POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

A*-based Collision Avoidance for UAVs
with ROS 2 and PX4 Integration

Supervisors Candidate

Dr. Stefano PRIMATESTA FElena BERTA
Dr. Davide BITETTO

Dr. Gianluca RISTORTO

October 2025

Abstract

This thesis, developed in collaboration with ML AVTech s.r.l., presents a modular
architecture for collision avoidance in UAVs designed for outdoor applications.
The system is implemented in ROS2 and integrated with the PX4 Autopilot for
flight operations. The primary objective is to enhance safety while maintaining
operational continuity: avoidance maneuvers are triggered only when necessary,
ensuring no alteration of system nominal conduct.

The approach combines an A* local planner operating on a dynamic
costmap—fed by on-board sensors—with a Bug-like reactive behavior as a fallback
strategy when local scheduling does not locate safe steps. A context-aware mode
management system determines which algorithm to activate and when to apply its
output to vehicle control.

The architecture emphasizes a clear separation between perception, planning,
and control, promoting portability, reusability, and future scalability.

Development follows a two-phase strategy. In a first phase, the solution is
implemented on a terrestrial mobile robot to consolidate the avoidance logic in
a platform-agnostic context, without autopilot dependencies. In a second phase,
the approach is transferred to the drone, favoring the optimization of A* for
flight, while the integration of Bug behavior is postponed to future work. In this
scenario, a state system is introduced to manage mission flow: it allows PX4
mission commands to proceed uninterrupted unless obstacles are detected, in which
case the A* planner intervenes to ensure safe navigation. Integration with PX4 is
achieved in Offboard mode, with careful attention to reference frame consistency
and command interface alignment.

The evaluation covers the entire spectrum of scenarios in simulation, including
challenging ones.

Overall, the work proposes a flexible and reusable solution for integrating
collision avoidance into UAV platforms—compatible with real-world missions—while
maintaining seamless integration within the ROS 2 and PX4 ecosystems.

11

Table of Contents

Abstract

List of Tables

List of Figures

Acronyms

1 Introduction

2 State of art

2.1 Sensors

2.1.1
2.1.2
2.1.3
2.14
2.1.5
2.1.6
2.1.7

Radar
LiDAR (Light Detection and Ranging)
Ultrasonic o
Infrared
Cameras (Monocular, Stereo, RGB)
Event Cameras
Multi-Sensor Fusion

2.2 Algorithms

221
2.2.2
2.2.3
224
2.25
2.2.6
2.2.7
2.2.8
2.2.9
2.2.10

Reactive Approaches Based On Proximity Sensors
Reactive Approaches Based On Force Fields
Local Planning Approaches
Global Planning Approaches
Model Predictive Control Approaches
SLAM Approaches
Event Cameras Approaches
Deep Learning Approaches
Decision Trees Approaches
Fusion Algorithms Approaches

v

II

VII

VIII

XI

Algorithmic and Sensory choices
3.1 A*
3.2 Bug ...
321 Bugl
3.22 Bugl
323 Bug2
Software Tools and Simulation Environments
4.1 ROS2 Framework
4.1.1 Node
4.1.2 Communication between Nodes
4.2 Gazebo
4.3 RViz
4.4 PX4 Autopilot
4.5 QGroundControl
First Implementation
5.1 NAV2 .
5.2 Local Costmap, Occupancy Grid, Costs and Conversions
5.2.1 Internal Costs and Conversion to Occupancy
5.2.2 Inflation profile: Radius and Cost Decay
5.2.3 Geometry: World <» Map and indexing
5.3 Goal Projector
5.4 A*
5.5 Path Follower - DWB
5.6 Bug ...
5.6.1 State Machine L
5.6.2 Exit Condition
5.7 Goal Checker
5.8 Manager
PX4 Autopilot Integration
6.1 GPSToPose
6.2 Goal Projector
6.3 A*
6.4 Obstacle Detector
6.5 Command
6.5.1 Finite State Machine
Simulations Results
7.1 Turtlebot
7.2 Drone

8 Conclusions 91

A Turttlebot Algorithms 94
A.1 Goal Projector 94
A.2 Path Follower 96
A.3 Goal Checker 97
A4 Manager 98

B Drone Algorithms 101
B.1 GPSToPose 101
B.2 Goal Projector 102
B.3 Obstacle Detector 104

Bibliography 107

VI

List of Tables

2.1 Summary table for sensors.
2.2 Summary table for obstacle-avoidance and navigation algorithms.

VII

List of Figures

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

5.1
5.2

6.1
6.2
6.3

7.1
7.2

7.3
7.4

7.5

A* algorithm flow chart [21] 17
A* algorithm visualization [22] 18
BugO example [5] 19
Bugl example [5] 20
Bug2 example [5] L 21
General Communication Architecture 23
ROS2 Layers [24] 24
Node [24] . . . o 25
Topic [24] 25
Service [24] 26
Action [24] oL 26
uXRCE-DDS communications middleware [27] 29
PX4- ROS 2 frame conventions (FRD on the left/FLU on the right)

27] . o 30
QGroundControl interface L. 31
Simplified flowchart of Turtlebot nodes 33
rqt_ graph mobile roboto o o 48
Drone modes flowchart L. 50
Simplified flowchart of drone nodes 51
rqt_graph drone 67
Turtlebot World 1 in Gazebo 69
Turtlebot simulation in World 1 - Gazebo view on the left, RViz

view on the right o0 70
Turtlebot World 2 in Gazebo 71
Turtlebot simulation in World 2 - Gazebo view on the left, RViz

view on the right oo 72
Drone World 1 in Gazebo 74

7.6 Drone simulation in World 1 - Gazebo view on the left, RViz view
on the right - Collision Prevention in Mission
7.7 Velocity and State transition graphs of drone simulation in World 1
- Collision Prevention in Mission
7.8 Drone simulation in World 1 - Gazebo view on the left, RViz view
on the right - Collision Avoidance
7.9 Velocity and State transition graphs of drone simulation in World 1
- Collision Avoidance
7.10 QGroundControl interface of drone simulation in World 1 - Collision
Avoidance
7.11 Drone World 2 in Gazebo
7.12 Drone simulation in World 2 - RViz view - Collision Prevention in
Mission
7.13 Velocity and State transition graphs of drone simulation in World 2
- Collision Prevention in Mission
7.14 Drone simulation in World 2 - RViz view - Collision Avoidance . . .
7.15 Velocity and State transition graphs of drone simulation in World 2
- Collision Avoidance
7.16 Drone simulation in World 2 with new parameters - RViz view -
Collision Avoidance
7.17 Velocity and State transition graphs of drone simulation in World 2
with new parameters - Collision Avoidance
7.18 QGroundControl interface of drone simulation in World 2 with new
parameters L. Lo e e
7.19 Drone World 3 in Gazebo,
7.20 Drone simulation in World 3 - RViz view - Collision Avoidance . . .
7.21 QGroundControl interface of drone simulation in World 3 - Collision
Avoidance
7.22 Velocity graph and State transition graph of drone simulation in
World 3 - Collision Avoidance
7.23 Velocity and State transition graphs of drone simulation in World 3
with waypoints at different altitudes - Collision Avoidance

IX

Acronyms

CRS Coordinate Reference System

DDS Data Distribution Service

DWB Dynamic Window Based

ENU East-North-Up
EPSG Geodetic Parameter Dataset (CRS identifier)

FLU Forward-Left-Up
FOV Field Of View
FRD Forward-Right-Down

GCS Ground Control Station

GPS Global Positioning System
IMU Inertial Measurement Unit
LTS Long Term Support
MAVLink Micro Air Vehicle Link

Nav2 Navigation2
NED North-East-Down

PX4 PX4 Autopilot

QoS Quality of Service

XI

ROS 2 Robot Operating System 2
RViz ROS Visualization

SITL Software-In-The-Loop
TF2 Transform library for ROS 2

UAV Unmanned Aerial Vehicle
uORB micro Object Request Broker

UTM Universal Transverse Mercator

uXRCE-DDS Micro XRCE-DDS
VTOL Vertical Take-Off and Landing

YAML YAML Ain’t Markup Language

XII

Chapter 1

Introduction

In recent decades, unmanned aerial vehicles (UAVs), commonly known as drones,
have become increasingly widespread thanks to advances in control, sensor, and
communication technologies. Initially developed mainly for military applications,
drones are now extensively used in civil and industrial contexts. Among the areas
of greatest interest are environmental monitoring, hard-to-reach areas surveillance,
precision agriculture, photogrammetry, infrastructure inspection, and, more recently,
logistics and urban deliveries.

The ability to perform autonomous and safe operations is one of the key factors
driving the large-scale adoption of these technologies. In this framework, collision
avoidance represents a fundamental requirement for ensuring safe drone navigation
in real-world scenarios characterized by uncertainty, dynamism and complexity.
The absence of reliable obstacle avoidance systems severely limits the use of drones,
relegating them to controlled environments or simple missions where routes are
pre-planned and are not subject to unexpected changes.

Collision avoidance can be addressed in different ways. On the one hand, the
choice of sensors is crucial for the quality and reliability of the collected information
about the surrounding environment. On the other hand, the control logic, together
with path-planning and obstacle-reaction algorithms, constitutes the core element
that allows the drone to transform the gathered details into concrete actions.

Within this framework, the present research takes place with the aim of develop-
ing and validating a collision avoidance algorithm for drones operating in outdoor
environments, designed to be modular and easily integrated into existing control
architectures.

The work was carried out in collaboration with M AVTech s.r.l., a company
that designs and develops advanced UAV systems for professional applications.
Founded as a spin-off of Politecnico di Torino, MAVTech combines academic
research with industrial expertise and actively participates in national and interna-
tional projects in autonomous aerial systems field. Operating in both Turin and

1

Introduction

Bolzano, the company develops UAV solutions employed in real-world missions
such as infrastructure inspection, precision agriculture, civil protection, and search
and rescue. The cooperation with MAVTech ensured that the solution developed
in this thesis was oriented towards real-world applicability, with the final objec-
tive of testing the algorithm on an actual drone under realistic operating conditions.

The research was structured in several complementary phases:

Preliminary analysis of the state of the art, with particular focus on
the most promising sensory technologies and algorithms;

Development of the algorithm in Python within ROS2 framework, includ-
ing dedicated logic for edge-case management to ensure robustness;

Preliminary validation in simulation, using TurtleBot3 integrated with
Gazebo and RViz, in order to verify the correct functioning of the proposed
logic in controlled scenarios;

Adaptation and advanced testing in the PX/ SITL (Software In The
Loop) environment, again in combination with Gazebo and RViz, to realistically
reproduce the dynamic behaviour of a UAV;

Real-world testing, to verify the algorithm on a physical drone and evaluate
its effectiveness in actual operating conditions.

Chapter 2

State of art

2.1 Sensors

Obstacle avoidance is one of the most important features for ensuring safety and
reliability of UAVs. For this aim, various types of sensors have been studied and
developed, each one with its own characteristics in terms of accuracy, robustness,
cost and computational complexity.

In general, these sensors can be divided into two broad categories [1]:

« Active sensors: they emit a signal (electromagnetic or acoustic radiation)
and measure its reflection on surrounding objects to estimate their position
and distance. Among the most common ones there are radar, LiDAR and
ultrasonic sensors;

« Passive sensors: these do not emit their own energy, but simply capture
radiation already present in the environment or generated by objects naturally.
This category includes optical cameras, infrared sensors and, more recently,
event cameras.

The choice of the most suitable sensor depends on the operating scenario and
the level of required autonomy: active sensors tend to guarantee greater robustness
in difficult conditions, while passive sensors offer lighter and more economical
solutions, but are highly subject to environmental conditions.

2.1.1 Radar

Radar is one of the most stable technologies for detecting obstacles. The operating
principle is based on the emission of radio waves and the measurement of the return

3

State of art

time of the reflected signal, from which the distance and the size of the object can
be calculated. There are two main configurations:

« Continuous-Wave Radar (CW): it transmits continuously modulated
frequency signals, ensuring a constant data flow;

o Pulsed-Wave Radar (PW): it emits short, high-intensity pulses, both
reducing energy consumption and improving accuracy.

Both types have blind zones, but in addition to distance, they also allow the
speed and relative motion of obstacles to be estimated using the Doppler effect of
the reflected signal [1].

Advantages: Operational in all weather conditions; Reliable detection even in
dusty or smoky environments; Large operational range; High accuracy; Identifica-
tion of moving obstacles;

Disadvantages: Computational complexity; High cost compared to cameras’
one [1], [2].

2.1.2 LiDAR (Light Detection and Ranging)

LiDAR is a technology now widely used in autonomous systems, based on the
emission of laser pulses and the measurement of the signal return time. The combi-
nation of transmitter and receiver allows high-resolution maps of the surrounding
environment to be obtained, with 1D, 2D and 3D solutions depending on the level
of required detail [1], [3].

Advantages: High accuracy in distance measurement; Ability to operate in
low light conditions; Adaptability even to small UAV platforms; Lower cost than
high-end radars’ one [1].

Disadvantages: Significant weight and energy consumption; Relatively high
cost; Sensitivity to reflective or transparent surfaces; Difficulty in reliably detecting
fast-moving obstacles [1], [2].

2.1.3 Ultrasonic

Ultrasonic sensors operate by sending sound pulses and measuring the return time
of the echo reflected by objects [1], [4]. The produced sound waves are outside the
range audible to the human ear, between 20 and 50 kHz.

State of art

Advantages: Low cost; Lightweight; Easy to integrate; Suitable for short-range
applications.

Disadvantages: Limited accuracy in noisy environments or on uneven surfaces;
Reduced range [1].

2.1.4 Infrared

Infrared sensors base their operation on thermal radiation emitted by obstacles
naturally.

Advantages: Lightweight and low cost; Ideal for short-range applications and
for low-light environments.

Disadvantages: Sensitive to atmospheric conditions; Possible false positive
and negative; Limited range [1].

2.1.5 Cameras (Monocular, Stereo, RGB)

Cameras are one of the most widely used solutions thanks to their low cost and
ability to provide rich and versatile information regarding the environment.

e Monocular Camera: it provides two-dimensional images; depth is estimated
using computer vision algorithms based on movement, shadows or machine
learning techniques [1], [5];

o Stereo Camera: using two lenses arranged in parallel, it captures images
from different perspectives, allowing three-dimensional reconstruction and
direct depth estimation [1], [6];

« RGB Camera (Red-Green-Blue): it captures colour images useful for
object recognition and scene analysis, but does not provide direct information
on distance [7].

Advantages: Low cost; Light weight; Compact size; Low energy consumption;
Ability to recognize textures, contours and visual characteristics [1].

Disadvantages: Highly dependent on lighting conditions [2]; They requires
advanced algorithms for depth extraction (in the case of monocular cameras) [1],
[5].

State of art

2.1.6 Event Cameras

Event cameras are innovative sensors inspired by biological visual systems that
work by capturing changes in brightness at the pixel level, instead of capturing
frames at fixed intervals, with an high response rate. The output of an event
camera is not an image but a stream of asynchronous events [8].

Advantages: Effective in low-light environments and for detecting fast-moving
obstacles [9]; Low power consumption; Low data consumption compared to conven-
tional cameras’ one [8].

Disadvantages: Require advanced processing to reduce false positives; Need
specific algorithms; Sensitive to environmental variations; Do not integrate well
with other sensors types [9].

2.1.7 Multi-Sensor Fusion

Multi-sensor fusion is a technique that allows information from multiple heteroge-
neous sensors (e.g., radar, LIDAR, cameras, or ultrasonic sensors) to be integrated
with the aim of obtaining a more complete, accurate, and robust perception of
the surrounding environment. The combined use of active and passive sensors
compensates for the intrinsic limitations of each device, improving the ability of
drones to detect obstacles and plan safe trajectories [2], [10], [11].

To achieve this integration, various fusion algorithms are employed, ranging
from the simplest to the most advanced methods. Among the most widely used
are Extended Kalman Filters (EKFs), which estimate the state of the system
by reducing measurement noise [2], [11], and Bayesian approaches, which allow
probabilistic management of the uncertainty associated with sensory data [2]. More
recent techniques include Particle Filter Fusion, which can handle non-linear
models and multimodal distributions [10], and Deep Learning methods based
on neural networks, used to learn the optimal fusion model directly from the data [2].

Advantages: Redundancy and complementarity ensure greater robustness and
accuracy [2], [10], [11].

Disadvantages: Computational complexity; Difficult calibration and synchro-
nization; Sensitivity to dynamic environments [10].

State of art

"SIOSUOS 10J o[qe) Arewiing :1°g 9[qelL

Ay
-Iqryedwod mo[‘swyjrIos[e

JYSI] MO[Ut pooS ‘uormosar

A[snouoaypuise
ea9] exid je sseujySLiq

3 0ez—001 w 0¢ — 0T 02T — 506 000°G$ — 000°C$ oyads soambai ‘oarsuadxy] | [erodwoy ySiy ‘tomod moy | ur seSueyd seanjde)) RIOWR)) JUIAG]
soaryIsod JY3remiy3I[3500 $300[q0 WOI} UoIRIPLRIL

3 08107 wOg - g 06 — 50T 000°'T$ — 09$ os[eJ ‘IOU)eOM O] DATYISUSG | -MO[‘SSQUSIeD Ul SNIOA\ | POIeIjul PajjIuud $30939(] eIowe)) parerjuy

Tem

-O0UOW URY[) ISIABSY ‘SUOI) 90URDIOA® B[DR)SqO uorjewryss yidop 1oy

3 00509 w ()¢ - G 02T — 09 00S°'T$ — 0ST$ -1puoo Surysi 0} eAnIsueg | 10j [njesn ‘yjdep sepraor | seSewnr ainjded sasus] omJ, vI9UIR)) 091918
SWY)LI0s UOT}0990P INY suo[o[3uIs ©

3 00101 (sorpdo wo Surpuadep) w 00T — OT 0T — o0F 00S$ — 0T$ -Te seambal ‘qjdop 30011p ON | -X03 ‘4500 mo[‘yySremjysr] | woiy seSew (g seanjde)) eIDUWR)) IRNDOUOTA
Aefop oyoo
o8uer uorjeigojur ofd | SOINSEOUI PUE SOABM PUNOS

3 0z-¢ wG-g0 08 — oCT 001$ — 01$ popwI] ‘9stou 0} 9AIIsueg | -turs ‘9ySrom)ySi| ‘9s00-mor] | Aousnbaxy-ySiy spruIgy I0SUDS OIUOSRI)
sdew (Ig 1oNI)S
Aawoy ‘uonpdwns uor} | -uoddx 0} suorpoaarp odip

SN GT 60 w 00T — 09 209€ 000°6L$ — 000‘F$ | -u0> AS1oue YB1y 4800 Sty | -deored ,09¢ ‘uotsiald Y8y | -[nw ut sureaq Iosey syuy | (93e9s-plog 10 Suneoy) Yvari de
OAT}ISUIS-UOIIDPAT UOT}0919p N0} sdew (Jg 99210 09 A[[ed

3 00£-0ST Wz -G o0LZ — o08T 008$ — 00€$ ‘oyur y3dop/JySY SR | -U0D 9[2}SqO ‘O[qRPIOPY | -13I9A 10 A[[JUOZLIOY SuLDG (rewerd) VAT AT
(resuoy
SSoUIEME [BI0 apnjI[e 10j | 10 [edI}I0A A[[ensn) sixe o[

3 0c-01 wG-g0 (wreaq o[8uIs) .G — oI~ 00z$ — 05$ -Je] OU ‘MAIA MOXIRU AI9A | [BOPI ‘9500-MmO[“WYSTOMIYSIT | -UIS ® Ul 90UR)SIP SOINSBIIN Yvar1 dat
syurod 9oed uorjerjeuad pue
Sursseooad | -l 9jRWIIISD URD ‘9OUR)SISAI | UOIIN[OSAT YSIY 10J S[eU

3 007-00g w 08 — 0T 5081 — o021 000°¢$ — 00G°T$ | eyep xopduwiod ‘earsusdxyy | 9siou pooS ‘Adeanooe YSiH | -SIS PUBGOPIM SYWSURL], Tepey (GAN) PURGIPIM-BINN
UOT}0999P UOTJOUW I0J JJIYS
PoYR[MPOW SSa[UN 9ouUR) uoryegep | Ioiddo(] $39939p pue soAem

3 0ez—001 w g -G 0ST — .06 000°2$ — 009$ -SIp Sunmseow 10§ [BOPI JON | 399(q0 Suraowr 10j JuS[[EOXF | sywsurI) A[Snonuijuo)) (MD) Tepey daRA\-snONUIIUOD)
EBLE] Aj0[PA puR
oUO0Z pUI[q [[BWS | -TOJIOJUI PIONPAI ‘9)eIndde | 2duRISIP 10999p 03 sosmd

3 00£-0ST w 0T - 0T 5021 — 509 005'2$ — 008¢ | “Ayrxordurod Suissenolq | ‘uordumsuod A815us om0y | ABI1oue-ySIy ‘310ys syrury (Md) Tepey oaepm-pasind

ELEICTVY aSuey AOJA 90D suo) soxd ordrourag SurperadQ Josuag

State of art

2.2 Algorithms

The development of obstacle avoidance algorithms for UAVs is one of the most
active fields of research in mobile robotics. The ability to react to unexpected
events, adapt to complex scenarios and plan safe trajectories is, in fact, an essential
requirement for the real-world, large-scale use of drones. Many approaches have
been proposed in the literature, varying in computational complexity, sensory
requirements and level of guaranteed autonomy.

According to the reference literature, these algorithms can be organized in
ascending order of complexity: from reactive methods, based on simple local
rules, to deliberative planning approaches, then advanced perception and artificial
intelligence algorithms, and finally hybrid and integrated solutions, which represent
the most recent trends.

2.2.1 Reactive Approaches Based On Proximity Sensors

Reactive algorithms based on proximity sensors are one of the simplest and most
immediate solutions for obstacle avoidance. They use measurements from short-
range sensors, such as ultrasonic, infrared or two-dimensional LiDAR, to adjust
the drone’s trajectory in real time [3].

Among the most representative methods there are Bug Algorithms which are
based on deterministic rules for obstacle avoidance and are particularly suitable
for simple, structured environments [5]. Other approaches include the Sense-and-
Avoid paradigm, in which the drone in Avoid-and-Continue mode (autonomous
mode) detects the presence of an obstacle and plans an immediate evasive manoeu-
vre, while in Brake mode (manual mode) it prioritises safety by stopping flight when
an obstacle is detected at a critical distance [1], [3]. Another widely used technique
is Vector Field Histogram (VFH), which constructs a directional histogram
from sensory data, identifying the most suitable clear corridors for continuing the
flight [12].

Advantages: Simple to implement; Low computational cost; Very fast reaction
times.

Disadvantages: No long-term planning capability; Difficulty in managing
complex environments or those densely populated with obstacles.

