POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering

A % Politecnico
Q “:-:a!l.lllln;jllp!ﬁﬂ”L ,
’.nmmm e di Torino

\\‘\ 1859 ";}’
=N\ \# ‘4‘

Master’s Degree Thesis

Over-the-air update of ML models on IoT
devices for precision agriculture

Supervisors Candidate
Prof. Umberto GARLANDO Pedro PEREIRA MORAES
Prof. Andrea MAGNANO

July 2025

Summary

This thesis presents the design and implementation of a system for remotely
updating embedded Machine Learning (ML) models in Internet of Things (IoT)
devices used in precision agriculture. The motivation stems from the need for
scalable, low-power monitoring solutions capable of adapting over time through
firmware updates, especially in remote agricultural deployments where manual
maintenance is impractical.

The work begins with a comprehensive literature review covering communication
technologies for smart farming, including WPAN, WLAN, and especially LPWAN
protocols such as Sigfox, Ingenu, and LoRaWAN. LoRaWAN is identified as the most
suitable option due to its support for Firmware Update Over-The-Air (FUOTA),
energy efficiency, and scalability. In parallel, the review explores applications of
ML in agriculture, particularly in crop health monitoring, and emphasizes the
importance of running lightweight models locally on end-devices due to the limited
bandwidth of LPWANSs.

The implementation chapter details the full architecture of the proposed system.
The solution uses the B-WL5M-SUBG1 board from STMicroelectronics, integrated
with X-CUBE-AI for ML inference and STM32CubeWL for LoRaWAN FUOTA
support. The backend leverages The Things Stack (TTN) as a network server
and Node-RED for the application server, with MQTT used for device-server
communication. The FUOTA process is orchestrated via a custom Node-RED dash-
board capable of fragmenting firmware images, generating session keys, encrypting
downlinks, and managing multicast transmissions.

Three experiments were conducted to validate the system: unicast FUOTA
with standard firmware, unicast FUOTA with an ML model embedded, and full
multicast FUOTA following LoRa Alliance protocols. The results demonstrate the
feasibility of updating embedded ML models wirelessly, and highlight trade-offs in
transmission duration, scalability, and regulatory constraints, such as duty cycle
limits.

Overall, this work provides a complete and reproducible framework for deploying
and maintaining intelligent IoT devices in precision agriculture, combining state-of-
the-art ML tools with robust wireless communication protocols.

11

II1

Acknowledgements

“I would like to offer my thanks to my father, Renato, my mother, Priscila, and my
brother, Rafael, for their continuous and enduring support throughout my pursuit
of educational prowess.”

“To my supervisors, Prof. Umberto Garlando and Prof. Fabricio Junqueira, for
their guidance and care during the development of this work.”

“To the professors and staff of the Escola Politécnica and the Politecnico di Torino,
for the important role they played in my academic education.”

“And to the eLIONS Group, for giving me the opportunity to develop this research
with them.”

v

Table of Contents

List of Tables
List of Figures
Acronyms

1 Introduction
1.1 Objective
1.2 Thesis Structure

2 Literature Review
2.1 Communication technologies used in precision agriculture
2.1.1 LPWANs
2.2 Machine Learning for Agriculture
2.3 LoRaand LoRaWAN
2.3.1 Architecture
2.3.2 PHY - Physical Layer
2.3.3 MAC - Medium Access Control
2.3.4 LoRaWAN Classes
24 Related Worko

3 Implementation
3.1 Materials and Methods
3.1.1 Hardware
3.1.2 Software
3.2 Deployment and Replication Instructions
3.2.1 Building and programming the firmware
3.2.2 The Things Stack SANDBOX - Network Server
3.2.3 Application Server
3.2.4 Configuring the dashboard and Firmware Fragmentation . .
3.2.5 Multicast Session Setup

VI

VIII

IX

XI

3.2.6 Updating a ML model with FUOTA

4 Experiments

4.0.1 Results.

5 Conclusion and Future Perspective

A FUOTA

A.1 Multi-Package Accesso

A.2 Clock Synchronization
A.3 Remote Multicast Setup

A.4 Fragmented Data Block Transportation
A5 Firmware Management Protocol

Bibliography

VII

35
36

39

43
43
44
45
46
48

50

List of Tables

2.1 Comparison of IoT Network Characteristics 6
2.2 Comparison of image transmission parameters across different studies 17

VIII

List of Figures

2.1 LoRaWAN Topology 8
2.2 Data Transmission with CR = 4/5 for FEC 11
3.1 System Boot on TeraTerm 23
3.2 End-device Registration Part 24
3.3 End-device Registration Part I 25
3.4 Multicast Session Keys Generator 28
3.5 Uplink Decryption Example 29
3.6 Command Generation Example 30
3.7 Enabling X-CUBE-AI Middleware 31
3.8 Uploading ML model to the IDE 32
3.9 Configuring the include paths for the End-Node 34
3.10 Configuring the library path for the End-Node 34

IX

Acronyms

ABP

CSS
DevEUI
EUI
FUOTA
[oT

LoRa
LoRaWAN
LPWAN
ML

OTAA

TTN
TTS

Activation by Personalization

Chirp Spread Spectrum

Device Extended Unique Identifier
Extended Unique Identifier
Firmware Update Over the Air
Internet of Things

Long Range protocol - physical layer
Long Range Wide Area Network
Low-Power Wide-Area Network
Machine Learning

Over the Air Activation

The Things Network - a LoRa cloud platform
The Things Stack

XI

Chapter 1
Introduction

Guaranteeing food security for the entire human population is of the utmost
importance. However, due to the expected population growth, by 2050 there could
be an increase in food demand of more than 70% compared to the year 2008
[1]. Furthermore, to reach this goal sustainably, the increase in crop production
needs to be unaccompanied of an increase in land area used for agriculture [2].
Thus, developing new technologies for Precision Agriculture is key for a sustainable
agricultural system in the future [3].

Within this context, the use of Internet of Things (IoT) technology is prominent
for real-time monitoring of data in a crop field [4, 5]. On addition to this, when
using [oT devices for Precision Agriculture, the Long Range Wide Area Network
(LoRaWAN) technology is a frequently used option for communication due to its
low-power capabilities in wide area monitoring applications that require multiple
end-nodes [6, 7, §].

One of these monitoring applications is the assessment of plant status. To
approach this, the use of Artificial Intelligence (Al) paired with IoT devices for
estimating crop characteristics has presented promising results [5].

To allow for minimal energy cost, the type of network most commonly used in
such applications has reduced data throughput, which increases the difficulty for
transmitting heavy files such as images and videos, thus posing a problem when
the Al models are running on the cloud [9]. Because of this, a possible solution
is to have the machine learning model running on the end-node device. One of
the works of eLIONS Group [10] has showed promising results on estimating plat
status with ML models embedded in the monitoring device.

On the other hand, the ML model embedded on the device should be updated
once a new model is developed and trained. With the devices scattered across the
field, a solution for updating remotely is needed. For this, it is possible to use the

Firmware Update Over-The-Air (FUOTA) process for LoRaWAN.

Introduction

1.1 Objective

It is in this context that the firmware update over-the-air campaign becomes needed,
which is the reason this thesis explores the integration of LoRaWAN-based FUOTA
with embedded ML models to enable dynamic updates in smart farming devices.

Thus, this thesis work presents the use the B-WL5M-SUBGI1 board of ST-
electronics and their FUOTA support package in tandem with the X-CUBE-AI
package to allow for the over-the-air update of ML models of devices that use this
board. To be more specific, the choice of microcontroller board and network server
used in this work stemmed from the development environment of the laboratory in
which this project was born, eLIONS group. Furthermore, the platform used to
manage the FUOTA campaign was based on the work of Sylvain et al [11], which
presented a clear technical guide for a FUOTA with the STelectronics software.
Finally, this thesis contains an introduction, present in this chapter, a literature

review that describes communication protocols used for smart farming, details
about LoRaWAN and LoRa-based FUOTA implementations.

1.2 Thesis Structure

This section will go over the structure of the entire text, starting with the chapter
2, Literature Review. After the literature review contextualizes this project,
the implementation of the solution produced by this thesis is explained in the
Implementation chapter, and the results obtained for this solution are presented
and discussed in the Experiments chapter. The last chapter ends this thesis by
furthering the conclusions achieved with this project and discussing perspectives
for future works. Finally, to better explain the protocols defined by LoRa Alliance
regarding FUOTA, an Appendix provides brief explanation about each protocol
and its important technical specifications.

Chapter 2

Literature Review

To attain a theoretical basis for this work, an extensive research was performed
to better understand the technology used in this project, and how it was used in
similar projects to realize an over the air firmware update. Therefore, the first
section will go over communication protocols used in smart farming, the second
will go deeper into the one used for the project in this thesis and encapsulate
the LoRa technology, the LoRaWAN protocol, and elucidate their characteristics.
Afterwards, the third section explores different works that made use of the LoRa
technology to realize an over the air firmware update, such an review is made to
have a benchmark to analyse the results of this project.

2.1 Communication technologies used in preci-
sion agriculture

There is a variety of communication technologies that can be used in IoT deploy-
ments. One way to classify them is by the type of network they employ, such as
WLAN (Wireless Local Area Network), WWAN (Wireless Wide Area Network),
WPAN (Wireless Personal Area Network), and LPWAN (Low Power Wide Area
Network). Thus, this section will explore different radio technologies used for
communication in studies of IoT in the context agriculture in order to provide a
reflection on the choice of network for a determined application.

In the work of Liu Kaiyi et al. [12] a system for monitoring temperature and
humidity is designed using ZigBee, which is a wireless communication protocol
intended for low-power, low-data-rate applications. It finds extensive applications in
smart homes, industrial automation, healthcare and agriculture, especially in mesh
networking, where devices can communicate indirectly through some intermediary
nodes. ZigBee, a WPAN, has low transmission power, which is instrumental
in minimizing energy consumption and allowing devices to operate for extended

3

Literature Review

periods on small batteries. Its range varies depending on the environment: It
reaches up to 100 meters in open space, while indoors or in obstacles-laden areas,
the distance usually drops to about 10-20 meters. Furthermore, it allows for a
data transfer rate of up to 250 kbps, adequate in transferring the small amount of
information that sensors and other IoT devices deal with. Therefore, the system
could fulfill its function proficiently for its intended uses. However, due to the
use of ZigBee, the system would find its limited use in smart farming due to its
range constraint, even though temperature and humidity are important weather
information for agriculture.

Sengupta et al. developed an IoT box for precision agriculture, named FarmFox,
to acquire information on soil health by measuring its moisture, temperature,
turbidity, and pH [13]. This device used Wi-Fi for its communication, which is
is a widely deployed technology of wireless communication based on the IEEE
802.11 family of standards for internet connectivity at high speeds over LANs. It
has found its applications in those segments of IoT that either require very high
data rates or need integration with any existing WiFi infrastructure, such as smart
home systems and industrial automation.

WiFi, a WLAN, works at relatively high transmission power compared to other
IoT-specific technologies, but in the FarmFox, this is offset by using solar panels
to power the battery of the device. Its range is stated to be 100 meters in this
work. Furthermore, it supports high data rates, which is one of the strengths of
this device.

Although WiFi provides high data rates, its energy consumption is higher
compared to low-power alternatives, such as ZigBee or LPWAN. Since this thesis
work does not tackle using an energy source like solar panels, this represents a
problem. On top of that, it is limited by its range when considering a deployment
across a large field.

Even though these works present a variety of solutions for particular problems in
precision agriculture, for this thesis work it seems that the use of LPWANs would
tackle a more broad solution. This is because it would, by definition, address the
issues with range and energy cost that are present in many applications of smart
farming.

2.1.1 LPWANSs

One leading LPWAN in smart farming is Sigfox, which is credited to have been used
in projects to monitor silo and tank levels, track grain stock temperatures, safeguard
remote farmhouses and structures, secure gates to prevent livestock theft, ensure
colony health with remote beehive monitoring, and oversee food temperatures
throughout the cold chain [14]. An example of use of Sigfox can be found in
WaterS, a prototype for water monitoring developed by Di Gennaro et al. It has

4

Literature Review

sensors for measuring pH, turbidity and temperature of water, and is stated achieve
self-sustainability in terms of energy by using solar panels [15]. Sigfox, used in this
work, is designed for IoT applications requiring low energy consumption, extended
coverage, and minimal data throughput. It operates in unlicensed frequency bands,
around 868 MHz in Europe and 915 MHz in the Americas.

Sigfox devices transmit at low power levels, which enables them to conserve
energy effectively. This efficiency allows devices to operate on battery power for
several years, significantly reducing maintenance costs. In terms of range, Sigfox
excels with coverage reaching up to 10 kilometers in dense urban areas and up to
50 kilometers in rural or open landscapes, making it efficient for connecting devices
in remote or sparsely populated regions.

The technology supports very low data rates. This limitation means it is suitable
only for applications requiring small, infrequent data transmissions, which is not a
problem for the monitoring applications in precision agriculture, such as the ones
being developed by the eLIONS Group. However, it should be noted that Sigfox
does not support over the air firmware updates as of 2024 [8].

There are works that identify LoRaWAN as the most suitable IoT protocol for
smart farming applications due to its ability to meet three main criteria: energy
efficiency, coverage, and scalability [7]. It was used in a monitory system for a peat
swamp forest based on IoT [16]. In this work, the sensor nodes measure the soil
and water temperature, soil moisture and water level. The collected data is sent to
the network through a LoRa gateway, then inputted into their application server
so that it can be displayed in a dashboard.

Another work for monitoring in smart farming where there was use of LoRaWAN
was conducted in Kenya [17]. In this study, the sensors that measure soil moisture,
temperature, and humidity transmit data as far as 1.2 kilometers to a central gate-
way. Data storage and analyses are done via cloud-based platforms for actionable
insights toward optimization of resources. To be more specific, it uses the services
of The Things Network for a Network Server, and it uses Node-Red to communicate
the data to their Application Server. Both of these services were used in this thesis
work, therefore they will be discussed further in another chapter.

This case study in Kenya claims that the use of the developed system can lead
to annual savings of approximately 25% -30% on energy and water. Additionally,
LoRa technology facilitated this work by providing long range communication
without high energy consumption, which reinforces the argument that it is an apt
choice for precision agriculture.

Ingenu’s RPMA (Random Phase Multiple Access) technology is pointed out by
some reviews as being another LPWAN that would be an appropriate fit for smart
farming applications [8, 18]. It operates in the 2.4 GHz ISM band, which is why it
can avoid several limits imposed by regulation on the uses of the sub-GHz bands.
It is reported to achieves up to 168 dB link budget, and -142 dBm of receiver

5

Literature Review

sensitivity, which lets it maintain proper connectivity even over a long distance in
adverse conditions. [8] According to Ingenu’s website, this technology has already
been deployed on agricultural applications, in partnerships with companies such
as with US Sugar [19]. However, academic articles about deployments of this
technology could not be found, which is a problem when considering to use it in a
thesis work.

