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Abstract

Concerns about the effects of climate change have recently driven research across
various fields of applications. The automotive transportation sector is one of the
most interesting from this point of view: government laws and regulatory poli-
cies push the automotive companies to invest in diminishing the emissions of the
means of transportation. As matter of facts, the automotive industry has intensified
its effort in development of Electric Vehicles (EVs) or Hybrid Electric Vehicles
(HEV5s) to be compliant with the new era of the transportation sector.

Although the EVs represent a promising solution to ensure a more sustainable
form of transportation, their limited driving range is a critical aspect, which calls
for further investigation. Despite their higher energy efficiency compared to ve-
hicles equipped with Internal Combustion Engines (ICEs), the storage of electric
energy presents greater challenges than conventional fuel storage. This limitation
needs to have a thrifty usage of the electric power. Furthermore, the time required
to recharge a battery is significantly longer than the time needed to refuel a tradi-
tional fuel tank, representing another obstacle to the widespread adoption of EVs
across various sectors.

To address these necessities, the following work proposes a Nonlinear Model
Predictive Control (NMPC) strategy for the lateral and longitudinal control of a
vehicle dynamics and then shifts to an Economic NMPC to achieve simultane-
ously optimal control performances and energy saving.

Tracking performances, comfort and safety considerations, and energy saving
are opposing objectives: often, focusing solely on one objective might cause sig-
nificant degradation of the other objective performance. Hence, the main objective
of the thesis is to demonstrate the effectiveness of the economic approach in find-
ing a compromise in the control action which can reduce the energy consumption
and, at the same time, featuring satisfying tracking performances.

The control algorithm is developed in a software environment, employing
two main methodologies: a traditional tracking-based NMPC and an Economic
NMPC. The controllers are tested in a simulated environment using real-world
data for the controlled vehicle. Then the two controllers are compared from the
standpoints of tracking performances, passenger safety and comfort and energy
consumptions.

Simulation results show the potential of the economic approach in different
scenarios, with increasing level of complexity. Additionally, the EMPC simplifies
the cost function, maintaining the same constraint set, such that the computational
effort of the problem considerably decreases.
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Chapter 1
Introduction

In recent years the automotive industry has undergone a phase of great transforma-
tion. Growing awareness of the significant environmental impact of the transport
sector, the urgent need to reduce greenhouse gas emissions, and the progressive
depletion of fossil fuel resources have collectively pushed the industry towards a
new direction.

The new reality to be faced has driven important changes in the technologies
used in the vehicles, with an orientation to the electrification of transportation.
The European Union has set important targets about this topic: from the 2035 on,
only vehicles running exclusively on CO; neutral fuel can be registered, and a
reduction of the emissions in the transport sector of 90% within the 2050 has to
be achieved [15]].

To meet these new requirements and comply with the objectives of the Euro-
pean Union, major manufacturers have increased the production of Electric Vehi-
cles (EVs) and Hybrid Electric Vehicles (HEVs).

This work will focus specifically on Electric Vehicles, examining their poten-
tial, limitations, and control strategies to improve performance and reduce energy

consumption.
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1.1 Problem Statement and Motivation

The Electric Vehicles, despite their environment benefits and some mechanical
advantages, have a major challenge: limited range. On average an EV can travel
for 350-400 km with a single charge, while a vehicle with an Internal Combustion
Engine (ICE) can overpass 650 km of autonomy with a full of fuel. Moreover, it is
necessary to consider the slow recharge speed of an EV: the charging lasts hours,
while a car equipped with an ICE can be refuelled in some minutes. The limited
driving range has slowed down the widespread adoption of EVs, so nowadays a
great focus on the optimization of energy consumption arises.

Another significant transformation in the automotive industry is the develop-
ment of Advanced Driver Assistance Systems (ADAS). They encompass a range
of technologies designed to enhance the safety and the comfort of the passen-
gers during a travel, improving the overall driving experience by automating some
functions of the vehicle.

Examples of ADAS systems are the following:

» Adaptive Cruise Control (ACC): This system is slightly different from the
classic Cruise Control. The basic Cruise Control helps the vehicle to main-
tain a desired longitudinal speed of travel without the need, by the driver,
to press the accelerator. It is used on long and straight/almost straight path
(for example in highways) that are travelled at high speed (above 30 km/h).
Whereas the ACC combines the functionalities of the Cruise Control with
the capacity of maintaining a fixed (pre-defined by the driver) safety dis-
tance from the vehicle ahead. The control system will regulate acceleration
and deceleration to achieve an optimal balance between the desired travel

speed and the safety distance during road operation.

* Lane Keeping Assist (LKA): By applying small adjustments to the steering
angle, this system helps the vehicle maintain its correct position within the

lane during driving.

* Autonomous Emergency Braking (AEB): This system autonomously de-

tects the sudden appearance of obstacles in front of the vehicle, alerts the
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driver of the danger, and, if the driver does not respond fast enough, the

system breaks to avoid or mitigate a collision.

* Blind Spot Monitoring (BSM): This system uses sensors to detect the pres-
ence of vehicles in the lateral blind spots of the driver during a travel, then

warns the driver.

e etc.

Although fully autonomous vehicles are not yet widely available, all the ADAS are
steps towards a future autonomous drive that, hopefully, will reduce road accidents
and improve drive experience.

The following work will concentrate on the combination of the ACC and LKA,

with particular focus on safety and energy efficiency.

1.2 Objectives

The combination of ACC and LKA enables the development of a control system
capable of following a leading vehicle on a road that is not straight, while main-

taining a safe distance from the vehicle ahead. The control system will:

* follow the trajectory of the leading vehicle, using small correction of the

Steering Angle.
* maintain a safety distance from the leading vehicle.

* adjust acceleration and deceleration to adapt its own velocity to the speed

profile of the leading vehicle.
The following work aims to:

* Analyse the lateral and longitudinal dynamics of an EV and its electric pow-
ertrain, highlighting the main nonlinear behaviours of the model, which in-

fluence the control system mentioned above.

» Formulate an appropriate NMPC control problem and address it by means
of a suitable objective function, considering physical constraints and control

input limits.
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* Address the problem with an EMPC approach in order to reach a
better optimization of the energy consumption, with tracking perfor-

mances comparable with the NMPC approach.

* Implement and simulate the controllers in a software environment. MAT-
LAB will be used to develop the controller, and CasADi [11]] functionalities

will be employed to solve the constrained optimization problem.

The ACC and the LKA, which are used in the development of the controller in
the following, are slightly different from the ones available on the market. The
LKA systems usually have a camera to identify the lane, and when the vehicle
approaches the boundaries the control action is engaged. In the following design,
another vehicle highlights the right trajectory to follow, not the horizontal signage.

Regarding the ACC, the system should be able to guarantee the safety distance
from the car ahead and tracking of a reference speed also in the situation in which
the vehicle ahead changes. For example, if the controlled vehicle was overtaken
the ACC will decelerate to restore a safe distance from this new vehicle in front.
Instead, the controller that will be developed should track as faithfully as possible
the speed profile of a single leading vehicle, no overtake or other vehicles will
enter in the scenario.

Moreover, another design will be carried out. As we will see, the stability of
a MPC-based controller is a challenging part of the design, but some techniques
can be employed to reach it. Among the classical approaches for studying sta-
bility, for both NMPC and EMPC, the using of a terminal cost and a terminal
constraint is quite effective. Nevertheless, new procedures are under study, partic-
ular interesting is a novel approach proposed in [3]]. This last method, with some
difference with respect the one presented by Calogero et al. [3], will be employed
in the following work to design another controller, named Conflicting Objectives
NMPC.

1.3 Literature Review

Nowadays, various control strategies are employed in the automotive industry, in

particular the Proportional-Integrative-Derivative (PID) controllers and the Linear

4
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Quadratic Regulators (LQR) controllers are widely adopted.

PID controllers are particularly appreciated for their ease of implementation,
robustness and reliability. As detailed in [20], the PID controllers are popular in
different branches of industry, including automotive applications. Over time, dif-
ferent sets of rules for tuning have been developed to optimize their performances
under different operating conditions. They are used in many systems in the au-
tomotive domain, such as the speed control in an EM, the basic Cruise Control
and the ACC. Reference, in [20] different variants of PID applied to the ACC are
listed with their performances.

Despite their effectiveness and simplicity the PID controllers exhibit limita-
tions: they have to be accurately tuned for different scenarios, so adaptation
difficulties arise. Moreover, they struggle to catch and handle nonlinear effects,
which, unfortunately, are common in the dynamics of a vehicle.

Regarding the LQR, it is based on the minimization of a quadratic cost func-
tion that balances the different requests of the system: performances and control
effort, which are often at odds. The LQR is effectively used for controlling the
lateral dynamics of a vehicle and in the yaw control. In its basic form the LQR
does not handle constraints on the states or on the control inputs, so it has the same
problems of the PID from this point of view. Although LQR strategies rely on a
model of the system, allowing for a more accurate representation of its behaviour
compared to PID controllers, they are based on the assumption that the system
is linear. This assumption does not hold in many real-world applications, where
system dynamics are strongly nonlinear.

Due to the need to handle complex and nonlinear model in an effectively way
and the presence of physical constraints, the research shifts its attention on MPC
strategies. As we said the energy optimization is one of the most important field
of research not only in the automotive industry, but in general in the transport sec-
tor. The research spans different areas, from powertrain optimization to energy
management systems using different types of energy sources. Most of these op-
timization problems must respect physical constraints, both on the system states
and on the control inputs provided by the actuators. As highlighted in [17], the
high performances of a control system are often linked to the proper handling of

such constraints. The capability of the MPC approach to solve constrained opti-
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mization problems is one of its key features that encourages its adoption. Addi-
tionally, Model Predictive Control (MPC) naturally evolves into Nonlinear Model
Predictive Control (NMPC), which is capable of catching the system’s nonlinear
behaviour, provided that the adopted prediction model is sufficiently accurate.

An interesting comparison between PID controller and MPC-based controller
is detailed in the particular application of the ACC in [12], where the potential of
the MPC comes out. In a simulation environment, Nie and Farzaneh [12]] show
how the MPC approach can improve the fuel economy (above 10%) with respect
to the PID in different driving scenarios.

Another example of MPC-based control strategy is described in [2], the par-
ticular application is the power management in power-split HEV. They demon-
strate the capability of the MPC to catch the nonlinearities of the plant. Borhan
et. al [2] use two slightly different methods to improve the performance of ex-
isting commercial power management techniques. The two approaches are: a
Linear Time-Varying MPC (LTV-MPC) and a Nonlinear MPC (NMPC). In par-
ticular the LTV-MPC shows results comparable with the existing control method,
but the linearization cannot capture the complexity of the model in a suitable way,
introducing error. Thus, they demonstrate how NMPC can reach a fuel econ-
omy improvement with respect the available controller in commercial PSAT and,
also, with respect to the LTV-MPC controller. Unfortunately, the computational
demand is not a side issue in a sensitive application like the management of a ve-
hicle in operation, so the high computational time of a NMPC approach must be
faced, and reduced if possible.

The high computational demand derives from the nonlinear model used by the
MPC to infer the optimal control action: the optimization problem and its con-
straints are based on the model, if it is complex the entire problem is challenging
to solve, even for advanced solvers. In order to reduce the complexity of the model
to be solved a Recurrent Neural Network (RNN) can be used to approximate the
nonlinear model, then the NMPC will use the RNN as the approximation of the
real physical model to solve the dynamics on the prediction horizon in an easier
way. Starting on this basic idea Pereira et al. [[16]] use a RNN to model a proton
exchange membrane of a Fuel Cell Hybrid Electric Vehicles (FCHEV), then they
interface the RNN with a NMPC to create an energy management system. As we
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can see in [[16]] the NMPC approach can reach the desired performances, not only
running in a real-time applications, but also using a low-cost hardware.

An interesting area of research is adaptive control, which is based on the
principle of adjusting controller parameters in real time, following an online eval-
uation of the system to be controlled. The aim is to follow the changes of the
system, although no mathematical model can incorporate neither all the possible
mechanisms of the system, nor all the possible disturbances that can occur, some
system changes can be evaluated and faced in a proper way. We can use different
tunings to enhance the performance in different situations, while some controller
are blocked in only a single configuration, which is a trade-off among all the
possible setups. To better understand the concept we can think at the load of a ve-
hicle: the total mass of a vehicle can change easily, more passengers or luggages
can be loaded or unloaded. The changing of the mass, and the distribution of it,
influences the entire dynamics of the vehicle and the energy demand. Here Xin
et al. [19] have developed an interesting concept: using a recursive least square
algorithm they estimate on-line the mass of a vehicle, so the mass is treated as a
variable in the control algorithm. As shown in [19]], by using a different tuning
strategy to account for variations in mass, they design a controller that reduces ad-
ditional fuel consumption compared to a deterministic parameter scheme, which
cannot adapt to the change of the characteristics of the system since some features

of the vehicle, like the mass, are treated as a constant.

1.4 Methodology

The work will focus on the control of an EV, the aim is modelling the car both
in its longitudinal and lateral behaviour and from the standpoint of the electric
powertrain. Since the primary goal is to develop a control algorithm, the model
will be designed to achieve a high level of accuracy while maintaining manage-
able code complexity and ensuring affordable computational effort. Based on this
principle, some characteristics of the system, like the efficiency of the EM, will
be taken constant during each optimization problem even if they should be update
also within the prediction horizon.

Regarding the model of the vehicle, a Single-Track scheme will be taken as

7
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reference, and some of the relationships will be simplified under the working con-
ditions. However, the main nonlinearities of system will be taken into account and
the Single-Track model provides the ideal basis of the dynamics in order to re-
trieve accurate results. The Single-Track model does not capture some behaviours
of the vehicle, like the suspension dynamics, the road-tire interaction phenom-
ena etc., all these phenomena will be ignored consciously, since the aim is not to
model perfectly the car in order to develop a control system for each single part
of the vehicle, but the development of a control system for the total dynamics of
the car.

After the study of the system model, real-world data taken from a Fiat 500e,
owned by the Politecnico di Torino, will be used to shift the theoretical develop-
ment to a more practical and quantitative work.

The working flow has the following steps:

* Lateral and longitudinal dynamics modelling, along with powertrain mod-
elling, are developed with particular consideration for the aspects of the

model that affect controller performances and accuracy.

* Designing of a NMPC controller with a fracking approach, it will be taken

as a benchmark of performance.

* Testing of the NMPC controller on difference scenarios, in order to have an
idea of the performances that can be reached with an affordable computa-

tional time and the limits of the controller.
* Design of a NMPC controller with an economic approach.
* Testing of the EMPC controller on the same scenarios of the NMPC.

* A comparison between the tracking NMPC and EMPC approaches in con-

troller design.

* Design of a NMPC controller and an additional term by means of an Aver-

aging Conflicting approach, as detailed in [3].

* A comparison between the classical tracking NMPC and Averaging Con-

flicting approaches in controller design.

8
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The implementation phase and simulation phase are developed on MATLAB
[18]], while the optimization problems are solved by means of CasADi [11] func-
tionalities.

The following scenarios were considered for evaluating system performance:

* Reference Trajectory 000: The first scenario is a repetitive path, built

in a sinusoid shape. It is travelled at constant longitudinal speed.

* Reference Trajectory 001: The second scenario is more realistic, the
path resembles a real road in which there are wide-radius curves and ex-
tended, nearly straight segments. The trajectory is travelled at different lon-

gitudinal speed.

* Reference Trajectory 002: The third scenario is similar to the second
one, but with a longer distance to be travelled. The longer distance can
show how the approach can influence long trips in which the autonomy of

the vehicle is fundamental.

1.5 Thesis Structure

The thesis follows a logical flow: starting with the basics knowledge about an EV,
then the physical model of the system is explained in detail. After outlining the
adopted control theory, the implementation of the controller, for each control strat-
egy (tracking NMPC, EMPC and Averaging Conflicting Objectives), is presented.
In the end the results of the simulations are analysed.

The organization of the chapters is the following:

* Chapter [2|- Fundamentals of Electric Vehicles: the chapter provides the
basics knowledge on an EV, describing its most important components. In
this chapter we can understand how the major components of the vehi-
cle work and how they interact, moreover the differences with a vehicle

equipped with an ICE are highlighted.

* Chapter 3| - Physical Model of the System: in this chapter the physical

model of the lateral and longitudinal dynamics of the vehicle is described,



Introduction

then the relationships with the electric powertrain in terms of rate of State
of Charge (SOC) of the battery and power are detailed. In this chapter can

be found the equations of the model used in the model predictive approach.

Chapter 4 - NMPC and EMPC Framework: in this chapter theory of
the advanced control technique named MPC is resumed. Particular focus
is placed on the control approaches adopted: tracking Nonlinear Model
Predictive Control (NMPC), Economic Nonlinear Model Predictive Con-
trol (EMPC) and Averaging Conflicting Objectives.

Chapter [5|- Controller Implementation, Simulation Results: the chapter
focuses on the implementation of controllers, with different approaches, in
the software environment MATLAB. Here the cost function design, the con-
straints formulation and the practical implementation tools and challenges
are detailed. Then simulations on different patterns are reported and anal-
ysed to understand the different performances of each controller.

Chapter [6] - Conclusions and Further Developments: the final chapter
discusses the final results, highlighting strengths and weaknesses of the ap-

proaches, and possible future extensions of the work are discussed.
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Chapter 2
Fundamentals of Electric Vehicles

As stated in [6]], the number of battery-only electric passenger cars in European
Union countries grew twelvefold from 2018 to 2023, making them a new reality
to be addressed on our roads. The increasing number of EVs, and in general of
vehicles that use low-emission fuels, is responding to the demand for sustainable
transportation. The shift of the transportation to the market of electric and hy-
brid vehicles affects both private and public transportation, then the automotive
companies are significantly investing towards electric powertrain development.

To provide a basic understanding of these technologies, the main components
of an electric vehicle’s powertrain are introduced in the following chapter. The
reader will gain insight into the interaction of these elements, highlighting the
substantial differences compared to vehicles equipped with an Internal Combus-
tion Engines (ICE).

2.1 Battery Management System

The Battery Management System (BMS) continuously monitors the parameters
of the battery cells to ensure safety and optimal operations. The BMS supervises

functions like:

* Tracking of the State of Charge (SOC) of the battery to compute an estima-

tion of the available energy in-real time.
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* Tracking of the State of Health (SOH) of the battery in order to monitor the

ageing phenomena of the battery.

» Temperature control, it is essential to ensure safe operations, as both exces-
sively high and low temperatures can lead to premature degradation or even

trigger thermal runaway.
* Protection against overcharging and deep discharging.

