoinverse”,
pose_d_f);

if (g_d_f.size() == 0) {
ROS_WARN("IK failed for pose”);
3

Listing A.9: InitVerticalObject in SubtaskExectur.cpp

void initVerticalObject(Profile& robot_profile, pinocchio::SE3&
pose_ee_start, Eigen::VectorXd& q_d_f, Eigen::VectorXd& arm_q,

KinematicsSolver& kinematic_solver_, int& sign_xee_xobj, std::
string& hand, std::string& side) {
Eigen::Matrix3d R_ee_start = pose_ee_start.rotation();
Eigen::Vector3d p_ee_start = pose_ee_start.translation();

Eigen::Vector3d z_world = Eigen::Vector3d::UnitzZ();

Eigen::Matrix3d R_r = robot_profile.orientation.toRotationMatrix();

sign_xee_xobj = checkAngleRad(R_ee_start.col(®), R_r.col(0),
z_world);

Eigen::Vector3d x_ee;
if (sign_xee_xobj > 0) {

Xx_ee = -z_world;
} else {

Xx_ee = z_world;
3
Eigen::Vector3d z_ee;
if (hand=="right") {

if (side=="front") {
z_ee = -Eigen::Vector3d::UnitY();

} else if (side=="side") {
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z_ee = Eigen::Vector3d::UnitY();
} else if (side=="angle") {
z_ee = Eigen::Vector3d::UnitX();
3
} else if (hand=="1left") {
z_ee = Eigen::Vector3d::UnitX();
3

x_ee.normalize();

z_ee.normalize();

Eigen::Vector3d y_ee = z_ee.cross(x_ee).normalized();
Eigen::Matrix3d R_vertical;

R_vertical.col (@) = x_ee;

R_vertical.col (1) = y_ee;

R_vertical.col(2) = z_ee;

pinocchio::SE3 pose_d_f(R_vertical, p_ee_start);

kinematic_solver_.set_q(arm_q);

g_d_f = kinematic_solver_.compute_inverse_kinematics(
kinematic_solver_.get_frame_id(),
pinocchio::ReferenceFrame::LOCAL,

"pseudoinverse",
pose_d_f);

if (g_d_f.size() == 0) {
ROS_WARN("IK failed for pose”);
3

Listing A.10: initAlignObject in SubtaskExecutor.cpp

void initAlignObject(Profile& robot_profile, Profile& human_profile,
pinocchio::SE3& pose_ee_start, Eigen::VectorXd& q_d_f, Eigen::
VectorXd& arm_q, KinematicsSolver& kinematic_solver_, double& x_g,
std::string& hand, std::string& side, double& T_percentage, std::
string& task_assignment) {
bool success = false;
std::vector<std::string> approaches = {"from_x_obj", "from_y_obj"};

for (const auto& approach : approaches) {

Eigen::Matrix3d R_ee_start = pose_grasp.rotation();
Eigen::Vector3d p_ee_start = pose_grasp.translation();

Eigen::Vector3d p_r robot_profile.position;

Eigen::Matrix3d R_r = robot_profile.orientation.
toRotationMatrix ();
Eigen::Vector3d p_h = human_profile.position;
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Eigen::Matrix3d R_h = human_profile.orientation.
toRotationMatrix ();

Eigen::Vector3d x_ee;

Eigen::Vector3d z_ee;

Eigen::Vector3d y_ee;

Eigen::Vector3d p_align;

if (task_assignment == "HumV_RobH") {
x_ee = -R_h.col(2);
z_ee = R_h.col(0);
x_ee.normalize();
z_ee.normalize();
y_ee = z_ee.cross(x_ee).normalized();

Eigen::Vector3d z_world = Eigen::Vector3d::UnitzZ();

Eigen::Vector3d offset_zh_w = (robot_profile.x_length/2-x_g+

human_profile.y_length/2) * R_h.col(2);
Eigen::Vector3d offset_yh_w =R_h.col(1);

Eigen::Vector3d offset_xh_w = (human_profile.x_length/2 -

robot_profile.y_length/2) * R_h.col(0);