To summarize, it was concluded that LPWANSs are well-suited for applications
that involve monitoring points scattered in a wide area in the context of precision
agriculture. On top of that, a comparison between the technlogies reviewed in
this section can be better illustrated by the Table 2.1, created with information
extracted from the study of Raza et al [8].

Table 2.1: Comparison of IoT Network Characteristics

SigFox LoRaWAN Ingenu
Band Sub-GHz ISM: | Sub-GHz ISM: | ISM 2.4 GHz
EU(868 MHz) | EU(433 MHz,
868 MHz)
Data Rate 100 bps(UL), | 0.3 - 37.5 kbps | 78 kbps (UL),
600 bps (DL) 19.5 kbps(DL)
Range 50 km (Rural) | 15 km (Rural) | 15 km (Urban)
Forward Error Correction | No Yes Yes
Medium Access Control unslotted unslotted CDMA-like
ALOHA ALOHA
Topology star star of stars star, tree
Adaptive Data Rate No Yes Yes
Over the air updates No Yes Yes

Considering that Sigfox does not present support for over the air firmware
updates as of the start of this project, it can not be used for this thesis work.
Furthermore, since the use of LoRaWAN in academic papers is much more prolific
than Ingenu, it appears to be the best choice for this thesis work. Therefore, the
following chapter will delve into its modulation, and other important aspects such
as those mentioned in Table 2.1.

2.2 Machine Learning for Agriculture

Neural networks have been used in precision agriculture for a variety of tasks,
such as yield prediction [20], disease detection [21], weed detection [22], livestock
production [23], water management [24] and soil management [25]. Furthermore,
a review in the use of machine learning for agriculture [26] indicated that within

6

Literature Review

the task of crop disease detection, Support Vector Machines (SVMs) and Artificial
Neural Networks (ANNs) are the two techniques most frequently used. In this
context, they fulfill the role of a classifier model. An example for this can be found
in [27] where spectral reflectance features are used for detection of yellow rust on
infected and healthy winter wheat canopies, which was done through a Multi-Layer
Perceptron (MLP) ANN, with reported accuracy of 98.9% for healthy wheat and
99.4% for infected wheat.

Additionally, it is fair to assume that a technique that works for disease detection
could work for plant health assessment, due to the similarity between both these
classification tasks. For this endeavor, there is a variety of features that can be
used as input for the machine learning model, such as imaging data, temperature
and air humidity.

The works from the authors in [28, 29, 30] prove that plant impedance contains
information on the plant status. Therefore, it can be used as a feature for estimating
plant health. Hence, in the eLIONS Group, this has been investigated with ANNs,
seeing as it has the capacity to deal with non-linear spaces and a great variety of
feature inputs. In their work, the neural network outputs 1 for healthy plant and 0
otherwise [10, 31, 32].

However, when considering the monitoring of a large field, the use of a LPWAN
is required. Therefore, the network has reduced data throughput, which increases
the difficulty for transmitting heavy files. This, in turn, presents an obstacle to
have a machine learning model running on the application server [9]. Due to this,
it becomes necessary to have use a model that is simple enough to run directly on
the IoT device. Furthermore, new and better models should be developed through
the progress of researches, which creates a need for the model embedded in the
device to be updated.

2.3 LoRa and LoRaWAN

When using [oT devices for precision agriculture, it is common to use Low Power
Wide Area Networks (LPWAN). The one among them that is discussed in this
work is the LoRaWAN (Long Range Wide Area Network) protocol. This chapter
will delve into its structure, technical features and characteristics.

LoRaWAN protocol is designed to coordinate LoRa communication, which is a
modulation technique derived from Chirp Spread Spectrum. That is to say that
LoRa operates on the physical layer of an IoT device, handling signal modulation,
while LoRaWAN operates on the Medium Access Control layer or higher, and aims
to address network congestion issues and manage medium access [33].

Literature Review

2.3.1 Architecture

The deployment of a LoRaWAN network is organized in a star-of-stars topology,
in which the main elements are called "end-devices" (or, "end-nodes"), gateways,
and the "network server'. In this structure, data is transmitted from end-devices
to gateways over a single wireless hop, and is relayed by the gateway to the central
network server through a non-LoRaWAN backhaul, with common examples beign
WiFi, Ethernet, and mobile (3G/4G/5G). When a message travels in the previously
described direction, it is called an uplink. On the other hand, when a message, be
it a command or an acknowledgement, is sent by the network server to the gateway
and relayed to the target end-device, it is called a downlink.

Network Server

Gateways

End-Nodes

- = - = - = - =

Figure 2.1: LoRaWAN Topology

In this work, the hardware used for the end-node was a B-WL5M-SUBG1 board
from STelectronics, which, on top of LoRa capabilities, possesses an external flash
to help with memory issues. The gateways were set up by the eLIONS Group, as
they were already being used in other works. Lastly, the network server used was
hosted by The Things Stack SANDBOX service, powered by The Things Industries,
which will be referred to as TTN henceforth in this text, which stands for The

8

Literature Review

Things Network.

2.3.2 PHY - Physical Layer

In this section, the LoRa physical layer will be explored in order to understand
how the mechanisms employed by this technology result in a robust method of
long range communication with low-power usage, which justify its frequent use
in IoT applications. To be more specific, the LoRa physical layer employs Chirp
Spread Modulation (CSS), Forward Error Correction (FEC) and Adaptive Data
Rate (ADR). These techniques will be discussed further in the following sections.

Chirp Spread Spectrum

The LoRa communication is derived from Chirp Spread Spectrum (CSS) modulation.
This patented technology revolves around sinusoidal signals whose frequency varies
with time linearly, which are called chirps [34]. Furthermore, CSS allows for low-
energy long range communication, which are the most important traits of LoRaWAN.
On top of that, it presents robustness to noise and interference. Lastly, this section
will describe the mechanisms employed by CSS modulation (such as transmission
and receiving) in order to understand why this technology is commonly used in [oT
applications that require low-power consumption and long-range communication.

Modulation and Transmission

In order to perform the transmission, CSS modulation encodes each data symbol (a
decimal value based on the binary sequence of length equal to the spreading factor
SF) into a chirp signal. In this chirp, the frequency either increases (up-chirp) or
decreases (down-chirp) over the entire bandwidth (BW). When the frequency in
an up-chirp reaches its maximum, it wraps around to the minimum frequency and
continues sweeping. For down-chirps, the frequency wraps from minimum back to
maximum, covering the entire BW in one sweep [34]. Thus, the bit rate R, and
the symbol rate Rg can be written as [35]:

BW
R, = SF x OSF bits/sec

BW

RS:QAS'iF

symbols/sec

Which helps illustrate that the spreading factor is a key parameter that influences
data rate and power consumption. Higher spreading factors lead to longer chirps
that are more resistant to noise but have a lower data rate. Conversely, lower
spreading factors use shorter chirps, allowing faster data rates with shorter on-air

Literature Review

times. On the other hand, increasing the bandwidth has the opposite effect on
data rate compared to spreading factor.

According to LoRa protocol, SF can assume integer values from 7 to 12, and
BW can be 125, 250 or 500 Hz [36]. These values can be dynamically adjusted due
to the Adaptive Data Rate (ADR) scheme often employed by LoRaWAN networks
to optimize performance, battery life, and communication range by adjusting data
rates according to signal quality and network conditions. [34, 37]. This mechanism
will be further discussed in the section about the Medium Access Control (MAC)
layer.

Demodulation and Receiving

The first chirps that a CSS receiver has to detect when a LoRa frame is sent to
it are a series of basic up-chirps, which compose the preamble of the data frame
and are used by the receiver to perform synchronization with the incoming data
stream. Then, the information arriving in the data stream has to be demodulated,
and for this the CSS receiver implements an operation called dechirping.

Dechirping is a process where the incoming chirp signal is multiplied by the
complex conjugate of a reference chirp. This converts the received frequency-swept
chirp into a single frequency signal. After this process, the receiver performs a
fast Fourier transform (FFT) on the dechirped signal. As a result of the FFT
there will be two peaks in the frequency domain (influenced by the SF and BW),
and the transmitted symbol is identified by them, allowing the receiver to decode
the transmitted data [34]. Tt should be noted that the use of dechirping in signal
processing is an advantage for IoT application because it plays an important
role in reducing noise, accurate data retrieval, and boosting the resilience of CSS
modulation. [34]

Another important characteristic of the CSS receiver is the sampling frequency.
Although the Nyquist theorem would instruct to use a sampling frequency fs >
2BW , in CSS modulation the receiver selects the sampling frequency as f¢ = BW.
This enhances symbol detection through constructive aliasing, where the frequency
components of the dechirped signal fold over in a way that reinforces the main peak
corresponding to the transmitted symbol’s frequency bin [34]. Furthermore, a lower
sampling frequency than what is proposed by the theorem means less processing
needed, which in turns reduces battery usage.

FEC - Forward Error Correction

FEC is a type of error correction in which the transmitter encodes additional
redundant data within the frame to be transmitted, which can be used by the
receiver to recover missing data. Thus, the recovery is only possible if enough data
is successfully received [38].

10

Literature Review

Therefore, to address the eventual corruption of data during transmission, the
LoRa physical layer employs Hamming codes [39], which is a FEC algorithm that
adds redundant bits to the data following a defined Code Rate (CR). The CR is a

ratio that represents the number of bits in a data stream that carry non-redundant
information [38, 40].

In LoRaWAN, the CR that may be adopted are [37]:

e 4/5

e 4/6

e 5/7

. 4/8

To further exemplify this FEC algorithm, the illustration below represents a
section of the data stream sent by the transmission when the code rate is 4/5. This

means that the transmitter generates 5 bits of information for every 4 bits that it
wants to send.

Information bits

—N—

P
Redundancy bit

Figure 2.2: Data Transmission with CR = 4/5 for FEC

11

Literature Review

Therefore, it should come as no surprise that this mechanism has an impact on
the bit rate Ry. Thus, considering this FEC mechanism, the LoRa modulation bit
rate can be written as [37]:

BW

R, = SF x 25F X CR bits/sec

Which means that a smaller CR can make the transmission more resistant to
corruption, however, it decreases the bit rate and increases air time. Furthermore,
this mechanism employed by LoRa helps in understanding its robustness, and is an
important factor in Fragmented Data Block Transport, which is one of the main
steps of FUOTA that will be discussed in the next chapter.

2.3.3 MAC - Medium Access Control

LoRaWAN is an open MAC layer specification for LoRa technology. To understand
how LoRaWAN achieves features such as energy efficiency, and security in commu-
nications, it is important to understand the mechanisms that are explained in this
section. This MAC layer permits important operations such as a join procedure that
can keep the connections secure and dynamically add devices to the network with
OTAA. It handles retransmissions, device addressing, and duty cycle restrictions so
that regulatory compliance is kept and shared spectrum used in the most efficient
way [34]. The MAC layer supports Adaptive Data Rate, which will dynamically
change the data rate and transmission power to optimize battery life and network
capacity. Other features involve device classes, where class A, B, and C serve
different needs in communication-as indicated by latency sensitivity or downlink
priority. These features enable LoRaWAN, in summary, to support various IoT
applications that come with a respective set of demands on long-range, reliable,
and lowpower communication. Thus, this section will go over these mechanisms to
further understanding the use of LoRaWAN for this work.

For example, one important definition for battery-saving imposed by the MAC
layer, based on regional parameters, is that in Europe the maximum duty cycle for
transmission in end-devices is 1%.

ALOHA

In LoRaWAN;, bi-directional end-devices communicate following an ALOHA-type
protocol, based on pure ALOHA with an additional acknowledgment mechanism
for the case of a confirmed message [41]. The ALOHA network protocol dates back
to the 70s and is still finds prolific use in the present due to its simplicity. In pure
ALOHA, the device transmit data regardless of network state, and if two devices
transmit data packets at the same time there is a collision and both packets are

12

Literature Review

lost. After detecting a collision, each device waits a random time before attempting
to transmit again.

2.3.4 LoRaWAN C(lasses

The LoRaWAN protocol define three classes for the end-devices, A, B and C. All
end-nodes are Class A-capable, which is the most energy-efficient class, where an
end-device has only two windows to receive a downlink from the gateway after
sending it an uplink [33, 41]. In Class B, devices open receive windows on scheduled
times on top of the ones that are opened after an uplink. In order to schedule the
time for these slots, they receive a time synchronized beacon from the gateway. As
for Class C, the end-device has its receive window active almost continuously. For
this reason, it is the least energy efficient class. However, this allows for lowest
latency in communication. On top of that, this class must be used to perform
the over-the-air firmware update. That is to say, the end-node of interest for this
project would be on Class A and switch to Class C in order to receive a firmware
update, and once it is completed, it would switch back to Class A.

Join Procedure

The MAC layer sets the rules for how devices will be able to join a network. Further-
more, according to LoRaWAN protocol, an end-node may join the network through
either Activation By Personalization (ABP) or over-the-air activation (OTAA) [34].
In this work, only OTAA was used. For this choice, a few considerations had to be
made.

Firstly, OTAA negotiates the device and network server security by dynamically
interchanging the keys during the join procedure. This automatically means that
session keys are unique for each device and session, something that secures it very
much. As opposed to this, ABP uses static pre-programmed keys. In case these keys
are compromised-which could be because they are intercepted or replayed-security
is jeopardized.

OTAA allows for better scalability of the network. One of the features of
configuration is that devices can be configured to automatically rejoin the network
in response to changes such as key rotations or updating networks without requiring
a manual re-configuration. This flexibility makes OTAA really suitable for big
deployments where it would be impracticable to handle handsets one by one.

Put differently, OTAA provides a better security and adaptability approach for
most use cases in IoT, especially when long-term reliability and security may matter
the most. For an end-device to use this activation method, it must be personalized
with an End-device identifier (DevEUI), a Join-Server identifier (JoinEUI) and an
Application key (AppKey).

13

Literature Review

The Join Procedure defined by the LoRaWAN protocol for this activation
requires that end-devices initiate the procedure by sending a Join-Request frame
which should contain as payload a DevEUI, a JoinEUI and a DevNonce. The
transmission of this frame can follow region-specific parameters, and in Europe it
follows the definitions of the EU863-870 MHz Band, that states that the broadcast
of this frame shall be on the channels 868.10, 868.30 and 868.50 MHz [36].

If the end-device is accepted to join the network, the network responds to the
Join Request with a Join Accept frame, through the gateway. This frame informs
the end-device of downlink configuration settings and the delay between transmit
window TX and receive window RX, among other identifiers and a non-repeating
value for key generation.

