POLITECNICO DI TORINO

MASTER’s Degree in MECHATRONICS
ENGINEERING

’A& _,,A ¥ Politecnico

Wi 2 di Torino
W 1859 ,:'

‘\\\.\ .,‘lo"'

MASTER’s Degree Thesis

Simulation and Control of a Reconfigurable Robot

Supervisors Candidate
Prof. Giuliana MATTIAZZO Jad ABI HANA

Prof. Fabio CARAPELLESE

OCTOBER 2025

Abstract

This thesis presents the modeling, simulation, and control of a novel reconfigurable
robotic system designed for modular locomotion and adaptable task execution. The
robot, composed of multiple identical three-link units, is capable of reassembling into
various structures suited for specific tasks such as obstacle climbing, stair ascent,
object manipulation, and load lifting. The focus of this work is on the development
of simulation tools and control strategies to enable coordinated locomotion of a single
unit, with a particular emphasis on a worm-like walking motion.

Using MATLAB and Simscape Multibody, a detailed dynamic model of the robot
was built, incorporating joint actuation via DC motors and trajectory generation
through cubic polynomial interpolation. A torque-based control method was imple-
mented to drive the robot’s joints based on desired angular trajectories. Logical
control schemes were designed to switch motor activation on or off depending on
real-time joint angle feedback, ensuring energy-efficient movement.

The study also includes the integration of mechanical and electrical subsystems,
validation of motion through simulation, and exploration of future extensions such
as multi-unit coordination and surface climbing. The results demonstrate the feasi-
bility of smooth, bidirectional worm-like locomotion and provide a foundation for
future experimental prototyping and real-world application of modular reconfigurable

robotics.

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my supervisors, Prof. Giuliana
Mattiazzo and Prof. Fabio Carapellese, for their invaluable guidance, support, and
encouragement throughout the course of this thesis. Their expertise and vision were
fundamental in shaping this project, and their continuous feedback greatly enriched
both the technical and conceptual aspects of my work.

I am especially thankful for the opportunity to work under their supervision on a
challenging and innovative topic in the field of robotics. Their mentorship has been
a source of inspiration and personal growth.

I would also like to acknowledge the faculty and staff at the Department of
Mechatronics Engineering for providing a rich academic environment.

Finally, I extend my heartfelt appreciation to my family and friends for their

unwavering support, patience, and motivation throughout this journey.

Table of Contents

1 Introduction 1
1.1 Localization, Sensing, and Motor Control Overview 1
1.2 Mechanical Structure 2
1.3 Programming and Software 2

1.3.1 Leg Over Movement (Jump Over) 2
1.3.2 Pivot Rotation Movement (180-Degree Leg Rotation) . 3
1.3.3 Worm-Like Movement (Kinematic Control) 3
1.3.4 Worm-Like Movement (Torque Control) 3
1.3.5 Worm-Like Movement (Motor Control) 3
1.4 Potential Applications in Construction Sites 3
1.5 Thesis Structure 3

2 Background and Related Work 5
2.1 Related Work 5
2.2 Related Articles 6

2.2.1 Robotics and Autonomous Systems 6
2.2.2 Climbing Robots’ Mobility for Inspection and Maintenance of

3D Complex Environments 7
2.2.3 Similarity with ROMA T and ROMA II Climbing Robots 7

3 Types of Motion

3.1 [Inertial Parameters and Their Role in Simulation 9
3.1.1 Inertial Parameters and Their Role in Simulation 10
3.2 Leg Over Movement (Jump Over) 10
3.2.1 Real-World Applications, 10
3.2.2 Mechanical and Control Insights 11
3.2.3 Simulation Purpose oL 11
3.2.4 Future Potential 11
3.2.5 Motion Sequence Visualization 11
3.3 Pivot Rotation Movement (180-Degree Leg Rotation) 11
3.3.1 Real-World Relevance 12
3.3.2 Technical Insights 12
3.3.3 Motion Sequence Visualization 12
3.4 Worm-Like Movement (Kinematic Control) 12

11

TABLE OF CONTENTS

3.4.1 Real-World Relevance 12
3.4.2 Control and Motion Strategy 13
3.4.3 Motion Sequence Visualization 13

4 Motor Selection and Control 14
5 Code and Simscape 16
5.1 Overall Robot Model 16
5.1.1 Joint and Foot Connections 16
5.1.2 Trajectory Imposition on Joints 16
5.1.3 Code Integration, 17

5.2 From Joint Angles to Motor Torques 17
.21 e 17
5.2.2 Computed—torque (inverse-dynamics) controller 18
5.2.3 Saturation and limits, 18
5.2.4 Mapping joint torque to motor torque and voltage 18

5.3 Motor Direction Control: From Angle/Torque to CW/CCW Motion 18
5.3.1 DC motor model and direction convention 19
5.3.2 Voltage sequences that encode CW/CCW motion 19
5.3.3 Simulink implementation (link to Fig. 5.2) 20
5.3.4 Practical notes (deadband, limits, back-EMF) 20

6 Results 21
6.1 Flipping Motion (Leg Over Movement) 21
6.1.1 Joint Angles vs Time 21
6.1.2 Joint Velocities vs Time 22
6.1.3 Joint Accelerations vs Time 22
6.1.4 Summary of Flipping Motion Results 23

6.2 Pivot Motion Results Lo 23
6.2.1 Joint Angles vs Time 23
6.2.2 Joint Velocities vs Time 24
6.2.3 Joint Accelerations vs Time 24
6.2.4 Summary of Pivot Motion Results 25

6.3 Worm-Like Motion Results 25
6.3.1 Joint Angles vs Time 25
6.3.2 Joint Velocities vs Time 25
6.3.3 Joint Accelerations vs Time 27
6.3.4 Overall Insights on Worm-Like Motion 27
6.3.5 Average Torque per Interval 27
6.3.6 Joint Torques vs Time 29

6.4 Motor-Level Results for Worm-Like Motion 30
6.4.1 Cumulative Electrical and Mechanical Energy 30
6.4.2 Power and Efficiency 00 30
6.4.3 Overall Insights, 31

TABLE OF CONTENTS

7 Conclusion and Future Work
7.1 Conclusion
7.2 Future Work o

A MATLAB Codes
A.1 Flipping Motion — Trajectory Generation Script
A.2 Pivot Motion — Trajectory Generation and Joint Profiles
A.3 Worm-Like Motion — Angle-Based Trajectory Script
A.4 Worm-Like Motion — Torque-Based Simulation Script.
A.5 Worm-Like Motion — Motor Voltage Input Script

Bibliography

Dedications

33
33
33

35
35
36
38
39
42

45

46

List of Figures

2.1
2.2
2.3
2.4
2.5

3.1
3.2

3.3

5.1

5.2

6.1

6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

6.11

Mabel Robot s
Amber 2 Robot

Sequential frames showing the execution of the leg over movement. .
Sequential frames showing the execution of the 180-degree pivot rota-
tion movement.o Lo Lo Lo
Sequential frames showing the kinematic worm-like movement using

imposed trajectories.

Foot—Leg revolute joint subsystem connections (left) and imposed
joint trajectories (right). These blocks link the foot with the leg using
revolute joints and apply MATLAB-generated signals for controlled
motion.
Motor drive in Simulink/Simscape. From left to right: voltage source
fed by a time-series signal (e.g., q00_data), DC motor (electrical
+- ports, mechanical C,R), sensors, and logging. Positive voltage

commands produce positive torque and speed in the motor’s positive

rotation sense (CCW by Simscape convention for the shown orientation).

Angular displacement of each joint in radians during the flipping (leg
OVer) MOtION. v v v vt

Angular velocity of each joint during the flipping (leg over) motion. .

Angular acceleration of each joint during the flipping (leg over) motion.

Angular displacement of each joint in radians during the pivot motion.

Angular velocity of each joint during the pivot motion.
Angular acceleration of each joint during the pivot motion.
Angular displacement of each joint during the worm-like motion.

Angular velocity of each joint during the worm-like motion.
Angular acceleration of each joint during the worm-like motion. . . .
Average joint torque values per 0.5 s interval during the worm-like
motion.

Joint torque profiles during the worm-like motion.

VI

o 00 N o Ot

11

12

13

17

19

21
22
22
23
24
25
26
26
27

28
29

LIST OF FIGURES

6.12 Cumulative electrical and mechanical energy during worm-like motion. 30
6.13 Total power consumption and instantaneous efficiency during worm-

like motion. e 31

VII

List of Tables

3.1 Assigned inertial and damping parameters for the robot components. 10

4.1 Specifications — NEMA 17 Closed-Loop Stepper Motor 15
4.2 Specifications — Integrated Servo Joint Actuator (e.g., Tinsmith eRob) 15

VIII

Acronyms

USB Universal Serial Bus.

X

Chapter 1

Introduction

Accurate motion control and reconfiguration are pivotal challenges in modern robotics,
especially in systems designed for unstructured or dynamic environments. The ability
of a robotic system to adapt its morphology and movement strategy is critical.

This thesis explores the design, simulation, and control of a novel reconfigurable
walking robot, composed of three-link units. The robot is capable of worm-like
locomotion, coordinated through joint-level actuation driven by torque or voltage-
controlled motors. The robot is designed to perform complex tasks such as climbing
obstacles, ascending stairs, and lifting payloads by reassembling into various topologies
depending on mission needs.

Using MATLAB, Simulink, and Simscape Multibody, this work focuses on the
generation of smooth angular trajectories, implementation of motor control logic,
and the development of simulation environments to analyze the robot’s performance.
The study not only demonstrates the feasibility of modular robot movement using
synchronized joint control but also lays the groundwork for future physical prototyping

and adaptive reconfiguration strategies.

1.1 Localization, Sensing, and Motor Control Overview

Accurate localization and motion control are fundamental for the reliable operation
of reconfigurable walking robots. These systems must dynamically adapt their
configuration to perform a variety of tasks, such as climbing, navigating irregular
terrain, or manipulating objects. Achieving this level of adaptability requires a
robust understanding of the robot’s internal state—such as joint positions and
orientations—as well as its interaction with the external environment.

