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Abstract

Due to the growing interest in hydrogen (Hgz) energy for climate change mitigation,
hydrogen losses to the atmosphere are expected to increase the Hy atmospheric concen-
tration over its natural value. The problem is that, for its capacity to interact with
atmospheric gases such as methane, ozone and stratospheric water vapor, hydrogen is
an indirect greenhouse gas. Hence, a challenging question for the scientific community
is: will the use of hydrogen-based energy be a real step toward the solution of climate
change or will it effectively add to this already fundamental global issue? To answer this
question, a critical piece of the puzzle has to be considered: bacteria in soils. In fact, soil
bacteria account for about 80% of the atmospheric hydrogen removal and therefore rep-
resent the main global sink of Hy. Many studies on soils and bacterial activity have been
performed and multiple factors, both biotic and abiotic, have been found to influence the
hydrogen uptake. Above all, soil moisture and, in particular, its temporal fluctuations
have been shown to be the dominant control, conditioning both bacterial activity and
hydrogen diffusion in the soil.

In this thesis, we try to extend a previous depth-averaged model for moisture and Ho
(Bertagni et al. 2021, Global Biogeochem. Cycles) to the horizontal direction, in order
to investigate how spatial heterogeneities and patterns influence hydrogen uptake. A 1D
horizontal model is examined, especially to understand the role of horizontal diffusion
in this framework and how the various terms governing the hydrogen dynamics in soils
are conditioned by it. We show that, while Turing-like instabilities cannot occur in this
particular system, spatial heterogeneities and diffusion processes interact to produce com-
plex Hy uptake patterns. In future works, an extension to 2D models possibly accounting
for complex topographies is suggested as a further step, in order to better highlight
critical bio-geophysical processes neglected in current formulations. Understanding how
hydrogen uptake varies across ecosystems and what types of spatial patterns can arise
depending on soil moisture is of crucial importance to comprehend the effects of a possi-
ble Hs energy-based industry in the context of climate change, and this work is a critical
step forward in this direction.



Contents

1 Introduction 3
2 0-Dimensional Dynamics 5)
2.1 Coupled water and hydrogen dynamics in soils . . . . . .. .. ... ... )
2.2 Soil moisture dynamics . . . . . . ... Lo 6
2.2.1 Infiltration . . . . . ... 7

2.2.2  LOSSES . . .. e e e e e e e 9

2.3 Soil hydrogen dynamics . . . . . . . . . ... 12
2.3.1 Atmospheric Flux of Hydrogen . . . . . ... ... ... ...... 13

2.3.2 Biological Decay . . . .. .. .. ... .. .. .. .. ... 14

2.4 Simulations and results of the model . . . . . . . . ... ... ... 16
2.4.1 Quasi-steady state approximation. . . . . . . ... ... ... ... 16

2.4.2 Deposition velocity and limitations . . . . . . ... ... ... ... 17

3 Space-Dependent Dynamics 23
3.1 Integrating horizontal diffusion processes . . . . . . . . . . ... ... ... 23
3.2 Analysis of possible Turing instabilities . . . . . . .. . ... .. ... ... 24
3.2.1 Dimensionless equations . . . . . .. ... 000 25

3.2.2 Conditions for the validity of Turing instabilities . . . . . .. . .. 27

3.3 1D model . . . . .. 29
3.3.1 Quasi-Steady State Approximation . . . . . . ... ... ... ... 29

3.3.2 (Cases with a constant Dy . . . . . . . ... .. .. ... ...... 30

3.3.3 Cases with a non linear Dy . . . . . . . . . .. . ... ... .... 31

334 «a-ADiagrams . . . . ... 35

3.3.5  Check on the validity of the quasi-steady state approximation in 1D 41

34 2D model . ... 45

A Derivation of the 1D and 2D Quasi-Steady State Approximation 51
Al 1D case . . . . . . e 51
A2 2D case . ... 54
Bibliography 59



Chapter 1

Introduction

In the last decades, with the worsening of the climate change problem, an alternative to
fossil fuels has been strongly looked for and, among the various solutions, hydrogen-based
energy has received growing interest from the scientific community. However, an eventual
and massive use of hydrogen-based energy could also be problematic since leakages toward
the atmosphere are expected to increase considerably the concentration of Hy above its
actual level of about 530 ppb. For its capacity to easily react with other atmospheric
gases such as methane, ozone and water vapor, hydrogen is an indirect greenhouse gas and
an increase in its atmospheric concentration could produce undesired effects. Therefore,
if, on one hand, hydrogen energy is a clean and easily available type of energy, on the
other, its vast employment on a global scale could generate opposite results and further
intensify the global warming. It is, thus, of crucial importance to understand in a deeper
way the natural cycle of Ho on our planet. In this context, soil plays a leading role as its
layers harbour large communities of bacteria and microorganisms whose metabolism is
based on hydrogen, which they acquire through Hs-oxidizing enzymes. Their biological
activity is responsible for about 80% of the total hydrogen removal, which makes soil the
main global sink of the atmospheric Hy. In light of these facts and that these bacterial
communities are found in nearly every ecosystem, the study of the hydrogen dynamics
in soils is of clear importance in understanding whether a future use of Hs-based energy
could be beneficial or not.

Previous works, recalled in the second chapter of this thesis, have already highlighted
the main factors that influence and control the hydrogen dynamics in soils. Above all,
soil moisture and its temporal fluctuations are the dominant parameters which could
enhance or hinder the hydrogen uptake the most. In fact, soil moisture conditions both
the activity of the bacterial communities, which can enter a dormant state if a prolonged
lack of water (such as in hyper-arid ecosystems) occurs, and the atmospheric flux of Ha.
If the level of water in soil is too high, in fact, hydrogen flows from atmosphere to soil
with much more difficulties. Due to its low solubility in water, the Hy available in soils
is mostly in the gas phase and can diffuse in the vertical direction only if the soil pores
are free from water.

Soil moisture, in turn, strongly depends on rain events whose unpredictable and
stochastic nature adds to the complexity of the models, further complicated by the action

3



Introduction

of many other secondary actors: temperature, salinity and pH of the soil impact signifi-
cantly on the hydrogen uptake, as well as the presence of layers of material, like snow or
litter, that could cover the soils and hinder even more the atmospheric flux of H.

Until now, these models have just taken the temporal variability into account, neglect-
ing the horizontal spatial variables. Only on a global scale, due to changes in temperature
and precipitation rates among the various ecosystems, has spatial variability been inves-
tigated.

The aim of this thesis is to extend these previous works by adding the dependencies
on the x and y directions, whose effects are examined, especially, on the local scale. As
a consequence, another phenomenon has to be added to our discussion: the horizontal
diffusion of both moisture and hydrogen. Its impacts on the model are studied in detail,
investigating whether heterogeneous spatial patterns in the Hs uptake can be induced by
diffusion processes. After having analysed, for a generic dimensionality, whether Turing-
like instabilities can arise in our model, a 1D case is thoroughly treated, whose simulations
and results are examined in the third chapter. Furthermore, a discussion about the
different behaviors of soil moisture and hydrogen concentration in several hydrologic
regimes is carried out to better underline how diffusion and rain events interact with
each other to generate peculiar spatial profiles depending on which ecosystem we are in.
Finally, we end this work with an introductory extension to a 2D model, where a couple
of more and more realistic scenarios are presented.

This study is a further step in the comprehension of how hydrogen uptake changes
across ecosystems. Also, from a mathematical point of view, we extend a previous ordi-
nary differential method to a partial one, which could better describe spatial variability
on the local scale. The latter scale, neglected in previous models, is of fundamental impor-
tance to understand how local heterogeneity and spatial patterns, summed up together,
can influence the Hy uptake on the global scale.



Chapter 2

0-Dimensional Dynamics

2.1 Coupled water and hydrogen dynamics in soils

The starting points are the two coupled equations that describe the dynamics of moisture
and hydrogen in the soil, which are the main variables of study in this work. Before going
on with their description, we must underline that horizontal homogeneity will be assumed
in this first chapter, neglecting, in other words, the dependence on = and y. In the next
chapter, instead, we are going to relax this approximation precisely to investigate the role
of the horizontal spatial variables on our model.

For the hydrogen dynamics, hence, the balance equation is:

%(60) = —%gb+p—bd (2.1)
where ¢ is the time and z is the vertical axis pointing downward; ©(t, z) is the soil volu-
metric air content (measured in em?,./em? ) and c(t, 2) is the hydrogen concentration in
the atmosphere (measured in moles/cm?;.) so that the product Oc = ¢, is the hydrogen
concentration in soil (measured in moles/cm3 ,)); ¢(c,0,8) gives us the hydrogen flux
between the atmosphere and the soil. It mainly depends on ¢, €, which is the water vol-
umetric content (and is given by the other equation), and on §, which is the depth of the
possible diffusive barriers, such as snow, litter or other materials which can accumulate
on the soil and hinder the hydrogen flux. p is the term that stands for the hydrogen pro-
duction inside the soil, whereas bd is the consumption term that represents the biological
decay of the hydrogen inside the soil (biological since they are some microorganisms that
are responsible for the hydrogen depletion).
For the equation that describes the soil-water balance, we have:

9 9
50 =50t o() (2:2)

soil

where the new terms are v that is the vertical flux of water per unit area and o(z) which
represents the plant uptake of water.

It is convenient to average these two equations along the vertical direction and this
can be done following the procedure explained in "Bertagni et al. (2021)" [1]. Thus, after
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0-Dimensional Dynamics

integrating over a depth Z, the resulting equations are:

nZSS=R+J-1-Q- BT L (2.3)
nZ%[(l 5y =F+Z-(P-BD) (2.4)

where § and ¢ stand for the vertical averages, respectively, of s and c. In the derivation
of the above equations, we have used the relations § = n-s and © = n(1 — s) introducing
two new variables: s(z,t), the relative soil moisture, and n, the soil porosity (defined as
n = 6 + ©). s, in particular, will play a crucial role in the subsequent analysis and,
together with ¢, will be the main variable in this discussion.

In the following sections, we are going to describe in detail all the terms involved in
the previous equations. Here we only list their names: in the first equation R(¢) is the
rainfall, J(¢) is the irrigation (that we will no longer consider in the following), I(t) is
the canopy interception, (3) is the surface runoff, ET(3) is the evapotranspiration loss,
L(3) is the leakage; in the second equation F' is the hydrogen flux, P is the averaged
production term and BD is the averaged biological decay term.

2.2 Soil moisture dynamics

The difficulties in solving Eq. (2.3) and (2.4) come from the fact that s depends on
stochastic events: rains. So, we have to be quite careful in modeling the various terms
of Eq. (2.3). For this reason, we will follow the analysis of "Laio et al. (2001)" [5]. In
particular, we divide, as they suggest, the terms into two categories: those that contribute
to the rate of infiltration ¢[s(t), ¢] and those that determine the losses x[s(t)], so that we
can rewrite Eq. (2.3) as

nZ 55(0) = els(t), 1 — x[s(1)] (2.5)

where, for the sake of simplicity, we denote with s the average along z of the soil moisture,
namely s.

The rate of infiltration ¢[s(t),t] is the actual quantity of water, due to rainfall, that
reaches the soil and is absorbed. We can, then, write it as

pls(t),t] = R(t) — I(t) — Q[s(), ] (2.6)

where R(t) represents the rainfall rate; I(t) is the quantity of rainfall intercepted by
canopy cover and, for this reason, not reaching the soil; Q[s(t),t] stands for the rate
of runoff, that is the part of rainfall that can’t be absorbed because the soil is already
saturated.

The losses x[s(t)], instead, tell us how soil moisture decreases over time due to different
factors. These are mainly evapotranspiration, that is the sum of evaporation of water
from the soil and plants transpiration, and leakage, which is the infiltration due to gravity
from the soil layer under consideration to the deeper soil layers. So, we can express x[s(t)]
as

x[s(t)] = ET[s(t)] + Ls(t)] (2.7)
where, as we said, T and L are, respectively, the rate of evapotranspiration and leakage.
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2.2 — Soil moisture dynamics

2.2.1 Infiltration

To model this term, we will assume that the rainfalls are independent from the soil and
its moisture, and hence that they are external forces acting on our system. They are
also, and more importantly, stochastic events both in the occurrence and in the amount
of water fallen. To model the former, we consider the times of rains as a Poisson process,
so as a series of temporal events separated by a time quantity 7 that we extract from an
exponential distribution with mean 1/\. We also consider that rains are instantaneous
events, neglecting their actual duration and concentrating the whole precipitation in a
single instant of time during a particular day.

