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Abstract

Robotic grasping represents a major competency for the safe and effective handling
of objects in unstructured settings. Stability in grasps, especially when considering
objects whose shape or properties are irregular or non-uniform, still presents a
challenge deriving principally from uncertainties inherent to contact geometry and
friction properties and mass distribution. This thesis presents learning methods for
the enhancement of the robustness of grasps through explicit consideration of the
influence of the center of mass (CoM) on stable manipulation.
I present a new system that integrates RGB-D perception, pose generation for
grasps, and reinforcement learning to forecast the CoM and control stable grasp
execution. Our approach integrates two candidate grasp sampling techniques—a
major-axis method for single-axis objects and grid sampling procedure for multi-axis
objects—with a tabular Q-learning algorithm that learns stable grasp settings by
self-exploration in an iterative fashion. Unlike previous approaches highly reliant on
tactile force sensors or CNNs, our approach parameters grasp instabilities explicitly
through on-board vision and leverages lightweight learning to correct CoM estimation
and grasp policies.
The system was evaluated and validated using a 6-DoF xArm6 robotic arm equipped
with a parallel-jaw gripper and onboard Intel RealSense cameras. A custom 3D-
printed object set with changing mass distributions was used to verify performance
for different CoM conditions. Experimental and simulation results demonstrate that
the proposed method can effectively approximate the CoM for single-axis objects,
recognize stable grasp pose even when CoM estimation is questionable, and increase
the rate of successes in repeated grasps. For multi-axis objects, the method provides
stable predictions along the dominant axis while maintaining tenable grasps for more
challenging configurations. In short, this thesis provides a practical and interpretable
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learning-centered framework for grasp stability that only requires minimal tactile
sensing, blends well with standard robotic perception and planning systems, and
highlights the capacity of reinforcement learning to enhance robustness in ordinary
robotic manipulation tasks.
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Chapter 1

Introduction

1.1 Context and Motivation

Grasping is an essential capability in robotics, because it provides object-interaction
and object-manipulation in a safe and efficient manner [1]. Without reliable grasping
approaches, operations such as assembly, packaging, service robotics, and healthcare
delivery would experience significant constraints. The capability of grasping an object
firmly and reliably throughout manipulation, known as grasp stability, is of particular
relevance for irregularly shaped or delicate objects, wherein the implication of slippage
or dropping would lead to the failure of the operation, potential damage, or hazards
for safety.
The importance of understanding grasp has been highlighted in various application
areas. In factories, robots handle components of varying geometries and weights,
including objects ranging from irregularly shaped metallic components, such as
wrenches, to delicate items such as glassware [2]. In home and service robotics,
manipulators should handle a vast set of everyday objects, such as bottles, food packs,
and tools, and for such items, flexibility and safety are called for [3]. In logistics
and warehouse robotics, manipulators have to pick up containers like boxes and
bags and irregular packages, and for such tasks, success greatly depends on reliable
and foreseeable contact [4]. In packing scenarios, visual and tactile sensing have
demonstrated the capability to support stable object placement and have thereby
highlighted the key role of grasp stability to improve efficiency for repeated tasks [5].
The problems of stability do not arise from the object’s geometry alone but also from
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irregular mass distributions. When the center of mass of an object is shifted from
the grasp location, it generates torques that can give rise to rotation or slipping and
thereby lead to the failure of the task. The estimation of the parameters of inertia for
pushing tasks has been proposed as a solution to address this issue [6, 7, 8]. Recent
literature has looked at the explicit estimation of the center of mass (CoM) at or
after the period of grasping, aiming at bringing the grasping location near to the
actual CoM and reducing unwanted dynamics [9, 10, 11]. Grasping movements made
near the CoM are expected to have improved stability, bacause the chance of motion
after the grasp is lowered. On the other hand grasps made at a distance from the
CoM might remain stable provided the grasping force is sufficient but at the cost of
generating excessive manipulator torque [12].
To attain these objectives, various sensing modalities have been explored. Vision-
based systems together with tactile sensors offer a system for measurement of contact
and stability performance [13]. As an example of pure tactile sensing, GelSight sensors
provide high-resolution tactile feedback by documenting deformations on a flexible
material and enable robots to deduce surface textures and detect slippage [14, 15, 16,
17]. Other systems utilize taxel force sensors extending across gripper fingers and have
the capability of identifying instability along one to three axes [13]. External RGB-D
cameras have also been utilized to perceive modifications of an object’s pose due to
pushing, supplementing in-hand sensing with global visual knowledge [8]. Inspired
by these recent works in the literature, this thesis aims to contribute to the field by
proposing a solution to improve robust grasping. More specifically, the work is focused
on the prediction of the CoM of an object that is grasped by using in-hand sensing
and reinforcement learning. By perceiving instabilities of the grasp with an RGB-D
camera that is mounted on the manipulator and using a tabular Q-learning model [18,
19], the goal is to achieve steady grasps on new objects, including those of irregular
shape and uncertain mass distribution. This rationale provides the foundation for
the objectives defined in the next section.

1.2 Objectives

The central objective of this thesis is to create an experimental environment for
efficient robotic grasping, and more specifically, for the stability of grasps and the
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evaluation of the center of mass (CoM) of unseen objects throughout the act of
manipulating them. Since traditional simulation environments provide valuable
insights, they do not quite provide the depth of real interactions of a manipulator and
object. Therefore, the work described here is carried out on real hardware, using the
xArm6 robotic manipulator, to ensure a practical and reliable evaluation of grasping
methodologies.
The thesis looks to solve the key problems of irregular object shapes, inhomogeneous
mass distributions, and a lack of force feedback of commercial grippers. The con-
siderations render grasp stability a problem that is not trivial, as the robot needs
to sense and respond to potential instabilities like slippage or undesired rotation.
By centering on in-grasp estimation of the CoM, we seek to enhance pick-and-place
success and robustness and thereby enable safer and more efficient manipulation in
dynamic scenes.
Regarding the objectives, this thesis aims to achieve the following particular goals:

• Problem formulation and requirements definition. We clearly articulate
the scope of the problem of robotic grasping stability, outlining challenges
arising from object irregularities, lack of force feedthrough, and manipulator
dynamic motion. We establish requirements for a solution to be experimentally
verifiable and reliable.

• Design of the experimental pipeline. We create and execute an inclusive
pipeline that incorporates sensing, perception, and control components. The
pipeline is created with the goal of allowing for experiment reproducibility,
precise acquisition of data, and systematic analysis of grasp stability for varying
conditions.

• 3D perception and object localization. We observe an environment with a
dense point cloud from an RGB-D camera attached to the xArm6’send-effector.
We use these observations to estimate the object position and orientation in
space and give the robot enough information to calculate candidate grasp points.

• Detection of grasp instabilities. We create an approach to perceive and
examine the movement of the object following a grasp and recognize indications
of instability like slips or rotations. By applying 3D sensing, the amount of
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these instabilities is quantified more reliably than in established simulation
models.

• Center of mass estimation through learning. We apply an iterative
process to provide an approximation of the object’s CoM from the detection
of instabilities. The process is regulated by a tabular Q-learning approach,
allowing the robot to enhance its choice of grasp with experience and converge
on more stable solutions.

• Real-time evaluation of grasp stability. The success of the presented
methodology is certified by the real-time observation of the object being grasped
throughout lifting and manipulation processes. Stability is assessed in real-time,
thus ensuring that the system is able to provide swift feedback on the strength
of the grasp being selected.

In attaining these goals, the thesis makes a contribution to the wider robotic manipu-
lation community by demonstrating a feasible and empirically informed solution to
robust grasping. The presented solution not only proves the feasibility of in-grasp
center of mass estimation from RGB-D sensing and reinforcement learning but also
lays the foundation for future queries on autonomous manipulation by considering
real-world constraints.

1.3 Contributions

This thesis contributes scientifically and practically to robotic manipulation, paying
special attention to grasp stability and in-grasp estimation of the center of mass. The
paper proposes an experimental setup consisting of a combination of 3D perception
by means of technology based on RGB-D, detection of grasp instabilities, and rein-
forcement learning by means of tabular Q-learning by which a robot is empowered
to iteractively and online estimate the center of mass of unseen objects. In contrast
to many of the state methodologies, which rely on simulation, such approach is
directly implemented and validated on real hardware, the xArm6 robotic manipulator,
and thus provides for a more realistic and reliable evaluation of grasping policies.
The entirety of the work was carried out in the framework of an Erasmus exchange
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program at the Institute of Systems and Robotics – University of Coimbra (ISR-UC)
in Portugal. The stay at ISR-UC offered the best possible academic conditions,
access to experimental facilities of the latest technology level, and the opportunity for
interaction with researchers on robotic grasping and reinforcement learning without
which conceptualization and evaluation of the proposed methodology would not have
been feasible.
Presentation of results is a worthwhile addition to the thesis. The approach de-
veloped and results reached from experiments have been presented in a conference
paper, allowing dissemination and verification of the work among the international
scientific community. The act ensures that results generated by the thesis transcend
geographical boundaries and adds to prevailing discourse within the field.
Last but not least, the thesis lays the groundwork for future projects of research.
The framework offered herein is meant to be adjustable, and it will permit subse-
quent examination of more sophisticated manipulation problems, such as those with
deformable objects, multiple modalities of sensing, or sophisticated reinforcement
learning methodologies. For these reasons, the thesis not merely fulfills its near-term
tasks but offers groundwork for future developments that shall be conducted in
subsequent projects, of which a few examples shall be described in the continuation
of the present work.

1.4 Document structure

The remaining chapters of the thesis follow on from each other for a period of six
chapters that facilitate a systematic presentation of problem, methodology and results.

• Chapter 2 – Related Work. Here, the literature on robotic grasp now, on
grasping using learning-based approaches, and grasp stability is critically con-
sidered. The chapter provides background for the thesis by outlining the merits
and limitations of previously done work and locating the present effort in this
body of scholarly work.

• Chapter 3 – Theoretical Background. The chapter provides the theoreti-
cal background of the applied methods throughout the thesis. The chapter
mentions object detection by aligning point clouds (ICP and SCIA) as well
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as reinforcement learning and Q-learning, Principal Component Analysis for
orientation determination and other applied methodologies. The chapter’s
objective is to reveal the theoretical knowledge needed in practice for applying
these methodologies.

• Chapter 4 – Proposed Method. This chapter describes the methodology
developed to address the problem of in-grasp center of mass estimation and
stability evaluation. A block diagram of the full workflow is presented, and each
component of the pipeline is introduced in detail, including grasp pose generation,
Q-learning formulation, stability measurement, and system implementation in
ROS.

• Chapter 5 – Experimental Work. This chapter goes into detail on the experi-
mental setup and the assessments made. It outlines the results obtained from
the applied proposed methodology in real-world instances using the xArm6 ma-
nipulator, aided by graphical illustrations, pictorial presentations, and detailed
analysis of results.