The focus lies not only on the mechanical design and motion planning but also
on establishing the foundational framework for real-time feedback and coordination.
While detailed sensor selection and integration strategies will be discussed in subse-
quent sections, it is important to note that the effectiveness of such robots heavily
depends on precise feedback mechanisms and reliable state estimation. These are
key to enabling smooth locomotion, coordinated movement between modules, and

safe operation in unstructured environments.

Introduction

The actuation of the robot’s joints is achieved using compact DC motors, selected
for their simplicity and suitability for modular and reconfigurable architectures. The
motor behavior is controlled through voltage or torque commands derived from
planned joint trajectories. A significant part of this work involves converting angle-
based movement plans into appropriate motor control inputs, ensuring synchronization
and directional control across all units. The modularity of the design also allows
individual motor timing to be independently managed, enabling the generation of

complex gait patterns of different motions.

1.2 Mechanical Structure

The robot is designed with simplicity, modularity, and stability in mind. It consists
of two base platforms—referred to as “feet”—each connected to a vertical segment
representing the lower leg or “shank.” Above each shank is a jointed segment forming
the “knee,” which connects to the upper legs or “thighs.” These two thigh segments
are joined by an articulated bridge-like structure, allowing coordinated movement
between both sides.

This design results in a robot with two feet, two knees, and a central connecting
bridge that mimics the extension and contraction phases of different types of motion.
By alternating fixed and mobile states on each leg, the robot simulates peristaltic
motion—one leg remains stable while the other advances, then the cycle reverses.

The robot’s minimal degrees of freedom, symmetrical geometry, and grounded
stance contribute to a lightweight and efficient system. This configuration not only
enhances mechanical simplicity and control but also provides a robust platform for

torque-controlled joint actuation and future upgrades with sensors or grippers.

1.3 Programming and Software

The simulation and control of the robot were developed using MATLAB and
Simscape Multibody, which offer a powerful platform for modeling, visualizing,
and testing mechanical systems with realistic physics. Each type of locomotion
was implemented in a separate Simscape model, tailored to test different movement
strategies and control approaches. Below are the main motion types developed and

simulated:

1.3.1 Leg Over Movement (Jump Over)

In this motion, one leg lifts and moves over the other leg, crossing it from above.
This type of movement simulates a stepping-over action, and was tested to evaluate
the robot’s ability to perform vertical displacement and reposition itself on the other

side of a stationary leg.

Introduction

1.3.2 Pivot Rotation Movement (180-Degree Leg Rotation)

This movement involves rotating one leg 180 degrees around the other, effectively
transitioning it from a rear position to a front position. During this movement, the
knee and thigh segments articulate while the opposite leg remains grounded, acting
as a pivot. This strategy could be useful for reorienting the robot or navigating tight

spaces.

1.3.3 Worm-Like Movement (Kinematic Control)

This is the classic crawling motion, inspired by worm locomotion, where one leg stays
fixed while the other extends forward through joint rotations. The robot alternates
between legs, simulating extension and contraction phases in a predefined sequence

using imposed trajectories.

1.3.4 Worm-Like Movement (Torque Control)

In this variation, the same worm-like motion is achieved using torque inputs instead
of direct angle commands. Torque profiles are applied to each joint to generate
motion, allowing for analysis of dynamics, stability, and energy consumption under

physics-based control.

1.3.5 Worm-Like Movement (Motor Control)

Here, DC motors are used to drive the joints, simulating real actuator behavior.
This implementation introduces voltage inputs and mechanical-electric interfaces in
Simscape to emulate practical motor-driven locomotion, bringing the model closer to

a real-world prototype.

1.4 Potential Applications in Construction Sites

The robot’s design makes it highly suitable for applications in construction sites,
particularly for inspection, monitoring, and maintenance tasks in confined or haz-
ardous areas. Its worm-like locomotion enables it to navigate narrow beams, crawl
under structures, and operate in spaces where wheeled or legged robots struggle.
The lightweight, symmetrical structure ensures stability and low power consumption,
while the modular joints allow for adaptability across various terrains. Its ability to be
torque- or motor-controlled opens the door for smart automation and integration with
sensors, making it an efficient and versatile tool in dynamic and risky environments

like scaffolding, pipelines, and steel frameworks.

1.5 Thesis Structure

The chapters of this thesis are organized as follows:

Introduction

Chapter 2: Background and Related Work — Reviews existing research

on climbing robots and various locomotion strategies relevant to this project.

Chapter 3: Types of Motions — Describes the different motion types

developed for the robot and the mechanics behind each.

Chapter 4: Motor — Discusses the motors used, their specifications, and how

they control the robot’s joint movement.

Chapter 5: Code and Simscape — Details the simulation models built in

Simscape for visualizing and testing each motion.

Chapter 6: Results — Presents the outcomes of the simulations and evaluates

the performance of each movement type.

Chapter 7: Conclusion and Future Work — Summarizes the findings and

proposes future developments to enhance the robot’s capabilities.

Chapter 2

Background and Related Work

2.1 Related Work

Several two-legged robots demonstrate structural concepts closely aligned with the
proposed robot, particularly in the use of a rigid central "bridge" or torso connecting

the legs.

« MABEL — Developed at the University of Michigan, MABEL features a two-
legged design with spring-loaded knees and hips, all connected to a robust
central torso structure. This configuration enables energy-efficient walking
and dynamic stability. The mechanical principles behind MABEL, especially
its compliant joints and simplified symmetry, are reflected in our robot’s

leg—knee—bridge configuration [1].

@

Figure 2.1: Mabel Robot

« ATRIAS — ATRIAS is a bird-inspired bipedal robot from Oregon State
University, designed with a central body that connects thigh segments and
distributes mass evenly. It incorporates spring-mass compliant mechanisms

around the knees and ankles to enhance gait transitions. This design supports

Background and Related Work

the viability of torque-controlled, symmetrical bipedal robots like the one

proposed in this thesis [2].

Figure 2.2: Amber 2 Robot

2.2 Related Articles

2.2.1 Robotics and Autonomous Systems

The motion planning strategy implemented in this project is inspired by approaches
discussed in a comprehensive survey by Ze et al. [3], which explores locomotion and
actuator systems for legged robots. In particular, their treatment of gait planning
and foot trajectory generation aligns with the alternating stepping behavior used in
our worm-like robot.

A key aspect of our robot’s motion is the alternation between support and swing
phases, with one leg fixed while the other moves forward. This is conceptually similar
to predefined gaits in traditional legged robots. We adopted a cubic interpolation

scheme to define foot trajectories in the swing phase:

z(t) = ag + a1t + aot® + ast? (2.1)

with the boundary conditions:
z(0) =z, «(T)=zp, @(0)=z(T)=0

Additionally, to maintain balance, the center of mass must lie within the support

region defined by the current stance leg:

CoM, € [xsupportla-rsupporﬂ] (2'2)

This ensures quasi-static stability during each transition. While energy opti-
mization was not a primary goal in this prototype, the trajectory design could be

enhanced in future work using cost functions like:

Background and Related Work

J= /OT (77 + X+ d(0)?) dt (2.3)

These considerations guide the logic for motion timing, stability, and actuation
used in our robot’s crawling behavior.

In addition to trajectory generation, it is essential to account for deviations in both
position and heading when planning paths in cluttered or uncertain environments.
This is particularly important for non-circular robots, such as the one developed in
this project, which includes a rectangular body and articulated legs.

Ze et al. [3] propose a method for estimating the probability of collision p. that
accurately incorporates both shape and orientation uncertainties. Unlike conven-
tional methods that approximate the robot using a bounding circle and rely on the
regularized gamma function I'(n/2,72/2) to estimate collision likelihood, their model
computes this probability directly from the full multivariate Gaussian distribution.

This proves especially effective in situations such as corridor navigation or corner-
ing, where the bounding-circle assumption leads to significant estimation errors due
to neglecting heading variations. Figure 77 in their paper shows that their method
maintains an average estimation error of only 1.5%, making it highly suitable for

reliable and safe navigation of non-circular robots like ours.

Pe = pe, with average error < 1.5% (2.4)

15 20 15
x(m) x(m)

(a) (b)

Figure 2.3: Path Planning

2.2.2 Climbing Robots’ Mobility for Inspection and Maintenance
of 3D Complex Environments

2.2.3 Similarity with ROMA I and ROMA II Climbing Robots

ROMA I and ROMA 1II are two climbing robots developed by the Robotics Lab at
the University Carlos III of Madrid, designed to navigate 3D steel structures such as
bridges and building skeletons [4]. Despite being developed for different surfaces and
scales, their structural logic and movement mechanisms offer strong parallels to the
robot developed in this thesis.

ROMA I features a central body and two extremities (arms), which serve to

Background and Related Work

anchor and re-anchor the robot during motion. It mimics caterpillar-like locomotion
through alternating extension and contraction phases, achieved with a high number of
degrees of freedom (8 DOF). This method is structurally and functionally similar to
the alternating “worm-like” gait of our robot, in which one foot remains anchored while
the other advances, simulating peristaltic movement. ROMA T also demonstrates
multi-plane transitions, which validates the concept of using minimal support points
to transition between motion and stability—core to our design logic.

ROMA 11, a more recent and lightweight iteration, further refines this idea. It
uses only 4 DOF and applies the symmetrical criterion: a central actuator drives
two opposing joints simultaneously. Our robot adopts the same principle by using
symmetrical joint trajectories for simplified control, lower weight, and increased
mechanical balance. ROMA II's modularity, centralized control, and reduction in
actuation complexity mirror our robot’s emphasis on minimal DOF and stable,
mirrored design.

Both robots use a central "bridge-like" body connecting two anchor platforms—conceptually
analogous to the two-legged plus bridge structure of our design. The ROMA platforms
use either grasping or suction methods, while our robot uses stable foot contact, but
the logic of alternating stability and motion remains consistent.