The BMS monitors also the behaviour of each cells of the battery: Lithium-ion
batteries are made up of several cells, they are connected in series or in parallel
to built the total battery. Unfortunately, due to tolerance of manufacturing, age-
ing or different temperatures between cells, each unit can have different speed
of charging or discharging, or different voltage level. The different behaviour of
the cells can lead to degradation, temperatures increasing, potential swelling and
other safety issues. The BMS maintains the balancing between the different cells
to avoid arising of these problems.

In the end the BMS ensures an efficient and safe utilization of the battery,

while aiming to maximize the component’s lifespan.

2.2 Inverter and DC-DC converter

The EV powertrain contains two main power conversion devices:
* Inverter.
* DC-DC converter.

The battery pack provides electric energy in DC form, but most of the Electric
Motor available works only in AC; then the Inverter has the function to convert the
electric energy in DC form to energy in AC form. As with any energy conversion
between different forms, a portion of energy is inevitably lost (as heat). However,
the Inverter has a high efficiency as we can see in Table[3.3] minimizing this losses.
The Inverter works in both direction of power flow: when the vehicle needs power
to move forward, the power flow goes from the battery to the motor, and then to the

wheels; but during a travel also deceleration and braking can occur, in this latter
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case the motor acts as a generator providing power to the Inverter that converts the
energy from the AC form to DC form to charge the battery. When a braking torque
is exploited to recharge the battery pack the vehicle is in regenerative braking
mode.

The DC-DC converter transforms the high voltage (100-400 V) power pro-
vided by the battery pack to a low voltage power (12-24 V) to feed other services
of the car such as lights, air conditioning, infotainment devices etc. Basically it is
used to step-down the high voltage, i.e. a buck converter.

It can be present also a DC-DC boost converter, its aim is to step-up the voltage
at the output of the battery pack in order to have a power flow at high voltage and
low current feeding the EM. The boost converter can be used in some vehicles,
but since it is not always present we will not consider it in the prediction model,
whereas the buck converter must be taken into account due to its power conversion

efficiency: 1.

2.3 Motor Control Unit and Vehicle Control Unit

The Vehicle Control Unit (VCU) and the Motor Control Unit (MCU) works to-
gether in an Electric Vehicle to ensure power delivery, efficiency, and overall drive.
VCU can be seen as the brain of the vehicle: it works at high level, managing the
entire vehicle. It computes the torque demand based on multiple parameters, in-
cluding driver inputs, and governs the overall vehicle dynamics. These parameters
are then used to optimize power delivery for efficiency, ensure traction control,
and enhance regenerative braking to maximize energy recovery. The VCU is also
involved in the thermal management: it monitors the different part of the power-
train to prevent overheating, or engages cooling systems if needed.

Regarding the MCU it can be seen as the muscles of the vehicle: it works only
on the motor. Once the VCU determines the appropriate strategy, it communicates
a torque request to the MCU. The MCU then translates this command into precise
control actions on the EM, ensuring smooth acceleration and deceleration. In this
sense the MCU has also a role in the thermal management: it tries to minimize

the motor current in order to minimize heat generation [5].
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2.4 Thermal Management

The thermal management monitors and controls the temperatures of the critical
components of the vehicle, in order to guarantee efficiency, longevity and safety.
Power electronic devices, particularly inverters and converters, as well as the bat-
tery pack and the electric motor, operate within a specific temperature range that
ensures safe and efficient usage of the components. For example, from [8]] we
can see that the battery has a temperature range of -30°C/60°C: it can reach these
limits, anyway they are not temperatures of working of the vehicle. Regarding
the battery pack, a too high temperature of the cells can lead to degradation or
blazing, on the opposite a too low temperature can lead to lack of autonomy.

For the EM a high power demand is satisfied by a high torque, i.e. by a high
current. A high current leads to high loss of energy due to the Joule effect, more-
over the high rate of changes of the magnetic field, in the rotor or the stator, of
the motor caused by the high rotational speed, generates hysteresis losses. In the
end, all the losses generate heat, so the temperature of the motor must be con-
trolled to do not overpass the limits: when the EM approaches high temperatures
the insulation of the windings can degrade, then short circuits or other faults arise
in the motor, additionally the internal resistance increases proportionally to the
temperature leading to higher Joule losses.

The power electronic components (inverter and converter), in addition to the
Joule losses, generate switching losses. They are generated by the transistors in-
side the devices. At high frequencies the switching losses increase, for instance
this situation occurs at high loads or during a fast charge of the battery. Even if
the cooling demand is less intensive for power electronic components, however
they generate a significant heating.

The thermal management system relies on data collected by sensors embedded
within each component to enable real-time monitoring. Its purpose is to maintain
optimal operating temperatures through the intelligent use of cooling strategies,
such as liquid cooling and forced-air ventilation. This system is fundamental to
maintain the vehicle’s overall reliability and extending its lifespan.

As observed, the causes of overheating in EVs differ significantly from those

in vehicles equipped with an ICE, where the primary sources of heat are mechan-
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ical friction and extremely high temperatures generated within the combustion

chamber.

2.5 Electric Motor and Transmission

In general the vehicles that use an ICE have as major problem the need to adjust
the torque and the rotational speed of the motor before reaching the wheels. The
complexity of the transmission system in an ICE vehicle arises from the need to
identify the optimal combination of clutch characteristics, gearbox configuration
(with multiple transmission ratios), and accelerator control. This coordination is

essential to address the following challenges:

* The optimal condition of work for an ICE is only around a determined value
of rounds per minute. So, if we want to move the vehicle at a speed that is
far from this optimal area we will lose a lot from the point of view of the
efficiency. Then we need to adapt the speed of the motor, which is basically
always the same for efficiency reasons, to the different speeds at which the

wheels can rotate during a road trip.

* The ICE cannot provide high torque at low rotational speed, but it is a com-
mon situation during a travel in a vehicle: to start the motion we need a

great torque (to overcome the inertia) at practically null speed.
These problems are not present in an Electric Motor:

* an EM has, in general, a large number of areas (or working points) at high

efficiency at different rotational speeds.

* an EM can provide a high torque even at very low speed, or at practically

null speed.

Thanks to the characteristics of the EM the transmission system of an Electric
Vehicle is much simpler than a vehicle with an ICE. In an EV we do not need a
complex gearbox with different transmission ratios, just one, to enlarge the torque,
is sufficient. This great mechanical simplification leads to higher efficiency in the

transmission of the power from the motor to the wheels: less mechanical friction
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is present, whereas the efficiency of the transmission system of a vehicle with an
ICE rarely reaches the 90%, in an EV easily the 90% is overcame. The vehicle
that is taken into account for the simulation part in the following chapters has a
transmission efficiency, including the gearbox efficiency, of 97%, as we can see
in Table

2.6 On-Board Charger

The battery of an Electric Vehicle is recharged using direct current (DC) electrical
energy. However, long-distance power transmission through the electrical grid is
typically carried out in alternating current (AC) form. As a result, at charging
points connected to the grid, the available power is AC. To address this mismatch,
the vehicle is equipped with an On-Board Charger (OBC), which converts the AC
power from the grid into DC power suitable for charging the battery pack.

The OBC manages the AC-to-DC conversion process safely and efficiently,
adapting to different charging levels and monitoring the voltage and current to
protect the battery’s health [7]. The presence of OBC allows a slow recharge
during overnight stays at home or other long stops.

On the other hand there is also the need to have a fast recharge in some situa-
tions: in these cases DC fast charger can be used. They bypass the OBC entirely,
delivering DC power directly to the battery at much higher rates, reducing signif-
icantly charging time according to [7].

The following work does not focus on the OBC control system or its interac-

tion with other components to ensure the safe and reliable operation of the EV.
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Chapter 3

Physical Model of the System

In the MPC approach the model of the system is fundamental: the prediction of
the events is based on an approximated model of the real system. Unfortunately,
a very precise and exhaustive model will lead to an unaffordable computational
demand, moreover it is practically impossible to model a physical system in a
perfect manner and anyway unpredictable disturbance can play a role in the real
physical system. Hence, the physical model of the system must be a trade-off

between precise modelling and simplicity:

* A high-precision model leads to good prediction and then to effective con-

trol response. But a overly precise model is unmanageable.

* A simple model leads to manageable computational demand. But a overly
simple model will differ significantly from the real system and fail to cap-
ture the behaviour of the physical quantities needed for computing the right

control action.

3.1 Vehicle Parameters

The vehicle parameters used in the simulations and in the tuning of the controller

are taken from a Fiat 500e owned by the Politecnico di Torino, they are shown in

Table 3.11

17



Physical Model of the System

Parameter Symbol | Value | Unit
Vehicle mass m 1400 kg
Moment of inertia (estimated) 1 1867 | kg- m?
Distance between CoG and front axle Ly 1.2 m
Distance between CoG and rear axle I, 1.4 m
Frontal surface of the vehicle Ay 2.15 m?
Drag Coefficient Cy 0.33 -
Wheel Radius r 0.3 m
Transmission ratio of the gearbox Tob 9.6 -
Efficiency of the transmission Ner 0.97 -
Maximum torque provided by the EM | T7}7* 280 Nm
Minimum torque provided by the EM T -280 Nm

Table 3.1: Nominal parameters of the EV to be controlled: Fiat 500e.

In Table the vehicle mass is equal to 1400 kg, while in [8] the kerb
weight is 1290 kg. Adding the weight for a single passengers (80 kg) and

the weight for luggages, we round the car’s weight to 1400 kg.

3.2 Longitudinal and Lateral Dynamics Model

In the following section, the longitudinal and lateral dynamics of the vehicle are

described, and the interaction between these two types of motion is highlighted.

3.2.1 Longitudinal Dynamics

The Longitudinal Dynamics is used to design the Adaptive Cruise Control part
of the autonomous drive. The model is based on the Newton’s Second Law of
Dynamic, in which the mass of the vehicle is considered as concentrated in the
Center of Gravity (CoG); therefore all the forces are applied on the CoG. The

model can be expressed by the equation:

m- ‘}x = Erac - (Faero +Froll +F:vlope) (31)
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where:
* m is the vehicle mass, measured in [kg];

* v, is the longitudinal velocity of the vehicle measured in [m/s], so v, = ay

is the longitudinal acceleration of the vehicle measured in [m/s?];

* Firqc is the Traction Force provided by the power train, measured in [N];

* Faero is the Aerodynamic Resistance Force or Drag, measured in [N];

* F,,y is the Rolling Resistance Force, measured in [N];

* Fjiope 18 the Slope Resistance Force due to road inclination with respect to
the horizontal (road’s slope), measured in [N].

Traction Force

The input of the longitudinal model is the Traction Force F;,4., which is used by

the car to move forward; but since the motor can be seen as a torque generator

is more convenient use the EM Torque Tgjs as input. The Traction Force and the

torque provided by the motor are directly related, without considering losses:
TemTep

Firac = (3.2)
r

we must consider the losses due to the transmission system of the vehicle, so the

actual relation between the Traction Force and the EM Torque is:

TEmTep

Ner (3.3)

Ftrac -

where:

* Ty is the transmission ratio of the gearbox, for a car the gearbox is usually

a speed reducer (torque multiplier): Ty, > 1.
* 1 is the efficiency of the transmission system.

* ris the radius of the wheels, measured in [m].
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Aerodynamic Resistance

The Aerodynamic Resistance, also called Drag Force (Fg,,,), is caused by the air
pushing against the vehicle as it moves forward. This force largely increases with
the longitudinal speed of the vehicle, so it is the main opposition to win when the
car moves at high speed, like in a highway. The Aerodynamic Resistance Force is

modelled by the following equation:
1 2
Faero = EpAdeVx (34)

where:
« p is the air density (typically 1.225kg/m? at sea level);

* Ay it the frontal area of the vehicle, i.e. the surface that the vehicle exposes

to the wind in a frontal view, measured in [m?];
* C, is the drag coefficient;
* v, is the longitudinal velocity of the vehicle, measured in [m/s].
Most attention is typically directed towards the vehicle’s dimensionless drag
coefficient, C;, which represents its aerodynamic efficiency.
Rolling Resistance

The Rolling Resistance Force (F;,y;) is related to deformation of the tires as they
roll on the road surface, the interaction tire-road generates an opposition to the
forward motion of the car. Physically, tire deformation alters the pressure dis-
tribution across the contact patch between the tire and the road surface. This
irregular distribution leads to energy dissipation, which ultimately manifests as a

resistive force opposing the vehicle’s motion. This force is typically modelled as:
Froll :mgf,cos(e) (3.5)

where:

« g is the gravitational acceleration, measured in [m/s?];
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* f; is the rolling resistance coefficient, it depends on several factors as tire

type and material, tire pressure and road surface.
* 0 is the road inclination with respect to the horizontal.

o 6 > 0 indicates an uphill,

o 0 < 0indicates a downhill,

anyway the value of the rolling resistance doesn’t change in the two cases

(it derives from the cosine in the expression, which is an even function).

Slope Resistance

The Slope Resistance, also known as Gravitational Resistance, represents the
component of the vehicle’s weight that acts along the direction of motion trav-
elling on an inclined road. This force can oppose to the motion, or can help the
motion, or it can be not present based on the inclination of the road. Hence, Fy;,pe
plays a significant role in determining the required Traction Force needed to travel
on a road, especially if it is extremely steep. When a vehicle travels on a road with
an inclination of @ (according to the sign convention defined in the previous sec-

tion), the gravitational force can be decomposed in two components:

* A vertical component, that is perpendicular to the road. It contributes to the

normal force on the wheels.

* A longitudinal component, that acts on the direction that is parallel to the
road: it opposes to the vehicle motion in case of uphill roads and it assists

the vehicle motion in downhill scenarios.

The Slope Resistance corresponds to the longitudinal component of the gravita-

tional force, and it is given by:
Fyjope = mgsin(0) (3.6)

To simplify the simulation we will consider a road with no inclination, i.e. 6 =

0, so the Slope Resistance is null and the Rolling Resistance is constant.
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3.2.2 Lateral Dynamics

The Lateral Dynamic Model is taken from [13]], as we will see is related to the
Longitudinal Dynamics by means of the longitudinal acceleration a.

The Lateral Dynamics formulation is based on the Dynamic Single-Track
(DST) model. The DST model is characterized by a Single-Track (two wheels:
one rear wheel, one front wheel), which is equivalent to a vehicle with four wheels,

where the left part is equal to the right part as shown in Figure

Figure 3.1: Scheme of the Dynamic Single-Track model, from [13].

The model has six states:

® X1=X.
o XZZY.
* X3 =Y.
® X4 = Vy.
® X5 =Vy.
* Xo = Wy.

22



Physical Model of the System

The following equations describe the model:

X1 =X = vycos(y) — vysin(y) (3.7a)
Xy =Y = vysin(y) + vy cos(y) (3.7b)
== oy (3.7¢)
iy = ¥y = vy 0y + ay (3.7d)
2
X5 =Vy = —Vy @y + n—i(Fyf +F,) (3.7¢)
) 2
Xo = Wy = Y(Znyf — lrFyr) (3.71)

where:

* X,Y: are the coordinates of the vehicle CoG in an inertial reference frame,

both measured in [m].
* y: is the heading of the vehicle, measured in [rad)].
* Wy =V is the yaw rate, measured in [rad /s).

* V: is the velocity vector in the inertial reference frame, measured in [m/s],

as shown in Figure[3.2]
o vy: is the longitudinal speed of the car, i.e. the V component along the
longitudinal axis.
o vy: is the lateral speed of the car, i.e. the V component along the trans-

Verse axis.

* a,: is the longitudinal acceleration in the inertial reference frame, measured
in [m/s?]. Tt is computed as indicated in (3.1)), and relates Lateral and Lon-

gitudinal Dynamics.
* §;: is the Steering Angle, measured in [rad].

 [3: is the vehicle slip angle, i.e. the angle between the vehicle longitudinal
axis and the velocity, measured in [rad]. B for the front wheels, 3, for the

rear wheels.
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m,I: are mass in [kg] and moment of inertia in [kg - m?] of the vehicle.

[f: is the distance between CoG and front axle of the vehicle, measured in

[,: 1s the distance between CoG and rear axle of the vehicle, measured in

[m].

Cy,ny: are front cornering stiffnesses in [N /rad] and front vertical load

factor. Then cy = Cyny, the values of these parameters are shown in Table

B2

C,,m,: are rear cornering stiffnesses in [N /rad| and rear vertical load factor.

Then ¢, = C,n,, the values of these parameters are shown in Table[3.2]

Fy, and Fys are the lateral forces exchanged between tire and road in [N],

respectively on the rear axle and on the front axle.

Parameter Symbol | Value | Unit
Front cornering stiffness Cy 20-10° | N/rad
Rear cornering stiffness C, 20-10° | N/rad
Front load factor Ny 1.35 -
Rear load factor ny 1.0 -

Table 3.2: Value of cornering stiffness and load factor, taken from [13].

The following linear (for constant v,) model is considered for the lateral

forces:

Fyp = —csPs
Fyr: _Crﬁr
Vy+ 1o
ﬁf _ T % 6f
Vx
vy — @
ﬁr: oy Ty
Vx
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Clearly, in real conditions v, is not exactly constant, but during a
single prediction horizon, which is in the order of magnitude of tens
of ms, it can be considered constant. Moreover, as said before, it is
not possible to have a perfect model, some approximation must be

done.

Since the value of the tire slip angles 8 are approximated (there is no

arctan(+)) in the relation, the model is quite precise for small values
of the steering angle: tan(f3) ~ 8 for 6 — 0 (0y < 20°, i.e. §f <
0.35rad).

J

Note 3.4

If 6f = 0 for all the time, then we are on a straight road. In this

scenario Y coordinate of the CoG, v, and y will never change.

J

Note 3.5

When vy — O then Fys, Fy, — oo. This explosion of values is re-

lated to the model: the Single-Track model assumes that the vehi-
cle is not still, but in a quite high range of velocity. A safe limit of
Vysafe = Sm/s is used to avoid blow up of the lateral forces’ value in

the simulation.
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Figure 3.2: Scheme of the reference frames in the Lateral Dynamics Model, from
[13].

3.3 Gearbox Model

As said, the motor can be seen as a torque generator, but for practical reasons (cost
of production, dimension of the motor itself, weights etc.), in general a motor has
small dimension and small inertia. In this way it can provide a small torque, but
it can run at very high speed. Unfortunately, those are not the characteristics that
we need. Therefore, an additional component is necessary to extract a high torque
value from the motor: the vehicle’s gearbox.

The gearbox has two aims:

* Speed matching: since the motor runs at high velocity, that is not compa-
rable with a normal speed of a car, we need to reduce the rotational speed
of the motor (wgys) before it reaches the wheels (®,,), ensuring the most

efficient power transfer.

* Torque amplification: since the small inertia of the motor cannot provide
the high torque needed to a vehicle to move at high speed (for example in
highways) or win the opposition of the force in uphill situation, the low-
torque output of the motor (7gp/) must be enlarged before it reaches the
wheels (T,,).