For the amount of rain (represented here with the random variable h), we again
extract the values of h from an exponential distribution, but with a different mean, «.
Physically, « is the mean depth of rainfall events and is measured in cm.

So we have two exponential distributions one for the time distances between subse-
quent rainfalls and the other for the quantity of water fallen while it rains. We can write
them as

fu(h) = le*h/o‘ for h>0 (2.8)
«
fr(t)=Xe™7 for 720 (2.9)

So we can now express the rainfall rate R(t) as a temporal sequence of this type:
R(t) =Y hi6(t —t;) (2.10)

where §(-) is the Dirac delta function, the {h;,i = 1,2,...} are distributed according to
Eq. (2.8) and are the rainfall depths and {¢;,i = 1,2,... } are the corresponding rainfall
instants and are computed as t; = t;_1 + 7; for i = 1,2,... where the {7;} are given by
(2.9).

However, as we said before, not all the rain reaches the soil and is absorbed. First, we
have to remove the part of rainfall intercepted by the canopy of trees and other forms of
vegetation such as grass. Interception is quite complicated to model since it depends on
the particular type of plant and also on the duration and intensity of the rainfall event.
Here we use a very simple model: we define a threshold A as the quantity of rain that
can be intercepted by plants so that if the depth of the rainfall event is less than A, no
water reaches the soil and if it is greater, then A is subtracted from the depth of rain of
that event. We can also assign different values to A depending on the particular type of
plant, in order to include the important dependence of interception on the plant type.

Mathematically speaking, we can introduce interception in our model by simply mod-
ifying the rate X, that tells us the frequency of rainfalls, in a way that already consider a
rain with depth A < A happening with probability 0. So, the new rate will be:

A

N = A/:O fu(h)dh = Xe™ @ (2.11)

The distribution of the rainfall depths, instead, remains unchanged even if, in principle,
now the depths of an occurring rainfall event (so with h > A) are reduced by A, namely
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0-Dimensional Dynamics

we have now new depths h, = h; — A. In fact, the new distribution should be

Ful) = See

a

where C' is a normalization constant and is obtained by imposing

/ fu(h)dh =1 +—

0

— Ce‘ﬁ/ ewdh =1 —
a 0

C _a
<— —e¢ aa=1 <—
«

A
— (C=¢a
and so
, C _wia 1 o _n4a 1 _w»
fH(h):—e [e% = —ea - ¢ [e% = —e «
Q « leY

that is the same of (2.8). So, as we said, the distributions of the new {h/} and of the old
{h;} are the same.

After these considerations, we can now group together rainfall and interception in this
way:

R(t) — I(t)=>_his(t —t;) (2.12)

where {t;,i = 1,2,...} are the instants of rainfall obtained as t; = t,_; + 7/ and {7/,i =
1,2,...} are extracted from the exponential distribution with the new rate X

This is not the end of the story, in fact we still have to add the runoff contribution.
The soil can absorb water up to a certain level, if the water exceeds this level, then it is
converted into surface runoff. So we have to consider, in our model, an upper bound and
we express it saying that the soil moisture can be at most 1.

Hence, we have to make one last modification to our distributions. First, we can
normalize the mean rainfall depth a with the active soil depth, that is the height of soil
in which water can be stocked and it is given by the product between the soil depth and

the soil porosity, namely n - Z. Doing this, we obtain a new dimensionless rate

1 «
= 2.1
STz (2.13)
Analogously, we can define normalized rainfall depths
=M 21 (2.14)
Yi = nZ =12,... .

Then, the distribution from which we extract the rainfall depths, now normalized, be-

comes
00

fr(y,s)=ve " +d5(y—(1-3))- - S (2.15)

and this is valid for 0 < y < 1—s. We can see that the first term is the distribution (2.8)
with the dimensionless quantity v and y rather than a and h and has the same physical
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2.2 — Soil moisture dynamics

meaning; the second term, instead, is telling us the probability that a rainfall event could
produce saturation when the soil has a certain moisture s, including in this way its upper
bound.

Eventually, we can now write the infiltration rate as

pls(t),t] = R(t) — I(t) — Q[s(1),t] = nZZyﬁ(t — ;) (2.16)

where the set of {y;,i = 1,2,...} are extracted from distribution (2.15), while {t,,i =
1,2,...} are the same as before the considerations about runoff.

2.2.2 Losses

We can start by analyzing the evapotranspiration term which is, as we said, the sum of
water evaporation from the soil and transpiration due to plants. These two phenomena
are not directly related, but we can treat them together since for small values of s plants
do not transpire anymore and so only evaporation remains, whereas for high values of s
the main contribution is due to transpiration.

To model evapotranspiration we can assume that, as long as soil moisture is enough
to let plants continue with their physiological processes without problems, the evapotran-
spiration rate is constant and equal to its maximum value FE,,,,. Below a certain level
s* of soil moisture, then, plants begin to reduce transpiration since their stomata start
to close. At this point, although complex mechanisms and processes depending on many
factors come into play, we can approximate the behavior of the evapotranspiration rate
as a linear one. Eventually, when soil moisture reaches the so-called wilting point s,,,
the soil becomes too dry and plants start to get damaged and die. So below s,,, only
evaporation remains and goes on at a very low rate until the hygroscopic point sj is
reached and the water stock in soil is not further diminished by evapotranspiration.

Hence, the functional dependence of the evapotranspiration rate is strongly non linear
and follows

Ewm for sp <5< sy
Sw — Sh,
ET(S) = Ew + (Emaz - Ew)% fOI' Sw <S8 S S* (217)
w
Enaz for s*<s<1

where FE,,. represents the rate of a unitary surface uniformly covered with vegetation
and is a daily average of the true rate. In fact, we recall that we are not considering the
dynamics of rains during a day and so, for our model, the smallest timescale is the day.
We will also make the assumption that this rate remains constant during the growing
seasons and, following the data provided by "Laio et al. (2001)" [5] , we assign

E're¢ — 0.5 cm/day

max

for trees and
Eorass — piree _ 1007 . Flree — () 45 cm/day

max max max

9



0-Dimensional Dynamics

for grasses.
For the values of s*, s, and s; we instead use the soil-water retention curves. As
explained again in "Laio et al. (2001)" [5], those curves are in the form

U, =T, .-s" (2.18)

where W is the soil matric potential, while ¥, and b (known as the Campbell’s param-
eter) are experimentally determined parameters. Depending on the type of soil under
consideration, very different values can be obtained for these two quantities. Then, to
determine the soil-water levels s*, s, and sp, we assign to the corresponding soil matric
potentials, namely W, o+, ¥y, and W, some values derived from experimental evi-
dences and we see where these soil matric potentials intersect the soil-water retention
curves, as explained in Figure 2.1. In particular, accordingly with "Laio et al. (2001)" [5],
we set:

Vg o+ = —0.03 MPa; Vg, = -3 MPa; Vg, = —10 MPa.

Soil-Water Retention Curves

10?

— loam soil
sand soil
[Ws. 5|
10t ===~ Fommm -
1
1
el 1 N LN
1 I 1
1 1 1
1 1 1
100 1 1 1
o 1 1 1
& [ I
= 1 1 1
— 1 1 1
= 1 1 1
w [ 1
5 P i
1071 4 1 1 I
1 1 1
1 1 1
MWsse|__ L e
1 1 1 1 ] 1
1 1 1 1 1 1
2 1 1 1 1 1 1
-2 4 1 1 1 1 1 1
10 1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 +
1 1 1 1 1 1
1 1 1 1 1 1
Shs| | Sws \Shi |Swi \ss Isi
1072 Ll 5 l T . T T l T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

s

Figure 2.1.  Soil-water retention curves for a loam soil (in blue) and a sand soil (in orange).
To find out the values of the soil-water levels, we fix some values for the matric potential,
accordingly with experimental data and independently on the soil type, and then horizontal
line are drawn. The points intersected on the curves determine the soil-water levels sy, sq,
and s* for that particular soil type. The values for some soils are reported in Table 2.1.

Finally, for the value of E,, we choose 0.01 cm/day. This is not a precise estimate,
but since the losses are quite small in this part of the dynamics, a detailed analysis is not
completely necessary and only the order of magnitude of E,, is really important.

Before ending the discussion about this term, we must say that our model of evapo-
transpiration is not completely correct for some particular ecosystems, such as extremely

10



2.2 — Soil moisture dynamics

Sws  Sopt  Ws [MPa] Wy (log) [MPa] sp Sw s* Sfe

Sand 0.11 0.19 -1.85-1073 —0.34-1073 0.08 0.11 0.33 0.35

Loamy sand | 0.11 0.18 —0.88-1073 —0.17-1073 0.08 0.11 0.31 0.52

Sandy loam | 0.18 0.29 —2.10-107%  —0.70-10~2  0.14 0.18 0.46 0.56

Loam 024 0.37 —4.68-1073 —1.43-1073 0.19 0.24 0.57 0.65

Clay 0.53 0.64 —3.97-1073 —1.82-1073 0.47 0.52 078 =1

Table 2.1. The values of s,s and s,p; has been taken from "Bertagni et al. (2021)" [1],
whereas the others come from "Laio et al. (2001)" [5].

arid habitat. In fact, in extreme situations plants may have developed different photo-
synthetic pathways to better adapt and, for this reason, modifications to our model have
to be considered.

Now, only the leakage term remains to be modelled. For this purpose, we will assume
that the leakage rate is maximum when the soil is saturated and decreases as s decreases,
following the behaviour of the hydraulic conductivity K (s), so that, in practice, we set
L(s) = K(s). The most common way to model the latter, is to describe this term as a
power law of the form

K(s)=Ks-s° (2.19)

where K is the saturated hydraulic conductivity, namely K (s = 1), and ¢ = 2b+ 3 with
b the same parameter as the one of Eq. (2.18).

Eventually, we can put together evapotranspiration and leakage in a unique function,
normalising also the two rates by the active soil depth nZ. We get then

0 if 0<s<sy
S if <s<
if sp,<s<s
p(S)ZM(S);L(QzKZs#”% M s — s .. Y (2.20
" N + (1 + Nw) = - it sy <s<s*
§* — 8y
n if s*<s<1
where we defined
:& :Ema:p
The nZz’ " nZz

This function p(s) is a deterministic term that describes how soil moisture decays between
two subsequent rainfall events. Moreover, p(s) still has the dimension of an inverse time
quantity, we will discuss how to make it dimensionless in a following section. In Figure
2.2 we report the profile of the losses term as a function of s.

Starting by Eq. (2.5) and putting all the pieces together, the differential equation
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0-Dimensional Dynamics

Losses function x(s) =ET(s) + L(s)

1.4 4

1.2 1

1.0+

0.8 -

x(5)

0.6 1

0.4 1

0.2

0-0 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.2.  The function x(s) which describes the losses (for a loam soil).

describing the dynamics of soil moisture now reads

nZ-Ls(6) = ols(t), 1] — x[s()] =

dt
= nZZWW —t;) — x(s)

— %s(t) = w4 - X[;g)] _

= Zyz-é(t —t;) — p(s)

so that, in the end, we obtain:
d /
5(t) = 2 wid(t — 1) — pls) (2.21)

As an example, we report in Figure 2.3 a temporal series for the soil moisture of a loam
soil.