Eigen::Vector3d offset_zee_w = (gripper_z_offset(2)) *x z_ee;

p_align = p_h+offset_zh_w+offset_xh_w-offset_zee_w+
offset_yh_w;
} else if (task_assignment == "HumH_RobV") {

int sign_xee_z_h = checkAngleRad(R_ee_start.col(90),
(2), R_h.col(1));

if (sign_xee_z_h > 0) {
x_ee = R_h.col(2);

} else {
x_ee = -R_h.col(2);

3

if (approach=="from_y_obj") {
if (hand=="1left") {

z_ee = -R_h.col(1);
} else {
z_ee = R_h.col(1);

3

} else if (approach=="from_x_obj") ({
z_ee = -R_h.col(0);
3

x_ee.normalize();
z_ee.normalize();
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3

y_ee = z_ee.cross(x_ee).normalized();

Eigen::Vector3d z_world = Eigen::Vector3d::UnitzZ();

Eigen::Vector3d offset_zh_w = (x_g+human_profile.y_length/2)
* R_h.col(2);

double start = human_profile.x_length / 2.0 - 0.07;

double offset_value = start x (1.0 - T_percentage / 100.0);

Eigen::Vector3d offset_xh_w = offset_value * R_h.col(0);
Eigen::Vector3d offset_zee_w = (gripper_z_offset(2)) * z_ee;

p_align = p_h+offset_zh_w+offset_xh_w-offset_zee_w;

Eigen::Matrix3d R_align;
R_align.col(®) = x_ee;
R_align.col(1) = y_ee;

R_align.col(2)

z_ee;

pinocchio::SE3 pose_d_f(R_align, p_align;

g_d_f = kinematic_solver_.compute_inverse_kinematics(

kinematic_solver_.get_frame_id(),
pinocchio::ReferenceFrame::LOCAL,
"pseudoinverse",

pose_d_f);

if (g_d_f.size() > 0) {

3

success = true;
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Robotics

This appendix summarizes the main mathematical tools used throughout this work to describe
and analyze robotic manipulators. The focus is on the kinematic modeling of serial robots,
starting from the representation of positions and orientations (rotation matrices, homogeneous
transformations and quaternions) and proceeding to the formulation of forward and inverse kine-
matics. Differential kinematics is then introduced through the manipulator Jacobian, which also
provides the basis for the analysis of singular configurations.

These concepts are classical in robotics and follow the notation and derivations in Robotics:
Modelling, Planning and Control by Siciliano et al. [35]. The goal of this appendix is to
provide a compact yet comprehensive reference for the theoretical background that supports the
implementation of the hri_assembly_task package, including trajectory generation, inverse
kinematics solvers and control strategies.

B.1 Pose of a rigid body

The pose of a rigid body in space is defined by its position and orientation. The position is
described by a vector p € R?, while the orientation can be represented in several mathematically
equivalent ways, each with different advantages. The most common representations are rotation
matrices and quaternions. The pose is represented by a homogeneous transformation matrix,
which combines position and orientation in a single object.

Homogeneous Transformation Matrix

The pose of a body frame {B} with respect to a reference frame {A} is

RA A
1= [oF %] espo),

where Rj € SO(3) is the rotation matrix describing the orientation of {B} relative to {A} and
pa € R3 is the position of the origin of {B} expressed in {A}. This matrix compactly describes
the rigid-body motion and compositions of motions are obtained by matrix multiplication.
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Rotation Matrices

The orientation part of the pose, R € SO(3), is a 3 x 3 orthogonal matrix expressed as three
column vectors,
R= [x y z] ,

where x,y,z € R3 are the unit vectors of the rotated frame’s axes, expressed in the reference
frame.
These vectors satisfy the orthonormality conditions:

T T T
xy=yz=zx=0, |[x]|[=]|yl=]z=1
The rotation matrix has determinant +1:
R'R=1, detR=1.

It transforms coordinates of vectors between frames.