2.2.2 Reactive Approaches Based On Force Fields

Force field-based algorithms belong to the category of reactive methods, but
introduce a more abstract model of the interaction between the drone and the

8

State of art

environment. The basic idea is to represent the drone as a particle immersed in a
potential field: the destination exerts an attractive force, while obstacles generate
repulsive forces that push the vehicle to maintain a safe distance.

One of the best-known methods is the Artificial Potential Field (APF),
which allows trajectories to be calculated quickly, avoiding collisions through the
vector sum of attractive and repulsive forces. Although widely used for its simplicity
and immediacy, the APF suffers from problems related to local minima, situations
in which the drone can become “trapped” in sub-optimal configurations.

An evolution of this approach is the Dynamic Window Approach (DWA),
which takes into account the dynamics and kinematic limitations of the drone
in generating trajectories. The DWA evaluates a set of possible speeds within
a “dynamic window” and selects the one that maximises safety with respect to
obstacles, while ensuring progress towards the target [1], [13].

Advantages: Fast response time; Low computational cost; Easy to implement
even on platforms with limited resources.

Disadvantages: Risk of getting stuck at local minima; Difficulty in managing
complex environments or those with moving obstacles.

2.2.3 Local Planning Approaches

Local planning approaches fall somewhere between purely reactive methods and
global planning perspectives. The main objective is to generate safe flight trajec-
tories in real time, using partial and dynamic information from on-board sensors.
Unlike reactive methods, local planning does not simply react instantly to obstacles,
but constructs partial representations of the surrounding environment that are
constantly updated.

A common technique is to use a Voxel Map, a discrete three-dimensional
representation of space, in which obstacles are modelled as occupied voxels. This
local map allows the identification of free volumes and spatial constraints to plan
trajectories within. Integration with interpolation methods, such as B-Splines,
allows the generation of continuous, smooth and dynamically feasible trajectories,
reducing sudden manoeuvres and unwanted oscillations [14].

Another example is the Trajectory Generation Based on Object Avoidance
(TGBOA) method, which constructs alternative trajectories by minimising devi-
ations from the planned route, balancing safety and progress towards the target [15].

Advantages: High responsiveness; Computational efficiency; Generation of
smooth and dynamically achievable trajectories; Good adaptability to fast-paced
environments.

State of art

Disadvantages: Lack of long-term memory; Difficulty in managing very large
or complex scenarios; Dependence on the quality of local representation.

2.2.4 Global Planning Approaches

Global planning approaches aim to generate an optimal path from origin to desti-
nation, taking into account the entire configuration of the navigation space. Unlike
local planning, which only considers the immediate surroundings of the drone,
global planning requires a complete or near-complete map of the environment, on
the basis of which optimised trajectories can be calculated.

The most commonly used classical algorithms are deterministic graph search
methods, such as Dijkstra’s algorithm, which always guarantees the shortest
solution, and the A* algorithm, which introduces heuristic functions to speed
up the search while maintaining optimality. These methods have long been the
standard in path planning, also for UAV applications.

At the same time, approaches inspired by natural processes and metaheuristic
methods have been developed, such as Ant Colony Optimisation (ACO), which
is based on the behaviour of ant colonies in searching for minimum paths, and
Particle Swarm Optimisation (PSO), which simulates the collective behaviour
of swarms. Although these methods do not always guarantee the optimal solution,
they allow complex search spaces to be explored in a short time and are suitable
for large-scale scenarios [10].

Advantages: Generation of globally optimal or near-optimal trajectories; Pos-
sibility of considering complex constraints (energy, time, safety); Ability to prevent
local minima typical of reactive approaches.

Disadvantages: High computational complexity; Need for a complete or
updated map; Poor adaptability to sudden changes in the environment.

2.2.5 Model Predictive Control Approaches

Model Predictive Control (MPC) is an advanced control technique based on the idea
of predicting the future evolution of the system and calculating, at every instant, the
sequence of commands that optimises a cost function within a limited time horizon.
In practice, the drone calculates multiple possible trajectories, evaluates which is
the best based on criteria such as distance from the target, energy consumption or
collision risk, and applies only the first command in the sequence. In the next step,
the process is repeated using the new sensory information available.

10

State of art

One of the most recent developments is Data-Driven Risk-Aware, which inte-
grates probabilistic models to estimate uncertainty about the position of obstacles
and uses stochastic constraints, such as Distributionally-Robust Chance Constraints
(DRCC), to ensure safe trajectories even in dynamic and uncertain environments

[16].

Advantages: Predictive capability; Robustness in the presence of uncertainties;
Integration of dynamic and kinematic constraints.

Disadvantages: High computational complexity; Need for accurate models;
Difficulty of implementation on platforms with limited resources.

2.2.6 SLAM Approaches

Simultaneous Localization and Mapping (SLAM) is one of the most widely used
techniques for enabling autonomous navigation of drones in indoor unfamiliar
environments [10]. The basic idea is to allow the drone to build a map of the
environment while simultaneously estimating its own position within it. In this
way, even without GPS, the system is able to move safely and effectively.

There are several variants of SLAM, which differ in the type of used sensor.
Some exaples are: Visual SLAM (monocular cameras, stereo cameras or RGB-D
cameras), LIDAR SLAM (LiDAR), Monocular-Inertial SLAM (combination
of a single monocular camera with IMU) [\cite {article_6}, 5.

Advantages: Autonomous navigation without GPS; High positioning accu-
racy; Ability to generate maps in real time; Flexibility in the use of different sensors.

Disadvantages: High computational complexity; Sensitivity to sensor noise;
Difficulty in application in highly dynamic or unstructured environments.

2.2.7 Event Cameras Approaches

Event cameras, already introduced previously, produce asynchronous event streams
instead of traditional images. This type of output, which has no frames and consists
of point variations in brightness, is not compatible with common artificial vision
algorithms, which are based on the processing of complete images. For this reason,
it is necessary to develop dedicated algorithms capable of correctly interpreting
asynchronous data and transforming them into information useful for navigation.

Several algorithms have been proposed, among the best known are Polar
Time Difference Surface (PTDS), clustering techniques based on Depth-First
Search (DFS) [9] and bio-inspired architectures such as CEF, LEM and DOT,

11

State of art

which seek to replicate perception mechanisms similar to those of biological systems
[3].

Advantages: Extremely fast reaction times; Greater robustness in handling
fast-moving obstacles; Ability to operate in scenarios with lighting variations that
are difficult to manage with traditional sensors.

Disadvantages: Need to develop complex, non-standardized models; Diffi-
culty integrating with other vision algorithms; Still limited availability of specific
frameworks and datasets.

2.2.8 Deep Learning Approaches

In recent years, the introduction of deep learning techniques has revolutionized
visual data processing for drones, enabling significantly higher performance than
traditional machine vision methods. Due to their light weight, versatility and low
cost, cameras are the preferred sensor in these approaches: integrated on board
numerous commercial UAVs, they provide a continuous stream of visual information
that can be processed in real time for obstacle detection and avoidance [6].

On the perception side, Convolutional Neural Networks (CNNs) are widely
used for visual feature extraction, enabling the recognition of shapes, contours and
textures in the surrounding environment [17]. Monocular Depth Estimation
(MDE) techniques, based on deep learning, also allow depth to be estimated from
a single camera, overcoming one of the main limitations of traditional monocular
systems [18]. At the same time, Recurrent Neural Networks (RNIN, LSTM)
allow the modelling of temporal sequences and the prediction of the movement of
dynamic obstacles [17].

On the decision-making and avoidance side, Reinforcement Learning (RL)
has taken on a central role. In this paradigm, virtual agents are trained in sim-
ulated environments, such as AirSim, to interact with obstacles and complex
scenarios, learning safe and adaptive flight strategies [17]. Algorithms such as
Deep Q-Networks (DQN), Proximal Policy Optimisation (PPO) [19]
and Soft Actor-Critic (SAC) have performed well in autonomously generat-
ing safe trajectories and managing dynamic and unpredictable scenarios [6], [8], [19].

Advantages: Ability to recognise and classify complex obstacles; Learning of
adaptive avoidance strategies.

Disadvantages: Need for extensive datasets; High computational load.

12

State of art

2.2.9 Decision Trees Approaches

Decision Trees represents a simpler and more interpretable machine learning ap-
proach than deep learning, but it still finds application in drone collision avoidance.
The basic idea is to build a model capable of choosing the most appropriate ac-
tion based on the available information, progressively dividing the decision space
through hierarchical rules.

A typical workflow involves creating a training dataset obtained from real or
simulated flights, in which corrective manoeuvres are recorded and associated with
the corresponding environmental situations. Classifiers such as J48 or Random
Forest are then trained on this data, enabling them to generalise the decision rules
and implement them on board the drone [20].

Advantages: Computational lightness; Simplicity of implementation; Greater
transparency and interpretability of decisions.

Disadvantages: Strong dependence on dataset quality; Limited generalization
capacity; Poor effectiveness in complex and dynamic scenarios.

2.2.10 Fusion Algorithms Approaches

An increasingly popular approach to obstacle avoidance in drones is the fusion of
heterogeneous algorithms, designed to balance computational lightness, accuracy
and robustness. Methods that have been proposed in the literature combine
monocular cues, deep learning-based depth estimation models and reactive local
planning algorithms, with the aim of overcoming the limitations of individual
approaches and ensuring safer navigation.

A significant example is the work of [5], which integrates traditional Monocular
Cues (texture gradient, feature detection, edge detection), the MiDaS network
for depth estimation, and a modified variant of BugO for local planning. The
different outputs are merged using a weighting system that combines the lightness
of classic cues with the greater precision guaranteed by deep learning. The entire
architecture has been designed to be compatible with low-power embedded plat-
forms, making the solution scalable even to lightweight and inexpensive UAVs.

Advantages: Ability to balance efficiency and accuracy; Compatibility with
lightweight and inexpensive platforms; Greater robustness thanks to the integration
of different approaches.

Disadvantages: Reduced informativeness in very simple scenarios; Difficulty
of generalisation in highly complex environments; Risk of latency introduced by
the use of heavier deep learning models.

13

State of art

"SWJLI0S[e UOIJESIART PUR 9OUBPIOAB-9[OR)S(O 10} 9[qe) Arewrwing :g°g 9[qeL,

SOU90Ss Omam:‘\mﬁu

a[qereos ‘aords

Surpdures
wopuel ursn aoeds

yStg ur mofs ‘Tewrrjdo-uoN [RUOISUSWIP-YSIY 10} POOD) uoryem8yuod sero[dxsg Suruue[g o13sIIqeqoi] (INUd ‘1Y) Sutuuerg uorjoly paseg-Surdureg
L GELEY)
JUSWUOIIAUS D1YR)S (1g Auraqdsey Surpue] LousSiswe
sownsse ‘3uruny tojeurered '8°9) arempIRY POpPpPOqUID pu® 90URPIOAR 9[0R}SqO I0]
soamboi ‘yyed rewrydo puy uo syrom ‘sdewr xorduiod ut Surjseo Ler 3uryerodioout
09 pegjurIeng j0U ‘SpPoyoW 1snqoa ‘searyoalqo ardiynu ‘$9110100[R1) S[qISLd] OAJOAD

Y31 OAT}ORBOI URY} IOMO[S syproddns ‘o[qixey ATYSIH | 0} WY)LI0F[e d1joUeS3 © sos() PLqAH SWJLIOZ[Y 0110Udx)
Ayurejreoun Iopun
Fururea] syoe[o180] a[qejerdiojur 90uRpIOAR 9[DRIS(O d[pURY

wnipajy ‘Buruny jredxe seambay ‘Kyurejredoun se[pueH 09 son1 Azznj serddy aanydepy / peseqg-o[ny [o19u0)) o130 AZZN]
suorjouny
QA1}O®BAI JOU sdery ed0] 1500 pue dewr umousy

U3ty ‘aatsuadxa A[reuoryeinduo)) sproae ‘syjed pazrud(Q uo paseq yyed aijue sue[J Iauue[J [BQO[) (yuy ‘wremg “ensyliq ‘, V) SuuuelJ [eqon)
SO[0BISCO 1SRJ aarydepe syyed sezrurydo pue sdewr

wnipay 10J Pajms jou ‘AIouweut ON ‘paziuurydo-£10909(e1y ‘)se] [OXOA ULIDI-LIOYS SI)BIID) Jauue[J [®J0] (vOgDn., ‘eurdg-g + [ox0A) Sutuuel] [@d0]
SO[D®)SCO JIURUAD jsnqoa A[reorureudp SI19A0291 pue

wnIpaN 10 peads-y31y 10] jJO0N | ‘seords pouyuod Ul 9AIHH suorsI[[oo [eo1sAyd s10039(] JURIS[O],-UOISI[[0)) sromoures wdwng 1y
a[qeydepe UOTYeSIARU DAIIORAI HIM

Y31 uonyejuowedurt xo[duro)) ‘9jeINdOR pur IS8 yjdep poseq-JN soulquoy) PLIqAH ("090 0 Sng + JONSepPI) uoisn WyLIoS[y
SUOISIOP
uoryelqiyed pue Surssedord uorstoaxd 91eInooe 10y syndut

ySty xo[duoo sarmbay pue £yiqeres pasoxdu] Josuos a[dynur saurquIoy) uorsn 10Suag (uewpey] ‘uersofed) uorsn 10Suag-1N\
paseq-dew ‘Suruuerd
aarsuoqui-onduwod | Ajoyes saaoxdur ‘Ajurejreoun A10900[e1y DN 2Aroxdurr

al0wW ‘ejep Fururely 10J SHUNODOR ‘SOTRUAD 07 ejep jsed WOIJ YSII paseg-gururesar

yStg Ay1renb-ySiy saambeyy pliom-fear oy sydepy | pue Ioiaeyaq WeISAS SuIRST / @A1O1paI g OdIN dTemy-ysry usALI(-ee(]
(a107[01710D BUIOD
eyep oyesn) paseq-deuwt ‘sppouwt
dnjes xeiduioo Astou 09 9snqox ‘JoIuod uorjorpaxd Jursn awry

U3ty 3500 TeuoreInduwod AAeaf] rewrjdo ‘Sunjoo[-premioq I9A0 A10300(R1) sezrurd() Juruue[q 9A1I0IpaIg (DJIN) [013U0)) BA1IOIPaI] [OPOIN
uorydeorad
uorsnj pue Sursseooxd AoeInooe uorjouwt 1seJ-RIYN 10J SSeuySLIq

USIH poziferoads saxmbayy Y31y ‘Aouaje] mo[-erijn ur seSuryd $10939(] omydiowoanay / wotsiA | (LOA ‘AT ‘IO ‘SALJ) SWYILIOS[Y eIowre)) JUdAG]

YSIH-WNIPaN

Aneor] A[reoruyjrios[e
‘quepuadap-SurySry

Popaeu Iosuas
9ATJOR OU ‘BIRD [RNSIA YOTY

A13011093
10 TN Sulsn soSewl elowed
wolj yydep sejewn)sy

Poseq-UoIST A

mdeq extdiedng / AW / (I ®sn) AVS

Mo

ST jo81e) oY) SIS M MOUY|
0} Poou sAem[R ‘MO[S oq
weo ‘rewrrydo A[reqorS joN

swry-[ear ‘ordurtg

Tealo st qyed
[19un se8pa S[OR}SqO SMO[[O]

Ayrurxorg / eAroeay

(¢ ‘1 ‘0 8ng) swyyod[y Sng

WNIPOI-MO']

SOUQDS OTWRUAD UI [reJ 10
99R[[10s0 urd ‘DA1301paId JON

arempirey olseq
m sqryeduwos ‘Surung
orduts ‘{010 dwWI)-[edY

ndur Josuss wo paseq
UO110911P 10 A3100[0A jsnlpe
09 Id[[OIYU0D (J[J ® SOS()

9ATIORIY / [019U0D)

90URPIOAY 9ATI0RY Posed-(Id

sotureudp 09 aarpdepe

o[qerardioqur ‘paambox

paseq-dew ‘suorjoafoxd
oL1jew093 Juisn so[3ue ofes

posed-19POIN

W9 jou ‘suopdwmnsse pisry Surure1y ou ‘O1S[UIMIIGR(] | PUR YSLI UOISI[0D S9JRWIISH / 1Teondeuy POYjoUW DLI}oUW09L)
awiry [eal
SPUSWUOIIAUS PAISIIN[O asuodsal 4se] 4S00-mO[ur yjed 1991 pue se[ovISqO

MO 10 xo[dwod Ul pajruIy ‘quowa[durr 03 orduirg 30990p 0% so[na odwis sos) poseg-o[ny / dA1jorey] PIOAY -pUR-9SUDS

WNIPOIA-MO']

rUITUTIL
[®00] Ul yonjs 108 ur)

Surssoooxd
1Srom)y31] ‘osuodsal spme)

uoryoees Yred 10] smopuim
10 $9DI0J [RNYIIA SOS[)

QAT)OROY

(PRI 9210 ‘VMA ‘AdV) SPOURINL PIRLA 101997

ISII ewruimt
[eo0] ‘soords poroInd

orureuAp 10y

uoryeSiaru 10§
SUOT}ODIIP dJes dUTULINOP
0} ©)ep IOSUdS WOIJ

WNIPoJA 10 molreu Ul 9[88nijs ur) o[qelms ‘JySomIysI| ‘9seq pLi8 wreiSo)siy e $99€01)) | Iouue[J [€907] / 9A1ORY HAA
somqrije
Ayiqesdepe pojrury 9[0®ISqO UO poseq SUOISIdp

wnIpajy ‘quopuadop-ejep Sururel], | juaye ‘ojqejeidiojul ‘Iseq uolje3iaRu SoyIsse[) Surureo] pesiatedng (18910 wopuey ‘R) 904, UOISIA(]
SOLIRUQDS ®ejep WoIj
$001Mn0s01 TeuoryeInduwiod orureudp woij Jurures| S01809RI)S 9OURPIOAR pUR

Y31 Y31y ‘peimmbox Surured, Jo o[qeded ‘oarydepy suio)jed 9[ov)Sqo suIRa| poseq-3uruiesr| (TY ‘NNY ‘NND ‘pusf-oj-puy) Sururesr] doa(]
JLp ouIly [eal
10suds 03 oAnyIsuos ‘purwop | Suiddew owry-[ea1 ‘9jeinooe | ur uolpisod ouoIp Jurjeurr}se

Uty Teuoryenduod ySr ‘uoryeSiaru 921j-§J5) a[iym dewr e spng uoryezieoor] / Surddey (Surddepy pue uoryezieoor] snosue)nuis) YIS

Ayxardwro)

suopD

soaq

ASayea)g

K1o391e)

wWyILI03 Y

14

Chapter 3

Algorithmic and Sensory
choices

The first design decision addressed in this work concerned the selection of algorithms
to be used for path planning and obstacle avoidance. In this context, the A*
algorithm was chosen, thanks to its ability to generate optimal trajectories even
in complex scenarios. Unlike traditional global planner approaches that operate
on predefined static maps, in this work A* was applied to a local and dynamic
map, constructed and updated in real time from the drone’s on-board sensors. This
map remains constantly centred on the UAV and evolves as perceptions change,
ensuring a consistently coherent and up-to-date representation of the surrounding
environment.

To support the path planner, an hybrid algorithm belonging to the Bug family
has also been introduced, designed as a backup strategy for managing situations in
which A* encounters operational difficulties or fails to produce a valid trajectory.
The integration of the two methods allows the optimality of global planning to be
combined with local responsiveness, improving the overall robustness and reliability
of the navigation system.

The sensor chosen was a 2D LiDAR, which represents a good compromise
between performance and operational requirements. This type of sensor offers a
reliable behavior even in outdoor environments, ensuring good quality and density
of the acquired data. Although heavier and more energy-intensive than cameras,
LiDAR has been adopted not only for obstacle avoidance, but also for other
perception and navigation tasks, which justifies its use as a robust and versatile
solution within the overall system architecture.

The primary objective of the architecture developed is to implement a logic
of obstacle avoidance in outdoor scenarios that operates selectively: the module
intervenes only when an obstacle is detected, while for the rest of the time the drone

15

Algorithmic and Sensory choices

proceeds autonomously along the waypoints predefined by the mission, without
external intervention on the trajectory control. This combines the safety guaran-
teed by obstacle avoidance with operational efficiency, reducing calculation times
and energy consumption. This approach reflects a fundamental design principle:
maximising the simplicity and linearity of the UAV’s behavior, intervening with
corrective strategies only when strictly necessary.

3.1 A*

The A* algorithm plays a prominent role in the literature on path planning and
graph search. It was introduced in 1968 by Hart, Nilsson and Raphael at the
Stanford Research Institute, at a time when artificial intelligence was taking its
first steps and facing with the practical problems of autonomous navigation. A*
was conceived as a synthesis between the completeness and optimality of Dijkstra’s
algorithm and the speed of informed approaches based on the use of heuristics.
This combination made it possible to develop a method capable of calculating
optimal paths while reducing the number of nodes to be explored, a fundamental
aspect especially in complex or large environments.

The principle behind A* consists of assigning each node a value that takes into
account both the actual cost of the path travelled up to that point and an estimate
of the remaining cost to reach the destination. In this way, the algorithm does not
simply search for the shortest solution in absolute terms, but guides the search
towards promising regions of the space, significantly speeding up the process.

From a formal point of view, the behaviour of A* is governed by the function:

f(n) = g(n) + h(n)

where g(n) represents the actual cost accumulated from the initial node up to n,
while h(n) is a heuristic estimate of the minimum remaining cost to reach the goal.
Heuristics are therefore functions that guides informed research: depending on
the characteristics of the problem, they can be defined, for example, as Fuclidean,
Manhattan or diagonal distance between the current node and the target. If the
heuristic is admissible, that is, it never overestimates the actual cost, the algorithm
is guaranteed to find an optimal solution. In addition, if the heuristic is also
consistent, i.e. it respects the triangular inequality

h(n) < c(n,n’) + h(n')

for each pair of adjacent nodes n and n’, then the algorithm achieves maximum
efficiency. In this relationship ¢(n,n’) indicates the transition cost between two
adjacent nodes and represents the “expenditure” associated with the shift: it can

16

Algorithmic and Sensory choices

coincide with the geometric distance between two points, but also model other
magnitudes, such as travel time, energy consumed or a risk factor related to
environmental conditions.

The operational functioning of A* involves the management of two sets: an
open list, which contains the nodes to be explored, ordered according to the value
of the function f(n), and a closed list, which collects the nodes that have already
been analysed. At each iteration, the node with the minimum value of f(n) is
selected, its neighbours are expanded by calculating their costs through the sum of
the accumulated cost g(n) and the transition cost ¢(n,n’), and the lists are updated
accordingly. The process is repeated until the objective is achieved, at which point
the optimal path is reconstructed by tracing back the predecessors.