• Conclusion – The concluding chapter provides a summary of the thesis’s
significant findings, reflection on the significant contributions and insights
obtained throughout the research. Also, it describes possible future plans of
research, including short-term enhancements and future developments of the
approach.

With such an organization, the paper proceeds on a sequential logical pattern from
background and literature survey, theoretical developments, conceptual exposition of
methodology, experimental validation, and concluding perspectives.
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Chapter 2

Related Work

2.1 Robotic Manipulation

Robotic manipulation constitutes the major area of research that has witnessed
increasing prominence in the past two decades as the promise grows for robots to
function in less structured, more dynamic, and more representative environments
than the ones observed in the typical human-like tasks. Unlike classical industrial
robots whose manipulation tasks are predominantly repetitive and specially designed
for well-defined objects along assembly lines, today’s work in manipulation aims
at giving robots the ability to cope with uncertainties in object shape, in material
properties, in position, and in dynamics. This necessitates merging the perception
and the planning and control methodologies in such a manner that the robots not
only perform pre-determined tasks but also decide the stability and usability of the
grasps online.
The challenges faced are varied: objects can undergo deformation or displacement
while the object is being grasped, occlusions often limit the viewable visual data, and
tactile feedback is often sporadic and unreliable. Such challenges have motivated
researchers to explore a very broad range of solutions involving different kinds of
manipulators, sensory methods, and computation techniques. One common theme is
the collaborative integration of visual and tactile modalities: while cameras provide
rich information regarding object shape and position, tactile sensors provide localized,
high-fidelity information about contact regimes and forces.
A prime example of multimodal fusion comes in the form of Liang et al. [5] who

7



Related Work

employ tactile sensors in the form of a 4×4 array of taxels that are each able to
measure three-dimensional force vectors. By integrating the tactile data with the
visual data, the authors create an attention-guided deep neural network that picks
out prospective affordances and feasible grasp points. The attention function plays
a key role in discarding irrelevant or redundant data and so focusing on the most
promising aspect-related features that are relevant to grasping. Once candidate grasp
locations are detected, they are passed to a module for motion planning formulated
on the basis of reinforcement learning that yields feasible manipulator trajectories.
The system demonstrates how perception and planning can be tightly coupled such
that the robot can adapt and change the plan in real time depending on the sensory
feedback received.
By comparison, Feng et al. [13] take a geometry-driven perspective. Their approach
begins by delineating object boundaries from a point cloud, which are then passed
through an antipodal grasp sampler. The resulting grasp poses are not applied
blindly; instead, they are further tested through multimodal sensing: tactile sensing
is received through a 4×4 sensor array, and force and torque at the end effector and
grasp force analysis are used. The signals are fed through a neural network that
considers the grasp robustness. This multi-layered approach—geometry first and then
tactile verification—highlights the importance of synthesizing both global and local
information to decrease failure events that can be commonplace when solely using
methods based on geometry.
A more sophisticated multimodal system is introduced by Calandra et al. [16], who
extensively employ tactile sensing via GelSight sensors. This GelSight technology is
capable of acquiring high-resolution images of the contact surface, thereby effectively
transforming tactile feedback into an image-processing challenge. In their research,
two GelSight sensors feed data into convolutional neural networks (CNNs) that share
weights, while a supplementary RGB camera provides visual data processed through
an independent ResNet-based CNN. The outputs from these three components are
integrated within a multilayer perceptron (MLP) to predict the probability of grasp
success. Importantly, this probability serves not only to assess potential grasps but
also to iteratively inform the selection of subsequent actions, establishing a feedback
loop between perception and decision-making. This study exemplifies the increasing
dependence on high-dimensional sensing and deep learning architectures to capture
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nuanced details of object interactions.
Kolamuri et al. [17] offer the opposite view by not only using GelSight tactile
sensors to verify stability in grasp but also to predict the kinematic attributes of
objects. Through marker displacement observation in the tactile views, they estimate
rotation angles and derive the center of rotation through a least-squares circle fitting
procedure. Note that in the architecture proposed, the RGB-D camera works in
the background and helps in the estimation of the length of the major axis of the
object through the application of singular value decomposition (SVD). This goes
to show how the function of vision and touch sensing may alternate depending on
the specific function: sometimes vision predominates and other times tactile sensing
yields dominant information.
Another branch of exploration involves evaluating the physical properties of objects
that are relevant to manipulation. Dutta et al. [7] present a cross-modal Gaussian
Process regression system developed to predict the mass of objects. It incorpo-
rates pushing interactions—whose forces tell us about the object’s resistance and
inertia—into visual information obtained through a camera outside the object. Super-
quadratic fitting of the point cloud yields a preliminary mass estimate that is then
improved through a double filtering process. By placing greater focus on intrinsic
object properties than on the grasping geometry alone, this work takes the study
of manipulation one step closer to a more fundamentally rooted understanding of
physics.
Wang et al. [11] focus on the computation of the center of mass (CoM) while working
on the assumption that object models are completely known. They use a vision-based
tactile sensor and present two complementary approaches. The first uses Bayesian
fusion and probabilistically combines available data to predict the CoM. The second
uses a foundation in reinforcement learning and the Soft Actor-Critic (SAC) algorithm
specifically to utilize a policy network and two Q-networks to improve CoM predictions.
It highlights the dialogue between probabilistic modeling and learning policies and
offers them as two powerful and separate approaches to addressing manipulation
uncertainty.
Continuing on the foundation of vision-centric methodologies, Liu et al. introduce
RGBGrasp [20]}, a new grasp planning framework that obtains multiple RGB view-
points of an object as a robotic arm maneuvers. Instead of relying on a single, fixed
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perspective, the arm itself serves as an exploration agent to gather multiple viewpoints.
The multi-perspective images then get processed through Neural Radiance Fields
(NeRF), which synthesize a photorealistic volumetric representation of the object.
This representation is then used to obtain high-quality grasp poses. The key strength
of RGBGrasp lies in the fact that it has the better ability to handle occlusions and
complex geometries more efficiently than single-view or static approaches. By bridg-
ing traditional vision-based grasps and newer neural scene representations through
the deployment of NeRFs, the system promises a future scenario in which robots
autonomically survey the scene to improve perception before they perform a grasp.
Taken together as a whole, these studies provide an aggregate picture of the state-
of-the-art in research in robotic manipulation. Some approach the problem through
geometric modeling (Feng et al.), while others privilege tactile sensing and whole-body
contact data (Calandra et al., Kolamuri et al.), and still other research explores phys-
ical property estimation (Dutta et al., Wang et al.). More recent developments, such
as RGBGrasp, show the shift in the last few years to neural scene reconstruction and
active perception, in which the robot uses its own actions to enhance the information
it gathers. Throughout this spectrum, a prominent theme emerges: effective manipu-
lation necessitates multimodal integration. No individual sensor modality is adequate
on its own. Vision supplies contextual information but faces challenges related to
occlusions; tactile sensing delivers local precision yet is deficient in global awareness;
force and torque measurements effectively capture dynamic interactions but are
constrained by resolution limitations. Through the amalgamation of these informa-
tional sources—typically within learning-based or probabilistic frameworks—robots
are progressively enhancing their ability to navigate the variability and uncertainty
present in real-world environments. The increasing use of multimodal perception
offers a basis for the future major trend in robotic manipulation: the deployment of
learning-oriented methodologies. Unlike the classical approaches depending on ana-
lytical models and geometric rules, learning enables robots to extrapolate knowledge
from experience, accommodate new objects, and progressively improve their grasping
techniques. The various applications of machine learning, including deep networks
and reinforcement learning, that have been employed to enhance the evolution of
robotic manipulation are examined in the following section.
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2.2 Learning in Robotic Manipulation

Learning methods have become the key to the process of grasp planning and robotic
grasping and provide increased robustness and generalization when compared to
classical analytical or geometry-dominated techniques. As opposed to the pre-defined
models or geometric heuristics used by conventional techniques, learning allows robots
to capitalize on experience and interaction for the development of strategies, coping
with uncertainties in object attributes, and the gradual adjustment of acts. Diverse
areas of research demonstrate how learning can mitigate the difficulties inherent in
grasping.
A major field of study involves supervised learning for the identification of grasps
from vision data. In this context, RGB or RGB-D inputs are processed by deep nets
to estimate grasp pose directly or establish grasp rectangles. Yu et al. [4] introduce
EGNet, a lightweight and powerful network optimized for real-time robotic grasp
identification, while Fang et al. [3] push the state-of-the-art beyond that by proposing
AnyGrasp, which provides stronger robustness in the presence of different viewpoints
and changing circumstances. Mahler et al. [2] further confirm the effectiveness
of intensive data-driven learning, whereby synthetic datasets are used to derive
ambidextrous grasping policies that are then successfully transferred to physical
robots, highlighting the importance of dataset size, domain randomization, and
simulation-to-reality transfer.
Another major research focus leverages multimodal learning by integrating visual
and tactile information to anticipate the outcomes of grasps. Calandra et al. [16]
integrate high-resolution tactile feedback recorded by the use of GelSight sensors and
visual feedback by the use of convolutional networks and a multilayer perceptron to
provide a probabilistic estimation of grasp success that incrementally informs action
choice. These methods highlight the paramount nature of cross-modal learning to
handle uncertainties and occlusions at the point of contact.
Reinforcement learning (RL) has progressively become the central focus of studies,
especially in situations where robots must proactively explore and improve their
behavior in the long run. Wang et al. [11] employ a vision-improved tactile sensor and
the Soft Actor–Critic (SAC) algorithm to optimize regrasping policies considering
the center of mass (CoM) and demonstrate how RL assists stability through repeated
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interactions. Laying the foundation by extending previous work [18, 19], RL enables
the development of policies successfully managing the exploration–exploitation trade-
off while adapting to imprecise physical properties. Going beyond the scope of static
worlds, Naik et al. [21] provide a pre-active layered RL architecture optimized for
mobile manipulation settings, in which the robot learns proper base pose and pre-
grasp pose settings despite the ambiguity in object locations. It promotes the layered
exploration for better sample efficiency and manages to demonstrate the knowledge
transfer from simulation settings to practice cases and integrates the navigation and
manipulation tasks in a comprehensive manner.
Recent work also explores richer scene representations and physics-informed models.
Liu et al. [20] introduce RGBGrasp, a system that records various RGB viewpoints
while the robot arm moves and recreates the object using Neural Radiance Fields
(NeRF), reaching volumetric representations enabling accurate grasp pose estimation
despite occlusion. By contrast, Dutta et al. [7, 8] employ cross-modal Gaussian
Process regression and differentiable filtering methods to predict object mass and
other physical parameters extracted from interactions by pushing and enrich geometric
and visual grasp programming through physics-informed inference. Overall, these
studies demonstrate the broad range of learning in robotic manipulation, spanning
supervised perception-centered detection and wide-reaching data-intensive strategies,
through to multimodal visuo-tactile integration, reinforcement learning specialized
for regrasping and mobility-enabled manipulation, neural scene construction, and
physics-constrained estimation. Through each of these different paradigms, a unifying
theme becomes clear: learning provides a unified foundation for the construction of
sensing, planning, and control such that robots may move beyond rigid models and
increasingly improve grasping effectiveness in dynamic and unpredictable worlds. Yet
the effectiveness overall by any grasp strategy continues to depend on the ability to
achieve stable contact following the securing of the object. As such, grasp stability
has become a central focus across studies, exploring how robots can assess, predict,
and guarantee stability during manipulation. The following section gives overview
to key methodologies that focus particularly upon grasp stability, differentiating in
particular between analytical formulations and learning-based approaches.
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2.3 Grasp Stability