These parallels confirm the suitability and relevance of symmetrical, alternating
locomotion patterns and dual-point anchored motion for navigating constrained or

vertical environments.

EXTENSION

ROTATION 7.

ELEVATION g,

q q;

Figure 2.5: ROMA II

Chapter 3

Types of Motion

3.1 Inertial Parameters and Their Role in Simulation

In order to make the simulated motions physically consistent, the robot’s main
components were assigned mass and inertia properties. These parameters were
defined in MATLAB and passed into the Simscape model so that torque, velocity,
and energy consumption could be evaluated more realistically.

The following values were used:

« Foot: m = 0.083kg, I, = 0.003, I, = 6.4 x 1075, I, = 0.0002

o Leg: m = 0.812kg, I, = 0.003, I, = 4.8 x 1074, I, = 0.0002

o Bridge: m = 0.055kg, I, = 0.003, I, = 1.73 x 1074, I, = 0.0002

e« Damping and electrical constants: viscous damping = 0.1, back-EMF

constant = 2.5, spatial damping factor = 2000
These values serve several purposes:

1. They ensure that the simulated torques correspond to realistic physical forces

required to move the robot’s joints.

2. They allow the evaluation of stability and energy efficiency under different

gaits.

3. They provide the necessary link between motor voltages and resulting angular

accelerations by embedding Newton—Euler dynamics into the simulation.

4. They make it possible to compare results across different motions (jump over,

pivot, worm-like) with consistent mechanical properties.

Thus, even though the exact numerical values were simplified for testing, defining
approximate inertial parameters was essential to validate whether the proposed gaits

are mechanically feasible.

Types of Motion

3.1.1 Inertial Parameters and Their Role in Simulation

In order to make the simulated motions physically consistent, the robot’s main
components were assigned approximate mass and inertia properties. These parameters
were defined in MATLAB and passed into the Simscape model so that torque, velocity,

and energy consumption could be evaluated more realistically.

Table 3.1: Assigned inertial and damping parameters for the robot components.

Component | Mass [kg| | I, Iy, I,
Foot 0.083 0.003 | 6.4 x 10=° | 0.0002
Leg 0.812 0.003 | 4.8 x 10~* | 0.0002
Bridge 0.055 0.003 | 1.73 x 10~* | 0.0002

Additional Parameters | Value

Viscous damping (b) 0.1

Back-EMF constant (k) 2.5

Spatial damping factor 2000

These values serve several purposes:

1. Ensure that the simulated torques correspond to realistic physical forces required

to move the robot’s joints.
2. Enable evaluation of stability and energy efficiency under different gaits.

3. Provide the necessary link between motor voltages and resulting angular accel-

erations by embedding Newton—FEuler dynamics into the simulation.

4. Allow fair comparison of results across different motions (jump over, pivot,

worm-like) with consistent mechanical properties.

Although simplified, these parameters were essential to validate whether the

proposed gaits are mechanically feasible.

3.2 Leg Over Movement (Jump Over)

This motion involves lifting one leg and moving it over the stationary leg, effectively
simulating a stepping-over action. It was tested in simulation to evaluate the robot’s

ability to achieve vertical displacement and reposition itself to the opposite side.

3.2.1 Real-World Applications

Such a motion is particularly beneficial in real-world environments where the robot
must traverse over obstacles, such as debris, pipes, or cables. It allows the robot
to reposition without requiring body rotation, making it ideal for use in confined

industrial or construction spaces.

10

Types of Motion

3.2.2 Mechanical and Control Insights

The leg over motion demonstrates the robot’s joint articulation capabilities, especially
the flexibility of the knee and thigh joints. It also tests the robot’s ability to maintain
balance while supported on a single leg. The motion was executed using smooth

cubic polynomial trajectories, ensuring stable and realistic movement.

3.2.3 Simulation Purpose

This movement was designed to validate the upper structure of the robot under large
joint rotations. It serves as an early test case for evaluating high-amplitude joint

movements and synchronization between stationary and moving limbs.

3.2.4 Future Potential

The leg over strategy may be integrated into more complex gaits in the future,
enabling adaptive navigation over uneven terrain or use in inspection tasks that

require stepping across barriers.

3.2.5 Motion Sequence Visualization

To clearly illustrate the leg over movement, a step-by-step sequence from the simu-
lation is presented below. The images show the progression from the initial stance,
through the lifting and crossing phase, and finally to the repositioning of the leg on
the opposite side.

Figure 3.1: Sequential frames showing the execution of the leg over movement.

3.3 Pivot Rotation Movement (180-Degree Leg Rota-
tion)

This movement involves rotating one leg 180 degrees around the other, effectively

transitioning it from a rear position to a front position. During this motion, the knee

and thigh segments articulate while the opposite leg remains grounded and acts as a

pivot point.

11

Types of Motion

3.3.1 Real-World Relevance

The pivot rotation movement is highly useful for reorienting the robot in constrained
spaces or when a change in heading is required without lateral translation. It simulates
a turning-in-place behavior which could be critical in inspection or maintenance

scenarios on scaffolding, narrow walkways, or structural beams.

3.3.2 Technical Insights

This motion helps validate the joint flexibility and structural stability of the robot
when only one leg is active. The rotation highlights how well the system handles

unbalanced torque and weight distribution, especially during dynamic reorientation.

3.3.3 Motion Sequence Visualization

The following simulation frames illustrate the full execution of the pivot rotation.
The moving leg performs a 180-degree sweep to reposition itself while the other leg

remains fixed.

Figure 3.2: Sequential frames showing the execution of the 180-degree pivot rotation
movement.

3.4 Worm-Like Movement (Kinematic Control)

This is the classic crawling motion, inspired by worm locomotion, where one leg stays
fixed while the other extends forward through joint rotations. The robot alternates
between legs, simulating extension and contraction phases in a predefined sequence

using imposed joint trajectories.

3.4.1 Real-World Relevance

This crawling strategy allows the robot to navigate linear or confined paths—ideal for
pipelines, structural beams, or environments where wheel- or leg-based locomotion
is not feasible. It’s particularly useful for inspection tasks in tight areas, such as

construction sites, ventilation ducts, or collapsed buildings.

12

Types of Motion

Figure 3.3: Sequential frames showing the kinematic worm-like movement using
imposed trajectories.

3.4.2 Control and Motion Strategy

The movement was implemented using **kinematic control**: predefined joint
trajectories were generated using cubic polynomial interpolation to drive the robot’s
joints through each phase. One leg remains stationary, anchoring the system, while
the other leg advances through coordinated knee and thigh rotations. The two legs

alternate in a looped sequence.

3.4.3 Motion Sequence Visualization

The following simulation frames show the full worm-like movement. The robot begins
in a neutral position, then moves the right leg forward while the left leg remains

fixed. The pattern is reversed in the following phase to simulate crawling.

13

Chapter 4

Motor Selection and Control

The motors selected for joint actuation in this robot are crucial to achieving accu-
rate, smooth, and repeatable movement. Two professional-grade options have been
considered for future implementation: a closed-loop NEMA 17 stepper motor
equipped with a magnetic encoder and planetary gearbox, and an integrated servo
joint actuator featuring a harmonic drive and absolute encoder.

The NEMA 17 stepper motor provides reliable positional accuracy, moderate
torque output, and closed-loop feedback correction, making it a strong candidate
for lightweight robotic joints. The integrated servo actuator offers superior torque
density, minimal backlash, and high control precision, making it ideal for torque-based
control and more demanding applications.

Both motors allow for closed-loop control, which is essential for preventing missed
steps, correcting motion errors in real time, and adapting to variable terrain conditions.
In simulation, motors were modeled as ideal actuators driven by either imposed
position trajectories or torque commands. In practice, the closed-loop stepper motor
can be controlled using step/direction signals with encoder feedback for monitoring,
while the servo joint actuator uses advanced protocols such as CANopen or EtherCAT
for synchronization and diagnostics.

Ultimately, the selection between these motors depends on specific constraints
such as weight, required torque, control architecture, and cost. In future physical
implementations, these motors will control the knee and thigh joints of the robot,
enabling it to alternate between fixed and mobile legs, execute worm-like crawling
motions, and potentially adapt to uneven surfaces through sensor-integrated feedback

systems.

14

Motor Selection and Control

Table 4.1: Specifications — NEMA 17 Closed-Loop Stepper Motor

Feature Specification

Motor Type Stepper, NEMA 17 form factor

Feedback Magnetic encoder (1000 PPR / 4000 CPR)

Torque (with gearbox) 4.5 Nm (with 10:1 gearbox)

Step Angle 1.8° (0.09° with microstepping)

Control Interface Step/Direction with Encoder Feedback

Voltage 24V — 48V (typical)

Driver Required Closed-loop stepper driver

Weight 400-600 g

Use Case Lightweight robotic joints, low cost, accurate motion

Table 4.2: Specifications — Integrated Servo Joint Actuator (e.g., Tinsmith eRob)

Feature Specification

Motor Type Brushless DC Servo with Harmonic Drive
Feedback Absolute encoder (19-20-bit)

Rated Torque 33 Nm (peak torque up to 73 Nm)
Backlash < 0.05° (harmonic drive)

Control Interface EtherCAT / CANopen / RS485

Voltage 24V — 48V DC

Built-in Driver Yes (integrated in the module)

Weight Varies by model (typically 0.8-1.5 kg)
Use Case High-torque, low-backlash precision joints

15

Chapter 5

Code and Simscape

5.1 Overall Robot Model

The robot was modeled and simulated using Simscape Multibody in MAT-
LAB/Simulink. The objective was to create a virtual prototype of the worm-like
two-legged robot, in which each leg alternates between stability and motion. The
control inputs were generated using MATLAB scripts with cubic polynomial inter-
polation (cubicpolytraj), which allowed smooth joint trajectories to be defined in

terms of angular displacement, velocity, and acceleration.