One of the strengths of A* is its generality: the structure of the algorithm is
independent of the application domain, as long as an appropriate heuristic is defined.
This has made it a benchmark in a wide variety of sectors. In mobile robotics
and drones, it is used to generate safe trajectories on maps that are continuously

updated by on-board sensors.

| Add the start node to the open list I

Is open list
empty?

Find the node with the smallest value in
O open list and move it to close list

End
Pathfinding failed

Is the current
node the target
node?

End
Pathfinding succeeded

See the current node as the parent node and starting
“— point of the search for neighbor nodes, and add the
minimumnode offree grid to the open list.

Figure 3.1: A* algorithm flow chart [21]

3.2 Bug

The Bug family of algorithms was introduced in the 1980s as one of the first formal
strategies for addressing the problem of obstacle avoidance in mobile robotics.

17

Algorithmic and Sensory choices

Figure 3.2: A* algorithm visualization [22]

Unlike many planners, Bugs do not rely on a predefined map of the environment,
but operate exclusively on the basis of local information provided by on-board
sensors. The robot therefore has no prior knowledge of the surrounding space:
navigation is constructed step by step, reacting in real-time to the detection of
obstacles.

The idea behind this family of algorithms is intuitive: the robot initially proceeds
in a straight line towards the goal and, upon first contact with an obstacle, follows
its contour until it satisfies an exit rule that allows it to resume its journey towards
the goal.

The three fundamental concepts are:

« Goal (G), known in its absolute or relative position;
« Hit Point (H) which corresponds to the first interaction with the obstacle;

« Leave Point (H), i.e. the position on the edge from which to resume the
path towards the goal.

The overall trajectory is therefore composed of straight segments alternating
with boundary-following sections, along the edges of the obstacles.

A hybrid Bug navigation algorithm combining Bug0 and Bug2 is employed in
this work. For completeness, also a brief summary of Bugl is provided below.

3.2.1 Bug0

Bug0 represents the simplest version of the family: the robot moves towards the
goal until it encounters an obstacle, at which point it activates the bypass phase.

18

Algorithmic and Sensory choices

The exit rule is very basic and can be summarised in the condition:
d(P,G) < g(H,G)

where d(P,) is the distance between the current position P and the goal, and
d(H,G) is the distance between the point of impact and the goal. Once this
inequality has been verified, the robot leaves the edge and resumes its journey
towards the goal.

Bug0 is extremely simple but not comprehensive: in complex scenarios, such as
concave obstacles, it may fail to find a valid path.

Figure 3.3: Bug0 example [5]

3.2.2 Bugl

Bug1 algorithm introduces a more structured strategy to determine the exit point.
After reaching an impact point H, the robot travels along the entire contour of the
obstacle, memorising the minimum distance from the goal:

dmin = min d(P,G)

Pecedge

The exit point L is then chosen as the point on the boundary that satisfies:
d(L,G) = duyin

After completing the circumnavigation, the robot returns to L and from there
resumes its march towards the goal.

19

Algorithmic and Sensory choices

Bugl is complete: if a path exists, the algorithm will find it. However, the need
to travel the entire perimeter of each obstacle often makes the paths much longer
than necessary.

Figure 3.4: Bugl example [5]

3.2.3 Bug2

Bug?2 algorithm improves efficiency by introducing the so-called M-line, i.e. the
straight line connecting the starting point S with the goal G. After encountering
an obstacle, the robot starts following the edge; the exit rule is that the robot can
leave the obstacle when:

P € Mline A d(P,G) < d(H,G)

In other words, the robot leaves the edge as soon as it finds itself on the M-line at
a point closer to the goal than the point of impact.

This choice significantly reduces the number of complete paths around obstacles,
improving efficiency compared to Bugl. Bug? is also complete, but may encounter
difficulties in particular geometric configurations.

20

Algorithmic and Sensory choices

Figure 3.5: Bug2 example [5]

21

Chapter 4

Software Tools and
Simulation Environments

The communication architecture adopted in this work is modular and distributed:
each component plays a well-defined role, but at the same time it collaborates in
real time with the others, guaranteeing scalability, robustness and flexibility to the
overall system.

The logical core is ROS 2, which handles data processing, scheduling execution
and obstacle avoidance algorithms, as well as transmission of high-level commands.
The simulation environment is entrusted to Gazebo, which reproduces realistic
three-dimensional scenarios and virtual sensors, while RViz acts as a visualization
tool, allowing to monitor the state of the system and the evolution of the information
processed by the nodes.

Low-level control is delegated to PX4 Autopilot, the flight stack that translates
the received commands into concrete actions on the drone’s actuators. Information
exchange between ROS 2 and PX4 occurs via uXRCFE-DDS middleware, which
connects PX4’s internal messaging system (uORB) with the ROS ecosystem, ensur-
ing low-latency two-way communications. For managing high-intensity data flows,
Gazebo—ROS 2 Bridge (ros_gz bridge) is used, allowing sensory measurements to
be transferred directly from the simulator to the perception framework without go-
ing through the flight controller. In this way, a more rapid and efficient elaboration
of available resources is reached.

Completing the architecture is the Ground Control Station (GCS), imple-
mented via QGroundControl, which ensures supervision and human intervention.
Through this interface, it is possible to monitor the status of the drone, modify
operational parameters, and, if necessary, take manual control of the UAV.

The overall structure, illustrated in Figure 4.1, shows how these modules interact
with each other.

22

Software Tools and Simulation Environments

. Ground Control
Gazebo azebo APl—»| PX4 MAVLink——» .
Station
A y

uXRCE-DDS
(uORB messages)

———————6GZ bridge% ROS2 }——*‘ RViz |

Figure 4.1: General Communication Architecture

4.1 ROS2 Framework

ROS 2 (Robot Operating System 2), [23], is currently one of the most widely
used and established software platforms to develop complex robotic systems. It
is an open-source framework designed to simplify the creation and integration
of applications in which different software modules, such as sensors, perception
algorithms, planners and controllers, must cooperate within a single architecture.

The principle behind ROS 2 is modularity: instead of building a monolithic
system, each functionality is encapsulated in an independent software unit called
node. The set of running nodes forms a Computation Graph, in which each node
can communicate with the others by exchanging information. This approach ensures
flexibility and reusability, since it allows individual components to be replaced,
updated, or integrated without having to modify the entire system.

One of the most significant improvement over ROS 1 is the adoption of DDS
(Data Distribution Service) middleware as the communication layer. DDS not only
offers configurable Quality of Service (QoS) to manage latency, update frequency
and reliability, but also introduces an automatic discovery mechanism: once started,
each node announces its presence on the network and detects the ones that are
already active, establishing transparent connections with those that publish or
subscribe to the same topics. This eliminates the need for manual configuration or
a central coordinator (master), making ROS 2 inherently scalable and suitable for
distributed scenarios, Figure 4.2.

The ROS 2 Humble Hawksbill distribution was used in the present work,
released in May 2022 and classified as Long Term Support (LTS), with updates
guaranteed until 2027. Humble is currently one of the most adopted versions in

23

Software Tools and Simulation Environments

both the academic and industrial fields, thanks to its stability and compatibility
with the most advanced navigation packages, in particular the Nav2 framework,
used in this project (it will be explained in section 5.1).

User Code User Nodes

rclcpp rclpy | rcle Other APIs
ROS Client Layer @ P @ = &
(RCL) - @ ima @

rcl (ROS2 C Implementation)

rmw (DDS API)
ROS Middleware
Layer (RMW) Cyclone
FastDDS O™ () -
OS Layer == Windows & ; & :0S

Figure 4.2: ROS2 Layers [24]

4.1.1 Node

The node concept is the basis for the operation of ROS 2. Each unit can be seen
as an independent process that performs a very specific task, like reading data
from a sensor, building a map of the environment, planning a path, or sending
motion commands to the actuators. Even if an autonomous robot may seem a
single complex entity, it is nothing more than the result of the cooperation of many
nodes that work together and continuously exchange information.

A central aspect is that these nodes do not necessarily have to be on the same
machine. In fact, thanks to DDS middleware, they can be distributed across multiple
devices, for example an on-board computer mounted on the drone, a networked
development workstation or even external edge systems, and communicate with
each other in a completely transparent way.

4.1.2 Communication between Nodes

Communication between nodes in ROS 2 is articulated in three complementary
modes, which allow to cover the entire spectrum of possible interactions in a robotic

24

Software Tools and Simulation Environments

Figure 4.3: Node [24]

system.

The most widespread form is the one based on Topics, Figure 4.4, which
implement a publish/subscribe model: a node can publish a data flow on a specific
channel, while all nodes subscribed to that channel receive them in real time. This
asynchronous and scalable mechanism is ideal for the continuous transmission of
information such as sensory measurements or control commands.

NODE

Message

Publisher

Figure 4.4: Topic [24]

Alongside this model, ROS 2 provides Services, Figure 4.5, structured according
to the request/response paradigm. They are suitable for point interactions, where
a node sends a specific request and receives an immediate response, similar to a
remote function call.

Finally, to manage longer-duration tasks that require continuous monitoring,

25

Software Tools and Simulation Environments

Figure 4.5: Service [24]

Actions are used, Figure 4.6. Through this mechanism, a node can send a goal,
receive periodic feedback on progress, and obtain a final result, with the possibility
of interrupting or modifying the in progress task.

Figure 4.6: Action [24]

Data exchanged through topics, services or actions is formalized into typed
messages, defined in .msg, .srv or .action files. This strongly typed approach
ensures interoperability and reliability between components produced by different
developers.

4.2 Gazebo

Gazebo, [25], represents one of the reference simulators in robotics, designed to
offer a realistic three-dimensional environment in which analyzing and verifying the
behavior of robots and algorithms before their application in the field. The simulator

26

Software Tools and Simulation Environments

allows to model complex virtual worlds, populated by robots, obstacles, and objects,
within which the performance of a system can be observed and evaluated under
controlled but highly plausible conditions.

One of Gazebo’s strengths lies in its ability to reproduce physical dynamics
accurately, thanks to integration with several physics engines (including ODE,
Bullet and DART). In this way, it is possible to simulate forces, torques, frictions,
and collisions, returning a behavior that faithfully reflects the real one. Added to
this is the availability of a vast library of virtual sensors, such as LiDAR, monocular
and stereo cameras, IMU and GPS, capable of generating data similar to that
collected by physical sensors, an essential element for the validation of perception
and planning algorithms.

The connection with ROS 2 is done through dedicated plugins, which allow
the simulator to be integrated within the framework architecture. In this way,
the measurements of the simulated sensors can be published as ROS topics, while
the commands generated by the control nodes are sent to the robot models, thus
reproducing the perception—decision—action cycle characteristic of an autonomous
system.

4.3 RViz

RViz, [26], is the official ROS 2 3D visualization tool and is designed to provide the
user with an intuitive and interactive representation of the state of the robotic sys-
tem. Unlike Gazebo, which simulates physical and sensory dynamics, RViz focuses
on visualizing the data produced by ROS nodes, allowing real-time monitoring of
what the robot perceives and how it interprets its surroundings.

The graphical interface of RViz allows a great variety of information to be
displayed: maps generated in real time, point clouds from LiDAR sensors, images
from monocular or stereo cameras, trajectories planned by navigation algorithms
and even the status of the robot’s actuators. Each data is shown as a selectable and
configurable information level, offering a high degree of customization depending
on the needs of the experimentation.

A further strength is the ability to visualize multiple data streams simultaneously,
favouring comparative analysis and diagnostics. In this sense, RViz is not only a
debugging and analysis tool, but also a support to the demonstration of results,
since it makes complex processes visible and understandable .

Thanks to these characteristics, RViz is an essential complement to Gazebo,
offering a clear and detailed vision of the information that guides the robot’s
behavior.

27

Software Tools and Simulation Environments

4.4 PX4 Autopilot

PX/, [27], is an open-source flight stack that represents one of the reference
standards for the control of remotely piloted aerial vehicles. Created to guarantee
reliability and versatility, it is now used not only on multicopter drones and fixed-
wing aircraft, but also on hybrid VTOL platforms, land rovers and underwater
vehicles.

The core of the system is made up of the flight controller, which runs the
PX4 firmware on a real-time operating system (typically NuttX) and which can
be considered to all intents and purposes the “mind” of the vehicle: it receives
measurements from the on-board sensors (IMU, GPS, magnetometers, barome-
ters), and translates control commands into actions on the actuators, ensuring
stabilization, safety, and automatic functions such as take-off, landing or position
holding.

The controller is often supported by a companion computer, an external
computing unit that runs generic operating systems, such as Linux, and which
allows to implement advanced features that cannot be managed directly by the flight
controller: visual processing, network communications, complex mission planning.
In this context, Offboard mode is inserted: a flight mode of PX4 that enables the
companion computer to send high-level commands (position, speed, acceleration
or attitude setpoint) directly to the controller. This mode is fundamental for
obstacle avoidance applications, since it permits to integrate external perception
and planning algorithms, leaving the tasks of stabilization and immediate control
of the engines to PX4. For safety reasons, Offboard activation requires continuous
reception of a “proof of life” signal at a minimum frequency of 2 Hz: in the case of
an interruption, PX4 immediately disables external control and activates a failsafe
procedure (such as automatic landing or return to the take-off point).

For code development and validation, PX4 also makes Software-In-The-Loop
(SITL) simulator available, which allows the entire flight stack to be run on a
computer without resorting to physical hardware. In this way, it is possible to
simulate the dynamics of a vehicle and safely test both the PX4 firmware and the
external integrated algorithms via ROS 2.

Internal communication between controller modules occurs through the ©ORB
publish/subscribe architecture, while data exchange with ROS 2 is made possible by
the uXRCE-DDS middleware, which extends uORB messages to the DDS domain,
Figure 4.7. This mechanism, implemented according to a client-agent architecture,
ensures data transparency: messages published by PX4 become available as a ROS
2 topic and vice versa.

A crucial aspect in the integration between ROS 2 and PX4 relates to the refer-
ence systems conventions adopted by the two environments. PX4 uses the NED
(North—East—Down) system for the world frame and FRD (Front—Right—Down)

28

Software Tools and Simulation Environments

CDR FAST-CDR

uORB topic |« _ .| ROS2
~ 7| node
(X X
UORB topic | < puXRCE-DDS || |,| uXRCE-DDS |, .o 2
client agent eeoe
- ROS 2
uORB topic | *+> node

FAST-DDS

Figure 4.7: uXRCE-DDS communications middleware [27]

for the body frame as the standard: in this convention the X axis points north
(or forward in the body), the Y axis eastward (or rightward in the body), and
the Z axis downward. ROS 2, in contrast, adopts the ENU (East—North—Up)
convention for the world and FLU (Front—Left—Up) for the body: here the X
axis is directed to the East (or forward in the body), the Y axis to the North (or
left in the body), and the Z axis upwards. These differences necessitate explicit
coordinate transformations whenever data such as positions, velocities, or attitude
are exchanged between the two systems.

01 0 1 0 O
Rxepsenu = |1 0 0 Rervsrrp = [0 =1 0
00 -1 0 0 -1
Rotation matrix from NED to ENU. Rotation matrix from FLU to FRD.

The transformation of a vector from the NED system to the ENU one can
be achieved by applying two successive rotations: first a rotation of 7/2 around
the Z axis (oriented downwards in the NED frame), followed by a rotation of =
around the X axis, which initially coincides with the North direction and instead
becomes East after the first transformation. It is relevant to underline that these
two operations are, from a mathematical point of view, fully equivalent. On the
other hand, regarding the conversion between the FLU and FRD body frames, the
required operation is simpler and consists of a rotation of m around the X axis
(forward).

29

Software Tools and Simulation Environments

Gravity

Figure 4.8: PX4- ROS 2 frame conventions (FRD on the left/FLU on the right)
[27]

4.5 QGroundControl

QGroundControl (QGC) is one of the most popular and complete Ground Control
Stations for PX4 and MAVLink systems. This is open-source, cross-platform
software (Windows, macOS, Linux, Android, iOS), designed to provide the user
with a unified vehicle monitoring, configuration and control interface.

Functionally, QGroundControl plays several key roles. Firstly, it allows the initial
configuration of the drone, including the calibration of sensors (IMU, magnetometers,
GPS) and the definition of flight parameters. Then, it offers a graphical interface
for mission planning via waypoints, which can include instructions such as quota
changes, payload trigger commands, or flyby areas for mapping missions.

During flight, QGroundControl acts as a real-time supervision tool, showing
detailed telemetry (position, attitude, speed, battery status, GPS signal quality,
etc.) and allowing the operator to take action if necessary. Among its most relevant
features there is support for failsafe management, which allows to select automatic
actions (for example, return to the starting point or immediate landing) when
critical conditions are detected.

Another distinctive aspect is the integration with standard communication
protocols such as MAVLink, which ensure interoperability with a wide range of
autopilots and UAV systems. QGroundControl also supports advanced workflows:
manual piloting via USB joystick or on-screen virtual sticks, RC transmitter setup
and calibration, and simultaneous monitoring of multiple vehicles. It integrates
smoothly with simulators like PX4 SITL, making it widely used in both research
and operational applications.

In the context of this thesis, QGroundControl has been employed as the main
interface for the supervision of the drone, allowing to monitor in real time the

30

Software Tools and Simulation Environments

state of the system during simulations, to intervene with any manual corrections
or changes to the operating parameters and, above all, to define and assign mission
waypoints to the vehicle, Figure 4.9.

QGroundControl N (=) €

Ready To Fly Meosiion Ak N - 5100%

B L e =

2550 m - Takeoff from ground and start the current
mission.

Slide or hold spacebar

S B/ iy E W < v o7 Ui
Actigf 2=\ y v 3 N - L '/*\/ =
s/ gy A

NES /® +00m 100m/s 501:30:00 |

S e

150.0m >0.0m/s #%140.7 m [/~

A

Figure 4.9: QGroundControl interface

31

Chapter 5
First Implementation

The first implementation of the obstacle avoidance system was developed and tested
in simulation using the mobile robot TurtleBot3 Burger. This platform was
chosen as a preliminary test bed as it allows a simplified but effective environment
for validating perception and navigation logics. In this initial phase, the PX4 flight
controller, whose integration was introduced only later within the simulation,
with the objective of reproducing the dynamics of an UAV more faithfully, was not
used.

The use of TurtleBot3 has made it possible to quickly and effectively verify the
planning and obstacle avoidance logic, postponing the management of the com-
plexities connected to flight control to the subsequent phases. Once the algorithms
were consolidated in this simplified context, the architecture was transferred to a
configuration more faithful to the application domain, based on the PX4, so as to
evaluate the system behavior in conditions closer to the operational ones.

This chapter presents the local navigation and collision avoidance architecture
developed for the simplified case of TurtleBot3 Burger in ROS 2, designed to
combine reactive readiness and reliability in partially known scenarios. The solution
integrates A*-based local scheduling on rolling costmap (centered and integral
with the robot provided by NAV2), a DWB local controller, always from NAV2,
used as a Controller Server plugin, and a Bug responsive behavior that acts as
a fallback in case of failed scheduling/control. The management of states and
transitions is entrusted to an orchestration node, NavigationManager, while the
achievement of the goal is monitored by a GoalChecker.

The complete pseudocodes of A* and Bug are given in this chapter (see respec-
tively 3 and 2); the pseudocodes of GoalProjector, PathFollower, GoalChecker
and NavigationManager are instead collected in Appendix A in order to keep the
main discussion focused on the two pivotal algorithms. All configurable parameters
(thresholds, gains, frequencies, topic and action server identifiers) are managed via

32

First Implementation

a YAML file loaded at startup, allowing non-intrusive calibration of the pipeline.

L

Goal
Projector

Manager

Yes-

Goal
Checker

Goal
reached?

Yes

‘_4<>‘ . ‘x

Stop

Figure 5.1: Simplified flowchart of Turtlebot nodes

First Implementation

5.1 NAV2

Nav2 (Navigation2) is the navigation stack for ROS 2 designed for mobile robots.
It provides, in a modular and modular way, the fundamental functions of
route planning, movement control, and recovery strategies, coordinating them via a
Behavior Tree. The architecture is plugin-based: planning and control servers load
interchangeable algorithms (eg. planners and local controllers), each supported by
its own Costmap2D with layers that shape the environment around the robot. Nav2
exposes standard actions (e.g. NavigateToPose, ComputePathToPose, FollowPath),
integrates with TFs, sensors (LiDAR/odometry), maps and localization, and is
configurable via YAML files. In summary, it offers a robust and flexible framework
for switching from lens pose to speed commands, adapting to different platforms
and scenarios [28].
In the present work, NAV2 is employed for two essential functions:

1. Local costmap (Costmap2D, rolling window): A robot-centric costmap
maintained from 2D LiDAR and odometry, with layers (e.g., obstacle, inflation)
that form the perception basis for local planning and control.

2. Controller Server with DWB plugin: Exposes the FollowPath action to
track a nav_msgs/Path. The DWB (Dynamic Window Based) controller sam-
ples dynamically admissible (v,w), forward-simulates short trajectories, and
scores them with critics (path/goal progress, obstacle clearance, smoothness),
selecting the command with the best weighted score. Using it as a plugin
gives a mature, YAML-configurable controller without changing its internals.

5.2 Local Costmap, Occupancy Grid, Costs and
Conversions

Local planning rests on a "rolling" window costmap centered on the robot: the
grid translates together with the vehicle, so that it always remains in the center of
the operational box. The costmap is published to /local_costmap/costmap in the
format nav_msgs/OccupancyGrid, i.e. a two-dimensional regular grid described by
a resolution r (meters per cell), by size width x height, by an origin o = (0,, 0,)
and from a reference frame (frame_id). In all experiences the frame of the costmap
is odom (parameter global_frame in NAV2), consistent with the TF chain odom —
base_link. The same frame is maintained in derived messages (Path, PoseArray,
PoseStamped) and set as Fixed Frame in RViz to avoid misalignments between
data, display and control.

The costmap is updated in real time by merging the measurements of the LiDAR
2D (ray-tracing: the rays free the cells crossed and mark the impact cell as occupied)

34

First Implementation

with the odometry (which anchors spatially and temporally the grid). NAV2 can
apply several layers; crucial among these is the inflation layer, which expands
obstacles and creates a decreasing cost gradient with distance: a “bearing” which
orients the controller to prefer trajectories with greater clearance.

5.2.1 Internal Costs and Conversion to Occupancy

Internally costmap_2d represents each cell with a cost ¢ € {0,...,255} (type
uint8_t) with special codes:

o O=FREE_SPACE (free);

e 253=INSCRIBED_INFLATED_OBSTACLE;
e 254=LETHAL_OBSTACLE,

e 255=NO_INFORMATION (unknown).

Values 1...252 model a risk gradient (largely generated by the inflation layer).