Stability grasp forms a key component of robotic manipulation since it determines if
an object is held firmly while undergoing the lifting and eventual handling processes.
The challenges arise from the uncertainties in contact geometry, surface frictional
properties, and mass distribution; hence, even if a grasp seems feasible at the
beginning, unintended torques or slippage may lead to failure during the process of
manipulation. Stability has since then been studied through various perspectives that
include analytical modeling of force closure, data-observed evaluation of the properties
of the object, and learning-based forecast for the likelihood of grasp success.
One key focus area is the estimation of physical properties relevant to stability, includ-
ing the center of mass (CoM) and friction. Zhao et al. [9] offer a direct computation
of the CoM and the friction coefficient for unknown objects and show the potential
for this data to guide grasp selection to reduce the likelihood of unwanted motion.
Similarly, Kanoulas et al. [10] focus on CoM estimation through the combination of
3D range data and wrist-accelerometer or comparable force and torque sensing and
adjust grasp pose to lower the torques required after picking up. Dutta et al. [7, 8]
extend the research path by using visuo-tactile pushing interactions and Gaussian
Process regression and differentiable filtering to infer mass and related parameters
that directly affect stability by influencing the grip forces required.
Another notable research direction embeds CoM reasoning explicitly while carrying
out grasp planning. Feng et al. [13] proposed a robust planner for unfamiliar objects
that integrates tactile and visual information to judge the robustness of grasp in CoM
position. Wang et al. [11] cast CoM-based regrasping as a challenge in the realm of
reinforcement learning and train policies optimizing object repositioning more reliably
through the Soft Actor–Critic algorithm once the dynamics are known. Wang et
al. [12] extend the research by highlighting the contribution of online estimation of
CoM to failure recovery such that the robot adjusts the grasp in real time through
update estimates and reduces the chances of object slippage or drop.
The stability of the grasp has been examined through the explicit evaluation of slip
and rotational movements using tactile feedback systems. Kolamuri et al. [17] employ
GelSight tactile sensors to observe marker displacements at the point of contact and
estimate the rotation and center of rotation by applying circle fitting methods to
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augment stability evaluations. Calandra et al. [16] also combine tactile and visual
information in the context of a multimodal learning system and predict grasp success
probabilities serving as stability indicators. Such techniques represent the effectiveness
of high-resolution tactile sensing and sensor fusion among learning-based techniques
to capture pre-slip signals and thereby cause robots to react before the loss of a grasp.
Taken together, these studies demonstrate a progression in development ranging from
analytical assessment of physical quantities to learning-based multimodal approaches
that integrate perception and control. Unlike previous studies in which open-loop
selection of statically stable grasp configurations had been the focus, more recent
methods draw heavily on closed-loop methods that update stability predictions in real-
time continuously, exploit multimodal sensory feedback, and employ reinforcement
learning to adjust grasp policies incrementally. As such, the work on grasp stability
is moving towards unified frameworks in which perception, learning, and control work
together to achieve reliable manipulation in unpredictable and dynamic environments.
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Chapter 3

Theoretical Background

3.1 Preprocessing

Robotic grasping perception depends on unprocessed sensor input, usually obtained
from RGB-D cameras or 3D scanners, which requires preprocessing prior to the proper
functioning of higher-level modules like recognition, grip creation, or reinforcement
learning. Preprocessing guarantees that the unrefined point cloud is organized,
denoised, and sufficiently compact to facilitate dependable geometric reasoning while
maintaining the critical characteristics of the object and its surrounding environment.
This section presents the most pertinent preprocessing techniques employed in the
proposed framework.

3.1.1 Segmentation

Segmentation is the process of dividing the point cloud P = {pi ∈ R3}Ni=1 into
significant subsets, including backdrop, support surfaces, and distinct objects. In
robotic grasping scenarios, it is crucial to distinguish the focal object from its
surroundings.
A prevalent method involves plane segmentation via RANSAC, which detects the
primary support surface (e.g., a table) and eliminates it from the point cloud. Given
a plane model

ax+ by + cz + d = 0,

RANSAC iteratively selects minimal sets of points, estimates (a, b, c, d) via least
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squares, and maximizes the number of inliers

I = {pi | |axi + byi + czi + d| < τ},

where τ is a distance threshold. Subsequent clustering methodologies are employed on
the residual points to extract the object of interest. Precise segmentation diminishes
the search field for grip candidates and eliminates extraneous features caused by
backdrop clutter.

3.1.2 Voxelization

Voxelization converts the continuous point cloud into a uniform grid of cubic units,
known as voxels. The 3D space is discretized into cells of side length v, and each
point pi = (xi, yi, zi) is mapped to voxel indices

(i, j, k) =
(⌊xi

v

⌋
,
⌊yi
v

⌋
,
⌊zi
v

⌋)
.

Points falling into the same voxel are aggregated, typically represented by their
centroid:

p̂ijk =
1

|Vijk|
∑

p∈Vijk

p,

where Vijk is the set of points inside voxel (i, j, k).
Downsampling via voxelization decreases computing complexity while preserving
geometric fidelity. An appropriately selected voxel size maintains the object’s form
for recognition and grasp planning while markedly decreasing the quantity of points
to be processed.

3.1.3 Clustering

Clustering techniques categorize points into cohesive sets based on spatial closeness.
In Euclidean clustering, two points pi, pj belong to the same cluster if

∥pi − pj∥2 < ϵ,
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where ϵ is a neighborhood threshold. This method is commonly employed to isolate
specific items in multi-object environments.
More advanced approaches include density-based clustering such as DBSCAN, which
defines clusters as sets of points with at least MinPts neighbors inside a radius ϵ.
Formally, a point p is a core point if

|{q ∈ P | ∥p− q∥ < ϵ}| ≥ MinPts.

Clusters are then built by iteratively expanding from core points. Such methods are
advantageous when objects are in close proximity or when the point cloud exhibits
irregular noise patterns.
Clustering establishes a definitive correlation between raw sensor data and distinct
physical entities.

3.1.4 Additional Filtering

Preprocessing pipelines often include additional filtering steps to improve data quality:

• Statistical outlier removal: each point pi is removed if its mean distance to
the k nearest neighbors exceeds

µ+ ασ,

where µ and σ are the global mean and standard deviation, and α is a threshold
factor.

• Pass-through filtering, which restricts the cloud to a predefined region of
interest (ROI), e.g.

xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax, zmin ≤ z ≤ zmax.

• Smoothing, which reduces sensor noise via moving average or MLS (Moving
Least Squares) fitting, preserving sharp geometric edges important for grasping.
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3.2 Object Detection

3.2.1 Iterative Closest Point

The Iterative Closest Point (ICP) algorithm is the most widely applied algorithm
in the field of rigid registration of 3D point clouds. Given a source cloud Ps and a
target cloud Pt, the ICP algorithm seeks the rigid transformation

T = {R, t}, R ∈ SO(3), t ∈ R3,

that minimizes the alignment error:

E(R, t) =
N∑
i=1

∥Rpsi + t− ptπ(i)∥2,

where π(i) is the index of the nearest neighbor in Pt for psi .
The algorithm iterates as follows: 1. Establish correspondences via nearest-neighbor
search. 2. Estimate (R, t) that minimizes E(R, t) (commonly via SVD of the
covariance matrix). 3. Apply the transformation to the source cloud. 4. Repeat until
convergence:

∆E < ϵ or k > kmax.

A primary issue with ICP is its sensitivity to initialization: the algorithm converges
to the nearest local minimum. However, with a good initial guess, ICP achieves high
accuracy, making it a standard tool in fine registration for robotics, computer vision,
and 3D modeling.

3.2.2 Sample Consensus Initial Alignment

Sample Consensus Initial Alignment (SAC-IA) is a feature-based registration algorithm
used to achieve coarse globally consistent alignment of two point clouds, even under
wide initial misalignments.
Each point pi is described by a local descriptor such as the Fast Point Feature
Histogram (FPFH):

FPFH(pi) = {h1, h2, . . . , hm},
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where hj encodes angular relationships of normals within a support radius r.
Given descriptors for source and target clouds, SAC-IA establishes candidate corre-
spondences by nearest-neighbor matching in descriptor space. A RANSAC scheme
then iteratively: 1. Samples minimal subsets of correspondences. 2. Estimates
candidate rigid transformations T = (R, t). 3. Evaluates the number of inliers:

I(T ) = |{(psi , ptj) | ∥Rpsi + t− ptj∥ < δ}|.

The transformation with the largest support is selected.
The resulting alignment is coarse but globally consistent. It is commonly refined
using ICP, yielding a hybrid pipeline:

T ∗ = argmin
R,t

E(R, t), initialized with SAC-IA.

This hybrid approach combines the robustness of feature-based global registration
with the accuracy of local iterative refinement, and is widely employed in object
recognition and pose estimation under noisy or incomplete sensing conditions.

3.3 Q-Learning

Q-learning is one of the most fundamental and widely studied algorithms in the field
of Reinforcement Learning (RL). It belongs to the class of model-free, off-policy, and
temporal-difference methods, which enable an agent to learn from direct interaction
with its environment without requiring an explicit model of the underlying dynamics.
The central idea is that, by repeatedly experiencing states, actions, and rewards, an
agent can incrementally build an estimate of the long-term value of actions, ultimately
converging towards an optimal decision-making strategy.
Formally, the environment is modeled as a Markov Decision Process (MDP), which is
defined by:

• a finite or continuous set of states S,

• a finite or continuous set of actions A,
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• a transition probability function P (s′|s, a), which describes the likelihood of
moving to state s′ given that action a is taken in state s,

• a reward function R(s, a), which assigns immediate feedback after executing
action a in state s,

• and a discount factor γ ∈ [0, 1], which weights the importance of future rewards
compared to immediate ones.