These two aims are reached using the gearbox, which has two parameters of in-
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terest:

* The gearbox ratio Tg,: it is a multiplication factor, by which is enlarged the
value of the output torque of the motor, and by which is reduced the value
of the rotational speed of the EM. This opposite behaviour is clearly linked

to the principle of energy conservation.

* The gearbox efficiency or transmission efficiency 1);,: in any case a loss is
present in the drivetrain, and it plays an important role in the power man-

agement of the total system.

In the end, the relationships between the EM angular velocity gy, and torque

Trym, and the wheel angular velocity @,, and the wheel torque 7,, are:

)
o, = PEM (3.9)

Tgb
T, = Tey - Tgp - M e TE) (3.10)

In (3.10) must be taken into account both the acceleration and the braking condi-
tion: in the first case the EM that provides a torque to the system, as a result of
losses, a slightly lower torque reaches the wheels. In the other way around, i.e.
braking condition, the braking torque transmitted from the wheels to the motor

will be slightly lower.

3.4 Wheel Model

The wheels of a vehicle are not perfectly rigid; they undergo deformation, which,
as said, affects the vehicle’s motion. This influence involves many factors, but to
make the system manageable they are not consider except for the Rolling Resis-
tance Force through the coefficient f,. Therefore, the radius of the wheels is fixed,
and it is a simple scaling factor between rotational quantities and linear quantities,
in particular:

T
F,=-2
r

(3.11)

N——— (3.12)
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In the end, replacing (3.10) and (3.9) respectively in (3.11)) and (3.12):

ign(Tgm)
Tev - T - nmgn
Ftrac:Fw: J ’ s (313)
o,
= M, (3.14)
Tgb

3.5 Electric Motor Model

The power provided by the EM is given by a Torque component (7gy) and a

rotational speed component (@Wgyy):
Pey = Tem - OEm (3.15)

The motor can provide this power thanks to the battery, the reserve of energy of the
vehicle, but the power provided by the battery to the motor (£,) does not coincide
with Pgys: the efficiency of the EM and the efficiency of the Inverter must be taken

into account.
Pem

(Mt (©Ey, Tenr) - M) E M)

P, = (3.16)

where:

* Nem(®eym, Tem) is the efficiency of the EM, which depends on the value of

the angular velocity and the torque of the motor.
* Niny 1s the efficiency of the inverter.

As explained in Section[3.3] the efficiencies have differing impacts during braking
and acceleration modes, it is again highlighted in (3.16).
Regarding the value of gy (@en, Tewm) it is computed from the efficiency map

of the motor, which is shown in Figure (3.3
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Electric motor efficiency map

250 ¢

200

150 |3

100 1
50

Shaft Terque TEM [Nm]
o

-50 | 40
-100 e

30
-150

20

-200

\

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
EM speed Nem [rpm]

-250

(a) 2D representation of the efficiency map of the EM.

Electric Motor efficiency surface

Vo 70
Vst
H%

i
[zl
Ml “

i

Efficiency ’TEM[%]

4400 o

EM speed Cem [rpm]
Shaft Torque TEM [Nm]
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Figure 3.3: Efficiency map of the EM.
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3.6 Battery Model

The model for the battery dynamics is taken from [4].

The battery model takes as input the power requested by the motor Pgys to
satisfy the torque request gy and the efficiency of the motor Mgy (ngym, Tem),
then returns as output the power generated by the battery P and the SOC at the
current time instant. It’s important to notice that P, # P;*".

As detailed in [4], the SOC is defined as the ratio between the battery charge
Qp and the nominal battery capacity Q,om:

Op

SOC = ¢ = 0
nom

€[0,1] (3.17)

The dynamic equation that represents the SOC rate with the battery current is

obtained by differentiation and it includes the physical quantities of interested:

AARS

- — 3.18
C Qnom ( )

where:

* P, is the power requested at the battery taking into account the motor effi-
ciency Ny and the inverter efficiency 1;,,, as detailed in Section

* Mp,1(Py) is the Coulumbic efficiency, it quantifies a fraction of the current

that, unfortunately, is lost during both battery discharge and battery charge.

1 .
—a 1if P, > 0 discharge phase.
Moy =4 " (3.19)
nge“ if P, < 0 charge phase.

Normally, a battery pack is made by Ny, cells connected in series and N, cells

connected in parallel, then we have a total of N, = gse’

par

connected in series in the

total battery.
Each cells is modelled as an ideal voltage source Vbo “* with a series output
resistance RZ’S, then the total voltage and the total resistance of the battery will be:

V¢ = NpV,)"" and R) = N,R}". In real-world batteries the values of V¢ and R
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depend on SOC. In order to make the model as realistic as possible the value of
V2<(£) and R7(&) will be computed by polynomial fitting of a set of experimental
data, taken from [[I4]. The interpolation is made by a third order polynomial and
it is used to evaluate the voltage and the resistance at each time instant based on
the value { (k). The resulting interpolated behaviour is shown in Figure

Taking into account the Joule losses the power generated by the battery is:
PE" = VL, — RYI; (3.20)

Then, the actual power delivered from the generated power must take into account
also the losses due to the power converter, which interfacing the battery with the

DC bus, i.e. the efficiency of the power converters 1), »:

1 - .
—m 1f P, > 0 discharge phase.
S S
Mb2 = (3.21)
n," if P, <0 charge phase.

The power generated can be also expressed as:
PY" =My Py (3.22)

By comparing (3.22)) and (3.20)), and solving for the battery current, we obtain:

b= sy (V0 - WP —am0) 75 =
2R} (&) (3.23)
1 oc 0C2 o .
:W@ (C)—\/Vb (C)—4Rb(5)'nb72'Pb)

The dynamical model of the battery’s SOC is:

CMea(By) 1
Onom ZRZ(C)

¢ = (W0 - P © - riEma-n) G20

The dynamical model of the battery assumes the form: C = fe (8, P),
where P, is linked to Pgy as expressed in (3.16).
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Figure 3.4: Experimental Data on Voltage and Resistance for a Single Cell in the
Battery Pack, taken from([[14].
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Accordint to [4], the model (3.24)) forces an upper bound on the value of P,

that is: 5
P <

- 4R}(C)

This upper bounds still depends on §, a complexity difficult to manage. Typically,

an upper bounds independent of { is chosen to simplify the model, and to be sure

=P, (3.25)

that in each situation the power request is feasible, i.e. the battery can provide it,

this bound is chosen as:

PP < min_B, (3.26)
¢ele )

where ¢ and ¢ are the minimum and maximum value of the SOC admissible.

For simplicity the lower and upper bound of P, are chosen as:

PP = CIETEZHQ P, and P =-P" (3.27)

in the simulations of Chapter [5
The Battery Nominal parameters are listed in Table [3.3]

Parameter Symbol | Value | Unit
Number of cells in series Nier 108 -
Number of cells in parallel Npar 1 -
Total number of battery cells connected in series | N, = % 108 -
Nominal battery capacity Onom 60 Ah
Coulumbic efficiency of the battery n,f””l 0.95 -
Conversion efficiency of the battery n;" 0.97 -
Inverter efficiency Niny 0.97 -
Upper bound on the battery power PZ P 13271 | kW
Lower bound on the battery power Pé”w -132.71 | kW

Table 3.3: Battery Nominal parameters.
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3.7 State Space Representation

The overall dynamics of the system can be described by a nonlinear function that

characterizes its time evolution:
x=f(u,x) (3.28)

From the general expression in (3.28)) a State Space Representation of the model
can be retrieved. For the State Space Representation, the following seven quanti-

ties are chosen as system states:

x=| v, (3.29)

Each component in the vector state x has a clear physical meaning:

* x1 = X is the position along the x-axis of CoG of the vehicle, measured in

[m].

* xp =Y 1is the position along the y-axis of CoG of the vehicle, measured in

[m].

* x3 = Y is the heading of the vehicle, i.e. it is the angle between the lon-
gitudinal axis of the vehicle and the x-axis, positive in counter-clockwise

direction, measured in [rad)|.
* x4 = vy is the longitudinal velocity of the vehicle, measured in [m/s].
* x5 = vy is the lateral velocity of the vehicle, measured in [m/s].
* X6 = Wy is the yaw rate of the vehicle, measured in [rad /s].

» x7 = { is the SOC of the battery, which is dimensionless.
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The system’s behaviour is influenced by two control inputs, which are the

quantities that the controller can change in order to guide the vehicle in the desired

u= [TEM] (3.30)

Also the control inputs have a physical meaning:

trajectory:

* uy = Tgy is the torque provided by the EM, measured in [Nm], to the vehi-
cle. Tgy is the value before the enhancement, and the consequently losses,
of the gearbox. In simple terms, is the input that directly influences the ve-

hicle’s longitudinal acceleration and, consequently, its longitudinal speed.

* up = Oy is the Steering Angle of the vehicle, measured in [rad]. It is the
control input associated with the vehicle’s heading and enables it to stay on

track.

The state equations are derived from the Lateral Model in Section [3.2.2] where
the equations from to represents the first six states.

Moreover, the expression of the longitudinal acceleration in (3.7d) is taken
from the Longitudinal Model detailed in Section[3.2.1]leading to a final expression
of the kind a, = f(Tgpm,m):

TebMNtr
o — TEMth - (Faero ‘|‘Fslope +Froll) (3.31)

m

in (@) the extended expression of Fyero, Fyjope, Fron are not shown to do not
make heavy the expression and to highlight the relationship between a, and the
control input u#1. Regarding the second input u3, in is shown how the lateral
force on the frontal axle depends on the Steering Angle: Fyr(u3).

Regarding the last state, it can be shown that is related to the first control input.
From || it’s clear that the rate of the State of Charge, C , 1s a function of the
State of Charge, ¢, and the battery power, P,. Then the expression of the battery
current is directly related to the EM Torque, that is u;:

P, — Pem _ uy - Opm (3.32)

Mem(@ep, 1) - M) Mpas(0par, ) - Ny |12 0EM)
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Hence, P, (u1).

In the end, the total State Space Representation is:

1] x4 c0s(x3) — x5 sin(x3)
X2 x48in(x3) + x5 cos(x3)
X3 X6
xX= |x4| = Xsxg 4 u; Tgbrﬂtr7(Fae’r;;+F;l,,pe+Fm”) (3.33)
Xs —X4X6 + %(Fyf(uz) + Fyr)
Yo 21y Fypua) — by Fy)
_X7_ _ MNba (Pb(lgn)jr:b(m,ul) |

To do not make too heavy the expression not all the quantities are expressed in
details explicitly. Nevertheless, it can be appreciated how the control inputs affect

the states.
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Chapter 4

NMPC and EMPC Framework

Most control strategies simply provide a control action in order to react to current
errors. The typical controllers, such as PID or pole placements, use a fixed control
law, which is computed a priori. The MPC is different: it actively foresees the
system behaviour and plans an optimal control action, over a prediction horizon.
Its major characteristic is the possibility to choose the best possible control action
among a span of possibilities.

Unfortunately, this great flexibility and the powerful optimization method,
generate a more challenging study of the asymptotic stability with respect to sim-
pler method of control. However, under certain conditions, the MPC can guaran-
tee asymptotic stability.

As the name of the approach specifies, the method of control is strictly related
with the model of the physical phenomenon: we cannot predict the evolution of
the system if the model is not accurate, or worst not available. Nowadays, the
macroscopic mechanics and dynamics are detailed and well structured: the models
are deterministic, so we can use them for a predictive approach.

In general, a control system can be configured as either an open-loop or a
closed-loop scheme. For simple systems an open-loop configuration is sufficient
to control the plant. However, the dynamics of a vehicle in operation represents a
complex system, for which a closed-loop control strategy is required.

In control theory, the implementation of a closed-loop system is intended to

counteract potential disturbances and compensate for model inaccuracies. The
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loop closure in a MPC approach slightly differs from other control strategies, as
it is based on the receding horizon principle. Basically, the receding horizon
principle uses a moving time window during the operation to be sure of catch-
ing the actual evolution of the system instead of the evolution described by the
mathematical-physical model, which may lack disturbance modelling or may ne-
glect certain dynamical phenomena.

The basic idea of the receding horizon principle, as expressed in [17] is the
following: at the time step k the system is in state xi, then the optimization starts.
Using the initial state x; we can predict the following N, steps, using an opti-
mization criterion to choose the best possible evolution of the system over the
prediction horizon. Once the optimal input sequence u* is identified, correspond-
ing to the states sequence x* that satisfies both the performances and constraints,
we apply the first control action of the sequence: u*(1). The remaining control
actions u*(2),...,u"(N,) are discarded. Applying only u*(1), the plant evolves to
the state x;. 1. As the system evolves to the next step kK + 1, new measurements
provide update informations on the system, which are used as initial conditions
for the successive prediction window, and the iterative procedure starts again ac-
cording to the receding horizon principle.

By executing only the first input of the optimal sequence and starting a new op-
timization with updated informations, MPC effectively establishes a closed-loop
structure, enabling the controller to adapt to system changes, disturbances and
modelling errors. Otherwise, if we apply the whole sequence u* may happen, and
of course it does, that the system evolution differs from the predicted behaviour,
leading to a situation in which X0 (k + 1) # x*(k 4 i) due to the unmodelled
phenomena.

We can see as the receding horizon principle applied to a MPC approach gener-
ates a controller which combines a prediction-based planning of the control action
with a continuos update and correction of the prediction based on the ’feedback’
response.

The MPC controllers have several variants of algorithm. In this work we will
deal with a high nonlinear phenomena, so the basic Linear MPC is not effective,
we need to approach the problem with a Nonlinear MPC, and then an Economic

approach of the NMPC. The following chapter introduces the general NMPC for-
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mulation of a problem, outlines its characteristics and highlights the differences

compared to an Economic NMPC approach.

From now on, we always consider discrete-time systems. Controllers, and
in general computers, always work in discrete time. Even if the steps are
small, we must be able to deal with a discrete time representation of a phys-

ical system.

4.1 General MPC formulation

For MPC the primary applications are stabilization and tracking problems. In
tracking, the task is to determine a control action u such that the states of the
system x follow a given reference x,.r as close as possible. The reference can be
constant over time or can change over time.

Consider the discrete-time system:

X1 = f(xx, ug, dy) 4.1)

where:

* f(-) is a nonlinear function.
* x € R" is the state vector of the system.
* u € R™ is the vector of inputs of the system.

* d € R? is the disturbance vector of the system.

In the following work the disturbances are not considered, situations as a sudden
burst of wind are not modelled in the State Space Representation of Chapter [3]
therefore, the dependence on d is ignored. Of course they occur in nature, then
disturbances can influence the plant; however, the implementation of the con-
troller is not thought for applications in difficult conditions of driving, then we
can neglected the major disturbances. Anyway, in a real world application, the

disturbances must be considered.
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This simplification leads to the following form of the prediction model in

discrete-time:
Xir1 = f (%, ug) 4.2)

Assumption 4.1

The generic nonlinear function f(-) is locally continuos and differentiable.

Assumption 1] does not hold for the expressions of the State Space Repre-
sentation presented in Section but with some mathematical trick during the
implementation of the controller the assumption can be effectively enforced, as

we will see in Section[5.4]

The assumption [4.1] can seem restrictive, but are rare the cases in which

the nature is discontinuous and however some practical adjustments can be

used to avoid the discontinuity.

4.2 Tracking NMPC

The traditional framework typically prioritizes regulation or reference tracking.

* Regulation: In general, regulation refers to a control system whose ob-
jective is to drive the system output towards a pre-defined value following a
perturbation. The pre-defined value in most of the cases is zero or a constant

value.

* Reference Tracking: The tracking, instead, refers to a control system whose
aim is to track a reference value as faithfully as possible. The reference
value can be constant, but the case in which it varies over time is more

interesting.

The regulation is not really interested for our particular case, so we will con-
centrate on the reference tracking case.
The criterion used to drive the controller is a cost function, in which the dif-

ferent terms penalize the divergence from the desired value. It can happen that
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the trajectory of the states, or some of them, is exactly equal to the desired value
at some time step k. This lucky case is taken into account in the formulation of
the cost function, then we want to have a mathematical form that can penalize the
deviations from the desired value and cut out the penalty if the trajectory is exactly
what we want to reach.

The cost function that can satisfy these two conditions often take the forms
of a quadratic relation, convex if possible, in which the difference between the
reference value and the actual value of states or control input of interest guides the
penalties: if the difference is not zero the penalty is present in the cost function, if
the difference is not present, i.e. the variable is exactly equal to the desired value,
the penalty is removed.

Then the algorithm will minimize this cost function at each step & to find an
optimal solution for the situation.

A general example of a stage cost for tracking can be the following:

Np—1

£(x,u) = Z (’ ’ka _xref’ ’2Q + H”kp - ”releze) 4.3)
kp=0

where Q, R are positive diagonal matrices, containing suitable weights, that penal-
ize deviations from reference states and inputs, respectively. The behaviour of the

control system that uses (4.3)) depends on weighting matrices Q and R:

» Choosing g;; > r;; results in aggressive control with the objective of fast
tracking. If we have a fast tracking of the reference, the value of the control
input can assume values that differ significantly from the reference, or the
states may exhibit significant oscillations in order to reach the reference as

quickly as possible.

* Choosing rj; > g;; results in slow tracking of the reference of the states,
in fact we want to be closer to a reference behaviour of the control input.
More time is needed for reaching the desired configuration, but smooth be-

haviours of the physical quantities are often detected.
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The inclusion of a term that tracks the reference input in {#.3) indicates a

desire to impose a reference behaviour on the input as well. However, this
is not a mandatory procedure for tracking. Alternatively, limits on the input

effort can be imposed as constraints of the optimization problem.

\ 7

The asymptotic stability of this type of algorithm is difficult to study, but some
tools can be used to force stability or, at least, to push the algorithm in the right
direction. In particular stabilizing terminal conditions are effective for this pur-

pose, the two presented in the following sections are:

 Terminal cost, detailed in Section [4.5]

* Equilibrium endpoint constraint or terminal constraint, detailed in Sec-

tion4.6.11

4.3 Economic Nonlinear MPC Formulation

Economic Nonlinear MPC is a specialized strategy within the broader framework
of NMPC. The main idea of a NMPC is to penalize the distance from a refer-
ence or a pre-defined equilibrium using a suitable cost function as we have seen in
Section 4.1 whereas the economic approach is based on another principle. Since
we can formulate the expression of the cost function to address the changing of
all kind of quantities, we can use it to approach the minimization of energy con-
sumption, instead of focusing only on the tracking of a reference, such a viewpoint
characterizes the Economic NMPC framework.