When the costmap is exported as nav_msgs/OccupancyGrid for interoperabili-
ty/display, the internal costs are mapped to a occupancy estimate in —1/0-100.
A remapping consistent with the special codes is:

Costmap — OccupancyGrid
o if ¢ =255 = occ = —1 (unknown);
« otherwise occ = round(min(lOO, (c/254) - 100)).
In particular: 0 — 0, 254 — 100.

OccupancyGrid — Costmap
e if occ = —1 = ¢ = 255 (unknown);

 otherwise ¢ = round((occ /100) - 254).

In particular: 0 — 0, 100 — 254.

This distinction is important: the internal costmap is a field of costs used
by planners/controllers; the OccupancyGrid is a occupancy view useful for
interoperability and RViz. The selection of which cells participate in planning
is not a property of the costmap itself but of the planner that consumes it; the
corresponding criteria are introduced in section 5.3.

35

First Implementation

5.2.2 Inflation profile: Radius and Cost Decay

The inflation layer defines how far from the obstacle the "penalized" zone extends
and how quickly its cost decays. Two YAML parameters govern the profile:

« inflation_radius (R): maximum radius of influence; beyond R the cost
returns to zero.

» cost__scaling_factor (s): coefficient of the exponential decay; the higher
the s, the steeper is the gradient (the cost drops in less space).

Indicating with r the minimum distance to the edge of the obstacle and with
Timseribed the radius "inscribed" (depends on the robot footprint), the profile of the
internal costs is

254, T < Tinseribed (lethal zone/inscribed),
C(T) =q1+ (254 — 1) exp(—s . (7’ — rinscribed)); Tinscribed < T < R7
0, r> R.

The OccupancyGrid view is obtained (for r < R) as occ(r) = round(lOO : c(r)/254).
Two useful decay scale measures are

In2 In 20
ATUQI ? e AT95%IT.

These relationships help select s based on the “width” of the desired bearing: for
the same R, s large produces a narrow, steep edge; s small produces a wider, softer
edge.

5.2.3 Geometry: World <+ Map and indexing

To align the continuous poses and the discrete grid, the usual conversions are used
(in the odom frame):

« world — map: m, = |(z—o,)/r], m, = |(y—o,)/r| (valid if 0 < m, < width
and 0 < m, < height);

« map — world (cell center): x = o, + (m, +0.5) 7, y = 0, + (m,, + 0.5) 7;
+ indexing of the vector data (row-major): idx = m, - width + m,.

Keeping the frame_id (odom consistent in this work) along the entire pipeline -
costmap, pose, path - avoids reference errors and allows scheduling and control to
operate on the same metric and coordinate basis.

36

First Implementation

5.3 Goal Projector

The GoalProjector has the task of always making the target reachable for local
planning. Since A* works within the local costmap window, it may happen
that a global goal falls outside this box. The node then receives the target
at /goal_pose from RViz, the current pose at /odom, and the local costmap at
local_costmap/costmap/, and periodically posts on /projected_goal a projected
goal that falls within the costmap. Everything happens in the odom frame and
with consistent headers, so that planner and controller see the same reference.

The logic is intentionally simple and robust. With each new objective (or when
the timer set by public_rate expires), the node considers the straight line that
joins the current pose to the goal and samples it with a step equal to approximately
half the resolution of the costmap: in this way, advancing “in small jumps” along
the desired direction, it identifies the first valid point that falls within the width
xheight limits. If the straight line is barred from obstacles, moderate angular
deviations are tried around the main direction (+£15° and £30°), until a map-
compatible candidate is found. If no direction generates a valid point, the node
does not publish updates and logs the event in the logs.

The validity check is perfectly aligned with the one then used by A*: the continu-
ous point (x,y) is converted into cell indices (mz, my) using the origin and resolution
of the costmap; after checking the limits, the linear index idx=myxwidth+mx al-
lows to read the value in the data vector. In this system, a cell is walkable if data
== 0 (free) or data == -1 (unknown/unknown); it is not walkable if data > 0
(occupied or penalized by inflation). In this way the Goal Projector never proposes
objectives that A* would reject.

Since the costmap is rolling and moves with the robot, the projected goal is
updated periodically: as the robot advances, the local target “slips” with the window,
keeping planning stable and continuous. When the node receives goal_reached
on /goal_reached, it suspends publishing to prevent unnecessary activity. In
summary, the Goal Projector introduces a simple receding horizon: it transforms a
distant objective into a succession of local micro-goals, always compatible with the
costmap, which A* can actually plan and the controller can follow.

5.4 A*

The node AStarPlanner accomplishes a local on grid schedule within the window of
local costmap in the frame odom. Upon startup it declares the topics configurable by
YAML and opens subscriptions to /local _costmap/costmap, /projected_goal,
/odom, /goal_reached, as well as publishers to controller and RViz (/astar_path
as PoseArray, /astar_path_visual as Path) and to the flag of outcome (/astar_

37

First Implementation

failed as Bool).

The planner works on the nav_msgs/0OccupancyGrid published by the local
costmap (scale —1/0-100), not on the internal structure costmap_2d; from the
message reads dimensions, resolution, origin and frame_id, which is then propa-
gated unchanged in the output messages to ensure consistency of reference; from
odometry it constructs a PoseStamped of the current pose. When a new projected
goal arrives, it saves it as a target; if the previous goal has already been reached,
it ignores any new identical projections by 0.1 m (debouncing). The schedule is
punctuated by a timer with period 1/publish_frequency: with each activation
the node checks that costmap, pose and goal are available and that it is not active
the goal flag reached, otherwise it comes out with a log.

The path calculation occurs with a classical A* on a 8-connected graph.
The initial pose and goal are first projected onto the grid using the functions
world—map, explained in section 5.2; the search space coincides with the costmap
window. The algorithm maintains the usual structures (open_set, came_from,
g_score, f_score): the heuristic is the Euclidean distance to the goal cell
(admissible in 8-connected) and the edge cost is the distance between adjacent
cells (1 for orthogonal moves, v/2 by diagonals). At each iteration, the node with
the lowest f_score is selected. If it is the goal, the path is reconstructed by
backtracking through predecessors; otherwise, the eight neighbors are generated,
filtered for traversability as defined in section 5.3, and f_scores and predecessors
are updated when an improvement is found. If the open set is exhausted, the search
fails.

The discrete path is then transformed into a continuous path: for each cell the
center is calculated in world coordinates (map—world) and a PoseStamped is com-
posed with dimension z=0. The orientation of each pose is aligned to the direction
to the next cell: the yaw is from atan2(dy,dx) and the quaternion is set by valu-
ing z = sin(yaw/2) and w = cos(yaw/2). Poses are published as PoseArray on
/astar_path (controller input) and as Path on /astar_path_visual (for RViz).
In parallel the node updates /astar_failed: True when there is no path (or
the list of poses is empty), False when planning is successful. Upon receiving
/goal_reached the planner deactivates and resets the internal goal, avoiding un-
necessary recalculations.

Algorithm 1: AStarPlanner Node

1 Subscribers:
/local_costmap/costmap — COSTMAP_ CALLBACK (OccupancyGrid)
/projected_goal — PROJECTED__GOAL__CALLBACK (PoseStamped)
/odom — ODOM__CALLBACK (Odometry)

38

First Implementation

/goal_reached — GOAL__REACHED__CALLBACK (Bool)
Publishers:

/astar_path < PoseArray

/astar_path_visual < Path

/astar_failed + Bool
Parameters:

publish_frequency, topic_astar_path, topic_astar_visual,
topic_astar_failed

topic_costmap, topic_projected_goal, topic_odom, topic_goal_reached
Initialization:

Create pubs/subs; start timer with period 1/publish_frequency

State: costmap_ready<False, current_pose<None, global_goal<None

latest_path<None, goal_reached<False
Callback cOSTMAP CALLBACK(OccupancyGrid msg):

Store map data/size/resolution/origin/frame_ id; set costmap_ready<+True
Callback ODOM _CALLBACK(Odometry msg):

Build PoseStamped from header+pose — current_pose
Callback PROJECTED__GOAL__ CALLBACK(PoseStamped goal msg):

8 if goal_reached and _ POSES__EQUAL(goal msg.pose, global_goal.pose) then

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32

return > ignore identical projection after goal reached
end if
global_goal<—goal msg; goal_reached<False
Callback GOAL__REACHED__CALLBACK(Bool msg):
if msg.data then
goal_reached«True; global_goal«None
end if
Timer thread TIMER__CALLBACK():
if goal_reached then
return
end if
if not costmap_ready or current_pose=None or global_goal=None then
return
end if
path_msg <+ COMPUTE__PATH(current_pose, global_goal)
if path_msg is None or |path__msg.poses| = 0 then
publish Bool(True) on /astar_failed; return
else
publish Bool(False) on /astar_failed
PUBLISH__PATH__AS_POSE__ARRAY() on /astar_path
Build Path for RViz and publish on /astar_path_visual
end if
Function _ POSES_ EQUAL(p1, ps,tol): return /(p1.x — p2.x)2 + (p1.y — p2.y)? <
tol
Function WORLD__TO_ MAP(z,y):

39

First Implementation

33

34
35
36
37
38
39
40

41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63

mx = |[(x—origin__x)/resolution]; my = | (y —origin__y)/resolution]; return
(mz, my)
Function MAP_ TO_ WORLD(mz, my):
x = origin_x + (mx +0.5) - res; y = origin_y + (my + 0.5) - res; return (x,y)
Function 1S_ FREE(mx, my):
if 0 < mzx < width and 0 < my < height then
val < map_data[my - width + mx]; return (val = 0) or (val = —1)
else
return False
end if
Function HEURISTIC(a, b): return \/(bx —az)? + (b, — ay)?
Function COMPUTE_ PATH(start:PoseStamped, goal:PoseStamped) > A* on 8-
neighbors
$ < WORLD__TO_ MAP(start.x, start.y); g + WORLD__ TO_ MAP(goal.zx, goal.y)
open < {s}; came__from < 0; g_score[s] < 0; f__score[s] <~ HEURISTIC(s, g)
while open #+ () do
choose ¢ € open with minimal f score|c]
if c =g then
return BUILD__PATH _MESSAGE(RECONSTRUCT(came_from,s,g))
end if
remove c¢ from open
for each neighbor n of ¢ (8-connected) do
if not 1S_ FREE(n) then
continue
end if
g < g__score[c| + HEURISTIC(c, n)
if § < g_score[n] then
came__fromn| < ¢; g_score[n] <— g; f__score[n] <= § + HEURISTIC(n, g)
add n to open
end if
end for
end while
return None
Function BUILD PATH_MESSAGE(cells):
Create Path with frame_id; for each (mz, my) map to (z,y), estimate yaw,
set quaternion; append
Update latest_path_poses; return Path
Procedure PUBLISH__PATH__AS_ POSE__ARRAY():
Build PoseArray (stamp now, frame_id) from latest_path_poses and pub-
lish on /astar_path

40

First Implementation

5.5 Path Follower - DWB

The PathFollower node plays the role of a bridge between the geometric path pro-
duced by A* and the NAV2 local controller. At input it subscribes to /astar_path
(PoseArray) and, for each update, reconstructs a nav_msgs/Path: it copies the
header and encapsulates each Pose of the PoseArray into a PoseStamped, pre-
serving the consistency of frames and timestamps. The path thus obtained is
sent to the action server /follow_path by means of a ActionClient on the ac-
tion nav2_msgs/action/FollowPath. In the goal message sets controller_id =
‘FollowPath’ and goal checker_id = ‘goal_checker’, participates in accept-
ing the target and monitors the outcome: in case of STATUS_ABORTED it publishes
/controller failed = True, otherwise False. The node also exposes a publisher
on /cmd_vel (used only by public_stop() to send a null Twist) and logs main
states (server wait, path send, outcome).

From a control point of view, the node does not calculate speed commands
directly: it delegates this responsibility to the DWB (Dynamic Window Based) con-
troller, used as a plugin of NAV2’s Controller Server and selected via controller _
id. In short, DWB implements a variant of the Dynamic Window Approach: at
each cycle it samples pairs (v, w) within the dynamic window defined by the current
speed and acceleration/braking constraints of the robot; for each sample it simu-
lates forward (short horizon) the trajectory induced by the differential kinematic
model; then evaluates and punctuates each trajectory by means of a set of critics
(e.g. obstacle distance/footprint on the costmap, path alignment, goal proximity,
regularity), typically combined in a function of the type

J(T) = Zwl Ci(T),

where C; are the scores/penalties of the individual critics and w; are the config-
urable weights in the YAML file [29]. The best-scored trajectory determines the
geometry_msgs/Twist to be sent to the /cmd_vel. The Goal Checker defines the
local termination condition, typically via position/orientation tolerances; upon its
satisfaction, the FollowPath action concludes successfully.

In the overall architecture, PathFollower is a thin orchestrator: it takes the
path A* (published to /astar_path), adapts it to the format expected from the
Controller Server, and entrusts DWB with generating speed commands, publishing
the outcome to /controller failed. A repeating True on this topic is used by
the NavigationManager to trigger the fallback when the controller fails to follow
the path due to obstacles, dynamic constraints, or local inconsistencies. Under
nominal conditions, the A* — PathFollower — DWB cycle guarantees a responsive
path tracking, taking advantage of the local costmap (inflation included) and critics
to maximize the clearance and keep the gear stable towards the goal.

41

First Implementation

5.6 DBug

The BugNode node implements a reactive obstacle avoidance behavior used as a
fallback when A* does not locate a viable path or when the controller (DWB) fails
to follow it. Unlike costmap-based modules, the Bug is not dependent on the local
map: it operates directly on the 2D-LiDAR returns (/scan) and odometry (/odom),
generating kinematic commands on /cmd_vel. Consequently, it subscribes directly
to the goal provided by RViz (/goal_pose) rather than to the projected goal
(/projected_goal). Turning the fallback on and off is done via the /fallback_
to_bug (Bool messages) topic, while re-entry to the scheduled pipeline is notified
to the manager by publishing /bug0/abort = True. All behavior is defined in the
odom frame, and parameters are configurable from YAML files.

5.6.1 State Machine

Operation can be read as a finite state machine that alternates goal tracking
and wall-following. Under normal conditions, the state "go_to goal” orients
the robot directly towards the received target at /goal_pose. The desired orien-
tation is derived from the angle joining the current position to the goal position;
the angular command applies a proportional gain (kp_goal) on the orientation
error, saturated within max_angular_speed, while the linear velocity is set at a
prudent value (linear_speed_goal). However, if LIDAR detects an obstacle in
the direction of travel, an event that the code verifies with is_obstacle ahead(),
comparing the frontal measurement with obstacle_front_ threshold, the node
leaves direct tracking and moves on to the side-choosing stage.

The transition "decide side" is intended to establish which flank to follow the
contour of the obstacle. To do so, the node compares the distances measured by
the LIDAR in two diagonal directions per side (e.g. £30° and £+45°); when the
difference is modest (less than follow_side_threshold), the left side is conven-
tionally preferred to avoid oscillation. Otherwise, the side is chosen as the one with
the smaller diagonal distance (i.e., the closer obstacle). The decision is blocked
for the next stretch (internal flag), so that frequent switching is avoided, and the
system enters the state wall-following.

In "follow wall" the robot maintains an almost constant distance from the
obstacle. The code measures one lateral distance from the selected side and
constructs an error against the required value desired wall_distance; the con-
trol action is a proportional angular correction kp_wall X error, with a rein-
forcement factor (wall_error_boost) when the error exceeds a threshold (wall_
error_threshold). The linear component depends on the frontal risk level: in

42

First Implementation

the presence of very close obstacles (below obstacle_front_threshold from the
front, or below obstacle_diag threshold on the diagonals), the node imposes
linear_speed_stop and performs an emergency rotation (emergency_angular_speedj
that moves the robot away from the wall. In a non-critical approach phase (front

< slowdown_front_threshold), it reduces the speed to linear_speed_slow while
keeping the angular correction saturated; under nominal conditions, it proceeds at
linear_speed_wall.

5.6.2 Exit Condition

Exiting the "follow wall" state and returning to "go__to_goal" is allowed when at
least one of two sufficient conditions occurs.

The first condition is the visibility of the goal. The goal _visible() function
calculates the target angle in the robot frame, checks that it falls within the LIDAR’s
field of view, and compares the robot—goal distance with the LiDAR measure in
the same direction, applying the goal_visibility_margin. If no LiDAR returns
emerge prior to the goal, the direction is considered free and the node can abandon
wall-following.

The second condition is reentry onto the M-line. The function on m_line()
evaluates the distance of the robot from the straight line joining mline_start to
the current target and compares it with the threshold mline tolerance. If this
distance is below the threshold, and in the absence of frontal obstacles, direct
pursuit of the target should be resumed.

These two exit rules, considered together, configure a hybrid policy that integrates
the principles of BugO0 (restart as soon as the direction towards the goal is free) and
Bug?2 (abandonment of the contour upon re-entry onto the M-line), as discussed
in section 3.2.

Upon fulfillment of any of the above-described conditions, the node publishes
/bug0/abort = True, informing the NavigationManager that the fallback can be
disabled and the scheduled pipeline (A* — DWB) can be restored. In addition,
if the manager explicitly arranges to disable the fallback (/fallback_to_bug =
False), the node performs a secure stop procedure, publishing a null Twist on
/cmd_vel and handing control to the main modules.

Algorithm 2: BugNode

1 Subscribers:

43

First Implementation

10
11
12
13
14
15
16
17
18
19
20

/goal_pose — GOAL_ CALLBACK (PoseStamped)
/odom — ODOM__CALLBACK (Odometry)
/scan — LASER_CALLBACK (LaserScan)
/fallback_to_bug — FALLBACK_ _CALLBACK (Bool)
Publishers:
/cmd_vel + Twist
/bug0/abort < Bool
Parameters (excerpt):
Wall following: desired_wall_distance, kp_wall, wall_error_threshold,
wall _error_boost
Goal tracking: kp_goal, goal_tolerance, goal_visibility_margin
Speeds: linear_speed_goal, linear_speed_wall, linear_speed_slow,
linear_speed_stop, max_angular_speed, emergency_angular_speed
LiDAR: lidar_front_angle, lidar_diag_angles, lidar_total_fov,
lidar_angle_range
Bug logic: mline_tolerance, mline_start
Control: control_frequency
Initialization:
Create pubs/subs; set timer with period 1/control_frequency
State: goal_pose<—nil, position<—nil, yaw+ 0
laser_ranges< [], bug_active<False, goal_reached<« False
FSM: state<—go_to_goal; wall_follow_side<nil;
wall follow_side_locked<False
Callback GOAL_ CALLBACK(msg: PoseStamped):
goal_pose < msg.pose; goal_reached < False; state < go_to_goal
Callback ODOM__CALLBACK(msg: Odometry):
position < msg.pose.pose.position; yaw < yaw from quaternion
Callback LASER__CALLBACK(msg: LaserScan):
laser_ranges < msg.ranges
Callback FALLBACK__CALLBACK(msg: Bool):
bug_active < msg.data
if not bug_active then
PUBLISH__STOP()
end if
Timer thread LoOOP():
if not bug_active then
return
end if
if goal_pose=nil or position=nil or |laser_ranges|= 0 then
return
end if
d < DISTANCE(position,goal_pose.position)
if d < goal_tolerance then
goal_reached < True; PUBLISH__STOP(); return

44

First Implementation

22
23
24
25
26
27
28
29

30

31

32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47

48

end if
if state = go_to_goal then
if 1S__OBSTACLE__AHEAD() then
hit_point < position; state <- decide_side
else
twist <~ MOVE__TO__GOAL()
end if
else if state = decide_side then
I GET_RANGE(lidar_diag_angles|0]) + GET RANGE(lidar_diag_angles[l])|
GET_RANGE(—lidar_diag_angles[O]% + GET__RANGE(—lidar_diag_angles|l])
2 |

R+

if |L — R| < follow_side_threshold then
wall_follow_side < left
else
wall_follow_side <— (R < L) ? right : left
end if
wall _follow_side_locked < True; state < follow_wall
else if state = follow_wall then
if GoAL_ VISIBLE() or (ON_M_LINE() and not IS__OBSTACLE__AHEAD())
then

state ¢ go_to_goal; wall_follow_side_locked < False
publish Bool(True) on /bugl/abort
else
twist <~ FOLLOW__WALL()
end if
end if
publish twist on /cmd_vel
Function MOVE__TO__GOAL():
ang < atan2(y, —y, 4 — x); e <~ NORMALIZE ANGLE(ang — yaw)
twist.linear.x < linear_speed_goal; twist.angular.z <+
SATURATE(kp_goal - e, —max_angular_speed, max_angular_speed)
return twist
Function FOLLOW__ WALL():
front < GET_RANGE(lidar_front_angle);
fl < GET_RANGE(lidar_diag_angles[0]); fr <
GET__RANGE(—1lidar_diag_angles[0])
if side=right: side < GET_RANGE(—lidar_diag_angles[l]); err <«
desired wall distance — side
else (side=1left): side < GET__RANGE(lidar_diag_angles[l]); err <«
side — desired_wall distance
u < kp_wall - err; if |err| > wall_error_threshold then u <«
u-wall_error_boost
if front < obstacle_front_threshold or fl < obstacle_diag_threshold

45

First Implementation

or fr < obstacle_diag_threshold:
twist.linear.x <
linear_speed_stop; twist.angular.z < =+ emergency_angular_speed (turn
away)
else if front < slowdown_front_threshold:
twist.linear.c <+
linear_speed_slow; twist.angular.z < SATURATE(U, —max_ang., max_ang.)
else: twist.linear.x < linear_speed_wall; twist.angular.z <
SATURATE(u, —max_ang., max_ang.)
return twist
49 Function IS__ OBSTACLE__AHEAD():
return GET__RANGE(lidar_front_angle) < obstacle_front_threshold
50 Function GOAL_ VISIBLE():
¢ < NORMALIZE ANGLE(atan2(y, — vy, x4 —) — yaw); deg < deg(¢);
h < lidar_total_fov/2
if deg < —h or deg > h then return False
dg < DISTANCE(position,goal_pose.position); di <— GET_RANGE(deg)
return dy, > d, — goal_visibility_margin
51 Function GET__RANGE(angle_deg):
if |angle_deg| > lidar_angle_range or |laser_ranges| = 0 then return oo
angle_deg + lidar_angle_range ‘ NJ)
lidar_total_fov

N < |laser_ranges|; idz < Clip({

return laser_ranges[idz]
52 Function ON__M__LINE():
if hit_point=nil or goal_pose=nil then return False
distance from position to the line mline_start—goal_pose <
mline_tolerance return True/False
53 Function DISTANCE(p1, p2): return /(p1.x — p2.2)2 + (p1.y — p2.y)
54 Function NORMALIZE _ANGLE(f): wrap 6 € (—7,7]; return 6
55 Function SATURATE(v, a,b): return max(min(v,b),a)
56 Procedure PUBLISH__STOP(): publish Twist() on /cmd_vel
57 Main:
init rclpy; create node BugNode; spin; on interrupt: stop, destroy, shutdown

2

5.7 Goal Checker

The GoalChecker is an auxiliary node that provides the system with a binary,
reliable and low latency signal on whether the local target has been reached. It
operates in the odom frame and subscribes to the current robot pose from /odom
and the projected goal from /projected_goal. It posts to /goal_reached a
std_msgs/Bool message that is True when the robot is within a metric threshold
of the goal, False otherwise.