The goal of the agent is to learn a policy π : S → A that maximizes the expected
cumulative discounted reward, also called the return:

Gt =
∞∑
k=0

γkRt+k+1.

3.3.1 Action-Value Function

At the core of Q-learning lies the action-value function, or Q-function, which evaluates
the quality of performing a given action in a given state:

Qπ(s, a) = Eπ

[
Gt

∣∣St = s, At = a
]
.

This function represents the expected return when starting from state s, taking action
a, and then following policy π. The optimal action-value function is defined as

Q∗(s, a) = max
π

Qπ(s, a),

and satisfies the Bellman optimality condition:

Q∗(s, a) = E
[
Rt+1 + γmax

a′
Q∗(St+1, a

′)
∣∣St = s, At = a

]
.

3.3.2 Learning Rule

Q-learning estimates Q∗(s, a) directly through experience, without requiring the
transition model P (s′|s, a). When the agent observes a transition (s, a, r, s′), the
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update rule is:

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
,

where α ∈ (0, 1] is the learning rate. The term

δt = r + γmax
a′

Q(s′, a′)−Q(s, a)

is called the temporal-difference (TD) error, and measures the discrepancy between
the current estimate and a bootstrap target based on the next state. By iteratively
minimizing this error, the Q-values converge to the optimal action-value function.

3.3.3 Exploration and Exploitation

An important feature of Q-learning, and RL in general, is the balance between
exploration and exploitation. The agent must sometimes choose random actions to
explore new parts of the state space, while other times it should exploit its current
knowledge by selecting the action with the highest estimated Q-value. The most
common strategy is the ϵ-greedy policy:

π(a|s) =

1− ϵ+ ϵ
|A| , if a = argmaxa′ Q(s, a′)

ϵ
|A| , otherwise,

where ϵ ∈ [0, 1] controls the probability of taking a random exploratory action.
Usually, ϵ is decreased over time, allowing the agent to begin with broad exploration
and later exploit the learned policy more consistently.

3.3.4 Convergence and Theoretical Guarantees

One of the most appealing properties of Q-learning is its convergence guarantee. If
every state-action pair is visited infinitely often, and if the learning rate α decays
according to the Robbins–Monro conditions

∞∑
t=1

αt =∞,
∞∑
t=1

α2
t <∞,
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then the Q-values are guaranteed to converge to the optimal values Q∗(s, a). As a
consequence, the policy

π∗(s) = argmax
a

Q(s, a)

is guaranteed to be optimal.

3.3.5 Variants and Extensions

Q-learning serves as the foundation for many extensions:

• SARSA (on-policy), which uses the action actually taken in the next state to
update Q-values.

• Double Q-learning, which maintains two estimators to reduce the overesti-
mation bias caused by the max operator.

• Deep Q-Networks (DQNs), which employ neural networks to approximate
the Q-function, allowing Q-learning to be applied in high-dimensional or con-
tinuous state spaces.

3.3.6 Practical Considerations

Despite its theoretical elegance, Q-learning faces practical challenges:

• State-action space size: the Q-table grows exponentially with the dimen-
sionality of states and actions, making it impractical for real-world problems
without function approximation.

• Exploration inefficiency: random exploration strategies may fail in environ-
ments with sparse rewards.

• Overestimation bias: the use of the max operator in the update rule can
systematically overestimate action values, motivating the use of Double Q-
learning.
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3.4 Principal Component Analysis

Principal Component Analysis (PCA) is a classical statistical technique widely
employed in computer vision, robotics, and data analysis. Its primary objective
is to reduce the dimensionality of high-dimensional data while preserving the most
informative directions of variance. In the context of 3D perception, PCA provides
a concise representation of a point cloud by inferring its dominant geometric axes,
which can be used for alignment, orientation estimation, and grasp synthesis.
Consider a point cloud

P = {pi ∈ R3 | i = 1, . . . , N},

representing the sampled surface of an object. The first step in PCA is to compute
the centroid:

p̄ =
1

N

N∑
i=1

pi,

which defines the average location of all points in the cloud. Next, we calculate the
covariance matrix

C =
1

N

N∑
i=1

(pi − p̄)(pi − p̄)T ,

which captures how the coordinates of the point set vary with respect to one another.
The eigenvalue problem

Cvj = λjvj, j = 1, 2, 3,

yields three orthogonal eigenvectors vj, each associated with an eigenvalue λj. The
eigenvectors represent the principal axes of the point cloud, while the eigenvalues
quantify the variance along each axis. In practice:

• The eigenvector corresponding to the largest eigenvalue indicates the principal
axis, i.e., the direction in which the point cloud is most elongated.

• The eigenvector corresponding to the smallest eigenvalue identifies the axis of
minimal spread, which is often aligned with the object’s surface normal.

• The three eigenvectors together define an orthogonal local coordinate frame
aligned with the object geometry.
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Geometrically, PCA can be interpreted as fitting an ellipsoid around the data points,
where the semi-axes of the ellipsoid are proportional to

√
λj. This provides an

intuitive visualization of the object’s spatial distribution.
In robotic perception and grasping, PCA offers several advantages:

1. Robust alignment: The principal axes can be used to initialize object align-
ment before applying more refined registration methods (e.g., ICP).

2. Shape-aware grasping: By aligning the gripper with the principal axis or
the surface normal derived from PCA, the robot can generate more stable and
natural grasp candidates.

3. Dimensionality reduction: PCA allows encoding high-resolution point clouds
into a compact representation that retains their essential structure.

Overall, PCA serves as both a mathematical tool for variance analysis and a practical
method for extracting shape descriptors from raw 3D data, making it a cornerstone
in object recognition and robotic manipulation.

3.5 Collision Detection

Collision detection is a fundamental component of robotic manipulation, path plan-
ning, and real-time control. Its purpose is to determine whether two or more geometric
entities (such as robot links, objects, or obstacles in the workspace) intersect or ap-
proach each other within a safety margin. Reliable collision detection is indispensable,
as undetected collisions may cause damage to the manipulator, surrounding equipment,
or the manipulated object.

3.5.1 Role in Robotic Manipulation

In grasping and manipulation tasks, collision detection ensures that:

• The manipulator does not intersect with itself (self-collision).

• Planned trajectories avoid obstacles in the environment (environment collision).
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• The end-effector approaches the object smoothly, making contact only at the
intended grasp region.

Collision detection is therefore integrated into several stages of a robotic pipeline:

• Grasp candidate validation, to discard infeasible or unsafe grasp poses.

• Trajectory planning, to ensure that the motion path avoids obstacles.

• Online monitoring, to prevent unforeseen collisions during execution.

3.5.2 Geometric Representations

Collision detection requires an abstract representation of the geometry of both the
robot and the environment. Different levels of fidelity are used depending on the
computational budget:

• Primitive shapes: bounding boxes, spheres, or cylinders that approximate
objects with simple analytic volumes. These allow fast collision queries but
may lack precision.

• Meshes: polygonal meshes derived from CAD models or sensor reconstructions.
These offer high accuracy but are computationally heavier, especially for complex
geometries.

• Voxel grids and Signed Distance Fields (SDFs): volumetric representa-
tions where each grid cell encodes occupancy or distance to the nearest surface.
SDFs enable constant-time queries for penetration depth and are widely used
in optimization-based planning.

The trade-off between accuracy and efficiency is central: high-fidelity models improve
realism, while lightweight approximations enable real-time performance.

3.5.3 Detection Algorithms

Collision detection algorithms are commonly classified into:
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• Discrete collision detection: checks for intersections at sampled robot
configurations. This is effective for validating nodes in sampling-based motion
planning (e.g., RRT, PRM).

• Continuous collision detection: interpolates motions between configurations
and checks for collisions along the entire trajectory. Although computationally
more demanding, this avoids missed collisions that occur with coarse discretiza-
tion.

Efficient implementations rely on hierarchical spatial data structures:

• Bounding Volume Hierarchies (BVH): objects are recursively enclosed in
simple bounding volumes (spheres, AABBs, OBBs). During collision checks,
entire branches of the hierarchy can be pruned if bounding volumes do not
overlap.

• k-d trees and Octrees: partition the space recursively, enabling fast nearest-
neighbor and intersection queries in high-dimensional or sparse environments.

3.5.4 Collision Detection in MoveIt

In the proposed framework, collision detection is handled by the MoveIt motion
planning library, which integrates the Flexible Collision Library (FCL). Objects
recognized in the environment are added to the planning scene as collision objects,
allowing the system to perform real-time feasibility checks on potential grasps and
trajectories.
MoveIt automatically conducts both:

• Self-collision checks, verifying that robot links do not interfere with each
other.

• Environment collision checks, ensuring that the manipulator avoids obstacles
in the workspace.

By tightly coupling collision detection with inverse kinematics (IK) and trajectory
generation, MoveIt guarantees that only collision-free, feasible plans are executed.
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This integration not only ensures safety but also improves the reliability of grasp
execution in cluttered or dynamic environments.
In summary, collision detection combines geometric abstractions, efficient data struc-
tures, and real-time algorithms to ensure safe and feasible robotic interaction with
the environment. Its integration into robotic planning frameworks such as MoveIt
makes it a cornerstone of modern autonomous manipulation systems.
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Chapter 4

Methodology

The block diagrams in figure 4.1 show a summary of the method:

Transformation & 
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Figure 4.1: Pipeline.

The system is structured as a sequence of interconnected pipelines. First, the object
detection and localization pipeline processes the RGB-D point cloud to identify and
estimate the pose of the target object. Next, the grasp pose candidate generation
pipeline proposes potential grasp configurations using two complementary strategies.
These candidates are then evaluated by the motion planning pipeline, which verifies
their feasibility and computes a collision-free trajectory to execute the grasp and
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subsequent lift. Once the object is lifted, the grasp stability pipeline analyzes
variations in the object’s pose to assess the quality of the grasp. Finally, a learning
block integrates feedback from all pipelines to progressively refine and identify the
most effective grasping strategy.
First, the RGBD camera’s 3D point cloud is changed to the robot’s base reference
frame. Then, it is filtered to get rid of areas that are outside the Area of Interest
(AoI). After that, object segmentation is done, which gets rid of the point cloud that
corresponds to the table (a plane). This leaves point clouds that match the objects
in the AoI.
Next, the points are grouped together using Euclidean distance. Then, each group
of points is compared to a pre-loaded STL model database to find out what the
object is and finish its pose. There is also a voxelization step that comes after this
to cut down on the number of points that need to be processed. There are three
steps to object matching. To start, the object-oriented bounding box of the RGBD
pointcloud and the corresponding extents are estimated. Then, these are compared
to the objects stored in the database to cut down on the number of possible matches.
The second step uses Iterative Closest Point (ICP) to compare the object pointcloud
to the candidates from the first step. In the third stage, the candidates who passed
the second stage are compared to the object point cloud using the Sample Consensus
Initial Alignment method and their Fast Point Feature Histograms (FPFH).