2.3 Soil hydrogen dynamics

We can now analyse the second main equation, namely Eq. (2.4), which describes the
dynamics of the hydrogen concentration in the soil. Again, for simplicity, we rename the
variables ¢ and s as ¢ and s. In this equation, we have three contributions: the hydrogen
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2.3 — Soil hydrogen dynamics

Temporal series of s(t)

1.0 4

0.0

Figure 2.3.  The complete dynamics of s(t) for a loam soil. The parameters used in the
simulation are: Z = 30 cm, A = 0.1 day~!, a = 1.5 em.

flux F(s,c), the biological decay BD(s,c) of Hy inside the soil and the soil production
term P of hydrogen. We will assume the latter to be zero in the whole discussion and
focus ourselves on the other two, following the reference of "Bertagni et al. (2021)" [1].

2.3.1 Atmospheric Flux of Hydrogen

In order to diffuse from the atmosphere to the soil, hydrogen may have to go through
some barriers such as, for example, layers of snow or litter which may cover the soil.
To keep track of those obstacles called, in general, diffusive barriers, we model them by
means of an electric analogy. We define, for this purpose, a conductance of the soil g
and a conductance of the diffusive barriers gs and then we compute the total one as

1 1 1
R (2.22)
gr ge  Gs
We can compute these two conductances by assuming that the dominant contribution is
given by molecular diffusion, hence using the relations

_Des)  _Ds
gc_ l ) 95_ 6

where [ is the length-scale of the soil diffusive layer and, experimentally, its value is [ ~ 1
cm, while § is the depth of the diffusive barriers, again in centimeters. D. and Dy are,
instead, the diffusivities and, following "Mondrup et al. (2013)" [6], they can be computed

by means of
D
=L = an®?(1 —5)* (2.23)
Dy
where Dy is the Hs diffusion coefficient in air and is estimated by "Yonemure, Yokozawa
at al. (2000)" [11] to be Dy = 0.611 cm?/s and the «; are parameters which depend on
the model. In the following, we will use the ones of "Moldrup et al. (1999)" [7] and, for

this reason, we choose a1 =1, ags =2, a3 =2+ % with b the Campbell’s parameter (the
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0-Dimensional Dynamics

same used in Eq. (2.18)). To compute Ds, we may again use Eq. (2.23) setting n = 0.5
and s = 0, unless some experimentally determined values are available. We report in
Figure 2.4 the profile of the total conductance for two different values of the depth of the
diffusive barrier.

Total conductance gr

0.10 A

— 6=0cm
6=8cm
0.08 -
0.06 -
.
(=}
0.04 -
0.02 A
0.00 A N
0.0 0.2 0.4 0.6 0.8 L0

5

Figure 2.4. In the figure above, the total conductance for a sand soil is reported for two
different depths § of the diffusive barriers.

After these considerations, we can model the flux term as
F(s,c) = gr(cq —c) (2.24)

where gr is the total conductance computed as above and ¢, is the atmospheric concen-
tration of Hs, that is, 530 ppb. We notice that the flux becomes zero whether ¢ = ¢,
as the soil concentration of Hs equals the atmospheric one or when gr =0 — D, =
0 = s = 1, namely when the soil is saturated and all the pores are already filled by
water, resulting in no space left for the hydrogen to diffuse.

2.3.2 Biological Decay

The consumption of Hs in the soil is mainly due to some bacteria whose activity depends
on many factors such as temperature, type and moisture of the soil, pH, organic content
and salinity. Here, as done in "Bertagni et al. (2021)" [1], we will take into account only
the effects of temperature and soil moisture and neglect the others. Hence, we write the
biological decay term as

BD(s,c,T) = knh(T)f(s)c (2.25)

where k,, = 0.03 s~! is the rate at which H» is removed in non-limited conditions; the
limitations, instead, are modeled through f(s) and h(T") which are normalized functions
taking values only between 0 and 1 and describing how, respectively, soil moisture and
temperature influence and limit the process. Temperature is a key factor and it has been
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2.3 — Soil hydrogen dynamics

experimentally noticed that a maximum in the biological activity is reached between
30 °C and 40 °C, while, for colder and hotter temperatures, the bacteria metabolism
decreases significantly. The fitting function that we will use for h(T) is, then, the one
proposed by "Ehhalt and Rohrer (2011)" [4] and takes the form

1 1

WT) = 1+ e (T-38)/67 + 1+ e(T—622)/71 L. (2.26)
Its profile is shown in Figure 2.5.
Function h(T)
1.0 4
0.8
0.6
=
0.4 1
0.2
0.0
—2IO (I) 2ID 4I0 GID SID lCI!O
TIecl

Figure 2.5.  In this plot, one can see the profile of the function A(T"). A maximum
is obtained for a temperature around 30 °C, so that here we have the optimal
temperature for the hydrogen-based metabolism of bacteria in soil. For cold and
hot temperature, instead, this function describes the sudden drop in the metabolic
activities by quickly tending to zero.

In f(s), instead, we include the two extreme situations: if there is little water in the
soil, then bacteria’s metabolism is reduced considerably, to the point that they enter a
state called dormancy, and therefore the hydrogen consumption drops. However, even if
the soil moisture is too high, the biological decay becomes zero. Experimentally, in fact, it
seems that the biological processes of the soil bacteria are also hindered in this condition,
although the physical and chemical mechanisms behind this phenomenon are not yet
fully understood. This means that, between these two opposite situations, there must be
a value of soil moisture s,,; that maximizes the metabolic activity of the bacteria. To
model the function f(s) keeping track of the previous consideration, a family of modified
beta distributions is used, so that

1
f(S) = N(S - Sws)ﬂ1 (Sup - 3)52 (2.27)
in which N is a normalization constant defined in order to get maz(f) = 1 and the beta
(1_30pt)

parameters are set equal to 81 = 0.4 and B = 51( 3 to ensure that the maximum

Sopt —Sws
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0-Dimensional Dynamics

of f(s) is reached for s = Sopt- Finally, in the relation above, we define s,;, and sy
as, respectively, the upper and lower values of soil moisture among which the bacteria’s
metabolism works. To estimate those two values and also s, we again use the soil-water
retention curves, namely Eq. (2.18), introducing a soil matric potential for each of these
levels of soil moisture and seeing where they cross the curves. We stress once more that
these curves and, consequently, the soil moisture levels strongly depend on the soil type
under study. For the numerical values, we follow "Smith-Downey et al. (2006)" [10] and
"Conrad and Seiler (1981)" [2], in particular setting s,, = 1, which means that there are
no limitations for the decrease of the air volume in soil, unless we reach the saturation
condition for the soil moisture. The values of ss, and s.y for some soils are instead
reported in Table 2.1. In Figure 2.6, the profile of f(s) is shown for two different soil

types.

Function f(s)

1.0 4 — sand
loam

0.8

0.6

fis)

0.4 4

0.2

Ssw, 5 Sew, |

004 —— &

0.0 0.2 0.4 0.6 0.8 L0
5

Figure 2.6. The function f(s) for two different soil types: a sand soil in blue and a loam
soil in orange. We can see that below s, and above s,, = 1 this functions drop to zero
as the bacteria metabolism stops to work.

2.4 Simulations and results of the model

2.4.1 Quasi-steady state approximation

Now that we have modeled the two main equations, we can simulate them both by fixing
the temperature and the depth of the diffusive barriers in order to keep only s and ¢ as
variables. An example of such a simulation is given in Figure 2.7 (a). We notice how
the Hy dynamics is strongly influenced by that of the soil moisture, especially when a
rain event occurs and s(¢) suddenly increases, producing, as a consequence, a sharp drop
of the hydrogen concentration in the soil. Moreover, c(t) reaches the atmospheric level
¢qo = 530 ppb each time s(t) goes below s,,s, which we recall from the previous section
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2.4 — Simulations and results of the model

to be the lowest value of s after which bacterial metabolism stops working. Without
being depleted by soil bacteria and with poor water to hinder its diffusion, the hydrogen
concentration can, thus, reach its maximum value until the next rain event occurs.

We can also see that the two actors, F(s,c) and BD(s,c), involved in the hydrogen
dynamics are equal for each time, namely F' = Z - BD, as shown in Figure 2.7 (b). This
means that in Eq. (2.4) the time derivative of ¢ is negligible, as if the Hy dynamics were
in a quasi-steady state regime. This is not completely surprising: one may have noticed,
in fact, that all the time units of the quantity related to the soil moisture dynamics are
expressed in days, whereas those describing the Hs dynamics are in seconds. The two
equations have, hence, different time scales and the hydrogen dynamics is much faster
than the other. Therefore, ¢ adapts quite instantly to the time variations of s and this
is the reason why, mathematically, we may neglect the left side of Eq. (2.4). From these
considerations, we can obtain an analytical relationship to directly compute c:

d
nZ%[(l—s)c]zozF—Z-BD =

< F'=7-BD <
<> gr(cq —¢) = Zknh(T)f(s)c <=
<~ c- g+ Zknh(T)f(s)] = grca =
Ca

Zkmh(T)f(s)
gr

<~ Cc=

1+

We may call vgp = Zk,,h(T)f(s) since, dimensionally, this quantity is a velocity. It
is also useful to define this quantity, since it sums up all the terms which describe the
biological sink of Hs. So, finally, we get

Ca

Cgss(t) = 1+ 8D (2.28)
9T

where with the notation cyss we mean the hydrogen concentration in soil in the quasi
steady-state approximation.

In Figure 2.8, we plot both the numerical solution for ¢ obtained from Eq. (2.4)
and the analytical form of ¢ just derived in Eq. (2.28). One can see that the two
profiles superimpose perfectly, telling us that the quasi-steady state approximation for
the hydrogen dynamics is very reasonable.

2.4.2 Deposition velocity and limitations

At this point, we can define the key quantity that tells us how the hydrogen uptake
process is influenced by the various factors. This is the deposition velocity vy and its
definition is the following

F
Vg = —
Ca
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(a) Dynamics of c(t) computed numerically
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(b) Comparison between F and Z - BD computed numerically
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Figure 2.7.  The coupled dynamics of s(t) ans c¢(¢) is reported in (a), while the
comparison between the flux term F(t) and the biological decay term BD(t) is
shown in (b). Both are computed solving numerically equations (2.21) and (2.4) for
a loamy sand soil. The simulation’s parameters are: Z = 30 em, A = 0.2 day~?,

a=15cm, T =20°C and § =1 cm.

Comparison between c(t) computed numerically and c(t) in the quasi-steady state approximation
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Figure 2.8.  The comparison between the numerical solution of Eq. (2.4) and the ana-
lytical form of Eq. (2.28) obtained using the quasi-steady state approximation. The two
profiles superimpose quite perfectly. The parameters used are the same of Figure 2.7.

In order to obtain an analytical relation also for vy, we can compute the flux term F
using for ¢ the quasi-steady state approximation, namely Eq. (2.28), so that we get
F

Ud:—:
Ca

gT(Ca - Cqss) _

Ca

_ grcCa
_IJr (Ca 1g9T+vBD)

Ca

e (1-5t5)

= o =
9T " VBD

B gr + VBD
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Eventually, we obtain the relation

gr - VBD
va(t) = ———

— 2.29
gr +VBD ( )

In Figure 2.9, we plot vy as a function of temperature and soil moisture for different soil
types. One can see that for s < s,s we have vy = 0. This is because, below s, the
biological decay drops to zero since bacteria enter the inactive state and, consequently,
vpp = 0, which means that no hydrogen is absorbed. Then, for values of s slightly above
Sws, bacteria become active and the diffusion of Hs into the soil is maximized, hence
we have here the highest values of hydrogen uptake and, thus, of vg. In particular, the
maxima are reached when the temperature is also optimal, namely, as we said before,
between 30 °C and 40 °C. Finally, for higher s, we said that hydrogen diffusion is hindered
and, for this reason, the deposition velocity decreases until it reaches again the zero value
when the soil is saturated, that is, when s = 1. In "Bertagni et al. (2021)" [1], some
comparisons with experimental data are reported and one can see how our model fits
them well. Moreover, with these experiments the role of the diffusive barriers is also
investigated and one can see how much hydrogen uptake diminishes when the soil is, for
example, covered with snow.