Quaternions

An alternative to rotation matrices is the unit quaternion

0={n,e}, NeR, eck’

with 1 = cos(%), & = sin(%)r, where r is the unit rotation axis and 6 the rotation angle. 7

is called the scalar part of the quaternion, while € = [g, &, &]"
quaternion they are constrained by

is the vector part. For a unit
20,2022 2
n+elter+el=1

B.2 Forward Kinematics

Forward kinematics describes how the configuration of the robot joints uniquely determines
the position and orientation (pose) of the end-effector with respect to a reference frame. The
problem consists in computing the mapping from the joint vector q to the homogeneous trans-
formation T%(q):

i = [0 P9) ese)

where R%(q) € SO(3) represents the orientation of the end-effector and p2(q) € R? represents
its position.

Implementation in hri_assembly_task

In this work, forward kinematics is computed using the Pinocchio library, which provides effi-
cient algorithms for rigid-body kinematics. Given a joint configuration q, the forward kinemat-
ics is computed as:
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Listing B.1: Forward kinematics computation using Pinocchio

kinematic_solver_.set_q(q);
pinocchio::SE3 end_effector_pose =
kinematic_solver_.compute_forward_kinematics(
kinematic_solver_.get_frame_id());

The resulting end_effector_pose contains both the position and orientation of the end-
effector. This information is used in trajectory planning and visualization.

B.3 Inverse Kinematics

Inverse kinematics (IK) determines the joint variables g that realize a desired end—effector pose
x. In contrast to direct kinematics x = k(q), IK solves k(q) = x and is central to specifying mo-
tions in Cartesian space. Solutions may be multiple, infinite (with redundancy) or nonexistent
(outside the workspace), and closed-form solutions are not always available.

The direct kinematics of a manipulator is expressed as

x = k(q),

where q € R” are the joint variables and x € SE(3) the end—effector pose. The IK problem
requires solving
k(q) = xa-

When a closed—form solution is not available, differential IK is used. Defining the task—space
error € = Xg — X, the Jacobian J(q) relates velocities as

x=J(@)q-
A common solution is based on the pseudo—inverse:
a=J"(a)%q,

possibly with damping to handle singularities.

Implementation in hri_assembly_task

Inverse kinematics is solved iteratively with a damped least—squares (DLS) scheme. At each
iteration: (i) the current end—effector pose via FK is computed, (ii) a pose error is formed, (iii)
the local frame Jacobian is evaluated J, (iv) compute v = —]J T (JJ T4 AI)*le and (v) integrate
gk+1 = clamp (qk + vAt). with joint-limit clamping.

Listing B.2: Iterative Jacobian-based IK with Pinocchio (DLS)

1 |Eigen::VectorXd KinematicsSolver::compute_inverse_kinematics(const

2

pinocchio::Model::FrameIndex frame_id, const pinocchio::
ReferenceFrame frame_reference, const std::string computation_mode
, const pinocchio::SE3 pose_target)
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bool success

false;

for (int i = 0; i < ik_max_iteration_; i++)

{

pinocchio::SE3 pose = compute_forward_kinematics(frame_id);
pinocchio::SE3 error_SE3 = pose_target.actInv(pose);
Eigen::VectorXd error = pinocchio::logb6(error_SE3).toVector ()

’

if (error.norm() < ik_tolerance_)

{
success = true;
break;
3
if (i >= ik_max_iteration_ - 1)
{
std::cout << ">> Max Iteration Reached (IK Solver)!" <<
std::endl;
break;
3

Eigen::MatrixXd J, JJT, damped;
Eigen::VectorXd v;

J.setZero();

JIT.setZero();

damped.setZero();

v.setZero();

J = compute_frame_Jacobian(frame_id, frame_reference);
Eigen::JacobiSVD<Eigen::MatrixXd> svd(J);

switch (get_ik_computation_mode (computation_mode))
{
case ComputationMode::PSEUDOINVERSE:
JIT = J * J.transpose();
damped = JJT + ik_damping_factor_ * Eigen::MatrixXd::
Identity(J.rows(), J.rows());

v = -J.transpose() * damped.ldlt().solve(error);
break;

case ComputationMode::COD:
v = -ik_alpha_ * J.completeOrthogonalDecomposition().

solve(error);

break;

default:
break;

3

Eigen::VectorXd g_new = integrate(model_, q_, v *
ik_time_period_);

gq_ = clamp_in_range_q(g_new, model_);
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3

if (!success)
{

return Eigen::VectorXd();

3

return g_;
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