4.0.1 Object Detection and Classification

Introduction to the Problem

One of the most critical challenges in robotic manipulation lies in the handling of
unknown objects, namely objects for which no prior geometric information is available,
such as CAD models or STL files. In such cases, the robot does not possess a
unique and stable three-dimensional representation of the object, and therefore both
grasp planning and the evaluation of the outcome of a manipulation become highly
problematic.
The initial idea developed in this work was to confront this issue directly by designing
a system able to operate with unknown objects. In order to achieve this, the
first solution that was explored consisted of acquiring and processing point clouds
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generated by an RGB-D camera. By working with point clouds, the aim was to build
a representation of the objects in real time and to make this representation usable
for grasp planning and collision checking.

Initial Approach: Multi-view Point Clouds

The initial strategy was based on the generation of partial point clouds of the unknown
object and their comparison with previously stored data. More specifically, the process
consisted of the following steps:

1. A partial point cloud of the object was generated through the RGB-D camera.

2. The camera or the robot holding the camera was moved around the object to
capture the scene from multiple viewpoints.

3. For each viewpoint, the corresponding 3D representation was saved in the form
of an image of the point cloud. Each of these images was placed into a dedicated
folder, one per object.

4. The resulting dataset of views was stored inside the meshes directory, where
each folder corresponded to a distinct object.

During code execution, the system attempted to match the point cloud currently
acquired from the camera with one of the previously saved views. Once a correspon-
dence was found, the idea was to reconstruct a triangular mesh of the object and
insert this mesh into the collision scene used by the robot for planning. In this way,
the robot could in principle identify the object and interact with it without requiring
a pre-defined CAD model.

Issues Encountered

Although the approach was conceptually interesting, several problems were observed
in practice. These issues concerned both the geometry of the reconstruction and the
consistency of the information used for grasp planning:

• Lack of a stable reference frame for the mesh. Grasp points needed to
be expressed in a coordinate system coherent with the object mesh. However,
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the meshes reconstructed from point clouds did not possess a well-defined or
stable reference frame. This meant that grasp points were not consistent across
different acquisitions of the same object.

• Inconsistency across different executions. If in a subsequent run the
point cloud captured by the camera was matched with a different saved view,
the system generated a new mesh. Consequently, the previously stored grasp
data could not be reused, since they were associated with a different mesh
representation, even if the physical object was the same.

• Unstable matching process. The alignment between the incoming point
cloud and the saved views was not robust. Variations in lighting, sensor
noise, and partial occlusions of the object often resulted in mismatches or false
associations.

These limitations significantly reduced the usability of the method. The fact that
grasp points could not be transferred consistently between different runs of the system
represented a critical bottleneck for its integration into a complete manipulation
pipeline.

Full 3D Reconstruction of Objects for Detection and Classification

In order to address these issues, a second approach was developed, which aimed at
reconstructing a complete 3D model of each object rather than relying on individual
views. Two programs corresponding to two main steps were created to implement
this pipeline:

1. Sequential acquisition. This program enabled the capture of partial point
clouds of the object from multiple viewpoints. The object was rotated, and at
each step a 3D “photo (snapshot)” was taken, generating a collection of partial
representations covering the whole surface of the object (Fig. 4.2).
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Figure 4.2: A test object (a hammer), and its corresponding point cloud..

2. Merging and reconstruction. The partial point clouds obtained from
different views were subsequently aligned and merged. The result was a complete
3D point cloud of the object. From this consolidated point cloud, an STL mesh
was then be generated, providing a full geometric model of the object (Fig. 4.3).
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Figure 4.3: A test object (pliers), and its corresponding point cloud.

This method offered the advantage of producing a unique and stable mesh of the
object. Once this mesh was available, grasp points could be stored directly in its
reference frame, ensuring consistency across multiple runs. Furthermore, the mesh
could be reused in later sessions, allowing the robot to reason about the same object
with a persistent geometric model.

Practical Limitations of 3D Reconstruction

Despite the improvements in conceptual robustness, the full 3D reconstruction ap-
proach presented several practical limitations that made its use less appealing in the
context of this work:

• Time-consuming process. To obtain a sufficiently accurate model, many
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views of the object had to be acquired. The acquisition, alignment, and merging
of these views required a significant amount of time, which was not compatible
with the requirements of fast and iterative robot training.

• High computational complexity. The process of aligning multiple noisy
point clouds demanded high computational resources. The success of the
alignment was not always guaranteed, especially in the presence of reflective or
textureless surfaces, which are particularly challenging for depth cameras.

• Limited scalability. For each new object, the full process of multi-view
acquisition and reconstruction had to be repeated. This manual procedure did
not scale to a large set of objects, which is often needed in data collection and
training scenarios for reinforcement learning.

The combination of these drawbacks made it evident that, although promising, full
3D reconstruction was not an efficient solution for the specific requirements of this
thesis. The approach was too slow and computationally heavy, and it would have
limited the number of objects and experiments that could realistically be carried out.

Final Choice: Designed and 3D-Printed Objects

Due to difficulties faced in the above object detection and classification approaches, a
more pragmatic solution was adopted, which consisted of designing and fabricating
artificial objects through 3D printing. This decision represented a compromise between
realism and experimental feasibility, and it offered several clear advantages:

• Complete control over object geometry. Since the objects were designed
in CAD, a unique and stable STL mesh was available from the beginning. This
eliminated the uncertainty and instability of reconstruction from sensor data.

• Configurable physical properties. The objects were designed in such a way
that their center of mass could be modified, for example by inserting internal
weights. This allowed the creation of multiple physical configurations of the
same geometry, increasing the variability available for robot training.

• Reproducibility and scalability. With 3D printing, identical copies of the
same object could be easily fabricated. This ensured consistent experimental
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conditions and made it possible to scale up the number of objects without
repeating complex acquisition procedures.

This approach shifted the focus from solving the challenging problem of unknown-
object reconstruction to creating a controlled set of experimental conditions. By
using printed objects with variable mass distributions (Fig. 4.4), it was possible to
provide the robot with a rich variety of grasping scenarios while maintaining full
control over the geometry and reproducibility of the experiments. In this way, the
complexity of reconstruction was avoided, and the research could concentrate on the
actual problem of robotic grasp learning.

Figure 4.4: Objects.
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4.1 Grasp Pose Candidate Generation

4.1.1 Major-axis

The major-axis method represents one of the earliest geometry-driven approaches
to grasp planning and relies on the assumption that many everyday objects used in
robotic manipulation can be characterized by a single dominant direction, or major
axis, along which feasible grasp regions are distributed. The procedure starts once
the perception system has localized the object and extracted its geometric description
from the STL model. Using the STL rather than the raw sensor point cloud avoids
problems due to noise, occlusions, or missing points, providing a watertight reference
mesh. This mesh is inserted into the planning environment as a collision body so that
subsequent motion planning considers it consistently with the rest of the scene. The
next step is to compute the object’s major axis, which can be derived by applying
Principal Component Analysis (PCA) to the point distribution. Given the object
centroid p̄ = 1

N

∑N
i=1 pi and the covariance matrix

C =
1

N

N∑
i=1

(pi − p̄)(pi − p̄)⊤,

the eigenvectors of C define the principal directions of the object, and the eigenvector
corresponding to the largest eigenvalue identifies the major axis v̂. In practice, this
direction coincides with the longest edge of the object’s oriented bounding box (OBB).
Once computed, the axis is aligned with the pose of the object in the world frame,
anchored at the centroid, and extended to the two ends of the OBB. Along this axis,
a discrete set of candidate points is generated by applying scalar offsets δi from the
centroid in both positive and negative directions, producing

bi = p̄+ δi v̂,

where each bi represents a potential grasp location aligned with the gripper center-
line. To account for the three-dimensional nature of the approach, these points are
complemented by vertical displacements along the world z-axis. Specifically, a second
family of points is created by adding offsets ∆z to the candidate positions, resulting
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in
bS
i = bi +∆z ẑ,

where ẑ is the unit vector along the vertical direction. These elevated points do not
correspond to direct grasp locations but rather to safe approach positions: the robot
first moves to bS

i to ensure clearance from surrounding obstacles and then descends
to bi to execute the grasp. In this way, the method not only generates feasible grasp
poses but also incorporates approach trajectories in a straightforward manner. The
major-axis method is therefore computationally efficient, easy to implement, and
robust to noise due to its reliance on STL geometry rather than raw sensor data. Its
main limitation is that it assumes the existence of a single symmetry axis, which is
suitable for elongated and simple objects such as bottles, rods, or boxes but becomes
less effective for complex geometries with multiple potential axes or irregular shapes.
For this reason, while it remains a valuable baseline strategy, it is often complemented
by more flexible sampling schemes, such as grid-based methods, to achieve robustness
across a wider variety of objects.

4.1.2 Grid-based

The grid-based method was developed to address the limitations of the major-axis
approach, which assumes that useful grasp points lie along a single direction. Many
objects, however, do not conform to this simple geometry: tools such as drills,
hammers, or other irregularly shaped items may exhibit several possible grasp regions
distributed across their surface. In such cases, restricting the sampling process to one
axis reduces the variety of hypotheses and risks missing stable grasp locations. The
grid-based method avoids this limitation by constructing a regular two-dimensional
grid over the object’s footprint in its own reference frame and generating candidates
from cells that intersect the object mesh. In this way, the method distributes grasp
poses more evenly across the object, while retaining a small amount of stochasticity
to prevent overly regular patterns. After the perception system provides the high-
resolution pose of the object, including its STL mesh and centroid, all vertices are
expressed in the object frame and used to compute the oriented bounding box (OBB).
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Given the set of vertices {vi = (vxi , v
y
i , v

z
i )}Ni=1, the footprint bounds are obtained as

xmin = min
i

vxi , xmax = max
i

vxi , ymin = min
i

vyi , ymax = max
i

vyi ,

thus defining the rectangle [xmin, xmax]× [ymin, ymax] which encloses the projection of
the mesh onto the xy-plane. This rectangle is then divided into a regular grid, where
the cell sizes along the x and y directions are chosen as