We do not abandon the concept of reference tracking or the objective of driving
the system towards an equilibrium. This remains a point of paramount importance
in controller design: a controller that fails to achieve reference behaviour or de-
sired performance would be meaningless. But now we aim to exploit the interplay
between system dynamics and an alternative minimization approach to drive the
system towards the reference trajectory, without prioritizing its tracking from the
outset. Basically we want to follow the reference as an implicit consequence of

our new point of view on the cost function.
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Based on this idea, we can formulate the general cost function of Economic
NMPC as follows:

Np—1
J(x,u) = ( Z go(xkpyukp)> +V0(pr) (4.4)
kp=0

14

where:

* /y (xkp, Mk,,) is the economic stage, it expresses the quantity we are going to

minimize as a function of the state Xk, and the input Ug,-

*V, (pr) is an offset cost, it is related to system stability. It will be the termi-

nal cost.

4.4 Optimization variables

In an optimization problem, the optimization variables are those variables that can
be manipulated in order to determine the optimal solution. Basically, they are the
parameters that we can change for moving inside the space of admissible solutions
in order to find the optimal or suboptimal one. When solving a prediction model,

there are two main approaches for selecting the optimization variables:

» Explicit prediction form: we arrange the prediction model in order to have
an explicit relation between the states, the inputs and the initial conditions
of the states. In this way the future states are explicitly expressed in function

of the past inputs and the initial state:
x=oxg+1u 4.5)

This method is suitable when dealing with a linear model: matrices ¢ and
I" depend on the linear representation of the model. Although any model
can be linearized, this process may introduce significant difficulties in ac-
curately catching the actual behaviour of the underlying phenomena. More-
over, in this approach, the problem is strongly simplified: the optimization

variables are often only the control inputs u, while the states are computed
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as a linear combination of the initial states and the possible control inputs.
For a simple model, which can be linearized with a satisfying accuracy, and

for limited computational resources, it is an effective approach.

* Implicit prediction form: for complex system, for which the linearization
is not a reliable option, the implicit prediction form is employed: there is
not an explicit expression for computing the states from the inputs, but the
model relates states x and inputs u in an implicit form, as seen in ({.2).
In this approach, both states and control inputs are optimization variables.
Their evolution is dynamically constrained by the implicit expression of
the model and not just computed from ones others. The problem gains
complexity from the point of view of the constraints, but this form provides
greater flexibility and additional degrees of freedom in the search for an

optimal or suboptimal solution.

In the following work, and in general, the implicit prediction form is the approach
adopted in the development of the MPC controller. It means that the states: coor-
dinates of position of CoG of the vehicle, heading, longitudinal and lateral speed,
yaw rate and SOC, are treated as optimization variables in addition to the inputs
and the dynamic of the system is incorporated as equality constraints in the opti-

mization problem.

4.5 Terminal Cost

The best case of a predictive controller is given when we can predict all the future,
i.e., the prediction horizon goes from kj, = 0 to kj, = o. Clearly, predicting too far
into the future becomes impractical. Moreover, in the framework of the reced-
ing horizon principle, such long-term predictions are essentially useless. Thus,
the cost function is evaluated on a finite-horizon, which becomes the prediction
horizon.

In order to have a satisfying approximation of the infinite horizon with a finite
number of steps, we can add the terminal cost. The strategy of adding the terminal
cost is referred to as a quasi-infinite horizon, as explained in [10]. In general,

the terminal cost can approximate the behaviour of the cost function beyond the
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prediction horizon. To have this approximation, the weight P of the terminal cost
is chosen as solution of the Riccati Equation.

In our case, the terminal cost is always a stabilizing term, but its weight is
chosen after a trial-and-error procedure.

The presence of the terminal cost penalizes the states far from the stable equi-
librium or the reference value, enforcing the evolution of the system towards a
stable area. A terminal cost must be added in #.3)):

Np—1
J(x,u) = ( ) E(xkp,ukp)> +V(xn,) (4.6)

kp=0

where £(xy,,uy, ) is the stage cost, as expressed in (4.3), and V (xy,, ) is the terminal
cost. A simple example of terminal cost can be:

V(xn,) = [lan, — Xrer|[p (4.7)

where P is the matrix of the weights of the elements of V (xy, ).

In can be found a more detailed explanation of the computation of the
terminal cost, through a linear quadratic approach. However, this method
is computationally demanding and deviates from the goal of designing a
controller with an intuitive formulation. Therefore, it is preferable to use a
simpler idea of the terminal cost, that can engage a real situation as we are

approaching to address.

4.6 Constraints

As said, an important feature of the MPC is the capability to deal with constrained
optimization problems: it is well known that all real-world control systems have
an associated set of constraints. A simple control design approach can proceed
ignoring these constraints, but according to Goodwin et al. is generally true

that higher levels of performance are associated with the constraint boundaries,
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then it becomes essential to explicitly account for them in the control design.
In [[17]] are expressed four main methods to deal with constraints in control

system design:

» Cautious
In the cautious approach the performance requirements are relaxed until
all the constraints are met in any situation, it is a conservative approach
that allows the use of standard unconstrained strategies for the design. The
approach can be carried out with a rigorous and linear analysis of the prob-
lem, but the best performances are never reached in order to satisfy the

constraints even if they are not an insurmountable obstacle.

* Serendipitous
In the serendipitous approach, occasionally violation of the constraints are
allowed. Once again, they do not address the constraints directly: no spe-
cial precautions to handle the boundaries are implemented. In some cases,
system performance remains acceptable even in the presence of constraint
violations, but reaching high performances without facing directly the con-
straints can have a negative effect on the stability of the system, a risk that

is not always acceptable.

* Evolutionary
In the evolutionary approach, as the name suggests, there is an evolution
of the controller during the design. The first part of the design is made
with an unconstrained approach to the problem, then, in the second part,
the designer adds modifications and embellishments to avoid the negative
consequences of the constraints on the performances through an iteratively
trial-and-error procedure. In this second part, the aim is to avoid appearance
of negative performances directly related to constraints. For example, anti-
windup methods are among the modifications introduced at this stage. But,
it can happen that the modifications cannot avoid the negative consequences

of the constraints.

e Tactical

The tactical approach is the MPC approach: the constraints are incorpo-
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rated in the formulation of the problem, and the controller is thought to
deal with them from the beginning. The most used method to implement
this approach is to set the problem as a constrained optimization problem.
This method allows for effective control over the behaviour of the plant,
even though the solution to the optimization problem is always a trade-off
between performance and constraint satisfaction. Although, solving a con-
strained optimization problem is not an easy task, it is the most effective

approach.

The tactical approach is used in the following work.

The constraints can be added at the optimization problem in two forms:
* Equality constraints.

* Inequality constraints.

Equality constraints

An equality constraint enforces an exact relationship, they are typically expressed
as:
(X, u) =0 (4.8)

The function ¢(-) can be complex, but, in general, it is a common practice to
express the equality constraints in a matrix form, so it is a linear combination of
states and inputs. In most of the cases, the equality constraints are used to impose
a quantity equal to a reference Cyef(Xyef, Ure f), in this case it is useful to express

the constraints in the following form:

C(xkauk) - Cref(xrefauref) =0 (49)

This latter formulation is the most common in the solvers available, especially
because they cannot handle directly an equality constraints. The practical imple-
mentation of this type of constraints include the usage of (4.9) in an inequality

formulation in which lower and upper bound are equal to zero, i.e.:
OSC(xkauk)_cref(xrefyuref) <0 (410)
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The equality constraints are particularly useful for the equations describing the
dynamical model: we must be sure that the system evolves according to the pre-

diction model, so we express this need in the form of an equality constraint.

Although the purpose of equality constraints is to enforce exact equiva-
lence, they are often challenging to handle in practice during the resolution
of an optimization problem, particularly from the numerical point of view.
Thus, tolerance for respecting the equality constraints (and also inequality

constraints) are used.

Inequality constraints

The exact relations are not the only type of constraints that we can impose: upper
and lower boundaries are common, especially for actuators. In these cases, the
inequality constraints are suitable for expressing the bounds, the typical form they
take is the following:

Mt < e(xy) < M (4.11)

X
M < c(uy) < M (4.12)

Once again, this formulation can be easily expressed in matrix form, which can
be handled by a solver.
The two mentioned classes of constraints can be rewritten as:

c;nin < Cineq,i(-xk7uk) < c;nax i= 17 e q (4.13)

Ogco@q:j(xk:uk) <0 .]: 177p (414)
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Then the matrix form is straightforward:

Cllnin Cineg,1 (Xk, uk) Cllnax

" | < |CineaaOii )| g™ 4.15)
0 Ceq,1 (xk, uk) 0

L 0 ] -Ceq7p(xk,uk)- | () ]

4.6.1 Terminal Constraints

As said in Section {.2] a method for forcing asymptotic stability is the utilization
of the reasonable requirements of an equilibrium endpoint constraint or terminal
constraint. As detailed in [[10], a terminal constraint is a simple way of con-
structing a stabilizing terminal condition. The idea is straightforward: since
the optimization problem can be constructed with suitable constraints that respect
both physical and logical limits, it is also possible to incorporate stability-related
constraints. If we want to converge to the value x,.¢(k) at the end of the pre-
diction horizon, we can impose it as an equality constraint, in order to push the

optimization problem in the “right” direction:

xXu(k+ 1,x0) = f(xu(k,x0),u(k)) (4.16)

where x,(-) is the state derived applying the control action u, and f(-) is the non-
linear prediction model. Practically, adding this constraint, we are optimizing
only on trajectories of the states that, starting from the position x, are able to con-
verge to the reference, through an evolution compatible with the prediction model
f(x,u), this is the recursive feasibility property (see Section . Clearly, the
initial position xy must belong to the set of the feasible states, called Domain of

Attraction (see Definition @), otherwise all the constraints are meaningless.
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We are not exactly following the reasoning behind (4.16) in the controller

implementation. We will not use the prediction model to find a suitable
trajectories of the state, it will be too demanding. Instead, we assume that
the trajectory of the leading vehicle is consistent with the prediction model,

so we will impose a terminal constraint to converge to it.

We are strictly related to the method of resolution of the optimization prob-

lem and, in most of the cases, it needs an initial guess of the solution. The
initial guess becomes the starting point of the optimization algorithm; if it
is too far from a feasible trajectory, we risk not finding a solution to the

problem.

In Figure [d.1] we can see the practical effect of the terminal constraint.

Terminal constraint effect

T T
—Reference Trajectory
© Reference point to address
Prediction Horizion steps without Terminal constraint
*_Prediction Horizion steps with Terminal constraint [}

Y [m]
/

X [m]
Figure 4.1: Terminal constraint effect.
We can see that the evolution of the state on the prediction horizon is forced

to be closer to the reference trajectory, in order to try to respect the terminal con-

straint.
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4.7 Recursive Feasibility and Asymptotic Stability

The recursive feasibility and the asymptotic stability are two main aspects in the

MPC approach: the first one is related to the solvable characteristics of the prob-

lem, the second one ensures the approaching of the equilibrium point over time.
For both recursive feasibility and asymptotic stability, the concept of Domain

of Attraction is important.

Definition 4.1 (Domain of Attraction) The domain of attraction, or feasible re-
gion, for a tracking MPC controller is the set to which belongs all the initial states
such that, starting from them the system can converge to the desired value, without

violate the constraints.

X, (Xref) ={x € X | Ju €U s.t. x(kp) € X, u(k,) €U kp=0,...,N, — 1
and x(Np) = Xyer}

where x5 is the reference value to be achieved [9].

Therefore, the states that belong to the Domain of Attraction are the initial points
for which the tracking problem is recursively feasible and asymptotically stable.
Practically, if we start from a point of the domain of attraction, the problem can

be solved. The same concept can be applied at an Economic MPC framework.

4.7.1 Recursive Feasibility

A feasible solution is a solution that respect all the constraints of the optimization
problem. The problem of an iterative algorithm is the possibility to do not find
a feasible solution over time, i.e., even if at the first time step a feasible solution
exists, we are not sure that for all time steps a feasible solution can be found. As
explained in [[10], the MPC approach can face this problem: a trajectory towards
the equilibrium point may include points that violate the constraints, i.e., unfeasi-
ble points. In this prospective, the recursive feasible property is fundamental for
an iterative algorithm, like a NMPC controller. The recursive feasibility property
ensures that, if the initial value of the state x belongs to a recursively feasible set,

which is a subset of the feasible solution and it is invariant for the NMPC feedback
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law, then the NMPC closed loop will generate an admissible solution for all future
time steps [10]. Therefore, if the property is valid, we are sure that if we starts
from a feasible solution for the first time step, in all the successive future time
steps a feasible solution can be found. Practically, we are sure that the controller

does not enter in a region in which is impossible to find an admissible solution.

Note 4.8

The recursive feasibility does not imply the asymptotic stability.

Theorem 4.1 (Recursive Feasibility of MPC) Consider the following MPC prob-

lem:
ut) = in J 4.17
(x",u") arg min (x,u) (4.17)

S.1.

X1 = f (ks k), kp = 0,...,Np — 1 (4.18a)
X0 = X, (4.18b)
X, € X, kp=0,...,Np—1 (4.18¢)
u, €U kp=0,...,N,— 1 (4.18d)
XN, € Xy (4.18e)

where the terminal constraints set is a control invariant set, Xy = {x°} corre-

sponding to u®. If
1. x* € X, u® €U and, X ,U are compact,
2. The function f(x,u) is continuos,
3. The optimization problem is feasible for the initial state x.

Then the MPC optimization problem remains feasible for all subsequent time steps

[10].

The notation (x°,u°) indicates an equilibrium point.
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4.7.2 Asymptotic Stability

In every control strategy the stability is a point of paramount important, if the
algorithm is not stable we are not sure that in every situation it can handle the
plant. The stability property for the classic MPC approach are studied through
Lyapunov functions, but, as said in [9], for the Economic MPC approach this
technique is not applicable, at least under the same condition of the classic MPC.

Then, for studying stability property of an Economic NMPC, the knowledge

of the dissipativity of the system is necessary.

Definition 4.2 (Dissipativity and strictly Dissipativity) A control system is dis-
sipative with respect to a supply rate s : X X U — R if there exists a function
A 1 X — R such that:

A(f(xyu)) — A(x) < s(x,u) (4.19)

V(x,u) € ZC X XU.
If in addition o : X — Rx( positive definite exists such that:

A(f(xu)) —A(x) < —0o(x) +s(x,u) (4.20)
Then the system is said to be strictly dissipative.[ )]

The physical interpretation of Definition[4.2] according to [9], is that a dissipative
system cannot create energy by itself, it can only dissipate it or store it. While
a strictly dissipative system cannot produce energy, and, moreover, it dissipates
some energy even if no energy is provided to the system.

Consequently, a system capable of dissipating energy can converge to a stable
equilibrium; trivially, if no energy is supplied, the system will eventually deplete
its energy reserve, making further evolution impossible and resulting in a zero-
energy state.

A vehicle in movement, our study case, is a strictly dissipative system. Since
we consider the opposition of the Drag Force, the system will dissipate energy
even if no energy is provided to the system, i.e. even if the driver does not accel-

erate, the vehicle will gradually lose kinetic energy due to Aerodynamic Drag.
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If we define the function s(x,u) as the amount of energy supplied by u and x

we can have:
s(x,u) = Lo(x,u) — Lo (x°,u’) (4.21)

where x¢, ¢ is an equilibrium point [10].
Given the definition of s(x,u) we can search for the function A. According to
[1] and [9] exists a function A : X — R that we can use for defining a rotated cost

function:

L(x,u) =Lo(x,u) +A(x) — A(f(x,u)) (4.22)

The rotated cost function has a particular characteristic: it reaches its minimum
under the same constraints of ,(x,u), i.e. at the equilibrium point (x¢,u¢), but it
will behave as a Lyapunov function; therefore, the stability can be studied. Conse-
quently we need to add also the rotated terminal cost at the optimization problem

of the rotated cost function:

V,(x) = Vi () + A (x) — Vi, (x) — A (x°) (4.23)

As stated in [9], we have built an auxiliary optimization problem, which has a
different cost function, but the same constraints. In the end, the original opti-
mization problem and the auxiliary optimization problem have the same solution.

Additionally the following theorem is valid.

Theorem 4.2 (Asymptotic Stability of EMPC with Terminal Constraints) Consider
the Economic MPC optimization problem [9] [10]:

N,—1
min ( Z Ea(x(kp),u(kp))) —i—VO(pr) (4.24)

xeX . ucld kp—0
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s.1.

X1 = [k ur,) kp =0, Ny — 1 (4.252)
g (4.25b)
X, € X ky=0,...,N,— 1 (4.25¢)
we, €U, ky=0,...,N,—1 (4.25d)
v, € Xy (4.25¢)

Assume that

1. The system is strictly dissipative at the equilibrium point (x°,u¢) € X x U,
with a storage function A : X — R bounded from below with A(x¢) = 0.

2. The terminal region (which determines the terminal constraints equalities)

Xy C X is compact, and x° is interior to X.

3. (Basic Stability Assumption) There exists a control law Uy, : Xy — U such
that:

Vo(f(x,un,)) = Vo (x) — Lo (x, v, ) +£o(x,u¢), Vx € Xy (4.26)

with V,(x¢) = 0.

4. The optimization problem is recursively feasible.

Then, the equilibrium point x¢ is asymptotically stable for the closed-loop system.

Both Theorem[.1]and Theorem[.2]are useful in the practical implementation,
particularly in clarifying the types of constraints that must be incorporated into the

optimization problem.

4.8 Design of Stabilizing Term

As said, the stability of a MPC-based controller is not easy to study, but some

strategies can be employed to achieve it. We have already seen the terminal cost
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and the terminal constraint, but a more interesting approach is detailed in [3]].
Calogero et al.[3] propose a procedure to design a stabilizing term, the main objec-
tive of their idea is to ensure closed-loop stability of an EMPC approach, whereas
the impact on the performance of the controller is minimal. Their constructive
procedure is used in the following work to face the design of an additional term
of the stage cost for a new controller, we name this third controller Conflicting
Objectives NMPC in the following sections.

The procedure is based on three main steps:

1. Computation of an equilibrium trade-off point (x;,us) of the system to be
controlled. The equilibrium trade-off point is computed by means of a con-
strained optimization problem, which cost function is composed by two

parts: a tracking/regulation part and an economic part,
C(xyu) = Lpr(x,u) + Lo (x,u) (4.27)

The aim of the MPC-based control is to steer the system towards this equi-
librium trade-off point. Hopefully, in the neighbourhood of (x;,uy), there

exists another optimal point that achieves a lower value of the cost function.

2. Then a stabilizing term is inserted to ensure closed-loop stability of the

system. This term is a positive definite function of the following kind:
o(z)=a-x(z—2z), x:Z—Ry (4.28)

where the weight a € R-y. Z is the manifold of the states and the inputs
of the system. «(z) is designed to push the system to a stable area of the
manifold Z when the conflict objectives of the controller leads the plant to

instability, thus:

* high value of a indicates that the controller is far from the stable area,
therefore a strong action is necessary to push the system to a stable

region.