ADR - Adaptive Data Rate

Frequently, LoRa networks will utilize ADR to dynamically specify the transmission
parameters, depending on the distance of the device from the gateway. Devices
that are close to a gateway can use the lower spread factors, transmitting quickly
and with low power. Distant devices use higher spread factors in order to reach the
gateway but still maintain low power use because CSS minimizes retransmissions
even at low signal strengths.

The network server used in this work was hosted by The Things Stack. Their
service can employ an ADR scheme based on Semtech’s recommended algorithm
[42]. Tt has as a first priority keeping the signal-to-noise (SNR) ratio higher than
the minimum SNR necessary for the modulation. The second priority is to increase
the data rate, as long as the first priority is still satisfied. As a third priority, it
decreases transmission power. Lastly in case packet loss is high, it increases the
number of retransmissions [42, 43].

It achieves this by calculating a SNR safety margin, given by the difference
between the maximum SNR over recent transmissions determined through the
method described in[44] and the minimum SNR to demodulate an uplink given
the current parameters thar are defined through the method in [45]). Then, the
data rate is increased as long as there is enough margin, following the definition
in [46]. In case the data rate reaches its maximum while there still is margin, the
transmission power is reduced. The packet loss rate is addressed through [47].

2.4 Related Work

One of the earliest work to approach the FUOTA specifications for LoRaWAN
was published in 2020 [48]. In this study, the authors developed a simulation tool,
called FUOTASim, to evaluate possible parameters for this technology. This tool
was written with the SimPy package for Python, and is available on github [49].

14

Literature Review

Among the parameters that could be entered on the simulation were the number
of end-devices, the number of gateways, the data rate of the transmission, the size
of the fragments and the size of the firmware to be transmitted and the class type
for the multicast session (Class B or C).

The work presented in [48] defined important metrics for evaluating OTA
updates, such as total update time, energy consumption and update efficiency,
which is the average ratio of end-devices that successfully receive the firmware
image. One could consider that if there is a greater update time would decrease
battery lifetime, seeing as the device would consume more energy the longer it
stays on Class C. Furthermore, the results of this work have shown that the time
metric was proportional to firmware image size within the interval of 5 Kbytes and
100 Kbytes.

In the work of [50], the firmware update process did not use a LoRa protocol
based on the star-of-stars architecture such as LoRaWAN. It instead adopted
the LoRaP2P+ protocol, which employs a peer-to-peer architecture, as the name
suggests. In this work, experiments were performed with 1, 2, and 12 nodes,
evaluating the system’s performance using different spreading factors (SF8 and
SF9) at distances of 1 meter and 1 kilometer. The results showed that a 335 KB
firmware image could be reliably transmitted and applied even in the 12-node
setup. Notably, the full FUOTA process completed within 24 hours in the most
demanding scenario (12 nodes at 1 km with SF9), demonstrating the scalability and
robustness of the proposed decentralized approach for rural LPWAN deployments.
It should be noted that the maximum payload size in this protocol is 40 bytes
per packet—significantly smaller than LoRaWAN’s maximum of 115 bytes when
using SF9—which implies a higher number of fragments and potentially increased
overhead during the transmission process.

To address the limitations of FUOTA over LoRaWAN using a single gateway,
Charilaou et al. [51] extended the FUOTASim simulation framework to support
multi-gateway deployments. Their study demonstrated that gateway diversity can
significantly enhance update performance by increasing fragment delivery success
and reducing transmission distance. Simulations with up to 30 gateways and 10,000
devices showed that, particularly for larger firmware images (e.g., 100 kB), multiple
gateways reduced update time from over 11 days (single gateway) to less than 19
hours. Moreover, update efficiency reached 100% when 23 or more gateways were
deployed, even with low spreading factors such as SF7. The authors evaluated the
impact of redundant fragments and found that, in scenarios with fewer gateways,
redundancy helped improve update success, albeit at the cost of higher energy
consumption. These findings underscore the importance of gateway placement and
spatial diversity in enabling scalable and energy-efficient FUOTA in large-scale
LoRaWAN networks.

Security has been a major concern in FUOTA research. Anastasiou et al. [52]

15

Literature Review

proposed a blockchain-based framework to enhance the integrity and authenticity
of firmware updates over LoRa. Their architecture leverages smart contracts to
verify device eligibility and firmware metadata before installation. Although their
system supports multicast transmission using FUOTA specifications, the evaluation
was conducted using unicast downlinks, which poses significant scalability issues.
For instance, updating 200 nodes with a 50 KB image using SF12 was estimated
to require up to 62 days. A complementary approach is presented by Mtetwa
et al. [53], who employed blockchain to secure firmware delivery, focusing on
devices operating in remote and unpredictable environments. While these solutions
strengthen the security layer of FUOTA, the reliance on unicast transmission and
the lack of gateway diversity suggest limitations in terms of update speed and
network scalability.

Aiming to improve update time efficiency, Malumbres et al. [54] investigated the
combination of unicast and broadcast transmissions in the firmware update process
over LoRa networks. Their study focused on industrial IoT devices in environments
where energy is not a limiting factor and minimizing update time is the main priority.
Three methods were analyzed: only unicast, broadcast followed by unicast for
missing chunks, and only broadcast. Through analytical modeling, simulation, and
partial real-world testing, the authors showed that hybrid methods can substantially
reduce update time compared to pure unicast. In some scenarios, especially with
a large number of nodes and favorable link conditions, the total update time was
reduced by up to two orders of magnitude. The results demonstrated that the
optimal number of initial broadcast rounds depends on the packet loss probability,
with higher loss environments benefiting from multiple rounds to minimize the
required unicast retransmissions.

With the goal of building a perspective on the range of time that the over-the-air
update can take, the Table 2.1 below was made based results found in each of the
works cited in this section. Together with each update time presented, this table
shows different factors that affect the update speed.

The comparison presented above highlights the wide variability in FUOTA
performance across different implementations, protocols, and experimental contexts.
One of the most evident trends is the direct relationship between firmware image
size and update duration, which confirms that transmission time scales linearly with
the volume of data, especially in scenarios using unicast. However, this is not the
only determining factor. The number of gateways, type of transmission (unicast,
multicast, broadcast), payload size, and data rate (which is itself determined by
spreading factor and bandwidth) all play significant roles in the overall performance
of the update process.

Among the studies surveyed, the shortest update time per kilobyte of data was
generally observed in setups that used multiple gateways and multicast delivery. For
example, Charilaou et al. demonstrated that increasing gateway count dramatically

16

Literature Review

Table 2.2: Comparison of image transmission parameters across different studies

[48] [50] [51] [52] [53] [54]
Image Size
(kB) 100 335 10 50 5 100
Datarate 3 3 5 5 0 5
Time 220 932.5 16667 2160 31.1 6000
(Minutes)
Number of
Gateways 1 1 g 1 1 1
Number of 1 12 10000 200 1 70
Nodes
Unicast
Casting Multicast | Broadcast | Multicast | Unicast | Unicast and
Broadcast
Payload Size 115 40 222 222 51 215

improved update efficiency, reducing transmission time from over 11 days to under
19 hours for a 100 kB image when 23 gateways were used. This underscores the
importance of gateway diversity in reducing transmission range and improving
delivery reliability, especially in large-scale deployments.

In contrast, systems that relied solely on unicast delivery—particularly those us-
ing higher spreading factors (e.g., SF12)—suffered from extended update durations.
Anastasiou et al’s blockchain-secured approach required up to 62 days to update
200 nodes with a 50 kB image, highlighting the practical limitations of unicast in
large-scale deployments, regardless of the additional security it may offer. Even
with fewer nodes, such as in the work by Ho Teck Khieng et al., which used only
12 devices, the 24-hour update time for a 335 kB image shows how quickly time
requirements can grow with firmware size and network constraints.

The protocol architecture played a notable role. For instance, LoRaP2P+—a
peer-to-peer protocol used in one of the studies—achieved a functional performance
to update 12 end-nodes in under 16 hours, but at the cost of smaller payload
sizes and a decentralized model that may be less practical in managed network
environments. On the other hand, hybrid approaches that combined unicast and
broadcast, as studied by Malumbres et al., offered significant performance gains in
environments where energy constraints were less critical and rapid update cycles
were prioritized.

Although the table aggregates key parameters such as payload size and data rate,
it is important to note that many relevant factors—such as packet loss rates, duty
cycle enforcement, gateway scheduling delays, and retransmission strategies—were

17

Literature Review

not consistently reported across studies. This makes direct comparison imperfect.
Nevertheless, the overview provides a valuable reference for what can be expected
in terms of performance boundaries for FUOTA over LoRa-based systems. It
supports the rationale for the implementation presented in the next chapter, which
was developed with the understanding that not all optimization factors could be
controlled or replicated, particularly under real-world constraints such as limited
gateway access, regulatory limitations on downlink scheduling, and incomplete
vendor documentation.

Ultimately, the comparison serves not only to situate this thesis within the
broader landscape of FUOTA research but to demonstrate that there is room for
improvement, especially in balancing scalability, reliability, and update speed in
constrained environments.

18

Chapter 3
Implementation

This chapter will detail the steps taken to bring this project into reality, with the
goal of providing the reader with the necessary knowledge to reproduce the project.
Therefore, this chapter is divided between a section that describes the materials
and methods used for the project, and a section that explains a user guide to allow
any reader to reproduce the work in this project.

To briefly explain, in practical terms, how an user would perform a FUOTA
process for their project after deploying their end-device(s) that are embedded with
FUOTA-able software: The user would develop their new firmware on their local
machine, and generate a file containing the fragmented firmware image. Afterwards,
through their Application Server (dashboard hosted on Node-Red) the user would
send commands to the Network Server, hosted by The Things Network (TTN),
that would then pass them on to the gateway and send them to the End-Device.
These commands would be unicast downlinks to have the end-device(s) enter a
multicast group, prepare for a fragmented data block transport session, or switch
to Class C. Once this preparation has been done for all target end-devices, the user
would upload their fragmented image onto the Application Server, and with the
click of a button the server would periodically send each fragment to the Network
Server, which, through a defined multicast group, would use one of the registered
gateways to transmit each fragment to the end-device(s) as a multicast downlink.

In regards to the choices made for the implementation of this project, some
considerations are made based on the theoretical insights discussed in the Literature
Review. Firstly, the choice of LoRaWAN as the communication protocol was
motivated by its balance between long-range transmission, low power consumption,
and support for Firmware Update Over-The-Air (FUOTA), as indicated in Table
2.1. These characteristics are particularly relevant in the context of precision
agriculture, where end-devices are deployed across wide areas with limited access
to power sources. Furthermore, the academic prevalence of LoRaWAN in FUOTA-
related work, as opposed to alternatives like Sigfox or Ingenu, provided a strong

19

Implementation

basis for its selection in this project.

Additionally, the reduced throughput of LPWAN networks, highlighted in
Section 2.1.1, reinforced the need for running machine learning models directly
on the end-device. This design avoids the necessity of transmitting large volumes
of data, such as images, through constrained channels. The discussion in Section
2.2 emphasized the feasibility of embedding lightweight neural network models
in microcontrollers, which was incorporated into the firmware design using the
X-CUBE-AI middleware.

Lastly, the implementation relied on an understanding of the LoRaWAN device
classes, as discussed in Section 2.3.4. The project leverages the Class A mode
for regular operation to preserve battery life and temporarily switches to Class C
during the FUOTA session, as required by the LoRa Alliance specification. This
transition was carefully implemented and automated through the use of downlink
commands, as detailed in the following sections. Thus, the concepts explored in
the Literature Review provided the theoretical foundation for the design choices
that guided the development of the solution presented in this work.

3.1 Materials and Methods

This section aims to provide a detailed description of the software and hardware
utilized in this project. It serves to establish the foundational understanding of the
tools and resources required for a user to replicate the work, thereby facilitating a
clearer comprehension of the procedures outlined in the subsequent sections.

3.1.1 Hardware

For the implementation of the project in this thesis, the board used as an End-
Device was the B-WL5M-SUBG1 board of STMicroelectronics. This board was
chosen by the eLIONS Group because on top of its LoRaWAN capabilities, it
possesses an external flash memory, which should help with allowing for space to
run the machine learning model on the device. Additionally, since this board is part
of the WL series, it can be used with the STMCubeWL software package. This
package provides helpful tools and a basic example for a FUOTA-able LoRaWAN
end-device. Furthermore, the FUOTA campaings were performed remotely with
the gateways at the eLIONS group office.

3.1.2 Software

The software used as a terminal to monitor the board on a local machine is Tera
Term. With this open source tool, it was possible to see the application logs
of the end-device through a simple configuration. The network server for this

20

Implementation

project was hosted by The Things Stack SANDBOX, a free service provided by
The Things Network, where most of eLION’s LoRaWAN projects are hosted. Their
feature of backing up application logs was helpful for keeping track of the update
time each FUOTA session took. Node-Red was used to deploy the Application
Server. This development tool, that allows for flow-based visual programming,
was used to create a dashboard that would be easy to use for future researchers.
This dashboard was based around the work of [11], but with modifications and
additions to make it compatible with TTN and allow for the Multicast Downlink of
firmware fragments. This work included writing function blocks in Javascript, and
the communication between Application Server and Network Server is brokered
by MQTT. To work on the firmware of the End-Device, it was necessary to
use tools from STMicroelectronics, such as the STM32CubeProgrammer and
STM32CubelDE version 1.12.1. On top of that, the STMCubeWL software package
was helpful as a basis and a validation set for the firmware.

3.2 Deployment and Replication Instructions

This section will go over the steps to be taken in order to reproduce the results of
this work, and how to use the tools developed for it. To be more specific, this guide
is for a project that performs FUOTA with the hardware and software required
by the eLions Group, that is, the B-WL5M-SUBG1 board and the T'TN service
for Network Server. Furthermore, the code for the Application Server used in this
project is specific to work with TTN and follows the stipulations of LoRa Alliance
for FUOTA.

First, it will go over how to utilize the FUOTA software found in STM32CubeWL
for the End-Device, without applying significant changes to it. Then, it will describe
how to use the TTN services for registering an End-Device, a Gateway, and a
Multicast Group as this is a necessary step for configuring the network server of
this project. Afterwards, it will address the code used for the Application Server,
the changes and additions made to it, and how it can be used for future researchers.
Lastly, this section will go deeper into modifying the firmware for the End-Device,
to allow it to run an embedded ML model, and how to modify the memory mapping
to allow for more space if the need were to arise.