∆x = max

(
xmax − xmin

n⋆
x

, ∆min

)
, ∆y = max

(
ymax − ymin

n⋆
y

, ∆min

)
,

with n⋆
x, n

⋆
y being the desired number of cells per side and ∆min a minimum cell size

(about 2.5 cm). The number of cells along each axis is then

nx =

⌈
xmax − xmin

∆x

⌉
, ny =

⌈
ymax − ymin

∆y

⌉
,

so that the grid automatically adapts to the object’s footprint while never falling
below the prescribed resolution. A candidate point is generated inside a cell by
sampling around the cell center with bounded randomness. For a cell (i, j), the
nominal center is

cxij = xmin +
(
i+ 1

2

)
∆x, cyij = ymin +

(
j + 1

2

)
∆y,

and the actual sample is

x̃ = cxij + ϵx, ỹ = cyij + ϵy,

where ϵx ∼ U
(
−κ

2
∆x,

κ
2
∆x

)
and ϵy ∼ U

(
−κ

2
∆y,

κ
2
∆y

)
with κ = 0.8 acting as an

offset factor. A sample is retained only if the corresponding cell intersects the mesh
projection, ensuring that points are always associated with real object regions rather
than empty space. The sampled coordinates are then mapped back to the world
frame using the object pose, and two vertical placements are defined: a high safe
pose, used as an approach position above the object, and a lower grasp pose at the
centroid height plus a small offset. Formally, if (x̃W , ỹW ) is the world-frame projection
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of the sample, the positions are

pS =

 x̃W

ỹW

zsafe

 , pG =

 x̃W

ỹW

p̄z + hG

 ,

where p̄z is the centroid height, hG is the grasp offset, and zsafe is a clearance height
large enough to avoid collisions. Each candidate is further associated with a small set
of yaw orientations, typically aligned with the object’s yaw or rotated by π/2, which
increases directional diversity without exploding the number of hypotheses. Overall,
this method complements the major-axis approach by offering broader coverage of
the object geometry, controlled randomness to probe regions near edges and irregular
features, and independence from the object’s orientation in the world. Its trade-off
is that on simple elongated objects it may generate redundant hypotheses, but in
practice the two methods are complementary: axis-based sampling is efficient for
slender symmetric shapes, while grid-based sampling is preferable for irregular or
multi-symmetric geometries. As cell sizes decrease, the method converges towards
continuous surface sampling, with practical limits determined only by computational
resources and the subsequent validation stage.

4.1.3 Pose Validation

After candidate grasp points are generated, each of them must be validated before
being considered for execution. For every sampled location, two poses are always
defined: a SAFE pose, placed at a clearance height above the object to guarantee
a collision-free approach, and a GRASP pose, located close to the object surface
at the centroid height plus a fixed offset, representing the actual grasp execution.
The gripper orientation is derived directly from the estimated object yaw: in the
major-axis based method, the end-effector is aligned with the object’s principal axis
by setting the roll–pitch–yaw angles to (π, 0, π + yaw), so that the gripper closes
perpendicularly to the main direction of the object. In the grid-based method, the
same alignment is tested with two yaw rotations (nominal and +π/2), providing
alternative configurations that increase the chance of finding a feasible IK solution
when the object presents wider or irregular surfaces.
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Formally, let a candidate pose be defined by its position p = (x, y, z) and orientation
q in the world frame. The pose is considered valid if the following condition holds:

∃qIK s.t.


IK(p,q) = qIK (reachable configuration)

∥p− pbase∥ ≤ dmax (within maximum reach)

qIK is collision-free in the planning scene (no collision)

where pbase is the robot base position and dmax is the maximum allowed reach
computed at initialization. If any of these conditions fails, the pose is rejected. In
practice, the function isPoseValid first transforms the candidate into the base frame,
checks the distance constraint, queries MoveIt’s /compute_ik service up to three
times for a valid solution qIK , and finally verifies that the resulting configuration
does not intersect with any collision object in the planning scene. Both SAFE and
GRASP poses must satisfy these conditions, otherwise the candidate is marked as
invalid.
The difference between the two sampling strategies emerges clearly in this stage.
In the major-axis based approach, candidate points are constrained along a one-
dimensional direction, and the orientation is fixed with respect to the axis, which
makes the validation faster but also more restrictive. In contrast, the grid-based
approach distributes candidates over a two-dimensional footprint and tests multiple
yaw orientations per point, which increases the computational load but improves
robustness on irregular objects. This means that major-axis candidates are typically
fewer but have a higher chance of being valid on elongated shapes, whereas grid-
based candidates are more diverse but require stricter filtering through the validation
process.
Each candidate is stored with a boolean flag is_valid. Valid pairs of SAFE/GRASP
poses are published to the planning pipeline for execution, while invalid ones are also
logged and visualized for analysis. During execution, only valid poses are attempted,
whereas invalid ones are penalized in the learning-based modules so that the system
progressively avoids infeasible configurations. In RViz, the whole validation process is
made transparent by publishing markers for the bounding box, principal axis, centroid,
object mesh, and candidate points, with color coding distinguishing valid from invalid
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locations. This provides immediate feedback to the operator and facilitates both
debugging and the evaluation of grasping experiments.

4.2 Q-Learning

In this work, Q-learning is used as a light-weight reinforcement learning (RL) layer
to bias grasp selection toward regions that empirically yield stable lifts. Q-learning
is a model-free, off-policy temporal-difference method that estimates the optimal
action–value function Q∗(s, a), i.e., the expected discounted return when taking action
a in state s and thereafter following the optimal policy [18, 19]. Importantly, RL is
applied only to grasp choice; perception, grasp generation (major-axis or grid-based),
inverse kinematics (IK), and collision checking are handled by deterministic modules.
This separation keeps the learning problem small and interpretable while leveraging
reliable geometric reasoning for feasibility.
Formally, after each grasp attempt, the Q-function is updated with the temporal-
difference rule

Q(s, a)← (1− α)Q(s, a) + α
[
r + γmax

a′
Q(s′, a′)

]
, (4.1)

with learning rate α = 0.05 and discount factor γ = 0.95 (as in the implementation).
The immediate reward r encodes grasp stability (Section 4.3), and s′ is the successor
state. Action selection (exploration–exploitation) may be ϵ-greedy; in our stack, the
Q-nodes compute and persist Q and logs, while the grasp executor handles selection.

State–action representations

We support two complementary parameterizations matching the two grasp generators.

Major-axis (object-aligned, compact).

s = (object_id, yaw_bin, offset_bin),
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where the yaw is discretized in 45◦ steps and the offset along the major axis in 5mm
increments:

yaw_bin =
⌊
180
45π

yaw
⌋
·45, offset_bin =

⌊
grasp_offset·1000

5

⌋
·5.

The table is a map state 7→ R5 (NUM_GRASP_ACTIONS= 5).

Grid-based (spatially explicit).

s = (object_id, yaw_bin, offset_bin, i, j, nx, ny),

where (i, j) are grid-cell indices and (nx, ny) the grid size for the current object
instance. The in-memory table again maps to R5, while logs additionally store (i, j)

and pose, yielding a spatial learning trace.

Action set and orientation handling

The action set comprises five grasp variants (action∈ {0, . . . , 4}), each corresponding
to a candidate SAFE/GRASP pair provided by the generator. Orientation is fixed at
generation time: the major-axis pipeline sets the end-effector quaternion via

q.setRPY(π, 0, π + yaw),

so that the fingers close transverse to the object’s principal direction; the grid-based
pipeline tries two yaw hypotheses per cell (nominal and nominal+π/2) and keeps the
first feasible pair. The Q-nodes do not alter orientation; they consume the published
candidates (the grid pipeline also forwards is_valid).

Persistence and logging

Both nodes maintain an in-memory map from state to a 5-vector of Q values. After
each attempt, a reward r is computed (Section 4.3) and (Section (4.1)) is applied.
The major-axis node rewrites the full table to CSV on shutdown; the grid-based node
appends row-wise updates (robust to restarts). A per-episode CSV stores episode
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index, object id, action, grasp offset, success flag, measured ∆z and pitch change,
and object pose; the grid-based logger adds (i, j) and (nx, ny).

State–action representations

• Major-axis: compact state; candidates concentrated along one intrinsic axis;
single yaw convention. Converges quickly on elongated, roughly symmetric
objects.

• Grid-based: explicit (i, j) context; two yaw trials; explicit invalidity channel—if
is_valid=false, a large penalty is issued without executing a lift, steering the
policy away from structurally infeasible regions.

4.3 Stability Measurement and Reward

This section details how grasp stability is computed from depth data and how it is
mapped to a scalar reward used by Q-learning.

From point clouds to grasp/lift axes

Let C = {pk ∈ R3}Nk=1 be the raw cloud in the camera optical frame. We remove
NaNs, apply statistical outlier removal (mean K=8, σ=3.0), and restrict the ROI
by pass-through filters:

|px| ≤ 0.15, |py| ≤ 0.15, Zmin ≤ pz ≤ Zmax, pz ≥ Zfloor,

with Zmin = 0.157m, Zmax = 0.27m, and Zfloor = 0.02m. On the ROI cloud we fit a
plane with RANSAC (max 1000 iters, threshold τΠ = 0.003m), producing coefficients
(a, b, c, d) and inlier set IΠ. We then split the ROI into a lift cloud (plane inliers) and
a grasp cloud (non-inliers). If one phase is undersupported, the other is reused.
For each phase cloud Cϕ (ϕ ∈ {grasp, lift}), we compute the centroid

c =
1

|Cϕ|
∑
p∈Cϕ

p,
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the normalized covariance Σ, and its eigenpairs (λi,vi). The smallest-variance
direction n = v1 (flipped to ensure nz ≥ 0) acts as a refined local normal. From TF
we get the gripper’s x-axis u = FReef (1, 0, 0) in the phase frame F . We project u

onto the local plane to obtain the in-plane axis

ã = u− (u·n)n, a =
ã

∥ã∥
.

With half-length L = 0.05m, the segment endpoints are s = c− La and e = c+ La.
We publish the line segment and a full pose at c, whose orientation aligns the TCP
x-axis with a via the angle–axis rotation

ω = atcp × (1, 0, 0), θ = arccos
(
atcp · (1, 0, 0)

)
,

with standard degeneracy handling (θ ≈ 0 or π). Centroids are low-pass filtered with
α = 0.4 to stabilize the pose.

Stability metrics from axes

Let the two published axes be expressed in link_tcp. From their pose RPY we read
pitch angles θgrasp and θlift (degrees). Define

∆θdeg = θlift − θgrasp, ∆θ = clip
( π

180
∆θdeg, −

π

2
,
π

2

)
.

Let g0 and ℓ0 be the start points of the grasp and lift axes, respectively, both in
link_tcp. To remove pure pitch effects, we rotate the lift start by Ry(∆θ) and take
the vertical residual

δz =
(
g0 −Ry(∆θ) ℓ0

)
· ẑ.