5.1.1 Joint and Foot Connections

The subsystem representing the connections between the foot and the leg is shown
in Figure 5.1. Each revolute joint (B-F) represents a rotational degree of freedom of
the foot relative to the leg. The joints are then grouped and linked to the foot block
(Foot3, Foot0), which integrates the outputs of multiple joints into the rigid body
structure of the robot.

This configuration allowed the robot to mimic realistic contact between the foot
and the ground, as well as maintain rotational flexibility. The grouping blocks (G-R)
ensure correct transmission of angular motion and constraints between consecutive

links.

5.1.2 Trajectory Imposition on Joints

In order to control the robot’s motion, joint rotations were imposed as time-dependent
trajectories generated in MATLAB. The signals [tvec, q33], [tvec, g44], and
[tvec, g22] were fed into the revolute joints (JointO, Joint3, etc.) to impose the
rotation law.

These trajectories are the result of cubic polynomial interpolation and represent
smooth angle transitions across simulation time. For example, the q33 trajectory
controls the motion of Joint3 in Leg 1, while g44 and q22 correspond to other joints
in the opposite leg. This arrangement ensures that one leg remains stable while the

other executes the pivoting motion, thereby achieving worm-like locomotion.

16

Code and Simscape

8.
,,Uj
p v
,,,,,, @ "
- o

444 4
]

Figure 5.1: Foot—Leg revolute joint subsystem connections (left) and imposed joint
trajectories (right). These blocks link the foot with the leg using revolute joints and
apply MATLAB-generated signals for controlled motion.

5.1.3 Code Integration

The MATLAB code defined the time vector (tvec) and the desired joint angles (q)
using cubicpolytraj. These signals were then passed as inputs to the Simscape
revolute joint blocks. This integration allowed testing of both forward and backward
motions by reversing the trajectory vectors, as well as experimenting with bidirectional

locomotion control.

In summary, this subsystem established the fundamental interaction between
MATLAB code and the Simscape physical model. The combination of imposed
motion and revolute joint structures enabled the robot to replicate its designed

locomotion cycle in simulation.

5.2 From Joint Angles to Motor Torques

Given the desired joint trajectories qq(t) generated in MATLAB using cubicpolytraj
(with piecewise-cubic position, velocity, and acceleration profiles), the control ob-
jective is to produce motor torques that drive the simulated joints in Simscape to
track these references. The implementation follows a standard computed—torque

(inverse-dynamics) structure with PD feedback and viscous/Coulomb friction terms.

5.2.1

ectionSignals from the trajectory generator

For each joint ¢, the trajectory block outputs

q4,i (1), da,i(t), Ga,i(t)

stacked as vectors qq(t), qq(t), Gq(t) € R™ for n joints. The measured (or simulated)

joint states are q(t),q(t), and the tracking errors are
e(t)=aat) —a(t), e(t)=daa(t) —a(t).

17

Code and Simscape

5.2.2 Computed—torque (inverse—dynamics) controller

Let M(q) be the inertia matrix, C(q, q) the Coriolis/centrifugal matrix, and g(q) the
gravity vector of the leg-rod system. With positive-definite diagonal gains K,, K, €
R™™ and friction parameters F,, (viscous) and F. (Coulomb), the commanded joint

torque vector is

7= M(qds + Clq,q)qe +gla) +Ksée+Kpe+F,q+Fcsgn(q).
— [— ~—~—
feedforward inertia Coriolis/centrifugal — gravity PD feedback joint friction
(5.1)

5.2.3 Saturation and limits

To protect actuators and maintain numerical stability, we apply elementwise torque
limits
Temd = sat (T7 —Tmax; Tmax)a

and enforce joint position/velocity limits at the Simscape joint blocks.

5.2.4 Mapping joint torque to motor torque and voltage

If a motor with gear ratio N (motor speed to joint speed) and efficiency 7 drives a

joint, the motor shaft torque 7, and speed w,, relate to joint variables by

_ Temd
nN’

wm = Nq. (5.2)

Tm

For a DC motor with torque constant k;, back-EMF constant k., and armature

resistance R, the electrical dynamics give the drive voltage command

V=R {kw, = R-od

k. N q. .
» ktnN+ q (5.3)

Equations (5.1)-(5.3) are the basis of the “angles — torque (and voltage)” conversion
used in this work: the trajectory generator supplies qq, 44, 44, the computed—torque
law produces the joint torques Temq, and (5.2)—(5.3) translate them into motor—level

commands for Simscape actuators.

5.3 Motor Direction Control: From Angle/Torque to
CW/CCW Motion

This subsection explains how the joint angle/torque commands are realized as
clockwise (CW) and counterclockwise (CCW) motion at the motor using piecewise—
constant voltage profiles. In Simulink/Simscape (Fig. 5.2), each joint is driven by
a DC motor block. A time-series voltage command V'(¢) is applied to the motor
terminals; its sign determines the rotation direction following the right—hand rule of

the motor’s positive axis.

18

Code and Simscape

12 q00_data

3

Figure 5.2: Motor drive in Simulink/Simscape. From left to right: voltage source fed
by a time-series signal (e.g., q00_data), DC motor (electrical +- ports, mechanical
C,R), sensors, and logging. Positive voltage commands produce positive torque and
speed in the motor’s positive rotation sense (CCW by Simscape convention for the
shown orientation).

5.3.1 DC motor model and direction convention

For the DC motor, the standard electromechanical relations are

V=Ri+Li+kew, (5.4)

Tm = ki 1, Jw+bw + Tioad = T, (5.5)

where V' is terminal voltage, ¢ the armature current, w the motor angular speed, 7,
the motor torque, R and L the armature resistance and inductance, k. and k; the
back—-EMF and torque constants, J the rotor inertia, b the viscous friction, and 7joaq
the external load torque (referred to the motor shaft).

From (5.4)—(5.5) (neglecting L and at steady state with w = 0 and 7j5aq = 0),

()
R kt
Wss = W, Tm = 7 (V — kew). (5.6)

Hence, with the usual positive parameters R, b, k¢, k. > 0, the sign of the commanded

voltage V dictates the sign of both motor torque 7, and speed w:
V > 0= CCW (positive) rotation, V < 0= CW (negative) rotation.

If a gear train with ratio NV and direction sign s € {+1, —1} is used, the joint variables
relate by
q = Sﬁa Tjoint = 577N7_m7 (57)

where 7 is the efficiency. The sign s is determined by the Simscape gear block
orientation; s = 41 preserves direction and s = —1 inverts it.
5.3.2 Voltage sequences that encode CW/CCW motion

The voltage commands are generated offline in MATLAB as piecewise—constant
segments and exported to Simulink as [t, V' (t)] arrays. Each motion pattern is defined

as a two—column matrix with rows [duration (s), voltage (V)]. For joint “00” (as an

19

Code and Simscape

example):))
1 0
1 -2
1 0
q00_motion = 1 0
1 4

The helper function build_traj expands these segments at sampling interval dt to

produce a full voltage trajectory:
q00_data = [to, Vo; t1,Vi; ...].
By construction,
V(t) > 0 = joint drives in the positive (CCW) sense, V(t) < 0 = joint drives in the negative |

The same procedure is applied to the other joints to create q11_data, q22_data, and
q33_data. All series are zero—padded to equal length so the simulation stop time is

shared.

5.3.3 Simulink implementation (link to Fig. 5.2)

Each [t, V] array is fed to a From Workspace or Signal Builder block that drives a
controlled voltage source connected to the DC motor. The motor’s mechanical port
is coupled to the joint via the gear (ratio N, sign s). Current and speed sensors
close the loop for monitoring or protection. The resulting direction of motion follows
(5.6)—(5.7); no additional sign blocks are required if the motor axis and gear sign s

are set consistently with the desired joint positive direction.

5.3.4 Practical notes (deadband, limits, back—EMF')
To improve robustness:
e Voltage limits: saturate V to £Vj,ax of the driver.

o Deadband: small voltages may not overcome static friction; enforce |V| <
Vaib =V =0.

e Back—EMF compensation: for near—constant speeds, adding k. N ¢ to the

command (cf. (5.4)) helps maintain direction and speed.

Summary. The sequence matrices (q00_motion, q11_motion, q22_motion, 33_motion)
encode CW/CCW directly through the sign of the voltage command. Via the DC
motor model (5.4)—(5.6) and the gear mapping (5.7), positive voltages yield CCW
joint motion (for s = +1), and negative voltages yield CW motion, as used to realize

the alternating worm-like gait.

20

Chapter 6

Results

6.1 Flipping Motion (Leg Over Movement)

6.1.1 Joint Angles vs Time

Joint Angles vs Time

4 .
Bottom Right
3l Top Right
Top Left
Bottom Left
2 L
g
o
2ok 1
< \
E I\ A
S -1 \'_/ //
2t
3F
4 | . |
0 1 2 3 4 5 6 7 8

Time (s)

Figure 6.1: Angular displacement of each joint in radians during the flipping (leg
over) motion.

Description: This graph tracks the angular displacement of each joint in radians as
the motion progresses.

Interpretation: The top left joint experiences the largest positive angular change,
approaching around 3.5radians (~ 200°), indicating a full extension used to push
and flip the robot. The top right joint shows a mirrored, negative angular range,
confirming that it moves in the opposite direction. The bottom joints (especially the
bottom right and bottom left) remain mostly at zero, highlighting their stabilizing
role during the flip.

21

Results

6.1.2 Joint Velocities vs Time

Figure 6.2: Angular velocity of each joint during the flipping (leg over) motion.

Description: This graph shows how fast each joint is rotating, in radians per second.
Interpretation: Velocity spikes correspond to the moments when joints rapidly
switch position to initiate or complete the flip. The top joints again dominate, peaking
around £9rad/s, while the bottom joints remain mostly static. This reinforces that

the flipping motion is driven primarily by the upper part of the structure, with the

Joint Velocity {rad/s)

-10

Joint Velocities vs Time

Bottom Right
Top Right
Top Left
Bottom Left

lower joints providing stability.