(a) loamy sand (b) sandy loam (c) sandy clay loam
60 7 0.07 60 0.056 60

0.035
50 1 0.06 50 1 0.048 50 4
0.030
40 0.05 401 0.040 40
0.025

30 1 0.04 301 0.032 30 1
0.020

TI°C]

20 4 0.03 201 0.024 20 1
0.015

10 4 0.02 10 1 0.016 10 1 0.010

01 0.01 0 0.008 0 0.005

-10 0.00 -10 T T 0.000 -10 T T T 0.000
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

s s s

Figure 2.9. The deposition velocity as a function of T" and s for three different soil types
and with parameters § =0 cm and Z = 15 cm.

All these discussions make us understand the crucial role of vy. In fact, we have
seen that there are two main limitations to the hydrogen uptake: the biotic one, namely
the fact that bacteria metabolism stops working if the soil is too dry, and the diffusive
limitation, that is, when the soil is so moist that hydrogen diffusion into soil proceeds
with difficulty. Mathematically speaking, the first limitation is encoded in the vgp term,
while the latter is described by gr. One can see that vy is half the harmonic mean of
these two terms and, for this reason, it is quite easy to verify which of the two limitations
is acting in a possible experimental situation: if we are in a case in which the dominant
limitation is the diffusive one, then it means that gr << vgp and, consequently, vg ~ gp.
Instead, if we are in the opposite situation and the biotic limitation dominates, then
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0-Dimensional Dynamics

gr >> vpp, which implies vy ~ vpp. Hence, we can summarize by saying
if <<w diffusive limitation
v~ {97 gr << vmp (dflusive lmitation) (2.30)
vgp if gr >>wvpp (biotic limitation)

To better understand these points, we show in Figure 2.10 vy, g7 and vpp in three pos-
sible atmospheric conditions: two cold climates with and without snow and a temperate
climate. In these plots, we can see how the two limitations act on vy as s varies. For low
values of s, as we said, the biotic limitation dominates and vy follows the profile of vgp.
This occurs in arid regions and during the dry season of zones with a tropical savanna
climate. Instead, for higher values of soil moisture, the diffusive limitation takes over.
This is typical of temperate and tropical humid regions and also of the wet season of
zones with a tropical savanna climate.

(@) 6=0cm ;T=20°C by 6=0cm;T=0°C () 6=10cm ;T =0°C

—_— v — vy — Vd

— Vg — Ve — Vep
4 0.10 4 0.10 4
0.2 — o — or — o

0.20 1 0.08 0.08
0.15 1 0.06 - 0.06
0.10 0.04 A 0.04

0.05 4 0.02 0.02

0.00 4 — 0.00q — 0.00 J
0

T T T T T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10 0. 0.2 0.4 0.6 0.8 1.0
s s s

Figure 2.10.  The function vgq, g7 and vgp for a sand soil in three different climate:
in (a) a temperate climate is reproduce with a temperature of T = 20 °C and no
diffusive barriers; in (b) we have the case of a cold soil with T = 0 °C but without
diffusive barriers (no snow); in (c) is plotted a cold climate with also the presence of
a diffusive barrier, such as snow.

Eventually, for colder regions such as cold humid climates, also the temperature starts
to play a role in the reduction of the hydrogen uptake. Here, in fact, both biotic and
diffusive factors hinder the process. In particular, if there is no snow cover on the soil, gr
and vpp are comparable and none of them dominates the other. However, if the presence
of a snow cover is taken into account, again the Hs uptake becomes a diffusive limited
process.

So, as we saw, measuring vy can be a simple way to summarize well how the hydrogen
uptake is influenced by all those factors. Moreover, we briefly analyzed how our model
changes on the macroscopic scale. In the following sections, we are going to describe what
happens if we keep also the dependencies on the spatial dimensions (which we neglected
in the beginning), namely we will consider s and ¢ depending on = and y, and we will
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investigate how the local dynamics inside the same ecosystem changes due to spatial
inhomogeneities.
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Chapter 3

Space-Dependent Dynamics

3.1 Integrating horizontal diffusion processes

In this chapter, our aim is to introduce the horizontal spatial dependencies in the equa-
tions and to investigate their effects on our model. As a consequence, another physical
phenomenon has to be taken into account: spatial diffusion, both of moisture and hydro-
gen. Until now, the two equations under study have been

%s(t) = [wid(t —t1)] = p(s())

1

0
nZy - a[(l —5(t)) - c(t)] = F(s,¢) — Z, - BD(s,c¢)
Instead, by including spatial dependencies and horizontal diffusion processes, they become

%S(tv ) =Y lyid(t — )] = p(s(t, 7)) + V - [D,Vs(t, 7)) (3.1)

)

and

nZ, - %[(1 —5(t, @) - c(t,Z)] = F(s,¢) — Z - BD(s,¢) + V - [D.Ve(t, T)] (3.2)
where Dg and D, are the two diffusion coefficients, respectively, of s and ¢. We have not
explicit the dot product since, in principle, these two quantities could depend on spatial
variables. Indeed, we have already encountered D, in the modelling of the F'(s,c) term,
which describes the atmospheric flux of hydrogen. In that context, we defined a diffusion
coefficient for the hydrogen and we adopted the formula (2.23) from "Mondrup et al.
(1999)" [7]. One can see that D. depends on the spatial variables through s and hence it
is, for sure, not constant. We will use here the same model for D..

For the other diffusion coefficient, namely for Dy, we will start, for simplicity, by
considering it constant and then we will make a more realistic hypothesis for its model
and use a non-linear version.
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Space-Dependent Dynamics

3.2 Analysis of possible Turing instabilities

Before going on with the modelling of our equations, we have to consider some of the
possible physical effects that diffusion processes can bring about. In particular, we can
now ask ourselves: could this model show Turing-like instabilities?

This particular type of instabilities can take place in a reaction-diffusion system,
that is, a system in which components can react between themselves and diffuse. Under
certain conditions, the combination of these two processes can produce a steady state
which is heterogeneous and shows spatial patterns: the so-called Turing instabilities.
Their peculiarity is that they are induced by diffusion: without this process, the system
would reach a steady state spatially homogeneous and stable to small perturbations. This
could be counterintuitive since, generally, diffusion is the process that tends to smooth
spatial heterogeneous regions over time to reach a steady state that is homogeneous.
However, as we said, sometimes the opposite happens, but only if specific conditions are
satisfied and we will see and analyse later which they are.

The mathematical form of a reaction-diffusion system (with only two reactants as in
our case) is:

% = f(u,v) + D, V?u
?9: = g(u,v) + D, Vv

(3.3)

where u and v are the two reactants, f(-) and g(-) the functions describing the reaction
terms, D, and D, the diffusion coefficients.

Going back to our model and assuming that both D, and D, are constants, we see that
Eq. (3.1) is already in the form of a reaction-diffusion equation, while Eq. (3.2) needs
some manipulations. Moreover, eq. (3.2) is not completely correct: we add the diffusion
term before making the time derivative of ¢(t,x) explicit and, hence, the dimensions of
the various terms are not all equal. Therefore, we rewrite it following these naive steps:
first % must be isolated

nZT-CW_F—ZT~BD<:>
- - >@_ ds F -2, -BD
Yaw et T T nz,
de 1 [F—ZT.BDJr ds}
b 1—s nZ, “at

and then we add the diffusion term (considering, as we said, a constant diffusion coeffi-
cient), obtaining

Oc 1 F—-Z.-BD 0s
< r |+ D.V? A
ot 1-—s [ nz, +68t} + DV (3-4)

Indeed, our model is now in the form of a reaction-diffusion system and we can write
it as

Os _ S(t,s) + DsV2s

ot 35
ac 9 ( ° )
ge _ D.

5 C(t,s,c) + D.Vic
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3.2 — Analysis of possible Turing instabilities

where we define

S(t,s) = (yid(t — 7)) — p(s)

i

and

C(t,s,c) = 1is F_nZ;T BD +c- (Zyié(t—tfi) —p(s))] .

3.2.1 Dimensionless equations

To verify whether Turing instabilities can take place or not, it is convenient first to make
our equations dimensionless. In order to do so, we define:

t T ~
= T=m———= = t=T 1 ;
T VDT

introducing two new dimensionless variables, £ and Z, and a new parameter T that repre-
sents a certain physically meaningful time scale. When these two variables are substituted
into the first equation (the one describing the dynamics of s(¢,x)) one gets:

t= z=%IvVDs-T

gi = Z (yid(t — ;) — p(s) + D,V3s «—
10s Dy
T{?t Zyl (T-t—t))—p(s) 7D, 25—

1 0s -t 9
= T Zyz ( (t—T)>—p(8)+TV:eS

exploiting the property of the Dirac delta functions that tells é(azx) = 5 () one obtains

|al
1 0s vi (- U 1_,
— = = i(s t -t - p— T
T ot ;T ( T) pls) + 7 Vas

we can now multiply each term by the time scale T’

Zw( /) T-p(s) + Vis

/

~ t
and define 7, = TZ and p(s) =T - p(s) to get eventually
= wib (I 1) — pls) + Vis (3.6)

where each term is now dimensionless. In fact, the dimension of p(s) is an inverse time,
while s and the {y;} are already non-dimensional. As a remark, we could use the time
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scale T' to redefine a whole set of new dimensionless parameters inside p(s), which we
remember to be in the form of Eq. (2.20). In particular, we get

0 if 0<s<sy
T. K g pa— if sp <5< sy
5 s Sw— 8
P(S)ZT‘P(S):7'32b+3+ v 5— Sy .
e Ty + T —Nw)— if s, <s<s*
s* — Sy
Tn if s"<s<1

and by introducing the new set of normalised parameters

5 T-E, - T FEnax - T K,
:T = M :T- = — : K =
77’1,(} 77 an I 77 77 TLZT I S nZT.
we obtain
0 if 0<s<sp
- ﬁwS—Sw if s <s< sy
p(s) = K, - 5243 4 ) Sw - sh~ s s ) (3.7)
77w+(77—77w)* if Sw <8< s
s* — Sw
n it % <s<sge

Regarding the second equation, namely Eq. (3.4) which describes the hydrogen dy-
namics, we can proceed analogously by substituting £ and Z following these steps:

oc 1 [F-2 -BD )
[ nZ. +c- (; yio(t —t,) — p(s))] + D Vic <=

ot 1—s
190c 1 [F—%-BD -, De s
TE— 1—8[ nZ, +c- (;yZ(S(T-t—ti)—p(S)) +T_stic

multiplying each term by 7" and repeating the same considerations for the term >, v;0(7T -
t —t1) — p(s) that has just been analysed, we get to

Oc 1 T -(F—-2Z. -BD) S . D._,
- = M 16 t - t - i— 57C.
ot 1-s [ nZz, te (; Y ( z) pls) || + D, Ve
We can still define some new functions F' and BD as
. T-F TF 3 _ r
F = nZ, = nZ < gi(cq —¢) = g4(cqg — ¢) where g, = nZ gt
and
~ T-BD T ~ ~ T
BD = = km -h(T)- f(s)-c=kp-h(T)- f(s)-c where k= o km,
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in order to obtain

ge _ 1 [F —BD +ec- (Z Y0 (z - z;) — p(s)ﬂ + %vgc (3.8)

ot 1-—s

where each term is dimensionless, apart from the ones involving ¢ which is still in the

dimension of ppb.
Hence, summing up, our system, now nondimensional, is

?9; =2 Yid (f - 75;) — p(s) + Vis
‘;g = [P BD e (S (F-8) ~ o)) + g:V%c

which we can eventually rewrite in the general form

a—f = f(t,s) + Vis

oL (3.9)
de _ (t,s,c) +d-Vic

8%‘ - g 99 T

where we define

o flts) = Xiyib (F— ) = pls)

e g(t,s,c) = : i ; [F(s,c) — BD(s,c) +c- (Zi i (f — f;) - Z)(s))}
D,
o d= D.