* Conversely, when a is low, the controller is already progressing to-

wards a stable area, requiring minimal adjustments to support its tra-
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jectory.

The main focus of the procedure detailed in [3] is how to compute the

weight a. In order to have x; as an asymptotically stable equilibrium point

of the closed-loop system to be controlled, the weight a must satisfy:
O(xg,ug) —(x,u)

a> 2=z SV (x,u) € Z\ {(xg,us) } (4.29)

3. Then an augmented cost function is used to compute the final optimal con-

trol action in the MPC-based approach:

O(x,u) = 0(x,u) + o (x,u) (4.30)

Remark 4.1 The optimal value of a that minimizes the influence of o on the orig-
inal stage cost { is given by:
. O(xg,ug) —C(x,u)

a' = sup
(ox,u) €2\ (xg,u5) X<Z - ZS)

+€ (4.31)

where € > 0 is arbitrarily small. [3|]

By means of the maximization problem expressed in Remark [4.1|the optimal value
of the weight a can be computed.

Additionally, an interesting characteristic of a* arises:

Remark 4.2 Consider (4.31) and let B(x,u) = % If

0(z) =L(zs) +O0(x(z—25)) as z — zs (4.32)

then a* is finite.[3|]

In Remark are expressed the condition to avoid blow up of the weight of
the stabilizing term.

The procedure described above is quite particular: it involves three constrained
optimization problems, two minimization problems and one maximization prob-

lem, to determine the control action. The computational demand of this novel
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procedure is certainly higher compared to other MPC-based methods, but it en-
sures stability. However, for simple systems, the increased computational effort
can be managed, and the stability guarantees are highly appreciated.

As previously mentioned, we will employ this procedure to design another
controller for our problem, with a key difference compared to the method de-
scribed in [3[]. In the present work, the term derived from the three-steps proce-
dure outlined above will be treated as a simple additional term of the stage cost.
Although the stability features of this addition to the stage cost have yet to be
demonstrated, it offers one way to apply this interesting procedure to a complex

dynamics such as the longitudinal-lateral dynamics of a vehicle.
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Chapter 5

Controller Implementation,

Simulation Results

In the following, the controllers will be implemented: the first one with the track-
ing approach, the second one with the economic approach. The tracking NMPC
is taken as reference: all the practical problem and the implementation issues are
first of all solved on this controller, all solutions are then replicated in the other
controllers, i.e. the EMPC controller. Clearly, the economic approach has some
differences with the tracking approach, then some particular implementation is-
sues are different with respect to the NMPC, and they are treated ad hoc.

Finally the three-steps procedure seen in Section 4.8|is employed, with some
differences, to design a third controller. Once again, the implementation precau-

tions are detailed.

5.1 NMPC Design

The design of the controller starts with the definition of the cost function of the op-
timization problem: it should balance tracking performances, passangers’ safety
and comfort. After the testing of NMPC controller the tracking part will be elimi-
nated and replaced with an Economic part. Therefore, the design of the NMPC is
fundamental to find possible issues or limits of the model or of the implementation
method.
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5.1.1 NMPC Cost Function

The cost function to be minimized consists of three main parts, along with two
additional terms introduced for technical reasons.

* Lane Keeping Assist
The first part of the cost function regards the Lateral Dynamics of the sys-

tem, so the Lane Keeping Assist part of the controller is:

Np—1

Jika =Y, We-eg+Wy-ej (5.1)
kp=0

where:

i) e = (Y, —Yy)cos(y,) — (X, — X,) sin(y,): Cross-Track error. It is

the orthogonal projection of the distance on the direction of motion.

o X, Y., y,: reference pose. For tracking, a reference is required;
during development, the pose serves as that reference (X,Y coor-
dinates in a 2D reference frame and the heading of the vehicle) of

the front axle of a leading vehicle.

o X,,Y,,y: actual front axle pose of the controlled vehicle. It is
important to translate the actual pose of the CoG of the vehicle
in the pose of the front axle of the vehicle in order to be compli-
ant with the meaning of the Cross-Track error and its definition.
The geometric relationships between the front axle and the CoG
position of the vehicle are detailed in (5.2)).

Xo=X+1scos(y), Y,=Y+Isin(y) (5.2)

For convention:

o es > 0: The vehicle is on the left with respect to the reference
trajectory = &y < 0 as control action in order to approach the
reference trajectory (the steering wheel turns to the right from the

driver’s point of view).
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o e < 0: The vehicle is on the right with respect to the reference
trajectory = &y > 0 as control action in order to approach the
reference trajectory (the steering wheel turns to the left from the

driver’s point of view).
i1) W,: weight of the Cross-Track error.

iii) ey = Y, — y: Heading error. It’s important to notice that the differ-
ence between the two angles (in radians) can go outside the interval
[—m, 7], so we need to normalize the difference in this interval in the
practical implementation. We have the same convention of sign used

for the Cross-Track error.
o ey > 0: The vehicle is on the left with respect to the reference
trajectory.
o e, < 0: The vehicle is on the right with respect to the reference

trajectory.

iv) Wjy: weight of the Heading error.

» Adaptive Cruise Control
The second part of the cost function regards the Longitudinal Dynamics of
the system, so the Adaptive Cruise Control part of the controller is:
N,—1

Jace="Y, Wy- A+ Wy, - A (5.3)
kp=0

where:

i) Ay =vi(kp) — ver(k): Speed error. It is the difference between the
actual velocity of the CoG (v,) of the vehicle at the current time step of
the prediction horizon and the reference velocity of the leading vehicle
(Vref)-

ii) W,: weight of the Speed error.
iii) Ay = d(kp) — dg min(k): Safety Distance error. It is the difference
between the actual distance between vehicles at the current prediction

horizon time step and the minimum safety distance computed online:
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o Ay >0 = d(kp) > ds min(k): we are respecting the minimum
safety distance.
o Ay <0 = d(kp) < dysmin(k): we are not respecting the mini-

mum safety distance.

The minimum safety distance should be computed as the distance cov-
ered by the controlled vehicle in 1 second, which is the typical reac-
tion time of a human. Unfortunately, the using of a variable of the
optimization problem, i.e. v,(k), will overload the solver: we need to
know a priori the minimum safety distance to address the whole op-
timization problem. To deal with this issue we can think that, likely,
the longitudinal speed of the controlled vehicle will be close to the
speed of the leading vehicle at each time instant, otherwise the con-
troller does not track the speed. Based on this reasonable considera-
tion we can use the speed of the leading vehicle at the time &, instead
of the actual speed of the controlled vehicle, to compute the mini-
mum safety distance to be respected. Then: dy min(k) = Vyer(k) - treact,
where t,.,c = 15 (anyway the reaction time can be changed to pro-
mote the safety of the passengers). The distance d(k) between the
vehicles is computed as the Euclidean norm between the front axle
of the controlled vehicle and the front axle of the leading vehicle in
a 2D environment. The choice of the two front axles of the vehicles
as reference is only to be compliant to the Cross-Track error quanti-
ties. An offset reflecting the length of the leading vehicle can be easily
added if needed; however, in a simulation environment, this detail is

not particularly critical.

iv) Wy,: weight of Safety Distance error.
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\

In the ACC the safety distance from the vehicle in front of the con-
trolled vehicle should be fixed by the user at a constant value, as said
in [8]. In the developing we want to try a different range of speeds, so

the safety distance is based on the longitudinal speed of the vehicle.

This is a small difference from the classic ACC available.

* Comfort part

N,—1
Jeom =Y, Was A5, +Wa, A (5.4)
k=0 '
where:
) As, = (6¢(kp) — 6¢(k—1)): Steering Angle error. It is the difference

1i1)

between the value of the Steering Angle at the current prediction hori-
zon time step and the Steering Angle found at the previous time step.
Practically, we want to have at each step a Steering Angle that is not
too far from the previous control action. In this manner, the controller
should mitigate sudden variations in the car’s orientation, contributing

to enhance driving comfort.

Wa, : weight of Steering Angle error.

3
Ay = ax(kp) —ax(k—1): Acceleration error. It is the difference be-
tween the value of the longitudinal acceleration at the current predic-
tion horizon time step and the longitudinal acceleration found at the
previous time step. The reasoning behind this component of the cost
function is the same of the Steering Angle error: a,(k) and a,(k— 1)
must not diverge significantly, otherwise the passengers will experi-
ence a high and sudden acceleration or deceleration. Moreover, the
longitudinal acceleration is related, by the torque provided by EM, to
the battery power P, as seen in (3.31)) and (3.32)). Therefore, a too high
acceleration or deceleration in a short time (time step) corresponds to

a high power demand, that can be not available.
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The changing of the acceleration in a sampling time is actu-

ally the physical quantities named jerk in discrete time: j =
ax(k)—ax(k—1)
B e—

iv) Wy, : weight of Acceleration error.

* For both the ACC part and the LKA part we need another tracking term
inside the summation: we need a penalty on the difference between the

desired value and the actual value for the first four states of the model:
T
X1 4 QX124

The vector of the first four states is indicated as:

X(kp) _Xs(k)
| v -xw .y
24 k) — wh) )

Q is the positive diagonal matrix of the weights for the elements of x| _4.
This term helps the tuning between a fast or a slow tracking. To support
the maintenance of a safety distance, inside the vector xj_,4 the reference
position to be tracked is (X, Y;), where s stands for safe. Specifically, the

safe position is determined as follows:

1) If the minimum safety distance at the previous time instant is respected
(Ag > 0) then we can track the real position of the leading vehicle:
X;(k) = X, (k) and Y5 (k) = Y,(k).

ii) If the minimum safety distance at the previous time instant is not re-

spected (Ay < 0) a distancing from the leading vehicle must be en-
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forced:

X;(k) = X (k) — dy min (k) - cos (y(k))
Ys(k) = Y, (k) — ds min(k) - sin(y (k))

* Moreover, for stability, a terminal cost must be added in the final cost func-
tion, and, once again, it will encompass the first four states. The vector of

the first four states for the terminal cost is indicated as:

X(Np) — X (k)
R RCAR AT ;
1—4 term l//(Np) (k) (5 )

P is the positive diagonal matrix of the weights for the elements of x1_,4 term-

The final cost function will be:

Np—1
Ji = ( Z el -W-e +x{%4 -0 ~X1_>4> +x{%4,term P X154 term (5.7)
kp=0

where:

S O o O

£
~
=
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Due to solver characteristics, as we will see in Section [5.4] the expression

of the safety distance cannot be inserted as an hard constraint: the square
root in the computation of the Euclidean distance between two points in a
2D environment is not differentiable in all the situations. So we need to

insert it as soft constraint, i.e. as a part of the cost function J;.

5.2 Constraints Formulation

In general a constrained optimization problem can have two types of constraints:

* Hard constraint
They are rigid constraints, which must be respected in the solution of the
problem. In general the violation of these types of constraints lead to a non
admissible solution of the problem.

* Soft constraint
They are desirable situations in which we want to find optimal solution, but
their violation is admissible. In general, their violation applies a penalty
in the cost function of the problem and push the solver to a direction or
another, based on the penalty. Anyway, their violation does not lead to
non admissible solution, for these reasons they are integrated in the cost

function: they are flexible constraints.
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5.2.1 Hard Constraint for the NMPC Controller

In this section we will detail all the hard constraints, both from a physical and a
practical point of view, in order to built the total constrained optimization problem
for the NMPC controller.

Equality hard constraints for NMPC

For the integration of the model presented in Section the Euler Discretization
method is employed. It is accurate enough to provide satisfying results, but it is
also simple to implement.

The use of Euler Discretization as an integration method imposes dynamical

constraints on the system states. The expression of the Euler Discretization tech-

nique is given in (5.8)
x(ky+1) = x(kp) +3(ky) - h = x(kp+ 1) — [x(kp) +3(kp)-h] =0 (5.8)

where & corresponds to the sampling time chosen.
Basically during the prediction horizon we need to respect the expression of
the integration of each state from k, = 0 to k, = N, — 1. In the end, @) are

equality constraints of the optimization problem.
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Note 5.4: Euler Discretization

Euler Discretization is one of the simplest and most intuitive numerical

methods for solving Ordinary Differential Equations (ODEs). Its major

characteristics are the following.

* In the explicit Euler method, the solution is updated using the slope

(or derivative) evaluated at the current point. The update formula is:

Yn+1 ZYn+h'f(tn7yn) (5.9)

where h is the time step amplitude and f(¢,y) represents the derivative

term.

* The explicit Euler method can become unstable if the step size A is
too large, especially for stiff problems. In such cases, the discretiza-
tion may produce numerical solutions that diverge from the exact so-

lution.

Geometrically, the explicit Euler method is based on the idea of approx-
imating the solution curve of a differential equation by drawing, at each
step, the tangent to the curve at the current point. This formula means that,
starting from the point (#,,y,), the slope f(z,,y,) (i.e., the derivative of the
solution) is computed, and then the employed method “moves forward” by
a time interval 4 in the direction defined by this slope. In practice, the solu-
tion is approximated by successive line segments, each of which represents
the tangent to the curve at a given point over a time interval 4.

In summary, the explicit Euler method transforms the problem of deter-
mining the solution of a differential equation into a sequence of simpler

problems, namely, tracing tangent lines that locally represent the system’s

dynamics.

\ 7

As seen in Chapter [ the terminal constraint is important for the stability of
the NMPC controller, we choose to insert it only on some of the states, not on all

the seven states. To be compliant to terminal cost seen in Section [5.1.1} also the
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terminal constraint is applied only on the first four states. The equality constraints

are expressed as:

X(N,) — X, (k) =0 (5.10a)
Y(N,) =Y (k) =0 (5.10b)
W(Np) — yi(k) =0 (5.10c)
Ve(Np) = Vyes (k) =0 (5.10d)

The terminal constraint is important not only for technical reasons related to
stability, but it also carries a logical meaning: without it, the optimal solution
of the optimization problem may be: to remain at the initial position, failing to
drive the system forward. Meaningless result, in fact even if the terminal cost
push the solution of the optimization problem to avoid this possible evolution of
the system, it is admissible in the absence of the terminal constraints and can
be chosen to minimize the cost function. The presence of a terminal constraint
eliminates this possibility. Other strange situations that can happen in the absence
of the terminal constraints are: to do not track the longitudinal speed in a good
way or to find a trajectory that minimizes the difference from the minimum safety
distance, but which is very different from the leading vehicle’s trajectory.

Another essential point for the controller is the continuity between two suc-

cessive time instant, for this reason the following equality constraints are added:

X(ky)—X(k—1)=0 (5.11a)
Y(ky)—Y(k—1)=0 (5.11b)
y(ky) —y(k—1)=0 (5.11¢)
Vi(kp) —vi(k—1)=0 (5.11d)
vy(kp) —vy(k—1)=0 (5.11e)
Oy (kp) — wy(k—1)=0 (5.11f)
Elky) — k1) =0 (5.11g)
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The constraints from (5.11a) to (5.11g) are applied only for k, = 0. The meaning

of the previous expressions concerns the prediction horizon’s first step: it should
be as close as possible to the previous time instant status. The solution that the
controller will use for the optimization problem at the time instant k must start
from the information of the previous time instant k — 1. These constraints are es-
sential for the good working of the controller, if they are not present the solver
will looking for the solution of the optimization problem in a direction that does
not take into account what is the actual condition of controlled vehicle. The ab-
sence of these constraints will lead to strange solution, such as sudden changing

of position or speed in a 7§ interval.

Inequality hard constraints for NMPC

Also inequality constraints are inserted, they are related to the physical limits that
cannot be exceeded, like maximum value of Torque provided by the motor, or the

maximum value of battery power. They are listed in the following.

* Minimum and maximum values of the control action are inserted to be sure
to do not overcome the physical limits of the EM and to do not have an

impossible rotation of the steering wheel.
e < Tem(k) < TE k. (5.12)
8 < 8y (k) < 87 Vk. (5.13)

» Again for comfort reasons, but also for being consistent with the physical
limitations of the vehicle and the electric powertrain, bounds on the longi-

tudinal acceleration of the vehicle are applied:

ad" < ay(k) <a"™  Vk. (5.14)

X X

* To avoid deep discharge and overcharging, the State of Charge of the bat-

tery, which is the seventh state of the model, has to stay below a maximum
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value and above a minimum value:

SOCpin < §(k) < SOCpax  Vk. (5.15)

* The lateral acceleration of the vehicle must be maintained within suitable
boundaries: a too high value of a, can lead to lack of adhesion, that is a
dangerous situation, and to discomfort for the passengers.

a’y"m <ay(k) < a;”ax Vk. (5.16)

* As said in Section [3.6] the battery power has an upper and a lower bound,

they must be considered in the resolution of the optimization problem, so

the following constraint is added:

Pl < Py(k) <P Vk (5.17)

Py )
(MEw (0Ey,Tes) Ny | SEFEM)

where the battery power is given by: P, =

All the values of the limits are listed in the Table 3.1l

The meaning of Vk is: for each time instant of the simulation, and so for
each control action, the constraints must be respected. This implies that at
each time instant of the prediction horizon (from k, = 0 to k, = N, — 1) the

constraints valid for Vk must be respected.

In general a human passenger is more sensitive to a high deceleration than

a high acceleration, so the limit of aTi" is slightly less, in module, with

respect to a’“*.
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Parameter Symbol Value Unit
Minimum longitudinal acceleration | —a™™" -2.5 m/s’
Maximum longitudinal acceleration | a7 3 m/s?
Minimum lateral acceleration ay™ - m/s*
Maximum lateral acceleration ay™ 5 m/s?
Minimum steering angle 6" | —0.3(—17.19) | rad (deg)
Maximum steering angle i 0.3(17.19) | rad(deg)
Minimum EM Torque T —280 Nm
Maximum EM Torque v 280 Nm
Minimum State of Charge value SOC,in 0.20 —
Maximum State of Charge value SOCax 0.90 —
Minium battery power value Plﬁ"w —132.71 kW
Maximum battery power value Py 132.71 kW

Table 5.1: Bounds of the inequality constraints for all controllers.

5.3 EMPC Design

For the EMPC design we can replace the tracking part of the cost function in
Section with an economic focus, in particular we will use a battery focus.
Whereas the comfort part and the terminal cost will remain as before.

5.3.1 EMPC Cost Function

Again the cost function to be minimize consists of three main parts, and the ter-

minal cost.

* Battery Focus part
This component of the cost function accounts for the energy required to

execute the movement.