3 4
Time (s)

6.1.3 Joint Accelerations vs Time

Figure 6.3:

a8} B
(=] o

Joint Acceleration (radlsz}
o

Angular acceleration of each joint during the flipping (leg over) motion.

Joint Accelerations vs Time

Bottom Right
Top Right
Top Left
Bottom Left

Time (s)

22

Results

Description: This graph displays how joint accelerations (in rad/s?) vary over time
for the bottom right, top right, top left, and bottom left joints.

Interpretation: Sharp spikes in acceleration appear at the beginning and midpoint
of the motion. These peaks reflect the high-torque, rapid rotational efforts required
to flip the robot over. The top joints (particularly the top left and top right) show the
highest fluctuations, confirming their role in generating the flipping momentum. The
bottom joints remain nearly flat, indicating that they serve more as pivot anchors

than active movers.

6.1.4 Summary of Flipping Motion Results

These plots confirm that the robot’s flipping behavior is highly dependent on rapid
and synchronized angular changes in the top joints, while the bottom joints provide
grounding and stability. The coordinated role of active upper joints and stabilizing

lower joints ensures the feasibility of the leg over (jump over) movement.

6.2 Pivot Motion Results

6.2.1 Joint Angles vs Time

Joint Angles vs Time

0.2
Bottom Right
0.15 - Top Right
’ Top Left
Bottom Left
0.1
g 0.05
°
2 of 1
<T
£
S -0.05
-0.1
0.15
0.2
0 1 2 3 4 5 6 7 8

Time (s)

Figure 6.4: Angular displacement of each joint in radians during the pivot motion.

Description: The plot shows how the joints move during the pivot motion, where
one side rotates while the other remains anchored.

Interpretation:
o The Top Left joint rotates first (~ 0.18 rad), holds, and then returns to zero.
e The Top Right joint rotates later in the opposite direction.

o The Bottom joints remain fixed (Orad).

23

Results

This confirms that the pivot is performed by alternating the top joints while the

bottom joints provide stable support.

6.2.2 Joint Velocities vs Time

Joint Velocities vs Time

0.6
Bottom Right
Top Right
04 F Top Left
Bottom Left
w02
k=)
o
=
8 of f
(]
=
E
8021
-04 r
06
0 1 2 3 4 5 6 7 8

Time (s)

Figure 6.5: Angular velocity of each joint during the pivot motion.

Description: This plot shows the angular velocity of each joint in radians per second
during the pivot.

Interpretation:

e Velocity spikes occur whenever a joint starts or stops moving.

e The Top joints move one after the other, while the bottom joints remain near

Z€ero.

This behavior confirms alternating joint activation and controlled reorientation during

the pivot motion.

6.2.3 Joint Accelerations vs Time

Description: This graph displays how joint accelerations (in rad/s?) vary over time
for the top and bottom joints during the pivot motion.

Interpretation:

e Sharp spikes appear when rotation starts or stops, reflecting the effort needed

to initiate or terminate movement.
e The Top joints accelerate in turn, confirming alternating activation.

e The Bottom joints remain almost flat, showing they act as stable anchors.

Overall, the motion profile indicates the use of cubic trajectories with smooth

transitions.

24

Results

Joint Accelerations vs Time

Bottom Right
Top Right
Top Left
Bottom Left
o

0

ke

&

c

2

B |

Qo

[o]

3]

o -

<

=

S -

Ret

3t
4+
0 1 2 3 4 5 6 7 8

Time (s)

Figure 6.6: Angular acceleration of each joint during the pivot motion.

6.2.4 Summary of Pivot Motion Results

The results show that the pivot motion is both controlled and feasible. The joint angle
plots confirm that only the upper joints are active while the bottom joints remain
stable. Velocity and acceleration spikes are limited and occur only during switching
phases, demonstrating smooth transitions rather than abrupt changes. These findings
validate that the pivot motion can be reliably executed with minimal energy waste
and sufficient structural stability, making it a practical movement strategy for the

robot.

6.3 Worm-Like Motion Results

6.3.1 Joint Angles vs Time

Description: This graph shows the angular displacements of all joints as the robot
performs the worm-like motion.

Interpretation:
e Smooth sinusoidal transitions indicate controlled, interpolated motion.

o Top joints move in the opposite direction to bottom joints, showing coordinated

limb motion (push—pull alternation).

e The return to zero suggests the robot completes its motion sequence and comes

to rest.

6.3.2 Joint Velocities vs Time

Description: This graph shows the angular velocities of all joints during the

worm-like motion.

25

Results

Joint Angles vs Time

0.6 T
Bottom Right
Top Right
Top Left 4
Bottom Left
= i
&
°
5) -
=
©
= -
06
0 1 2 3 4 5

Time (s)

Figure 6.7: Angular displacement of each joint during the worm-like motion.

Joint Velocities vs Time

3 T
Bottom Right
Top Right
Top Left 4
Bottom Left
_’fg“ i
k]
&
=
‘S .
Lo
[0}
=
k=
o 4
8
3
0 1 2 3 4 5

Time (s)

Figure 6.8: Angular velocity of each joint during the worm-like motion.

Interpretation:
o Peaks appear around transitions (e.g., from rest to peak angles).
e The symmetry of the curves indicates a well-balanced gait pattern.

o Sudden flat regions at the end (zero velocity) mean the robot joints stop moving

after the motion completes.

e Peaks and troughs correspond to the fastest angular changes during the swing

phases.

26

Results

6.3.3 Joint Accelerations vs Time

Joint Accelerations vs Time

25
Bottom Right
Top Right
Top Left
Bottom Left
o

0

o

&

c

2

B |

o

[}

o

s}

<

€

5 -

S

-25 .
0 1 2 3 4 5

Time (s)

Figure 6.9: Angular acceleration of each joint during the worm-like motion.

Description: This graph reflects how quickly the joints speed up or slow down
during movement, measured in rad/s?.

Interpretation:
e Sharp spikes indicate rapid directional changes.

o Regular alternating peaks and troughs show the rhythm of gait phases (lift,

swing, land).

o Accelerations reach up to +£20rad/ s2, implying quick responsiveness.

6.3.4 Overall Insights on Worm-Like Motion

e The data confirms the robot performs a cyclic, coordinated movement —

an essential step toward natural locomotion.

o Acceleration and velocity spikes occur at the transition points of the motion,

as expected.
o The flat tails in all three plots (angles, velocities, accelerations) confirm the

robot stops after completing its motion sequence.

6.3.5 Average Torque per Interval

Description: This graph shows the average torque at each joint during the worm-like
crawling motion, computed over 0.5-second intervals.

Interpretation:

27

Results

Average Torque per 0.5s Interval

25 T
—S— Bottom Right
2r Top Right |]
—S— Top Left
151 ©— Bottom Left | 1

Avg Torque (Nm)
o

Time (s)

Figure 6.10: Average joint torque values per 0.5 s interval during the worm-like
motion.

1. Top Left (Blue) and Bottom Right (Red) — Alternating Peaks These
joints show dominant, alternating torque patterns, peaking between £2.5 Nm.
This reflects the worm-like “pull-push” strategy:

e One leg (e.g., left) pulls the robot forward (positive torque).
o The opposite leg (e.g., right) pushes against the ground or stabilizes

(negative torque).

Their mirrored peaks confirm that while one joint activates, the other relaxes,

supporting forward advancement.

2. Top Right (Green) and Bottom Left (Magenta) — Near-Zero Torques

These joints remain close to zero, meaning:

e The top right joint was not actively lifting or rotating.

e The bottom left joint served mainly as a stable support.

In worm-like locomotion, only selected joints produce torque at each phase,

while others anchor the body.

3. Torque Peaks Around 1 s, 2.5 s, and 3.5 s These times mark cycle
transitions where the robot switches phase (extension vs. contraction). Bursts

of torque occur when:

o A leg is lifted.
e The body pivots or shifts weight.

o Force is applied to push forward.

28

Results

4. Oscillating Torque Pattern The alternating up—down torque values every
0.5-1 s show rhythmic, cyclic behavior. This confirms that locomotion is
dynamic rather than static, with continuous effort to overcome inertia, gravity,
and damping.

5. Torque Magnitudes are Realistic The +2.5 Nm range is physically reason-
able for a small robot with:

e Link masses below 1 kg.

« Joint inertias on the order of 1072 kg - m?.
o Damping between 0.01-0.1 N - m - s/rad.

This ensures the simulated torques remain mechanically feasible without ex-

ceeding actuator capacity.

6.3.6 Joint Torques vs Time

Joint Torques vs Time

6 T
Joint 0 (Bottom Right)
Joint 1 (Top Right)
4 Joint 2 (Top Left)
A Joint 3 (Bottom Left)
2r | I""‘ A\ 1
— 7\ "f \ A f’ \
{ \ | f Y |
zE “'x .
g0 1
g | |
(s} | | | |
- \ \
-2r | | | | 1
| | | |
[|
| | | |
L - . _
4 |\ |
\ \
) v#
8 | | I I
0 1 2 3 4 5

Time (s)

Figure 6.11: Joint torque profiles during the worm-like motion.

Description: This plot shows the instantaneous torque values of each joint over
time as the robot performs the worm-like motion.
Interpretation: The torque plot shows that Joint 0 (Bottom Right) and Joint 2
(Top Left) are the primary contributors, generating oscillating torques around +5 Nm.
This is consistent with the alternating push—pull behavior required for worm-like
crawling. Their torque waveforms are synchronized but phase-shifted, meaning one
joint pushes while the other resets — a classic dual-phase gait pattern.

By contrast, Joint 1 (Top Right) and Joint 3 (Bottom Left) remain close to
zero, confirming that they act as passive stabilizers rather than active drivers in this

motion cycle.

29

Results

The torque magnitudes are realistic for small robotic limbs with low inertia,
and the smooth sinusoidal shapes align with the expected effort needed to sustain

continuous, coordinated locomotion.