The criterion is purely geometric: at the configurable sampling rate (check_frequency

46

First Implementation

Hz), the node computes the Euclidean distance

d = \/(Ax)? + (Ay)?

between the current position (Odometry - pose.pose.position) and the target
(PoseStamped - pose.position). If d < goal_tolerance, the goal is declared
reached; otherwise it is not. To avoid chattering and redundant logs, the node
maintains an internal flag (already_reached) that allows emitting the transition
to True only once upon entering the tolerance region, and restoring False only if
the robot subsequently moves back outside the threshold (with an explicit “reset”
message in the log).

5.8 Manager

The NavigationManager supervises the local pipeline: planning, tracking, reactive
fallback, and termination. It operates in the odom frame, is event—driven, and on
each new target (/goal_pose) it resets its internal state (controller—failure counter,
fallback flag, completion state) and restores the A* — DWB chain, so every goal
starts from a clean condition.

The decision logic relies on three signals:

1. A* planning outcome at /astar_failed:;
2. Controller outcome at /controller_failed;
3. Bug abort notification at /bug0/abort.

It enables the Bug (/fallback_to_bug = True) when planning fails (True on
/astar_failed) or when the controller reports failures in sequence (threshold =
3 on an internal counter), if the fallback is not already active. When the controller
later reports success (False on /controller_failed), it resets the counter and, if
active, disables the Bug (/fallback_to_bug = False). A Bugabort (/bug0/abort
= True) likewise triggers a return to A* — DWB and resets the controller-failure
counter.

The Goal Checker’s /goal reached has priority: at the first transition to True
the manager deactivates nonessential behaviors (including the fallback), resets
counters, and marks the goal as completed; subsequent failure notifications are
ignored to prevent unwanted re-entries. This policy of hysteresis and idempotence
yields clear state semantics: new goal = reset and main pipeline; repeated failures
= fallback; Bug abort or controller success = return to the pipeline; goal reached
= orderly shutdown.

47

First Implementation

Figure 5.2: rqt_graph mobile robot

Chapter 6

PX4 Autopilot Integration

This chapter presents the integration of the PX4 Autopilot into the navigation
pipeline, with the aim of validating obstacle avoidance on an aerial platform in a
rigorous and reproducible way. In this scenario, it was deliberately chosen to focus
the optimization on a single collision avoidance algorithm, A*, postponing the
integration of the Bug to future work. That choice allowed a state machine to be
designed that enables 0ffboard mode exclusively when needed, limiting intrusive
interventions and preserving mission execution whenever conditions allow it.

Operational behavior is divided into two modes (Figure 6.1), selectable via the
YAML collision_prevention_in mission parameter:

« COLLISION PREVENTION IN MISSION (True): during the execution
of the mission, upon detection of an obstacle the UAV enters the HOLD, without
deviating from the planned trajectory.

« COLLISION AVOIDANCE (False): upon detection of an obstacle the
system transits from Mission to Offboard, the drone is controlled via speed
setpoints along a path generated by A* within the local costmap and, upon
restoration of safe conditions, automatically re-enters Mission to continue the
mission.

Compared to the terrestrial case, the substantial difference is that in the PX4
context an external local controller (like FollowPath) is not necessary to generate
commands: the 0ffboard mode allows to directly send speed/position setpoints to
the flight controller. As a result, the previously used DWB was removed, also in
light of its performance already considered suboptimal in the terrestrial context
(section 7.1).

The local costmap remains the one of Nav2 (25x25 m), but the parameters have
been adapted to the drone scenario, so as to appropriately calibrate the cost profile
and expected clearance in flight. In this configuration, the sensor used to create the

49

PX4 Autopilot Integration

QGroundControl

collision_prevention_in_mission False———————» COLLISION
B - AVOIDANCE
True
I |
COLLISION s >
PREVENTION MISSION =
IN MISSION

A

F MISSION Yes

Obstacle
detected

OFFBOARD

Figure 6.1: Drone modes flowchart

costmap is always a 2D LiDAR but with a field of view of 270°, chosen to ensure
angular suitable coverage to the mission profile.

The nodes actually used are described below (Figure 6.2), highlighting the
differences from the previous architecture and illustrating in detail the role of
the state machine that governs entry and exit from the Offboard, as well as the
transition between the two operating modes.

As before, the main pseudocodes are reported in the text while the others in
Appendix B.

50

PX4 Autopilot Integration

QGroundControl

v

Command

GPSToPose

Y

Goal
Projector

Costmap > A*

Figure 6.2: Simplified flowchart of drone nodes

6.1 GPSToPose

Compared to the pipeline employed on TurtleBot, this work introduces a new
node that acts as a direct link between QGroundControl and PX4: mission way-
points are defined in QGroundControl and exposed by the autopilot on PX4
topics, while RViz remains solely a visualization tool. The node GPSToPose
subscribes to /fmu/out/home_position (px4_msgs/HomePosition message) to ac-
quire the “home” position and to /fmu/out/position_setpoint_triplet (px4_
msgs/PositionSetpointTriplet message) to receive the current setpoint. Until
the home is available, incoming setpoints are not processed; moreover, the node
processes only POSITION-type setpoints, discarding the others. Subscriptions use
a sensor-type QoS profile (BEST_EFFORT, TRANSIENT LOCAL, KEEP_LAST(10)) on
both topics, consistent with high-frequency flows and the need to receive the latest
message already published.

The conversion from the geodetic domain (latitude, longitude, altitude) to the
local metric domain is accomplished with pyproj. Starting from home longitude,
the code recognizes the UTM zone (that is, the longitudinal band of 6° in which the
vehicle is located) by calculating it as 32600 + int((lonyome + 180)//6) + 1, and
constructs the related planar reference system with Proj(..., always_xy = True).

51

PX4 Autopilot Integration

In doing so, it automatically locates the “portion of the world” in an east-west
direction and adopts the EPSG of the 326xx family (northern hemisphere). Note
that the current code assumes the northern hemisphere; a possible extension for the
southern hemisphere would require the selection of the 327xx family as a function
of the latitude of the home. Both the home and the waypoint are projected in
meters (z,y); local increments result

Ax = 1 — 0, Ay = y1 — Yo, Az = alty, — althome.

These quantities are published in the odom frame on two distinct topics, with
consistent headers (timestamp and frame_id):

o /goal _pose (ENU) — geometry_msgs/PoseStamped: the node assigns (x,y, 2) =
(Az, Ay, Az) and sets a neutral orientation (w = 1.0);

e /goal_ned (NED) — geometry_msgs/PoseStamped: the node applies planar
and public permutation only (z,y, 2) = (Ay, Az, Az). An explicit orientation
for this message is not set in the code.

This choice makes the same spatial target immediately usable for components
both operating under the ENU convention and waiting for a NED representation,
without introducing further transformations along the planning and control chain.

6.2 Goal Projector

Compared to the original version of the GoalProjector, the new implementation
introduces an optimized behavior, while maintaining the same functional objective:
to ensure that the planner always works with an achievable target within the
local costmap window. Both nodes receive the global goal at /goal _pose and the
costmap at /local_costmap/costmap, publishing at /projected_goal a projected
target consistent with the local map limits; both respect the odom frame and
construct the message as PoseStamped with planar position and neutral orientation.
However, the differences emerge clearly in the choices of pose acquisition, in the
sampling policy, in the cell acceptance criteria and in the management of critic
cases.

First of all, the new node no longer subscribes to /odom, because in drone the
integration with PX4 exposes a set of topics different from the ROS 2 standards
and odometry is not available on the classic topic. That’s why the current pose is
derived via TF2 by making the lookup of the base_link — odom transformation
with timeout (2 s). This choice makes the node agnostic with respect to the state
estimate source and still aligns all modules on the odom frame. For completeness,
the transform itself is broadcast by a lightweight bridge that subscribes to /fmu/

52

PX4 Autopilot Integration

out/vehicle_odometry (PX4), converts position/orientation from NED/FRD to
ENU/FLU, stamps the transform with ROS time, and publishes odom—base_link
on TF2. If the TF lookup fails, the current cycle is simply skipped, avoiding stale
projections.

Even subscribing to the costmap adopts a more suitable QoS profile: RELIABLE,
TRANSIENT LOCAL, KEEP LAST(1), so it always receives the last “latching” useful
and does not miss critical updates; the previous version was limited to a default
numeric queue.

The projection procedure retains the basic idea (walking the straight line between
pose and goal and, in case of block, attempting moderate angular deviations), but
the new version refines the details. Sampling along the main direction is denser: the
pitch is equal to a quarter of the map resolution (res - 0.25 factor) and a minimum
of 30 samples is imposed, against the half-cell pitch and the absence of a stringent
minimum in the previous version. Lateral deviations are controlled by parameter
(side_angles_deg); this facilitates the adaptation of the node to costmaps with
different inflation or to more “cluttered” spaces. A further difference concerns the
cell acceptance criterion: now a cell is considered practicable if val <5 or val = —1
(unknown), whereas previously only 0 and -1 were accepted. Enlargement to small
positive values (typical of light inflation) reduces false projection negatives near
obstacles, while preserving a safety margin.

In terms of managing degenerate cases, the new version introduces an explicit
projection timeout mechanism. If, despite sampling along the straight line and along
the lateral directions, no valid point is found, the node starts an internal timer
(no_valid_since) and, having exceeded the parametric threshold (projection_
timeout_sec), publishes a Bool(True) flag to /projection_timeout, signaling
downstream that the waypoint is temporarily unreachable. From that moment
the search is suspended (timeout_sent=True) until a new goal or /goal_reached
event, which resets the status and restores normal behavior, is received. The
previous version did not provide this “local” failure signal nor did it implement a
controlled suspension: in case of persistent impossibility of projection, it continued
to attempt without an explicit diagnosis channel towards the controller.

6.3 A*

The AStarPlanner node performs local grid scheduling within the local costmap
window (odom frame). The operational architecture follows the previous ver-
sion: the node subscribes to /local_costmap/costmap, receives the local goal at
/projected_goal, listens to /goal_reached, schedules with A* on 8-connected
graph, and publishes the result both to the controller (/astar_path as PoseArray)
and to RViz (/astar_path_visual as Path). As anticipated in the description

53

PX4 Autopilot Integration

of section 6.2, the current pose is obtained via TF2 (timeout 0.5 s); the costmap
frame_id is propagated in the output messages to ensure reference consistency.

The main innovation, compared to the “terrestrial” version, is twofold: cost
model and post—processing of the route. Instead of a binary (free/unknown)
walkability, here the walk cost incorporates the “softness” of the occupancy: cells
with a value >100 are excluded (obstacle), while for intermediate values a nonlinear
penalty is added to the weight of the arc

penalty(cell) = exp(%gt) —1,

added to the Fuclidean distance between adjacent cells. In this way the planner
favors wide corridors and avoids trajectories close to obstacles.

The discrete path produced by A* is then refined in two steps. At first, a simpli-
fication by distance (parametric threshold path_min_dist) eliminates redundant
points. Later, a planar smoothing using cubic B-spline (splprep/splev). Given
the N poses {(z;,4;)}Y,, we construct a parametric curve S(u) = (a:(u)7 y(u)),
with u € [0,1], in the standard form:

v(u) =3 Nis(w) Cojr y(u) =3 Njs(u) Cyy,

where N;3(u) are cubic B-spline basis functions and C; = (C,;, C, ;) are the
estimated control points.

The smoothing parameter spline_smoothing = s governs the interpolation/ap-
proximation trade-off: for s = 0 the curve passes through all samples, for s > 0 it
approximates their cloud with controlled error. The smooth curve is then sampled
uniformly in u with spline_points cardinality. In this code these parameters are
set to 2 and 100 respectively. The orientation along the path is obtained from the
tangent (in the code: a forward difference between adjacent samples),

(A atan?(y(uiﬂ) —y(uwi), x(uiy1) — 37(%)),

and converted into a quaternion as

(2, w) = (sin(¥:/2), cos(v:/2)).

The output to the controller is adapted to the aeronautical context: in addition
to the paths for RViz (raw and smooth, over /astar_path_visual and /astar_
path_smooth), the node publishes a PoseArray over /astar_path in a relative
and NED-compatible form. The positions are expressed with respect to the first
point (Az, Ay) and converted with planar permutation (xxgp,ynvep) = (Ay, Az);
the angle is consistently recalculated (Y npp = 7/2 — Ypyy). A minimal filter (0.3
m) avoids excessively dense samples, making tracking more stable.

o4

PX4 Autopilot Integration

The scheduling cycle is punctuated by a parametric frequency timer (publish_
frequency = 20Hz). With each activation the node checks availability of costmaps,
poses and goals, invokes A*, goes up the came from predecessors to reconstruct
the path and converts the cells into world coordinates via map_to_world. The
/astar_failed flag explicitly signals the absence of solutions; the goal callback
implements a debounce: if a projection arrives that is practically identical to the
one just reached (within 0.1 m), it is ignored to avoid oscillations.

Algorithm 3: AStarPlanner Node

1 Subscribers:
/local_costmap/costmap — COSTMAP__CALLBACK (OccupancyGrid)
/projected_goal — PROJECTED__GOAL_ CALLBACK (PoseStamped)
/goal_reached — GOAL__REACHED_ CALLBACK (Bool)
2 Publishers:
/astar_path < PoseArray
/astar_path_visual < Path
/astar_path_smooth < Path
/astar_failed + Bool
3 Parameters:
topic_costmap, topic_projected_goal, topic_goal_reached
topic_astar_path, topic_astar_visual, topic_astar_smooth,
topic_astar_failed
publish_frequency (Hz), path_min_dist (m), spline_smoothing,
spline_points
4 Initialization:
Create pubs/subs (costmap QoS: RELIABLE, TRANSIENT _LOCAL,
KEEP_LAST(1))
State: costmap_ready<False; current_pose<—None; global_goal<None
latest_path_poses« [|; goal_reached« False
Start timer with period 1/publish_frequency — TIMER__CALLBACK
Init TF buffer + listener
5 Callback COSTMAP_ CALLBACK(OccupancyGrid msg):
Store map_data,width,height,resolution,origin,frame_id;
costmap_ready<True
6 Function GET__CURRENT__POSE(target="odom",
source="base_link")—PoseStamped|None:
try TF lookup (timeout 0.5s) = build PoseStamped; else return None
7 Callback PROJECTED__GOAL_ CALLBACK(PoseStamped msg):
8 if goal_reached and global_goal#None and
__POSES__EQUAL(msg.pose,global_goal.pose, 0.1) then
9 return > ignore identical projection after goal reached
10 end if

59

PX4 Autopilot Integration

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37

global_goal<—msg; goal_reached<False

Callback GOAL_REACHED__CALLBACK(Bool msg):

if msg.data then
goal_reached<«True; global_goal<None

end if

Timer TIMER__CALLBACK():

if goal_reached or not costmap_ready then
return

end if

current_pose<—GET__ CURRENT__POSE()

if current_pose=None or global_goal=None then
return

end if

path__raw < COMPUTE__PATH(current_pose, global_goal)

if path_raw is None or |path_raw.poses| = 0 then
publish Bool(True) on /astar_failed;
return
else
publish Bool(False) on /astar_failed
raw < [p.pose Vp € path__raw.poses|
filt < SIMPLIFY PATH(raw,path_min_dist)

latest_path_poses< SMOOTH__PATH__WITH_ BSPLINE(filt, spline_smoothing, spline_poi:
PUBLISH__PATH__AS_ POSE__ARRAY() on /astar_path
Build RViz Paths and publish on /astar_path_visual, /astar_path_smooth

end if

Function _ POSES__EQUAL(p1, p2, tol): return \/(p1.7 — p2.2)% + (p2.y — p1.y)2 <

tol
World/Map:

WORLD__TO__MAP(z,y) : mx = |(z — origin_x)/res|, my = |(y —

origin_y)/res|
MAP__TO_ WORLD(mz,my) : = = origin_x + (mx + 0.5)res, y = origin_y +

38

39
40

41
42
43
44
45

(my + 0.5)res
Function GET__cosT(mz, my):

if in bounds return map_data[my-width+mx] else return 100

Heuristic H(a,b) = \/(bx —az)? + (by — ay)?

Function COMPUTE PATH(start:PoseStamped, goal:PoseStamped)—Path|None:

if start=None or goal=None return None

S <= WORLD__TO__MAP(start); g <— WORLD__TO_ MAP(goal)
open < {s}; came_ from < 0; g s[s] < 0; f_s[s] « H(s,g)

while open # () do
¢+ argmin__o € openf__s|o]
if ¢ = g then

return BUILD PATH MESSAGE(RECONSTRUCT(came_ from,s,g))

end if

56

PX4 Autopilot Integration

46
47
48
49
50
51
52
53
54
55

57
58
59

60

61

62

63

remove c¢ from open; N < 8-neighbors of ¢
for each n € N do
cost < GET__COST(n);
if cost > 100 then
continue
end if
pen « et/ _ 1. G g s[c] + H(c,n) + pen
if g < g s(n) (default co) then
came__fromln] <—¢; g_s[n] < g; f_s[n] < g+ H(n,g); add n to open
end if
end for
end while

return None
Function BUILD__PATH__MESSAGE(cells):

Create Path (frame_id); for (mxz, my): (x,y) < MAP__ TO_ WORLD; z < 0

yaw from forward difference; set quaternion; append PoseStamped; update
latest_path_poses; return Path
Function ENU__TO__NED_ RELATIVE(dz,dy) — (z_ned,y_ned) with x_ned <«
dy, y_ned < dz
Procedure PUBLISH__PATH__AS__ POSE__ ARRAY():

Build PoseArray (stamp now, frame_id); for each pose in
latest_path_poses:

compute (dz,dy) wrt first; ENU—-NED; convert yaw: yaw_ned = w/2 —
yaw__enu; down-sample by 0.3 m; publish
Procedure SIMPLIFY__PATH(poses, min__dist):

keep-first; append pose only if distance from last > min_dist; ensure last
included
Procedure SMOOTH__PATH__WITH_ BSPLINE(poses, smoothing, num__points):

if |[poses| < 4 return poses; else compute B-spline (splprep, s =smoothing),
sample num__points

rebuild poses with yaw from forward diffs; on exception return original

6.4 Obstacle Detector

The ObstacleDetector node performs a behavioral gating function for security
management: it provides the decision signal which determines the entry into
OFFBOARD mode when COLLISION AVOIDANCE is active, or the entry into HOLD
mode when COLLISION PREVENTION IN MISSION is active. To avoid false
positives that trigger unnecessary transitions, the controlled portion of space is
only the one in front of the drone, aligned with the trajectory towards the
global goal; furthermore, if the waypoint falls within the costmap, the verification
corridor is truncated exactly to the waypoint, so that, in the absence of obstacles
along that stretch, the UAV can continue in MISSION mode.

57

PX4 Autopilot Integration

Operationally, the node implements light and responsive detection along the
drone — goal direction. It works on the local costmap (nav_msgs/OccupancyGrid)
and, at a parametric rate (check_interval), publishes a Boolean on /obstacle_
detected that indicates the presence of occupied cells within a rectangular cor-
ridor centered on the trajectory. For diagnostic purposes, it also issues a marker
at /obstacle_area marker that displays the area actually tested in RViz. On
the 1/O plane, it subscribes to /local costmap/costmap and /goal pose uses
TF2 to get the current pose in the costmap frame, and adopts QoS RELIABLE,
TRANSIENT LOCAL, KEEP LAST(1) to have the last state latched. The main pa-
rameters are a corridor half-width (half_width = 1.5), control interval (check_
interval = 0.2), and sampling step (step_size = 0.1).

The logic is geometric and operates entirely in the costmap frame. At each cycle
the node: (i) computes the vector from the drone to the goal,

(Axgoab Aygoal) y

its length

L= \/(Axgoal)2 + (Aygoal)27

and the unit direction
d — (dm7 dy) — <A$Lgoal7 Ay[g:oeﬂ);
(ii) constructs the perpendicular

P = (_dy7 d$)7

(iii) defines a forward-aligned rectangle with half-width and effective length Lyax,
initially set to L (drone—goal distance) and reduced only if, stepping by step_size
along d, the path exits the costmap bounds. Consequently, when the goal lies

inside the window,
Liax = L7

and the corridor ends at the target.
Inspection is cell-based: for each cell we retrieve the world coordinates of its
center
(W, wy),

form the displacement
r= (wa: — Tdrone, Wy — ydrone)a
and project its longitudinal and lateral components:

forward =r - d, lateral = r - p.

58

PX4 Autopilot Integration

A cell triggers detection if data[idx] > 0 (obstacle or inflation) and it falls within
the corridor,

0 < forward < Lyax, |lateral| < half width.

Free (0) or unknown (-1) cells do not trigger the flag, consistent with the use of
inflation as a conservative barrier. Upon first hitting the node publishes Bool (True)
to /obstacle_detected and stops scanning; in parallel, a red LINE_STRIP Marker
(lifetime 1 s) draws the vertices of the controlled rectangle, from the edge near the
drone to the front edge (at the goal or limit of the costmap).

6.5 Command

The Command node is the executive level of the collision avoidance pipeline: it inter-
faces with PX4 to decide the operating mode (MISSION, OFFBOARD, HOLD) and, when
necessary, generates speed commands that guide the drone along the local path. The
integration takes place via the PX4 topics: at the input law /fmu/out/vehicle_
status_v1l (navigation state), /fmu/out/vehicle_local_position (poses and
speed), and the avoidance chain signals (/astar_path, /goal_ned, /local_
costmap/costmap, /obstacle_detected, /astar_failed, /projection_timeout)]
at the public output /fmu/in/offboard_control mode, /fmu/in/trajectory_
setpoint (speed), and /fmu/in/vehicle_command (change modes). The control
loop spins at 20 Hz and enables only when nav_state==3 (MISSION), which poses
mission_allowed=True.

On the data plane, the node maintains currents (z,y, z) and (v, v,), stores a
local home on first reception and keeps the last received path at /astar_path
as an ordered sequence of waypoints (z;, y;, z;, ;). The components (z;,y;) come
from the PoseArray, 1; is obtained from the quaternion, while z; is aligned to
the Offboard dimension saved during handover (or, in the absence, to the current
dimension). From the local costmap the node extracts the weight w € [0 — 100] of
the central cell (drone position) to modulate the speed according to the proximity
to obstacles; the values “unknown” (< 0) are mapped to occupancy_unknown_as

(0 by default).