3.2.1 Building and programming the firmware

This section will briefly explain how to build and program the firmware provided in
STM32CubeWL for FUOTA in the B-WL5M-SUBG1 board. These instructions are
still valid when using the firmware developed to support ML models. First, the user
should navigate to the directory with the scripts in the folder structure, open the
setenv.bat file with any text editor and make sure the path CUBEPROG__EXE and

21

Implementation

CUBEIDE__EXE is properly set. Then, the user ought to enter the STM32CubelDE
directory and run the script build.bat. Afterwards, the user should connect the
board to their PC with the STLink-V3, and power the board, which can be done by
connecting a USB-C cable to the board extension. Lastly run the script program.bat
and power cycle the board.

To monitor the board on a local machine, the user may configure Tera Term
by selecting Baud rate of 9600, and configuring New Line Receive to AUTO on
the Terminal Setup tab. After power cycling the board, if Tera Term is connected
through the virtual COM port of the ST-Link, the user should see the log shown
in Figure 3.1.

3.2.2 The Things Stack SANDBOX - Network Server

The Things Stack SANDBOX is the name of the service used as network server
for this project, referred to in this text as TTN. This subsection will explain the
steps required to take in this platform. After logging on an account on TTN; it is
necessary to create an application or use an existing one to register the end-device
and the multicast group. In case no gateways are registered, it would be necessary
to register one.

Registering the End-Device

After clicking on "Register end-device" on the Application Overview, the user must
select the option "Enter end-device specifics manually" under the Input method.

Then, the Frequency plan, LoRaWAN version and Regional Parameters version
used by the user’s device must be selected. An example of the registration is shown
in Figures 3.2 and 3.3.

22

Implementation

(C) COPYRIGHT 2017 STHicroelactronics

SBOOT] SECURE EMGINE IMITIALIZATION SUCCESSFUL
(SBOOT] STHTE: CHECK STHTUS ON RESET
INFO: A Reboot has been tr lqllulud hu a Harduare reset!
[SBOOT] STATE: CHECK MEM FIRHHARE TO DOWHLOAD
[SBO0T] STHTE CHECK ERS BLOE TO INSTHLL
[SBOOT] STATE: CHECK USER FH STHTUS
A CZ FH is detected in the slot SLOT_ACTIVE 1

H (1 FH iz detected in the slot SLOT _HCTINE 2
[SBOOT] STHTE: VERIFY USER FH SIGHATURE
[SBOOT] STATE: EXECUTE USER FIRHHARE
CHOPLUS = Lova registrat ion done

4 APP _MERSTON: V1.3.0

OPLUS_APP MERSION: Y1.3.0

H_LORAHAW_VERSION: Y2.5.0

H_RADIO VERSION: v1.3.0

2 SPEC_VERSTOM: \V1.0.4

P_SPEC_VERSTOM: U2-1.0.1

Appkey: 2B:7E:15:16:28:RE:D?:A6:AB:F?:15:8
Hukkey: 2B:/E:15:16 E:' :02:A6:AB:F7:15:8
HppSkey: B /Ex15:16:28:RE:02:H0:AB:F /21525

8:09:CF=4F=3C
S:00:CF=4F:3C
8:09:CF=4F:3C

Figure 3.1: System Boot on TeraTerm

Lastly, in "Provisional information", the user must input some identification
information about the end-device. This information can be found at the se-identity.h
file of the user’s LoRaWAN End-Node project. Furthermore, the DevEUI of their
device can be found written physically on their hardware. On the se-identity.h
file, the DevEUI set to all zeros means that it will use the unique DevEUI written
on the hardware. With regards to the end-device ID, the user has more liberty
of choice. It is simply a name that must be unique within the application. After
clicking on Register end-device, the registration will be completed successfully.

23

Implementation

Register end device

Does your end device have a LoRaWAMN® Device Identification QR Code? Scan it

(8) Scan end device QR code I Device registration help

End device type

Input method @
5elect the end device in the LoRaWAMN Device Repository

0 Enter end device specifics manually

Frequency plan @ *

Europe 863-870 MHz (SF9 for RX2 - recommended)

LoRaWAN version @ *

LoRaWAN Specification 1.0.3

Regional Parameters version & *

show advanced activation, LoRaWAN class and cluster setfings

Provisioning information

JoinEUI @ *

Figure 3.2: End-device Registration Part I

Gateway

After clicking on "Add new gateway", the user ought to provide the website with
their gateway EUI, an arbitrary gateway ID and a gateway name. Then, the user
must select the frequency bandplan used by the gateway. It should be noted that

24

Implementation

for the gateway to work properly, the user should choose a bandplan compatible
to the region of the TTN cluster they are using, for example, EU869 for the eul
cluster.

Provisioning information

JoinEUI @ *

DevEUI @ *

76 B3 D5 7E DO 06 CF 1E 2/50 used

AppKey @ *

22 29 39 DB 9D F7 BE OF 4D 18 A3 C3 69 B2 45 61 3 Generate

End device ID@*

example-end-device

After registration
® View registered end device

Register another end device of this type

Register end device

Figure 3.3: End-device Registration Part II

Multicast Group

Creating a Multicast Group on TTN is similar to an End-Device, because it is
treated as a virtual end-device. The main difference lies in selecting a different
activation mode: ABP & Multicast instead of OTAA. After this, the user must write,
in the Provisioning information section, the Multicast Address (McAddress) as the
Device Address, and the McAppSKey and McNetSKey as AppSKey, and NetSKey
respectively. These multicast session keys and the address can be generated in the
Application Server, as will be explained later.

Sending fragments to this virtual device is different from sending to an end-
device operating in Class A. This is because in Class A, the uplinks from the
end-device provide the network server with the necessary path information for
sending a downlink. However, this path information is not sent by the end-device

25

Implementation

if it is operating on Class C, therefore, the downlinks that are to be sent to the
multicast group have a different format, as explained on this TTN page [55]. To
summarize, the message sent by the Application Server must carry the information
of the absolute time to send the downlink, and the IDs of the gateways to use for
transmitting it.

3.2.3 Application Server

For any complex use of LoORaWAN, an Application Server is necessary. A FUOTA
campaign is no exception to this. In this work, the application server is hosted
with Node-RED and is based on the work of Sylvain et al. [11]. It takes the
form of a dashboard and uses MQTT to communicate with the TTN server. The
three main functions of this dashboard can be summarized as uplink decryption,
downlink encryption and downlink automatization. The following subsections
describe how an user could setup this Application Server, in order to reproduce the
results of this work, and afterwards will aim at a deeper explanation of its main
functions. The Application Server communicates with the network server through
an Publish/Subscribe (Pub/Sub) messaging pattern. In this project, the messages
are brokered via MQTT, which allows the dashboard hosted on Node-RED to
receive and transmit data from and to The Things Network.

On one direction of information flow, related to the uplinks, TTN acts as the
publisher, sending device messages to a specific MQTT topic, while Node-RED
subscribe to that topics to consume the data. On the other direction, related
to the downlinks, the dashboard acts as the publisher and the network server as
the subscriber. This architecture enables real-time, event-driven communication
between them.

3.2.4 Configuring the dashboard and Firmware Fragmenta-
tion

After installing the necessary software, the user should open command terminal
and run node-red, then access the address localhost:1880 in any browser. Then,
the user should import the .json files for the dashboard into the platform. However,
before e deploying, it is necessary to configure the MQTT broker and the topic to
subscribe to receive uplinks.

To do such, the user ought to double click on either the Publisher or Sub-
scriber node (purple nodes) and then select to edit the broker. Then, in Con-
nection, they write the address of the TTN cluster they are using (in this case,
eul.cloud.thethings.network), and port 1883. Then, in security the username is the
application ID, and the password is the API key that was generated.

26

Implementation

Then, to configure the Subscriber node, the user should click on the "Topic
to subscribe" node and write 'v3/APPID@ttn/devices/ DEVID /up', replacing
the APPID and DEVID by their application id and device’s id on TTN. Fi-
nally, they can click on deploy and open their dashboard by going to the address
localhost:1880/ui.

Before using the dashboard to perform FUOTA, the user must fragment the
firmware image to be sent to the device. A possible logic for the generation of
fragments, with redundancy, is found in [56], and this project made use of the
python script written by Sylvain et al. [11] to fulfill this task. As defined by the
LoRa Alliance protocol, each fragment of the image has 3 bytes to serve as header
for its information. Therefore, a fragment of 115 bytes carries 112 bytes of actual
fragmented data.

3.2.5 Multicast Session Setup

To setup a Class C Multicast session, it is necessary to generate multicast session
keys that are used by the end-devices and by the network server to communicate.
To realize this on the dashboard for Multicast, the user would make use of the
AppKey defined in the firmware, which can be found in the file se-identity.h, as the
GenAppKey for the random generation of session keys, as shown on Figure 3.4.

With the keys, it is possible to create the McGroupSetupReq command, and
send it as an Unicast Downlink. If the setup is succesful, the board will send an
uplink with hexadecimal payload of 0200 to the port 200, which can be seen in
the dashboard. To have the board switch to Class C, the user must generate the
McClassCSessionReq command. This command takes into account the absolute
time to start the Class C session, and the answer that the board sends to this
command informs the user of the time, in seconds, until the session start. This
is leveraged in the Uplink Decryption of the dashboard, to facilitate the process
for the user. Both these commands are to be sent to the port 200 of the device as
Unicast Downlinks.

Uplink Decryption

The end-node will periodically send uplinks to the network server, as it is LoRaWAN
standard. To receive them from the network server into the dashboard, it is necessary
to use a Subscriber node to listen to data on the appropriate topic. The correct
topic is defined by the identification of both the "end-device" and the "Application”
on the TTN console.

27

Implementation

Multicast Session Generator

CArApE iy

Py
2B7E151628AEDZAGABFT158809CF4F3C

GEMERATED KEYS =-----smsermmmmssm s s s s s s m s s mm

McAddr (big endian, to set in NS side) fabeccld
Mcaddr (little endian, to set in command) 14cchefa
McKey_encrypted c060c890ff89bb8168d9535767934018
DERIVED KEYS - -ocomcmmemmme oo me e oo

McRootKey 7df76b0c1ab899b33e42f047b91b546f
McKEKey 8cb8665e0c0elbbd5b2edIedBal9277c

DECRYPTED KEYS ------vnnnsmsnsmsmsmmsnmseemeenesamsseeeeeeaneeneeaeee

McKey 2931d0608c5d7eccbe377f342dee3T0e

MULTICAST SESSION KEYS ----cccmmmmmmmcsmccscsccc s sscssa s s asmsnnnn

McAppskey B5a4218bB87b5923f4ad2fTe562d3aala
McNetsKey b9elcd7ad21f49dabf1cccbf370b3866
Mcaddr (= DevAddr of the multicast group) fabeccld

Figure 3.4: Multicast Session Keys Generator

On top of the periodic messages, the device can send messages specific to a
particular protocol of the FUOTA implementation. Thus, once the message is
received by the Subscriber, the first step is to evaluate which is the port of the
message. This tells the user the general topic of the message, for example, an
uplink related to a Data Fragmentation Session would be sent to the port 201.
Then, it is necessary pass the payload from Base64 to Hex, which will help in the
Uplink Study. The study based on Hex had already been implemented by Sylvain
et al. [11] and translates the payloads defined by the LoRa Alliance protocols into
plain english. An example of this is shown on Figure 3.5, where the end-device

28

Implementation

sent an answer to a request to set up a fragmentation session.

DevEUI 054839E50080E115
Command type
FragSessionSetupAns
Fent 36
Port 201 Command analysis
Fragindex: 0 / Descriptor: OK /
FragSessionindex: OK / Memory: OK /
Payload AgA= Encoding: OK

Figure 3.5: Uplink Decryption Example

An addition was made to this capability of the dashboard, to allow for reading
the "Time to start the session" information, contained in the uplink that answers
the request for a Class C session. This was helpful in making sure that the clock
on the End-Device was synchronized with the server.

Downlink Encryption

Another helpful feature of this dashboard that was implemented in Sylvain et al.
[11] are the windows that display commands that can be sent to the end-device in
hex code. These commands are defined by the LoRa Alliance protocols summarized
in the FUOTA chapter. This functionality is particular useful for generating
and displaying the command to set up a fragmentation session, as the particular
command depends on parameters like the number of fragments that are intended
to be sent.

In the console of TTN, it is possible to send the command in hex code to the
specified port of a chosen end-device. However, to send a downlink through the
API of TTN server, it is necessary to encode the payload as Base64. It is necessary
to configure a Publisher on Node-RED, considering the intended application and
end-device identification. The general setup for a downlink in the dashboard was
made following the definitions on TTN github page. Sending downlinks through
the API becomes particularly important when many downlinks have to be sent in
a row, which is better explained in the next subsection. Lastly, Figure 3.6 shows
an example of a command generated to setup a fragmented data block transport
session. This command would be sent to the port 201 of the end-device.

29

Implementation

FragSessionSetupReq

Command
0200820270003001010200

Session (0, 1,2, 0or3)"

McGroupBitMask (e.g.: group 1 is '0010") "

Number of uncoded Frag. (dec, max 65535) °

Fragment size (dec, max 255 bytes)

Fragmentation algorithm (shall be 0 that is FEC) *

Ack Delay (0,1, .., or 7) "

Padding (dec, max 255 bytes) ”

Descriptor (hex, 4-bytes length)

CREATE COMMAND CANCEL

Figure 3.6: Command Generation Example

Downlink Automatization

As defined by the LoRa Alliance protocol, the encrypted firmware images to be
updated are to be sent through fragments. That is because of the limitation on
the maximum size of a LoRa packet. Therefore, to perform FUOTA, hundreds of

30

Implementation

downlinks in sequence are necessary. In TTN console, the user has to input down-
links manually and there is no way to automatize or schedule multiple downlinks.
Thus, the most important task for the Application Server is to perform multiple
downlinks through the API of TTN from a single input from the user, as long as
the user uploads the fragmented image file into the dashboard and succesfully sets
up the fragmentation session with the device. This automatization had already
been implemented by [11], and was changed to work with the API of TTN by
encoding the downlinks in Base64 and changing the configuration of the Publisher.
Furthermore, it was necessary to adapt the downlinks to work with as class C
multicast downlinks with T'TN, so further modifications were made. In this case,
the ID of the gateway can be inputted by the user on the dashboard, and scheduled
time for each downlink can be obtained through a chronometer block on Node-Red
that sets the time as a global variable. All the fragments sent for FUOTA should
be sent to the port 201.

3.2.6 Updating a ML model with FUOTA

The work to have an firmware able to be updated through FUOTA and at the
same time support an ML model was based around the example in the package
STM32CubeWL. In this folder structure, the projects unrelated to the FUOTA on
the B-WL5M-SUBG1 were excluded.