3.2.2 Conditions for the validity of Turing instabilities

Now that our model is in the form of a non-dimensional reaction diffusion system, we will
try to verify whether it could show Turing instabilities or not. How to do so is explained
in a detailed manner in a number of books, as an example we cite here "Mathematical
Biology" by J. D. Murray [9]. Summing up, given a generic system such as

% = f(u,v) + V3u

o (3.10)
- = . 2

B g(u,v) +d- Vv

it must satisfy the following four conditions:
L futgu <0
2. fugv—Jv gu>0

3.d-fu+gy>0
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4. (d- fu+g0)?—4d-(fu-gv— fo-gu) >0
Where, for the sake of clarity, f, stands for %, while f, means g—g and so on.
Combining the first with the third, one gets

fu+9,<0 — 9o < —fu
d'fu+gv>0 gv>*d'fu

ending up to the general condition
—d - fu < gy < —fu- (3.11)

This relation tells us two things: firstly d, that is the ratio between the two diffusion
coefficients, must be necessarily different from 1, namely d # 1, and secondly that the
two partial derivatives f, and g, must have opposite signs. Indeed, if, for example, we
suppose f, > 0 then g, will have to be less than 0, that is, g, < 0, otherwise, according
to (3.11), a positive number should be included between two negative numbers, which is
impossible. Analogously, if we consider f,, < 0, then g, > 0 otherwise a negative number
should be included between two positive ones, which is, again, impossible. Therefore, as
we said, f,, and g, must have opposite signs. We underline that these conditions must be
true for any general system to exhibit Turing instabilities.

For our particular model, namely (3.9), f, can be easily computed, remembering that
for us u = s and v = ¢, and one gets

_ . _0f _
fo=fe=5,=0

So, if we now analyse the condition 2 for having Turing instabilities, we obtain

fu 9o — fo gu>0 =
— fs 9c—fer9s >0 —
— fs 9. —0>0 —
< fs:9.>0

hence, condition 2 for our system implies that f, = fs and g, = g. should have the same
sign. However, this is in contradiction with the general relation (3.11). Therefore, our
system (3.9) cannot simultaneously satisfy all four conditions for Turing instabilities.

This result, which has been mathematically proven, was actually expected: our system
has a particularity, that is, the two equations are coupled only in one direction. In fact,
the dynamics of the hydrogen concentration c is influenced by the one of s, however the
vice versa is not true and the temporal and spatial evolution of the soil moisture s is
completely independent from c. This interconnection between s and c is a fundamental
physical ingredient for the Turing instabilities to be shown, and, without it, a system
cannot exhibit these particular types of spatial patterns.

28



3.3 — 1D model

3.3 1D model

After having understood that Turing-like instabilities cannot appear in our model, we
proceed now with the investigation on the effects of a dimensionality D that is D > 1.
In particular, in this section we will study the D = 1 case. The equations (3.1) and (3.4)
hence become

(t,2) = T [gid(t — )] — pls) + 2 <Dsas(t,x)>

at’ Ox Ox (3.12)
9 ot z) = 1 [F—ZT-BD+ t >8s(t,x)} —|—8<D 8c(t,x)> ’
" T 1o s(t,x) nZy b ot ox \"° Ox

As we said at the beginning of this chapter, the hydrogen diffusion coefficient is not
constant since it is equal to (2.23), therefore the second equation can be rewritten by
exploiting the dot product and one gets

0s Oc 2
/77 o
tom e+ Degge (3.13)

2ty = — [F_ZT'BDJr 85}+D
ot T nz, “ot

where D!, stands for the derivative of D, with respect to s and is equal to

dD. _
Di(s) = ds(S) = —Dyain®az(l — 5)* 7L, (3.14)

Regarding the other diffusion coefficient, namely Dy, we will start by investigating what
happens to our model if Dy is kept constant, and, later, the effects on our equations of a
non-linear D, will be analysed.

3.3.1 Quasi-Steady State Approximation

Before continuing with the solutions and results of the 1D model, a remark must be made:
the following simulations and plots have been obtained not using the complete equation
for the hydrogen dynamics, namely eq. (3.13), but its quasi-steady state approximation.
In fact, as we already mentioned, the two equations in (3.12) have different time scales:
the one describing the dynamics of s(¢,x) has a time scale of the days, while the other
evolves on the time scale of the seconds. This difference is easy to be solved analytically,
however it is not numerically and makes our simulations really long. Therefore, to obtain
simulations long enough to make averages, but still runnable in a few minutes, we will
not use eq. (3.13) but its quasi-steady state version, which we are going to derive in a
moment. We already shown that in the 0-dimensional model the solutions obtained from
the two equations superimpose quite perfectly (Figure (2.8)), we will make an analogous
comparison at the end of this section for much shorter simulations in order to prove that
the approximation is still valid in D = 1.

Hence, to obtain the quasi-steady state approximation the idea is the same as in the
0-dimensional case: we set

0
a—m
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so that, equation (3.13) becomes

1 F—-Z.-BD Jds Jc 0?

= Dlii D
0= |7z Y T Pegay TPt
? D! 9s dc 1
= 52V Doowor ~ nzd —syb. 0~ 2 BD(s.c)

This equation is now a second order differential equation with respect to the space vari-
able, namely a Poisson-like equation. It can be solved with a number of different methods;
we have used here an implicit one based on finite-differences following, for example, the
procedure in "Nagel et al. (2014)" [8]. All the passages for our case are reported in
Appendix A.

3.3.2 Cases with a constant D,

In this first analysis of the solutions to the 1D model, the equations that we will consider
are: eq. (3.13) for the dynamics of ¢(¢,x), but in the quasi steady-state approximation;
while for the dynamics of s(¢,x) we will use the first of the two equations in (3.12) but
with a constant Dy, so that it becomes:

25 X
2 s(t,3) = S (e 10) (o) + p, 250, (3.15)

Firstly, a plot of the homogeneous case is shown in Figure 3.1 for a soil of type loam.
In this situation, the diffusion processes in both the profiles of s(¢,z) and c¢(t,z) do not
play any role. In fact, since no heterogeneity of any kind has been inserted, there are
no spatial gradients and the diffusion does not enter in action. Only changes due to the
temporal evolution caused by rain events and their consequent drying off are visible in
the profiles of s(¢,z) and c(¢, z).

In order to see the effects of diffusion processes, a non homogeneous initial condition
is chosen, that is, the soil starts the simulation with a moisture equal to

0.6 if 50 < x <150
so(a:):{ ' it s @ = U (3.16)

0.4 otherwise

One can see, especially in the deterministic simulations of Figure 3.2 , how the diffusion
of both s(¢,x) and ¢(¢, z) is now evident and smooths their spatial profiles over time until
homogeneous ones are reached. Also in the plots in which rain events are considered,
the diffusion plays a clear role, but here, as soon as the first big rain event occurs, the
soil moisture arrives near the saturation and the information about an initial spatial
heterogeneity is lost. After that first big rain, the evolution continues as if the profile was
homogeneous, like in Figure 3.1 .

Another way to add heterogeneity is, for example, to consider a variable hydraulic
conductivity, namely a non-constant K, such as

Ky(z)={ 10 = (3.17)

Ksioam ¢ 50 cm < x < 150 cm
K joam otherwise
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(a) Dynamics of s(t, x) without rains b) Dynamics of cgss(t, x) without rains
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Figure 3.1.  Profiles of s(t,z) and c(¢,z) for a soil of type loam. In (a) and (b)
deterministic simulations have been made, while in (¢) and (d) we have considered also
the stochastic rain events. The profile is spatially homogeneous since no heterogeneity
has been inserted. The parameters of the simulations are: A = 0.27 d~1, a = 1.3 em,
Z =30cm,d=1cm, T =20°C, periodic BCs.

The result of this choice is reported in Figure 3.3. In contrast to what happens in Figure
3.2 just analysed, here the deterministic simulations are exactly as in the homogeneous
case since the leakage term, which contains the information about Kj, is important only
for high values of soil moisture and hence the different values of Ky do not cause any
evident gradients in the profiles. Instead, in the simulations involving also rain events,
the leakage term is turned on each time a big rain occurs and the spatial heterogeneity
appears.

We could further explore the behaviour of s(t,z) and ¢(t, z) by considering other func-
tional forms of K(x). For example, we can extract its values from a uniform distribution
to get more peculiar spatial profiles, as in Figure 3.4 where, again, the determinist case is
like the homogeneous one of Figure 3.1, while a wider spectrum of heterogeneity appears
at each big rain event in simulations including also stochastic events.

3.3.3 Cases with a non linear D,

We can now try to make our model a bit more realistic by considering a diffusion coefficient
for the soil moisture that is no longer constant. In fact, intuitively, for a realistic case
a dependence on the soil moisture itself is expected, similarly to the behaviour of D..
However, in contrast to it, we imagine that the diffusion coefficient relative to the soil
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(a) Dynamics of s(t, x) without rains b) Dynamics of cgss(t, x) without rains
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Figure 3.2.  Time and spatial evolution of s(¢,x) and ¢(t, x) for a loam soil, considering a
constant diffusion coefficient for the soil moisture. In the first row, the two simulations have
been made disregarding rain events, while in the second row we have taken into account
also stochastic events. Here, the heterogeneity is inserted in the initial condition of s and
it is equal to (3.16). The effects of the diffusion, caused by this spatial heterogeneity, are
visible, especially in (a) and (b). The parameters of the simulations are: A\ = 0.27 d~!,
a=13cm, Z=30cm, § =1cm, T =20°C, periodic BCs.

moisture must increase if s(t,z) increases. Therefore, following the advices of "Physical
Hydrology" by S. Lawrence Dingman [3] (chapter 8), we choose a relation of this type:

Dy(s) =b- |Wge| - K- 572 (3.18)

where b is the Campbell parameter, K. is the saturated hydraulic conductivity and ¥,
is the air-entry pressure head. This choice is also suggested in order to better link the
diffusion coeflicient with the hydraulic conductivity that we recall to be a power law in s
too, as previously discussed in Eq. (2.19).

Hence, the equation describing the dynamics of s(t, z) that we are going to use in this
paragraph is

s(t, x) s(t,z)\? 2s(t,
8 t Z[yl —p(s) + D), (%) +DS% (3.19)

where D’ is the derivative of Dg(s) with respect to s, namely

dDq
= (0 2) W]
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(a) Dynamics of s(t, x) without rains b) Dynamics of cges(t, x) without rains
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Figure 3.3.  Simulations for s(¢,2) and c(¢,z) in case of a loam soil and a constant

diffusion coefficient Dy. Rain events has been disregarded in simulation (a) and (b),
while they play an important role in simulations (¢) and (d). The spatial heterogeneity
has been inserted in the hydraulic conductivity by imposing a profile of the type (3.17);
its effects is to generate spatial gradients which activate diffusion, in particular in the
stochastic plots. The parameters of the simulations are: A = 0.27 d™1, a = 1.3 cm,
Z=30cm,d=1cm, T =20°C, periodic BCs.

Instead, the equation describing the evolution of ¢(¢,x) that we are going to use is eq.
(3.13) in the quasi-steady state approximation, exactly as in the previous section.

b n K [em/d] |Pae| [cm]
Sand 4.05 0.395 1520.6 12.1
Loamy sand | 4.38 0.410 1347.8 9
Sandy loam | 4.90 0.435 299.8 21.8
Loam 5.39 0.451 60.05 47.8
Clay 11.4  0.482 11.06 40.5

Table 3.1. The reported values have been taken from "Physical Hydrology (Chapter 7)" [3].

We are now ready to proceed with the simulations. The same cases as for the constant
D, paragraph have been analysed. Firstly, we report in Figure 3.5 the plot in which the
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(a) Dynamics of s(t, x) without rains b) Dynamics of cgss(t, x) without rains
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(c) Dynamics of s(t, x) with rains (d) Dynamics of cgss(t, X) with rains
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Figure 3.4. Dynamics of s(¢,z) and ¢(¢, z) for a loam soil and considering a constant
diffusion coefficient D,. The parameters of the simulations are: A = 0.27 d~!, a = 1.3
em, Z =30cm,d =1cm, T =20°C, periodic BCs. In (a) and (b) rains have not been
considered, whereas in (c¢) and (d) they have been included. The spatial heterogeneity
ha been put in the values of the hydraulic conductivity, which have been extracted
from a uniform distribution between 0 and 1. Effects of heterogeneity and hence of
diffusion are visible in particular in the stochastic simulation (c¢) and (d) and generate
peculiar spacial profiles.

heterogeneity is inserted in the initial condition of s(¢,x); then the two cases with a
non-homogeneous K are shown in Figure 3.6 and 3.7. In all these graphs, the effects of
a non-linear Dy are to accelerate the dampening of the spatial gradients, especially for
high values of s. In fact, when the soil moisture gets close to saturation, the diffusion
coeflicient becomes really big and the diffusion term is dominant.