From path to velocity command

The PoseArray on /astar_path is already in the OFFBOARD compatible navigation
frame, so it doesn’t require transformations - each element is a waypoint (x;, y;, z;, ¥;)
arranged along the track. At each control cycle the node:

» selects the current target current_goal_index and advances to the next

59

PX4 Autopilot Integration

index when the planar distance

di = \J(x—2)?+(y—y)? < 02m
if the points are exhausted, it enters HOLD.
assumes the waypoint yaw v; as the direction of motion (local tangent of
the path); it does not compute a heading error, but directly uses 1; as the

reference.

scales the speed magnitude by reading the central weight w. With vy, =
2.0 m/s and max_cell_weight= 60.0, the scale

max cell weight —w
s = max((), min(l, = _We.8)>

max_cell weight

linearly reduces the speed down to a stop for w > 60.

projects the command from the body frame to the navigation frame: it builds
v®) = [Vax 5, 0] and rotates by 1;, yielding

Uz = (UmaxS) €OS Uy, Uy = (UmaxS) sin ¢, v, = 0.

finally, it publishes a TrajectorySetpoint with unconstrained x,y positions
(NaN), altitude fixed to offboard_altitude, yaw = t);, and velocity (v, vy, 0).

Thanks to the parameters inflation_radius = 2.0 and cost_scaling factor
1.0, the combination with max_cell weight = 60.0 results in the vehicle com-

ing to a stop approximately 0.7 m from the obstacle. If s=0, in addition to sending
zero speed the node forces HOLD for safety.

Transitions and security guards

In OFFBOARD, a /projection_timeout (inability to project a local goal for 0.5s) in-
duces immediate HOLD; a persistent /astar_failed beyond retry_duration=0.5s
causes HOLD; if /obstacle_detected returns False the avoidance is no longer neces-
sary and re-enters MISSION. The position of the closest waypoint is saved in /goal _
ned, the node verifies \/(x —24)% 4+ (y — y,)? < goal_reached_treshold(0.5) and,
upon satisfaction, release OFFBOARD by returning to MISSION so that PX4 marks
the waypoint as achieved and can advance to the next one.

60

PX4 Autopilot Integration

6.5.1 Finite State Machine

« VERTICAL

Stabilization phase which can correspond to take-off, but also to the phase
immediately following an entry into HOLD in which the drone stopped. The
node enters in it when mission_allowed = True and the horizontal speed
Ugy is less than vertical_speed_threshold (0.3 m/s). In particular, if the
HOLD had been caused by an obstacle and the latter disappears, the UAV, once
it has returned to VERTICAL (because it is stopped), is able to resume the mis-
sion: upon subsequent exceeding of the speed threshold, take-off/stabilization
is considered completed and it moves on to EVALUATE AFTER_TAKEQFF. No
avoidance commands are yet issued in VERTICAL.

« EVALUATE_AFTER__TAKEOFF
It waits for the first value of /obstacle_detected to assess the post-takeoff
scene. If there are no obstacles, MISSION is reaffirmed; if there are obstacles,
the choice depends on collision_prevention_in mission: if active, it goes

to HOLD (COLLISION PREVENTION IN MISSION), otherwise it prepares
OFFBOARD for local avoidance (COLLISION AVOIDANCE).

« MISSION
Nominal mode in which PX4 follows the mission. If such an obstacle is
detected, collision_prevention_in mission = True asks for HOLD at PX4;
otherwise, it passes to PREPARE _OFFBOARD to take control and circumvent the
obstacle.

« PREPARE__OFFBOARD
Secure handover to external control: continuous publishing of 0ffboardControlMode|
saving the current altitude to offboard_altitude, and sending, for 10 cycles,
zero-speed setpoints (priming required by PX4). Once priming is complete,
VEHICLE_CMD_DO_SET_MODE (param2 = 6.0) is sent to engage OFFBOARD.

« OFFBOARD

The node drives the drone along /astar_path by converting waypoints into tan-
gential speed commands and modulated by the costmap weight: the speed de-
creases as the weight increases until it stops at &~ 0.7 m from the obstacle. Criti-
cal events (/projection_timeout, /astar_failed beyond retry_duration)
induce HOLD; removing the obstacle (/obstacle_detected==False) results
in a return to MISSION. Since /goal_ned is active, if the planar distance
drops below goal _reach_threshold, the node releases OFFBOARD returning
to MISSION, so that PX4 marks the waypoint as reached and continues. If the
waypoints run out, it enter in HOLD.

61

PX4 Autopilot Integration

« HOLD
Safety stop: the node controls Hold mode at PX4 sending VEHICLE_CMD_DO_SET_MODE
(param2 = 4.0, param3 = 3.0). The drone maintains its position until favor-
able conditions return (valid route, obstacles removed, new goal), avoiding
oscillations between modes and preserving margin from obstacles.

Algorithm 4: Command Node

1 Subscribers:
/fmu/out/vehicle_status_vl — VEHICLE STATUS_ CB (VehicleStatus)
/fmu/out/vehicle_local_position — LOCAL_ POS_ CB (VehicleLocalPosi-
tion)
/astar_path — ASTAR PATH CB (PoseArray)
/obstacle_detected — OBSTACLE__CB (Bool)
/goal_reached — GOAL__REACHED__ CB (Bool)
/astar_failed — ASTAR_ FAILED CB (Bool)
/goal_ned — GOAL__NED__CB (PoseStamped)
/local_costmap/costmap — COSTMAP_CB (OccupancyGrid)
/projection_timeout — PROJECTION__TIMEOUT__CB (Bool)
2 Publishers:
/fmu/in/vehicle_command < VehicleCommand
/fmu/in/offboard_control_mode < OffboardControlMode
/fmu/in/trajectory_setpoint < TrajectorySetpoint
3 Parameters:
topics: topic_vehicle_command, topic_offboard_mode, topic_setpoint,
topic_vehicle_status
topic_local_position, topic_astar_path, topic_obstacle_detected,
topic_goal_reached
topic_astar_failed, topic_goal_ned, topic_costmap,
topic_projection_timeout
scalars: goal_reach_threshold (m), retry_duration (s), v_max
(m/s), max_cell_weight, collision_prevention_in_mission (bool),
vertical_speed_threshold (m/s)
4 State:
PX4: nav_state, mission_allowed<False
Pose: (z,y, z,vz,vy); local_pos_received<False; home set once
Mode FSM: statee {VERTICAL, EVALUATE_AFTER_TAKEOFF, MIS-
SION, PREPARE OFFBOARD, OFFBOARD, HOLD}
Offboard: mode_engaged<False; setpoint_counter+ 0;
offboard_altitude (saved once)
Obstacles: obstacle_detected<False; obstacle_evaluated<False
A*: goal_poses|(z,y, z, yaw)|; current_goal_index<+ 0; astar_failed,

62

PX4 Autopilot Integration

astar_fail time

Costmap: width/height/res/ori/data; costmap_ready<False;
occupancy_unknown_as<— 0; last_weight< 0

Other: goal_ned (tuple or None), projection_timeout<«False

Timer: dt = 0.05s — CONTROL__LOOP()
Callback cosTMAP_ CB(OccupancyGrid msg):

store w, h,res, origin_ x,origin_ y, data; costmap_ready<True
Function GET__CENTER__CELL__ WEIGHT():

if costmap not ready = None; else read center (cz,cy), map to idx;
unknown—occupancy_unknown_as
Callback VEHICLE_STATUS__ CB(VehicleStatus msg):

nav_state«msg.nav_state; if msg.nav_state= 3 (MISSION) and not
mission_allowed = set True
Callback LOCAL_POs_ CB(VehicleLocalPosition msg):

update (z,y, z,vx,vy); local_pos_received«+True; set home once
Callback GOAL NED CB(PoseStamped msg):

(r,y,2) <+ msg; yaw < 0; goal_ned+ (z,y,2); goal_poses<+

10

11
12
13
14
15
16
17
18
19

20

21
22
23
24
25
26
27
28
29

[(JJ, Y, z, yaw)}, idx=0

Callback PROJECTION TIMEOUT CB(Bool msg):

projection_timeout<msg.data

Callback ASTAR FAILED CB(Bool msg):

if state=0FFBOARD then

if msg.data and not astar_failed then

set astar_failed<True; astar_fail_time<—now

else
reset flags
end if
end if

Callback ASTAR_ PATH__CB(PoseArray msg):

goal_poses<«[|; for each pose: extract (x,y), z «offboard_ altitude or cur-

rent z; yaw from quaternion; append

reset current_goal_index< 0, astar_failed<False,

astar_fail_time<None

Callback 0BSTACLE__CB(Bool msg): obstacle_detected<«msg.data;

obstacle_evaluated<True

Callback GOAL__REACHED__CB(Bool msg): goal_reached<«msg.data

Timer CONTROL__LOOP():

if not local_pos_received then
warn “Waiting for local position..’

end if

if not mission_allowed then
return

end if

Ugy — V022 + vy?

)

; return

63

PX4 Autopilot Integration

30
31
32
33

34
35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

if state# VERTICALandv,, < vertical_speed_threshold then
info “Enter VERTICAL”; state«< VERTICAL; return
end if
VERTICAL: if state=VERTICAL and v,, > vertical_speed_threshold =
state« EVALUATE_AFTER_TAKEOFF; return
EVALUATE_AFTER_TAKEOFF:
if not obstacle_evaluated then
info “Waiting /obstacle_ detected...”; return
end if
if obstacle_detected then
if collision_prevention_in_mission then
warn “CPIM = HOLD”; SET__HOLD__MODE(); state<—HOLD
else
info “Prepare OFFBOARD”; setpoint_counter<
0; offboard_wait_counter<+— 0; mode_engaged«False;
state<~PREPARE_OFFBOARD
end if
else
info “No obstacle = MISSION”; SET__MISSION__MODE(); state«MISSION
end if
return
MISSION:
if state=MISSION and obstacle_detected then
if collision_prevention_in_mission then
warn “CPIM = HOLD”; SET__HOLD__MODE(); state<—HOLD
else
info “Obstacle == PREPARE__OFFBOARD?”; reset counters;
mode_engaged+«False; state<~PREPARE OFFBOARD
end if
return
end if
PREPARE__OFFBOARD:
PUBLISH__OFFBOARD__MODE();
if not offboard_altitude_saved then save offboard_altitude< z; flag True
if setpoint_counter<10 then
SEND__VELOCITY(0,0,0); ++counter; return
end if
if not mode_engaged then
SET__OFFBOARD__MODE(); mode_engaged<«True; return
end if
state<~ OFFBOARD
OFFBOARD:
PUBLISH__OFFBOARD__MODE()
if projection_timeout then

64

PX4 Autopilot Integration

70

71
72
73
74
75

76
7
78
79
80
81

82
83
83
86

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

102
103
104
105
106
107

error “Waypoint unreachable = HOLD”; SET__HOLD__MODE();
state<—HOLD; reset flags; return
end if
if astar_failed then
t < (now — astar_fail_time) (s)
if t > retry_duration then
warn “A* keeps failing = HOLD”; SET__HOLD__MODE(); state<—HOLD;
return
else
info “Retry waiting...”; return
end if
end if
if not obstacle_detected then

info “Obstacle cleared = MISSION”; SET__MISSION__MODE();
state<MISSION; reset flags; return
end if
if goal_ned# None then computed= \/(x —x¢)2+ (y — yg)%

if d < goal_reach_threshold then
info “Goal NED reached”; SET__MISSION__MODE(); state«-MISSION; reset

alt flag; return

end if
end if
if goal_poses=(Qoridzr>|goal poses| then

warn “No path or completed”; state<—HOLD; return
end if
(92, 9y, —, yaw) + goal_poses[idz]; d + /(97 —2)? + (9y — y)*
if d < 0.2 then

+-+idx; return
end if
W < GET__CENTER__CELL_ WEIGHT() or last_weight; last_weight« w
scale < clip((max_cell_weight — w)/max_cell_weight, 0, 1)
vp ¢ v_max - scale; (vg,vy) < (vp cOsyaw, vpsinyaw)
SEND__ VELOCITY (v, Uy, 0, yaw);
if scale =0 then

warn “scale=0 = HOLD”; SET__HOLD__MODE(); state<—HOLD); reset alt flag;
return
end if
HOLD:
if state=HOLD then

SET__HOLD_ MODE(); info “Drone in HOLD”
end if
Publish helpers:

PUBLISH__OFFBOARD__MODE(): set OffboardControlMode flags (position,
velocity true); timestamp=NOwW

65

PX4 Autopilot Integration

SEND__VELOCITY (v, Uy, Uz, yaw): TrajectorySetpoint with velocity; position=
(NaN,NaN,alt)

SET__MISSION__MODE(): VehicleCommand DO_SET_MODE (Mission)

SET__OFFBOARD__ MODE(): VehicleCommand DO_SET MODE (Offboard)

SET__HOLD_ MODE(): VehicleCommand DO__SET MODE (Hold)

PUBLISH__VEHICLE__COMMAND(cmd, params): fill VehicleCommand; publish

66

PX4 Autopilot Integration

puewwod/

Yioows ed IeIse/

pajjessease/

06¥VR0E2eY6S AW IBuRNS| ULiojsuely

ped ieise/ Jauue|d™ieise/

and poness seply

1eo6™payafosd/
[ensiA yied Jeise/

3noawp"uopdafosd/

0e3,Ge/£q0LS (Wi IBuB)S| Uiojsuesy/

Jopefosd™(eob/

Ll
96puq 1/
@sod"eob/
Ppaydeas|eob/ @s0d "0y sd6/
pouTjeob/

eoy/

sajepdn-deunsod/deunsos (edo)/

deunsos ey

JBAIBSTI]|03U0D/

6puqTuedS IepIY

Joyajep aeIsqo/

67

rqt_ graph drone

Figure 6.3

Chapter 7

Simulations Results

7.1 Turtlebot

Simulations were initiated by means of a launch file that initializes in a coordinated
way the entire pipeline (Gazebo, RViz, Goal Projector, A*, Path Follower, Bug, Goal
Checker and Navigation Manager) ensuring time synchronization and reproducibility
of the experiments. In addition to the created nodes, Nav2’s Controller Server
(nav2_controller) and Lifecycle Manager (nav2_lifecycle_manager) are also
started, essential for the correct functioning of the plugins.

In this first set of tests, the methodological objective was to demonstrate the
neutrality of the navigation logic with respect to the sensor used. Although the
TurtleBot3 Burger’s Gazebo model natively integrates 2D LiDAR with 360° FOV,
the field of view was deliberately limited to 90° in tests. Such a configuration allows
the pipeline to be evaluated also under representative conditions of narrow FOV
sensors (for example, a camera), without changing the architecture of the nodes.

World 1

The first scenario consists of three single obstacles arranged in a plane such that at
least one free cell of the grid remains between each pair, Figure 7.1. This spacing
guarantees the connectivity of the search graph and, given the inflation parameters
adopted, maintains an effectively viable corridor in the local costmap (6x6 m).
The Figure 7.2 reports three significant moments of the simulation. Coordination
of the modules is observed in each frame. The red arrow identifies the goal projected
by the Goal Projector: it is progressively translated forward within the local window
as the robot advances, in order to offer A* an always reachable target. The green
line represents the path calculated by A* on the OccupancyGrid published by the
costmap; this map updates in real time as a function of sensory measurements
and the path takes advantage of the narrow passages left free between obstacles.

68

Simulations Results

Figure 7.1: Turtlebot World 1 in Gazebo

Finally, the little blue segment, not clearly visible in these images, represents the
trajectory actually followed by the DWB, which selects the speed commands within
the kinematic constraints of the robot, favoring, among the eligible alternatives,
those with greater clearance.

Although linear behavior is expected in this scenario — A* provides a valid
path and the local controller generates commands without resorting to fallbacks
— in some executions the DWB, integrated as a plug-in, accumulates more than
three consecutive failures and activates Bug recovery. As an external component,
the causes are not explored here; however, it is noted that, in the subsequent
implementation with the drone, this component has been removed. However, the
use of the Bug does not alter the outcome of the simulation: the robot still reaches
the objective while avoiding obstacles. In a variant of the same environment, in
which the obstacles are so close together that they leave no practicable corridor for
A* this fallback instead proves decisive in achieving the target.

World 2

The second scenario features a long wall that exceeds the sensor’s field of view,
Figure 7.3. As a result, the local costmap is “cut” by the obstacle: even with the
goal projected correctly inside the window, A* does not have a walkable corridor

69

Simulations Results

Figure 7.2: Turtlebot simulation in World 1 - Gazebo view on the left, RViz view
on the right

70

Simulations Results

and cannot find a valid path. In this condition, the Bug intervenes, which takes
control and, as soon as the frontal obstacle is detected, selects a side on which to
bypass it while maintaining a regulated distance, until the costmap highlights a
useful step again and A* returns to produce a valid path.

Figure 7.3: Turtlebot World 2 in Gazebo

The Figure 7.4 shows three moments of the simulation. In the first frame,
the impossibility of planning is observed: the wall interrupts local connectivity
and the Navigation Manager activates fallback. In the second frame, a green line
appears (path A*) which, however, is not usable: it is the residual display of a
path calculated before the robot perceived the side part of the wall; as soon as the
costmap is updated with the obstacle, that path is no longer valid and the system
continues with the Bug. In the third frame, after following the contour for a stretch,
the robot recovers a gap in the costmap: A* returns to planning a coherent path
(updated green line) and the DWB resumes the chase (blue segment), closing the
fallback cycle and re-establishing the nominal pipeline.

71

Simulations Results

Figure 7.4: Turtlebot simulation in World 2 - Gazebo view on the left, RViz view

on the right 72

Simulations Results

7.2 Drone

Also for the execution of simulations with the drone, a boot infrastructure based
on ROS 2 launch files was set up, responsible for the coordinated commissioning
of only the ROS components: the developed nodes, Gazebo and RViz. The
vehicle integrated with the PX4 Autopilot and QQGroundControl are instead started
separately inside the respective dedicated containers, so as to keep the separation
between the ROS 2 stack and the autopilot/ground station clear.

The aircraft used is the gz_x500_lidar_2d, a multirotor equipped with 2D
LiDAR with a field of view of 270°.

All tests were conducted assuming a mission speed of 5 m/s; consequently, the
set of parameters was calibrated to such dynamic regime. Operating at higher
speeds is likely to require parameter re-optimization to preserve safety margins and
behavioral quality (tracking stability, compliance with minimum obstacle clearances,
robustness to sensing delays).

In the figures reported from now on, the rectangle highlighted in red represents
the area of space monitored for obstacle detection: if an obstacle falls outside
this corridor, the UAV continues the mission without changing its conduct. The
black path is the discrete path generated by A*, while the red one is the trajectory
smoothed using B-spline, which constitutes the reference in collision avoidance mode.
However, it is crucial to observe that the drone does not faithfully follow the red
line point-by-point: the controller mainly employs local path orientation (direction
of travel) to calculate speed commands, without imposing a tight constraint of
exact passage on the samples. This choice explains why, in some snapshots, the
UAV can be in correspondence with cells with a value > 0 in the costmap: the
margin distance is however guaranteed by the cost model and the speed modulation
as a function of the weight of the central cell.

During the simulation, the user can assume manual control via joystick at
any time and, subsequently, return to MISSION mode without compromising the
internal state of the modules or the continuity of the collision avoidance algorithm:
the system manages the handover transparently, resuming the mission profile when
automatic control is restored.

World 1

The first scenario, shown in Figure 7.5, introduces an apparently simple case but
already suitable for highlighting a critical aspect. The environment contains two
1 x 1 x 10m parallelepiped pillars arranged on the forward direction of the UAV:
the first about 4m from the take-off point, the second about 40m. Criticality
results from the proximity of the first obstacle from the beginning of the mission:

73

Simulations Results

the drone is immediately in a condition where the frontal free corridor is reduced,
resulting in early activation of the detection chain and avoidance.

N

Figure 7.5: Drone World 1 in Gazebo

« COLLISION PREVENTION IN MISSION

In case collision_prevention_in_mission = True, the drone, after TAKEOFF|
enters in MISSION to enable the algorithm and immediately after passes into
HOLD.

Although the HOLD command is given instantly, the actual stop requires a
finite time, proportional to the instantaneous speed: at 5 m/s, for example,
the jerk-limited controller needs a few meters to dispose of the momentum.
In these conditions, peculiar behavior is observed: the UAV continues for a
distance “forward”, passes the hold position captured by the autopilot (loiter
setpoint), and then “reenters” returning slightly backwards until it stabilizes,
Figure 7.6.

This phenomenon is not deterministic and depends on a combination of factors:
(i) the speed at the time of the switch (higher speed — larger stopping distance);
(ii) the direction of motion relative to the hold point (if the switch occurs
while the drone is still “going”, overshoot is more likely); (iii) asynchronies
between ROS 2 cycles, PX4 and simulator, which determine the precise instant
at which the loiter point is “frozen”; (iv) the state of the controller (any

integrative residues or saturations take time to dissipate).

74

Simulations Results

Figure 7.6: Drone simulation in World 1 - Gazebo view on the left, RViz view on
the right - Collision Prevention in Mission

75

Simulations Results

In reference to Figure 7.7, speeds are analyzed in relation to changes in
vehicle status. The first image (up) shows the trend of the speed com-
ponents; the second (down) shows the PX4 states read from nav_state
(/fmu/out/vehicle_status_v1). The numbers shown correspond to:

— NAVIGATION STATE_POSCTL = 2

— NAVIGATION_STATE_AUTO_MISSION = 3

— NAVIGATION STATE_AUTO LOITER = 4

— NAVIGATION_STATE_OFFBOARD = 14

«/fmu/out/vehi
I «/fmu/out/ve ion/
15 [«/fmu/out/vehicle_local_position/vz

30 35 40 45 50 55 60 65

30 35 40 45 50 55 60 65

Figure 7.7: Velocity and State transition graphs of drone simulation in World 1 -
Collision Prevention in Mission

« COLLISION AVOIDANCE

On the other hand, when collision_prevention_in mission = False, the
drone does not enter HOLD after TAKEQOFF but activates collision avoidance
mode: it bypasses the obstacle by following the planned local path, Figure 7.8,
and modulating the speed as a function of the risk, as shown in Figure 7.9.
When free conditions are restored, the vehicle continues towards the target in
MISSION mode without further interruptions.

During the OFFBOARD phase the altitude is kept constant and equal to the
altitude at which the aircraft was flying immediately before entering this mode

76

Simulations Results

=

Figure 7.8: Drone simulation in World 1 - Gazebo view on the left, RViz view on
the right - Collision Avoidance

7

Simulations Results

(altitude stored at the time of handover). Since all the waypoints are set to
the same altitude, this behavior is clearly evidenced in Figure 7.9, where the
z-component of the velocity remains effectively zero—mnot only in OFFBOARD,
but also throughout MISSION—confirming the maintenance of a constant
flight altitude. This parameter, together with speed, distance travelled and
mission time, can be easily monitored from the interface of QGroundControl,
Figure 7.10. In the views, the red arrow indicates the instantaneous orientation
of the drone along the trajectory; the track behind it represents the path
actually taken.