N,—1 Peay |12
JBatLFocus = Z WAg A% +WPUW' - (518)
kp=0 Pref

where:

i) Ay = {(kp) — C(k—1): SOC rate. It is the difference between the

SOC at the current prediction horizon time step and the SOC value at
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the previous time step. This term aims to have a small variation of
the SOC during the prediction horizon, and it can help to have a more
regular behaviour of the battery, reducing the stress on the battery due

to deep and fast cycle of charging or discharging.

i) WAg: is the weight of the SOC rate.

iii) ‘

I;f—e"; ‘ ’: Power Ratio. It is the ratio between the power provided by
the electric motor Pgy = Wgp - Tpy and the reference power Py =
Firac - vy rer that, approximately, the leading vehicle uses to move for-
ward itself. Basically we can think that P s is the minimum power

needed to follow a certain trajectory.

o If ’ I;E—"Jf ‘ > 1 = Pgym > Pyy: we are using more power than
approximately) we need, so we want to decrease Pgyy.
pp y

o If ‘ 1;5—1? ) <1 = Pgy < Pey: we are using less power than

(approximately) we need, so if necessary we can increase Pgys to

follow the trajectory.

iv) Wp,, is the weight of the Power Ratio.

In discrete time the SOC rate should be Ag = %{U‘_l), but the

constant value of the sampling time is absorbed by the weight Wy ¢

* Comfort part

The comfort part is exactly the same as in (5.4):

Npy—1

Jeom =), Was 05, +Wa, A
kp=0

» Safety Distance Consideration
As said in Note [5.3] we need to insert a part of the cost function for the

soft constraint on the safety distance, which is essentially equivalent to the
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formulation presented in (5.1)):

N,—1

JSafeDistance = Z WAd : A?{ (519)
kp=0

Once again, for stability reasons, we need to add the terminal cost, as to the one

previously employed in (5.7).
The total cost function will be:

N,—1
J2= ( Z egco “WEco 'eEw) +x1T—>4,term 'P'xl%4,term (5.20)
kp=0
where: ) i
WAé 0 0 0 0
Weco = 0 0 WAaf 0 0
0 0 0 W, O
0 0 0 0 W,
_ AC -
1]
Pref
€Eco = A5f
Aq
Ay

P and x4 term has the same meaning as seen in (5.7)

5.3.2 Hard Constraints for the EMPC Controller

The EMPC controller uses the same hard constraints, both equality and inequality,
as the NMPC, as detailed in Section[5.2.1]

This situation highlights that the problem to be solved is the same, from the
physical and logic viewpoints; the constraints indicate what are the limits and
admissible trajectory that the controller can use to solve the control problem, but

the approach is slightly difference: the cost function is different.
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5.4 Practical implementation on MATLAB

In the previous sections we have detailed the optimization problem, in a logic e
theoretical manner. In the real implementation some adjustments and approxima-
tions must be done to fit the problem for the practical method used for finding
the solution. In particular, the solver used and its setting has to meet the form
of the problem. In the following sections, all practical observations and prob-
lems encountered during the development of the controller are examined, and the

practical solutions adopted in the final work are presented.

5.4.1 Selecting the Sampling Time

The utilization of the Euler Discretization method implies some limitations on the
sampling time 7;. We can imagine that the informations, such as pose and longi-
tudinal speed, of the leading vehicle are transmitted periodically to the controlled
vehicle in order to allow a successful “pursuit”. We can think that the leading
vehicle should transmit continuously its status informations, but it is impossible
to manage: the controlled vehicle needs some time to perform the optimization
and to perform the control action. Thus, it’s necessary a critical task: selecting
an appropriate sampling time. Unfortunately, another complication arises: the
sampling time becomes the time interval / in which the integration is numerically
performed. So if we want to have good performance we need a 7; small enough
to be compatible with the limitations of the Euler’s method, but great enough to
do not be high demanding from a computational and simulation point of view.

After some attempts we conclude:
* T, =100 ms is too high to have a good accuracy in the numerical integration.

* T, = 10 ms generates a great computational demand also for very short sim-
ulation, then will be unmanageable in a real application of a controller of
this kind.

* A good trade-off is identified in T = 50 ms, this value is used for all the

simulations in the following sections.
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5.4.2 Setting of the Solver

The implementation of the controller is developed in MATLAB, exploiting the
features of CasADi for solving the constrained optimization problem. CasADi is a
symbolic framework to solve nonlinear optimization problem, among the different
solver available the IPOPT is chosen. Some options can be configured in the

solver in order to “escape” from particularly challenging part of the trajectory:

* opts.ipopt.max_iter = 300: the maximum number of iteration that the
solver will perform for evaluating the solution is 300, it is a good trade-off

between computational effort and satisfying performances.

* opts.ipopt.tol = 1le-3: itis the convergence tolerance on the solution

of the problem.

* opts.ipopt.constr_viol tol = 1e-3: it is the maximum admissible

tolerance for the violation of the constraints to consider valid a solution.

Even if the violation of the hard constraints will lead to a non admissible
solution of the problem, in some cases the constraints are inevitably vio-
lated. For example, in the middle of a chicane the sudden changing of the
orientation of the curve to be performed is a challenging area of the path
for the controller. In these particular cases, the physical nature of the prob-
lem does not permit a solution within the admissible range of the solution.
Therefore, a reasonable tolerance is introduced to obtain a satisfying solu-
tion, even if the constraints are not fully respected, without compromising

the overall problem.

Initial Guess

The solver needs an initial guess of the solution for starting the optimization prob-
lem. The initial guess is fundamental: if it is too far from the optimal solution the
solver cannot converge. Choosing this information is a critical task. The same
logic explained in Section for the constraints from (5.11a) to (5.11g) is ap-

plied here: the initial guess of the solution of the optimization problem, both for
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all the states and the control actions, at time k is chosen equal to x and u at the
previous time instant: k — 1.

The reasoning behind this choice is simple: we want to follow a leading vehi-
cle, driven by a human; then we can imagine that the leading vehicle will perform
a smooth trajectory, without sudden changing (in speed, orientation, position etc.)
in normal condition. So, at each time instant the actual and the previous status of
the leading vehicle will be close, then also for the controlled vehicle should be the
same. In conclusion, we can be quite sure that the solution of the problem at time
k and time k — 1 will be close. Clearly, we are assuming that exceptional events,

like an animal on the road or a burst of wind, will not occur.

5.4.3 Numerical Approximation to facilitate the Solver

The TPOPT solver addresses the solution of the problem using the gradient of
the objective function and the Jacobians of the constraints, basically it needs that
everything is differentiable for solving the problem. Unfortunately, we have seen
in Chapter [3] that some of the relationships used are not always differentiable,
some of them are not even continuos: for example the function sign(-) is not
continuos around 0. To overcome these problems of differentiability or to have
a more stable function from the numerical point of view some approximation are

made. The approximations used in the constrained problem are listed below:

* Sign function
The function sign(y) is not continuos for y — 0, unfortunately we need to
use this function to determine if we are in charging or discharging mode,
but we can also be in a particular condition: Pgy; = 0. This latter situation
occurs during costing: we do not need to accelerate, but we do not need
a braking, basically the vehicle goes on thanks to its inertia. The function

sign(y) can be approximated with the hyperbolic tangent:
sign(y) ~ tanh(yy) fory>1 (5.21)

when y > 1 the S-shaped tanh(yy) can approximate quite well the sign(y)

function, but the hyperbolic function is continuos Vy € R. In the implemen-
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tation is used y = 1- 10°. For all controllers this approximation is used.

* Exponential Operation
The exponential operation can generate numerical problems during the com-
putation of the solution of the optimization problem, thus we replace this

operation with an equivalent mathematical form, but numerically stable:

ab = ebn(@) (5.22)

b-In(a)

The expression e is not only numerically more stable, but the differen-

tiation is easier. For all controllers this equivalence is used.

 Evaluation of P — 0
The approaching of a very low value of the power (for example in coasting
or close to a costing situation) in the computation can generate problem or
indefinite expression like 0, to avoid these situations for the power values

a little tolerance of 1mW is added based on the sign of the power:
Py~ P,+1-10°-sign(P,) ~ P+1-10* - tanh(yP,) (5.23)

This tolerance is added at all the expressions of Pgy; and P, both in sym-
bolic form and quantitative form to be consistent. For all controllers this

precaution is used.

5.5 Tuning and Simulation Results

The tuning of the weights of a MPC controller is a critical task: a high value of a
weight push towards a specific direction the solver in an aggressive way. So the
balance between different values of weights is not easy to find. For complex algo-
rithm months can be requested to reach a suitable tuning. We have not that aim,
the tuning is import to verify the good working of the algorithm, but long tuning
phase are unmanageable in this work. So the aim of the following simulations
is to show the influence of the changing of the weights on the final results in a

quantitative way.
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The tuning is divided in three main parts:

1. In the first part the NMPC and the EMPC approach are tested on a very
short path, named Reference Trajectory 000. This path is used to ver-
ify the good working of the controller and find an acceptable length of the

prediction horizon.

2. In the second part the simulations are carried out on a longer path, more
similar to a real environment in which a car could be. This path, named
Reference Trajectory 001, is used to find a satisfying balance between

the weights.

3. In the third and final part of simulations, a significantly longer path with re-
spect to the second phase of simulations, named Reference Trajectory
002, is used to test the best combinations of weights found in the second
phase in order to understand if the using of EMPC approach can lead to a

significant energy saving without losing the tracking performances.

In the end the third controller is tested on the Reference Trajectory 001 and
compared to the NMPC.

5.6 Simulation on Reference Trajectory 000

The Reference Trajectory 000 is a short path, generated from a sinusoid of
amplitude 10m. The coordinates X, Y, of the reference trajectory are related by
the following expression:

Y, = 10sin(0.04X,) (5.24)

While the heading of the car is computed using the atan?2 native function of MAT-
LAB, which return a value of the heading in the interval [—x, 7]. Regarding the
longitudinal speed, for this first track a constant value is chosen. This is a quite
problematic point: the curves that the car will perform are quite challenging, and
it is not easy to find a feasible solution in which, at the apex of the curve, we can
maintain the constant speed. However, it can be useful to assess the limitations of

the algorithm when handling a challenging curve.
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The algorithm is though for quite high speed:

the DST is not valid
at low speed, so we cannot choose a longitudinal speed lower than
30km/h(8.33m/s) in all the simulations.

The main characteristics of the reference trajectory are listed in Table 5.2

Characteristic Value Unit
Total length 622.95 m
Total Time of travel 80 s
Longitudinal constant speed | 40 (11.11) | km/h(m/s)

Table 5.2: Characteristics of Reference Trajectory 000.

The initial condition of the simulation is given from the values in Table[5.3]

Initial condition Symbol Value Unit
Initial coordinates on the x-axis Xo -10.31 m
Initial coordinates on the y-axis Yo -4.12 m
Initial heading of the vehicle 4 0.38 (21.81) | rad(deg)
Initial longitudinal speed of the vehicle V0 11.11 m/s
Initial lateral speed of the vehicle Vy.0 0 m/s
Initial yaw rate of the vehicle Wy.0 0 rad/s
Initial value of SOC %o 0.80 -

Table 5.3: Initial conditions Reference Trajectory 000.

Values in Table [5.3| are chosen for having the controlled vehicle starting per-
fectly aligned with the leading vehicle, proceeding at the same speed and in a
position Xy, ¥y that respect the minimum safety distance.

The trajectory and the speed profile of Reference Trajectory 000 are shown

in Figure [5.Tal and Figure5.1b]
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Reference Trajectory 000

—Reference Trajectory 000
o Initial position Xo‘ Y0

E.
>
X [m]
(a) Reference Trajectory 000.
Speed Profile Reference Trajectory 000
‘ ‘ ‘ ‘ ‘ —rLongitudinaI Re‘ference speedt
L © Initial long. speed

>><

tis]

(b) Speed profile Reference Trajectory 000.

Figure 5.1: The reference trajectory and corresponding speed profile employed in
the first set of simulations, on Reference Trajectory 000.
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The simulations on this track have the aim to find the suitable prediction hori-
zon length. A rough tuning of the weights of the cost function is used to performs
the tests, in Table [5.4] are listed the values for the NMPC controller.

Reference Weight | Value
Wy 100
W, 10
W, 2
Wa, 1
Ws, 1.5-10%
Wa, 2
0 Iy
P Iy

Table 5.4: Weights for selecting the prediction horizon length.

The results of the simulations performed on Reference Trajectory 000
for the NMPC controller are listed in Table @ As expected, when N, increases
the computational effort of the optimization problem increases: the optimization
problem becomes more difficult. This is true until Test 5, then the average time
to solve the optimization problem starts to decrease, this effect is probably caused
by the tuning of the weights of the cost function: the combination of values of the
weights helps high values of N),. However, the high value of N, will be a problem
in a more structured tuning: intuitively is more difficult to predict a more distant
future, so it is only a lucky case that this tuning of the weights lowers down the
computational effort of Test 8 and Test 9. Moreover, the value of the tracking
performances of Test 8, Test 9 are worst with respect to test 7: the improvement
is only on the computational effort.

Acceptable performances are given from Test 6 and Test 7. In Figure

Figure Figure are shown their performances.
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Trajectory

Y [m]

X [m]
(a) Comparison Test 6 and Test 7 of Table in tracking the

Reference Trajectory 000.

Longitudinal velocity

v_ [m/s]

X

tis]

(b) Comparison Test 6 and Test 7 of Table longitudinal
speed tracking.

Heading

¥ [rad]

tis]

(c) Comparison Test 6 and Test 7 of Table Heading track-
ing.

Figure 5.2: NMPC tests on Reference Trajectory 000 for choosing N,
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Test | Np, olﬁ‘i’iig?if)ltlopsr(:)ll‘)’lee:ﬁs] max |ey| [m] | max |ep| [rad]
1 5 0,22 251,84 3,12
2 10 0,37 48,99 0,43
3 12 0,46 38,98 0,54
4 15 0,57 27,52 0,74
5 18 0,76 13,97 0,29
6 20 1,22 2,09 0,38
7 | 22 0,97 2,68 0,36
8 25 0,74 3,08 0,44
9 28 0,90 5,68 0,61

Table 5.5: Tests for choosing the prediction horizon of NMPC on Reference
Trajectory 000.

From the rough performances showed in Figures[5.2|we can start a more struc-
tured tuning for finding the right balance of the weights. In order to have a mean-
ingful comparison with the EMPC controller the same value of prediction horizon
is used in all the following tests for the NMPC and EMPC (N, = 22).

5.7 Simulation on Reference Trajectory 001

The second set of simulations is carried out on Reference Trajectory 001,
which is generated by means of Automated Driving Toolbox of MATLAB (as
Reference Trajectory 002). The toolbox allows choosing some waypoints
through which the vehicle must travel, and then a trajectory connecting those
points is generated. Moreover, the toolbox can assign a specific speed at the vehi-
cle when it passes through waypoints, but the changing of speed, for example due
to a deceleration between two successive waypoints, is linear. A linear change of
speed is not a real situation: it is unnatural for a driver to follow a pattern of chang-
ing speed that follows a precise linear law. Thus, to have a more real speed profile
to associate at the trajectory, the MATLAB function csaps is used to smoothly
interpolate the speed values assigned at the waypoints: the resulting speed profile
is shown in Figure [5.3b] The main characteristics of this second path are listed

in Table [5.6] in this case the vehicle’s speed is not constant throughout the entire
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trajectory. Notably, the varying longitudinal speed reflects a more realistic driving

scenario.
Characteristic Value Unit
Total length 4200 m
Total Time of travel 190.55 s

Max Longitudinal speed | 103.24 (28.68) | km/h(m/s)
Min Longitudinal speed | 69.45 (19.29) | km/h(m/s)

Table 5.6: Characteristics of Reference Trajectory 001.

Note 5.10

The Economic approach is expected to promote smooth reference track-
ing, such as speed, to minimize energy consumption. In contrast, classical
tracking may rely on high energy usage to follow even sharp reference vari-
ations. Since we are in a scenario in which both the reference trajectory and
the speed profile are already smooth (see in Figure [5.3a] and Figure [5.3D)),
we will expect only a slight difference between the energy consumption of
the two controllers. However, sudden change of some quantities, or sharp
behaviour can occur in real-world, where the EMPC can fully demonstrate

its energy-saving potential.

The initial condition of the simulation is given from the values in Table
Once again, we can see that the controlled vehicle starts perfectly aligned with the
leading vehicle, moving at the same speed and positioned at coordinates X, Yo,
which complies with the minimum safety distance.

For this second phase of testing, the prediction horizon is set to N, = 22 for all
trials, corresponding to a future prediction window of T - N, = 1.1s. Now a more
structured tuning is carried out on both NMPC controller and EMPC controller.
Since the EMPC is the most important part of the work, more tests are carried out

employing that controller.
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Reference Trajectory 001
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(a) Reference Trajectory 001.
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(b) Speed profile Reference Trajectory 001.

Figure 5.3: The reference trajectory and corresponding speed profile employed in
the second set of simulations, on Reference Trajectory 001.
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Initial condition Symbol Value Unit
Initial coordinates on the x-axis Xo -20.6837 m
Initial coordinates on the y-axis Yo 2.4927 m
Initial heading of the vehicle Yo -0.12 (-6.9) | rad(deg)
Initial longitudinal speed of the vehicle Vx 0 20.83 m/s
Initial lateral speed of the vehicle Vy.0 0 m/s
Initial yaw rate of the vehicle Oy 0 0 rad /s
Initial value of SOC %o 0.80 -

Table 5.7: Initial conditions for all the simulations on Reference Trajectory
001.

Test | W, | W, | W, WAsf Wa, | Wa, | Q | P | max|ey|[m] | max|e,|[rad]
1 1 11 [1-100] 2 1 |uln 2,16 0,144
2 1011 [1-10°] 2 1 |L|L 2,14 0,144
3 10101 [1-10°] 2 1 |uln 2,14 0,144
4 [10]25] 1 [1-10°] 2 1 |L|L 2,14 0,144
5 100 1] 1 [1-10°] 2 1 |L|L 1,98 0,143
6 [100]10] 1 [1-10*] 2 1 | LlL 1,98 0,143
7 10025 1 [1-10°] 2 1 | L | LI 1,98 0,143
8 [100][25]15]1-10%] 2 1 |LlL 1,98 0,143
9 [100]25] 2 [1-10*] 2 1 |L|L 1,98 0,143

Table 5.8: Tuning results of the NMPC controller, on Reference Trajectory
001.
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In Table [5.8] are reported the tests on Reference Trajectory 001, with the
NMPC controller. The aim of these tests is to identify the combination of weights
that yields the best tracking performance. We can see that from Test 5 to Test 9
the tracking performances are practically the same, thus to choose the reference
NMPC controller to be compared with the EMPC controller we can evaluate the
computational effort of these tests. In Table [5.9 we can see that the Test 9 is the

fastest to build and solve the optimization problem, so it is selected as benchmark.