For longer simulation times, that is, simulations that last years instead of weeks, we
can also investigate the time averages of the quantities under study. In Figures 3.8, 3.9
and 3.10 the averages and standard deviations of s(¢,x), c(t,z) and v4(t, z) are reported
for the simulations that we have just discussed, respectively, in Figures 3.5, 3.6 and 3.7.
They are not the same simulations, since a longer time (about t;,; = 700 d) has been
considered, but they have exactly the same parameters. Moreover, only the averages of
the stochastic simulations, namely with the rain events, have been computed and here
reported. In this study, we also included the quantity v4(¢,z), that is, the deposition
velocity. We recall that its definition is

va(t,z) =
34

F(s,c)

Ca
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(a) Dynamics of s(t, x) without rains b) Dynamics of cgss(t, x) without rains
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Figure 3.5.  Analogous simulations of Figure 3.2, but with a diffusion coefficient Dy which
is non linear and given by (3.18). One can see how the diffusion is stronger since it now
depends on the values of s. The type of soil is loam and the parameters of the simulations
are again A\ =0.27d ', a=13cm, Z=30cm, § =1 cm, T = 20 °C, periodic BCs.

where F' is the hydrogen flux from the atmosphere, while ¢, is the atmospheric hydrogen
concentration. With the addition of diffusion processes, its analytical form cannot be
anymore (2.29), but the deposition velocity still remains a crucial quantity that sums up
all the limitations involved in the hydrogen uptake, as we discussed at the end of the
previous chapter.

In these plots, we can see how the diffusion contribution is important. In fact, the
average profiles in all three cases are practically homogeneous, regardless of the hetero-
geneity inserted. Only a very light slope is present. As an observation, we also put
dashed lines in these figures to represent various quantities: (5), (¢) and (v4) are the
spatial averages of the time averages (namely the mean values of the blue curves in these
plot); whereas ¢((S)) and vg((5)) are, respectively, the hydrogen concentration and the
deposition velocity evaluated at the average value of s. In the next section, we will further
analyse this point and discuss about why they do not coincide.

3.3.4 -\ Diagrams

The time and spatial profiles of situations similar to the ones we discussed in the pre-
vious two sections are usually used to compute averages. In fact, for the presence of
stochastic events such as rains, useful pieces of information are hidden in the mean values
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(a) Dynamics of s(t, x) without rains b) Dynamics of cgss(t, x) without rains
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Figure 3.6.  Time and space evolution of s(t,z) and c(t,x) for a loam soil. This is
the same case as in Figure 3.3, so with heterogeneity inserted in K, according to (3.17),
however we now consider a non linear diffusion coefficient for the soil moisture given by
(3.18). While in (a) and (b) spatial gradients are not generated, in (c) and (d) one can
see the effect of diffusion and, in particular, we notice how strong it is when s gets bigger
then about 0.7 . The parameters of the simulations are again: A = 0.27 d~!, a = 1.3 cm,
Z=30cm,d=1cm, T =20 °C, periodic BCs.

and standard deviations of the main variables’ distributions. In this particular context,
however, an erroneous procedure is, sometimes, carried out: to compute the spatial and
time averages of quantities such as ¢(¢,x) and v,4(t, x), first the average value of s(t, x) is
computed and then ¢ and vy are evaluated at it, namely for s = (3). In short, instead of
directly computing the time and spatial averages of ¢ and vy from the profiles obtained
from a complete simulation, the approximations (¢) = ¢((3)) and (74) = v4((8)) are made.
As we said, these equalities are not true: for the presence of non-linearities in the equa-
tions, the average values cannot enter some of the mathematical functions involved in the
calculation of ¢ and vy and (¢) and (74) are actually different from ¢((s)) and v4((3)), as
anticipated in Figures 3.8, 3.9 and 3.10 where we plot, in dashed black lines, these four
quantities in order to show that they do not coincide.

Still, the approximation discussed above, although generally false, might be valid in
some particular cases and its implementation can save a lot of time by avoiding the need
of simulations for the ¢ profiles. To better understand this point, we performed a series of
simulations keeping all the parameters constant, with the exception of the rates o and A
of the rain events that we allow to vary between (0.1 ; 0.5) d=! for A and (0.25 ; 2.5) cm
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(a) Dynamics of s(t, x) without rains b) Dynamics of cgss(t, x) without rains
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Figure 3.7.  Profiles of s(t,z) and c¢(¢,z) for a loam soil and considering a non linear
Dy, in contrast to Figure 3.4. The heterogeneity has been inserted in K by extracting its
values from a uniform distribution. We can see its effects around ¢t ~# 1 d and t = 9 d in (c)
and (d) where an heterogeneous spatial profile is quite visible, but quickly smoothed by
diffusion that is really strong since s is near saturation. The parameters of the simulations
are again: A =027d Y, a=13cm, Z=30cm, 5 =1 cm, T = 20 °C, periodic BCs.
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Figure 3.8.  Temporal averages and standard deviation of s(¢,z) (on the left), c(t, z)
(in the middle) and vy (¢, ) (on the right). The simulation parameters are the same as in
Figure 3.5, that is, with the heterogeneity put in the initial condition of the soil moisture
according with (3.16). The only difference is a longer simulation time of about 700 d.

for . Moreover, a modification with respect to the simulations of the previous sections
has been made: the spatial heterogeneity is no longer inserted artificially into some of the
parameters, but a heterogeneous spatial domain has been chosen. In order to have more
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Figure 3.9.  Temporal averages and standard deviation of s(¢,z) (on the left), c(t, x)
(in the middle) and vy (¢, x) (on the right). The simulation parameters are the same as in
Figure 3.6, namely with heterogeneity inserted in the hydraulic conductivity as in (3.17).
The only difference is a longer simulation time of about 700 d.
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Temporal averages and standard deviation of s(t,z) (on the left), (¢, )

(in the middle) and wvg(t,z) (on the right). The simulation parameters are the same as
in Figure 3.7, with the heterogeneity put in K, which has been extracted from a uniform
distribution. The only difference is a longer simulation time of about 700 d.

realistic situations, in fact, we now divide our spatial domain into two different soils: half
is of a loam type, while the other half is of a sand type. The different properties and
features of these two soils translate into different levels of soil moisture and hydrogen,
which, in turn, activate the diffusive terms.
The purpose of these simulations was to compute, as functions of the rates o and A,
the ratios:
@) (va)

c((s)) vd((s))
and the results are displayed in Figure 3.11, with the iso-p curves representing some of
the main climates (p is the precipitation parameter and is equal to p = \-«). We can see
that the ratios tend to 1 as the precipitation rates grow. This behaviour was somehow
expected: the non-linearities encoded in the equations are, in fact, smoothed down by
the diffusion terms, which become dominant for high values of soil moisture. Hence, it
is possible to approximate (¢) ~ ¢((3)) and (74) ~ v4((35)) for wet climates, thanks to
the presence of diffusion processes. Instead, for temperate cold and, in particular, for
semi-arid ecosystems, this approximation does not work. In light of what was said in
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Figure 3.11.  The two important ratios are shown in the figures above: on the left one
can find % while on the right vizj(“%) is reported. Some iso-p curves of the main

climates (arid, temperate cold and hot, tropical) are also reported, in order to better
highlight in which regimes the approximation is good (the very wet climate for which the
ratios are nearly 1) and in which the error is too high (the semi-arid ecosystems). The
simulations performed are about 225 and the only parameters which are not constant
are A and a. The others are: a spatial domain of 2 m divided half in sand soil and half
in loam soil, Z, =30 cm, § = 1 cm, T = 20 °C, At = 107° d, Az ~ 7 cm, an initial
condition for s equal to so = 0.5.

Chapter 2, this latter regime is also the most interesting for our study since it is the one
which maximizes the hydrogen uptake. Its investigation is, therefore, crucial and must
be carried out with great attention.

A similar analysis can be performed for the atmospheric flux contribution. Again,
we constructed some a — A\ diagrams by repeating many simulations in which the only
varying parameters are the rates of the rain events o and A. Furthermore, in this case
too the spatial domain is divided half into sand and half into loam, in order to generate
the spatial heterogeneity more realistically. This time, however, our aim is to compute
the time and spatial average of the vertical flux F(s,c) of Hy and compare its behaviour
when diffusion processes are considered with the one in which the averages are calculated
without the diffusion terms. That is, we would like to understand whether the horizontal
flux of Ho, namely that generated by diffusion, has some effects on the vertical flux
from the atmosphere. It is, in fact, possible that the diffusion processes, moving the
hydrogen stocked in soil, may redistribute the available Hs in a better way for the bacterial
community, increasing its activity and, as a consequence, the consumption of hydrogen,
making room for other atmospheric Hy to enter the soil.

Figure 3.12 shows the results of these simulations. In particular, the ratio between
(F') with and without diffusion has been computed in three different situations: in the left
plot, we perform the spatial average only over the loam half of the domain; in the right,

instead, the spatial average has been computed only over the sand half of the domain;
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Figure 3.12. In the figure above, the ratio between the average value of the atmospheric

flux without diffusion (F'),q and with diffusion (F’),q is reported for three different spatial
domains: on the left it has been computed only for the loam half of the global domain; on
the right the same has been done but only for the sand half of the domain; in the middle,
eventually, it is shown the ratio with the average calculated on the whole spatial domain
(sand and soil together). In contrast to Figure 3.11, here the ratio tends to 1 for climate
with poor precipitations such as semi-arid ecosystems, while differs from it the most for
wet climates. The simulations performed are 25 and the main parameters are: a spatial
domain of 2 m split into 1 m of sand and 1 m of loam, Z, =30 ¢cm, 6 =1 cm, T'= 20 °C,
At =10"°d, Az ~ 7 cm, sg = 0.5.

finally, in the middle plot, we make the calculation over the entire spatial domain. One
can see that the three plots show similar trends: all of them have the ratio that tends
to 1 as the precipitation rates decrease, namely for semi-arid climates, while the main
differences between the cases with and without diffusion are observable for high values of
a and .

These results too were in some sense expected, since, as we have said many times,
diffusion processes become more and more important as s tends to 1, and this happens
especially when precipitations are high. In contrast, the diffusion terms become small
for ecosystems with low values of soil moisture. Thus, it stands to reason that the main
differences between (F'),q and (F),q occur for very wet climates, where the diffusion
terms are stronger and can indeed make a difference.

Instead, what is not so obvious is that diffusion processes can increase the activity of
the bacterial community, but they could also hinder it and this depends on the hydrologic
regime we are in. From Figure 3.12 it is, in fact, clear that the ratios are less than 1 for
semi-arid conditions, namely (F),q < (F)yq, which means that, here, the diffusion terms
enhance the atmospheric flux. In contrast, we have (F),q > (F),q for high values of the
precipitation rates, that is, in the wet regime diffusion lowers the atmospheric flux of Hs.

In order to deeply understand this behaviour, we performed two single simulations,
one for a semi-arid climate and the other for a wet ecosystem, in which we computed
the time averages of some of the main quantities involved in this discussion. Again, a
comparison has been made between the same averages with and without diffusion. In
Figures 3.13 and 3.14, these comparisons are reported: in the first, one can find the time
averages of s(t,z) and cges(t, z) for both cases; in the second, we analyse the horizontal
and vertical fluxes and the biological decay term.
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The effects of diffusion processes are clear in the plots (b) and (d) of Figure 3.13,
where the profiles of s and ¢ smoothly join up between the two different regions of soil.
However, the most interesting effects are visible at the interfaces between the loam zone
and the sand zone in (c). Here, in fact, diffusion is capable of generating complex spatial
patterns with sharp minima at the edges of the sand regions and local maxima at those of
the loam zone. While the diffusion of the soil moisture in the semi-arid case is quite small,
that of c is, instead, considerably high (as displayed in (e) and (g) Figure 3.14), and is
sufficient to strongly redistribute the soil hydrogen at the interfaces. This redistribution
is also responsible for increasing both the biological decay and the vertical flux of Hy that,
in this case, are higher than their twins in the simulation without the diffusion terms.
This behaviour confirms what we have already discussed in Figure 3.12 where we said
that (F)nq < (F)yq for low values of the precipitation rates.