6.4 Motor-Level Results for Worm-Like Motion

6.4.1 Cumulative Electrical and Mechanical Energy

1o Cumulative Electrical and Mechanical Energy

YE

elec

i pN Eme:h /

Energy [J]
o
(o2}

04r /

Time (s)

Figure 6.12: Cumulative electrical and mechanical energy during worm-like motion.

Description: This plot shows the total electrical energy supplied to the motors and
the corresponding mechanical energy delivered at the shafts, both integrated over
time.

Interpretation:

e Both energy curves increase in a step-like fashion, reflecting the segmented

nature of the gait (1 s of actuation followed by idle phases).

o Flat regions indicate idle intervals where no voltage was applied, meaning no

further energy consumption.

e The electrical and mechanical energy curves nearly overlap, confirming that

resistive and frictional losses are minimal under the chosen motor parameters.

o The final cumulative energy (1 J) is realistic for an 8 s worm-like crawl with

lightweight links and moderate torques (£2.5 Nm).

6.4.2 Power and Efficiency

Description: The top panel shows the instantaneous electrical and mechanical

power, while the bottom panel shows the efficiency profile of the motors during the

30

Results

Total Power
0.25
- - Pe\ec
0.2 1 1 . ¥P
g ‘ | ‘ mech
0.15 |
5 | |
% 01r T | E— ‘ T
n ’ : I‘ | | | | | : "
005F | - ' : ‘. L ,
0 ‘\ | I ‘ I ‘ I | | I .‘ I ‘ |
0 2 4 6 8 10 12 14 16
Time (s)
Instantaneous Efficiency
T]]
0.8 | ‘ ‘ ‘ | ‘
=
é 0.6 | | ‘ |
% 0.4 ‘ ‘ l l ‘ | | | | ‘ | l
| | | | | | |
oz ||| - | | o '
O ‘ |] 1 1l ‘ |\ | | 1 1 ‘ J
0 2 4 6 8 10 12 14 16
Time (s)

Figure 6.13: Total power consumption and instantaneous efficiency during worm-
like motion.

worm-like motion.

Interpretation:
o Power:
— Electrical and mechanical power spikes occur only when voltage is applied,
corresponding to push—pull phases of the gait.
— Flat intervals at zero confirm periods of rest when the legs are idle.
— Peak powers (0.1-0.2 W) match the expected torque (~ 2 Nm) and low
joint speeds (~ 0.05—0.1 rad/s).
o Efficiency:
— Efficiency reaches near unity (1.0) during steady movement, consistent
with an efficient DC motor model.

— It temporarily drops to 0—0.5 during stall or low-speed conditions when

current flows but little mechanical work is produced.

— This alternating efficiency pattern is correct for a stop—and—go gait:

bursts of effective motion followed by resets.

6.4.3 Overall Insights

e The results confirm that the motor model behavior is consistent with the
worm-like gait: segmented actuation, alternating phases, and rhythmic torque

production.

31

Results

e The close overlap of electrical and mechanical energies shows that losses are

small, validating the feasibility of the actuation strategy.

e The efficiency plot highlights the difference between active motion and idle

phases, proving that energy is only consumed when needed.

o Together, these graphs demonstrate that the chosen motor actuation profile
is physically realistic, energy-efficient, and well suited for worm-like

locomotion.

32

Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis presented the design, modeling, and simulation of a two-legged worm-like
robot capable of executing multiple locomotion strategies, including flipping (leg-over
motion), pivot rotation, and worm-like crawling. The robot was developed and tested
in MATLAB/Simulink and Simscape environments, where joint trajectories were
generated using cubic polynomial interpolation and later converted into torque-based
motor commands.

The results confirmed the feasibility of the proposed motions:

« Flipping motion demonstrated the ability of the robot to achieve large angular
displacements through synchronized top-joint actuation, while bottom joints

provided stabilization.

e Pivot motion validated the robot’s capability to reorient itself in confined

spaces by alternating top-joint movements while anchoring the bottom joints.

¢ Worm-like crawling showcased rhythmic, cyclic push—pull joint activations,

leading to forward progression with minimal energy expenditure.

At the motor level, analysis of voltage, current, torque, and efficiency confirmed
that the chosen actuation strategy is realistic for small-scale robots. The cumulative
energy plots and power-efficiency results showed that energy consumption occurs
only during active phases, ensuring operational efficiency.

Overall, the research demonstrated that worm-inspired locomotion can be suc-
cessfully simulated and controlled through torque-driven actuation, validating the

initial design concept.

7.2 Future Work

While the results are promising, several directions can further extend this work:

33

Conclusion and Future Work

e Hardware Implementation: Building a physical prototype to validate the
simulated results and evaluate real-world performance under friction, compli-

ance, and terrain variations.

e Advanced Control Strategies: Implementing closed-loop feedback using sen-
sors (encoders, IMUs, force sensors) and applying control methods such as PID,

model predictive control, or reinforcement learning for adaptive locomotion.

e Energy Optimization: Refining motor control to minimize energy losses, in-
corporating regenerative braking, and testing alternative actuation mechanisms

(e.g., pneumatic or tendon-driven systems).

e Terrain Adaptability: Extending locomotion to irregular or inclined surfaces,
enabling applications in inspection, search-and-rescue, or industrial environ-

ments.

e Scalability: Investigating multi-segmented worm robots for enhanced mobility,
where multiple modules coordinate their motion to cover longer distances

efficiently.

This research forms the foundation for worm-inspired robotic locomotion, bridging
the gap between bio-inspired concepts and practical robotic systems. By combining
simulation, torque-based motor control, and energy analysis, it opens the path toward

future development of lightweight, efficient, and adaptive crawling robots.

34

Appendix A

MATLAB Codes

A.1 Flipping Motion — Trajectory Generation Script

Listing A.1: MATLAB script for flipping (leg-over) motion: cubic polynomial

trajectories and inertial/friction parameters.

clear all
close all

clce

% Define waypoints and compute cubic polynomial trajectories

| wpts00 = [0 —80 —50 0 0 0 0 0 0 0] * pi/180;

num = length (wpts00)—1;

tpts = 0:0.5:num/2;

tvec = (0:0.1:num+2) ’;

[q00, qd00, qdd00, ~] = cubicpolytraj(wpts00, tpts, tvec);

wptsll = [0 35 0 —180 —180 —180 —180 —180 20 0] = pi/180;
[qll, qdl1, gddll, ~] = cubicpolytraj(wptsll, tpts, tvec);

| wpts22 = [0 0 160 180 180 180 180 215 180 0] = pi/180;

[q22, qd22, qdd22, ~] = cubicpolytraj(wpts22, tpts, tvec);

wpts33 = [0 0 0 0 0 0 0 —80 —50 0] * pi/180;
[q33, qd33, qdd33, ~] = cubicpolytraj(wpts33, tpts, tvec);

% Initialize mode vector (example: switch sign midway)

3lmode = zeros (111,1);

mode (50:end) = —1;

i|% Transpose data for consistency (column vectors)

q00 = q00’; qd00 = qd00’; qdd00 = qddo00 ’;
qll = ql1’; qdl11 qdll’; qddll = qdd11’;
q22 q22’; qd22 qd22’; qdd22 qdd22’;
q33 = q33’; qd33 = qd33’; qdd33 qdd33’;

Tsim = tpts(end);

35

-

N

w

MATLAB Codes

%% Inertial parameters

5| foot__mass = 0.083;

i| foot_ Ixx = 0.003;

7| foot_Iyy = 0.000064;
foot_Izz 0.0002;
leg_ mass 0.212;
leg Ixx = 0.003;
leg_lyy = 0.00048;
leg Izz = 0.0002;

5| bridge_ mass = 0.055;

i| bridge_Ixx = 0.003;

7| bridge _Iyy = 0.000173;
bridge Izz = 0.0002;

%% Friction parameter

damping_par = 0.01;

A.2 Pivot Motion — Trajectory Generation and Joint
Profiles

Listing A.2: MATLAB script for pivot motion (180-degree leg rotation): cubic

polynomial trajectories, inertial/friction parameters, and plots of joint responses.

clear all
close all

clc

% Define waypoints and compute cubic polynomial trajectories

i| bottom__right__joint = [0 0 0 0 0 0 00 00000 0] = pi/180;

num = length (bottom_right_joint)—1;

tpts = 0:0.5:num/2;

tvec = (0:0.1:num+2) ’;

[q00, qd00, qdd00, ~] = cubicpolytraj(bottom_right_ joint, tpts, tvec);

2| top__right_joint = [0 0 0 0 0 0 0 0 —10 —10 —10 —10 0 0] = pi/180;

[ql1, qdl11, qddll, ~] = cubicpolytraj(top_right_joint, tpts, tvec);

5| top_left_joint = [0 10 10 10 10 0 0 0 0 0 0 0 0 0] * pi/180;

q22, qd22, qdd22, ~] = cubicpolytraj(top_left_joint, tpts, tvec);
y

bottom__left__joint = [0 0 0 0 0 0 0 0 00 00O 0] = pi/180;
[q33, qd33, qdd33, ~] = cubicpolytraj(bottom_left joint, tpts, tvec);

mid_left__joint = [0 0 180 180 180 180 180 180 180 180 180 180 180 180]
* pi/180;
[q44, qd44, qdd44, ~] = cubicpolytraj(mid_left_joint, tpts, tvec);

mid_right_joint = [0 0 0 0 0 0 0 0 0 0 180 180 180 180] * pi/180;

36

MATLAB Codes

[g55, qd55, qddb5, ~] = cubicpolytraj(mid_right_joint, tpts, tvec);

% Initialize mode vector

28| mode = zeros (111,1);

N

w

mode (50:end) = —1;

% Transpose data for consistency
2/q00 = q00’; qd00 = qd00’; qdd00 = qdd00’;

51933

qll = ql1’; qdl1l = qdl11’; qddll = qddl11’;
q22 = q22’; qd22 = qd22’; qdd22 = qdd22’;
= q33’; qd33 = qd33’; qdd33 = qdd33’;

| q44 = q44’; qd44 = qd44’; qdd44 = qdd44’;
71qb5 = gb5’; qdbd = qdb5’; qddb5 = qddb5’;