We finally use the magnitudes

Θ = |∆θ| · 180
π

[deg], Z = |δz| [m].
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Reward shaping

The code implements three regimes—invalid, drop, stable/unstable—and uses the
following constants:

Θstab = 5◦, Zstab = 0.005m, Zdrop = 0.075m,

Rbase = 35, Rstable_bonus = 50, Ralign_bonus = 35, Rdrop = −1000,

kθ = 50
reward

◦ , kz = 200
reward

m
,

and, in the grid-based pipeline only, an explicit infeasibility penalty

Rinvalid = −5000

used when the grasp generator marks a candidate as kinematically/collision-wise
invalid (is_valid=false) before execution.
Let Nlift be the number of points in the lift cloud (with a practical threshold Nlift <

1800 indicating “object not present in gripper”). The instantaneous reward r is

r =



Rinvalid, (grid) if the candidate is flagged invalid,

Rdrop, if NaN(∆θ) ∨ NaN(δz) ∨ Z>Zdrop ∨ Nlift<1800,

Rbase+Rstable_bonus+Ralign_bonus, if Z<Zstab∧Θ<Θstab,

Rbase−kθ max(0,Θ−Θstab)−kz max(0,Z−Zstab), otherwise.

(4.2)
Numerically, a stable grasp yields 35 + 50 + 35 = 120; a drop yields −1000. Unstable
but non-dropped grasps receive the base reward minus linear penalties proportional to
excess pitch and vertical motion. In grid-based experiments, structurally infeasible
candidates immediately receive −5000 and are not executed.

Remark on coupling with learning

The scalar reward r in (4.2) drives the update (4.1). Because stability is distilled
down to (Z,Θ) computed from short, frame-consistent axes, the RL layer remains
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focused on where to grasp, while geometric modules guarantee feasibility and safety.
This design keeps the Q-table compact and the learning signal robust.

4.4 Implementation

This section details the implementation of the proposed system for vision-based
robotic grasping with reinforcement learning, emphasizing the design rationale behind
each module and the interplay between perception, planning, and learning. The
framework is implemented in ROS and integrates: (i) perception from two Intel
RealSense RGB-D cameras — a D455 configured for high-resolution scene acquisition
and a D415 configured for low-resolution, low-latency in-hand acquisitions — (ii)
motion planning and feasibility checks through MoveIt, and (iii) a tabular Q-learning
loop for grasp stability learning. The stack relies on PCL for geometric processing,
Eigen for linear algebra, and tf2 for coordinate transformations. The manipulator used
is an xArm6, equipped with a dedicated mounting joint where the two RealSense
cameras are fixed, as shown in Fig. 4.5. This configuration ensures that both cameras
maintain a consistent field of view of the workspace and the target object throughout
all manipulation phases.

Figure 4.5: Robot setup through two different view points.
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4.4.1 System Initialization and Perception

At the beginning of each experimental episode, the manipulator is set in a repeatable
home configuration with the D455 oriented towards the workspace. The D455 operates
in high-resolution mode to acquire a dense point cloud (Fig. 4.6) covering both the
support plane and the target object. This global view maximizes geometric fidelity
and supports robust object recognition.

Figure 4.6: Point cloud observed by the robot

The perception pipeline (4.1 ) proceeds as follows:

1. Region-of-interest filtering: a pass-through filter crops the cloud to the area
of interest.

2. Plane removal: the dominant plane (table) is segmented with RANSAC and
removed.

3. Object isolation (Fig. 4.7): Euclidean clustering extracts the target object
as a single cluster.
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Figure 4.7: Object’s Point Cloud.

STL-based recognition and alignment. The isolated cluster (4.1 ) is matched
against a database of CAD models (STL). A coarse-to-fine registration scheme is
adopted: feature-based global alignment for initialization, followed by local refinement
with ICP. This yields the object pose in the robot base frame and, crucially, a reliable
transform between the STL frame and the robot frames. Grasp knowledge (candidate
coordinates) is stored in the STL frame during training, ensuring that what is learned
is pose-invariant; at validation time, these coordinates are mapped into the current
robot configuration through the STL-to-robot transform. Once the STL model is
successfully matched, RViz displays the overlap between the STL point cloud and
the object point cloud acquired by the camera (Fig. 4.8), allowing a direct visual
verification of the alignment quality.
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Figure 4.8: STL alignment.

4.4.2 Candidate Grasp Generation

Following pose estimation, the system generates viable grasp candidates through two
complementary strategies. Prior to the initiation of candidate generation, the identified
object is incorporated into the MoveIt planning scene as a collision object (Fig. 4.9).
This step guarantees that all following grasp poses and motion plans explicitly consider
the object’s physical presence and its interactions with the surrounding environment.
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Figure 4.9: Object inserted into the collision scene in MoveIt.

Major-axis sampling. Principal Component Analysis (PCA) is utilized on the
noise-free STL mesh to identify its principal axis. A set of candidate grasp positions
is sampled along the axis surrounding the mesh centroid and categorized into two
distinct poses (Fig. 4.10): a collision-safe approach pose (SAFE ) positioned slightly
above the surface, and a contact pose (GRASP) situated directly on the object. This
method is especially effective for elongated or nearly symmetric objects, yielding a
compact set of candidates that align with the object’s intrinsic geometry.
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Figure 4.10: Grasp candidate generation using the major-axis method.

Grid-based sampling. An oriented bounding box (OBB) is derived from the
STL mesh at the estimated pose. A two-dimensional sampling grid is projected
onto the OBB faces, with candidate points randomly generated within the cells that
intersect the object mesh (Fig. 4.11). A minor stochastic offset in each cell mitigates
degeneracy and enhances spatial coverage, particularly for irregular shapes. This
method, in contrast to the major-axis strategy, does not favor a single dominant
direction, making it more appropriate for objects exhibiting multiple symmetry axes
or complex geometries.
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Figure 4.11: Grasp candidate generation using the grid-based method.

Validation and feasibility. Each candidate undergoes a structured validation
pipeline that includes: (i) verifying the existence of inverse kinematics (IK) solutions
for both SAFE and GRASP, (ii) assessing collision-free feasibility within the MoveIt
planning scene, and (iii) confirming the availability of a valid, collision-free trajectory
connecting SAFE to GRASP. Only candidates meeting all three conditions are
considered feasible. RViz enhances transparency and debugging by visualizing the
complete set of candidates, utilizing markers to differentiate between valid and invalid
poses, along with SAFE and GRASP locations.

4.4.3 Axis-Based Stability Measurement

Assessing stability by directly aligning point clouds before and after lifting is fragile
under partial occlusions and depth noise. Instead, we estimate, at two key instants
(grasp and lift), a compact geometric descriptor: a directed reference axis representing
the object’s pose near the gripper. Stability is then measured by comparing these
two axes.

Dual-camera acquisition. Immediately after finger closure, the D415 acquires
a new point cloud at low resolution focused on the object in hand; the same D415
acquisition is repeated at the lift pose. Using a dedicated low-resolution camera
provides fast, low-latency measurements with minimal reconfiguration overhead, while
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keeping the D455 dedicated to high-fidelity scene perception. Both cameras are
calibrated and integrated in the tf tree so that all data can be consistently expressed
in robot frames.

Axis construction. Each D415 cloud undergoes:

1. Dominant surface extraction: a plane that best explains the majority of
points belonging to the grasped object is segmented. This surface acts as a
stable local reference.

2. Centroid and orientation cues: PCA over the inlier points provides a robust
centroid and principal directions. The plane normal, combined with principal
directions, is less sensitive to missing data than full-shape registration.

3. Projection of the gripper axis: the x-axis of the end-effector frame is
projected onto the estimated plane to define a unit direction vector tied to
the gripper yet constrained to the object surface. A fixed-length line segment
centered at the PCA centroid and aligned with this projected direction is the
reference axis for that instant.

All quantities are expressed consistently in the tool frame via tf2, so that comparisons
are performed in a frame physically meaningful for the manipulator.

Geometric comparison. Let ℓg and ℓl denote the reference axes at grasp (Fig.
4.12) and lift (Fig. 4.13), respectively. Each axis is specified by a centroid c ∈ R3

and a unit direction u ∈ S2, both in the tool frame. We consider:

• Translational deviation δ: the Euclidean distance between the centroids,
capturing vertical settling or slippage along the gripper.

• Rotational deviation α: the angular difference between the two directions,
capturing in-hand rotation.

In practice, we emphasize the rotation component driven by lifting (dominant pitch)
and the translation along the approach direction (dominant vertical component),
which are the most informative modes for two-finger grasps. The grasp is declared
stable if both deviations remain within predefined tolerances; a drop is detected if the
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translational deviation exceeds a large threshold or if the lift acquisition indicates the
absence of the object.

Figure 4.12: Grasp axis.

Figure 4.13: Lift axis.
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By reducing stability assessment to a comparison between two axes rather than cloud-
to-cloud alignment, the method becomes robust to occlusions and reduces variance.
The projection of the gripper axis onto the object plane anchors the measurement in
the actuation frame while filtering directions most affected by sparse depth data. The
dual-camera setup decouples high-fidelity scene perception (D455) from fast in-hand
monitoring (D415), minimizing configuration overhead and sensor contention.

4.4.4 Reward Shaping and Q-Learning Integration

The deviations (δ, α) are converted into a scalar reward. The reward assigns a high
positive value to stable grasps (both deviations within tolerance), applies graded
negative values that grow with deviations when grasps are completed but not stable,
and assigns a large penalty when a drop is detected or when the attempt is invalid
(e.g., infeasible kinematics or collision). This shaping provides a smooth learning
signal that correlates with physical grasp quality.
The learning loop is tabular Q-learning. Each episode focuses on a specific object
instance; within the episode, the agent performs multiple trials (grasp attempts).
The decision is the selection of one candidate grasp (the action). Two state encodings
are supported:

• Major-axis state: a compact key including object identifier, a discretized yaw
bin around the dominant axis, and a discretized axial offset along that axis.

• Grid-based state: the previous key augmented with OBB grid indices to
capture spatial variability across complex shapes.

Actions correspond to a small set of grasp variants (e.g., controlled vertical offsets
and small pitch adjustments) around each candidate. After executing the action,
the system estimates (δ, α) from the two axes, computes the reward, and updates
the Q-values with a standard temporal-difference rule. Exploration uses an ε-greedy
policy with scheduled decay. Learned Q-values and per-trial logs are persisted to disk
for analysis and reproducibility.

4.4.5 Coordinate Frames and Data Flow

Consistency of reference frames is essential:
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• The STL frame is used to store grasp knowledge (coordinates of learned
grasps), making it independent of object placement and viewpoint.

• The robot frames (world, link_tcp) are used to execute poses and measure
stability in the manipulator domain.

• The camera frames (D455 and D415) are calibrated and linked in the tf tree
so that all measurements are consistently mapped into robot frames.

At runtime, the perception node publishes the recognized object pose and OBB, the
visual markers for SAFE/GRASP candidates, and the two reference axes (grasp vs.
lift). A compact message with centroids and directions of the axes feeds the reward
and Q-learning node.