Concerning the other case, namely the wet climate, we can see how high levels of soil
moisture produce a strong diffusion of s but a weak diffusion of hydrogen (Figures (f)
and (h) of 3.14), and this is due to the fact that all the pores of the soil are, in this case,
filled with water. Thus hydrogen, which is much less on average than in the semi-arid
case, cannot easily diffuse in the horizontal direction. The vertical flux and the biological
decay term are also hindered by the presence of large quantity of water and are even
weakened by the action of the diffusion of s.

Therefore, although the biggest differences between (F),4 and (F),q appear in the
wet regime, they are due to the presence of strong diffusion processes of soil moisture that
actually diminish the hydrogen uptake. In contrast, in the semi-arid regime, the vertical
flux of Hs is enhanced by low soil moisture levels and by the horizontal diffusion of the
hydrogen concentration, especially at the interfaces between different soil types where a
sequence of global minima and local maxima arises. Further studies with different types
of heterogeneity may be needed to better investigate this latter phenomenon, but, in the
context of Hy uptake, the different behaviour of these two opposite regimes is highlighted
in both a — A\ diagrams we discussed.

3.3.5 Check on the validity of the quasi-steady state approximation in
1D

To conclude the discussion about the 1D model, we return to a topic that we have put on
hold: the comparison between the complete solution of Eq. (3.13) and its quasi-steady
state approximation, which, as we said, we have used throughout the whole chapter.

We tried a simulation similar to those made in the paragraph about the Dy constant
cases, but with fewer simulation days. In fact, we already mentioned that with the com-
plete equation the simulation time could become really long and so only short simulation
can be achieved in a runnable time. For what concerns the parameters, we go back to
the situations in which the soil is of a uniform type (in this case we chose a loam one) in
which the heterogeneity has been inserted through the initial condition of s(¢,x), as in
Figure 3.2. In particular, we define an initial value that is equal to:

so(z) = (3.22)

06 if 25ecm<a<75cm
0.4 otherwise
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Figure 3.13.  Time average of s(t,z) (first raw) and cqss(t, ) (second raw) for two

simulations: on the left column a semi-arid climate has been analysed, whereas on the
right column the results for a wet case have been reported. In all plots, the comparison
between the simulations with (in blue) and without (in purple) the diffusion terms is
visible. As expected, for the wet case the diffusion makes the profiles much more different
than for the semi-arid case, although complex patterns arise at the interfaces between
the two soils in cgss for the semi-arid climate. The rates of rain events chosen are
(A, @) = (0.14 d',0.5 cm) for the semi-arid simulation and (\,«) = (0.45 d~*, 1.9 cm)
for the wet case. The other main parameters, kept constant in the simulations, are: a
spatial domain of 2 m divided half into loam (center of the plots) and half into sand
(edges of the plots), Z, = 30 cm, § = 1 cm, T = 20 °C, At = 107° d, Az ~ 7 cm,
so = 0.5, periodic boundary conditions.

In this framework, we also need an initial condition for ¢(¢,x), strictly required to solve
equation (3.13); we then choose to define ¢y as the corresponding quasi-steady state value
of s, computed by means of (2.28). Thus, we get that the initial values either of the
complete solution and of its quasi-steady state approximation are the same, unless a rain
event does take place at t = 0. In this case, the two profiles will start with different
values but, after few steps, they will converge.

In Figure 3.15 the comparisons we have talked about are reported. In the first row,
the case in which the rain events are disregarded has been analysed, while in the second
row one can find what happens if we also take the rains into account. We can see that
the profiles of ceompiete and cyss both in (b) and (c) and also in (e) and (f) are equal,
confirming the validity of the quasi-steady state approximation also in 1D. Moreover, we
tried to investigate in Figure 3.16 a single time series of ccompiete and cyss by fixing the
position at & =~ 30 c¢m, and again the two profiles superimpose quite perfectly, both with
and without considering rain events.
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(h) Wet climate: time average of the diffusion term for cgss
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Figure 3.14.  In this figure, the time averages of the same quantity have been computed
for a semi-arid climate (left column) and a wet ecosystem (right column). In the first
row, the average of the vertical flux F(¢,z) of hydrogen is reported; in the second, the
biological decay term BD(t,x) is shown; finally, in the last two rows, the diffusion terms
of soil moisture and hydrogen are displayed. In order to compare the profiles, the same
averages of twin simulations without diffusion of both s and ¢ are shown in the first four
plots. The rates of rain events chosen are (A, a) = (0.14 d~',0.5 cm) for the semi-arid
simulation and (\,a) = (0.45 d™*,1.9 cm) for the wet case. The other main parameters,
kept constant between the simulations, are: a spatial domain of 2 m divided half into loam
(center of the plots) and half into sand (edges of the plots), Z, =30 ¢cm, 6 =1 cm, T = 20
°C, At =107° d, Az ~ 7 cm, sy = 0.5, periodic boundary conditions.
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Figure 3.15. Comparison between the solution of the complete equation for ¢(¢, z), namely
Eq. (3.13), and its quasi-steady state approximation obtain in Appendix A. Firstly, we
report the profile of s(¢,x) on the left side (plot (a) and (d)); then we show the solution of
the complete equation in (b) and (e); finally, at the right side of the figure, one can find
the quasi-steady state approximation for c¢(t,z). The upper graphs have been obtained
without considering the rain events, while the second triplet takes rains into account. The
main parameters of the simulations are: soil of type loam, D, = const ~ 18 cm?/day,
A=0.7day !, a=25cm, Z=30cm, T =20°C,J=1cm.

(a) Comparison for x = 30.00 cm with no rains (b) Comparison for x = 30.00 cm with rains
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Figure 3.16. Comparison at fixed x between the complete solution for ¢(t,z) and its
quasi-steady state approximation. The time series shown correspond to the profiles in
Figure 3.15 taken for x ~ 30 cm. In particular, (a) is referred to the plots (b) and (c)
of Figure 3.15, while (b) corresponds to the graphs (e) and (f), again of Figure 3.15.
The profiles superimpose perfectly, confirming the validity of the quasi-steady state
approximation also for the 1D model.
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3.4 2D model

We would like to end the chapter and, with it, the whole thesis by investigating, although
in an introductory way, what happens if we extend the spatial domain from 1D to 2D.

Now, thus, the equations describing our model have to also take the y direction into
account and are slightly different from Egs. (3.19) and (3.13) used in the 1D case. They
are:

(tv T, y) = Ez[ylé(t - t;)] - p(S) + 6 ’ [Dsﬁs(tv T, y)]

0 1 F(s,¢) — Z, - BD(s,c) Os - -
ac(taxay) - (1 — 8) nZ, + C@ + V- [Dch(t,a:,y)]

—-—S
ot (3.23)

which, considering the non-linear form (3.18) for Dy and the relation (2.23) for D., turn
into

05— St — 19)] — pls) + D(s) (F5)2 + Dy(s) Vs

3.24)
Jde 1 F(s,¢) — Z, - BD(s,c) Os = - 9 (
5= 19 . teg |t D/(Vs)-(Ve) + D.V-c

As in the section dedicated to the 1D model, also here for the dynamics of the hydro-
gen concentration in soil the quasi-steady state approximation is performed in order to
reduce the running time otherwise too long for our purposes. The 2D version of this
approximation is derived in Appendix A.

Firstly, we try a simulation where the spatial domain chosen is mathematically defined
as a chessboard-like pattern of sand and loam zones. Clearly it is not a realistic case,
but still it can tell us interesting clues. In particular, we opted for a 400 x 400 cm
spatial domain divided into 16 squares of side equal to 1 m. In Figure 3.17, we show the
profiles of s(t,z,y) and cgss(t, ,y) for a generic time instant equal to ¢t = 350 d, whereas
in Figure 3.18 the time averages, again of the soil moisture and Hs concentration, are
reported. In particular, in the first two plots of Figure 3.18, we displayed the averages
as functions of both the horizontal directions, while, in the second pair of plots, the y has
been arbitrarily fixed at 200 cm and the averages are free to vary only in the x direction.
These latter graphs, in particular, show great analogies with their twins in one dimension
(such as Figure 3.13), where maxima in the loam regions alternate with minima in the
sand zones for the soil moisture, while the opposite behaviour occurs for ¢. Furthermore,
in the plot of ¢, also in the 2D case local maxima and minima appear at the interfaces
between sand and loam, although they are much less important with respect to what
happens in Figure 3.13 since the hydrologic regime we are in is now different. In fact, in
this section, we put ourselves in a temperate climate to avoid the extreme cases of very
wet and arid ecosystems previously treated.

Then, we have tried a more realistic scenario where the 2D spatial domain is no longer
so mathematically defined as before. Again, we used two different soil types, sand and
loam, but we built an interpolation surface to link different points randomly picked and
associated with values that vary from sand to loam. In this way, the resulting texture
shows a central region of soil very close to a sand type surrounded by a ring-shaped zone
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Figure 3.17. The figure shows the spatial profiles of s(t,z,y) (on the left) and cqss(t, z, y)
(on the right) for a fixed time instant arbitrarily chosen to be ¢ = 350 d, namely at half
of the simulation. A chessboard-like 2D domain has been used, where sand zones (darker
in the s plot) alternate with loam zones, giving rise to a peculiar spatial pattern. The
parameters employed in the simulation are: At = 107°; Az ~ 10.26 cm; A = 0.2 d~! and
a=10cm; §=1cm; T =20 °C; sy = 0.5; periodic boundary conditions.

that gradually turns into loam. In Figure 3.19, the profiles of s(¢,z,y) and c(t,x,y) are
reported in the new spatial domain, again for a fixed time instant ¢ = 350 day. The
wider spectrum of heterogeneity activates the diffusion processes of both moisture and
hydrogen, which show odd spatial patterns. In Figure 3.20, the time averages of s(t, x,y)
and c(t, x,y) have been computed and reported. As in Figure 3.18, the first pair of graphs
show the averages as functions of both z and y, while, in the second, they are displayed
at fixed y. Again, in these latter plots, thanks to the choice of the y value that is 250 cm,
one can clearly see the sequence of high soil moisture in the semi-loam regions and low s
values in the sand-like center zone of the domain. This behaviour is reproduced upside
down for the hydrogen concentration in soil, as expected. Also in this case, local maxima
and minima are present at the interfaces between different soil types, generated, as we
discussed in previous sections, by diffusion processes.