Tsim = tpts(end);

%% Inertial parameters

2| foot__mass = 0.083;
foot_ Ixx = 0.003;
foot_lyy = 0.000064;

5| foot__Izz 0.0002;

7| leg__mass 0.212;

| leg Ixx = 0.003;
leg_lyy = 0.00048;
leg_Izz 0.0002;
bridge_mass = 0.055;
bridge Ixx = 0.003;
bridge_Iyy = 0.000173;

5| bridge_Izz = 0.0002;

%% Friction parameter
damping_par = 0.01;

% Plot joint angles

figure;

plot (tvec, q00, ’r’, tvec, qll, ’'g’, tvec, q22, ’b’, tvec, q33,
legend (’Bottom Right’,’Top Right’, Top Left’,’ Bottom Left’);
xlabel ("Time (s)’);

5| ylabel (’ Joint Angle (rad)’);

title (’Joint Angles vs Time’) ;

7| xlim ([0 8]);

'm’) ;

% Plot joint velocities

figure;

plot (tvec, qd00, ’'r’, tvec, qdll, ’g’, tvec, qd22, ’b’, tvec, qd33, ’'m
)

legend (’Bottom Right’,’Top Right’, Top Left’,’Bottom Left’);

xlabel ("Time (s)’);

ylabel (’Joint Velocity (rad/s)’);

title (’Joint Velocities vs Time’) ;

xlim ([0 8]);

37

[0

[}
&

84

0

-

N

MATLAB Codes

% Plot joint accelerations

figure;

plot (tvec, qdd00, ’'r’, tvec, qddll, ’g’, tvec, qdd22, ’'b’, tvec, qdd33,
‘m’) ;

legend (’Bottom Right’,’Top Right’, Top Left’,’Bottom Left’);

2| xlabel (’Time (s)’);

ylabel (’Joint Acceleration (rad/s”2)’);

title (’Joint Accelerations vs Time’) ;

5 xlim ([0 8]) ;

A.3 Worm-Like Motion — Angle-Based Trajectory Script

Listing A.3: MATLAB script for worm-like motion: forward and reverse angle

trajectories combined into a continuous sequence for Simulink.

clear all
close all

clc

%% 1. Define original joint waypoints (forward)

i| bottom__right__joint = [0 5 22 0 5 18 0 0 5 18 0 0 0] * pi/180;

7| top_right__joint =[0 -5 —-220 -5 —-18 00 —5 —18 0 0 0] * pi/180;
top__left__joint = [0 —10 16 0 —10 16 0 0 —10 16 0 0 0] * pi/180;
bottom_left_joint = [0 10 —16 0 10 —16 0 0 10 —16 0 0 0] % pi/180;
mid_left_joint =[0000000O0O0O0GO0GO0 0] « pi/180;
mid_right__joint =[0000000O0O0O0GO0GO0 0] = pi/180;

%% 2. Define time vectors

num = length (bottom_right_ joint) — 1;
s|tpts = 0:0.5:num/2; % Waypoints time
i|tvec = (0:0.1:num+2) ’; % Full forward time vector

%% 3. Build reversed trajectories with negated angles
bottom_right_joint_rev = —fliplr (bottom_right_joint);
top_right_joint_rev

—fliplr (top_right_joint);
—fliplr

(

top_ left_joint_rev (
—fliplr (bottom__left__joint);

(

(

top__left__joint);

bottom_ left__joint_rev

mid_ left__joint_rev —fliplr (mid_left_joint);

mid_right__joint_rev = —fliplr (mid_right_joint);

i|%% 4. Generate cubic polynomial trajectories (forward and reverse)

[q00_fwd, ~, ~, ~] = cubicpolytraj(bottom_right_ joint, tpts, tvec);
[qll_fwd, ~, ~, ~] = cubicpolytraj(top_right_joint, tpts, tvec);
[q22_fwd, ~, ~, ~] = cubicpolytraj(top_left joint, tpts, tvec);
[q33_fwd, ~, ~, ~] = cubicpolytraj(bottom_left_joint, tpts, tvec);
[q44_fwd, ~, ~, ~] = cubicpolytraj(mid_left_joint, tpts, tvec);
[g55_fwd, ~, ~, ~] = cubicpolytraj(mid_right_joint, tpts, tvec);
[q00_rev, ~, ~, ~] = cubicpolytraj(bottom_right joint_ rev, tpts, tvec);
[qll_rev, ~, ~, ~] = cubicpolytraj(top_right_joint_rev, tpts, tvec);

38

MATLAB Codes

[q22_rev, ~, ~, ~] = cubicpolytraj(top_left_joint_rev, tpts, tvec);
[q33_rev, ~, ~, ~] = cubicpolytraj(bottom_left_joint_rev, tpts, tvec);
[q44_rev, ~, ~, ~] = cubicpolytraj(mid_left_joint_rev, tpts, tvec);
[q55_rev, ~, ~, ~] = cubicpolytraj(mid_right_joint_rev, tpts, tvec);
%% 5. Combine trajectories
q00__total = [q00_fwd’'; q00_rev’];
qll_total = [qll_fwd’; qll_rev’];
q22_total = [q22_fwd’; q22_rev’];

5| q33_total = [q33_fwd’; q33_rev’];

i| q44_total = [q44_fwd’; q44_rev’];

71 qb5_total = [qb5_fwd’; gb5_rev’];

%% 6. Build combined time vector

tvec_total 17, length (q00_total)) ’;

linspace (0, % ~17 seconds total

%% 7. Format for Simulink (time + values together)

53/ q00__data = [tvec_total, q00_total];
54/ qll_data = [tvec_total, qll_total];
551 q22__data = [tvec_total, q22_total];
56| 33_data = [tvec_total, q33_total];
571 q44_data = [tvec_total, q44_total];
5| qb5_data = [tvec_total, 55 total];
59

60|%% 8. Simulation time

61| Tsim = tvec_total(end);

62

63|%% 9. Inertial parameters

64| foot__mass = 0.083;

65| foot_ Ixx = 0.003;

66| foot__Iyy = 0.000064;

67| foot__Izz = 0.0002;

68

69| leg__mass 0.212;

70| leg_ Ixx = 0.003;

71| leg_lyy = 0.00048;

|leg_lzz 0.0002;

73

74| bridge _mass = 0.055;

75| bridge__Ixx = 0.003;

76| bridge_Iyy = 0.000173;

77| bridge_Izz = 0.0002;

79|%% 10. Friction parameter

s0| damping__par = 0.01;

A.4 Worm-Like Motion — Torque-Based Simulation Script

Listing A.4: MATLAB script for worm-like motion: torque computation and

interval-averaged torque analysis for Simulink input.

39

V)

ol foot Ixx

i| leg__mass
7| leg_ Ixx

;| damping_ par

MATLAB Codes

all
all

clear
close

clc

%% Define joint

trajectories

% Time vector matching qdd00

t_trimmed = linspace (tpts(1l), tpts(end),

%% Inertial parameters

foot__mass =0

foot_lyy

foot Izz

leg_Iyy
leg_lzz

Il
o o o o

bridge__mass =
bridge_ Ixx

bridge_ Iyy

Il
o o o o

bridge_Izz

0
= 0.
0.0002;

= 0.

.083;
.003;
000064;

812;
.003;

.00048;
.0002;

.055;
.003;

.000173;
.0002;

06;

%% Compute torques (column vectors)

size (qdd0o0,

(in degrees converted to radians)

i| bottom__right__joint = [0 O 15 —-28 0 0 0 15 —28 0 0] * pi
/180;
7| top_right_joint =10 0 0 0 0 0 0 0 0 0 0] * pi/180;
top__left__joint = [0 —15 20 0 20 0 —-15 20 0O 20 0] % pi/180;
bottom_left_joint = [0 0 0 0 00 0O 0 O O 0] % pi/180;
mid_ left__joint = zeros (1, 11);
2| mid__right_ joint = zeros (1, 11);
%% Timing for trajectory generation
silnum = length (bottom_right_joint) — 1;
i|tpts = 0:0.5:5; % waypoint time steps
7l tvec = (0:0.05:6) 7; % full time vector for smoother
interpolation
%% Generate joint trajectories
[q00, qd00, qdd00, ~] = cubicpolytraj(bottom_right_joint, tpts, tvec
[qll, qdl1, qddll, ~] = cubicpolytraj(top_right_joint, tpts, tvec
[q22, qd22, qdd22, ~] = cubicpolytraj(top_left_joint , tpts, tvec
[q33, qd33, qdd33, ~] = cubicpolytraj(bottom_left_joint, tpts, tvec
[q44, qd44, qdd44, ~] = cubicpolytraj(mid_left_joint , tpts, tvec
[q55, qdb5, qdd55, ~] = cubicpolytraj(mid_right_joint, tpts, tvec

2)) 7%

tau00 = (foot_Izz * qdd00(1,:) + damping_par x qd00(1,:)) ’;
taull = (leg_Izz x qdd11(1,:) 4+ damping_par * qd11(1,:)) ’;
tau22 = (leg_lzz x qdd22(1,:) 4+ damping_par *x qd22(1,:)) ’;

40

MATLAB Codes

o
o

taudd = (foot_Izz * qdd33(1,:) + damping_par x qd33(1,:)) ’;
53| taudd = (bridge_ Izz x qdd44(1,:) + damping par * qd44(1,:)) ’;
taubb = (bridge_Izz * qdd55(1,:) + damping_par * qd55(1,:)) ’;

w

56|% Scaling for realistic torque values

57| scale = 40;

53| tau00 = scale x* tau00;
50| taull = scale * taull;
60| tau22 = scale * tau22;
61| tau3d3 = scale * tau33;
62| taudd = scale * taudd,
63| taubd = scale * taubb;
64

5|%% Create [time, torque] matrices for Simulink
66| torque00__matrix = [t_trimmed, tau00];
t_trimmed, taull];
t_trimmed, tau22];