The FUOTA project can be interpreted as 4 differents projects: SBSFU, KMS-
Blob, SECore and the LoRaWAN Endnode. On addition to this, a 5th "separate"
project was added to the structure, that makes use of X-CUBE-AI middleware
and is used to generate the files for the ML model to be updated. To reproduce
this, the user would create a New Project for the board B-WL5M-SUBGI1 in
STM32CubelDE. Then, in the graphical interface, go to Software Packs > Select
Components (Alt + O). Then, they should find the STMicroelectronics XCUBE-AI
middleware and enable the Core in the latest version, as shown in Figure 3.7.

v STMicroelectronics X-CLBE-Al 9.0.0
X-CUBE-Al 2.0.0
Core 9.0.0 |
Applcaton 900
Application Hot selected

Figure 3.7: Enabling X-CUBE-AI Middleware

In the Middleware and Software Packs, the user ought to select X-CUBE-AI
and load the desired model onto the Project, as shown in Figure 3.8.

31

Implementation

Middieware and Software Packs - Runtime conlexts

Corten-M4 Comiex-MD+
M4 MOP =

\TFS B Andicial bieligence X-CUBE.AI

EERTOS Rosol Configration || Dewveloper Cloud T—

L

:
a @
E =

[GrcuEA | v | m |

Figure 3.8: Uploading ML model to the IDE

Afterwards, the user should save the .ioc file and generate code. Then, they
should proceed with the following steps:

1.

Copy the CM4/X-CUBE-AI folder into the LoRaWAN_End_Node_DualCore/CM4
folder of the FUOTA project.

Copy the Middlewares/ST/AI folder into the Middlewares/ST folder of the
STM32CubeWL package.

Open the End Node project (LoRaWAN_End_Node_DualCore/CM4) on
STM32CubelDE and create virtual links to those folders.

(a) Left click > New > Folder > Advanced > Link to alternate
location (Linked folder).

Change the main.c file of the core CM4 to include Al files and initialize the
model.

The user then should change “include paths” and libraries on the Properties of
the CM4 Project:

1. Copy the CM4/X-CUBE-ATI folder into the LoRaWAN_End Node_DualCore/CM4

folder of the FUOTA project.

2. Copy the Middlewares/ST/AI folder into the Middlewares/ST folder of the

STM32CubeWL package.

3. Open the End Node project (LoRaWAN_End_Node DualCore/CM4) on

STM32CubelDE and create virtual links to those folders.

32

Implementation

(a) Left click > New > Folder > Advanced > Link to alternate
location (Linked folder).

4. Change the main.c file of the core CM4 to include Al files and initialize the
model.

5. Left click on the CM4 Project and select Properties. Go to C/C++ Build
> Settings > MCU GCC Compiler > Include paths and add the following
paths:

e ../../../CM4/X~CUBE-AI/App
e ../../../CM4/X-CUBE-AI
o /. /.S /.. /.. /.. /Middlewares/ST/AI/Inc

6. Still on the Settings tab, go to MCU GCC Linker > Libraries, and add the
library:

¢ NetworkRuntime900_CM4 GCC.a
And the library search path:
o ../ /S). /.. /Middlewares/ST/AI/Lib

These settings are based on what was generated by the X -CUBE-AI project.
With this, the necessary libraries for Al should be built into the project, as shown
in Figures 3.9 and 3.10.

It should be noted that even though the board has two cores, M4 and M0+, all
the software needed for running the ML model is built for the core M4. Therefore,
updating only the firmware for M4 is sufficient for updating the ML model on the
end-device.

Throughout the sections in this chapter, the steps taken to realize a FUOTA
campaign in this project have been explained. In the following chapter, there is a
presentation of the tests made aiming to validate this implementation and evaluate
this solution within the context of smart farming.

33

Implementation

[T Properties for LoRaWAN_End_Node_DualCore_Ch4

(@] X
type filter text Settings G - i
» Resource
Builders
« /s » Build Configuration: Debug [Active] ~ | Manage Configurations...
Build Variables
Es nt
L:;';‘::g’"“ ® Tool Settings & Build Steps " Build Artifact ki Binary Parsers © Error Parsers
Settings # MCU Toolchain Include paths (-1} 2443
> C/C++ General & MCU Settings
CMSIS-SVD Settings 2 MCU Post build outputs
Project References ~ B MCU GCC Assembler
Run/Debug Settings 8 General ffUtilities/Ipm/tiny_lpm
8 Debugging 14 /Drivers/CMSIS/Device/ST/STM32WL/Include
M i :
‘fﬁe“““‘” .14 /Middlewares/Third_Party/LoRaWAN/Mac
& Include paths y
& Miscellaneous . X
~ ® MCU GCC Compiler St dd ot t. S IMiddlewares/Third_Party/SubGHz_Phy
& General oo oS SDrivers/CMSIS/Include
3 Debugging /. /Linker_Common/STM32CubelDE
(3 Preprocessor
& Include paths
¢ Optimization
& Wamings Include files (-include) CEE
& Miscellaneous
~ ® MCU GCC Linker
& General
& Libraries
& Miscellaneous
Restore Defaults Apply
. . .
Figure 3.9: Configuring the include paths for the End-Node
[Properties for LoRaWAN_End_Nc alCore CM4 o
type filter text Settings S - §
> Resource
Builders : -
v C/C++ Build Configuration: Debug [Active | ~ Manage Configurations...
Build Variables
Envi it -
L:vglgr?r:‘;'e " ® Tool Settings # Build Steps " Build Artifact i} Binary Parsers @ Error Parsers
Settings. # MCU Toolchain aries (-1) 2885

> CfC++ General
CMSIS-SVD Settings
Project References
Run/Debug Settings

(5 MCU Settings
(2 MCU Post build outputs

v 18 MCU GCC Assembler

(% General

&2 Debugging

& Preprocessor

% Include paths

& Miscellaneous
1§ MCU GEC Compiler

2 General

3 Debugging

& Preprocessor

2 Include paths

2 Optimization

& Wamings

(% Miscellaneous
v & MCU GCC Linker

& General

% Libraries

3 Miscellaneous

Library search path (-L)

(] Place libraries in a linker group (-WI,-start-group ${LIBS) -W,~~end-group)

(8 Use C math library (-WI, group -lc -Im -W,--end-group)
Restore Defaults Apply
Apply and Close Cancel

Figure 3.10: Configuring the library path for the End-Node

34

Chapter 4

Experiments

There are three experiments reported in this work. One was made with the FUOTA-
able firmware made available by STMicroelectronics in an almost unchanged form,
with fragments sent by Unicast, as to validate the expected behavior for the other
two experiments, but with a firmware that can run a ML model along with the
LoRaWAN software necessary for remote updates.

To keep track of time in all experiments, it was possible to use the messaging logs
kept by the network server for the end-device. The end-device, while in Class A,
sends periodic uplinks to a frame port defined in its firmware. By changing which
frame port is used for these periodic uplinks on the firmware to be transmitted, it
is possible to check that the update was completed by observing a different frame
port being used for these periodical uplinks. Therefore, the first uplink to the new
frame port logged on TTN would have the timestamp considered as the end of the
update process. This time would account for the end-device rebooting with new
firmware and reconnecting with the Network Server.

Unicast without ML

The first experiment made use of the FUOTA-able firmware made available by
STMicroelectronics in an almost unchanged form. For this test, all that was
needed to develop was the Application Server, which is described here, and it was
performed in the first month of the thesis work as to have an initial validation of all
the parts involved in the work. Since the fragments were to be sent with Unicast
Downlinks, the only command necessary to setup the process was the request for
a fragmentation session. Once the end-device sent an uplink signaling that the
setup was succesful, the transmission can be started. Initially, the end-device would
send uplinks to the frame port 2, and after the update, to the port 5. As further
confirmation of a succesful update, it was possible to check the logs on TeraTerm.

35

Experiments

Unicast with ML

In this second experiment, the possibility to remotely update the ML model running
on the end-device was validated. The steps taken to complete the process are the
same. However, since the firmware image to be transmitted is larger, it is expected
that the process takes more time, as there are more fragments to send. Although,
since it uses the board on Class A, the update time would multiply with the number
of end-devices in a real applicationFurthermore, it is possible to verify the correct
behavior of the board by checking the logs on TeraTerm.

Multicast with ML

This experiment followed the protocols for FUOTA defined by LoRa Alliance more
rigorously, in the sense that all fragments were transmitted as multicast downlinks.
This would allow for a more scalable update process in a real application with
multiple devices, as the need to update each device individually is eliminated. To
setup the session, it is necessary to send three unicast commands to each end-device
(in this case, still one): The Multicast Session request command, that tells the
end-device which multicast group to join and listen to, the Fragmentation Session
Request command, to setup te data block transportation session, and the Class
C Session Request command, to tell the end-device the time to switch to Class
C and start receiving the multicast downlinks. The answers the board sends to
each of those commands can be seen on the dashboard. When using multicast
downlinks, there is a limitation on the size of the message that cannot exceed 51
bytes. Therefore, smaller fragments then the ones used before had to be generated,
which means more fragments to represent the firmware image. This incurs in a
increased update whe compared to the same experiment with unicast for a single
end-device. Furthermore, this experiment was performed with gateways that were
concomitantly used for others project. This created a restraint to its utilization,
seeing as sending the downlinks with a interval too short would raise the gateway
duty cycle to above 1%, which is illegal in Europe. Consequently, the update time
increased due to the longer intervals between fragment downlinks.

4.0.1 Results

The results from the three experiments offer a comprehensive view of the perfor-
mance characteristics and limitations of firmware update over-the-air (FUOTA)
deployments using LoRaWAN in realistic settings. Each test highlights distinct
aspects of the system, revealing how firmware size, transmission mode, and network
configuration affect overall update efficiency.

In the first experiment, the use of unicast downlinks for a relatively small
firmware image—devoid of machine learning components—confirmed the correct

36

Experiments

operation of the FUOTA pipeline under minimal load. With 321 expected fragments
and 16 lost during transmission, the process achieved a packet delivery ratio of
approximately 95%, and completed in 56 minutes and 31 seconds. This result
demonstrated that the system’s components, including fragmentation, scheduling,
and post-update reboot, functioned as intended.

The second experiment introduced a larger firmware image containing a machine
learning model. As expected, the number of fragments increased to 450, with 24
lost during transmission, resulting in a similar delivery ratio of 94.67%. The update
was completed in 1 hour, 19 minutes, and 22 seconds. The consistency of the
reboot duration, as inferred from the delay between the last downlink and the first
uplink with the new frame port, suggests that the additional firmware complexity
did not affect the system’s post-update behavior. These results confirm that the
FUOTA procedure remains stable even when the firmware incorporates embedded
ML functionality. However, since all fragments were delivered via unicast, the time
required to update a larger group of devices would grow linearly with the number
of nodes.

The third experiment implemented multicast transmission for a firmware image
containing the ML model. This setup required a more rigorous adherence to the
FUOTA protocol defined by the LoRa Alliance. Due to the use of data rate 0, the
maximum payload size was constrained to 51 bytes, of which only 48 bytes were
available for fragment data. As a consequence, the firmware was split into 1,049
fragments. Regulatory constraints on the gateway’s duty cycle imposed additional
delays, as downlink intervals had to be extended to remain compliant. The total
update time reached 33150 seconds, or 9 hours 12 minutes and 30 seconds, a
significant increase when compared to unicast experiments. Despite the extended
duration, the update process remained reliable, with no indication of fragment loss
or transmission failure.

This experiment underscores the trade-offs inherent in multicast FUOTA. Al-
though multicast introduces longer delays under certain configurations—especially
with low data rates and strict regulatory constraints—it enables scalability by
allowing simultaneous delivery of update fragments to all nodes in a multicast
group. In contrast to unicast, where update time scales linearly with the number
of devices, multicast ensures that the total transmission duration remains constant
regardless of group size. This property makes multicast essential for large-scale
deployments where individual device updates would otherwise become impractically
slow.

These experimental results are consistent with findings from related work and
validate the system within the practical bounds of current LoRaWAN infrastructure.
The longer duration observed in the multicast test was not due to transmission
failures but rather to conservative payload sizing and the necessity of long inter-
packet intervals. Improvements in gateway availability, optimized data rates, and

37

Experiments

adaptive fragment sizing would help reduce update times and make multicast
deployment more efficient.

In conclusion, the results demonstrate a functioning and robust FUOTA system
that accommodates both basic and complex firmware images. While unicast remains
suitable for smaller networks or isolated updates, multicast emerges as the only
practical option for scenarios involving many devices. Future efforts may focus
on optimizing transmission parameters and infrastructure usage to further reduce
update times without compromising regulatory compliance or network stability.

38

Chapter 5

Conclusion and Future
Perspective

This thesis documented the implementation of a firmware update over-the-air
(FUOTA) system using multicast communication in a LoRaWAN network. This
work started because of the intention of the eLIONS Group to have a practical way
to update the ML models running on their smart farming devices during future
deployments. Additionally, in the context of IoT for agriculture, the LoRaWAN
technlogy is a viable fit that was already used by the eLIONS group, which led
to this work being focused on using it for FUOTA, instead of other possible
communication protocols. Furthermore, the group was habituated to the STM32
boards and development environments, which facilitated the choice of hardware
for this project, followed by the choice of network server, The Things Network,
where other projects of the group are hosted. Lastly, the platform used to allow
for scheduling of hundreds of sequential downlinks, Node-Red, came as a natural
option that had been used on similar projects and that was compatible with TTN.
After working on the result of these choices, this thesis work produced a platform
that can be used to realize the FUOTA procedure on other applications hosted on
TTN, and a "demo" firmware for the B-SUBG1-WL5M board that can be used as a
benchmark for future projects of the eLIONS Group. The system design was shaped
by real-world trade-offs. Using Class C operation simplifies the delivery logic, as
devices continuously listen for downlinks and do not require tight synchronization.
However, this approach imposes practical constraints: devices needed to remain
powered throughout the update process, and gateway timing needs to be accurate
to ensure that multicast sessions were correctly scheduled. These constraints were
met in the testing environment, but they highlight deployment considerations that
must be taken into account in production settings.

39

Conclusion and Future Perspective

The implementation focused on producing a working system rather than exhaus-
tive performance benchmarking. Nonetheless, the successful update of real devices
using multicast downlinks confirms the viability of the approach. The steps taken
—from generating firmware packages and fragmentation sessions to provisioning
the network server and managing device configurations— were documented to
facilitate reuse by other developers working with similar hardware and network
environments.

However, there is significant potential for extending this work. As an example,
one could propose a research with a complete deployment of IoT devices on the
field, in which an ML model is embedded to its B-WL5M-SUBG1 microcontroller,
and evaluate the FUOTA procedure in a real smart farming scenario, outside of
laboratory conditions. Further work could explore enhanced security mechanisms
for firmware validation and delivery integrity. While the system as implemented
does not include explicit update confirmation from end devices, this could be added
in the future to improve robustness and monitoring. Additional testing under
varied network conditions and with larger numbers of nodes would provide valuable
insights into the system’s behavior in more complex environments.