Avg. time to solve the
Test c
optimization problem |[s]
1 0,56
2 0,58
3 0,58
4 0,57
5 0,61
6 0,59
7 0,59
8 0,66
9 0,56

Table 5.9: Average computational time of NMPC controller for different trials on
Reference Trajectory 001.

Then the EMPC controller is tested on the Reference Trajectory 001, but
now we are evaluating the energy savings achieved by the EMPC in comparison
to the benchmark provided by Test 9 of the NMPC controller, which, at the end of
the simulation, reaches a final value of the SOC equal to 77,6834%. In Table @
we can see the major results of the tuning, particular important is the last column
of the table, where we can see if the EMPC can save energy with respect to the
NMPC, in case of a positive value, or it has worst energy performances, in case
of a negative value, or it has the same energy performances, in case of 0 as value
reported.

Test 7, 21, 24 do not converge during the evaluation of the optimization prob-
lem, so the solver of CasADi returns an error (NaN detected) at some time instant

k during the simulation because it cannot find a proper solution for the problem.
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Test Wa: | Woow WAaf Wa, | Wa, | P | Final SOC[%] | SOC[%] saved
1 1 1 |1,5-10° | 2 A 77,6831 -0,0003
2 1 1 1,5-10* | 2 A 77,6831 -0,0003
3 |1-10°] 1 [1,5-10°] 2 1 | L 77,6833 -0,0001
4 [1-10°] 10 [1,5-10°] 2 1 | L 77,6835 0,0002
5 [1-106] 25 [1,5-10°] 2 1 | L 77,6832 -0,0002
6 |1-10°] 50 [1,5-10*| 2 1 | I 77,6834 0,0000
7 [1-10°] 100 | 1,5-10* | 2 1 | I Error Error
8 [1-107] 1 |1,5-10*] 2 1 | L 77,6834 0,0000
9 [1-107] 10 [1,5-10*| 2 A 77,6833 0,0000
10 [1-107] 25 |1,5-10°| 2 A 77,6835 0,0001
11 [1-107] 50 [1,5-10*] 2 1 | L 77,6835 0,0001
12 |1-107] 100 | 1,5-10* | 2 A 76,0927 -1,5907
13 [2-107] 1 [1,5-10*] 2 1 | L 77,6836 0,0002
14 [2-107] 10 [1,5-10*] 2 A 77,6835 0,0002
15 [2-107] 25 |1,5-10°| 2 A 77,6837 0,0004
16 [2-107] 50 |1,5-10*| 2 1 | L 77,6837 0,0003
17 |2-107 | 100 | 1,5-10* | 2 1 | L 77,6840 0,0006
18 [3-107] 1 [1,5-10°] 2 A 77,6836 0,0002
19 [3-107] 10 [1,5-10*] 2 1 | L 77,6835 0,0002
20 [3-107] 25 [1,5-10*| 2 1 | L 77,6837 0,0003
21 [3-107] 50 [1,5-10*] 2 1 | L4 Error Error
22 [3-107] 100 | 1,5-10* | 2 1 | L 73,9387 -3,7447
23 [1-108] 1 [1,5-10*] 2 1 | L 77,4578 -0,2255
24 [1-108] 10 [1,5-10* | 2 1 | L Error Error
25 [ 1-108 ] 25 [1,5-10*| 2 A 77,3124 -0,3710
26 [ 1-108] 50 [1,5-10%] 2 A 75,8659 -1,8175
27 | 1-108 ] 100 | 1,5-10* | 2 1 | L 73,9512 -3,7322

Table 5.10: Tuning results of the EMPC controller on Reference Trajectory

001.
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Test 12, 23, 25, 26, 27 provides bad results for both tracking performances and

final SOC value, then are ignored.

The best results in terms of energy savings were obtained in Tests 4, 13, 15,

16, 17, and 20. Subsequently, the computational effort and tracking performance

of these tests were evaluated. As shown in Table the tracking performance is

nearly identical across all selected tests, while the computational effort is slightly

lower for Tests 4, 13, and 17. Therefore, they are selected as the best trade-offs be-

tween computational effort and performances and compared with the benchmark
(Test 9 for NMPC controller).

Test 0;;:;;%;22?};%?2;&:21] max |eq | [m] | max |e,]| [rad)|
4 0,42 2,19 0,145
13 0,42 2,19 0,144
15 0,44 2,19 0,144
16 0,44 2,19 0,144
17 0,42 2,19 0,144
20 0,43 2,19 0,144
Table 5.11: Evaluation of the EMPC Controller’s best performances on

Reference Trajectory 001.

5.7.1 NMPC vs EMPC on Reference Trajectory 001

In Figure[5.4]the best trials of the EMPC controller are graphically compared with
Test 9 NMPC, the Table[5.12)is inserted for a clearer reading of the results.

Test | lﬁ:ii;;‘i‘iz;"pi‘:};fegl‘is] max |ew|[m] | max|ey| [rad] | Final SOC[%)]
4 EMPC 0,42 2,19 0,145 77,6835
13 EMPC 0,42 2,19 0,144 77,6836
17 EMPC 0,42 2,19 0,144 77,6840
9 NMPC 0,56 1,98 0,143 77,6834
Table 5.12: Resume of bests EMPC tests vs benchmark NMPC on Reference
Trajectory 001.
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The differences between the main performances for the two controllers are
poor from the tracking viewpoint, but interesting for the final SOC and the average
computational time. For the Cross-Track error the difference is about 0.16m,
whereas is about 0.01 rad (i.e. 0.57°) for the Heading error, negligible differences
in large scale.

From the energy consumption point of view (SOC evolution and Power Ratio)
Figure [5.44] illustrates how the EMPC enhances energy recovery during regener-
ative braking, thereby improving energy efficiency over the entire trip, in fact in
Table [5.12] we can read that the Test 4 saves the 0.0001% of SOC, whereas Test
13 the 0.0002% and the Test 17 the 0.0006%.

Regarding the Power Ratio, in Figure we can see that:

* When I;’f—e"; > 1, the NMPC controller leads to a greater Power Ratio (the blue
solid line is above the others). The meaning is that in general the NMPC

controller requires more power than it really needs to follow the trajectory.

* When I;F—"; < 1 the EMPC controller leads to a lower power ratio (the dashed
lines are below the solid line). Thus, in general, the EMPC requires less

energy to follow the trajectory.

In average, the NMPC controller uses 1.83 % of power more than the reference
power needed, while the EMPC only the 1.78 %. On a short track like Reference
Trajectory 001 the energy saved is a very small amount, but normally a ve-
hicle performs hours of travel, not just three minutes. In prospective the en-
ergy saved can be accumulated and exploited during a longer trip. Moreover,
in the Reference Trajectory 001 there is only one short portion of regenera-
tive breaking, that can help to recharge the battery, while during a long trip this
condition occurs multiple times, enhancing the overall energy recovery.

The computational time for setting and solving the optimization problem is
also reduced for the EMPC controller, the 25% less, thanks to the simpler cost
function with respect to the NMPC controller.

In the following section, a longer track is used as a reference to illustrate the

potential improvement in energy-saving performance.
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(b) Power ratio profile of tests in Table on Reference Trajectory 001.

Figure 5.4: SOC behaviour and Power Ratio profile for tests in Table on

Reference Trajectory 001.
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Cross-Track error
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(c) Speed Profile tracking for tests in Table on Reference
Trajectory 001.
Figure 5.5: Tracking performances comparison for tests in Table on

Reference Trajectory 001.
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5.8 Simulation on Reference Trajectory 002

The last phase of simulations employing the EMPC controller concern a longer
track, in order to highlight the increasing of energy performances with respect to
the NMPC approach.

This part of the work is carried out on Reference Trajectory 002, which

main characteristics are listed in Table [5.13]

Characteristic Value Unit
Total length 10043 m
Total Time of travel 445.900 s
Max Longitudinal speed | 100.00 (27.78) | km/h(m/s)
Min Longitudinal speed | 69.45 (19.29) | km/h(m/s)

Table 5.13: Characteristics of Reference Trajectory 002.

In Figure [5.6a) and Figure [5.6b] are shown the Reference Trajectory 002
and the speed profile associated to the trajectory.

The combination of weight of Test 4 and Test 15 in table [5.10] are chosen for
the trials on Reference Trajectory 002. Even if they do not provide the best
results, they demonstrate to be the most balanced: they are not too aggressive
in the control action, which lead to a more adaptability to different paths, with
satisfying performances. They are compared always with the combinations of
weights of Test 9 in Table [5.§] for the NMPC and resumed in Table

Test | W,
1 100

P
Iy

Wi,
25

Wy
2

Wa, | Wa, | O
2 1 Iy

Final SOC [%]
75,1861

Table 5.14: Results of NMPC controller on Reference Trajectory 002.

Test | Wa, | Wpow | Wa 5, Wa, | Wa, | P | Final SOC[%] | SOC %] saved
1 |1-10°] 10 |1,5-10*] 2 1 | I 75,1867 0,0006
2 2107 25 [1,5-10*| 2 A 75,1875 0,0014

Table 5.15: Performance results of EMPC controller on Reference Trajectory

002.
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Reference Trajectory 002
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(b) Speed profile Reference Trajectory 002.

Figure 5.6: The reference trajectory and corresponding speed profile employed in
the third set of simulations, on Reference Trajectory 002.

95



Controller Implementation, Simulation Results

We can see in Table[5.I5]that the recovery of the SOC is on the third digit after
the comma for Test 2, while previously it was limited on the fourth digit after the
comma.

The increasing of the performances from the energy consumptions point of
view is followed with a negligible difference on the tracking performances: the
EMPC controller can track position, heading and longitudinal speed of the leading
vehicle almost in the same way of the NMPC controller also in this scenario, as
shown in Figure Figure and Figure[5.7¢

Regarding the comfort of the passengers, the NMPC controller can handle a
smooth behaviour of the Steering Angle, and small values of the lateral acceler-
ation along all the path are detected. While the EMPC has more difficulties to
reach a comfort behaviour, however the spikes of lateral acceleration and sudden
changes of &, are limited inside the boundaries as showed in Figure Figure
5.8l

Moreover, the main objective of the ACC, which is the ability to maintain a
minimum safety distance from the vehicle ahead meanwhile the vehicle tracks a
reference speed, is reached with a margin of more than 1m above the minimum

for almost all the travel, as we can see in Figure
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Cross-Track error
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(b) Heading error for tests in Table and Table on Reference
Trajectory 002.
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(c) Speed tracking performances for tests in Table and Table

on Reference Trajectory 002.

Figure 5.7: Tracking performances comparison for tests in Table |5.14| and Table
5.15|on Reference Trajectory 002.
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Lateral acceleration
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(b) Steering Angle error behaviour for tests in Table and Table on Reference

Trajectory 002.

Figure 5.8: Comfort performances for tests in Table [5.14| and Table |5.15| on

Reference Trajectory 002.
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Figure 5.9: Distance between leading and controlled vehicle for tests in Table m
and Table[5.15|on Reference Trajectory 002.

5.9 Control inputs Analysis: NMPC vs EMPC

During the setting of the optimization problem we have explained the importance
of the bounds on the control action: in any real system the actuators are not able
to provide an infinite effort. Additionally, a gradual and smooth behaviour of
the control action can reduce degradation of the system and discomfort of the
passengers. For these reasons the two control input, EM Torque and Steering
Angle, should have a smooth behaviour. In Figure [5.10] are reported the Tgy
behaviour on the Reference Trajectory 002. In the graph we can notice that
the NMPC controller has a smooth behaviour of Tg)s everywhere in the track
(solid blue line): the NMPC does not choose a sudden change of the EM Torque as
control action; the tracking focus has this advantage. While the EMPC controller
produces significant spikes in different part of the track. In general, rapid shifts of
the torque values are quite normal situations in a travel: for example, releasing the
accelerator quickly, or pushing the break are normal actions during the drive and
they influence the torque. However, all spikes remain below 30 Nm in magnitude,
and are therefore manageable. Nonetheless, they may cause passenger discomfort
and induce vibrations in the vehicle’s mechanical components.

We can notice that the spikes of the torque are in the region in which the speed
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error is very low, close to zero, or quite high. Practically, when the speed track-
ing is almost perfect we are close to Power Ratio equal to 1, then the controller
chooses to decreases the power demand to save energy, but after a short time the
speed error increases again reaching quite high value. Then the Power Ratio de-
viates from 1 and the controller compute an action which aims is to contain the
Power Ratio change. Torque spikes are the price to pay for saving energy along
segments of the path where the trajectory can be followed with less effort than
required by the leading vehicle.

Motor Torque

TEM [Nm]

L —Test1 NMPC
i - - -Test1 EMPC

; Test2 EMPC
4DDE 100 150 200 250 300 350 400 450

t[s]

Figure 5.10: Tgps behaviour for tests in Table and Table|5.15/on Reference
Trajectory 002.

Regarding the behaviour of the Steering Angle, in Figure we can notice
that both the controllers have a smooth behaviour along all the trip, expect for the
initial regions. It is a normal behaviour: in the initial phase the controller needs to
find a ”good trajectory” for the following steps, so it has some oscillations of the
Steering Angle. Anyway, after the initial phase with some spikes the evolution of
the Steering Angle becomes smooth, the oscillating behaviour is only around 405
seconds and only for the Test 2 of the EMPC controller, that means the combi-
nations of weights push the controller to have an aggressive control action in that
particular area of the path.

The smoothness of the Steering Angle is a direct consequence of the presence

of the Steering Angle error in both the controller: it would not be reasonable
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to remove this term from the EMPC approach, as it is associated to passenger
comfort rather than the controller’s tracking objectives.

However, the combination of weights can influence the behaviour of the con-
troller in an extreme way, then as said this is the longest part of the development

process for this type of controller.

Steering angle

éf [rad]

—Test1 NMPC

- --Test1 EMPC
Test2 EMPC
00

t[s]

Figure 5.11: &7 behaviour for tests in Table and Table on Reference
Trajectory 002.

5.10 Controller Design with Averaging Conflicting
Objectives Approach

The Conflicting Objectives NMPC will be designed in the following sections, and
it will be tested only on Reference Trajectory 001. The comparison between
the classic NMPC, detailed in Section [5.1] and this new approach will show a
possibility of reducing the prediction horizon length maintaining satisfying per-
formance.

In this approach we have three optimization problems, so we have three cost
functions to handle, in the following section the details of the three cost functions,
the constraints associated to the optimization problem and the practical imple-

mentation are described.
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5.10.1 Cost Function for selecting the trade-off equilibrium point

The first optimization problem is to find the trade-off equilibrium point (xy, u;).

The cost function that drives this problem has three main parts:

* Tracking part

Np—1
Cleu) =Y We-eo+Wy-e (5.25)
kp=0
* Economic part
Ny—1 Peut |12
lo(x,u) = Y Wa, - AF+Wpou - " (5.26)
kp=0 ref
* Comfort and safe part
Np—1
leom(x,u) = ), Wa, - Ag+Wa, - Ag+Wa, A3, (5.27)
kp=0 :
Then the total stage cost for the first optimization problem will be:
N,—1
Ux,u) =Y eto-Weo-eco (5.28)
kp=0

where:

Wee 0 O 0
0O W, O 0

oS O O

Weo =

o o o O
S O O o O

S O o O O
S O O O O
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€co =

L f

5.10.2 Cost Function for selecting the weight of the additional

term

When (xy,u;s) is found, the additional term can be designed by means of the sec-
ond optimization problem of the procedure. Unlike the previous constrained
optimization problems we have addressed, the second one is formulated as a
maximization problem. As detailed in [3], the function x(z — z,) is chosen as:
x(z—zs) = |z — z5|1, where z refers to all the states and all the control inputs of
our problem. Unfortunately, |x| is not differentiable for x — 0, but CasADi needs
differentiability of the functions that it will handle. To manage the problem an

approximation can be employed:
x| ~ Vx2+¢€ (5.29)

Then, the positive definite function ¥ (z — zy), in our implementation, becomes:

n+m
X(z—z)~ Y \/(zi—2z)?+e (5.30)
i=1

where € = 1-1073, n is the number of the states and m is the number of the control
inputs.

The second constrained optimization problem adopts the objective function
presented in (4.31)), with a minor practical adjustment. In symbolic computation,
the denominator of a function must not contain expressions that can evaluate to

zero, as this causes difficulties for CasADi during processing. To address this,
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a small tolerance is introduced in the practical implementation, where the goal
is to find a that can stabilize the system in its trajectory. Although the stability
properties of the term associated to the weight a have not yet been demonstrated,
the advanced design procedure currently in progress may yield promising results.

Then the optimal value of a is chosen as:

a* = max (K(XS’”S) _g(xo’“‘))) +e (5.31)
x(z0—2z5) + €

where /(xg,up) is the stage cost of the first optimization problem, but evaluated
only in the first time step of the prediction horizon, the same concept is applied
to x(zo — zs). The using of (xp,up) as optimization variables in this second step
is related to the complexity of the problem: in the procedure for computing
a* includes as optimization variables all the states and all the control inputs in
Z\ (xs,us), but for a complex system it would be unaffordable. In conclusion, we
need a lighter approach from the computational point of view, which is presented

in this work.

Note 5.11

It can happen that a* < 0, but it does make sense a negative weight in the
cost function. This event implies that we cannot find a point (x, «) for which
£(xg,us) > £(xq,up), in other words (x;, ) is already the point in the space
Z that minimize the stage cost at the first prediction horizon step. In this
case we can saturate a* to 0, and do not perform the third optimization
problem: we have already found the optimal control action by means of the

first optimization problem.

5.10.3 Cost Function for finding the optimal control action

For the final optimization problem, we adopt the stage cost used in the first op-

timization problem, namely (5.28), but augmented by the additional term previ-
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ously constructed.
) Ny—1
0(x,u) = £(x,u) + ot(xo,up) = Y eto Weo-eco+a*-x(zo—zs)  (5.32)
kp=0

The final optimal control action is selected by means of (5.32)).

5.10.4 Constraints of the Conflicting Objectives NMPC Con-

troller

The Conflicting Objectives approach needs to address three constrained optimiza-
tion problem, as seen in Section [5.10] Then, the three problems must be simpli-

fied, otherwise they will be too demanding for a practical implementation.

5.10.5 Hard constraints for Conflicting Objectives NMPC Con-

troller

The three problems will be simpler in terms of constraints with respect to the other
two controllers, NMPC tracking-based and EMPC.

Equality constraints

In order to simplify the problem, the equality constraints used in the Conflicting

Objectives NMPC controller are the following:

* The hard constraints for the first and the third constrained optimization
problem will be the constraints on the dynamics, i.e. those ones about the
Euler Discretization method for the numerical integration of the prediction
model, as in (5.8).

* Then, the constraint about the first step of the prediction horizon is adopted,
exactly in the same way seen in (5.11)), both in the first and in the third

optimization problem.