67| torquell__matrix [
[
[t_trimmed, tau33];
[
[

68| torque22__matrix

69| torque3d3__matrix

70| torque44__matrix t_trimmed, tau44];

71| torque55__matrix = [t_trimmed, taub5];

73|%% Plot torque profiles for validation

74| figure;

75| plot (t__trimmed, tau0O0, ’—r’, t_trimmed, taull, '—g’,

76 t_trimmed, tau22, ’—b’, t_trimmed, tau33, '—m’);

77| legend (’Joint 0 (Bottom Right)’, ’Joint 1 (Top Right)’,
78 >Joint 2 (Top Left)’, ’Joint 3 (Bottom Left)’);

7ol xlabel (’Time (s)’); ylabel(’Torque (N m)’);

so| title (7 Joint Torques vs Time’); grid on;

52|%% Interval —based average torque computation
g3 dt = 0.5;

84| t_start = t_trimmed (1) ;

85| t_end = t_trimmed (end);

s6| intervals = t_start:dt:t_end;

s5|% Preallocate average torque arrays

so| avg__tau00 = zeros(length(intervals)—1, 1);
90| avg_taull = zeros(length(intervals)—1, 1);
91| avg_tau22 = zeros(length(intervals)—1, 1);
92| avg_tau33 = zeros (length(intervals)—1, 1);

94/% Compute average torque in each interval

95| for i = 1l:length(intervals)—1

96 idx = t_trimmed >= intervals(i) & t_trimmed < intervals (i+1);
97 avg_tau00(i) = mean(tau00(idx));

98 avg taull(i) = mean(taull(idx));

99 avg_tau22(i) = mean(tau22(idx));

100 avg tau33 (i) = mean(tau3d3(idx));

01| end

102
103|% Plot average torques
104 mid__times = intervals (l:end—1) + dt/2;

41

105

106

107

108

109

110

N}

MATLAB Codes

figure;
plot (mid_times, avg_ tau00, ’—or’, mid_times, avg_ taull, '—og’,
mid_times, avg_tau22, '—ob’, mid_times, avg_ tau33, '—om’) ;

legend (’Bottom Right’,’Top Right’, Top Left’,’ Bottom Left’);
xlabel ("Time (s)’); ylabel(’Avg Torque (Nm)’);
title (?Average Torque per 0.5s Interval’); grid on;

A.5 Worm-Like Motion — Motor Voltage Input Script

Listing A.5: MATLAB script defining worm-like motion using motor voltage

commands, with Simulink-compatible input arrays.

clear all
close all

clce

%% 1. Time Vector Setup

T = 8; % Total simulation time [s]
dt = 0.1; % Time step [s]
tvec = (0:dt:T) ’; % Time vector column

% Number of steps
N = length (tvec);

%% 2. Define motion patterns for each joint

% Each row: [duration in sec, voltage value]

i| 00_motion = [...

1, 0;

| © &~ © o |
S LEEEE]

e = T = T e e e R e e
oo | © s~ O O
ST L e

I

I;

qll_motion = [...

1, 0;
1, 2;
1, 0;
1, 0;
1, —4;

42

MATLAB Codes

oS O &~ O

\
=

= T e T e T T = T S e O S R =
| © © & O
FUCTIET

o

I;

q22_motion = [...
1, 0;

s o o | O w
N A T

o

e N e T e e T e e e T e T S = S St
| © &~ © o |
F TR N Y

o

E

g33_motion = [...
1, 0;

| © © &~ o |
L2 EE 0

s o | O o a
22 L F 20

e e T e T e T e T = S S S e O S =Y
[en]

o

7|15

20|%% 3. Define helper function to expand patterns into full trajectory

build_traj = @(pattern, dt) vertcat (...
cell2mat (arrayfun (Q(1)
repmat (pattern (i,2), round(pattern(i,l)/dt), 1),

43

98

99

100

101

102

103

104

105

106

107

108

109

110

MATLAB Codes

(1:size(pattern,1))’, ’'UniformOutput’, false))
)
i|%% 4. Generate trajectories for each joint
q00__traj = build_traj(q00_motion, dt);
qll_traj = build_traj(qll_motion, dt);
q22_traj = build_traj(q22_motion, dt);
q33_traj = build_traj(q33_motion, dt);

%% 5. Pad shorter vectors with zeros (to match lengths)

max_ len max ([length (q00_traj), length(qll_traj), length(q22_traj),
length (g33_traj)]);

q00_traj(end+1:max_len

qll_traj(end+1:max_len
q22__traj(
(

q33_traj

end+1:max_len

\
o o oo

)
)
)
end+1:max_len)

% Update time vector accordingly

tvec = (0:dt:(max_ len—1)*dt) ’;
%% 6. Create Simulink—compatible [time, value] arrays
q00_data = [tvec, q00_traj];
qll_data = [tvec, qll_traj];
5| q22_data = [tvec, q22_traj];
q33_data = [tvec, q33_traj];

%% 7. Set simulation stop time
Tsim = tvec(end);
%% 8.

Inertial Parameters (unchanged, optional use)

foot__mass = 0.083;
foot_ Ixx 0.003;
foot_lIyy = 0.000064;
foot_1Izz 0.0002;
leg__mass 0.812;
leg Ixx = 0.003;
leg_Iyy = 0.00048;
leg Izz 0.0002;

2| bridge_mass = 0.055;
bridge_ Ixx = 0.003;
bridge_Iyy = 0.000173;

5| bridge Izz = 0.0002;

7| damping_ par = 0.1;
back__emp_ constant = 2.5;
spation__damping = 2000;

44

Bibliography

Jessy W. Grizzle, Jonathan Hurst, Koushil Sreenath, and Hae-Won Park. “MA-
BEL, a new robotic bipedal walker and runner”. In: Proceedings of the American
Control Conference. University of Michigan. IEEE. 2009, pp. 2030-2036 (cit. on
p. 5).

Christian Hubicki, Mason Grimes, Morgan Jones, Daniel Renjewski, Alexander
Sprowitz, Alessandro Abate, and Jonathan W. Hurst. “ATRIAS: Design and
validation of a tether-free 3D-capable spring-mass bipedal robot”. In: The
International Journal of Robotics Research 35.12 (2016), pp. 1497-1521 (cit. on
p. 6).

Xinyu Ze, Bo Yang, Shuai Guo, Zhihong Xiang, Han Xu, and Zhigiang Deng.
“A survey on locomotion systems and actuators in legged robots”. In: Robotics
and Autonomous Systems 108 (2018), pp. 1-12 (cit. on pp. 6, 7).

Carlos Balaguer, Antonio Gimenez, and Alberto Jardon. “Climbing robots’
mobility for inspection and maintenance of 3D complex environments”. In:
Autonomous Robots 18.2 (2005), pp. 157-169 (cit. on p. 7).

45

Dedications

To my beloved family, whose constant love and encouragement gave me the strength
to reach this point.

To my professors and mentors, for their guidance and inspiration throughout my
academic journey.

And to my friends, who reminded me that perseverance and support make every
challenge worthwhile.

This work is dedicated to all of you.

46

	Introduction
	Localization, Sensing, and Motor Control Overview
	Mechanical Structure
	Programming and Software
	Leg Over Movement (Jump Over)
	Pivot Rotation Movement (180-Degree Leg Rotation)
	Worm-Like Movement (Kinematic Control)
	Worm-Like Movement (Torque Control)
	Worm-Like Movement (Motor Control)

	Potential Applications in Construction Sites
	Thesis Structure

	Background and Related Work
	Related Work
	Related Articles
	Robotics and Autonomous Systems
	Climbing Robots’ Mobility for Inspection and Maintenance of 3D Complex Environments
	Similarity with ROMA I and ROMA II Climbing Robots

	Types of Motion
	Inertial Parameters and Their Role in Simulation
	Inertial Parameters and Their Role in Simulation

	Leg Over Movement (Jump Over)
	Real-World Applications
	Mechanical and Control Insights
	Simulation Purpose
	Future Potential
	Motion Sequence Visualization

	Pivot Rotation Movement (180-Degree Leg Rotation)
	Real-World Relevance
	Technical Insights
	Motion Sequence Visualization

	Worm-Like Movement (Kinematic Control)
	Real-World Relevance
	Control and Motion Strategy
	Motion Sequence Visualization

	Motor Selection and Control
	Code and Simscape
	Overall Robot Model
	Joint and Foot Connections
	Trajectory Imposition on Joints
	Code Integration

	From Joint Angles to Motor Torques
	Computed–torque (inverse–dynamics) controller
	Saturation and limits
	Mapping joint torque to motor torque and voltage

	Motor Direction Control: From Angle/Torque to CW/CCW Motion
	DC motor model and direction convention
	Voltage sequences that encode CW/CCW motion
	Simulink implementation (link to Fig. 5.2)
	Practical notes (deadband, limits, back–EMF)

	Results
	Flipping Motion (Leg Over Movement)
	Joint Angles vs Time
	Joint Velocities vs Time
	Joint Accelerations vs Time
	Summary of Flipping Motion Results

	Pivot Motion Results
	Joint Angles vs Time
	Joint Velocities vs Time
	Joint Accelerations vs Time
	Summary of Pivot Motion Results

	Worm-Like Motion Results
	Joint Angles vs Time
	Joint Velocities vs Time
	Joint Accelerations vs Time
	Overall Insights on Worm-Like Motion
	Average Torque per Interval
	Joint Torques vs Time

	Motor-Level Results for Worm-Like Motion
	Cumulative Electrical and Mechanical Energy
	Power and Efficiency
	Overall Insights

	Conclusion and Future Work
	Conclusion
	Future Work

	MATLAB Codes
	Flipping Motion – Trajectory Generation Script
	Pivot Motion – Trajectory Generation and Joint Profiles
	Worm-Like Motion – Angle-Based Trajectory Script
	Worm-Like Motion – Torque-Based Simulation Script
	Worm-Like Motion – Motor Voltage Input Script

	Bibliography
	Dedications