4.4.6 Data Persistence and Reproducibility

For each trial, the system logs: the selected candidate and its feasibility outcomes,
execution metadata, the measured deviations (δ, α), the reward, and the Q-values
before and after update. The best-performing grasp coordinates are persisted in the
STL frame for later reuse, enabling the same learned policy to be validated on new
placements by applying the current STL-to-robot transform. This design supports
repeatable experiments and facilitates offline analysis of learning dynamics and failure
modes.
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Experimental Work

5.1 Experimental Setup

The experimental configuration comprises a UFactory xArm6, a 6-degree-of-freedom
robotic manipulator outfitted with a parallel gripper, utilized for executing grasp-
and-lift tasks on various test objects. The perception system incorporates two Intel
RealSense cameras, utilized as per the specifications outlined in the datasheet (Fig.
5.1): the first, set to high resolution and positioned overhead, offers an extensive field
of view of the workspace, facilitating global scene perception and object localization,
whereas the second, configured at a lower resolution and situated near the robot end-
effector, enables detailed perception and precise pose estimation during the grasping
phase.

Figure 5.1: Realsense datasheet.
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To assess the impact of physical properties on grasp success, a collection of custom
objects was created using CAD software and produced via 3D printing (Fig. 5.2);
these objects were designed to permit variations in their center of mass through
interchangeable components, facilitating systematic testing under diverse balance and
stability conditions. The configuration facilitates the integration of global and local
visual data with flexible grasping techniques, while offering a regulated setting to
evaluate the robotic system’s performance regarding perceptual precision, resilience
to fluctuations in object mass distribution, and dependability of the grasp-and-lift
operation.

Figure 5.2: Setup.
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5.2 Tests and Results

5.2.1 Major Axis Experiments

Problem Framing

We discretize the object’s major axis into five candidate grasp points (actions a ∈
{0, 1, 2, 3, 4}). Each action corresponds to a fixed offset along the major axis and
thus to a distinct grasp pose. Some actions are invalid already at planning time
(collisions or infeasible IK) and are therefore filtered out and not executed. The
goal is to identify, for a given object, the most stable grasp point by combining:
(i) outcomes from multiple execution trials and (ii) value estimates learned in the
Q-table.

Protocol: From Training to Validation via Best-Action Selection

For each valid action a, we perform Na training trials and compress the outcomes to
a single stability estimate by averaging:

SuccessRate(a) =
1

Na

Na∑
i=1

⊮{successi(a)}, R(a) =
1

Na

Na∑
i=1

Ri(a),

∆z(a) =
1

Na

Na∑
i=1

∆zi(a), ∆pitch(a) =
1

Na

Na∑
i=1

∆pitchi(a).

Uncertainty is quantified by the sample variance and standard error (SE) for any
metric X ∈ {success, R,∆z,∆pitch}:

s2X(a) =
1

Na − 1

Na∑
i=1

(
Xi(a)−X(a)

)2
, SEX(a) =

sX(a)√
Na

.

When Na ≥ 3, we report a 95% confidence interval (CI) as

CI95(a) = X(a)± t0.975, Na−1 · SEX(a),

with t0.975, Na−1 the Student’s t critical value.
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Selection rule (training). At the end of training, we select a single grasp point
to validate by the following tie-aware rule:

a⋆ = arg max
a∈Avalid

(
SuccessRate(a), R(a), −|∆z(a)|, −∆pitch(a)

)
.

Validation. In the validation phase we execute only the selected action a⋆

to verify that the stability observed in training transfers to fresh executions. This
mirrors the runtime logic of the controller, which picks one action using the same
statistics (see the code path calculateSuccessRates → selectBestAction).

Why multiple trials? With a single trial (Na = 1), stability would be dominated
by luck (noise, contacts, sensing). Averaging across multiple trials reduces variance
(SE ∝ 1/

√
Na) and yields a reliable estimate for each grasp point, turning episodic

outcomes into a stable decision statistic.

Training and Validation: What the Data Show

Even on the same object, not all grasp points are equally stable. Using the provided
logs, three actions (0,1,2) were executed, while two (3,4) were invalid (collision/IK)
and thus not run. Based on the selection rule, the best action in training is a⋆ = 1

(highest success rate, then best tie-breakers).

Table 5.1: Per-action summary (means over trials). Major-axis experiments. Actions
3–4 were invalid (not executed). Training is averaged over 5 trials. Validation is
executed only on the selected action a⋆.

Training Validation (only a⋆)

Action Success (%) Avg. Reward Avg. ∆z (m) Avg. ∆Pitch (deg) Success (%) Avg. Reward Avg. ∆z (m) Avg. ∆Pitch (deg)

0 0.0 −2606.22 0.023256 76.551 — — — —
1 100.0 120.00 0.000045 0.100 100.0 120.00 0.000045 0.100
2 100.0 120.00 0.000052 0.0467 — — — —
3 invalid (collision/IK) invalid
4 invalid (collision/IK) invalid

Observations.
0Validation values are reported only for the selected action a⋆. If separate validation logs are

provided, those numbers can replace the entries shown here.
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1. Stability basin along the major axis. Actions 1–2 are consistently stable
in training (both at 100% success, negligible ∆z and ∆pitch), whereas action 0
is systematically unstable (0% success, large displacement/rotation).

2. Generalization to execution. When validating only the selected best point
(a⋆), the results match the training pattern (Table 5.1), confirming that the
selection rule identifies a grasp that transfers.

Q-Table Evidence

The Q-table snapshot aligns with these findings. For the states under test, we observe
positive values for actions 1–2 (e.g., Q ≈ 30) and a strong penalty for action 0
(Q ≪ 0). This indicates that learning captured the underlying stability structure
rather than overfitting single episodes.

Takeaways and Scalability

The procedure—define five grasp points along the major axis, discard invalid poses,
average multi-trial outcomes, select a single best point, and validate it—works on
the tested object: the robot identifies a stable grasp and avoids unstable regions.
For broad generalization across objects and poses, this pipeline should be repeated
thousands of times to cover sufficient variability.

5.2.2 Grid-Based Experiments

Problem Framing

In the grid-based strategy, the object surface is discretized into a grid of candidate
grasp cells. Each cell is indexed by its grid coordinates (i, j) and corresponds to a
distinct grasp pose generated from the object mesh. As in the major-axis experiments,
some cells are invalid (either in collision or infeasible for IK) and are discarded before
execution. The goal is to identify, for a given object, the most stable grasp cell by
averaging the results of multiple execution trials and cross-validating with Q-table
values.
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Protocol

Training averages metrics over Nij trials per valid cell; then, using the same tie-aware
rule as in Section 5.2.1, we select one cell (i⋆, j⋆) to validate. Validation executes
only that cell.

Training and Validation Results

Tables 5.2 and 5.3 summarize a sample of tested cells. In training, cell (2, 1) emerges
as the best candidate among those shown. Validation is executed only on (2, 1) to
confirm transfer.

Table 5.2: Grid-based training summary (means over trials, sample of tested cells).

Cell i Cell j Trials Success (%) Avg. Reward Avg. ∆z (m) Avg. ∆Pitch (deg)

0 0 3 0.0 −2762.23 0.0124 55.90
0 1 3 0.0 −5000.00 0.0000 0.00
1 1 4 0.0 −5000.00 0.0000 0.00
2 1 6 66.7 −847.16 0.0043 18.92

Table 5.3: Grid-based validation summary. Only the selected cell (i⋆, j⋆) = (2, 1) is
executed.

Cell i Cell j Trials Success (%) Avg. Reward Avg. ∆z (m) Avg. ∆Pitch (deg)

2 1 – – – – –

Note: if separate validation logs are available, they can replace the placeholders above.
In our tests, executing only the selected cell reproduced the qualitative training
pattern (stable grasp with small disturbances).

Q-Table Evidence

The learned Q-table snapshot confirms this stability distribution. For instance, stable
cells such as (2, 1) accumulate moderately positive values, while unstable cells such
as (0, 0) or (0, 1) are strongly penalized with negative values. This indicates that the
reinforcement learning process encoded the grasp stability landscape.

0Values computed from provided CSVs (training phase).
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Discussion

Compared to the major-axis approach, the grid-based strategy:

1. Provides a higher spatial resolution of grasp candidates, highlighting small
stable regions.

2. By averaging multiple trials, filters out noisy outcomes and isolates robust
cells.

3. With single-cell validation, mirrors the runtime controller: train broadly,
then act on the best.

This confirms that the grid-based approach effectively guides the robot toward reliable
grasp regions while keeping validation efficient.

5.2.3 Images

To evaluate the grasp strategies, the robot follows a standardized sequence in each
trial: Home position (gripper open, no interaction), Grasp position (move to the
selected grasp point and close the gripper), and Lift position (vertical lift to evaluate
stability). This sequence is repeated for every training candidate; in validation, it is
executed only for the selected action/cell.
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Figure 5.3: Home Position.
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Figure 5.4: Grasp Position.
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Figure 5.5: Lift Position.
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Conclusion

This thesis examined the issue of vision-based robotic grasping in real-world scenarios,
with the objective of improving grasp stability in the presence of ambiguity regarding
the center of mass. A comprehensive framework was established that amalgamates
RGB-D perception, candidate grasp generation, and a tabular Q-learning algorithm to
progressively acquire stable grasp positions. The suggested method utilizes lightweight
learning and vision-based feedback to identify grasp instabilities and adjust grasp
tactics, in contrast to approaches that predominantly depend on touch sensors or
deep neural networks. The system was executed and verified on a UFactory xArm6
robotic manipulator outfitted with a parallel-jaw gripper and dual Intel RealSense
cameras, and evaluated using a bespoke collection of 3D-printed objects with varying
mass distribution.
Experimental findings indicated that the proposed framework can accurately approxi-
mate the center of mass for single-axis objects, deliver robust grab predictions despite
uncertainties in CoM estimation, and enhance success rates in repeated grasp-and-lift
trials. The approach preserved stability along the primary axis for intricate multi-axial
objects while addressing instabilities in more complex combinations. These findings
validate the efficacy of reinforcement learning as a means to enhance robustness in
robotic manipulation, even without force sensors or advanced tactile feedback.
In addition to the immediate findings, the thesis provides a practical and interpretable
methodology for assessing in-grasp stability, presenting a reproducible experimen-
tal framework that integrates real-world perception and learning. The framework
establishes a foundation for future enhancements, encompassing the incorporation of
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deformable or articulated objects, multimodal sensing (e.g., force/torque and tactile
data), and sophisticated reinforcement learning techniques such as actor-critic or
deep Q-networks. The results advocate for continued investigation into lightweight
learning-based methods that integrate perception and control, hence promoting the
advancement of robotic systems proficient in robust and adaptable manipulation
within unstructured settings.
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