Another path to consider is to use another logic for the FUOTA process in place
of what is defined by LoRa Alliance. As an example, there is the client-server
logic usually implemented on IoT devices operating with WiFi, in which the server
notifies the clients that an update is available. Afterwards, each client attempts to
download and install the updates. With this, the server can open different sessions,
and all connections are asynchronous. If a client detects a slowdown on the server,
it can randomly select a time to try again. On top of that, if the server tries to
send data and the network is busy, the network card randomly selects a time and
then tries to send again, until it succeeds. This method reduces the strain on the
server, and results in fast updates [57]. However, the speed of transmission of WiFi
is greater than of LoORaWAN, the communication protocol most frequently used
in smart farming applications, which could result on the client-server logic not
possessing a high compatibility with precision agriculture.

Additionally, reducing the total size of the data sent to the End-Node is a path to
make the update more efficient. To achieve this, there are works that point out that
through a differential update, that is, only transmitting the delta (changes between
firmwares) could reduce the update size by up to 80% [58]. Furthermore, partial
updates that transmit only specific components, such as individual applications
or parts of the network stack, uses 6 to 38 times less energy compared to a full
firmware update [59]. Since the use of FUOTA in this thesis is oriented to the
update of the embedded ML model, an algorithm that approaches update size
reduction appears as a viable path for improvement.

Ultimately, this thesis contributes a detailed example of how FUOTA can be
implemented in a LoRaWAN network, grounded in practical experimentation. The

40

Conclusion and Future Perspective

experience gained through resolving real integration issues adds value beyond the
formal specification of the protocols involved. As LoRaWAN continues to gain
traction in industrial and infrastructure monitoring applications, efficient and
scalable firmware update solutions will become increasingly important. The system
developed here represents one step toward that goal, offering a practical foundation
on which future improvements and adaptations can be built.

41

Appendix A
FUOTA

Within LoRaWAN, the FUOTA process is made possible to understand as being
divided in parts. To define each of these parts, the LoRa Alliance published five
specification documents that need to be followed by devices that aim to implement
FUOTA capabilities within the LoRa standard. Therefore, each section of this
appendix will summarize a protocol defined by LoRa Alliance to implement a part
of the FUOTA process, in a effort to better understand the mechanisms behind
this technology.

A.1 Multi-Package Access

The Multi-Package Access specification [60] plays a vital role in enabling Firmware
Updates Over-The-Air (FUOTA) within LoRaWAN systems. It establishes a
framework for smooth interoperability among various application layer packages.
By assigning distinct Package Identifiers (PIDs) to each package, Multi-Package
Access ensures devices can handle commands from different packages without
conflicts. For instance, the Firmware Management package uses PID 4, while
the Fragmented Data Block Transport package uses PID 3. This design supports
the integration of functionalities like clock synchronization, multicast setup, and
firmware updates within a single device or across a network.

Key commands such as PackageVersionReq and PackageVersionAns are central
to Multi-Package Access. The PackageVersionReq command, sent by the network
server, queries the version of a specific package on a device. The corresponding
PackageVersionAns provides the package version details, ensuring compatibility
and proper execution of updates and operations through robust version control.

Each package operates on a unique application layer port—for example, port
203 for the Firmware Management Protocol and port 201 for the Fragmented
Data Block Transport. This separation ensures commands for one package do

43

FUOTA

not interfere with others. During FUOTA processes, Multi-Package Access serves
as the backbone, enabling seamless management of multiple functionalities. For
example, a device can handle firmware updates while simultaneously managing
clock synchronization and fragmentation tasks without conflicts.

This specification underscores the importance of modularity and scalability,
making it essential for efficient device and network operations in LoRaWAN systems.

A.2 Clock Synchronization

Clock synchronization is essential in the LoRaWAN ecosystem, especially for
enabling efficient Firmware Updates Over-The-Air (FUOTA). The Application
Layer Clock Synchronization protocol [61] ensures all devices share a unified time
base, which is critical for coordinating multicast data distribution, fragmented
delivery, and other scheduled tasks.

Using the AppTimeReq and AppTimeAns commands over application port 202,
devices communicate their local time and drift to the server, which replies with
corrected timestamps based on the GPS epoch. This ongoing exchange allows
devices to stay synchronized despite clock drift caused by hardware or environmental
factors.

The protocol is particularly vital for Class B and Class C devices. Class B relies
on precise timing to open receive windows aligned with network beacons, while
Class C multicast groups require synchronized windows to optimize data delivery.
In FUOTA, synchronization ensures devices in a multicast group receive firmware
simultaneously and that fragmented data is transmitted in order, reducing retries
and avoiding conflicts.

While less critical for single-device updates, synchronization still offers benefits
like scheduling updates during off-peak hours and supporting future network
scalability. A synchronized device can be easily integrated into a larger coordinated
system if needed later.

It should be noted, however, that in the firmware used in this project, the device
obtains the timestamp from the gateway once it joins the network, which is why the
commands for this protocol are not explicitly mentioned during the implementation
description.

In short, the Application Layer Clock Synchronization protocol underpins co-
ordinated device operations in LoRaWAN networks, providing the precise timing
necessary for reliable, scalable, and efficient FUOTA processes.

44

FUOTA

A.3 Remote Multicast Setup

The Remote Multicast Setup is the required specification to implement a highly
efficient mechanism for pushing data to multiple devices over a single connection in
the LoRaWAN FUOTA ecosystem. This protocol [62] supports, creates, manages,
or deletes multicast groups in cases that may be required for broadcasting firmware
updates or any other large data payload to a fleet of devices. By doing this with
multicast communication, the protocol can reduce network congestion and the time
it takes to update a large number of devices.

The commands involved, such as McGroupSetupReq and McGroupSetupAns,
are central to this specification, allowing the network server to configure multicast
groups on end-devices. The command McGroupSetupReq carries all relevant
information, including a unique Multicast Group ID (McGrouplD), the multicast
address (McAddr), and encrypted multicast keys (McAppSKey and McNwkSKey).
The McGroupID will be used as a short form to refer to the group, reducing
protocol overhead with appropriate message delivery. This enables the device,
once this command is successfully processed, to send an McGroupSetupAns as an
acknowledgment.

These include parameters such as the frame counters of the group, minMcFCnt
and maxMcFCnt, and keys derived from the McKey, used for confidentiality and
integrity of the multicast messages. For instance, an Encryption Key, McKEKey,
may be used to encrypt the McKey, itself derived from a root key provisioned on
the device, providing a layered mechanism of security against threats.

This protocol uses application layer port 200, separating the multicast man-
agement commands from all other functionalities, like clock synchronization or
fragmented data transport. This ensures that multicast operations will never
interfere with other processes, maintaining overall network efficiency and reliability.

One of the important features of the Remote Multicast Setup specification is its
support for Class B and Class C multicast sessions.

Class C sessions have their devices in continuous listening mode, which is
why they are ideal for real-time updates. Class B sessions make use of periodic
time slots synchronized with the network beacons and are best used for devices
with very restricted power resources. The commands to initiate these include
McClassCSessionReq and McClassBSessionReq, while the response commands are
McClassCSessionAns and McClassBSessionAns, respectively.

It is hard to imagine how effective distribution of firmware updates can be
performed in FUOTA without multicast communication. Instead of sending an
update to each individual device, the network server sends the firmware image to
all devices in a multicast group. This approach drastically reduces the number of
transmissions and hence saves bandwidth and energy on both server and device
sides.

45

FUOTA

At the same time, multicast communications can cooperate very well with
the other key protocols comprising the FUOTA suite: from synchronized tim-
ing—allowing multiple devices to open their RX windows all at once for simulta-
neous or broadcast message delivery—to assurance of delivery in cases involving
fragmentation or large images of firmware for devices receiving.

In single-device scenarios, however, the role of the Remote Multicast Setup
diminishes because there will be only one device to send updates to. It will not go
through the trouble of handling multicast groups; instead, the server will unicast
all information to the device. Safety features, like encrypted keys and validation
of frame counter values, still hold. Their function is to ensure resilience against
tampering even in small, single-device communications.

From a technical viewpoint, the protocol has mechanisms that prevent collisions
and ensure high reliability even for big installations. In the instance where multiple
devices respond, for example, to a multicast command, the response is implemented
with randomized delays that eliminate the possibility of collisions in responses.
This property is useful, especially in very dense networks where devices may share
the same physical channel.

The Remote Setup protocol supports multicast, known as dynamic group man-
agement—a procedure allowing a network server to add or remove devices from
multicast groups. Commands such as McGroupDeleteReq and McGroupDeleteAns
allow removing these groups, which take resources on the device because either
they are outdated or never used. This guarantees that such flexibility will keep the
multicast framework updated to the dynamically evolving demands of the network
while keeping it efficient and relevant.

In the end, Remote Multicast Setup is a building block of the FUOTA framework,
which enables scalable and efficient data distribution across LoRaWAN networks.
The fact that it manages multicast groups, has robust security features, and
supports several classes of operation makes it a very versatile tool for large-scale
deployments. In the case of single-device use cases, it’s less important, but its basic
design provides security and reliability for any kind of use case. Thus, remote setup
for multicast transmissions becomes indispensable for scalability and efficiency in
today’s IoT ecosystem.

A.4 Fragmented Data Block Transportation

The Fragmented Data Block Transport specification [63] closes one of the most
challenging gaps in the LoRaWAN FUOTA process: efficient and reliable transport
of a large-sized data payload across constrained-bandwidth networks. Firmware
updates, large in size regarding LoRaWAN limitations on maximum payload size,
will be fragmentized into pieces that shall be transmitted in a segmented way

46

FUOTA

to end-devices. By this protocol, it has been ensured that those fragments, once
received by the end-device, reassemble precisely into a complete block of information
while keeping the integrity and reducing retransmissions accordingly.

The basic building blocks of this specification would therefore be commands
like the FragSessionSetupReq for the initialization and handling, respectively,
of fragmentation sessions. FragSessionSetupReq embeds in itself a number of
critical parameters related to the session, such as the number of uncoded fragments
(NbFrag), the fragment size (FragSize), and a session counter (SessionCnt). This
command is transmitted by an application layer port dedicated to fragmentation
operations—201—to clearly segregate all fragmentation functionalities from others,
potentially coexistent, like multicast setup or clock synchronization. After internal
processing of the request, the end-device responds with a FragSessionSetupAns
with the acceptance of the session parameters and, if any, the problems encountered,
like not enough memory.

The protocol supports both unicast and multicast transmission modes for
enhanced flexibility. In multicast scenarios, fragments are broadcast to multiple
devices at the same time, reducing network overhead considerably. For unicast, the
protocol ensures reliable delivery to individual devices, making it well-suited for
single-device FUOTA scenarios.

The Fragmented Data Block Transport protocol makes use of one of the most
important innovations: Forward Error Correction (FEC), that was explained in
the chapter about LoRaWAN.

This makes it possible for the receiving device to recreate the whole data block
even when it suffers from the loss of pieces during transmission. The underlying
reason is of crucial importance in areas such as downtown urban or sparsely
populated areas, where received signals are normally weak. By minimizing the
impact of retransmissions, FEC further boosts the reliability of updates at minimal
bandwidth and power usages.

Each fragment sent in a session is preceded by a Message Integrity Code (MIC),
which ensures the authenticity and integrity of each fragment. Once all fragments
are received, the end-device will reassemble the data block and check its validity
against the MIC computed in the session setup. This gives assurance that the
reassembled data is corruption-free, and some confidence in the integrity of the
update prior to applying it.

Mechanisms for session management are part of the fragmentation protocol.
Such commands as FragSessionDeleteReq and FragSessionDeleteAns allow the
network server to delete no longer needed fragmentation sessions, freeing device
resources. In this respect, it’s really important in keeping efficiency in either
memory-restricted devices or networks that require frequent updates.

In the context of FUOTA, Fragmented Data Block Transport works in harmony
with complementary protocols, such as clock synchronization and multicast setup.

47

FUOTA

Accurate timing ensures, at the device level, readiness in receiving fragments during
designated windows—a process that prevents collisions, hence increasing reliability.
Multicast setup allows for simultaneous delivery of fragments to multiple devices,
thus leveraging the network’s broadcast capabilities regarding scalability.

Because a single-device FUOTA has much less complexity of multicast coordi-
nation, the role of such features is lower in that case. However, it is worth noticing
that the presence of fragmentation cannot be replaced; it is important to mention
that firmware updates in many cases have a size bigger than the LoRaWAN frame
payload, and hence fragment delivery management may directly be done from
the server by leveraging inherent benefits of FEC along with MIC validation for
delivering data over the air in a reliable and secure fashion.

The protocol considers a set of different constraints that are inherent in Lo-
RaWAN. As an example, it takes into consideration the limitation on duty cycles by
spreading fragment transmissions over time to avoid network congestion. Besides,
it includes padding mechanisms that ensure the last fragment of a data block aligns
with the fragment size specified. Devices are supposed to remove this padding
during reassembly in order not to distort the original data.

From the scalability perspective, Fragmented Data Block Transport provides for
up to four concurrent fragmentation sessions per device. This capability lets a device
receive multiple data blocks parallel to each other, while network throughput and
flexibility are really improved. Moreover, this protocol supports fine reporting on the
session status level, for example, FragSessionStatusReq and FragSessionStatusAns
commands, enabling a server to track the progress of it dynamically and act in
cases of issues arising.

The conclusion is that the Fragmented Data Block Transport specification is
the basis upon which the FUOTA framework provides the necessary mechanisms
for the reliable and efficient delivery of large firmware updates. FEC, validation
of MIC, and robust session management will be used to make sure the update
is complete and secure under difficult network conditions. While less critical for
single devices, the use of multicast and synchronized timing makes the very core
requirement of handling large payloads an integral part—therefore, this must be
the protocol present in order to update LoRaWAN FUOTA modems. This is one
kind of protocol that manifests modern requirements for IoT ecosystems to be
adaptive and strong in operation.

A.5 Firmware Management Protocol

The Firmware Management Protocol [64] is central to LoRaWAN FUOTA, oversee-
ing the entire firmware update process—f{rom querying device versions to activating
new firmware. It ensures updates are secure, verifiable, and efficiently managed,

48

FUOTA

making it a cornerstone of device reliability in LoRaWAN networks.

Through a set of commands, the protocol can handle tasks like verifying firmware,
managing memory, and scheduling reboots to install updates at optimal times.
These functions are crucial for resource-constrained devices and allow precise control
over firmware operations.