* Additionally, the terminal constraints are employed: it is part of the con-

strained optimization problem, as detailed in [3]. As in the other two con-
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trollers, the terminal constraints encompass only the first four states, exactly
as (5.10). Once again, it present in the first and in the third optimization

problem.

For the second optimization problem is a different story, it is the most im-
portant part of the approach. The maximization problem is not performed on a
prediction horizon, but only on a single step, so the equality constraints regarding
the dynamical model, i.e. the Euler Discretization method, are applied only on the
first step k, = 0.

Inequality constraints

Regarding the inequality constraints, they will be:

« The boundaries on the control action, (714, T#41) and (87, 5}”") as seen

in (5.12) and (5.13).
* The boundaries on the value of the SOC, as seen in (5.13).

* The aim of the second optimization problem is to determine a better tra-
jectory for the final control action. To guide this process, we introduce
constraints on the values of ay,ay, P, thereby encouraging the solution to
remain within acceptable bounds while steering the system along a feasible

trajectory.

Notably, the constrained optimization problem for searching a* is, inher-
ently, simpler with respect to the others, therefore we can add some con-

straints without weigh it down. So we will have:

a < ay(k,) < " (5.33)
dy™ < ay(ky) < dy™ (5.34)
Pl < Py(kp) < PP (5.35)
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Once again, the constraints on the second optimization problem, (5.33),
(5.34), (5.35), are applied only on the first time instant of the prediction

horizon, k, = 0.

Moreover, as detailed in[d.T] the diversity constraints on states and inputs must
be added, i.e.:
(x0,u0) € Z\ (x5, us) (5.36)

The expression in (5.36) can be thought as a distance between (xo, ug) and (xy, us),
which must be always different from zero. The distance can be computed, component-

wise, in the following way:
\xoi —x5|Vi=1,...,nand |ug; —us|Vj=1,....m (5.37)

As said, |x| is not differentiable for x — 0, but we can employ the same approxi-

mation seen in (5.29). Then, (5.36) can be managed as an inequality constraint of

the kind:
e<Vxl4e<o (5.38)

for both the states and the inputs.

Numerical approximation to Facilitate the Solver

Once again, some numerical approximation are employed to facilitate the solver
during the resolution of the constrained optimization problem. They are exactly

the same seen in Section [3.4]

Initial Guess and Convergence tolerance

Once again, an initial guess of the solution must be provided to the solver, and it
is a critical choice.

For the first optimization problem, the initial guess can be the previous status
of the system, i.e. states and inputs at the time instant k — 1.

In the second optimization problem, we have found the trade-off equilibrium
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point, and we want to push the entire system towards it or towards its neighbour-
hood. Then, a reasonable initial guess is the equilibrium trade-off point itself
(xg, Ug).

In the end, for the last optimization problem, since we want to push the entire
system towards the stable area around the point (x;,u;) we can choose it as the
initial guess.

Regarding the setting of the solver, for the first and the second optimization
problem, it is equal to the setting using for the NMPC and the EMPC controller
(see Section[5.4.2). Whereas for the last optimization problem, which will decide
the final control action, in order to facilitate the solver we can reduce a bit the

convergence tolerance (from 1 - 1073 to 1-1072).

5.10.6 Comparison Between Conflicting Objectives NMPC and
NMPC

As said, the length of the prediction horizon is an important characteristic for
reaching satisfying performance and stability of the controller, then a high value
of N, should be used. On the other hand, increasing N, leads to greater com-
putational complexity. As in most control design problems, a balance between
computational complexity and performance must be carefully considered.

The new procedure is thought to reduce the complexity of the optimization
problems to be addressed and at the same time steer the controller to a consistent
area of Z, ensuring reliable performance even under challenging conditions.

We can compare the NMPC controller with the Conflicting Objectives con-
troller, in Table [5.16]and Table are resumed some results.

The initial conditions for all the simulation of the Conflicting Objectives

controller on Reference Trajectory 001 are the same of the NMPC
controller (see Table[5.7).
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Table [5.16 reports the same results of Table [5.8] it is placed here only for a
clearer reading.

Once again, Test 9 of Table @ is the benchmark, and we can see that the
new procedure for averaging the conflicting objectives loses accuracy in tracking
the reference trajectory: an increasing of 0.16m in the max |e.| is detected in
the best case, and an increasing of 0.001 rad (0.057°) in the max|ej,|. They are
both negligible differences in large scale, but anyway a decreasing of tracking
performance is detected.

The same happens for the energy consumption performance: the NMPC shows
a better management of the energy, as we can see in Table[5.18]

On the other hand, we can see in Table [5.19|that the decreasing of the predic-
tion horizon from 22 to 20 generates problem at the NMPC controller: in almost
all the tests it cannot manage the all travel, resulting in an Error (i.e. a NaN
detected from CasADi). Whereas the procedure for Averaging Conflicting Objec-
tives can exploit a shorter prediction horizon, as shows Table [5.20]

Test | W, | Wy, | W, WAsf Wa, | Wa, | Q | P | max|ey|[m]| | max|e,|[rad]
1 1 1|1 ]1-10°] 2 1 [ nLln 2,16 0,144
2 0] 1] 1 [1-10°] 2 1 | L |L 2,14 0,144
3 10101 [1-10°] 2 1 | LlL 2,14 0,144
4 [10]25] 1 [1-10°] 2 1 |nln 2,14 0,144
5 [1o0] 1] 1 [1-10°] 2 1 | LlL 1,98 0,143
6 [100]10] 1 [1-10%] 2 1 |Lln 1,98 0,143
7 10025 1 [1-10°] 2 1 |uLln 1,98 0,143
8 (10025 [15]1-10%] 2 1 |L|L 1,98 0,143
9 [100]25] 2 [1-10*] 2 A 1,98 0,143

Table 5.16: Tuning results of the NMPC controller with N, = 22, on Reference
Trajectory 001.
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Test | Wer | Wy | Wpow | Wa c Wa 5 Wa, | Wa, | max|eq|[m] | max|ep| [rad]
1 10 | 10 1 1-10* | 1,5-10* | 2 1 2,17 0,144
2 1010 10 |[1-10°]1,5-10*] 2 1 2,17 0,144
3 J1ofl10] 25 [1-10*]1,5-10*] 2 1 2,17 0,144
4 110110 1 1-10° | 1,5-10* | 2 1 2,17 0,144
5 ol10] 10 [1-100]1,5-10*] 2 1 2.17 0,144
6 | 10[10] 25 [1-10°|1,5-10*] 2 1 2,17 0,144
7 10 | 10 1 1-10° | 1,5-10* | 2 1 2,17 0,144
8 |10|10] 10 |1-10°]1,5-10*] 2 1 Error Error
9 [10]10] 25 [1-10°]1,5-10%| 2 1 Error Error
10 |25]25] 10 [1-10°]1,5-10*] 2 1 2.14 0,144
11 [25]25] 10 [1-10°]1,5-10%] 2 1 2,14 0,144
12 125]25] 10 [1-10°[1,5-10° | 2 1 Error 0,144

Table 5.17: Tuning results of the controller with the conflicting objectives, N, =
22, on Reference Trajectory 001, tracking focus.

Test | Wer | Wi | Woow Wa, WAsf Wa, | Wa, | SOC saved [%)]
1 10|10 1 [1-10*]1,5-10*] 2 1 -0,0047
2 [10]10] 10 [1-10*|1,5-10*] 2 1 -0,0043
3 1010 25 [1-10*|1,5-10*| 2 1 -0,0045
4 1010 1 [1-100]1,5-10*] 2 1 -0,0047
5 Jol1o] 10 [1-100]1,5-10*] 2 1 -0,0166
6 [ 1010 25 [1-10°0]1,5-10*| 2 1 -0,0095
7 ltol1o] 1 [1-109]|1,5-10°] 2 1 -0,0047
8 [10][10] 10 [1-10°]1,5-10*] 2 1 Error
9 |10|10] 25 [1-10°]1,5-10*] 2 1 Error
10 |25]25] 10 [1-10*°]1,5-10*°| 2 1 -0,0100
11 [ 25]25] 10 [1-10°]1,5-10°] 2 1 -0,0453
12 [25]25] 10 [1-10°]1,5-10*] 2 1 Error

Table 5.18: Tuning results of the controller with the conflicting objectives, N, =
22, on Reference Trajectory 001, energy consumption focus
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Test | W, | W), | W, WAsf Wa, | Wa, | Q | P | max|ey|[m] | max|e|[rad]
1 1 1 1 [1-10%] 2 1 |4 | Ik Error Error
2 1o 1] 1 [1-10°] 2 1 |uln Error Error
3 10101 [1-10°] 2 1 |nln 3,13 0,292
4 10025 1 [1-10*] 2 A 37,3 0,385
5 [100] 1] 1 [1-10°] 2 1 [ LlL Error Error
6 0010 1 [1-104] 2 1 | Iy | I4 Error Error
7 10025 1 [1-10°] 2 1 |nln Error Error
8 [100][25]15]1-10%] 2 1 |nln 4,77 0,358
9 [100][25] 2 [1-10*] 2 1 | L |L Error Error

Table 5.19: Tuning results of the NMPC controller with N, = 20, on Reference

Trajectory 001, tracking focus.

Test | Wer | Wy | Wpow | Wa " Wa 5 Wa, | Wa, | max|eq|[m] | max|ep| [rad]
1 [10]l10] 1 [1-10°]1,5-10*] 2 1 1,82 0,128
2 [10]10] 10 [1-10*]1,5-10* | 2 1 1,82 0,128
3 J1of10] 25 [1-10*]1,5-10*] 2 1 1,82 0,128
4 [10]10] 1 1-10° | 1,5-10* | 2 1 1,82 0,128
5 [10]10] 10 [1-10°0]1,5-10%] 2 1 1,82 0,128
6 [ 10]10] 25 [1-10°0]1,5-10%| 2 1 Error Error
7 |10 | 10 1 1-10° | 1,5-10* | 2 1 1,82 0,128
8 1010 10 [1-10°]1,5-10%| 2 1 1,82 0,128
9 [10]10] 25 [1-10°]1,5-10%| 2 1 Error Error
10 |25]25] 10 [1-10°]1,5-10*] 2 1 1,80 0,128
11 [ 25)25] 10 [1-10° ] 1,5-10*| 2 1 1,80 0,128
12 125]25] 10 [1-10°]1,5-10* | 2 1 Error Error
131010 10 [1-10*]1,5-10*°] 2 2 1,83 0,128
14 [10]10] 10 [1-10°]1,5-10*] 2 5 Error Error
15515 5 |1-10°]1,5-10°] 2 | 10 1,93 0,132
6] 2 ]2 2 1100 1,5-10° ] 2 | 10 1,93 0,132

Table 5.20: Tuning results of the controller with the conflicting objectives, N, =
20, on Reference Trajectory 001, tracking focus.
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Unfortunately, another lack arises when we decrease N, in the performance
of the Conflicting Objectives controller: the minimum safety distance is never
respected. This situation is likely related to the method used to compute the min-
imum safety distance: it is thought as the distance spaced in 1s by the vehicle,
and N, = 20 is exact a prediction of 1s in the future. Being exactly on the limit
of the predicted time does not allow for finding an optimal control action that can
respect the soft constraint on the safety distance. For this reason, it does not make
any sense to shorten the prediction horizon further. In Figure [5.12]is shown the
behaviour of the distance between the vehicles, we cannot increase the distance
even if we reduce the weight of the tracking part and increase the weight of the
Safety Distance error (Test 16 of Table[5.20).

Distance between vehicle

T T I T
—Test1 Averaging Conflicting Objectives approach
—Test16 Averaging Conflicting Objectives approach
#1----Minimum safe distance 7

1 1 L L L L I
0 20 40 60 80 100 120 140 160 180 200

t[s]

Figure 5.12: Distance between vehicle for the Averaging Conflicting Objectives
approach (Tests Table|5.20) with N, = 20, on Reference Trajectory 001.

5.10.7 Control Inputs behaviour in decreasing Prediction Hori-
zon length for Conflicting Objectives NMPC

Reducing the prediction horizon from 22 steps to 20 steps does not affect in a
significant way the tracking performance of the Conflicting Objectives NMPC

controller, but the controller must be reliable also in the selection of a control

action. That means we should have a smooth behaviour of the Tgy and d; in
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order to guarantee a comfortable travel. Test 10 and Test 11 are the best from
the tracking point of view in both cases, N, = 22 and N,, = 20 for the Conflicting
Objectives NMPC. In Figure [5.13]and Figure [5.14] we can see how the shortening
of the prediction horizon leads to smother behaviour of the control action, i.e.
the controller does not need an aggressive control action even if the prediction is
shorter. It is not trivial as result: if we can predict far in the future we can be able
to choose a better trajectory to follow, but in this case the using of neighbourhood
of the trade-off equilibrium point as area to which we want to approach brings
benefit. The controller is pushed towards a good trajectory almost immediately
after the system leaves the reference trajectory, in this way it can use less steps to
steer the plant to the path to follow. In conclusion, a less aggressive control action
is needed with a short prediction horizon, computed in a less complex framework:
we do not forget that the reduction of the steps of the prediction horizon simplifies

the optimization problem.
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Motor Torque
L O L R — —Test10 C.O. Np=22
—Test11 C.O. Np=22
of- Test10 C.O. Np =204
---Test11 C.O. Np=20
f— |
£ \ |
z e - ‘ﬁ __________________
=
w
|_
e O B
t[s]

Figure 5.13: Tgjs behaviour for tests in Table and Table|5.17, on Reference
Trajectory 001.

Steering angle

—Test10 C.O. Np =22
—Test11 C.O. Np =22

Test10 C.O. Np =20
---Test11 C.O. Np =20

df [rad]
|
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Figure 5.14: 7 behaviour for tests in Table and Table , on Reference
Trajectory 001.
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Chapter 6

Conclusion and Further

Developments

This work focused on the designing and the implementation of a NMPC controller,
in particular the most interesting approach was found in an economic form. The
study has explored mainly the evolution from a NMPC to an EMPC controller in
order to face the problem of the longitudinal-lateral dynamics of a vehicle, keeping
as objective a reduction of energy consumption, meanwhile the safety and comfort
of the passengers are unchanged. The lateral and longitudinal dynamics of moving
vehicle involve two known systems: ACC and LKA. Through methodical testing
the interaction between this two systems, with some little differences with respect
their classic form, in different scenarios is explored.

The progressive increasing complexity of the driving conditions in which the
controller was found are managed by the MPC method in both approaches, track-
ing and economic, in a satisfying way. Meaningful differences are noticed be-
tween the tracking and the economic formulation of the problem: even if the
tracking performances are less accurate in the economic approach, and notably
the lack of accuracy is negligible in large scale, the energy saving is improved.

The results demonstrate the initial idea: even if the tracking performances are
not the main focus of the problem, they can be obtained as consequence of the
economic approach. This shift in perspective allows for a focused analysis of

energy consumption, which is currently one of the most critical challenges in all
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branches of the transportation sector.

Particularly significant are the results on the distance between vehicle during
the travel. Any passengers will take as main safety issue the distance from the
vehicle ahead, and with both approaches this distance is widely respected, we can
see in Figure how Test 2 of the economic approach is the best controller on
this aspect.

Secondly, also the smoothness of the driving is reached. Intuitively, one can
expect that as the deviation from the reference trajectory increases, the controller
must act to steer the system back onto the desired path. However, the plots in
Chapter [5] clearly show that when either the Cross-Track error or the Heading er-
ror increases, their return to the ideal value of zero follows a linear evolution. No-
tably, there are no abrupt changes or successive spikes in these indices. Moreover,
the Steering Angle error is close to zero for the majority of the travel, reflecting
the rarest case in which an aggressive change of direction of the heading is chosen
by the controller as control action, unfortunately is not the same for the torque
provided by the EM. Frequently spikes, even with a low intensity, are uncomfort-
able and the origin of vibrations, but it is the price to pay for having a energy
saving in the regions in which the power demands can be lowered down.

As said, the computational effort is not a side problem of the MPC approach,
but the simplification of the cost function resulting in the EMPC approach de-
creases the average time for building and solving the optimization problem. A
decreasing from 0.56 s (NMPC) to 0.42 s (EMPC) is reached, the 25% of time is
cut off.

Another interesting development of the work is the employing of a novel ap-
proach for the design of a stabilizing term. The procedure was too demanding
for the complex lateral-longitudinal dynamics we have faced, in fact the using of
the new approach detailed in [3]] does not lead to satisfying results. However, a
different employing of the design method leads to a slightly increasing of the reli-
ability of the system in different conditions with respect to the NMPC approach:
the shortening of the prediction horizon is a crucial difference from the tracking
NMPC that does not lead to significant issues. Although accuracy is lost, albeit on
a negligible scale, when using the Averaging Conflicting approach, the resulting

performances seem to be promising for a future development of this procedure.

116



Conclusion and Further Developments

6.1 Further Developments

Further study could focus on the response of the model in more complex scenar-
ios, for example the effect of the variations in road inclination can help the EMPC
controller to lower down the energy consumptions: in downbhill situation the brak-
ing torque used to control the longitudinal speed will be an important resource.
Additionally, road irregularities, burst of wind both in lateral and longitudinal di-
rection can have a significant impact on the control action and so on the controller
performances: they are necessary considerations to be evaluated in a real-world
implementation prospective.

We have seen as every conversion of energy (mechanical to electric or vice-
versa, DC to AC or vice-versa), unfortunately, is characterized by a loss of energy,
then in situation in which there are more conversions an economic approach could
be interesting. For instance, the hybrid vehicles use two different sources of en-
ergy, and their interaction is different based on the configuration of the HEV. In
this complex situation, saving energy can be enormously precious.

Even if the economic approach lowers down the computational effort, and
simplify the problem, the complex lateral dynamics of a vehicle force a quite high
length of the prediction horizon in order to reach satisfying results. In a real-
world application it would be important decreasing the average time needed for
computing the control action as much as possible. An average computational time
lower than the sampling time should be the goal to address. This represents a
crucial research area, as it enables the validation of the economic approach under
realistic ground test conditions: the feasibility and robustness of the method must
be evaluated outside the simulations environment.

Another interesting area of research could be the integration of other ADAS
with an Economic approach. This work did not consider the presence of other
vehicles, despite the leading vehicle, but in the real world the presence of multiple
nearby vehicle is common. The detection of those vehicles can be performed by
the BSM, and its features could be integrated in the dynamics of the car, which
should, obviously, take care of nearby vehicle in deciding the control action.

The novel approach of Averaging Conflicting Objectives could be further in-

vestigated, particularly for complex system where the original method is unman-
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ageable. An interesting theoretical aspect to study is the stability property related
to the additional term, the simulations in this work show how it can be a viable

and practical solution for employing the procedure.
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