46



3.4 — 2D model

Time average of s(t, x, y) Time average of Cgss(t. x, ¥)

0.399
42.2
350 0.387
40.4
300 0.375
38.6
250 0.363 36.8
= 0.351 ¢ = S\I
E 200 > B 3.0 5
3 [
> 0.339 > 32
150
0.327 314
100
0.315 29.6
0.303 27.8
0.291 26.0
150 200 250 400 100 150 200 250 300 350 400
x [cm] x [cm]
Time average of s(t, x,y) for y =200 cm Time average of Cges(t, x, y) for y = 200 cm
0.40 1
42.51
0.384 40.0
375
_ 036 5
3 8
S i
W U 350
5 >
r)'{ 0.34 =
" 15 32,5 4
0.324
30.0 4
0304 27.5
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
x [cm] x [em]

Figure 3.18. Time averages of s(t,z,y) (left column) and cys5(¢, 2, y) (right column) are
reported in the figure above. In particular, in the first row, it is possible to find the
spatial profiles of the averages as a function of both z and y, whereas, in the second row,
the averages are reported at fixed y, chosen equal to y = 200 c¢m, and one can see an
alternation of maxima and minima depending on whether we are in the loam or in the
sand zone. The parameters of the simulation are: At = 107%; Az ~ 10.26 cm; A = 0.2 d!
and a =1.0cm; § =1 cm; T = 20 °C'; sg = 0.5; periodic boundary conditions.
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Figure 3.19. A more realistic 2D domain has been chosen for the simulation shown in
the figure above, where a surface of interpolation has been used to link zone of type sand
with others of type loam. The result is a central region of sand surrounded by a ring-like
soil that smoothly turns into loam. On the left plot the spatial profile of s(t,z,y) is
reported, while, on the right, one can find that of cgss(¢,z,y), both of them at fixed
time that we arbitrarily chose to be ¢ = 350 day. The parameters of the simulation
are: At =107 Az~ 1026 cm; A =02d 'anda=10cm; 6 =1 cm; T = 20 °C;
sp = 0.5; periodic boundary conditions.
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Figure 3.20. Temporal means of s(¢,z,y) (left column) and cgss (right column) of the
simulation shown in Figure 3.19. Again, in the first row, the spatial profiles are reported
as functions of both z and y, while, in the second row, only the dependency on the x
variable remains whereas y is fixed to 250 cm. The parameters of the simulation are:
At=10"% Az~ 1026 cm; A =0.2d tanda=1.0cm; 6 =1 cm; T =20 °C; sg = 0.5;
periodic boundary conditions.
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Appendix A

Derivation of the 1D and 2D
Quasi-Steady State
Approximation

A.1 1D case

As we said in the section about the 1D model, in order to obtain the quasi-steady state
approximation we have to solve
0? D! 9s dc 1

97 Dodwdw ~ nZ,A—s)D. L *¢) 4 BD(s.c)] (-1

namely a Poisson-like equation. It is, in fact, in the form of a general Poisson equation
with variable coefficients such as, in D > 1,

V- [u(P) V()] = f(7) (A.2)

where v and f are given scalar functions of the position, that in our case are, respectively,
D.(s) and W%_S)[F(s,c) — Z, - BD(s,c)], while ¢ is the scalar field we want to find,
which for us is ¢(x).

There are a lot of methods to solve this type of equation; here we chose the Finite-
Difference Method, which is one of the simplest. The idea is, as suggested by its name,
to substitute the space derivatives with their finite-differences approximation and solve
the resulting equation numerically.

So, we start by defining a 1-dimensional spatial grid with N, discrete points, distanced
Az from each other and labelled by the index ¢ = 0,1,..., N, — 1. We will also consider
periodic boundary conditions, so that the N,-th position is equal to the ¢ = 0 one.
Therefore, we can say that the derivatives of s and c¢, represented momentarily together
by a generic function h, can be approximated to

O?h(z)  h(z+ Az)—2h(z)+ h(z —Az)  Oh  h(z+ Az) — h(z)

Ox? Ax? " Or Ax
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and then, using the grid points, we can define
h(x) = ]’Li 5 h(l‘ + Al’) = hi:l:l
obtaining

Ph(x) _ higr —2hi+hin  Oh _ hig—hy
ox?2 Ax? To9r Az

After these considerations, we can now see what happens to our equation (??) in the
Finite-Difference Method:

6—20(3:) Dy 9s(x) Oc(x)  F(s,c) — Zr - BD(s,c)
Ox? D. ox 0z nZ.(1—-s(x))D,
Cit1 — 2¢i +¢i 1 n (Dé) Siv1—8i Ciy1—Ci _ Zy-BD(s;,¢;) — F(si,¢i)
Ax? D, Az Ax nZy(1 — s;) D,

/

Az? [ Z kmh(T) f(si)ci — gr(si)(ca — ¢;)]

D
Cit1 —2¢i +¢im1 + (DC) (8i+1 = si)(cit1 — i) =
(&

nZy(1 — s;)D.

for the sake of simplicity, we can group together some of the coefficients of ¢;+1 and ¢;
defining

Az?Z kyh(T) f(5)

Aa:ng(si)
nZ.(1 — s;) D, » Blsi)

A(sy) = - m

so that our equation becomes:

/

D
Civ1 — 2¢; +ci—1 + (DC> (si+1 — si)(cip1 — ¢i) = A(si)ei — B(si)cq + B(si)ci
C

Although this equation is correct, written like that it is not symmetric in the first-order
term, namely the one coming from the first derivatives of s and c¢. Hence, we can sym-
metrize it in this way:
<D£> ds Oc (Dé> Ciyl —Ci | G — Ci—1
D.) dxdx \ D, Az Az
D

Siv1 — S8  Si—8i—1| 1
K3 K3 + K3 3 :| 3

Ax Ax 2

Si4l — Si—1| |G+l — CGi-1 |
2- Az

B (Dé> (8i1 = sim1) (G — cio1)
o 4Ax2

so that now ¢; 1 and ¢;—1 have the same coefficient. In fact, we can also define

1 D'\ si11 — si_
§U(3i+1,5i71) _ (DZ) %
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A.1 - 1D case

Returning to the complete equation, we get therefore

D s Vet — e
Ciy1 — 2¢; +ci_1 + (5) . (57,-1—1 Sq 1)4(01—&—1 (& 1) _ A(Si)cz‘ o B(si)ca —I—B(Si>cz‘
c

U(sit1,Si— U(sit1, Si—
Ciy1 — 2¢; + cim1 + (H;zl)CiH - (H_;ll)cil = A(si)ci — B(si)ca + B(si)ci
U(Sit1,8i-1)

2

U(Sit1,Si—1)

1
* 2

Cit1 — [2 + A(Sz) + B(si)]ci + [1— Ci—1 = —B(si)ca

We have N, — 2 equations of this type, namely for ¢ = 1,2,... N, — 2. In order to close
the system, we need two other equations and these are given by the boundary conditions,
which we already anticipate are the periodic ones. Indeed, periodic boundary conditions
can be inserted by means of the following two conditions:

1. ¢g = CN,—1 <= Cy) —CN,—1 = 0
2. ¢g = _éNw—l < ¢—C+CN,—-1 —CN,—2 = 0

In fact, for Condition 2, we can proceed again by discretizing the derivatives in the
following way

o = —CN,—1 =
Co—C1 _ _CNy—1 — CN,—2
Ax Ax
<~ C)—C = _(CNz—l — CNI_Q) <~

< c¢p—c1—cN,—2+cn,—1 =0
After grouping, one more time, the coefficient of ¢; and ¢;1+1 by defining
E(si) = =24+ A(si) + B(si)] 5 W¥(si-1,8001) = [L £ U(si-1, 8i41)]
our system of equations can eventually be written as:
co—cnN,—1 =0

W (sg,82) - co+ E(s1) - c1 + W™ (s0,82) - co = —coB(s1)

W (si—1,8i+1) - Ciy1 + E(s;) - ¢; + W (8i-1, Si+1) * i1 = —¢aB(5;)

W (sn,—3,$N,—1)cN,—1 + E(sn,—2)en, —2 + W (SN, -3, SN,—1)CN,—3 = —CaB(sn,—2)

co—c1—cnN,—2+cN,—1 =0

The system just presented can be easily solved with linear algebra methods and the
solution is the hydrogen concentration in soil in the quasi steady-state approximation, as
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we want. Moreover, it is also quite simple to change the boundary conditions, one only
needs to substitute the first and the last equations of the system with the ones describing
the new set of boundary conditions. As an example, if Neumann BCs are preferred (with
zero flux at the boundaries), it is only necessary to use the two following equalities

1. ¢(g=0 <= ¢cg—c1 =0
2. éNw_lzo <~ CNx—l_CNx—QZO

instead of the ones for periodic BCs, while the rest of the system remains unchanged.

A.2 2D case

Now that we derived the 1D quasi-steady state approximation with the Finite Difference
Method, we can quite easily extend it in 2D. In fact, the equation we need to solve is
now:

D o~ - F(s,c) — Z. - BD(s,c)
VQ “c v . v —_ _ 9 T )
¢+, (Vo) (Ve) nZ,(1 —s)D,

B (A.3)

which is still a Poisson-like equation, similar to (A.1), but in more dimensions. The only
change we have to take into account is that the discrete grid is now 2-dimensional and
each position is identified by two indices, i and j along, respectively, the x and y direction.
Hence, the finite difference approximation for the derivatives (that in 2D are a laplacian
and a product of gradients) becomes

c(z,y) | O%c(z,y)
Vic(z,y) = 92 + By =

clx+ Azx,y) — 2¢(x,y) + c(x — Az, y)
+
Ax?

c(z,y + Ay) — 2¢c(z,y) + c(z,y — Ay)
+
Ay?

and, already considering a symmetric form as in the 1D case,

(©0) . (Fe) = 25:y) 0clw.y) | Os(w.y) Ocl.y)

Ox ox oy y
e+ Ar,y) — slz — Aryy) ela+ Ar,y) — cle = Ary)
N 2Ax 2Ax
LSyt Ay) —sey - Ay) ey + Ay) —clz,y — Ay)
2Ay 2Ay
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A.2 - 2D case

Using the grid indices and considering for the sake of simplicity Az = Ay, we can rewrite
these derivatives as
Citlj = 2Cij + Cim1j | Cig+1 = 2Cij +Cij—1

2 _ _
Vee(z,y) = A2 + Ay? =

Cit1,j + Cij+1 — 4Cij + Cim1,j + Cijj—1
Ax?

(Vs) - (V) = Sitld — izl Citlg = Cimly | Sig#l = Sijo1 Cighl = i1
2Ax 2Ax 2Ay 2Ay

B (5i+1,j - Szel,j) : (Ci+1,j - Cz'fl,j) (Si,jJrl - Sz‘,jfl) ) (Cz‘,j+1 - Ci,jfl)
= +

4Az2 4Ax?

Substituting these quantities into Eq. (A.3) we get

Cily T Cig1 = ACij + cim1g + Cijo1 | Delsiy) {(si-i-l,j — siz1y) (G — Gim1g) ]

Ax? D.(s;,5) 4Az?

D(siy) [(sig+1 — sij—1) - (Cigr — Cz@j—l)} __F(siy,cij) = Zr - BD(si4,¢ij)
De(si;) 4Aq? nZy(1 = sij)De(si ;)

To group the various coefficients in a better way, we define, similarly to the 1D case, the
quantities:

Di(si5) <5i+1,j - Sz'—l,j>

Us(Sit1,,5i-1,5) = Dc(si5) 2

and

Di(si) <Si,j+1 - Si,jl>
De(si5) 2
while we can use the previously defined A(s; ;) and B(s; ;) since the right sides of equa-

tions (A.1) and (A.3) are the same, apart from the fact that in 2D s is labelled with two
indices. Thus, we obtain:

Uy(8ij+1,8i5-1) =

Uz (Sit1.5s Si—1.i Uy (i1, Sii—
(1 + x(51+1; 5 1’])> Cz‘-i,-l,j + (1 + y(817j+21 SZ’J l)) Ci7j+1 — [4 + A(Si,j) + B(S@j)]ci,j"i‘

U (Sit1 i Si1 s U (s: . L
+ (1 . x(Serlg’Sz 1,])) i1+ (1 . y(Sz,j+21751,j 1)) Cijo1 = _B(Si,j)ca

Lastly, we can define
o E(sij)=—[4+ A(sij) + B(si;)]
o Wi (si—1j,8i415) = [1 £ Us(si—1,j, 8it1,)]

o WE(sijo1,8i541) = [1 £ Uy(sij-1,8i541)]
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and eventually obtain
W (sim1s si41) - Civng + Wy (sij-1, 8ij41) - Cijr — Esig) - cij+
+ Wy (8i-155 Si414) - Cim1,j + Wy (8ij-1,8ij+1) - cij—1 = —B(si5)ca

We have N, - N, — 2(N, + N,) + 4 equations of this type, one for each of the internal
points of our discrete spatial grid, and 2(N, + N,) — 4 boundary conditions for the points
found on both the horizontal and vertical edges of the domain. Again, in this work, we
choose periodic BCs so that the 2(N, + NN,) — 4 boundary conditions can be written as
those previously discussed for the 1D case. Thus, we can build a system of N, - NV, easily
solvable with linear algebra methods and whose solution is the Hy concentration in soil
in the quasi-steady state approximation in 2 dimensions.
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