The protocol integrates tightly with FUOTA components like Fragmented Data
Block Transport and Remote Multicast Setup, enabling efficient, scalable updates
across multiple devices. After delivery and reassembly, the firmware’s integrity is
checked before activation.

Security is a key focus: the protocol enforces cryptographic checks to ensure
firmware authenticity and supports secure deletion, preventing recovery of obsolete
or corrupted images.

Even in single-device contexts, the protocol ensures structured, reliable updates.
It operates on application layer port 203, isolating firmware management from
other LoRaWAN functions for clearer, error-resistant communication.

On some implementations of the FUOTA process for LoRaWAN, it is necessary
to send a message pertaining this protocol to the end-device once the fragmented
data block transport has been completed, as to instruct it to update its firmware.
On this project, however, the device attempts to update its firmware immediately
after all the expected fragments are received, realizing a security check to guarantee
its the authenticity of the new firmware image.

49

Bibliography

Mette Wik, Prabhu Pingali, and Sumiter Broca. «Global Agricultural Perfor-
mance: Past Trends and Future Prospectsy». In: (Jan. 2008) (cit. on p. 1).

Janet Ranganathan, Richard Waite, Tim Searchinger, and Craig Hanson.
«How to Sustainably Feed 10 Billion People by 2050, in 21 Chartsy. In: (Dec.
2018) (cit. on p. 1).

Jorge Delgado, Nicholas Short, Daniel Roberts, and Bruce Vandenberg. «Big
Data Analysis for Sustainable Agriculture on a Geospatial Cloud Framework».
In: Frontiers in Sustainable Food Systems 3 (July 2019). pOI: 10.3389/fsufs.
2019.00054 (cit. on p. 1).

Rajendra Sishodia, Ram Ray, and Sudhir Singh. « Applications of Remote
Sensing in Precision Agriculture: A Review». In: Remote Sensing 12 (Sept.
2020), p. 3136. DOL: 10.3390/rs12193136 (cit. on p. 1).

Kirtan Jha, Aalap Doshi, Poojan Patel, and Manan Shah. «A comprehensive
review on automation in agriculture using artificial intelligence». In: Artificial
Intelligence in Agriculture 2 (June 2019). DOI: 10.1016/j.aiia.2019.05.004
(cit. on p. 1).

Mohammed Jouhari, Nasir Saeed, Mohamed-Slim Alouini, and El Mehdi
Amhoud. «A Survey on Scalable LoRaWAN for Massive IoT: Recent Advances,
Potentials, and Challenges». In: IEEE Communications Surveys Tutorials
PP (Jan. 2023), pp. 1-1. DOI: 10.1109/COMST.2023.3274934 (cit. on p. 1).

Ercan Avsar and Md. Najmul Mowla. « Wireless Communication Protocols in
Smart Agriculture: A Review on Applications, Challenges and Future Trends».
In: Ad Hoc Networks 136 (Nov. 2022). DOI: 10.1016/j.adhoc.2022.102982
(cit. on pp. 1, 5).

Usman Raza, Parag Kulkarni, and Mahesh Sooriyabandara. «Low Power
Wide Area Networks: An Overviewy. In: IEEE Communications Surveys
Tutorials PP (Jan. 2017). pot: 10.1109/COMST.2017.2652320 (cit. on pp. 1,
5, 6).

50

https://doi.org/10.3389/fsufs.2019.00054
https://doi.org/10.3389/fsufs.2019.00054
https://doi.org/10.3390/rs12193136
https://doi.org/10.1016/j.aiia.2019.05.004
https://doi.org/10.1109/COMST.2023.3274934
https://doi.org/10.1016/j.adhoc.2022.102982
https://doi.org/10.1109/COMST.2017.2652320

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

Chollet Nicolas, Naila Bouchemal, and Ramdane-Cherif Amar. «Energy ef-
ficient Firmware Over The Air Update for TinyML models in LoRaWAN
agricultural networks». In: Nov. 2022, pp. 21-27. DOI: 10.1109/ITNAC55475.
2022.9998338 (cit. on pp. 1, 7).

Federico Cum. «A Neural network application for impedance-based plant
monitoring: from a development framework towards edge computing». Mas-
ter’s Thesis. Politecnico di Torino, 2022. URL: https://webthesis.biblio.
polito.it/24471/ (cit. on pp. 1, 7).

Sylvain Montagny. Sylvain Montagny’s fuota-server. Available here. Accessed:
2024-12-04. Savoie Mont Blanc University (cit. on pp. 2, 21, 26-29, 31).

Liu Kaiyi, Kang Hengyuan, Meng Huansheng, and Zhang Fan. «Design of
a New Generation of Weather Radar Intelligent Temperature and Humidity
Monitoring System Based on ZigBee». In: Dec. 2019, pp. 1-3. DOI: 10.1109/
ICM049322.2019.9025847 (cit. on p. 3).

Anirbit Sengupta, Biswajit Debnath, Abhijit Das, and Debashis De. « FarmFox:
A Quad-Sensor based IoT box for Precision Agriculture». In: IEEE Consumer
FElectronics Magazine PP (Mar. 2021), pp. 1-1. DOI: 10.1109/MCE . 2021 .
3064818 (cit. on p. 4).

SigFox. Use Cases: Agriculture. Accessed: 2024-12-04. 2024. URL: AvailableY
20 7% 5Chref %, 7Bhttps : / /sigfox . com/ use - cases /agriculture/%7D%
7Bhere’,7D (cit. on p. 4).

Pietro Di Gennaro, Domenico Lofu, Vitanio Daniele, Pietro Tedeschi, and
Pietro Boccadoro. « WaterS: A Sigfox-compliant prototype for water moni-
toring». In: Internet Technology Letters 2 (Sept. 2018), p. 6. bor: 10.1002/
it12.74 (cit. on p. 5).

Syazwan Essa, Rafidah Petra, Mohammad Uddin, Wida Suhaili, and Nur
Ilmi. «IoT-Based Environmental Monitoring System for Brunei Peat Swamp
Forest». In: Sept. 2020, pp. 1-5. DOI: 10.1109/ICOSICA49951.2020.9243279
(cit. on p. 5).

Jared Makario, Kimutai I, and Ciira Maina. «Long Range Low Power Sensor

Networks for Agricultural Monitoring - A Case Study in Kenya». In: May
2019, pp. 1-8. DOIL: 10.23919/ISTAFRICA.2019.8764882 (cit. on p. 5).

Neeraj Kaushik and Teena Bagga. «Smart Cities Using IoT». In: Sept. 2021,
pp. 1-6. DOI: 10.1109/ICRIT051393.2021.9596386 (cit. on p. 5).

Ingenu. Ingenu’s Precision Agriculture Portfolio. Available here. Accessed:
2024-12-04 (cit. on p. 6).

51

https://doi.org/10.1109/ITNAC55475.2022.9998338
https://doi.org/10.1109/ITNAC55475.2022.9998338
https://webthesis.biblio.polito.it/24471/
https://webthesis.biblio.polito.it/24471/
https://github.com/SylvainMontagny/fuota-server
https://doi.org/10.1109/ICMO49322.2019.9025847
https://doi.org/10.1109/ICMO49322.2019.9025847
https://doi.org/10.1109/MCE.2021.3064818
https://doi.org/10.1109/MCE.2021.3064818
Available%20%5Chref%7Bhttps://sigfox.com/use-cases/agriculture/%7D%7Bhere%7D
Available%20%5Chref%7Bhttps://sigfox.com/use-cases/agriculture/%7D%7Bhere%7D
Available%20%5Chref%7Bhttps://sigfox.com/use-cases/agriculture/%7D%7Bhere%7D
https://doi.org/10.1002/itl2.74
https://doi.org/10.1002/itl2.74
https://doi.org/10.1109/ICOSICA49951.2020.9243279
https://doi.org/10.23919/ISTAFRICA.2019.8764882
https://doi.org/10.1109/ICRITO51393.2021.9596386
https://www.ingenu.com/portfolio/precision-agriculture/?doing_wp_cron=1733427902.0350270271301269531250

BIBLIOGRAPHY

[20]

[21]

23]

[24]

[26]

[27]

Xanthoula Eirini Pantazi, Dimitrios Moshou, Thomas Alexandridis, Rebecca
Whetton, and Abdul Mouazen. « Wheat yield prediction using machine learn-
ing and advanced sensing techniques». In: Computers and Electronics in Agri-
culture 121 (Feb. 2016), pp. 57-65. DOI: 10.1016/j . compag.2015.11.018
(cit. on p. 6).

Xanthoula Eirini Pantazi, Afroditi Alexandra Tamouridou, Thomas Alexan-
dridis, Anastasia Lagopodi, G. Kontouris, and Dimitrios Moshou. «Detection
of Silybum marianum infection with Microbotryum silybum using VNIR field
spectroscopy». In: Computers and Electronics in Agriculture 137 (May 2017),
pp. 130-137. por: 10.1016/j . compag.2017.03.017 (cit. on p. 6).

Xanthoula Eirini Pantazi, Afroditi Alexandra Tamouridou, Thomas Alexan-
dridis, Anastasia Lagopodi, Javid Kashefi, and Dimitrios Moshou. « Evaluation
of hierarchical self-organising maps for weed mapping using UAS multispec-
tral imagery». In: Computers and Electronics in Agriculture 139 (June 2017),
pp. 224-230. DOI: 10.1016/j . compag.2017.05.026 (cit. on p. 6).

Michel Craninx, Veerle Fievez, Bruno Vlaeminck, and Bernard De Baets. « Ar-
tificial neural network models of the rumen fermentation pattern in dairy cat-
tlen. In: Computers and Electronics in Agriculture - COMPUT ELECTRON
AGRIC 60 (Mar. 2008), pp. 226-238. DOI: 10.1016/j . compag.2007.08.005
(cit. on p. 6).

Ningbo Cui. «Modeling reference evapotranspiration using extreme learning
machine and generalized regression neural network only with temperature
datay. In: Computers and Electr onics in Agricu lture 136 (Mar. 2017), pp. 71—
78. DOI: 10.1016/j.compag.2017.01.027 (cit. on p. 6).

Evan Coopersmith, Barbara Minsker, Craig Wenzel, and Brian Gilmore.
«Machine learning assessments of soil drying for agricultural planning». In:
Computers and Electronics in Agriculture 104 (June 2014), pp. 93-104. DOT:
10.1016/j.compag.2014.04.004 (cit. on p. 6).

Azeem Mirani, Engr Dr Muhammad Suleman Memon, Rozina Chohan, Asif
Wagan, and Mumtaz Qabulio. «Machine Learning In Agriculture: A Review».
In: 10 (May 2021), pp. 229-234 (cit. on p. 6).

Xanthoula Eirini Pantazi, Dimitrios Moshou, Roberto Oberti, Jon West,
Abdul Mouazen, and Dionysios Bochtis. «Detection of biotic and abiotic
stresses in crops by using hierarchical self organizing classifiers». In: Precision
Agriculture 18 (June 2017), pp. 1-11. DOI: 10.1007/s11119-017-9507-8
(cit. on p. 7).

52

https://doi.org/10.1016/j.compag.2015.11.018
https://doi.org/10.1016/j.compag.2017.03.017
https://doi.org/10.1016/j.compag.2017.05.026
https://doi.org/10.1016/j.compag.2007.08.005
https://doi.org/10.1016/j.compag.2017.01.027
https://doi.org/10.1016/j.compag.2014.04.004
https://doi.org/10.1007/s11119-017-9507-8

BIBLIOGRAPHY

28]

[29]

[30]

[35]

[36]

[37]

Umberto Garlando, Lee Bar-On, Paolo Motto Ros, Alessandro Sanginario,
Stefano Calvo, Maurizio Martina, Adi Avni, Yosi Shacham-Diamand, and
Danilo Demarchi. «Analysis of In Vivo Plant Stem Impedance Variations in
Relation with External Conditions Daily Cycle». In: May 2021, pp. 1-5. DOI:
10.1109/ISCAS51556.2021.9401242 (Cit. on p. 7).

Umberto Garlando, Lee Bar-On, Paolo Motto Ros, Alessandro Sanginario,
Sebastian Peradotto, Yosi Shacham-Diamand, Adi Avni, Maurizio Martina,
and Danilo Demarchi. « Towards Optimal Green Plant Irrigation: Watering
and Body Electrical Impedance». In: Oct. 2020, pp. 1-5. por: 10.1109/
ISCAS45731.2020.9181290 (cit. on p. 7).

Lee Bar-On, Sebastian Peradotto, Alessandro Sanginario, Paolo Motto Ros,
Yosi Shacham-Diamand, and Danilo Demarchi. «In-Vivo Monitoring for
Electrical Expression of Plant Living Parameters by an Impedance Lab
System». In: Nov. 2019, pp. 178-180. DOI: 10. 1109/ ICECS46596 . 2019 .
8964804 (cit. on p. 7).

Huicai Liu. «Understanding plant health status from electrical impedance
using Neural Networks». Master’s Thesis. Politecnico di Torino, 2021. URL:
https://webthesis.biblio.polito.it/21029/ (cit. on p. 7).

Alessandro Lovesio. «Design of a Neural Network development framework for
plant monitoring applications». Master’s Thesis. Politecnico di Torino, 2021.
URL: https://webthesis.biblio.polito.it/21030/ (cit. on p. 7).

Mehmet Ali Ertiirk, M.Ali Aydin, Talha Biiytikakkasglar, and Hayrettin Evir-
gen. «A Survey on LoRaWAN Architecture, Protocol and Technologies». In:
Future Internet 11 (Oct. 2019), p. 216. DOI: 10.3390/£i111100216 (cit. on
pp. 7, 13).

Alireza Maleki, Ha Nguyen, Ebrahim Bedeer Mohamed, and Robert Barton.
«A Tutorial on Chirp Spread Spectrum Modulation for LoRaWAN: Basics
and Key Advances». In: IEEE Open Journal of the Communications Society
PP (Jan. 2024), pp. 1-1. DoI: 10.1109/0JCOMS. 2024 . 3433502 (cit. on pp. 9,
10, 12, 13).

AN1200.22 - LoRa Modulation Basics. Available here. U.S. - Camarillo,
California: Semtech Corporation (cit. on p. 9).

LoRa Alliance. LoRaWAN® Regional Parameters, RP002. RP002-1.0.4. LoRa
Alliance. 2022. URL: https://resources.lora-alliance.org/document/
rp002-1-0-4-regional-parameters (cit. on pp. 10, 14).

Rachel Kufakunesu, Gerhard Hancke, and Adnan Abu-Mahfouz. «A Survey
on Adaptive Data Rate Optimization in LoRaWAN: Recent Solutions and
Major Challenges». In: Sensors (Basel, Switzerland) 20 (Sept. 2020). DOI:
10.3390/520185044 (cit. on pp. 10-12).