50 60 70 80 90

14 B —

12

-/fmu/out/vehicle_status_v1/nav_state

10

50 ' "0 ‘ ' 70 ') ' ' 90

Figure 7.9: Velocity and State transition graphs of drone simulation in World 1 -
Collision Avoidance

78

Simulations Results

QGroundControl - a X

Q) mying WwOffboard A\ xg)0107
§ 25m

1

" o7

- 7 ,../:

Land

@
Return f’ i

Paust —

'C\O’D_J ¢ ol b 7
it 7] +46m 101 m/s 600:00:24
/ " §,.-395m >1.8m/s #38.8m

N

Figure 7.10: QGroundControl interface of drone simulation in World 1 - Collision
Avoidance

World 2

The second scenario consists of a single volumetric obstacle: a cube 20 x 20 x 20m
positioned approximately 20m from the drone’s take-off point, along the forward
direction, Figure 7.11.

« COLLISION PREVENTION IN MISSION

In this case the UAV, upon first detection, passes through HOLD and stops
in an orderly manner. Unlike the previous case (World 1), the phenomenon
of “rebound” is not observed: after engaging the HOLD the drone does not
continue beyond the activation point and then retreats, but reduces the speed
until it stops without appreciable overshoot, Figure 7.12. The status and
speed traces confirm a stable behavior without gear reversals, Figure 7.13.

« COLLISION AVOIDANCE

World 2 is a critical case for collision avoidance mode. The obstacle occupies
much of the costmap window, forcing a very abrupt change of direction on the
UAV, Figure 7.14. Under these conditions the drone tends to get too close to
the surface of the obstacle, remaining in a region of the map characterized by
high costs, consequently, the A* is unable to identify an admissible route. The

79

Simulations Results

Figure 7.11: Drone World 2 in Gazebo

Figure 7.12: Drone simulation in World 2 - RViz view - Collision Prevention in
Mission

stay in this zone exceeds the set time threshold (0.5 s), a fact that triggers
the safety logic of the controller and determines the entry into HOLD. In the

80

Simulations Results

/fmu/out/vehicle_status_v1/nav_state

35

25

35 40 45 50 55 60

Figure 7.13: Velocity and State transition graphs of drone simulation in World 2
- Collision Prevention in Mission

third image, a slight residual displacement is observed: it is the effect of the
delay between the HOLD request and the actual stop, during which the drone
continues to follow the orientation of the last available path. Finally, note
that the scheduling pipeline remains active: a path may still be visible as the
A* continues to look for solutions; however, operator intervention is required
to exit the HOLD.

To overcome the critical issues found in this case, a further simulation is
performed by varying some parameters. Firstly, the OFFBOARD maximum
speed is reduced from 2m/s to 1m/s: the drone adheres better to the path
and, thanks to the lower speed, handles the particularly angled initial section
more robustly, approaching less the obstacle and continuing without entering
HOLD. Having reached the corner of the obstacle, the UAV “sees” the side wall
extending to the bottom of the costmap, so the drone—goal direction is not
yet practicable.

At this point the issue shifts to the goal projection: with lateral angles of
+15° and £30° no valid position is found within the local window, resulting
in a return to HOLD. Widening the search angles to +45° solves the problem:
as shown in Figure 7.16, the goal projection advances in small increments
along the edge of the obstacle until its end; throughout the whole simulation

81

Simulations Results

the projection remains locally attainable and the A* progressively plans the
following sections, allowing the mission to continue without entering HOLD.

Figure 7.15 and Figure 7.17 show the speed and status variations related to the
two system configuration, while Figure 7.18 shows the trajectory followed by
the drone to avoid the obstacle, displayed in QGroundControl, in the second
scenario.

World 3

The third scenario, Figure 7.19, represents a highly cluttered environment: 100
2 x 2 x 20m pillars are arranged randomly starting from 10m away from the drone.
This setup produces a texture of narrow passages and winding corridors, testing
both goal projection and local planning on the costmap.

In COLLISION PREVENTION IN MISSION the behavior replicates that
observed in World 2 while the COLLISION AVOIDANCE mode is analyzed below.

Figure 7.20 presents representative instants, while Figure 7.21 reports the
QGroundControl interface with global multi-waypoint mission.

In the first image (Figure 7.20), the nominal operation in OFFBOARD is observed:
A* plans on the OccupancyGrid (black track), the B-spline produces a regularized
path (red track) and the drone follows its orientation while maintaining constant
altitude. In the second image the red rectangle defining the obstacle verification
area is shortened as the waypoint falls within the local costmap (blue arrow);
consequently the control corridor is limited up to the target. In the absence of
cells beyond the threshold inside the corridor, no alarms are generated and the
vehicle continues in MISSION without having to activate OFFBOARD. The third image
shows the system’s ability to exploit narrow gaps when they are more favorable: A*
selects the passage and the controller follows the smooth path orientation, which
explains the transit of the drone in areas with a positive cost while respecting safety
margins. In the last image, the waypoint, effectively positioned at an obstacle,
is unreachable: the projection timeout is triggered, the log is issued “Waypoint
unreachable” and the drone enters HOLD. In this state A* continues to search for
solutions, but exiting the HOLD requires user intervention.

Figure 7.21 confirms the described dynamics: the drone indicator stops at way-
point 4 and does not reach waypoint 5.

In reference to Figure 7.22, the pattern of velocities is observed in correspondence
with the changes of state during the mission. Since all waypoints are set at the

82

Simulations Results

83

Figure 7.14: Drone simulation in World 2 - RViz view - Collision Avoidance

Simulations Results

=/fmu/out/vehicle_local_po:

20 ’ s T 30 e s 7 s0

/fmufout/vehicle_status_v1/nav_state|

PR

20 25 30 35 40 45 50

Figure 7.15: Velocity and State transition graphs of drone simulation in World 2
- Collision Avoidance

same altitude, the vertical component is almost zero: v, does not show significant
variations, confirming the maintenance of altitude. The components in the plane
(vs, vy) instead highlight the modulations imposed both by the state transitions and
by the distance from the obstacles: in the phases of approaching the constraints
the controller progressively reduces the planar speed (until stopping, if necessary),
while in the free sections there is a recovery towards the nominal speed. The short
discontinuities coincide with the handovers between modes, followed by sections at
a more stable speed when the corridor is devoid of penalized cells.

If the waypoints are assigned to different altitudes, the flight profile is mode-dependent]|

In MISSION the UAV advances towards the target along an oblique trajectory, simul-
taneously combining planar displacement and altimetric variation. In OFFBOARD,
on the contrary, altitude is kept constant to prioritize bypassing obstacles in the
horizontal plane. At the end of the avoidance maneuver and upon re-entry into
MISSION, the system preliminarily performs a pure vertical transfer (null component
on the xy plane) until alignment with the next waypoint altitude; only then does
it resume planar motion towards the goal. This mode-dependent behavior yields
a characteristic velocity pattern across state transitions, which is observable in
simulation.

Figure 7.23 highlights the variation in speed as a function of state transitions

84

Simulations Results

Figure 7.16: Drone simulation in World 2 with new parameters - RViz view -
Collision Avoidance

Simulations Results

IS ~(fmu/out/vehicle local_position/vx

[| -/!’mu/cuSvehicle_\oca_posit\cr\/vy

A [| ffmufoutivehicie_local_positionvz
/ |

20 30 40 50 60 70 80 90

[+/fmu/out/vehicle_status_v1/nav_state|

2
20 30 40 50 60 70 80 90

Figure 7.17: Velocity and State transition graphs of drone simulation in World 2
with new parameters - Collision Avoidance

QGroundControl . (=) ¢

g WHold A M. [50% X

2

Fly 50 Continue the mission from the current
9

\Q . waypoint.

Slide or hold spacebar

)

(¥

Return

e

Actigh = ?
o/ PA 0:01:17
L726m 20.0m/s ¥83.3m

Figure 7.18: QGroundControl interface of drone simulation in World 2 with new
parameters

86

Simulations Results

Figure 7.19: Drone World 3 in Gazebo

for a mission in World 3 that, after takeoff, includes three waypoints at different
altitudes: 5m, 10m and 15m. A first, negligible entry into OFFBOARD is visible and
can be ascribed to sensor noise. In the first MISSION segment the UAV reaches the
first waypoint—at the same altitude as take off—then heads to the second while
climbing; accordingly, in the second part of the MISSION state all three velocity
components are present. After reaching the second waypoint, the vehicle proceeds
toward the third one but encounters an obstacle and switches to OFFBOARD; the
z-component of the velocity remains approximately constant until the return to
MISSION. At that point, the v, and v, drop to (near) zero to allow a pure vertical
ascent; once the altitude of the third waypoint is reached, the motion resumes in
the xy plane.

87

Simulations Results

Simulations Results

Figure 7.20: Drone simulation in World 3 - RViz view - Collision Avoidance

QGroundControl S O &

Flying W Hold

Return

>

Actigf =

(L@). _ v >

NG S +45m 1-0.0m/s 00:02:26 %
5118.0m »0.0m/s #230.2m

ychelparks

Jrch@/srr,.._ : .y

_ 1 el e

% k

Figure 7.21: QGroundControl interface of drone simulation in World 3 - Collision
Avoidance

89

Simulations Results

x
/fmu/out/vehicle_local_position/ly
=/fmu/out/vehicle_local_position/fz
=/fmuout/vehicle_local_position/jx
/rm‘
M
!‘ ‘\
_ \-_s/\‘
iy
[/
MoV
I
|
|
|
\
60 80 100 120 140 160
x
14- [sffm le_status_v1/nav_statle|
1 I
12-
10-
8-
ol
4 L \—‘
] | L L | L]
5] J
60 80 100 120 140 160

Figure 7.22: Velocity graph and State transition graph of drone simulation in
World 3 - Collision Avoidance

x

57 -/fmtyﬂcut/vehiclejoca\iposit\on/vxw
] =/fmu/out/vehicle_local_position/vy
4° -/fm’u/out/\)ehiclejoca\iposit\on/vz

/

40 60 80 100 120

x

-/fmufout/vehicle_status_v1/nav_state|

1
‘ \
12 ~

10

R

40 60 80 100 120

Figure 7.23: Velocity and State transition graphs of drone simulation in World 3
with waypoints at different altitudes - Collision Avoidance

90

Chapter 8
Conclusions

A UAV navigation pipeline integrated with PX4-ROS 2 was presented, converting
mission waypoints into local goals projected into the costmap, planning with A* us-
ing a “soft” cost model (exponential penalty near obstacles), and tracking smoothed
paths via B-splines, with collision prevention and safety-state management.

The simulations, conducted on both nominal and challenging scenarios, highlight
reliable end-to-end operation: the combination of goal projection, exponential
penalty and smoothing favors wider corridors and more regular trajectories, re-
ducing exposure to high-cost regions and preventing stalls via projection and A*
timeouts. A predictable sensitivity to operating parameters emerged (offboard
speed, projection-angle span, costmap size); under conservative choices, tracking
remains stable and planning proceeds without unnecessary entries into HOLD. The
overall architecture is modular, allowing each component to be tuned or replaced
independently.

Some results may have been partially influenced by the simulation’s computa-
tional load, which can affect the UAV’s behavior by increasing the command-to-state
latency—i.e., the delay between issuing a request to enter HOLD/OFFBOARD and the
actual transition. This is particularly evident in Collision Prevention in Mission,
where two unexpected behaviors were observed: (i) a back-and-forth motion before
entering HOLD, and (ii) when no “bounce” occurs, a stoppage only after traveling
several additional meters. Under real conditions or on more capable platforms, the
transition to HOLD is expected to be nearly instantaneous, without oscillations or
significant overshoot.

Real-world tests were scheduled at the company but could not be executed
due to time constraints; these trials will constitute the next step to consolidate
the simulation evidence and, crucially, to perform systematic parameter tuning
oriented to maximum safety (e.g., calibrated limits for offboard speed, adaptive
projection-angle policies, and costmap window sizing matched to dynamics and
sensor latency).

91

Conclusions

Future work also includes integrating the Bug fallback to navigate around
obstacles whose extents exceed the costmap window, and extending the pipeline
to the 3D case (altitude handling, volumetric obstacles, and planners/controllers
consistent with full spatial dynamics).

92

Appendix A

Turttlebot Algorithms

A.

1 Goal Projector

Algorithm 5: GoalProjector Node: project goal inside local costmap and publish

1

10
11

Subscribers:
/goal_pose — GOAL_ CALLBACK (PoseStamped)
/odom — ODOM__CALLBACK (Odometry)
/local_costmap/costmap — COSTMAP__CALLBACK (OccupancyGrid)
/goal_reached — GOAL__REACHED__CALLBACK (Bool)
Publishers:
/projected_goal < PoseStamped
Parameters:
publish_rate, topic_goal, topic_odom, topic_costmap,
topic_goal_reached, topic_projected_goal
Initialization:
Create pubs/subs; start timer with period 1/publish_rate
State: map_ready<False, goal_reached«False
current_pose<None, global_goal<None, local_costmap<None
Callback cOSTMAP_ CALLBACK(OccupancyGrid msg):
local_costmap <+ msg; map_ready < True
Callback 0DOM__CALLBACK(Odometry msg):
Build PoseStamped from header+pose — current_pose
Callback GOAL__REACHED__CALLBACK(Bool msg):
goal_reached < msg.data
Callback GOAL__ CALLBACK(PoseStamped goal msg):
global_goal < goal msg
if not (map_ready and current_pose) then
return

end if

94

Turttlebot Algorithms

12 P <~ PROJECT__GOAL_ WITHIN__COSTMAP(current_pose, global_goal)
13 if P exists then
14 publish P on /projected_goal
15 end if
16 Timer thread UPDATE_PROJECTED__GOAL():
17 if goal_reached then
18 return
19 end if
20 if not (map_ready and current_pose and global_goal) then
21 return
22 end if
23 P <~ PROJECT__GOAL__ WITHIN__COSTMAP(current_pose, global_goal)
24 if P exists then
25 publish P on /projected_goal
26 end if
27 Function PROJECT__GOAL_ WITHIN__COSTMAP(start:PoseStamped,
goal:PoseStamped):
res < local_costmap.info.resolution; compute dz,dy, distance d
steps < max(1, |d/(0.5res)])
Straight line (backward sampling):
28 for i + steps to 1 do
29 Sample p = (z,y) at fraction i/steps along start—goal
30 if Is_ CELL_ FREE(z,y) then

31 return CREATE_ POSE__STAMPED(z, y, goal)
32 end if
33 end for

Alternative directions: a € {—30°,—15°15°,30°}
34 for each angle a do
35 0 + atan2(dy, dz); unit offset (cos(6 + «), sin(f + «))
36 for i < steps to 1 do

37 p = (x,y) = start + (i/steps) - res - (cos(f + «), sin(6 + «))
38 if Is CEeLL FREE(z,y) then

39 return CREATE_ POSE__STAMPED(z, y, goal)

40 end if

4 end for

42 end for

43 return None
44 Function Is_ CELL__FREE(z,y):
From local_costmap.info get res,width, height, origin
mx = |(x — origin_x)/res|, my = |(y — origin_y)/res]
45 if 0 < mx < width and 0 < my < height then

46 val < local_costmap.data[my - width + mz|; return (val = 0) or (val = —1)
47 else
48 return False

95

Turttlebot Algorithms

49 end if
50 Function CREATE__POSE__STAMPED(z, y,ref):
Make PoseStamped with ref header, position (z,y,0), orientation w = 1.0;
return pose

=0

A.2 Path Follower

Algorithm 6: PathFollower Node: send path to Nav2 FollowPath and handle
result

1 Subscribers:
/astar_path — POSE__ARRAY__CALLBACK (PoseArray)
2 Publishers:
/cmd_vel < Twist
/controller_failed + Bool
3 Action Client:
/follow_path < nav2_msgs/FollowPath
4 Parameters:
topic_astar_path=/astar_path, topic_cmd_vel=/cmd_vel,
topic_controller_failed=/controller_failed
controller_id=FollowPath, goal_checker_id=goal_checker,
follow_path_action=/follow_path
5 Initialization:
Create pubs/subs; create FollowPath action client
State: latest_path«None; _current_goal_handle<None
Optionally wait for action server to be available
Callback POSE__ARRAY__CALLBACK(PoseArray msg):
if msg.poses is empty then
warn and return
end if
10 Convert PoseArray — Path (copy header; wrap each pose into PoseStamped)
11 if Path.poses is empty then
12 publish Bool(True) on /controller_failed; return
13 end if
14 latest_path < Path; SEND__PATH_TO__CONTROLLER(Path)
15 Procedure SEND__ PATH__TO__CONTROLLER(Path):
16 if Path.poses is empty then
17 publish Bool(True) on /controller_failed; return
18 end if
19 Build FollowPath.Goal:

© 0w 3 O

96

Turttlebot Algorithms

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

goal.path < Path;

goal.controller_id = FollowPath; goal.goal checker id = goal_checker
Send with send_goal_async(goal) and register HANDLE__GOAL__RESPONSE
Procedure HANDLE _GOAL__RESPONSE(future):
_current_goal_handle < future.result()
if goal not accepted then

publish Bool(True) on /controller_failed; return
end if
Register goal_handle.get_result_async() with HANDLE RESULT
Procedure HANDLE RESULT(future):
status < future.result().status; _current_goal_handle < None
if status = STATUS_ABORTED then

publish Bool(True) on /controller_failed
else

publish Bool(False) on /controller_failed
end if
Procedure PUBLISH__STOP():
publish Twist () on /cmd_vel
Main:

init rclpy; create node PathFollower; spin; on KeyboardInterrupt: stop, de-
stroy, shutdown

A

.3 Goal Checker

Algorithm 7: GoalChecker Node: goal reach monitoring and notification

Subscribers:
/odom — ODOM__CALLBACK (Odometry)
/projected_goal — GOAL_ CALLBACK (PoseStamped)
Publishers:
/goal_reached + Bool
Parameters:
goal_tolerance, topic_odom, topic_projected_goal, topic_goal_reached,
check_frequency
Initialization:
Create pubs/subs; start timer with period 1/check_frequency
State: current_pose<—None, goal_pose<—None, already_reached«False
Callback ODOM _CALLBACK(Odometry msg):
current_pose <— msg.pose.pose
Callback GOAL CALLBACK(PoseStamped msg):

97

Turttlebot Algorithms

goal_pose ¢ msg.pose
7 Timer thread CHECK _GOAL_ REACHED():
8 if current_pose=None or goal_pose=None then
return
10 end if
11 dr < goal_pose.position.x — current_pose.position.x; dy <
goal_pose.position.y — current_pose.position.y
12 d < \/dz? + dy?; reached < (d < goal_tolerance)
13 build Bool message m with m.data < reached
14 if reached and not already_reached then
15 publish m on /goal_reached; already_reached < True
16 else if not reached then
17 publish m on /goal_reached; already_reached < False
18 end if
19 Main:
init rclpy; create node GoalChecker; spin; on interrupt: destroy, shutdown

A.4 Manager

Algorithm 8: NavigationManager Node: supervise planner/controller and switch
to Bug fallback

1 Subscribers:
/goal_pose — GOAL_ CALLBACK (PoseStamped)
/controller_failed — CONTROLLER__ FAIL__CALLBACK (Bool)
/goal_reached — GOAL__REACHED__CALLBACK (Bool)
/bug0/abort — BUGO__ABORT__CALLBACK (Bool)
/astar_failed — ASTAR_ FAIL_ CALLBACK (Bool)
2 Publishers:
/fallback_to_bug <+ Bool
/use_recovery < Bool
3 Parameters:
topic_goal, topic_controller_fail, topic_goal_reached,
topic_bug_abort, topic_astar_fail, topic_fallback_to_bug,
topic_use_recovery
4 Initialization:
Create pubs/subs
State: controller_failures+ 0, fallback_active<False,
current_goal<None, goal_completed«False
5 Callback GOAL CALLBACK(PoseStamped msg):

98

Turttlebot Algorithms

© 0 N O

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40
41
42
43

44

current_goal<—msg; controller_failures< 0; fallback_active<False;
goal_completed<False
publish Bool(False) on /fallback_to_bug > prefer main controller (DWB)
Callback ASTAR__FAIL_CALLBACK(Bool msg):
if goal_completed then
return
end if
if msg.data and not fallback_active then
publish Bool(True) on /fallback_to_bug; fallback_active<True
else
> if msg.data=False, planner is OK; no immediate change
end if
Callback CONTROLLER__FAIL__CALLBACK(Bool msg):
if goal_completed then
return
end if
if msg.data then > controller failure
controller_failures< controller_failures + 1
if controller_failures > 3 and not fallback_active then
publish Bool(True) on /fallback_to_bug; fallback_active<True
end if
else> controller success
if controller_failures > 0 then
> reset failure counter
end if
controller_failures<+ 0
if fallback_active then
publish Bool(False) on /fallback_to_bug; fallback_active«+False
end if
end if
Callback BUGO__ABORT__CALLBACK(Bool msg):
if goal_completed then
return
end if
if msg.data and fallback_active then
publish Bool(False) on /fallback_to_bug; fallback_active«False;
controller_failures<+ 0
end if
Callback GOAL__REACHED__CALLBACK(Bool msg):
if msg.data and not goal_completed then
publish Bool(False) on /fallback_to_bug
fallback_active<False; controller_failures<+ 0;
goal_completed+True
end if

99

Turttlebot Algorithms

45 Main:
init rclpy; create node NavigationManager; spin; on interrupt: destroy, shut-
down

100

Appendix B

Drone Algorithms

B.1 GPSToPose

Algorithm 9: GPSToPose Node

1 Subscribers:
/fmu/out/home_position - HOMECALLBACK (HomePosition; QoS:
BEST_EFFORT, TRANSIENT LOCAL, KEEP_LAST(10))
/fmu/out/position_setpoint_triplet — WPCALLBACK (PositionSetpoint-
Triplet; same QoS)
2 Publishers:
/goal_pose < PoseStamped (ENU, frame odom)
/goal_ned + PoseStamped (NED, frame odom)
3 Parameters:
topic_home, topic_wp, topic_goal_pose, topic_goal_ned
4 Initialization:
Create pubs/subs with sensor QoS
State: home_received«False; home_lat, home_lon, home_alt< (0,0,0)
5 Callback HOMECALLBACK (HomePosition msg):
home_lat<-msg.lat; home_lon<msg.lon; home_alt<msg.alt
home_received<+True
6 Callback WrCALLBACK (PositionSetpointTriplet msg):
7 if home received=False then
8 return > home not yet available
9 end if
10 wp<—msg.current
11 if wp.type # POSITION(0) then
12 return > ignore non-POSITION waypoints
13 end if
14 Build UTM CRS from home longitude

101

Drone Algorithms

home_lon + 180
6

16 proj_enu < PROJ(epsg,always_xy = true)

17 Project (home_lon,home_lat) — (zo,y0); (wp.lon,wp.lat)— (z1,y1)

18 dx < x1 — xp; dy < y1 — yo; dz < wp.alt —home_alt

19 Publish NED goal (frame odom): x < dy; y < dz; z < dz
ned.header.stamp«NOW(); ned.header.frame_id<“odom”
ned.pose.position.x¢ dy; ned.pose.position.y+ duz;

ned.pose.position.z<¢ dz
PUBLISH(/goal_ned, ned)

20 Publish ENU goal (frame odom): z <« dx; y « dy; z < dz
pose.header.stamp«—NOW(); pose.header.frame_id«+ “odom”
pose.pose.position.x¢ dx; pose.pose.position.y+ dy;

pose.pose.position.z¢ dz
pose.pose.orientation.w¢+ 1.0
PUBLISH(/goal_pose, pose)
21 Procedure MAIN():
RCLPY.INIT(); node<—NEW GPSToPose()
SPIN(node); DESTROY__NODE(node); RCLPY.SHUTDOWN()

15 zone < 1+ { J; epsg <« 32600 + zone

B.2 Goal Projector

Algorithm 10: GoalProjector Node

1 Subscribers:
/goal_pose — GOAL_ CALLBACK (PoseStamped)
/local_costmap/costmap — COSTMAP_ CALLBACK (OccupancyGrid)
/goal_reached — GOAL_ REACHED__ CALLBACK (Bool)

2 Publishers:
/projected_goal < PoseStamped
/projection_timeout < Bool

3 Parameters:
topic_goal, topic_costmap, topic_goal_reached
topic_projected_goal, topic_projection_timeout
publish_rate (Hz), projection_timeout_sec
side_angles_deg (e.g., [—30, —15,15,30])

4 Initialization:
Create pubs/subs (RELIABLE, TRANSIENT _LOCAL for costmap)
State: current_pose<—None; global_goal+None; local_costmap+None
map_ready<False; goal_reached<False

102

Drone Algorithms

10

11

12

13
14
15
16
17
18
19
20

no_valid_since<+None; timeout_sent<False

side_angles_rad<+ RADIANS(side_angles_deg) Starttimerwithperiodl/publish_rate—

UPDATE__ PROJECTED__ GOAL

Init TF buffer+listener
Callback COSTMAP CALLBACK(OccupancyGrid msg):

local_costmap<—msg; map_ready<True
Function GET__ CURRENT__POSE(target="odom", source="base_link") —
PoseStamped|None:

try TF lookup (timeout 2s) = build PoseStamped from transform; else return
None
Callback GOAL_ CALLBACK(PoseStamped msg):

global_goal<msg; no_valid_since<None

if timeout_sent then publish Bool(False) on /projection_timeout;
timeout_sent<False
end if
Function PROJECT _GOAL_ WITHIN__COSTMAP(start, goal) —
PoseStamped|None:

res <— local_costmap.info.resolution

dx + goal.x — start.x; dy < goal.y — start.y; d < /dz? + dy?

steps <— max(30, |d/(0.25 - res)])

(1) Straight line: for i = steps | 1 test p = (start + i/steps - [dzx, dy]) with
IS__CELL__FREE; if free = MAKE__POSE(p,goal)

(2) Side directions: h <+ ATAN2(dy,dz); for a € side_angles_rad and
i =steps | 1

p < start + (i/steps) - res - [cos(h + a),sin(h + a)]; if 1S__CELL_FREE(p) =

MAKE__POSE(p,goal)

else return None
Function 1S_ CELL_ FREE(z,y) — bool:

From local_costmap.info: res,width, height, origin

mx = |(x — origin.x)/res|; my = |(y — origin.y)/res]

if in bounds: val < local_costmap.data[my - width + mx]; return (val <
5) V (val = —1); else return False
Function MAKE__POSE(p, ref) — PoseStamped:

Copy header<ref.header; set (z,y,0); orientation.w= 1.0; return PoseS-
tamped
Timer UPDATE_PROJECTED__GOAL():
if timeout_sent then

return > wait for new goal or goal reached
end if
current_pose<—GET__CURRENT__POSE()
if not(map_ready and current_pose and global_goal) then

return

end if

103

Drone Algorithms

21 proj <— PROJECT__GOAL_ WITHIN__COSTMAP(current_pose, global_goal)
22 if proj #None then

23 publish proj on /projected_goal; no_valid_since<None;

24 return

25 end if

26 Timeout handling:

27 now <— CLOCK.NOW()

28 if no_valid_since=None then

29 no_valid_since<— now;
30 return
31 end if

32 elapsed < (now —no_valid_since) in seconds

33 if elapsed > projection_timeout_sec and not timeout_sent then

34 publish Bool(True) on /projection_timeout; timeout_sent<True

35 end if

36 Callback GOAL__REACHED__CALLBACK(Bool msg):

37 if msg.data then

38 no_valid_since<None

39 if timeout_sent then publish Bool(False) on /projection_timeout;
timeout sent<«False

40 end if

41 end if

B.3 Obstacle Detector

Algorithm 11: ObstacleDetector Node

1 Subscribers:
/local_costmap/costmap — COSTMAP__CALLBACK (OccupancyGrid; QoS:
RELIABLE, TRANSIENT LOCAL, KEEP_LAST(1))
/goal_pose — GOAL_ POSE_ CALLBACK (PoseStamped)
2 Publishers:
/obstacle_detected < Bool
/obstacle_area_marker < Marker (LINE STRIP)
3 Parameters:
costmap_topic, goal_pose_topic, obstacle_detected_topic,
obstacle_marker_topic
half_width (m), check_interval (s), step_size (m)
4 Initialization:
Create pubs/subs with QoS above
Init TF buffer + listener

104

Drone Algorithms

Start timer every check_interval — CHECK__OBSTACLES
State: latest_costmap<None; goal_x, goal_y<None
5 Callback COSTMAP CALLBACK(OccupancyGrid msg):
latest_costmap<—msg
6 Callback GOAL_ POSE__CALLBACK(PoseStamped msg):
goal_x<—msg.pose.position.x; goal_y<—msg.pose.position.y
7 Timer CHECK__OBSTACLES():
8 if latest_costmap=None then
return
10 end if
11 TF lookup: target=latest_costmap.header.frame_id, source=base_link,
timeout 0.5s
12 if TF fails then
13 return
14 end if
15 (drone_x,drone_y) < translation from TF
16 if goal_x=None or goal_y=None then
17 return
18 end if
19 dx + goal_x — drone_x; dy < goal_y — drone_y; L+ +/dx? + dy?
20 if L < 0.01 then
21 return
22 end if
23 Direction unit vectors: (dir_x,dir_y) < (dz/L,dy/L); (perp_z,perp_y)
(—dir_y, dir_x)
24 Costmap bounds: from info.resolution, width, height, origin
25 Max length within map L .:
Lpax < L; step < step_size
26 for ¢ = step,2 step,... up to L do
27 (x,y) < (drone_x,drone_y) + ¢ (dir_x,dir_y)
28 if (z,y) outside costmap then L .x < ¢;

29 break
30 end if
31 end for

32 Scan occupied cells in rectangle (forward [0, Lyax], lateral
[~half_width,half_width]):
found <False; iterate all indices idx with cost > 0
Map (idz) — (mz, my) — (wzx,wy) (cell center in world)
(dz,dy) + (wx — drone_x, wy — drone__y)
forward < dx dir_x + dy dir_y; lateral < dx perp_x + dyperp_y
33 if 0 < forward < Lyax and |lateral| < half_width then
34 found <True;
35 break
36 end if

105

Drone Algorithms

37 PUBLISH(/obstacle_detected, Bool(found))
38 PUBLISH__OBSTACLE__AREA__MARKER(drone_x,drone_y,dir__x,dir_y,perp_x,perp_y, L, half_
39 Procedure PUBLISH__OBSTACLE__AREA__MARKER(drone_x,drone_y, dir__x, dir__y, perp_x, perp.
Build Marker (LINE_STRIP, red, lifetime 1s, frame=costmap frame)
Use Lpyax as length; corners:
Cy = (drone + —%perp); Cy = (drone + Ly dir — %perp); C3 = (drone +
Lynax dir + %perp); Cy = (drone + %pm‘p); close ('
Append corners as Points; PUBLISH(/obstacle_area_marker, Marker)

106

Bibliography

Navaneetha Krishna Chandran, Mohammed Thariq Hameed Sultan, Andrzej
bLukaszewicz, Farah Syazwani Shahar, Andriy Holovatyy, and Wojciech Gier-
nacki. «Review on Type of Sensors and Detection Method of Anti-Collision
System of Unmanned Aerial Vehicle». In: Sensors 23.15 (2023). 1SSN: 1424-
8220. DOI: 10 .3390/s23156810. URL: https://www .mdpi . com/ 1424 -
8220/23/15/6810 (cit. on pp. 3-5, 8, 9).

Min Jin, Jun Tao, Zhen Qiu, Jingpo Bai, Chong Liang, and Xiaoning Li.
«Autonomous Obstacle Avoidance and Navigation Method for Unmanned
Aerial Vehicles Based on Multi-Sensor Fusion Algorithm». In: 2024 3rd
International Conference on Energy and Electrical Power Systems (ICEEPS).
2024, pp. 1329-1335. DOI: 10.1109/ICEEPS62542.2024 .10693226 (cit. on
pp. 4-6).

Antonio Raimundo, D. Peres, N. Santos, Pedro Sebastiao, and Nuno Souto.
«USING DISTANCE SENSORS TO PERFORM COLLISION AVOIDANCE
MANEUVRES ON UAV APPLICATIONS». In: ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sci-
ences XLII-2/W6 (Aug. 2017), pp. 303-309. DOI: 10.5194/isprs-archives-
XLII-2-W6-303-2017 (cit. on pp. 4, 8).

Priya Gupta, Fredrick Ambrose, Sahil Naik, Muiz Tanki, Aarti Kumbhar,
and Jainam Shah. «STM32 Based Quadcopter For Obstacle Avoidance Using
Ultrasonic Sensory». In: 2023 6th International Conference on Advances in
Science and Technology (ICAST). 2023, pp. 122-126. DOI: 10.1109/ICAST59
062.2023.10454993 (cit. on p. 4).

Rahul H Kumar, Anil M Vanjare, and S N Omkar. « Autonomous Drone
Navigation using Monocular Camera and Light Weight Embedded System».
In: 2023 International Conference for Advancement in Technology (ICONAT).
2023, pp. 1-6. DOI: 10.1109/ICONAT57137.2023.10080483 (cit. on pp. 5, 8,
11, 13, 19-21).

107

https://doi.org/10.3390/s23156810
https://www.mdpi.com/1424-8220/23/15/6810
https://www.mdpi.com/1424-8220/23/15/6810
https://doi.org/10.1109/ICEEPS62542.2024.10693226
https://doi.org/10.5194/isprs-archives-XLII-2-W6-303-2017
https://doi.org/10.5194/isprs-archives-XLII-2-W6-303-2017
https://doi.org/10.1109/ICAST59062.2023.10454993
https://doi.org/10.1109/ICAST59062.2023.10454993
https://doi.org/10.1109/ICONAT57137.2023.10080483

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

Aadi Nath Mishra, Stephanos Papakonstantinou, and Volker Gollnick. « A Soft
Actor-Critic Based Reinforcement Learning Approach for Motion Planning
of UAVs Using Depth Images». In: 2024 AIAA DATC/IEEE 43rd Digital
Avionics Systems Conference (DASC). 2024, pp. 1-10. DOI: 10.1109/DASC62
030.2024.10748743 (cit. on pp. 5, 12).

Kuijun Zuo, Xuan Cheng, and Heng Zhang. «Overview of Obstacle Avoidance
Algorithms for UAV Environment Awareness». In: Journal of Physics: Confer-
ence Series 1865.4 (Apr. 2021), p. 042002. poI: 10.1088/1742-6596/1865/4/
042002. URL: https://dx.doi.org/10.1088/1742-6596/1865/4/042002
(cit. on p. 5).

Danyang Li, Jingao Xu, Zheng Yang, Yishujie Zhao, Hao Cao, Yunhao
Liu, and Longfei Shangguan. «Taming Event Cameras With Bio-Inspired
Architecture and Algorithm: A Case for Drone Obstacle Avoidance». In:
IEEFE Transactions on Mobile Computing 24.5 (2025), pp. 4202-4216. DOI:
10.1109/TMC.2024.3521044 (cit. on pp. 6, 12).

Zhihao Li, Mingqiu Li, Pengnian Wu, and Yixuan Li. «Dynamic Obstacle
Detection for Quadrotors with Event Cameras». In: 2024 4th International
Conference on Intelligent Communications and Computing (ICICC). 2024,
pp. 126-130. poI: 10.1109/ICICC63565.2024.10780721 (cit. on pp. 6, 11).

Hashim Hashim. « Advances in UAV Avionics Systems Architecture, Classifi-
cation and Integration: A Comprehensive Review and Future Perspectivesy.
In: Results in Engineering (Apr. 2025), p. 103786. DOI: 10.1016/j.rineng.
2024.103786 (cit. on pp. 6, 10, 11).

Hang Yu, Fan Zhang, Panfeng Huang, Chen Wang, and Li Yuanhao. «Au-
tonomous Obstacle Avoidance for UAV based on Fusion of Radar and Monoc-
ular Camera». In: 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2020, pp. 5954-5961. DOI: 10.1109/IR0S45743.
2020.9341432 (cit. on p. 6).

Q. Liang, Z. Wang, Y. Yin, W. Xiong, J. Zhang, and Z. Yang. « Autonomous
aerial obstacle avoidance using LiDAR sensor fusion». In: PLoS ONFE 18.6
(2023), €0287177. DOI: 10 . 1371/ journal . pone . 0287177. URL: https :
//doi.org/10.1371/journal.pone.0287177 (cit. on p. 8).

B. Cybulski, A. Wegierska, and G. Granosik. « Accuracy comparison of naviga-
tion local planners on ROS-based mobile roboty». In: 2019 12th International
Workshop on Robot Motion and Control (RoMoCo). 2019, pp. 104-111. pOT:
10.1109/RoMoCo.2019.8787346 (cit. on p. 9).

108

https://doi.org/10.1109/DASC62030.2024.10748743
https://doi.org/10.1109/DASC62030.2024.10748743
https://doi.org/10.1088/1742-6596/1865/4/042002
https://doi.org/10.1088/1742-6596/1865/4/042002
https://dx.doi.org/10.1088/1742-6596/1865/4/042002
https://doi.org/10.1109/TMC.2024.3521044
https://doi.org/10.1109/ICICC63565.2024.10780721
https://doi.org/10.1016/j.rineng.2024.103786
https://doi.org/10.1016/j.rineng.2024.103786
https://doi.org/10.1109/IROS45743.2020.9341432
https://doi.org/10.1109/IROS45743.2020.9341432
https://doi.org/10.1371/journal.pone.0287177
https://doi.org/10.1371/journal.pone.0287177
https://doi.org/10.1371/journal.pone.0287177
https://doi.org/10.1109/RoMoCo.2019.8787346

BIBLIOGRAPHY

[14]

[15]

[18]

[20]

[21]

D. M. Huynh, A. D. Nguyen, H. N. Nguyen, H. D. Tran, D. A. Ngo, J.
Pestana, and A. Q. Nguyen. «Implementation of a HITL-Enabled High
Autonomy Drone Architecture on a Photo-Realistic Simulatory. In: 2022 11th
International Conference on Control, Automation and Information Sciences
(ICCAIS). 2022, pp. 430-435. DOT: 10.1109/ICCAIS56082 . 2022 . 9990214
(cit. on p. 9).

Luis Felipe Munoz Mendoza, Guillermo Garcia-Torales, Cuauhtémoc Acosta
Lua, Stefano Di Gennaro, and José Trinidad Guillen Bonilla. «Trajectories
Generation for Unmanned Aerial Vehicles Based on Obstacle Avoidance
Located by a Visual Sensing System». In: Mathematics 11.6 (2023). 1SSN: 2227-
7390. DOI: 10.3390/math11061413. URL: https://www.mdpi.com/2227-
7390/11/6/1413 (cit. on p. 9).

Skylar X. Wei, Anushri Dixit, Shashank Tomar, and Joel W. Burdick. « Moving
Obstacle Avoidance: A Data-Driven Risk-Aware Approachy. In: IEEE Control
Systems Letters 7 (2023), pp. 289-294. DOI: 10.1109/LCSYS.2022.3181191
(cit. on p. 11).

Paula Fraga-Lamas, Lucia Ramos, Victor M. Mondéjar-Guerra, and Tiago
Fernandez-Caramés. «A Review on [oT Deep Learning UAV Systems for
Autonomous Obstacle Detection and Collision Avoidance». In: Remote Sensing
11 (Sept. 2019), p. 2144. DOI: 10.3390/rs11182144 (cit. on p. 12).

Euihyeon Cho, Hyeongjin Kim, Pyojin Kim, and Hyeonbeom Lee. «Obstacle
Avoidance of a UAV Using Fast Monocular Depth Estimation for a Wide
Stereo Cameray. In: IEEE Transactions on Industrial Electronics 72.2 (2025),
pp. 1763-1773. DOI: 10.1109/TIE.2024.3429611 (cit. on p. 12).

A.P. Kalidas, C.J. Joshua, A.Q. Md, S. Basheer, S. Mohan, and S. Sakri. Deep
Reinforcement Learning for Vision-Based Navigation of UAVs. Encyclopedia.
Accessed on 26 August 2025. 2025. URL: https://encyclopedia.pub/entry/
52646 (cit. on p. 12).

Ioannis Daramouskas, Isidoros Perikos, Ioannis Hatzilygeroudis, Vaios J.
Lappas, and Vasilios Kostopoulos. « A Methodology For Drones to Learn
How to Navigate And Avoid Obstacles Using Decision Trees». In: 2020
11th International Conference on Information, Intelligence, Systems and
Applications (IISA. 2020, pp. 1-4. DOI: 10.1109/IISA50023.2020.9284337
(cit. on p. 13).

Honggian Huang, Yanzhou Li, and Qing Bai. «An improved A star algorithm
for wheeled robots path planning with jump points search and pruning
method». In: Complex Engineering Systems 2 (July 2022), p. 11. DOI: 10.
20517/ces.2022.12 (cit. on p. 17).

109

https://doi.org/10.1109/ICCAIS56082.2022.9990214
https://doi.org/10.3390/math11061413
https://www.mdpi.com/2227-7390/11/6/1413
https://www.mdpi.com/2227-7390/11/6/1413
https://doi.org/10.1109/LCSYS.2022.3181191
https://doi.org/10.3390/rs11182144
https://doi.org/10.1109/TIE.2024.3429611
https://encyclopedia.pub/entry/52646
https://encyclopedia.pub/entry/52646
https://doi.org/10.1109/IISA50023.2020.9284337
https://doi.org/10.20517/ces.2022.12
https://doi.org/10.20517/ces.2022.12

BIBLIOGRAPHY

[22]

23]

[24]

[25]

[26]

Scott D. Lai. A* Pathfinding Visualization. https://scottdlai.github.
io/a-star-pathfinding/. 2017 (cit. on p. 18).

ROS 2 Documentation: Humble. https://docs.ros.org/en/humble/index.
html. Documentazione online della distribuzione Humble Hawksbill. 2022
(cit. on p. 23).

Mauro Martini and Marcello Chiaberge. ROS 2: Introduction € Tutorial.
Lecture slides, Politecnico di Torino, M.Sc. Mechatronic Engineering. Course
material. 2023 (cit. on pp. 24-26).

Gazebo Sim. https://gazebosim. org/. Sito web ufficiale. 2025 (cit. on
p. 26).

RViz2 — ROS 2 Documentation (Rolling). https://docs.ros.org/en/
rolling/p/rviz2/index . html. Documentazione online — distribuzione
Rolling. 2025 (cit. on p. 27).

PX4 User Guide (v1.12). https://docs.px4.io/main/en/. Documentazione
online, versione stabile v1.12. 2021 (cit. on pp. 28-30).

Nav2 — Nav2 1.0.0 documentation. https://docs.nav2.org/. Documen-
tazione online — guida principale di Navigation2. 2025 (cit. on p. 34).

DWB Controller — Nav2 Documentation. https://docs.nav2. org/co

nfiguration/packages/configuring-dwb-controller .html. Accessed:
2025-09-05 (cit. on p. 41).

110

https://scottdlai.github.io/a-star-pathfinding/
https://scottdlai.github.io/a-star-pathfinding/
https://docs.ros.org/en/humble/index.html
https://docs.ros.org/en/humble/index.html
https://gazebosim.org/
https://docs.ros.org/en/rolling/p/rviz2/index.html
https://docs.ros.org/en/rolling/p/rviz2/index.html
https://docs.px4.io/main/en/
https://docs.nav2.org/
https://docs.nav2.org/configuration/packages/configuring-dwb-controller.html
https://docs.nav2.org/configuration/packages/configuring-dwb-controller.html

	Abstract
	List of Tables
	List of Figures
	Acronyms
	Introduction
	State of art
	Sensors
	Radar
	LiDAR (Light Detection and Ranging)
	Ultrasonic
	Infrared
	Cameras (Monocular, Stereo, RGB)
	Event Cameras
	Multi-Sensor Fusion

	Algorithms
	Reactive Approaches Based On Proximity Sensors
	Reactive Approaches Based On Force Fields
	Local Planning Approaches
	Global Planning Approaches
	Model Predictive Control Approaches
	SLAM Approaches
	Event Cameras Approaches
	Deep Learning Approaches
	Decision Trees Approaches
	Fusion Algorithms Approaches

	Algorithmic and Sensory choices
	A*
	Bug
	Bug0
	Bug1
	Bug2

	Software Tools and Simulation Environments
	ROS2 Framework
	Node
	Communication between Nodes

	Gazebo
	RViz
	PX4 Autopilot
	QGroundControl

	First Implementation
	NAV2
	Local Costmap, Occupancy Grid, Costs and Conversions
	Internal Costs and Conversion to Occupancy
	Inflation profile: Radius and Cost Decay
	Geometry: World Map and indexing

	Goal Projector
	A*
	Path Follower - DWB
	Bug
	State Machine
	Exit Condition

	Goal Checker
	Manager

	PX4 Autopilot Integration
	GPSToPose
	Goal Projector
	A*
	Obstacle Detector
	Command
	Finite State Machine

	Simulations Results
	Turtlebot
	Drone

	Conclusions
	Turttlebot Algorithms
	Goal Projector
	Path Follower
	Goal Checker
	Manager

	Drone Algorithms
	GPSToPose
	Goal Projector
	Obstacle Detector

	Bibliography