53

https://doi.org/10.1109/ISCAS51556.2021.9401242
https://doi.org/10.1109/ISCAS45731.2020.9181290
https://doi.org/10.1109/ISCAS45731.2020.9181290
https://doi.org/10.1109/ICECS46596.2019.8964804
https://doi.org/10.1109/ICECS46596.2019.8964804
https://webthesis.biblio.polito.it/21029/
https://webthesis.biblio.polito.it/21030/
https://doi.org/10.3390/fi11100216
https://doi.org/10.1109/OJCOMS.2024.3433502
https://www.frugalprototype.com/wp-content/uploads/2016/08/an1200.22.pdf
https://resources.lora-alliance.org/document/rp002-1-0-4-regional-parameters
https://resources.lora-alliance.org/document/rp002-1-0-4-regional-parameters
https://doi.org/10.3390/s20185044

BIBLIOGRAPHY

[45]

Peng Zhang. Industrial Control Technology: A Handbook for Engineers and
Researchers. William Andrew Publishing, Available here, 2008, pp. 755-756
(cit. on pp. 10, 11).

Olivier Seller and Nicolas Sornin. «Low power long range transmitter». EP 2

763 321 Al. https://patents.google.com/patent/EP2763321A1/en. Aug.
2014 (cit. on p. 11).

The Things Network on FEC and Code Rate for LoRaWAN. Available here.
Accessed: 2024-12-04. The Things Network (cit. on p. 11).

LoRa Alliance. TS001-1.0.4 LoRaWAN® L2 1.0.4 Specification. Version 1.0.4.
LoRa Alliance. 2020. URL: https://lora-alliance.org/resource_hub/
lorawan-12-1-0-4-specification/ (cit. on pp. 12, 13).

Semtech Corporation. LoRaWAN — Simple Rate Adaptation Recommended
Algorithm. Class A /B Specification, Revision 1.0, Preliminary. Semtech Cor-
poration. Oct. 2016. URL: https://www.semtech.com (cit. on p. 14).

The Things Stack on ADR. Available here. Accessed: 2024-12-04. The Things
Industries (cit. on p. 14).

The Things Network. ADR Logic - Line 218 in adr.go. Accessed: 2024-
11-21. 2024. URL: https ://github. com/TheThingsNetwork /lorawan -
stack/blob/5a816e8171£993db9659566286d45725698f032¢e/pkg/network
server/mac/adr.go#L218 (cit. on p. 14).

The Things Network. ADR Logic - Line 232 in adr.go. Accessed: 2024-
11-21. 2024. URL: https://github. com/TheThingsNetwork /lorawan -
stack/blob/5a816e8171£993db9659566286d45725698f032¢/pkg/network
server/mac/adr.go#L232 (cit. on p. 14).

The Things Network. ADR Logic - Lines 251-262 in adr.go. Accessed: 2024-
11-21. 2024. URL: https ://github. com/TheThingsNetwork /lorawan -
stack/blob/5a816e8171£993db9659566286d45725698f032¢/pkg/network
server/mac/adr.go#L251-1262 (cit. on p. 14).

The Things Network. ADR Logic - Lines 288-296 in adr.go. Accessed: 2024-
11-21. 2024. URL: https://github. com/TheThingsNetwork /lorawan -
stack/blob/5a816e8171£993db9659566286d45725698f032¢/pkg/network
server/mac/adr.go#L288-1296 (cit. on p. 14).

Khaled Hassan, Tom Farrell, David McDonald, and Dirk Pesch. «How to
Make Firmware Updates over LoORaWAN Possible». In: Aug. 2020, pp. 16-25.
DOL: 10.1109/WoWMoM49955 . 2020.00018 (cit. on pp. 14, 15, 17).

Khaled Abdelfadeel. FUOTASim package. Available here. Accessed: 2024-12-
04. University College Cork (cit. on p. 14).

o4

https://www.sciencedirect.com/book/9780815515715/industrial-control-technology
https://patents.google.com/patent/EP2763321A1/en
 https://www.thethingsnetwork.org/docs/lorawan/fec-and-code-rate/
https://lora-alliance.org/resource_hub/lorawan-l2-1-0-4-specification/
https://lora-alliance.org/resource_hub/lorawan-l2-1-0-4-specification/
https://www.semtech.com
 https://www.thethingsindustries.com/docs/reference/adr/
https://github.com/TheThingsNetwork/lorawan-stack/blob/5a816e8171f993db9659566286d45725698f032e/pkg/networkserver/mac/adr.go#L218
https://github.com/TheThingsNetwork/lorawan-stack/blob/5a816e8171f993db9659566286d45725698f032e/pkg/networkserver/mac/adr.go#L218
https://github.com/TheThingsNetwork/lorawan-stack/blob/5a816e8171f993db9659566286d45725698f032e/pkg/networkserver/mac/adr.go#L218
https://github.com/TheThingsNetwork/lorawan-stack/blob/5a816e8171f993db9659566286d45725698f032e/pkg/networkserver/mac/adr.go#L232
https://github.com/TheThingsNetwork/lorawan-stack/blob/5a816e8171f993db9659566286d45725698f032e/pkg/networkserver/mac/adr.go#L232
https://github.com/TheThingsNetwork/lorawan-stack/blob/5a816e8171f993db9659566286d45725698f032e/pkg/networkserver/mac/adr.go#L232
https://github.com/TheThingsNetwork/lorawan-stack/blob/5a816e8171f993db9659566286d45725698f032e/pkg/networkserver/mac/adr.go#L251-L262
https://github.com/TheThingsNetwork/lorawan-stack/blob/5a816e8171f993db9659566286d45725698f032e/pkg/networkserver/mac/adr.go#L251-L262
https://github.com/TheThingsNetwork/lorawan-stack/blob/5a816e8171f993db9659566286d45725698f032e/pkg/networkserver/mac/adr.go#L251-L262
https://github.com/TheThingsNetwork/lorawan-stack/blob/5a816e8171f993db9659566286d45725698f032e/pkg/networkserver/mac/adr.go#L288-L296
https://github.com/TheThingsNetwork/lorawan-stack/blob/5a816e8171f993db9659566286d45725698f032e/pkg/networkserver/mac/adr.go#L288-L296
https://github.com/TheThingsNetwork/lorawan-stack/blob/5a816e8171f993db9659566286d45725698f032e/pkg/networkserver/mac/adr.go#L288-L296
https://doi.org/10.1109/WoWMoM49955.2020.00018
https://github.com/kqorany/FUOTASim

BIBLIOGRAPHY

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Daniel Khieng, Yu-Zhe Xie, Jia-Cheng Zhang, and Nen-Fu Huang. «A Long
Distance Low Bandwidth Firmware Update process for LPWAN - Taking
LoRaP2P+ as example». In: Jan. 2023, pp. 646-651. Do1: 10.1109/ICOIN56
518.2023.10048943 (cit. on pp. 15, 17).

Christia Charilaou, Spyros Lavdas, Ala Khalifeh, Vasos Vassiliou, and Zi-
non Zinonos. «Firmware Update Using Multiple Gateways in LoRaWAN
Networks». In: Sensors 21 (Sept. 2021), p. 6488. DOI: 10.3390/s21196488
(cit. on pp. 15, 17).

Anthi Anastasiou, Panayiotis Christodoulou, Klitos Christodoulou, Vasos
Vassiliou, and Zinon Zinonos. «IoT Device Firmware Update over LoRa: The
Blockchain Solution». In: May 2020, pp. 404-411. pDo1: 10.1109/DC0OSS49796.
2020.00070 (cit. on pp. 15, 17).

Njabulo Mthethwa, Nombuso Sibeko, Paul Tarwireyi, and Adnan Abu-
Mahfouz. «OTA Firmware Updates for LoRaWAN Using Blockchain». In:
Nov. 2020, pp. 1-8. DOI: 10.1109/IMITEC50163.2020 . 9334108 (cit. on
pp. 16, 17).

Victor Malumbres, Jose Saldana, Gonzalo Berné, and Julio Modrego.
«Firmware Updates over the Air via LoRa: Unicast and Broadcast Com-
bination for Boosting Update Speed». In: Sensors 24 (Mar. 2024), p. 2104.
DOI: 10.3390/s24072104 (cit. on pp. 16, 17).

The Things Stack Class C Settings. Available here. Accessed: 2025-04-02. The
Things Industries (cit. on p. 26).

AN5554 - LoRaWAN® firmware update over the air with STM32Cube WL.
Available here. Geneva, Switzerland: STMicroelectronics (cit. on p. 27).

Michal Kubaséik, Ing. Andrej Tupy, Jan Sumsky, and Tomas Baca. «OTA
firmware updates on ESP32 based microcontrolers». In: 202/ IEEE 17th In-
ternational Scientific Conference on Informatics (Informatics). 2024, pp. 185—
189. DOI: 10.1109/Informatics62280.2024.10900824 (cit. on p. 40).

Ondrej Kachman, Marcel Balaz, and Peter Malik. «Universal framework for
remote firmware updates of low-power devices». In: Computer Communica-
tions 139 (2019), pp. 91-102. 1SSN: 0140-3664. DOI: https://doi.org/10.
1016/ j . comcom.2019.03.014. URL: https://www.sciencedirect.com/
science/article/pii/S0140366418307722 (cit. on p. 40).

Peter Ruckebusch, Spilios Giannoulis, Ingrid Moerman, Jeroen Hoebeke, and
Eli De Poorter. «Modelling the energy consumption for over-the-air software
updates in LPWAN networks: SigFox, LoRa and IEEE 802.15.4g». In: Internet
of Things 3-4 (2018), pp. 104-119. 1SSN: 2542-6605. DOI: https://doi.org/
10.1016/j.1i0t.2018.09.010. URL: https://www.sciencedirect.com/
science/article/pii/S2542660518300362 (cit. on p. 40).

59

https://doi.org/10.1109/ICOIN56518.2023.10048943
https://doi.org/10.1109/ICOIN56518.2023.10048943
https://doi.org/10.3390/s21196488
https://doi.org/10.1109/DCOSS49796.2020.00070
https://doi.org/10.1109/DCOSS49796.2020.00070
https://doi.org/10.1109/IMITEC50163.2020.9334108
https://doi.org/10.3390/s24072104
 https://www.thethingsindustries.com/docs/hardware/devices/configuring-devices/class-c/
https://www.st.com/resource/en/application_note/an5554-lorawan-firmware-update-over-the-air-with-stm32cubewl-stmicroelectronics.pdf
https://doi.org/10.1109/Informatics62280.2024.10900824
https://doi.org/https://doi.org/10.1016/j.comcom.2019.03.014
https://doi.org/https://doi.org/10.1016/j.comcom.2019.03.014
https://www.sciencedirect.com/science/article/pii/S0140366418307722
https://www.sciencedirect.com/science/article/pii/S0140366418307722
https://doi.org/https://doi.org/10.1016/j.iot.2018.09.010
https://doi.org/https://doi.org/10.1016/j.iot.2018.09.010
https://www.sciencedirect.com/science/article/pii/S2542660518300362
https://www.sciencedirect.com/science/article/pii/S2542660518300362

BIBLIOGRAPHY

[60]

[63]

LoRa Alliance. T'S007-1.0.0 Multi-Package Access Specification. Tech. rep.
LoRa Alliance, 2021. URL: https://resources . lora-alliance . org/
technical-specifications/ts007-1-0-0-multi-package-access (cit.
on p. 43).

LoRa Alliance. T'S003-2.0.0 Application Layer Clock Synchronization Spec-
ification. Tech. rep. LoRa Alliance, 2022. URL: https://resources.lora-
alliance.org/technical-specifications/ts003-2-0-0-application-
layer-clock-synchronization (cit. on p. 44).

LoRa Alliance. TS005-2.0.0 Remote Multicast Setup Specification. Tech. rep.
LoRa Alliance, 2022. URL: https://resources . lora-alliance . org/
technical - specifications/ts005-2-0-0-remote-multicast-setup
(cit. on p. 45).

LoRa Alliance. T'S004-2.0.0 Fragmented Data Block Transport Specification.
Tech. rep. LoRa Alliance, 2022. URL: https://resources.lora-alliance.
org/technical-specifications/ts004-2-0-0-fragmented-data-block-
transport (cit. on p. 46).

LoRa Alliance. T'S006-1.0.0 Firmware Management Protocol Specification.
Tech. rep. LoRa Alliance, 2021. URL: https://resources.lora-alliance.
org/technical-specifications/ts006-1-0-0-firmware-management-
protocol (cit. on p. 48).

56

https://resources.lora-alliance.org/technical-specifications/ts007-1-0-0-multi-package-access
https://resources.lora-alliance.org/technical-specifications/ts007-1-0-0-multi-package-access
https://resources.lora-alliance.org/technical-specifications/ts003-2-0-0-application-layer-clock-synchronization
https://resources.lora-alliance.org/technical-specifications/ts003-2-0-0-application-layer-clock-synchronization
https://resources.lora-alliance.org/technical-specifications/ts003-2-0-0-application-layer-clock-synchronization
https://resources.lora-alliance.org/technical-specifications/ts005-2-0-0-remote-multicast-setup
https://resources.lora-alliance.org/technical-specifications/ts005-2-0-0-remote-multicast-setup
https://resources.lora-alliance.org/technical-specifications/ts004-2-0-0-fragmented-data-block-transport
https://resources.lora-alliance.org/technical-specifications/ts004-2-0-0-fragmented-data-block-transport
https://resources.lora-alliance.org/technical-specifications/ts004-2-0-0-fragmented-data-block-transport
https://resources.lora-alliance.org/technical-specifications/ts006-1-0-0-firmware-management-protocol
https://resources.lora-alliance.org/technical-specifications/ts006-1-0-0-firmware-management-protocol
https://resources.lora-alliance.org/technical-specifications/ts006-1-0-0-firmware-management-protocol

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Objective
	Thesis Structure

	Literature Review
	Communication technologies used in precision agriculture
	LPWANs

	Machine Learning for Agriculture
	LoRa and LoRaWAN
	Architecture
	PHY - Physical Layer
	MAC - Medium Access Control
	LoRaWAN Classes

	Related Work

	Implementation
	Materials and Methods
	Hardware
	Software

	Deployment and Replication Instructions
	Building and programming the firmware
	The Things Stack SANDBOX - Network Server
	Application Server
	Configuring the dashboard and Firmware Fragmentation
	Multicast Session Setup
	Updating a ML model with FUOTA

	Experiments
	Results

	Conclusion and Future Perspective
	FUOTA
	Multi-Package Access
	Clock Synchronization
	Remote Multicast Setup
	Fragmented Data Block Transportation
	Firmware Management Protocol

	Bibliography

